TY - THES A1 - Schäfer, Christian T1 - Real time observables for the Quark-Gluon Plasma from the lattice N2 - Das Schwerionenkollisionen Programm der Beschleuniger RHIC und LHC gibt Hinweise auf einen neuen Zustand hadronischer Materie --- das Quark-Gluon Plasma. Dieses zeichnet sich durch eine zumindest partielle Aufhebung des confinements aus, welches besagt, dass keine freien Quarks beochtbar sind. Aus einer Beschreibung der experimentellen Daten mit relativistischer Hydrodynamik folgen weitere Eigenschaften. So geht das in einer Schwerionenkollision erzeugte Quark-Gluon Plasma nach sehr kurzer Zeit, etwa 1 fm/c, in ein zumindest lokales thermisches Gleichgewicht über. Durch die Lorentzkontraktion der beiden Schwerionen erwartet man, dass der Zustand direkt nach der Kollision durch eine Impulsanisotropie in der transversal-longitudinalen Ebene bestimmt wird. Somit setzt das Erreichen eines thermischen Gleichgewichts zunächst eine Isotropisierung voraus. Bisherige Studien haben gezeigt, dass gluonische Moden bei dieser Isotropisierung durch Verursachung einer chromo-Weibel Instabilität eine entscheidende Rolle spielen. Weiterhin verhält sich das Quark-Gluon Plasma wie eine fast perfekte Flüssigkeit. Eine Berücksichtigung dissipativer Terme in der hydrodynamischen Beschreibung erfordert das Hinzufügen weiterer Terme zu den entsprechenden Bewegungsgleichungen. Diese sind proportional zu Transportkoeffizienten, welche durch die zugrunde liegende mikroskopische Theorie festgelegt sind. Diese Theorie ist Quantenchromodynamik. Sie beschreibt die starke Wechselwirkung der Quarks und Gluonen und ist ein fundamentaler Baustein des Standardmodells der Teilchenphysik. Da im Regelfall Prozesse der starken Wechselwirkung nichtperturbativ sind, beschreiben wir QCD unter Verwendung einer Gitterregularisierung. Diese beruht auf einer Diskretisierung der vierdimensionalen Euklidischen Raumzeit durch einen Hyperkubus mit periodischen Randbedingungen und ermöglicht ein Lösen der QCD mit numerischen Methoden. Allerdings ist die Anwendung der Gittereichtheorie auf Systeme im thermischen Gleichgewicht beschränkt und kann somit keine Prozesse beschreiben, die auf Echtzeit basieren. Transportkoeffizienten entsprechen Proportionalitätskoeffizienten, die die Relaxation einer Flüssigkeit oder eben eines Quark-Gluon Plasmas von einer kleinen Störung beschreiben. Damit sind sie unmittelbar mit der Zeit verknüpft. Über Kubo-Formeln lassen sie sich jedoch mit Gleichgewichtserwartungswerten retardierter Korrelatoren verknüpfen und werden so in Gitter QCD zugänglich. In der vorliegenden Dissertation berechnen wir den Transportkoeffizienten κ in Gittereichtheorie für das Yang-Mills Plasma. Dabei nutzen wir aus, dass dieser Transportkoeffizient eine triviale analytische Fortsetzung vom retardierten zum Euklidischen Korrelator besitzt, welcher direkt in Gittereichtheorie zugänglich ist. Es ist die erste nichtperturbative Berechnung eines Transportkoeffizienten in QCD ohne weitere Annahmen, wie die Maximum Entropie Methode oder Ansätze, zu treffen. Y1 - 2014 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/35026 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-350266 SP - VIII EP - 150 PB - Univ.-Bibliothek CY - Frankfurt am Main ER -