TY - THES A1 - Kimpel, Janine T1 - Analyse der Wirksamkeit einer Gentherapie der HIV-Infektion im humanisierten Mausmodell N2 - Durch die Behandlung HIV-positiver Patienten mit einer Kombinationstherapie verschiedener antiviraler Substanzen (HAART = hochaktive antiretrovirale Therapie) kann die Virusreplikation über einen längeren Zeitraum unterdrückt werden. Allerdings hat diese Therapie Limitationen. Die Medikamente verursachen hohe Therapiekosten, haben zum Teil starke Nebenwirkungen und es entstehen mit der Zeit resistente Viren. Eine Alternative besteht in der somatischen Gentherapie der HIV-Infektion. Bei diesen Ansätzen werden Zellen der Patienten genetisch modifiziert, so dass sie ein antivirales Genprodukt exprimieren. In der vorliegenden Arbeit wurde ein membrangebundenes, antivirales C46 Peptid (maC46) sowohl in vitro in Zelllinien und primären humanen T-Zellen als auch in vivo in zwei humanisierten Mausmodellen getestet. Das C46 Peptid entstammt der C-terminalen "heptad repeat" Sequenz des HIV Hüllproteins gp41. C-Peptide wie C46 oder auch T20, welches bereits für die HAART Therapie zugelassen ist, binden während der Fusion des Virus mit der Zielzelle an gp41 und inhibieren so die Fusion. Werden T-Zelllinien oder primäre humane T-Zellen mit einem gammaretroviralen Vektor, der maC46 codiert, transduziert, können sie sehr effizient vor einer Infektion mit HIV geschützt werden [30]. Dieser Vektor wurde bereits in einer klinischen Studie mit T-Zellen von 10 HIV-positiven Patienten getestet [142]. Dabei konnte allerdings kein antiviraler Effekt der Gentherapie beobachtet werden. Hier wurde nun ein lentiviraler Vektor für maC46 (LV-maC46-GFP) verwendet. Lentivirale Vektoren transduzieren im Gegensatz zu gammaretroviralen auch ruhende Zellen, was ein kürzeres ex vivo Aktivierungs- und Transduktionsprotokoll ermöglicht. Außerdem ist für lentivirale Vektoren das Risiko der Transformation der Zelle niedriger als für gammaretrovirale. Für eine mögliche klinische Anwendung sollte es daher tolerierbar sein, für lentivirale Vektoren eine höhere MOI zu verwenden als für gammaretrovirale. Eine höhere Transduktionseffizienz sollte auf der anderen Seite auch eine effektive und langanhaltende Transgenexpression ermöglichen. Zunächst wurde gezeigt, dass sowohl die T-Zelllinie PM-1 als auch primäre humane T-Zellen nach Transduktion mit LV-maC46-GFP vor einer Infektion mit HIV geschützt waren und während der Infektion einer gemischten Kultur einen Selektionsvorteil gegenüber nicht-transduzierten Zellen hatten. Dabei konnte auch durch konfokale Mikroskopie gezeigt werden, dass das Virus die maC46-exprimierenden Zellen nicht injizieren konnte, sondern lediglich auf der Zelloberfläche gebunden wurde. Im Weiteren wurden zwei humanisierte Mausmodelle etabliert, um LV-maC46-GFP in vivo zu testen. Im humanen Immunsystem Mausmodell (HIS-Mausmodell) wurden immundefiziente Mäuse mit humanen Blutstammzellen repopuliert. In den Tieren kam es zu einer de novo Bildung von humanen, reifen T-Lymphozyten durch Thymopoese. Dabei wurden im Blut der Tiere humane, maC46- exprimierende CD4+ T-Zellen detektiert. Nach Infektion der Tiere mit HIV wurden diese T-Zellen depletiert. Es kam allerdings nicht zu einer Anreicherung oder einem selektiven Überleben der genmodifizierten T-Zellen. Eine Erklärung dafür könnte eine gestörte T-Zellhomeostase in den Tieren sein. Das zweite humanisierte Mausmodell (T-Zellmausmodell) verwendete immundefiziente Mäuse, die mit transduzierten humanen T-Zellen repopuliert wurden. Die Infektion mit HIV erfolgte entweder in vitro vor Transplantation der Zellen oder in vivo nach Repopulierung der Tiere. In beiden Fällen konnte ein selektives Überleben maC46-exprimierender CD4+ T-Zellen nach HIV-Infektion beobachtet werden. Im letzten Teil der vorliegenden Arbeit wurde die Weiterentwicklung von maC46, eine sekretierte Variante des C46-Peptids (iSAVE), im T-Zellmausmodell getestet. Ein sekretierter Fusionsinhibitor stellt insofern eine Weiterentwicklung des membrangebundenen dar, als nicht nur die genmodifizierten Zellen, sondern zusätzlich auch nicht-modifizierte Nachbarzellen vor einer Infektion mit HIV geschützt werden könnten. Dadurch erhöht sich auch das Spektrum an möglichen Produzentenzellen für den Fusionsinhibitor. In den hier beschriebenen Experimenten wurden humane T-Zellen entweder mit einem gammaretroviralen (RV-iSAVE) oder einem lentiviralen Vektor (LV-iSAVE) transduziert und die Experssion das iSAVE-Peptids wurde im Serum der Tiere gemessen. In beiden Ansätzen konnte iSAVE Peptid im Serum der Tiere detektiert werden. In weiteren Experimenten sollte nun untersucht werden, ob dieses in vivo sekretierte iSAVE Peptid antiviral aktiv ist und die humanisierten Mäuse vor einer Infektion mit HIV schützen kann. Y1 - 2010 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/20246 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-85065 ER -