TY - THES A1 - Wacker, Ulrike T1 - Clumped isotope analysis of carbonates : analytical aspects, calibration and application to Silurian brachiopod shells and diagenetic phases from Gotland/Sweden N2 - During this study clumped isotope analysis of carbonates was established at the Goethe University of Frankfurt, Germany. Therefore, preparation protocols and analytical parameters were elaborated to obtain precise and accurate Δ47 data. Briefly, analyte CO2 was cleaned cryogenically using glass extraction lines to remove traces of water that enable re-equilibration of C–O bonds in the gases. Furthermore, analyte CO2 was passed through a gas chromatograph (GC) to clean it from contaminants that produce isobaric interferences with m/z 47. Initially, phosphoric acid digestions of carbonates was conducted at 25 °C in McCrea-type reaction vessels. Afterwards samples were reacted at 90 °C using a common acid bath. Mass spectrometric analyses were performed using a MAT 253 equipped with a dual inlet system. Δ47 values were directly projected to the absolute scale using CO2 gases equilibrated at distinct temperatures. In cooperation with Stefano Bernasconi and his research group at ETH Zurich we studied the non-linearity that occurs for the measurement of m/z 47. This effect results from secondary electrons created by the m/z 44 beam. These electrons cause a negative background on the m/z 47 collector. A correction procedure was proposed that relies on the determination of the negative background on the m/z 47 Faraday cup. This approach might reduce time-consuming analyses of heated gases which were used so far to account for the observed non-linearity. However, the suggested correction of the negative background on the m/z 47 cup is only applicable if the slit width of the m/z 44 beam is significantly wider than that of the m/z 47 beam. This thesis, furthermore, presents a comparison of the different phosphoric acid digestion techniques which are commonly used for carbonate clumped isotope analysis. For calcitic and aragonitic material digested at 25 °C in McCrea-type vessels we observed that the sample size has an effect on Δ47 data: higher mean Δ47 values and a larger scatter of data were received for samples <7 mg than for larger aliquots. For carbonate samples digested at 90 °C in a common acid bath no sample size effect was determined. We assume that secondary re-equilibration of CO2 with water preferentially occurs at 25 °C producing the observed differences. However, a sample size effect can be avoided if reaction temperature is increased to 90 °C. In order to make carbonate Δ47 data obtained from acid digestions at 90 °C comparable to Δ47 data received from reactions at 25 °C the difference of the acid fractionation factores (Δ47*25-90) between both temperatures has to be known. For the determination of the Δ47*25-90 value we have considered Δ47 data made at 25 °C from samples >7 mg only. For calicte and aragonite we obtained differences in fractionation factores of 0.075‰ and 0.066‰, respectively. These Δ47*25-90 values are coincident with the theoretical prediction of 0.069‰ proposed for calcite (Guo et al., 2009). Moreover, this dissertation comprises a calibration study of the clumped isotope thermometer based on various natural calcites that grew between 9 and 38 °C. The samples include a brachiopod shell, a bivalve shell, an eggshell of an ostrich and foraminifera tests which formed from distinct biomineralizing processes. Furthermore we included an authigenic carbonate crystallized from biological-induced precipitation. The following linear relationship between 1/T2 and Δ47 was determined (with Δ47 in ‰ and T in K): Δ47 = 0.0327 (± 0.0026) x 106 / T2 + 0.3030 (± 0.0308) (R2 = 0.9915) This equation differs from the pioneering Ghosh et al. (2006a) calibration. However, our regression line is statistically indistinguishable from that of Henkes et al. (2013) which is based on aragonitic mollusks and calcitic brachiopod shells. Both studies have in common that calibration data were, at first, directly referenced to the absolute scale. In addition, both datasets rely on similar digestion techniques. Furthermore, the two calibrations are conform with the theoretical prediction of Guo et al. (2009). The calcite calibration of the clumped isotope paleothermometer received in this study was applied to Δ47 data measured for Silurian brachiopods shells from Gotland/Sweden. Prior to isotopic analysis the fossils were intensively investigated for their preservation state (CL, SEM, trace elements). The lowest T(Δ47) values of ca. 28 to 33 °C were estimated from ultrastructurally well-preserved regions of some shells. For these samples also the lowest δ18Ow values of Silurian seawater were determined. These estimates of ca. −1‰ confirm the assumption that the δ18O value of the Silurian ocean was buffered to (0 ± 1)‰. Nevertheless, most studied shells were characterized by a patchwork of pristine and altered shell portions resulting in elevated T(Δ47) values which plot mostly between 40 and 60 °C. Our results indicate that the clumped isotopic composition of the shells were altered at low water-rock ratios, not affecting the δ18O values. Δ47 and δ18O data of associated diagenetic phases (sparitic and micritic phases of the inner fillings of the fossils) provide evidence that the sparitic cements grew during several diagenetic events which occurred at different temperatures in fluid-buffered systems. We, furthermore, conclude that the micritic phases lithified at a very early diagenetic stage with the δ18O values being most probably close to a Silurian seawater composition KW - clumped isotopes Y1 - 2014 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/38389 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-383896 PB - Univ.-Bibliothek CY - Frankfurt am Main ER -