TY - THES A1 - Hu, Yangjie T1 - Alternative splicing of HsfA2 mediates thermotolerance in tomato species N2 - Heat stress transcription factors (Hsfs) play essential role in heat stress response and thermotolerance by controlling the transcriptional activation of heat stress response (HSR) genes including molecular chaperones. Plant Hsf families show a striking multiplicity, with more than 20 members in the many plant species. Among Hsfs, HsfA1s act as the master regulators of heat stress (HS) response and HsfA2 becomes one of the most abundant Hsfs during HS. Using transgenic plans with suppressed expression of HsfA2 we have shown that this Hsf is involved in acquired thermotolerance of S. lycopersicum cv Moneymaker as HsfA2 is required for high expression and maintenance of increased levels of Hsps during repeated cycles of HS treatment. Interestingly, HsfA2 undergoes temperature-dependent alternative splicing (AS) which results in the generation of seven transcript variants. Three of these transcripts (HsfA2-Iα-γ), generated due to alternative splicing of a second, newly identified intron encode for the full length protein involved in acquired thermotolerance. Another 3 transcripts (HsfA2-IIIα-γ) are generated due to alternative splicing in intron 1, leading in all cases to a premature termination codon and targeting of these transcripts for degradation via the non-sense mRNA decay mechanism (NMD). Interestingly, excision of intron 2, results into the generation of a second previously unreported protein isoform, annotated as HsfA2-II. HsfA2-II shows similar transcriptional activity to the full-length protein HsfA2-I in the presence of HsfA1a but lacks the nuclear export signal (NES) required for nucleocytoplasmic shuttling which allows efficient nuclear retention and stimulation of transcription of HS-induced genes. Furthermore, stability assays showed that HsfA2-II exhibits lower protein stability compared to HsfA2-I. The presence of a second intron and the generation of a second protein isoform we identified in other Solanaceae species as well. Remarkably, we observed major differences in the splicing efficiency of HsfA2 intron 2 among different tomato species. Several wild tomato accessions exhibit higher splicing efficiency that favors the generation of HsfA2-II, while in these species the splice variant HsfA2-Iγ is absent. This natural variation in splicing efficiency specifically occurring at temperatures around 37.5oC is associated with the presence of 3 intronic polymorphisms. In the case of wild species these polymorphisms seemingly restrict the binding of RS2Z36, identified as a putative splicing silencer for HsfA2 intron 2. Tomato accessions with the polymorphic “wild” HsfA2 show enhanced thermotolerance against a direct severe heat stress incident due to the stronger increase of Hsps and other stress induced genes. Introgression of the “wild” S. pennellii HsfA2 locus into the cultivar M82, resulted in enhanced seedling thermotolerance highlighting the potential use of the polymorphic HsfA2 for breeding. We conclude that alterations in the splicing efficiency of HsfA2 have contributed to the adaption of tomato species to different environments and these differences might be directly related to natural variation in their thermotolerance. Y1 - 2017 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/44389 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-443896 CY - Frankfurt am Main ER -