TY - JOUR A1 - Dörrbaum, Aline R. A1 - Kochen, Lisa A1 - Langer, Julian David A1 - Schuman, Erin T1 - Local and global influences on protein turnover in neurons and glia T2 - eLife N2 - Regulation of protein turnover allows cells to react to their environment and maintain homeostasis. Proteins can show different turnover rates in different tissue, but little is known about protein turnover in different brain cell types. We used dynamic SILAC to determine half-lives of over 5100 proteins in rat primary hippocampal cultures as well as in neuron-enriched and glia-enriched cultures ranging from <1 to >20 days. In contrast to synaptic proteins, membrane proteins were relatively shorter-lived and mitochondrial proteins were longer-lived compared to the population. Half-lives also correlate with protein functions and the dynamics of the complexes they are incorporated in. Proteins in glia possessed shorter half-lives than the same proteins in neurons. The presence of glia sped up or slowed down the turnover of neuronal proteins. Our results demonstrate that both the cell-type of origin as well as the nature of the extracellular environment have potent influences on protein turnover. KW - Research article KW - Cell biology KW - Neuroscience KW - Protein turnover KW - Hippocampus KW - Proteomics KW - Neuron-glia interactions KW - rat Y1 - 2018 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/46872 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-468728 SN - 2050-084X N1 - Copyright Dörrbaum et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. VL - 7 IS - e34202 SP - 1 EP - 24 PB - eLife Sciences Publications CY - Cambridge ER -