TY - THES A1 - Adler, Clemens T1 - Der STAR Level-3 Trigger N2 - Schwerionen-Collider-Experimente, wie das STAR-Experiment am RHIC (BNL) oder das geplante ALICE-Experiment am LHC (CERN) untersuchen Schwerionenkollisionen bei Schwerpunktsenergien von Wurzel aus SNN = 200 GeV (RHIC), bzw. Wurzel aus sNN = 5, 5 TeV (ALICE). In diesen Kollisionen werden mehrere tausend geladene Teilchen produziert, die in STAR und ALICE in großvolumigen TPCs gemessen werden. Das Datenvolumen erreicht dabei bis zu 10 MB (STAR) und 60 MB (ALICE) pro Ereignis. Aufgrund der hohen Luminosität der Collider könnten die Experimente zentrale Schwerionenkollisionen mit einer Rate bis zu 100 Hz bzw. 200 Hz (ALICE) untersuchen. Die dabei entstehenden Datenraten im Bereich mehrerer GB/s sind mit heutiger Technologie jedoch nicht mehr einfach zu speichern. Deshalb kann nur ein Bruchteil der zur Verfügung stehenden Ereignisse aufgezeichnet werden. Aufgrund der exponentiellen Entwicklung der CPU-Leistung wird es jedoch möglich, die Rekonstruktion von Ereignissen während der Datennahme in Echtzeit durchzuführen. Basierend auf den rekonstruierten Spuren in den Detektoren kann die Entscheidung getroffen werden, ob ein Ereignis gespeichert werden soll. Dies bedeutet, dass die begrenzte Speicherbandbreite gezielt mit Ereignissen, die eine interessierende physikalische Observable beinhalten, angereichert werden kann. Ein solches System zur Ereignisselektion wird als Level-3-Trigger oder allgemeiner als High Level Trigger bezeichnet. Am STAR-Experiment wurde erstmals in einem Schwerionenexperiment solch ein Level-3-Triggersystem aufgebaut. Es besteht aus 432 i960-CPUs, auf speziell gefertigten Receiver Boards für die paralelle Clusterrekonstruktion in der STARTPC. 52 Standard-Computer mit ALPHA- bzw. Pentium-CPUs rekonstruieren die Spuren geladener Teilchen und tre.en eine Triggerentscheidung. Dieses System ermöglicht die Echtzeit-Rekonstruktion zentraler Au-plus-Au-Kollisionen mit anschliessender Analyse durch einen Trigger-Algorithmus mit einer Rate von 40-50 Hz. Die Qualität, die mit dieser schnellen Analyse erreicht wird, kann mit der Qualität der STAR-Offline-Rekonstruktion verglichen werden. Der Level-3-Clusterfinder erreicht in Bezug auf Ortsauflösung und Rekonstruktionseffizienz dieselbe Qualität wie der Offline-Clusterfinder. Der Level-3-Trackfinder erreicht bei Rekonstruktionseffizienz und Impulsauflösung 10-20% schlechtere Werte als der Offline- Trackfinder. Die Anwendung eines Level-3-Triggers besteht in der Messung von seltenen Observablen ("rare Probes"), die ohne eine Anreicherung nicht, oder nur schwer, meßbar wären. In den Jahren 2000 und 2001 wurden erste Triggeranwendungen für das STARLevel- 3-System erprobt. In ultraperipheren Au-plus-Au-Kollisionen wurden po-Kandidaten schon im Jahr 2000 selektiert. Während der Strahlzeit des Jahres 2001 wurde das Level-3-System erstmals zum Triggern in zentralen Au-plus-Au-Kollisionen eingesetzt. Die Triggeralgorithmen beinhalteten einen Õ-Trigger, einen 3He-Trigger und einen Algorithmus zur Anreicherung von Spuren hohen Impulses in der Akzeptanz des RICH-Detektors. Das STAR Level-3-System ist in der Lage zehnmal mehr Ereignisse zu analysieren, als gespeichert werden können. Aufgrund der begrenzten Luminosität des RHIC-Beschleunigers, konnten die Level-3 Trigger erst zum Ende der Strahlzeit eingesetzt werden. Den genannten Algorithmen standen zusätzlich zu den 3 · 10 hoch 6 gespeicherten zentralen Ereignissen, 6 · 10 hoch 5 zentrale Ereignisse zur Analyse zur Verfügung. Mit diesem begrenzten Anreicherungsfaktor von 20% blieb das System hinter seinen Möglichkeiten zurück. Es konnte jedoch gezeigt werden, dass das STAR Level-3-System in der erwarteten Qualität und Stabilität funktioniert. Y1 - 2002 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/5361 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-0000002468 ER -