TY - THES A1 - Schöneberger, Hannah T1 - Impairment of antioxidant defense via glutathione depletion sensitizes acute lymphoblastic leukemia cells for Smac mimetic-induced cell death N2 - To overcome poor treatment response of pediatric high-risk acute lymphoblastic leukemia (ALL), novel treatment strategies are required to reactivate programmed cell death in this malignancy. Therefore, we take advantage of using small-molecule antagonists of Inhibitor of apoptosis (IAP) proteins, so called Smac mimetics such as BV6, which are described to overcome apoptosis resistance and thereby sensitize tumor cells for several apoptotic stimuli. To address the question whether redox alterations can sensitize leukemic cells for Smac mimetic-mediated cell death, we interfered with the cellular redox status in different ALL cell lines. Here, we show for the first time that redox alterations, mediated by the glutathione depleting agent Buthioninesulfoximine (BSO), prime ALL cells for BV6-induced apoptosis. Besides ALL cell lines, BV6/BSO cotreatment similarly synergizes in cell death induction in patient-derived primary leukemic samples. In contrast, the combination treatment does not exert any cytotoxicity against peripheral blood lymphocytes (PBLs) or mesenchymal stroma cells (MSCs) from healthy donors, suggesting some tumor selectivity of this treatment. We also identify the underlying molecular mechanism of the novel synergistic drug interaction of BSO and BV6. We demonstrate that both agents act in concert to increase reactive oxygen species (ROS) production, lipid peroxidation and finally apoptotic cell death. Enhanced ROS levels in the combination treatment account for cell death induction, since several ROS scavengers, like NAC, MnTBAP and Trolox attenuate BSO/BV6-induced apoptosis. BSO/BV6-induced ROS can be mainly classified as lipid peroxides, since the vitamin E derivate α-Tocopherol as well as Glutathione peroxidase 4 (GPX4), which both specifically reduce lipid-membrane peroxides, prevent lipid peroxidation, caspase activation and cell death induction. Vice versa, GPX4 knockdown and pharmacological inhibition of GPX4 by RSL3 or Erastin enhance BV6-induced cell death. Importantly, cell death induction critically depends on the formation of a complex consisting of RIP1/FADD/Caspase-8, since all complex components are required for ROS production, lipid peroxidation and cell death induction. Taken together, we demonstrate that BSO and BV6 cooperate to induce ROS production and lipid peroxidation which are eventually required for caspase activation and cell death execution. Collectively, findings of this study indicate that BV6-induced apoptosis is mediated via redox alterations offering promising new treatment strategy to overcome apoptosis resistance in ALL. Y1 - 2015 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/38636 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-386369 N1 - Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden. ER -