TY - THES A1 - Schuldes, Heidi T1 - Produktion leichter Fragmente in Ar+KCl Kollisionen bei 1,76A GeV N2 - Im September 2005 wurden von der HADES-Kollaboration an der GSI in Darmstadt Daten der Schwerionen-Reaktion Ar+KCl bei 1,76A GeV aufgenommen. Neben den Pionen und Dileptonen wurden bereits fast alle Teilchen mit Seltsamkeitsinhalt rekonstruiert. In dieser Arbeit wird zum ersten Mal eine Analyse der leichten Fragmente Deuteronen, Tritonen und 3Helium mit HADES durchgeführt. Die gemessenen Multiplizitäten wurden mit einem statistischen Hadronisationsmodell verglichen und zeigen gute Übereinstimmung mit diesem. Dies legt die Vermutung nahe, dass das System Ar+KCl bei 1,76A GeV einen hohen Grad an Thermalisierung erreicht. Zu einer weiteren Untersuchung dieser Hypothese wurden die sogenannten effektiven Temperaturen Teff der Teilchen der chemischen Ausfriertemperatur aus dem statistischen Modellfit gegenübergestellt. Bei der effektiven Temperatur handelt es sich um die inversen Steigungsparameter von Boltzmann-Fits an die transversalen Massenspektren mt-m0 bei Schwerpunktsrapidität. Diese Temperatur entspricht bei einer isotropen, statischen Quelle der kinetischen Ausfriertemperatur und sollte somit unterhalb oder gleich der chemischen Ausfriertemperatur sein. Im Falle der effektiven Temperaturen der Ar+KCl-Daten liegen diese jedoch systematisch höher und die Teilchen ohne Seltsamkeitsinhalt zeigen einen massenabhängigen Anstieg, welcher eine radiale kollektive Anregung des Systems vermuten lässt. Die transversalen Massenspektren der leichten Fragmente werden unter der Annahme eines thermalisierten Systems mit Boltzmann-Funktionen angepasst. Daraus werden die effektiven Temperaturen von Teff,Deuteronen = (139,5 ± 34,9) MeV und Teff,T ritonen = (247,9 ± 62,0) MeV extrahiert, was die Annahme von kollektivem Fluss der Teilchen zu unterstützen scheint. Vergleicht man diese Werte mit den effektiven Temperaturen der leichteren Teilchen, kann mithilfe einer linearen Funktion die kinetische Ausfriertemperatur Tkin = (74,7 ± 5,8) MeV und radiale Flussgeschwindigkeit βr = 0,37 ± 0,13 bestimmt werden. In einem zweiten Ansatz werden daher die Spektren mit Siemens-Rasmussen-Funktionen, die eine radiale Ausdehnung mit einbeziehen, angepasst und daraus die globalen Parameter T = (74 ± 7) MeV und βr = 0,36 ± 0,02 bestimmt. Diese Werte liegen an der oberen Grenze in dem für diesen Energiebereich erwarteten Bereich. Die Siemens-Rasmussen-Funktionen liefern eine bessere Beschreibung der transversalen Massenspektren und werden zur Extrapolation der nicht abgedeckten transversalen Massenbereiche genutzt. Die Integration liefert die Verteilung der Zählrate als Funktion der Rapidität. Diese Verteilung zeigt zwei Maxima nahe Strahl- und Target-Rapidität, was im Widerspruch zu einer statischen, thermischen Quelle der Teilchen steht. Y1 - 2014 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/32550 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-325506 UR - https://www-alt.gsi.de/documents/DOC-2013-Feb-33-1.pdf ER -