TY - THES A1 - ElBrolosy, Mohamed Ahmed Abdallah Mohamed T1 - A novel role for mutant mRNA degradation in triggering transcriptional adaptation to mutations N2 - Robustness to mutations promotes organisms’ well-being and fitness. The increasing number of mutants in various model organisms, and humans, showing no obvious phenotype (Bouche and Bouchez, 2001; Chen et al., 2016b; Giaever et al., 2002; Kok et al., 2015) has renewed interest into how organisms adapt to gene loss. In the presence of deleterious mutations, genetic compensation by transcriptional upregulation of related gene(s) (also known as transcriptional adaptation) has been reported in numerous systems (El-Brolosy and Stainier, 2017; Rossi et al., 2015; Tondeleir et al., 2012); however, the molecular mechanisms underlying this response remained unclear. To investigate this phenomenon, I develop and study multiple models of transcriptional adaptation in zebrafish and mouse cell lines. I first show that transcriptional adaptation is not caused by loss of protein function, indicating that the trigger lies upstream, and find that the response involves enhanced transcription of the related gene(s). Furthermore, I observe a correlation between levels of mutant mRNA degradation and upregulation of related genes. To investigate the role of mutant mRNA degradation in triggering the response, I generate mutant alleles that do not transcribe the mutated gene and find that they fail to induce a transcriptional response and display stronger phenotypes. Transcriptome analysis of alleles displaying mutant mRNA degradation revealed upregulation of a significant proportion of genes displaying sequence similarity with the mutated gene’s mRNA, suggesting a model whereby mRNA degradation intermediates induce transcriptional adaptation via sequence similarity. Further mechanistic analyses suggested RNA-decay factors-dependent chromatin remodeling, and repression of antisense RNAs to be implicated in the response. These results identify a novel role for mutant mRNA degradation in buffering against mutations. Besides, they hold huge implications on understanding disease-causing mutations and shall help in designing mutations that lead to minimal transcriptional adaptation-induced compensation, facilitating studying gene function in model organisms. Y1 - 2020 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/57160 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-571604 CY - Frankfurt am Main ER -