TY - JOUR A1 - Krepl, Miroslav A1 - Vögele, Jennifer A1 - Kruse, Holger A1 - Duchardt-Ferner, Elke A1 - Wöhnert, Jens A1 - Sponer, Jiri T1 - An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch T2 - Nucleic acids research N2 - The neomycin sensing riboswitch is the smallest biologically functional RNA riboswitch, forming a hairpin capped with a U-turn loop—a well-known RNA motif containing a conserved uracil. It was shown previously that a U→C substitution of the eponymous conserved uracil does not alter the riboswitch structure due to C protonation at N3. Furthermore, cytosine is evolutionary permitted to replace uracil in other U-turns. Here, we use molecular dynamics simulations to study the molecular basis of this substitution in the neomycin sensing riboswitch and show that a structure-stabilizing monovalent cation-binding site in the wild-type RNA is the main reason for its negligible structural effect. We then use NMR spectroscopy to confirm the existence of this cation-binding site and to demonstrate its effects on RNA stability. Lastly, using quantum chemical calculations, we show that the cation-binding site is altering the electronic environment of the wild-type U-turn so that it is more similar to the cytosine mutant. The study reveals an amazingly complex and delicate interplay between various energy contributions shaping up the 3D structure and evolution of nucleic acids. KW - Computational biology Y1 - 2018 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/50767 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-507677 SN - 1362-4962 SN - 0305-1048 SN - 1362-4954 N1 - © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. VL - 46 IS - 13 SP - 6528 EP - 6543 PB - Oxford Univ. Press CY - Oxford ER -