TY - JOUR A1 - Heinze, Annekathrin A1 - Grebe, Beatrice A1 - Bremm, Melanie A1 - Hünecke, Sabine A1 - Munir, Tasleem Ah. A1 - Graafen, Lea A1 - Früh, Jochen A1 - Merker, Michael A1 - Rettinger, Eva A1 - Sörensen, Jan A1 - Klingebiel, Thomas A1 - Bader, Peter A1 - Ullrich, Evelyn A1 - Cappel, Claudia T1 - The synergistic use of il-15 and il-21 for the generation of nk cells from cd3/cd19-depleted grafts improves their ex vivo expansion and cytotoxic potential against neuroblastoma: Perspective for optimized immunotherapy post haploidentical stem cell transplantation T2 - Frontiers in immunology N2 - Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite therapeutic progress, prognosis in high-risk NB is poor and innovative therapies are urgently needed. Therefore, we addressed the potential cytotoxic capacity of interleukin (IL)-activated natural killer (NK) cells compared to cytokine-induced killer (CIK) cells for the treatment of NB. NK cells were isolated from peripheral blood mononuclear cells (PBMCs) by indirect CD56-enrichment or CD3/CD19-depletion and expanded with different cytokine combinations, such as IL-2, IL-15, and/or IL-21 under feeder-cell free conditions. CIK cells were generated from PBMCs by ex vivo stimulation with interferon-γ, IL-2, OKT-3, and IL-15. Comparative analysis of expansion rate, purity, phenotype and cytotoxicity was performed. CD56-enriched NK cells showed a median expansion rate of 4.3-fold with up to 99% NK cell content. The cell product after CD3/CD19-depletion consisted of a median 43.5% NK cells that expanded significantly faster reaching also 99% of NK cell purity. After 10–12 days of expansion, both NK cell preparations showed a significantly higher median cytotoxic capacity against NB cells relative to CIK cells. Remarkably, these NK cells were also capable of efficiently killing NB spheroidal 3D culture in long-term cytotoxicity assays. Further optimization using a novel NK cell culture medium and a prolonged culturing procedure after CD3/CD19-depletion for up to 15 days enhanced the expansion rate up to 24.4-fold by maintaining the cytotoxic potential. Addition of an IL-21 boost prior to harvesting significantly increased the cytotoxicity. The final cell product consisted for the major part of CD16−, NCR-expressing, poly-functional NK cells with regard to cytokine production, CD107a degranulation and antitumor capacity. In summary, our study revealed that NK cells have a significantly higher cytotoxic potential to combat NB than CIK cell products, especially following the synergistic use of IL-15 and IL-21 for NK cell activation. Therefore, the use of IL-15+IL-21 expanded NK cells generated from CD3/CD19-depleted apheresis products seems to be highly promising as an immunotherapy in combination with haploidentical stem cell transplantation (SCT) for high-risk NB patients. KW - immunotherapy KW - NK cells KW - CD3/CD19 depletion KW - CIK cells KW - IL-21 KW - IL-15 KW - ex vivo expansion KW - neuroblastoma Y1 - 2019 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/51950 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-519501 SN - 1664-3224 N1 - Copyright © 2019 Heinze, Grebe, Bremm, Huenecke, Munir, Graafen, Frueh, Merker, Rettinger, Soerensen, Klingebiel, Bader, Ullrich and Cappel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. VL - 10 IS - Art. 2816 SP - 1 EP - 20 PB - Frontiers Media CY - Lausanne ER -