TY - THES A1 - Frassino, Antonia Micol T1 - Gauge-gravity duality, phase transition of nuclear matter, beyond the Einstein gravity limit N2 - In den vergangen Jahren wurde erkannt, dass eine Quantenfeldtheorie (QFT) namens Quantenchromodynamik (QCD) die richtige Theorie der starken Wechselwirkungen ist. QCD beschreibt erfolgreich die starken Wechselwirkungen, die Quarks zu Nukleonen und Nukleonen zu Atomkernen zusammenbinden. Jedoch ist die theoretische Beschreibung vieler Phänomene der starken Wechselwirkung aufgrund des starken Kopplungsverhaltens bei niedrigen Energien schwierig. Stoßexperimente mit Schwerionen sind ein möglicher Weg, um die charakteristischen Phänomene und Eigenschaften der QCD-Materie zu untersuchen. In Stoßexperimenten mit Schwerionen werden schwere (d.h. große) Atomkerne aufeinander geschossen, beispielsweise Gold (am RHIC) oder Blei (am CERN, LHC), mit einer ultrarelativistischen Energie √s im Schwerpunktsystem. Auf diese Art ist es möglich, eine große Menge von Materie mit hoher Energiedichte hervorzubringen. Das Ziel von Schwerionenkollisionen ist die Erzeugung und Charakterisierung einer makroskopischen Phase von freien Quarks und Gluonen im lokalen thermischen Gleichgewicht. Ein solcher Aggregatzustand kann neue Informationen über das QCD-Phasendiagramm und den QCD-Phasenübergang liefern. Man nimmt an, dass ein solcher Übergang stattfand, als sich die Materie des frühen Universums von einem Plasma aus Quarks und Gluonen (QGP) in ein Gas von Hadronen umwandelte... Y1 - 2016 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/43145 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-431456 EP - 166 CY - Frankfurt am Main ER -