TY - THES A1 - Domisch, Sami T1 - Species distribution modelling of stream macroinvertebrates under climate change scenarios N2 - There is increasing evidence that climate change will have a severe impact on species’ distributions by altering the climatic conditions within their present ranges. Especially species inhabiting stream ecosystems are expected to be strongly affected due to warming temperatures and changes in precipitation patterns. The aim of this thesis was to investigate how distributions of aquatic insects, i.e., benthic stream macroinvertebrates would be impacted by warming climates. The methods comprised of an ensemble forecasting technique based on species distribution models (SDMs) and climate change scenarios of the Intergovernmental Panel on Climate Change of the year 2080. Future model projections were generated for a wide variety of species from a number of taxonomic orders for two spatial scales: a stream network within the lower mountain ranges of Germany, and the entire territory across Europe. In addition, the effect of the modelling technique on habitat suitability projections was investigated by modifying the choice of study area (continuous area vs. stream network) and the choice of predictors (standard vs. corrected set). Projections of future habitat suitability showed that potential climate-change impacts would be dependent on species’ thermal preferences, and with a similar pattern for both spatial scales. Future habitat suitability was projected to remain for most or all of the modelled species, and species were projected to track their climatically suitable conditions by shifting uphill along the river continuum within the lower mountain ranges, and into a north-easterly direction across Europe. Cold-adapted headwater and high-latitude species were projected to lose suitable habitats, whereas gains would be expected for warm-adapted river and low-latitude species along the river continuum and across Europe, respectively. Additionally, habitat specialist species in terms of endemics of the Iberian Peninsula were identified as potential climate-change losers, highlighting their restricted habitat availability and therefore vulnerability to warming climates. The main findings of this thesis underline the high susceptibility of stream macroinvertebrates to ongoing climate change, and give insights into patterns of possible consequences due to changes in species’ habitat suitability. Concerning the methodology, a clear recommendation can be given for future modelling approaches of stream macroinvertebrates by building models within a stream network and with a careful choice of environmental predictors, to reduce uncertainties and thus to improve model projections. KW - climate change KW - freshwater KW - stream macroinvertebrates KW - species distribution modelling Y1 - 2012 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/27775 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-277757 ER -