
Refining Queries on a Treebank with XSLT Filters.

Approaching the Universal Quantifier

George Smith

Universität Potsdam

This paper discusses the use of XSLT stylesheets as a filtering mecha-
nism for refining the results of user queries on treebanks. The discussion
is within the context of the TIGER treebank, the associated search en-
gine and query language, but the general ideas can apply to any search
engine for XML-encoded treebanks. It will be shown that important
classes of linguistic phenomena can be accessed by applying relatively
simple XSLT templates to the output of a query, effectively simulating
the universal quantifier for a subset of the query language.

1 Introduction

In the TIGER treebank (Brants et al., 2002), syntactic structure is encoded via

restricted directed acyclic graphs, henceforth syntax graphs. These are tree-like

structures with potentially crossing branches and labelled edges. The corpus

is available in XML format. The search engine TIGERSearch (König et al.,

2003) was developed to enable linguists with no previous experience in the use

of either query languages or XML-encoded corpora to work with the corpus.

In TIGERSearch, the encoded structures are presented to the user in a graphic

representation familiar to this particular constituency. A specially designed lan-

guage (König and Lezius, 2003) allows the user to query the treebank using

concepts already familiar to linguists: immediate dominance, linear precedence

and derived relations. The formulation of a query involves describing desired

structural characteristics. The result of a query is the set of all structures in the

corpus which have those characteristics.

I would like to thank Esther König and Wolfgang Lezius for numerous helpful discussions
relating to the TIGER query language. This paper is dedicated to Peter Eisenberg on the
occasion of his 65th birthday.

Interdisciplinary Studies on Information Structure 02 (2005): 117–128

Dipper, S., M. Götze and M. Stede (eds.):

Heterogeneity in Focus: Creating and Using Linguistic Databases

c 2005 George Smith

118 George Smith

Ihren
PPOSAT

Kunden
NN

bietet
VVFIN

sie
PPER

einen
ART

24−Stunden−Service
NN

für
APPR

Laborarbeiten
NN

NK NK

NP

AC NK

PP

NK NK MNR

NP

DA HD SB OA

S

Figure 1: Three Place Verb

2 Structural Search

This section will demonstrate the importance of a universal quantifier in a tree-

bank query language. A brief overview of one of the main mechanisms for

searching for syntactic structure using the TIGER language will be provided

in 2.1. One important area of syntax which could be more easily investigated

via a universal quantifier will be given in 2.2 and 2.3.

2.1 Immediate Dominance

This section will provide a brief overview on searching syntactic structures in-

volving immediate dominance.

(1) Ihren
her

Kunden
customers

bietet
offers

sie
she

einen
a

24-Stunden-Service
24-hour service

für
for

Laborarbeiten
lab work

‘She offers her customers a 24-hour-service for lab work.’

The sentence in example (1) has the graphical representation in figure 1.

A user could be interested in various structural characteristics of the sentence.

Refining Queries on a Treebank 119

Several simple queries which match structures in the sentence are given in (2).

(2) a. [cat="S"] >SB [pos="PPER"]

b. [cat="NP"] >MNR [cat="PP"]

c. [cat=("S"|"VP")] >DA []

The query (2-a) matches all sentences in which the subject is a personal

pronoun. This is accomplished by describing two nodes and a relation between

them. The expression [cat="S"] describes a node with the value S (sentence)

for the feature cat (category). The expression [pos="PPER"] describes a

node with the value "PPER" (pronoun, personal) for the feature pos (part of

speech). The operator > defines a relation of immediate dominance in which

the node described to the left dominates the node described to the right. This

relation is labelled SB (subject). The label indicates the function which the child

node has within the constituent formed by the parent node.

Similarly, the query (2-b) matches all structures in which a noun phrase has

a prepositional attribute, that is, in which a node with the value "NP" (noun

phrase) for the feature cat immediately dominates a node with the value "PP"

(prepositional phrase) for the feature cat and the relation of immediate dom-

inance between them is labelled MNR (“modifier nominal right”: modifier of a

noun, to the right).

The final query (2-c) matches any structure in which a node with either

the value "S" or "VP" (verb phrase) for the feature cat dominates a node

which is not further specified, and the relation of immediate dominance between

them is labelled DA (dative), indicating that the child node functions as a dative

argument within the constituent formed by the parent.

120 George Smith

Den
ART

Herren
NN

Rao

NE

und
KON

Singh
NE

gebührt
VVFIN

ein
ART

Platz
NN

in
APPR

der
ART

Geschichte
NN

CJ CD CJ

CNP

AC NK NK

PP

NK NK NK

NP

NK NK MNR

NP

DA HD SB

S

Figure 2: Two Place Dative Verb

2.2 Argument Structure and Agentivity

This section will discuss the argument structure of two classes of German verbs

with regard to agentivity, preparing the argument made in section 2.3 that a

universal quantifier is an important part of a treebank query language.

(3) Den
the

Herren
Messrs

Rao
Rao

und
and

Singh
Singh

gebührt
deserve

ein
a

Platz
place

in
in

der
the

Geschichte
history

‘Messrs Rao and Singh deserve a place in history.’

Let us now take a look at another sentence, given in (3) with the graphical

representation in figure 2, which bears certain similarities to the sentence in (1).

Both sentences contain an argument in dative, which can be accessed by query

(2-c). They also exhibit important differences with regard to argument structure,

which will be explored here with reference to ideas presented in Primus (1999)

and Eisenberg (2004), in which arguments are seen as having varying degrees

of agentivity and patientivity. Agentive and patientive properties of an argument

are determined compositionally using a set of thematic roles presented here in

order of declining agentivity: control, cause, move, exper, possess.

Refining Queries on a Treebank 121

Example (1) has the prototypical structure of a sentence with a three-place

verb from the semantic field of giving and taking. The argument with the high-

est degree of agentivity is encoded in nominative. It is a prototypical agentive

subject, excercising control, causing movement. The argument encoded in ac-

cusative is a prototypical patient. The argument encoded in dative has a low

degree of agentivity, here exibiting a potential for possession. This weak agent

is a prototypical recipient.

Example (3) on the other hand has a rather different argument structure.

There is no argument with strong agentive properties, excercising control, or

being a cause. The argument with the highest degree of agentivity is a possessor.

This weak agent or recipient is again encoded in dative. The argument with no

agentive properties, the patient, is encoded in nominative, avoiding a sentence

with no subject. Interesting classes of German verbs have this type of argument

structure, with a patientive subject and an argument in dative exhibiting a degree

of agentivity compatible with the recipient role, one important group being the

psychological verbs, which have the slightly more agentive exper encoded in

dative.

2.3 The Need for the Universal Quantifier

While the query in (2-c) is sufficient for a user who simply wishes to find ar-

guments which are dative recipients as it will access both (1) and (3), a user

who wishes to capture the differences between the argument structures of the

two sentences will need to further refine the query. To search for sentences with

three-place verbs such as in (1) is simple.

(4) #p:[cat=("S"|"VP")] >DA [] &
#p >OA []

122 George Smith

The query in (4) uses a variable #p to extend the query (2-c). It specifies that

there is a node #p which immediately dominates one node which has the func-

tion DA as well as another which has the function OA (object, accusative).

(5) #p:[cat=("S"|"VP")] >DA [] &
#p !>OA #c

It is then possible to specify the presence of an argument in acccusative. In

the current implementation of the TIGER language it is, however, not possible

to specify the absence of one. Simply negating this relation of dominance, as

in (5), results in a query stating that in addition to the dative dominated by #p,

there is also a node #c, and that the specified relationship of labelled immediate

dominance does not hold between #p and #c. The node #p may dominate

the node #c, in which case the edge label must not be OA, or #p may not

dominate #c at all. It can be any node in the tree for which the specified labelled

dominance relation between #p and #c does not hold.

One option for accessing such structures might be to search using pre-

defined classes of verbs which can have the specified argument structure. In

TIGERSearch it is in principle possible to define a set of lexemes in a template

(König et al., 2003) and then use that template in a search. But this method

would be indirect at best, not taking the potential for multivalency into account.

It also presupposes that the user already has a list of all verbs in the corpus

which can have the relevant argument structure, whereas the user may well be

interested in finding verbs which can have that structure. Besides, there are other

important types of structures which can only be specified by stating that a con-

stituent of a particular type has no children with particular characteristics. Ex-

amples would be sentences with no subject, including the impersonal passive,

and noun phrases which are lacking a determiner, or have no attributes of a

specific type, etc. There is clearly a need for a general mechanism which can

accomplish this.

Refining Queries on a Treebank 123

(6) exists #p: forall #c: ((#p > #c) =>

(#p !>OA #c))

The most comfortable option for the user would be a possible extension of

the TIGER language which is discussed in König et al. (2003), the addition of

the universal quantifier, exemplified here in (6). This query specifies that there

exists a node #p such that for all nodes #c which are immediately dominated

by #p, the dominance relation is not labelled OA. The computational expense

incurred by the universal quantifier is noted as the reason why it has not (yet)

been included in the language. It is indeed clear that efficiently implementing

a full universal quantifier as a part of the language would be difficult and time

consuming. Another option, discussed in section 3, would be to filter the results

of user queries such that the undesired structures are removed.

3 Simulating the Universal Quantifier with XSLT Stylesheets

This section will discuss the use of XSLT stylesheets to filter the results of user

queries as a means of finding structures which would otherwise require that

a universal quantifier apply to a relation of immediate dominance. XSLT was

chosen for two reasons: The filtering can be accomplished with a single tem-

plate and a varying test. TIGERSearch already includes an interface for piping

the output of queries through XSLT. The XML representation of the syntactic

structures involved will be described in 3.1. Specific filters will be described in

3.2.

3.1 The XML Representation of Syntactic Structure

In this section we will explore those elements of the XML output of a search

which are relevant for further processing via an XSLT filter.

124 George Smith

(7) #p:[cat=("S"|"VP")] >DA #da

(8) <match subgraph="s60 505">

<variable name="#p" idref="s60 505" />

<variable name="#da" idref="s60 503" />

</match>

The query in (7) is a variation of the query (2-c) from section 2.1 with vari-

ables. If we run this query on the TIGER corpus and export the results as an

XML file we find, among other structures, a set of matches. These matches are

encoded as in (8). A match element contains a pointer to the matching subgraph

(the subgraph attribute). Here we see that the element match has children of

type variable. These elements contain pointers to respective nodes of con-

stituent structure (the idref attribute). The matching nodes are given in (9)

and (10)

(9) <nt id="s60 505" cat="S">

<edge label="DA" idref="s60 503" />

<edge label="HD" idref="s60 6" />

<edge label="SB" idref="s60 504" />

</nt>

(10) <nt id="s60 503" cat="NP">

<edge label="NK" idref="s60 1" />

<edge label="NK" idref="s60 2" />

<edge label="NK" idref="s60 500" />

</nt>

The individual non-terminal nodes have an atttribute cat which encodes their

grammatical category, as well as child elements of type edge, which represent

the edges pointing to their respective child nodes. The edge nodes themselves

Refining Queries on a Treebank 125

have an idref attribute which points to the respective child nodes, as well as

a label attribute, which indicates the function of the child node within the

constituent formed by the parent node.

3.2 Filtering Matches with XSLT

This section will describe the use of an XSLT template which functions as a

filter, blocking matches which do not meet certain requirements. First we will

examine filters which remove matches in which a node #p has children with

a particular syntactic function, then we will examine a filter which removes

matches which have children with a particular syntactic category.

(11) <xsl:variable name="test">

0=count(key(’idkey’,

variable[@name=’#p’]/@idref)

/edge[@label=’OA’])

</xsl:variable>

(12) <xsl:template match="match">

<xsl:if test="xalan:evaluate($test)">

<xsl:apply-templates select="ancestor::s"

mode="print">

<xsl:with-param name="matchroot"

select="@subgraph"/>

</xsl:apply-templates>

</xsl:if>

</xsl:template>

The template in (12) could be applied to the output of the query (7). It filters

out matches in which the node #p has children which function as OA. Undesired

results are filtered by applying a test $test before printing. Examples of XSLT

126 George Smith

stylesheets that print sentences are included with TIGERSearch (König et al.,

2003). The work here is done in the filter1. The filter checks to make sure that

the node pointed to by #p (namely variable[@name=’#p’]/@idref)

has no children of type edge with the value OA for the attribute label. The

test string can then be varied with regard to the name of the variable to be

checked and the function(s) to be excluded. A variation on the test which would

also exclude matches with object clauses (OC) is given in (13).

(13) <xsl:variable name="test">

0=count(key(’idkey’,

variable[@name=’#p’]/@idref)

/edge[@label=’OA’or @label=’OC’])

</xsl:variable>

Filters removing matches in which a node has no children with a particular

syntactic category are more complex due to the need for an additional pointer.

(14) <xsl:variable name="test">

0=count(key(’idkey’,

(key(’idkey’,

variable[@name=’#p’]/@idref)

/edge/@idref))

[@pos=’ART’])

</xsl:variable>

The filter in (14) could be applied to the matches of a query in which #p is

bound to nodes with the syntactic category NP, to filter out noun phrases which

do not have an article. The inner pointer is structured analog to that in (11) and

(13). The outer pointer locates child nodes. The predicate [@pos=’ART’]

1 The use of the Xalan extension function evaluate is not crucial here, but does make the
code more modular and thus easier for the inexperienced user to modify.

Refining Queries on a Treebank 127

locates those children with the value ART (article) for the attribute pos.

(15) exists #p: forall #c: ((#p > #c) =>

(#c:[pos!="ART"]))

At this point it becomes excruciatingly clear that the restriction that a node have

no children with a particular syntactic category or a particular syntactic function

is far better stated with a representation as in (15), in the type of representation

envisioned by König et al. (2003) than it is in raw XML.

4 Conclusion and Directions for Further Research

This paper has shown that relatively simple XSLT stylesheets are capable of

providing important functionality needed by linguists interested in types of syn-

tactic structure best described by stating that a node of a particular type has no

children of a particular type or with a particular function. While the XML struc-

tures and XSLT code presented here is simple from a programming standpoint,

the constituency for whom TIGERSearch was developed generally lacks the

experience in computer science necessary to formulate or even modify exam-

ple stylesheets. Indeed, the use of data abstraction, the graphical representation

of syntactic structure as opposed to the raw XML representation, as well as the

development of a specialized query language based on linguistic concepts as op-

posed to suggesting that linguists access the corpus via a generic XML solution

such as XPath, XSLT or XQuery, was predicated on the idea that a treebank can

only gain widespread use within the linguistic community if that community

can query the treebank using tools it is comfortable with.

Further research could be directed toward building a graphical user interface

which would take expressions formulated in the representation of the universal

quantifier described in König et al. (2003) and create an XSLT template filter

on the fly. This could be a stand alone application, or it could be integrated in

128 George Smith

TIGERSearch. While extending the universal quantor to the immediate domi-

nance relation would be by far the most useful type of extension, the idea could

be expanded to other relations, such as the relation of linear precedence. This

type of a solution would be less than the more elegant solution involving a full

implementation of the universal quantifier, but it would provide a good deal of

functionality and would be easier to implement.

Bibliography

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. The TIGER treebank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories, Sozopol, 2002.

Peter Eisenberg. Grundriß der deutschen Grammatik. Der Satz. Metzler,
Stuttgart, 2nd edition, 2004.

Esther König and Wolfgang Lezius. The TIGER language - a description lan-
guage for syntax graphs, Formal definition. Technical report, 2003.

Esther König, Wolfgang Lezius, and Holger Voormann. TIGERSearch
User’s Manual. IMS, University of Stuttgart, Stuttgart, 2003. URL
http://www.tigersearch.de.

Beatrice Primus. Cases and Thematic Roles. Ergative, Accusative and Active.
Niemeyer, Tübingen, 1999.

George Smith
Universität Potsdam
Institut für Germanistik
Postfach 601553
14415 Potsdam
Germany
smithg@rz.uni-potsdam.de
http://www.uni-potsdam.de/u/germanistik/ls dgs/gs/

