Universal Quantification in SLI A Selective Semantic Deficit?

Uli Sauerland uli@alum.mit.edu

Centre for General Linguistics (ZAS), Berlin, Germany

UC London — May 25th, 2006

Deficit U. Sauerland, ZAS Introduction Rap. Aud. Proc. Implicatures Universal Quantification Yes-Stage No-Stage Summary Unimpaired vs. SLI Yes-Stage Summary

Selective Semantic

onclusion

References

Rapid auditory processing and SLI

Tallal & Piercy (1973) and much other work:

- (1) Specific language impairment/language learning impairment is caused with non-linguistic rapid auditory processing impairment
 - correlation of deficits in tasks
 - perception improvement with acoustically lengthened speech
 - training rapid auditory processing improves language perception

Rapid Auditory Processing Test: Tallal repetition task

U. Sauerland, ZAS

Introduction Rap. Aud. Proc. Implicatures Universal Quantification Yes-Stage Summary Unimpaired vs. S Yes-Stage No-Stage Summary Conclusion References

*ロト * @ ト * 注 * * 注 * の へ @ *

Questions to ask

- 1. Are there other types of SLI than temporal auditory processing deficit (GSLI)?
- 2. Is SLI (in the majority of cases) a purely auditory/phonological deficit?

Today: focus on the second question

Selective Semantic Deficit

Rap. Aud. Proc.

Yes-Stage No-Stage

Yes-Stage

No-Stage

U. Sauerland, ZAS

・ロト・団ト・ヨト・ヨト ヨーのへの

Purely phonological SLI?

Difficulty: A phonological deficit can cause syntactic and semantic deficits via delaying word perception (especially with function words).

For example: agreement (Wexler & Rice):

(2) John eats fish and chips.

The delay of agreement depends on the phonology of a language (cf. Leonard on Italian vs. English) But: Plural /-s/ vs. agreement /-s/:

- (3) a. book books, miss misses
 - b. John books his flights alone. Mary misses her brother.

Selective Semantic Deficit

U. Sauerland, ZAS

Rap. Aud. Proc.

Yes-Stage No-Stage

Selective semantic deficits

Selective Semantic Deficit

Rap. Aud. Proc.

Yes-Stage No-Stage

Yes-Stage No-Stage

U. Sauerland, ZAS

A selective semantic deficit:

- recognize the words and morphemes
- understand the sentence structure
- show some evidence of understanding the interpretation
- lack complex/fast semantic processing

・ロト・1日ト・1日ト・1日ト 日 少へで

Complex Semantic Processing?

What constitues complex semantic processing? Basically: to be discovered One suggestion: reference set computation (Reinhart 2006)

- quantifier scope economy
- binding (coreference ban)
- stress shift
- ▶ implicatures

Selective Semantic Deficit

U. Sauerland, ZAS

Rap. Aud. Proc.

Yes-Stage No-Stage

No-Stage

▲□▶▲圖▶▲필▶▲필▶ ■ 少えぐ

Scalar implicatures

A subtype of conversational quantity implicatures: scalar implicatures (Horn 1972)

Based on comparison with a stronger alternative (Sauerland 2004, among others): implicates (5).

- (4) The Philharmonic played some Beethoven symphonies this season.
- (5) The Philharmonic didn't play all Beethoven symphonies this season.

Similarly, implicates (7):

- (6) Kai started his homework.
- (7) Kai didn't finish his homework.

▲□▶▲@▶★≧▶★≧▶ ≧ の�?

Selective Semantic Deficit

U. Sauerland, ZAS

Implicatures

Yes-Stage

No-Stage Summary

Acquisition of Scalar Implicatures

Children around age 5 seem to lack implicatures (Noveck 2001, Papafragou and Musolino 2003).

- (8) Did some of the horses jump over the fence?Adult No, all of them jumped.Child Yes.
- (9) Did Smurf buy a pizza or french fries?Adult No, he bought both.Child Yes.

However, Gualmini et al. (2001): Children can compute scalar implicatures if both alternatives are presented

- (10) a. I know what happened. Smurf bought pizza or french fries.
 - b. I know what happened. Smurf bought pizza and french fries.

・ロト・日本・モート ヨー うくぐ

Selective Semantic Deficit

U. Sauerland, ZAS

Implicatures

Yes-Stage No-Stage

Adult Processing of Scalar Implicatures

Bott and Noveck (2004), Noveck and Posada (2003), Breheny et al. (in print): Scalar implicatures are hard for adults.

Noveck and Posada (2003): Measuring response time

- (11) Some giraffes have necks.
- (12) a. Response time for logical responders: 655ms
 - b. Response time for implicature based responders: 1203ms

Bott and Noveck (2004): Forcing fast responses

- (13) Some elephants are mammals.
- (14) a. 0.9s response time: 28% protest
 - b. 3s response time: 44% protest

<ロト 4 回 ト 4 目 ト 4 目 ト 目 の Q ()</p>

U. Sauerland, ZAS

Implicatures

Yes-Stage No-Stage

Scalar implicatures in SLI

Not tested, as far as I know. Only indicative result by Surian et al. (1996), test for Quantity I:

- (15) How would you like you tea?
 - a. With milk.
 - b. #In a cup.

Acceptance rates:

- (16) a. Autism, 12;11 old: 58%
 - b. SLI, 11;10 old: 63%
 - c. Unimpaired, 6;7 old: 58%

Selective Semantic Deficit

U. Sauerland, ZAS

Introduction Rap. Aud. Proc. Implicatures Universal Quantification Yes-Stage No-Stage Summary

Yes-Stage No-Stage Summary

Conclusion

References

Nominal Universal Quantification

Universal quantification in the nominal domain is expressed by words like *every* in English. At least three stages in the acquisition of universal quantification (cf. Inhelder & Piaget 1959; Philip 1995, Roeper et al. 2004 and others):

- ► Yes-Stage (≤5 years): no knowledge
- ▶ No-Stage (6–7 years): partial knowledge
- ► Adult Stage (≥8 years): full knowledge

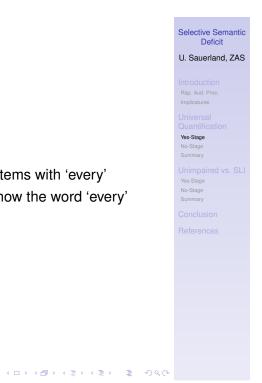
Selective Semantic Deficit

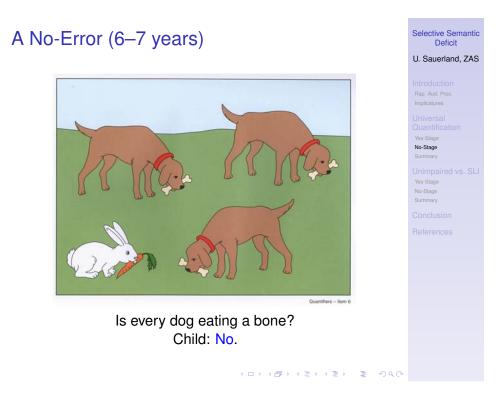
U. Sauerland, ZAS

Universal

Yes-Stage No-Stage

No-Stage


Quantification

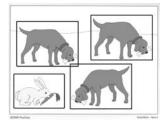

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

<section-header><section-header><section-header><text><text><text><text><text><text><text>

The Yes-Stage (\leq 5 years)

- Children respond 'yes' to all items with 'every'
- Hypothesis: Children don't know the word 'every'

Selective Semantic Deficit U. Sauerland, ZAS Introduction Rap Aud. Proc. Introduction Rap Aud. Proc. Interset Universet Universet


| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

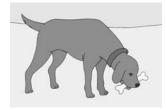
Silent Quantification over Situations

Adults often silently quantify over relevant situations:

- (17) a. A good father is reading to every child.
 - b. When teaching, she tries to look at every student.

This predicts the 'no'-error:

Is every dog eating a bone?


・ロト・日本・モート・ヨー うくぐ

Deficit U. Sauerland, ZAS Introduction Rap. Aud. Proc. Implicatures Universal Quantification Yes-Stage No-Stage Summary Unimpaired vs. SLI Yes-Stage No-Stage No-Stage Conclusion References

Selective Semantic

Blocking Situation Quantification

Why do adults never give the 'no' response? Situation Quantification is blocked by a presupposition of 'every' (the anti-uniqueness presupposition). 'The' must be used instead.

#Every dog is eating a bone. The dog is eating a bone

Children, however, lack this presupposition (Yatsushiro 2005)—they are more logical than adults. Children in the 'no'-stage have difficulty with semantic comparison with 'the' (cf. Noveck 2001 and others on implicatures).

Selective Semantic Deficit

U. Sauerland, ZAS

Introduction Rap. Aud. Proc. Implicatures Universal Quantification Yes-Stage Summary Unimpaired vs. S Yes-Stage No-Stage Summary Conclusion

References

Section Summary

Three stages of the acquisition of 'every':

- ► Yes-Stage (≤5 years): no lexical entry for 'every'
- No-Stage (6–7 years): full lexical entry for 'every', difficulties with higher semantic processing (comparison with 'the')
- ► Adult Stage (≥8 years): full knowledge

U. Sauerland, ZAS

Universal Quantificatio Yes-Stage No-Stage Summary Unimpaired Yes-Stage No-Stage

Summary

References

- * ロ * * 御 * * ミ * * ミ * ・ ミ ・ 少々で

The DELV-Study

Data from the DELV-study (Seymour, de Villiers, and Roeper 2000).

- ▶ test of about 1300 children with 301 questions
- 7 questions relevant for the following
- presented in fixed order in a block
- age: 4 to 12 years
- both unimpaired and SLI children
- Mainstream and African American English

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の文で

Selective Semantic Deficit

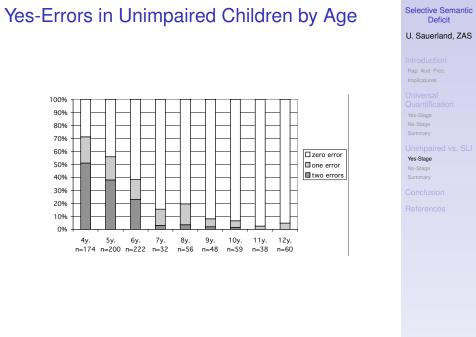
U. Sauerland, ZAS

Unimpaired vs. SLI

The Yes-Stage Data

- two relevant items (one below)
- unimpaired children: until 6 years of life
- SLI children: until 7 years of life

Is every cowboy riding a horse? — "Yes."


▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ■ ● のQ()

Selective Semantic Deficit U. Sauerland, ZAS

Yes-Stage

No-Stage

Yes-Stage No-Stage

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Yes-Errors in SLI Children by Age 100% 90% 80% 70% 60% □zero errors 50% □one error ∎two errors 40% 30% 20% 10% 0% 4y. 5y. 6y. 7y. 8y. 9y. 10y. 11y. 12y. n=49 n=80 n=84 n=25 n=48 n=27 n=46 n=20 n=27

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の文で

Selective Semantic Deficit U. Sauerland, ZAS

Yes-Stage

No-Stage

Yes-Stage

No-Stage

Summary

The No-Stage Data

- five relevant items (one below)
- only data from yes-error free children
- unimpaired children: until 8 years of life
- SLI children: frequent even at 12 years of life

Is every father holding a baby? — "No."

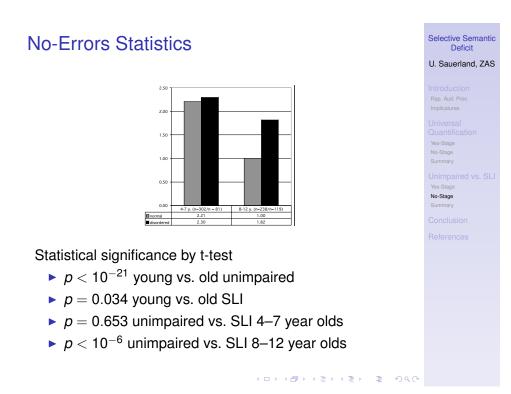
▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?


U. Sauerland, ZAS

Introduction Rap. Aud. Proc. Implicatures Universal Quantification Yes-Stage No-Stage Summary

Yes-Stage No-Stage Summary

Conclusion


References

Yes-Stage No-Stage Summary Yes-Stage No-Stage

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Section Summary

SLI causes the following delays in the acquisition of 'every':

- ▶ the yes-stage lasts one year longer in SLI-children
- could be consequence of phonological deficit
- ▶ the no-stage last 5 years longer in SLI-children
- cannot be consequence of phonological deficit

U. Sauerland, ZAS

Rap. Aud. Proc. Implicatures Universal Quantification Yes-Stage No-Stage Summary

Yes-Stage No-Stage

Summary Conclusion

References

Conclusion

Selective Semantic Deficit

U. Sauerland, ZAS

Yes-Stage

No-Stage

Yes-Stage No-Stage

Conclusion

- Would an early transplant of auditory cortex prevent SLI?
- ▶ No. SLI also causes purely semantic deficits.
- SLI-children might also exhibit selective semantic deficit with question exhaustivity (Strauss 2002, Roeper et al. 2005).

・ロト・日本・モート・ヨー りゃぐ

References

- Bott, L. and I. Noveck: 2004, 'Some utterances are underinformative: The onset and time course of scalar inferences', *Journal of Memory and Language* 51, 437–457.
- Breheny, R., N. Katsos, and J. Williams: in print, 'Are generalised scalar implicatures generated by default? An on-line investigation into the role of context in generating pragmatic inferences', *Cognition*.
- Gualmini, A., S. Crain, L. Meroni, G. Chierchia, and M. T. Guasti: 2001, 'At the semantics/pragmatics interface in child language', in *Proceedings of SALT 11*, pp. 231–247. Ithaca, N.Y.
- Horn, L. R.: 1972, *On the semantic properties of logical operators in English*, PhD dissertation, University of California, Los Angeles.

・ロト・日本・モート ヨー うくぐ

Selective Semantic Deficit

U. Sauerland, ZAS

Rap. Aud. Proc. Implicatures Universal Quantification Yes-Stage Summary Unimpaired vs. S Yes-Stage No-Stage Summary Conclusion

References

Noveck, I.: 2001, 'When children are more logical than
adults: Experimental investigations of scalar
implicature', Cognition 78, 165–188.

- Noveck, I. and A. Posada: 2003, 'Characterizing the time course of an implicature: An evoked potentials study', *Brain and Language* **85**, 203–210.
- Papafragou, A. and J. Musolino: 2003, 'Scalar implicatures: Experiments at the semantics-pragmatics interface', *Cognition* 86, 253–282.
- Philip, W.: 1995, *Event quantification in the acquisition of universal quantification*, PhD dissertation, University of Massachusetts, Amherst.
- Reinhart, T.: 2006, *Interface strategies*. MIT Press, Cambridge, Mass.

Selective Semantic Deficit

U. Sauerland, ZAS

Introduction Rap. Aud. Proc. Implicatures Universal Quantification Yes-Stage No-Stage No-Stage No-Stage Summary Conclusion

References

 Roeper, T., P. Schulz, B. Z. Pearson, and I. Reckling: 2005, 'From Singleton to Exhaustive: the Acquisition of Wh-'. Unpublished Ms., UMass Amherst and University of Education at Karlsruhe and University of Potsdam 	Selective Semantic Deficit U. Sauerland, ZAS Introduction Rap. Aud. Proc. Implicatures
(presented at IASCL 2005).	
 Roeper, T., U. Strauss, and B. Z. Pearson: 2004, 'The acquisition path of quantifiers: Two kinds of spreading'. Unpublished manuscript, University of Massachusetts, Amherst. 	Yes-Stage No-Stage Summary Unimpaired vs. SLI Yes-Stage No-Stage Summary Conclusion References
Sauerland, U.: 2004, 'Scalar Implicatures in Complex Sentences', <i>Linguistics and Philosophy</i> 27, 367–391.	
Strauss, U.: 2002, 'The Acquisition of Exhaustivity in Wh-Questions'. Unpublished Ms., UMass Amherst.	

- Sugisaki, K. and M. Isobe: 2002, 'Quantification without qualification without plausible denial', in J.-Y. Kim and A. Werle (eds.), *Proceedings of SULA: The Semantics of Under-Represented Languages in the Americas*.
- Surian, L., S. Baron-Cohen, and H. van der Lely: 1996, 'Are children with autism deaf to pragmatic maxims?', *Cognitive Neuropsychiatry* **1**, 55–71.

Selective Semantic Deficit

U. Sauerland, ZAS

Yes-Stage

No-Stage

No-Stage

References

< = > < 쿱 > < 흔 > < 흔 > . 흔 . 키익(아