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In this paper we discuss experimental evidence related to the structure and origin of the bosonic spectral function α2F(ω) in high-
temperature superconducting (HTSC) cuprates at and near optimal doping. Global properties of α2F(ω), such as number and
positions of peaks, are extracted by combining optics, neutron scattering, ARPES and tunnelling measurements. These methods
give evidence for strong electron-phonon interaction (EPI) with 1 < λep � 3.5 in cuprates near optimal doping. We clarify how
these results are in favor of the modified Migdal-Eliashberg (ME) theory for HTSC cuprates near optimal doping. In Section 2 we
discuss theoretical ingredients—such as strong EPI, strong correlations—which are necessary to explain the mechanism of d-wave
pairing in optimally doped cuprates. These comprise the ME theory for EPI in strongly correlated systems which give rise to the
forward scattering peak. The latter is supported by the long-range part of EPI due to the weakly screened Madelung interaction
in the ionic-metallic structure of layered HTSC cuprates. In this approach EPI is responsible for the strength of pairing while the
residual Coulomb interaction and spin fluctuations trigger the d-wave pairing.

1. Experimental Evidence for Strong EPI

1.1. Introduction. In spite of an unprecedented intensive
experimental and theoretical study after the discovery of
high-temperature superconductivity (HTSC) in cuprates,
there is, even twenty-three years after, no consensus on
the pairing mechanism in these materials. At present there
are two important experimental facts which are not under
dispute: (1) the critical temperature Tc in cuprates is
high, with the maximum Tmax

c ∼ 160 K in the Hg-1223
compounds; (2) the pairing in cuprates is d-wave like, that
is, Δ(k,ω) ≈ Δd(ω)(cos kx − cos ky). On the contrary there
is a dispute concerning the scattering mechanism which
governs normal state properties and pairing in cuprates. To
this end, we stress that in the HTSC cuprates, a number of
properties can be satisfactorily explained by assuming that
the quasiparticle dynamics is governed by some electron-
boson scattering and in the superconducting state bosonic
quasiparticles are responsible for Cooper pairing. Which

bosonic quasiparticles are dominating in the cuprates is
the subject which will be discussed in this work. It is
known that the electron-boson (phonon) scattering is well
described by the Migdal-Eliashberg theory if the adiabatic
parameter A ≡ α · λ(ωB/Wb) fulfills the condition A �
1, where λ is the electron-boson coupling constant, ωB
is the characteristic bosonic energy, Wb is the electronic
band width, and α depends on numerical approximations
[1, 2]. The important characteristic of the electron-boson
scattering is the Eliashberg spectral function α2F(k, k′,ω)
(or its average α2F(ω)) which characterizes scattering of
quasiparticle from k to k′ by exchanging bosonic energy
ω. Therefore, in systems with electron-boson scattering the
knowledge of the spectral function is of crucial importance.

There are at least two approaches differing in assumed
pairing bosons in the HTSC cuprates. The first one is based
on the electron-phonon interaction (EPI), with the main
proponents in [3–11], where mediating bosons are phonons
and where the average spectral function α2F(ω) is similar
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to the phonon density of states Fph(ω). Note that α2F(ω) is
not the product of two functions although sometimes one
defines the function α2(ω) = α2F(ω)/F(ω) which should
approximate the energy dependence of the strength of the
EPI coupling. There are numerous experimental evidences in
cuprates for the importance of the EPI scattering mechanism
with a rather large coupling constant in the normal scattering
channel 1 < λep � 3, which will be discussed in detail below.
In the EPI approach α2Fph(ω) is extracted from tunnelling
measurements in conjunction with IR optical measurements.
The HTSC cuprates are on the borderline and it is a natural
question—under which condition can high Tc be realized in
the nonadiabatic limit A ≈ 1?

The second approach [12–17] assumes that EPI is too
weak to be responsible for high Tc in cuprates and it is
based on a phenomenological model for spin-fluctuation
interaction (SFI) as the dominating scattering mechanism,
that is, it is a nonphononic mechanism. In this (phenomeno-
logical) approach the spectral function is proportional to
the imaginary part of the spin susceptibility Im χ(k − k′,ω),
that is, α2F(k, k′,ω) ∼ g2

sf Im χ(k − k′,ω) where gsf is the
SFI coupling constant. NMR spectroscopy and magnetic
neutron scattering give evidence that in HTSC cuprates
χ(q,ω) is peaked at the antiferromagnetic wave vector Q =
(π/a,π/a) and this property is favorable for d-wave pairing.
The SFI theory roots basically on the strong electronic
repulsion on Cu atoms, which is usually studied by the
Hubbard model or its (more popular) derivative the t-J
model. Regarding the possibility to explain high Tc solely by
strong correlations, as it is reviewed in [18], we stress two
facts. First, at present there is no viable theory as well as
experimental facts which can justify these (nonphononic)
mechanisms of pairing with some exotic pairing mechanism
such as RVB pairing [18], fractional statistics, anyon super-
conductivity, and so forth. Therefore we will not discuss
these, in theoretical sense interesting approaches. Second,
the central question in these nonphononic approaches is
the following—do models based solely on the Hubbard
Hamiltonian show up superconductivity at sufficiently high
critical temperatures (Tc ∼ 100 K)? Although the answer
on this important question is not definitely settled, there
are a number of numerical studies of these models which
offer negative answers. For instance, the sign-free variational
Monte Carlo algorithm in the 2D repulsive (U > 0) Hubbard
model gives no evidence for superconductivity with high Tc,
neither the BCS-like nor the Berezinskii-Kosterlitz-Thouless-
(BKT-) like [19]. At the same time, similar calculations
show that there is a strong tendency to superconductivity
in the attractive (U < 0) Hubbard model for the same
strength of U , that is, at finite temperature in the 2D
model with U < 0 the BKT superconducting transition
is favored. Concerning the possibility of HTSC in the t-J
model, various numerical calculations such as Monte Carlo
calculations of the Drude spectral weight [20] and high-
temperature expansion for the pairing susceptibility [21] give
evidence that there is no superconductivity at temperatures
characteristic for cuprates and if it exists Tc must be rather
low—few Kelvins. These numerical results tell us that the
lack of high Tc (even in 2D BKT phase) in the repulsive

(U > 0) single-band Hubbard model and in the t-J model
is not only due to thermodynamical 2D-fluctuations (which
at finite T suppress and destroy superconducting phase
coherence in large systems) but it is also mostly due to an
inherent ineffectiveness of strong correlations to produce solely
high Tc in cuprates. These numerical results signal that the
simple single-band Hubbard and its derivative the t-J model
are insufficient to explain solely the pairing mechanism in
cuprates and some additional ingredients must be included.

Since EPI is rather strong in cuprates, then it must be
accounted for. As it will be argued in the following, the
experimental support for the importance of EPI in cuprates
comes from optics, tunnelling, and recent ARPES measure-
ments [22, 23]. It is worth mentioning that recent ARPES
activity was a strong impetus for renewed experimental and
theoretical studies of EPI in cuprates. However, in spite of
accumulating experimental evidence for importance of EPI
with λep > 1, there are occasionally reports which doubt
its importance in cuprates. This is the case with recent
interpretation of some optical measurements in terms of
SFI only [24–27] and with the LDA-DFT (local density
approximation-density functional theory) band-structure
calculations [28, 29], where both claim that EPI is negligibly
small, that is, λep < 0.3. The inappropriateness of these
statements will be discussed in the following sections.

The paper is organized as follows. In Section 1 we
will mainly discuss experimental results in cuprates at and
near optimal doping by giving also minimal theoretical
explanations which are related to the bosonic spectral func-
tion α2F(ω) as well as to the transport spectral function
α2

trF(ω) and their relations to EPI. The reason that we
study only cuprates at and near optimal doping is that in
these systems there are rather well-defined quasiparticles—
although strongly interacting—while in highly underdoped
systems the superconductivity is perplexed and possibly
masked by other phenomena, such as pseudogap effects,
formation of small polarons, interaction with spin and
(possibly charge) order parameters, pronounced inhomo-
geneities of the scattering centers, and so forth. As the
ARPES experiments confirm, there are no polaronic effects
in systems at and near the optimal doping, while there are
pronounced polaronic effects due to EPI in undoped and
very underdoped HTSC [8–11]. In this work we consider
mainly those direct one-particle and two-particle probes
of low-energy quasiparticle excitations and scattering rates
which give information on the structure of the spectral
functions α2F(k, k′,ω) and α2

trF(ω) in systems near optimal
doping. These are angle-resolved photoemission (ARPES),
various arts of tunnelling spectroscopy such as supercon-
ductor/insulator/normal metal (SIN) junctions, break junc-
tions, scanning-tunnelling microscope spectroscopy (STM),
infrared (IR) and Raman optics, inelastic neutron and X-
ray scattering, and so forth. We will argue that these direct
probes give evidence for a rather strong EPI in cuprates.
Some other experiments on EPI are also discussed in order
to complete the arguments for the importance of EPI in
cuprates. The detailed contents of Section 1 are the following.
In Section 1.2 we discuss some prejudices related to the
strength of EPI as well as on the Fermi-liquid behavior of
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HTSC cuprates. We argue that any nonphononic mechanism
of pairing should have very large bare critical temperature
Tc0 � Tc in the presence of the large EPI coupling constant,
λep ≥ 1, if the EPI spectral function is weakly momentum
dependent, that is, if α2F(k, k′,ω) ≈ α2F(ω) like in low-
temperature superconductors. The fact that EPI is large
in the normal state of cuprates and the condition that it
must be conform with d-wave pairing imply that EPI in
HTSC cuprates should be strongly momentum dependent.
In Section 1.3 we discuss direct and indirect experimental
evidences for the importance of EPI in cuprates and for the
weakness of SFI in cuprates. These are the following.

(a) Magnetic Neutron Scattering Measurements. These
measurements provide dynamic spin susceptibility χ(q,ω)
which is in the SFI phenomenological approach [12–
17] related to the Eliashberg spectral function, that is,
α2Fsf(k, k′,ω) ∼ g2

sf Im χ(q = k − k′,ω). We stress that
such an approach can be theoretically justified only in
the weak coupling limit, gsf � Wb, where Wb is the
band width and gsf is the phenomenological SFI coupling
constant. Here we discuss experimental results on YBCO
which give evidence for strong rearrangement (with respect
to ω) of Im χ(q,ω) (with q at and near Q = (π,π))
by doping toward the optimal doped HTSC [30, 31]. It
turns out that in the optimally doped cuprates with Tc =
92.5 K Im χ(Q,ω) is drastically suppressed compared to that
in slightly underdoped ones with Tc = 91 K. This fact implies
that the SFI coupling constant gsf must be small.

(b) Optical Conductivity Measurements. From these
measurements one can extract the transport relaxation
rate γtr(ω) and indirectly an approximative shape of the
transport spectral function α2

trF(ω). In the case of systems
near optimal doping we discuss the following questions. (i)
First is the physical and quantitative difference between the
optical relaxation rate γtr(ω) and the quasiparticle relaxation
rate γ(ω). It was shown in the past that equating these
two (unequal) quantities is dangerous and brings incorrect
results concerning the quasiparticle dynamics in most metals
by including HTSC cuprates too [3–6, 32–38]. (ii) Second
are methods of extraction of the transport spectral function
α2

trF(ω). Although these methods give at finite temperature T
a blurred α2

trF(ω) which is (due to the ill-defined methods)
temperature dependent, it turns out that the width and the
shape of the extracted α2

trF(ω) are in favor of EPI. (iii) Third
is the restricted sum rule for the optical weight as a function
of T which can be explained by strong EPI [39, 40]. (iv)
Fourth is the good agreement with experiments of the T-
dependence of the resistivity ρ(T) in optimally doped YBCO,
where ρ(T) is calculated by using the spectral function from
tunnelling experiments. Recent femtosecond time-resolved
optical spectroscopy in La2−xSrxCuO4 which gives additional
evidence for importance of EPI [41] will be shortly discussed.

(c) ARPES Measurements and EPI. From these measure-
ments the self-energy Σ(k,ω) is extracted as well as some
properties of α2F(k, k′,ω). Here we discuss the following
items: (i) the existence of the nodal and antinodal kinks in
optimally and slightly underdoped cuprates, as well as the
structure of the ARPES self-energy (Σ(k,ω)) and its isotope
dependence, which are all due to EPI; (ii) the appearance

of different slopes of Σ(k,ω) at low (ω � ωph) and high
energies (ω � ωph ) which can be explained by the strong
EPI; (iii) the formation of small polarons in the undoped
HTSC which was interpreted to be due to strong EPI—this
gives rise to phonon side bands which are clearly seen in
ARPES of undoped HTSC [10, 11].

(d) Tunnelling Spectroscopy. It is well known that this
method is of an immense importance in obtaining the
spectral function α2F(ω) from tunnelling conductance. In
this part we discuss the following items: (i) the extracted
Eliashberg spectral function α2F(ω) with the coupling
constant λ(tun) = 2–3.5 from the tunnelling conductance of
break-junctions in optimally doped YBCO and Bi-2212 [42–
55] which gives that the maxima of α2F(ω) coincide with
the maxima in the phonon density of states Fph(ω); (ii) the
existence of eleven peaks in −d2I/dV 2 in superconducting
La1.84Sr0.16CuO4 films [56], where these peaks match pre-
cisely with the peaks in the intensity of the existing phonon
Raman scattering data [57]; (iii) the presence of the dip in
dI/dV in STM which shows the pronounced oxygen isotope
effect and important role of these phonons.

(e) Inelastic Neutron and X-Ray Scattering Measurements.
From these experiments one can extract the phonon density
of state Fph(ω) and in some cases the strengths of the
quasiparticle coupling with various phonon modes. These
experiments give sufficient evidence for quantitative inad-
equacy of LDA-DFT calculations in HTSC cuprates. Here
we argue that the large softening and broadening of the
half-breathing Cu–O bond-stretching phonon, of the apical
oxygen phonons and of the oxygen B1g buckling phonons
(in LSCO, BSCO, YBCO), cannot be explained by LDA-DFT.
It is curious that the magnitude of the softening can be
partially obtained by LDA-DFT but the calculated widths of
some important modes are an order of magnitude smaller
than the neutron scattering data show. This remarkable fact
confirms that additionally the inadequacy of LDA-DFT in
strongly correlated systems and a more sophisticated many-
body theory for EPI is needed. The problem of EPI will be
discussed in more details in Section 2.

In Section 1.4 brief summary of Section 1 is given.
Since we are dealing with the electron-boson scattering in
cuprates near the optimal doping, then in Appendix A (and
in Section 2) we introduce the reader briefly to the Migdal-
Eliashberg theory for superconductors (and normal metals)
where the quasiparticle spectral function α2F(k, k′,ω) and
the transport spectral function α2

trF(ω) are defined.
Finally, one can pose a question—do the experimental

results of the above enumerated spectroscopic methods allow
a building of a satisfactory and physically reasonable micro-
scopic theory for basic scattering and pairing mechanism in
cuprates? The posed question is very modest compared to
the much stringent request for the theory of everything—
which would be able to explain all properties of HTSC
materials. Such an ambitious project is not realized even in
those low-temperature conventional superconductors where
it is definitely proved that in most materials the pairing
is due to EPI and many properties are well accounted for
by the Migdal-Eliashberg theory. For an illustration, let us
mention only two examples. First, the experimental value
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for the coherence peak in the microwave response σs (T <
Tc, ω = const) at ω = 17 GHz in the superconducting Nb
is much higher than the theoretical value obtained by the
strong coupling Eliashberg theory [58]. So to say, the theory
explains the coherence peak at 17 GHz in Nb qualitatively
but not quantitatively. However, the measurements at higher
frequency ω ∼ 60 GHz are in agreement with the Eliashberg
theory [59]. Then one can say that instead of the theory of
everything we deal with a satisfactory theory, which allows us
qualitative and in many aspects quantitative explanation of
phenomena in superconducting state. Second example is the
experimental boron (B) isotope effect in MgB2 (Tc ≈ 40 K)
which is smaller than the theoretical value, that is, α

exp
B ≈

0.3 < αth
B = 0.5, although the pairing is due to EPI for boron

vibrations [60]. Since the theory of everything is impossible
in the complex materials such as HTSC cuprates in Section 1,
we will not discuss those phenomena which need much more
microscopic details and/or more sophisticated many-body
theory. These are selected by chance: (i) large ratio 2Δ/Tc
which is on optimally doped YBCO and BSCO ≈ 5 and
7, respectively, while in underdoped BSCO one has even
(2Δ/Tc) ≈ 20; (ii) peculiarities of the coherence peak in
the microwave response σ(T) in HTSC cuprates, which is
peaked at T much smaller than Tc, contrary to the case of
LTSC where it occurs near Tc; (iii) the dependence of Tc on
the number of CuO2 in the unit cell; (iv) the temperature
dependence of the Hall coefficient; (v) distribution of states
in the vortex core, and so forth.

The microscopic theory of the mechanism for super-
conducting pairing in HTSC cuprates will be discussed in
Section 2. In Section 2.1 we introduce an ab initio many-
body theory of superconductivity which is based on the
fundamental (microscopic) Hamiltonian and the many-
body technique. This theory can in principle calculate
measurable properties of materials such as the critical
temperature Tc, the critical fields, the dynamic and transport
properties, and so forth. However, although this method
is in principle exact, which needs only some fundamental
constants e, �, me, Mion, kB and the chemical composition
of superconducting materials, it was practically never real-
ized in practice due to the complexity of many-body
interactions—electron-electron and electron-lattice—as well
as of structural properties. Fortunately, the problem can be
simplified by using the fact that superconductivity is a low-
energy phenomenon characterized by the very small energy
parameters (Tc/EF ,Δ/EF ,ωph/EF) � 1. It turns out that one
can integrate high-energy electronic processes (which are
not changed by the appearance of superconductivity) and
then solve the low-energy problem by the (so-called) strong-
coupling Migdal-Eliashberg theory. It turns out that in such
an approach the physics is separated into the following: (1)
the solution of the ideal band-structure Hamiltonian with the
nonlocal exact crystal potential (sometimes called the exci-
tation potential) VIBS(r, r′) (IBS—the ideal band structure)

which includes the static self-energy (Σ(h)
c0 (r, r′,ω = 0)) due

to high-energy electronic processes, that is, VIBS(r, r′) =
[Ve-i(r)+VH(r)]δ(r−r′)+Σ(h)

c0 (r, r′,ω = 0), withVe-i andVH

being the electron-ion and Hartree potential, respectively;

(2) solving the low-energy Eliashberg equations. However,
the calculation of the (excited) potential VIBS(r, r′) and
the real EPI coupling gep(r, r′) = δVIBS(r, r′)/δRn, which
include high-energy many-body electronic processes—for
instance, the large Hubbard U effects—is extremely difficult
at present, especially in strongly correlated systems such as
HTSC cuprates. Due to this difficulty the calculations of the
EPI coupling in the past were usually based on the LDA-
DFT method which will be discussed in Section 2.2 in the
contest of HTSC cuprates, where the nonlocal potential is
replaced by the local potential VLDA(r)—the ground-state
potential—and the real EPI coupling by the “local” LDA
one gep(r) = δVLDA(r)/δRn. Since the exchange-correlation
effects enter VLDA(r) = Ve-i(r) + VH(r) + VXC(r) via the
local exchange-correlation potential VXC(r), it is clear that
the LDA-DFT method describes strong correlations scarcely
and it is inadequate in HTSC cuprates (and other strongly
correlated systems such as heavy fermions) where one needs
an approach beyond the LDA-DFT method. In Section 2.3
we discuss a minimal theoretical model for HTSC cuprates
which takes into account minimal number of electronic
orbitals and strong correlations in a controllable manner
[6]. This theory treats the interplay of EPI and strong
correlations in systems with finite doping in a systematic
and controllable way. The minimal model can be further
reduced (in some range of parameters) to the single-band
t-J model, which allows the approximative calculation of the
excited potential VIBS(r, r′) and the nonlocal EPI coupling
gep(r, r′). As a result one obtains the momentum-dependent
EPI coupling gep(kF , q) which is for small hole-doping
(δ < 0.3) strongly peaked at small transfer momenta—the
forward scattering peak. In the framework of this minimal
model it is possible to explain some important properties
and resolve some puzzling experimental results, like the
following, for instance. (a) Why is d-wave pairing realized
in the presence of strong EPI? (b) Why is the transport
coupling constant (λtr) rather smaller than the pairing one
λ, that is, λtr � λ/3? (c) Why is the mean-field (one-body)
LDA-DFT approach unable to give reliable values for the EPI
coupling constant in cuprates and how many-body effects
can help? (d) Why is d-wave pairing robust in the presence
of nonmagnetic impurities and defects? (e) Why are the
ARPES nodal and antinodal kinks differently renormalized
in the superconducting states, and so forth? In spite of the
encouraging successes of this minimal model, at least in a
qualitative explanation of numerous important properties of
HTSC cuprates, we are at present stage rather far from a
fully microscopic theory of HTSC cuprates which is able to
explain high Tc. In that respect at the end of Section 2.3 we
discuss possible improvements of the present minimal model
in order to obtain at least a semiquantitative theory for HTSC
cuprates.

Finally, we would like to point out that in real HTSC
materials there are numerous experimental evidences for
nanoscale inhomogeneities. For instance, recent STM exper-
iments show rather large gap dispersion, at least on the
surface of BSCO crystals [61–63], giving rise to a pronounced
inhomogeneity of the superconducting order parameter
Δ(k, R), where k is the relative momentum of the Cooper
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pair and R is the center of mass of Cooper pairs. One possible
reason for the inhomogeneity of Δ(k, R) and disorder on
the atomic scale can be due to extremely high doping level
of ∼(10–20)% in HTSC cuprates which is many orders of
magnitude larger than in standard semiconductors (1021

versus 1015 carrier concentration). There are some claims
that high Tc is exclusively due to these inhomogeneities
(of an extrinsic or intrinsic origin) which may effectively
increase pairing potential [64], while some others try to
explain high Tc solely within the inhomogeneous Hubbard
or t-J model. Here we will not discuss this interesting
problem but mention only that the concept of Tc increase by
inhomogeneity is not well-defined, since the increase of Tc is
defined with respect to the average value Tc. However, Tc is
experimentally not well defined quantity and the hypothesis
of an increase of Tc by material inhomogeneities cannot be
tested at all. In studying and analyzing HTSC cuprates near
optimal doping we assume that basic effects are realized in
nearly homogeneous systems and inhomogeneities are of
secondary role, which deserve to be studied and discussed
separately.

1.2. EPI versus Nonphononic Mechanisms. Concerning the
high Tc values in cuprates, two dilemmas have been
dominating after its discovery: (i) which interaction is
responsible for strong quasiparticle scattering in the normal
state? This question is related also to the dilemma of Fermi
versus non-Fermi liquid; (ii) What is the mediating (gluing)
boson responsible for the superconducting pairing, that
is, phonons or nonphonons? In the last twenty-three years,
the scientific community was overwhelmed by numerous
proposed pairing mechanisms, most of which are hardly
verifiable in HTSC cuprates.

(1) Fermi versus Non-Fermi Liquid in Cuprates. After dis-
covery of HTSC in cuprates there was a large amount
of evidence on strong scattering of quasiparticles which
contradicts the canonical (popular but narrow) definition
of the Fermi liquid, thus giving rise to numerous proposals
of the so called non-Fermi liquids, such as Luttinger liquid,
RVB theory, marginal Fermi liquid, and so forth. In our
opinion there is no need for these radical approaches in
explaining basic physics in cuprates at least in optimally,
slightly underdoped and overdoped metallic and supercon-
ducting HTSC cuprates. Here we give some clarifications
related to the dilemma of Fermi versus non-Fermi liquid.
The definition of the canonical Fermi liquid (based on the
Landau work) in interacting Fermi systems comprises the
following properties: (1) there are quasiparticles with charge
q = ±e, spin s = 1/2, and low-energy excitations ξk(= εk−μ)
which are much larger than their inverse life-times, that
is, ξk � 1/τk ∼ ξ2

k/Wb. Since the level width Γ = 2/τk

of the quasiparticle is negligibly small, this means that the
excited states of the Fermi liquid are placed in one-to-one
correspondence with the excited states of the free Fermi gas;
(2) at T = 0 K there is an energy level ξkF = 0 which
defines the Fermi surface on which the Fermi quasiparticle
distribution function nF(ξk) has finite jump at kF ; (3) the

number of quasiparticles under the Fermi surface is equal
to the total number of conduction particles (we omit here
other valence and core electrons)—the Luttinger theorem;
(4) the interactions between quasiparticles are character-
ized by the set of Landau parameters which describe the
low-temperature thermodynamics and transport properties.
Having this definition in mind one can say that if fermionic
quasiparticles interact with some bosonic excitation, for
instance, with phonons, and if the coupling is sufficiently
strong, then the former are not described by the canonical
Fermi liquid since at energies and temperatures of the order
of the characteristic (Debye) temperature kBΘD(≡ �ωD) (for
the Debye spectrum ∼ ΘD/5), that is, for ξk ∼ ΘD, one
has τ−1

k � ξk and the quasiparticle picture (in the sense
of the Landau definition) is broken down. In that respect
an electron-boson system can be classified as a noncanonical
Fermi liquid for sufficiently strong electron-boson coupling.
It is nowadays well known that, for instance, Al, Zn are weak
coupling systems since for ξk ∼ ΘD one has τ−1

k � ξk

and they are well described by the Landau theory. However,
in (the noncanonical) cases where for higher energies ξk ∼
ΘD one has τ−1

k � ξk, the electron-phonon system is
satisfactory described by the Migdal-Eliashberg theory and
the Boltzmann theory, where thermodynamic and transport
properties depend on the spectral function α2Fsf(k, k′,ω)
and its higher momenta. Since in HTSC cuprates the
electron-boson (phonon) coupling is strong and Tc is large,
then it is natural that in the normal state (at T > Tc) we deal
with a strong interacting noncanonical Fermi liquid which
is for modest nonadiabaticity parameter A < 1 described
by the Migdal-Eliashberg theory, at least qualitatively and
semiquantitatively. In order to justify this statement we will
in the following elucidate some properties in more details by
studying optical, ARPES, tunnelling and other experiments
in HTSC oxides.

(2) Is There Limit of the EPI Strength? In spite of the reached
experimental evidence in favor of strong EPI in HTSC oxides,
there was a disproportion in the research activity (especially
theoretical) in the past, since the investigation of the SFI
mechanism of pairing prevailed in the literature. This trend
was partly due to an incorrect statement in [65, 66] on the
possible upper limit of Tc in the phonon mechanism of
pairing. Since in the past we have discussed this problem
thoroughly in numerous papers—for the recent one see
[67]—we will outline here the main issue and results only.

It is well known that in an electron-ion crystal, besides
the attractive EPI, there is also repulsive Coulomb inter-
action. In case of an isotropic and homogeneous system
with weak quasiparticle interaction, the effective potential
Veff(k,ω) in the leading approximation looks like as for two
external charges (e) embedded in the medium with the total
longitudinal dielectric function εtot(k,ω) (k is the momentum
and ω is the frequency) [68, 69], that is,

Veff(k,ω) = Vext(k)
εtot(k,ω)

= 4πe2

k2εtot(k,ω)
. (1)

In case of strong interaction between quasiparticles, the
state of embedded quasiparticles changes significantly due
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to interaction with other quasiparticles, giving rise to
Veff(k,ω) /= 4πe2/k2εtot(k,ω). In that case Veff depends on
other (than εtot(k,ω)) response functions. However, in the
case when (1) holds, that is, when the weak-coupling limit
is realized, Tc is given by Tc ≈ ω exp(−1/(λep − μ∗)) [68–
70]. Here, λep is the EPI coupling constant, ω is an average
phonon frequency, and μ∗ is the Coulomb pseudopotential,
μ∗ = μ/(1 + μ lnEF/ω) (EF is the Fermi energy). The
couplings λep and μ are expressed by εtot(k,ω = 0):

μ− λep = 〈N(0)Veff(k,ω = 0)〉

= N(0)
∫ 2kF

0

kdk

2k2
F

4πe2

k2εtot(k,ω = 0)
,

(2)

where N(0) is the density of states at the Fermi surface
and kF is the Fermi momentum—see more in [3–5]. In
[65, 66] it was claimed that the lattice stability of the
system with respect to the charge density wave formation
implies the condition εtot(k,ω = 0) > 1 for all k. If this
were correct, then from (2) it would follow that μ > λep,
which limits the maximal value of Tc to the value Tmax

c ≈
EF exp(−4 − 3/λep). In typical metals EF < (1–10) eV, and if
one accepts the statement in [65, 66] that λep ≤ μ(≤0.5),
one obtains Tc ∼ (1–10) K. The latter result, if it would
be correct, means that EPI is ineffective in producing not
only high-Tc superconductivity but also low-temperature
superconductivity (LTS with Tc � 20 K). However, this result
is in conflict first of all with experimental results in LTSC,
where in numerous systems one has μ ≤ λep and λep > 1. For
instance, λep ≈ 2.6 is realized in PbBi alloy which is definitely
much higher than μ(<1), and so forth.

Moreover, the basic theory tells us that εtot(k /= 0,ω)
is not the response function [68, 69] (contrary to the
assumption in [65, 66]). Namely, if a small external potential
δVext(k,ω) is applied to the system (of electrons and
ions in solids), it induces screening by charges of the
medium and the total potential is given by δVtot(k,ω) =
δVext(k,ω)/εtot(k,ω), which means that 1/εtot(k,ω) is the
response function. The latter obeys the Kramers-Kronig
dispersion relation which implies the following stability
condition [68, 69]:

1
εtot(k,ω = 0)

< 1, k /= 0, (3)

that is, either

εtot(k /= 0,ω = 0) > 1, (4)

or

εtot(k /= 0,ω = 0) < 0. (5)

This important theorem invalidates the restriction on the
maximal value of Tc in the EPI mechanism given in [65,
66]. We stress that the condition εtot(k /= 0, ω = 0) <
0 is not in conflict with the lattice stability at all. For
instance, in inhomogeneous systems such as crystal, the
total longitudinal dielectric function is matrix in the space
of reciprocal lattice vectors (Q), that is, ε̂tot(k + Q, k +

Q′,ω), and εtot(k,ω) is defined by ε−1
tot (k,ω) = ε̂−1

tot (k +
0, k + 0,ω). In dense metallic systems with one ion per cell
(such as metallic hydrogen) and with the electronic dielectric
function εel(k, 0), the macroscopic total dielectric function
εtot(k, 0) is given by [71–73]

εtot(k, 0) = εel(k, 0)
1− 1/εel(k, 0)Gep(k)

. (6)

At the same time the energy of the longitudinal phononωl(k)
is given by

ω2
l (k) =

Ω2
p

εel(k, 0)

[
1− εel(k, 0)Gep(k)

]
, (7)

where Ω2
p is the ionic plasma frequency, and Gep is the local

(electric) field correction—see [71–73]. The right condition
for lattice stability requires that ω2

l (k) > 0, which implies
that for εel(k, 0) > 0 one has εel(k, 0)Gep(k) < 1. The latter
condition gives automatically εtot(k, 0) < 0. Furthermore, the
calculations [71–73] show that in the metallic hydrogen (H)
crystal εtot(k, 0) < 0 for all k /= 0. Note that in metallic H the
EPI coupling constant is very large, that is, λep ≈ 7 and Tc
may reach very large value Tc ≈ 600 K [74]. Moreover, the
analyses of crystals with more ions per unit cell [71–73] give
that εtot(k /= 0, 0) < 0 is more a rule than an exception—see
Figure 1. The physical reason for εtot(k /= 0, 0) < 0 is local
field effects described by Gep(k). Whenever the local electric
field Eloc acting on electrons (and ions) is different from the
average electric field E, that is, Eloc /=E, there are corrections
to εtot(k, 0) which may lead to εtot(k, 0) < 0.

The above analysis tells us that in real crystals
εtot(k, 0) can be negative in the large portion of the Brillouin
zone thus giving rise to λep − μ > 0 in (2). This means that
analytic properties of the dielectric function εtot(k,ω) do not
limit Tc in the phonon mechanism of pairing. This result does
not mean that there is no limit on Tc at all. We mention
in advance that the local field effects play important role
in HTSC cuprates, due to their layered structure with very
unusual ionic-metallic binding, thus opening a possibility for
large EPI.

In conclusion, we point out that there are no serious
theoretical and experimental arguments for ignoring EPI in
HTSC cuprates. To this end it is necessary to answer several
important questions which are related to experimental
findings in HTSC cuprates. (1) If EPI is important for pairing
in HTSC cuprates and if superconductivity is of d-wave type,
how are these two facts compatible? (2) Why is the transport
EPI coupling constant λtr (entering resistivity) rather smaller
than the pairing EPI coupling constant λep(>1) (entering Tc),
that is, why one has λtr(≈0.6–1.4) � λep(∼2–3.5)? (3) If EPI
is ineffective for pairing in HTSC oxides, in spite of λep > 1,
why is it so?

(3) Is a Nonphononic Pairing Realized in HTSC? Regarding
EPI one can pose a question about whether it contributes sig-
nificantly to d-wave pairing in cuprates. Surprisingly, despite
numerous experiments in favor of EPI, there is a belief that
EPI is irrelevant for pairing [12–17]. This belief is mainly
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Figure 1: Inverse total static dielectric function ε−1(p) for normal
metals (K, Al, Pb) and metallic H in p = (1, 0, 0) direction. G is the
reciprocal lattice vector.

based, first, on the above discussed incorrect lattice stability
criterion related to the sign of εtot(k, 0), which implies small
EPI and, second, on the well-established experimental fact
that d-wave pairing is realized in cuprates [75], which is
believed to be incompatible with EPI. Having in mind that
EPI in HTSC at and near optimal doping is strong with
2 < λep < 3.5 (see below), we assume for the moment
that the leading pairing mechanism in cuprates, which gives
d-wave pairing, is due to some nonphononic mechanism.
For instance, let us assume an exitonic mechanism due to
the high-energy pairing boson (Ωnph � ωph) and with
the bare critical temperature Tc0 and look for the effect of
EPI on Tc. If EPI is approximately isotropic, like in most
LTSC materials, then it would be very detrimental for d-
wave pairing. In the case of dominating isotropic EPI in
the normal state and the exitonic-like pairing, then near Tc
the linearized Eliashberg equations have an approximative
form for a weak nonphonon interaction (with the large
characteristic frequency Ωnph)

Z(ωn)Δn(k) ≈ πTc

Ωnph∑
m

∑
q
Vnph

(
k, q,n,m

)Δm(q
)

|ωm|
,

Z(ωn) ≈ 1 +
Γep
ωn

.

(8)

For pure d-wave pairing with the pairing potential
Vnph = Vnph(θk, θq) · Θ(Ωnph − |ωn|)Θ(Ωnph − |ωn′ |) with
Vnph(k, q) = V0 · Yd(θk)Yd(θq) and Yd(θk) = π−1/2 cos 2θk,

one obtains Δn(k) = Δd · Θ(Ωnph − |ωn|)Yd(θk) and the
equation for Tc—see [3–5]

ln
Tc
Tc0

≈ Ψ
(

1
2

)
−Ψ

(
1
2

+
Γep

2πTc

)
. (9)

Here Ψ is the di-gamma function. At temperatures near Tc
one has Γep ≈ 2πλepTc and the solution of (9) is approx-
imately Tc ≈ Tc0 exp{−λep} with Tc0 ≈ Ωnph exp{−λnph},
λnph = N(0)V0. This means that for Tmax

c ∼ 160 K and
λep > 1 the bareTc0 due to the nonphononic interaction must
be very large, that is, Tc0 > 500 K.

Concerning other nonphononic mechanisms, such as the
SFI one, the effect of EPI in the framework of Eliashberg
equations was studied numerically in [76]. The latter is based
on (A.1) in Appendix A with the kernels in the normal
and superconducting channels λZkp(iνn) and λΔkp, respectively.
Usually, the spin-fluctuation kernel λsf,kp(iνn) is taken in the
FLEX approximation [77]. The calculations [76] confirm
the very detrimental effect of the isotropic (k-independent)
EPI on d-wave pairing due to SFI. For the bare SFI critical
temperature Tc0 ∼ 100 K and for λep > 1 the calculations give
very small (renormalized) critical temperature Tc � 100 K.
These results tell us that a more realistic pairing interaction
must be operative in cuprates and that EPI must be strongly
momentum dependent and peaked at small transfer momenta
[78–80]. Only in that case does strong EPI conform with d-
wave pairing, either as its main cause or as a supporter of a
nonphononic mechanism. In Section 2 we will argue that the
strongly momentum-dependent EPI is important scattering
mechanism in cuprates providing the strength of the pairing
mechanism, while the residual Coulomb interaction (by
including weaker SFI) triggers it to d-wave pairing.

1.3. Experimental Evidence for Strong EPI. In the following
we discuss some important experiments which give evidence
for strong electron-phonon interaction (EPI) in cuprates.
However, before doing it, we will discuss some indicative
inelastic magnetic neutron scattering (IMNS) measurements
in cuprates whose results in fact seriously doubt in the effec-
tiveness of the phenomenological SFI mechanism of pairing
which is advocated in [12–17, 81]. First, the experimental
results related to the pronounced imaginary part of the
susceptibility Im χ(k, kz,ω) in the normal state at and near
the AF wave vector k = Q = (π,π) were interpreted in a
number of papers as a support for the SFI mechanism for
pairing [12–17, 81]. Second, the existence of the so called
magnetic resonance peak of Im χ(k, kz,ω) (at some energies
ω < 2Δ) in the superconducting state was also interpreted in
a number of papers either as the origin of superconductivity
or as a mechanism strongly affecting superconducting gap at
the antinodal point.

1.3.1. Magnetic Neutron Scattering and the Spin-Fluctuation

Spectral Function

(a) Huge Rearrangement of the SFI Spectral Function and
Small Change of Tc. Before discussing experimental results
in cuprates on the imaginary part of the spin susceptibility



8 Advances in Condensed Matter Physics

Im χ(k,ω) we point out that in the (phenomenological)
theories based on the spin-fluctuation interaction (SFI) the
quasiparticle self-energy Σ̂sf(k,ωn) (ωn is the Matsubara
frequency and τ̂0 is the Nambu matrix) in the normal and
superconducting state and the effective (repulsive) pairing
potential Vsf(k,ω) (where iωn → ω + iη) are assumed in the
form [12–17]

Σ̂sf(k,ωn) = T

N

∑
k′,m

Vsf
(

k− k′,ω−nm
)
τ̂0Ĝ(k′,ωm)τ̂0,

Vsf
(

k,ω−nm
) = g2

sf

∫∞
−∞

dν

π

Im χ
(

q, ν + i0+
)

ν− iω−nm
,

(10)

where ω−nm ≡ ωn − ωm. Although the form of Vsf cannot
be justified theoretically, except in the weak coupling limit
(gsf � Wb) only, it is often used in the analysis of the
quasiparticle properties in the normal and superconducting
state of cuprates where the spin susceptibility (spectral
function) Im χ(q,ω) is strongly peaked at and near the AF
wave vector Q = (π/a,π/a).

Can the pairing mechanism in HTSC cuprates be
explained by such a phenomenology and what is the prise for
it is? The best answer is to look at the experimental results
related to the inelastic magnetic neutron scattering (IMNS)
which gives Im χ(q,ω). In that respect very indicative and
impressive IMNS measurements on YBa2Cu3O6+x, which are
done by Bourges group [30], demonstrate that the normal-
state susceptibility Im χ(odd)(q,ω) (the odd part of the spin
susceptibility in the bilayer system) at q = Q = (π,π) is
strongly dependent on the hole-doping as it is shown in
Figure 2.

The most pronounced result for our discussion is
that by varying doping there is a huge rearrangement
of Im χ(odd)(Q,ω) in the normal state, especially in the
energy (frequency) region which might be important for
superconducting pairing, let us say 0 meV < ω < 60 meV.
This is clearly seen in the last two curves in Figure 2 where
this rearrangement is very pronounced, while at the same time
there is only small variation of the critical temperature Tc. It is
seen in Figure 2 that in the underdoped YBa2Cu3O6.92 crystal
Im χ(odd)(Q,ω) and S(Q) = N(0)g2

sf

∫ 60
0 dω Im χ(odd)(Q,ω)

are much larger than that in the near optimally doped
YBa2Cu3O6.97, that is, one has S6.92(Q) � S6.97(Q), although
the difference in the corresponding critical temperatures

Tc is very small, that is, T(6.92)
c = 91 K (in YBa2Cu3O6.92)

and T(6.97)
c = 92.5 K (in YBa2Cu3O6.97). This pronounced

rearrangement and suppression of Im χ(odd)(Q,ω) in the
normal state of YBCO by doping (toward the optimal
doping) but with the negligible change in Tc is strong
evidence that the SFI pairing mechanism is not the
dominating one in HTSC cuprates. This insensitivity of
Tc, if interpreted in terms of the SFI coupling constant

λsf(∼ g2
sf), means that the latter is small, that is, λ

(exp)
sf � 1.

We stress that the explanation of high Tc in cuprates by the
SFI phenomenological theory [12–17] assumes very large

SFI coupling energy with g(th)
sf ≈ 0.7 eV while the frequency

(energy) dependence of Im χ(Q,ω) is extracted from the fit
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Figure 2: Magnetic spectral function Im χ(−)(k,ω) in the normal
state of YBa2Cu3O6+x at T = 100 K and at Q = (π,π). 100
counts in the vertical scale correspond to χ(−)

max ≈ 350μ2
B/eV. The

superconducting critical temperature Tc(x) by increasing doping
(x) from the underdoped system with x = 0.5 (top) to the optimally
doped one with x = 0.97 (bottom): Tc(x) = 45 K (x = 0.5), 85 K
(x = 0.83), 91 K (x = 0.92), and 92.5 K (x = 0.97). From [30].

of the NMR relaxation rate T−1
1 which gives T(NMR)

c ≈ 100 K
[12–17]. To this point, the NMR measurements (of T−1

1 )
give that there is an anticorrelation between the decrease of
the NMR spectral function IQ = limω→ 0 Im χ(NMR)(Q,ω)/ω
and the increase of Tc by increasing doping toward the
optimal one—see [6] and references therein. The latter result
additionally disfavors the SFI model of pairing [12–17]
since the strength of pairing interaction is little affected by
SFI. Note that if instead of taking Im χ(Q,ω) from NMR
measurements one takes it from IMNS measurements, as it
was done in [82], than for the same value g(th)

sf one obtains
much smaller Tc. For instance, by taking the experimental
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values for Im χ(IMNS)(Q,ω) in underdoped YBa2Cu3O6.6

with Tc ≈ 60 K one obtains T(IMNS)
c < T(NMR)

c /3 [82], while
T(IMNS)
c → 50 K for g(th)

sf � 1. The situation is even worse
if one tries to fit the resistivity with Im χ(IMNS)(Q,ω) in

YBa2Cu3O6.6 since this fit gives T(IMNS)
c < 7 K. These results

point to a deficiency of the SFI phenomenology (at least that
based on (10)) to describe pairing in HTSC cuprates.

Having in mind the results in [82], the recent theoret-
ical interpretation in [81] of IMNS experiments [83, 84]
and ARPES measurements [85, 86] on the underdoped
YBa2Cu3O6.6 in terms of the SFI phenomenology deserve
to be commented. The IMNS experiments [83, 84] give
evidence for the “hourglass” spin excitation spectrum (in
the superconducting state) for the momenta q at, near and
far from Q, which is richer than the common spectrum
with magnetic resonance peaks measured at Q. In [81] the
self-energy of electrons due to their interaction with spin
excitations is calculated by using (10) with g2

sf = (3/2)Ũ2

and Im χ(q,ω) taken from [83, 84]. However, in order to fit
the ARPES self-energy and low-energy kinks (see discussion
in Section 1.3.3) the authors of [81] use very large value
Ũ = 1.59 eV, that is, much larger than the one used in [82].
Such a large value of Ũ has been obtained earlier within
the Monte Carlo simulation of the Hubbard model [87]. In
our opinion this value for Ũ is unrealistically large in the
case of strongly correlated systems where spin fluctuations
are governed by the effective electron-exchange interaction
JCu–Cu � 0.15 eV [88]. This implies that Ũ � 1 eV and Tc �
60 K. Note that this value for JCu–Cu(∼0.15 eV) comes out
also from the theory of strongly correlated electrons in the
three-band Emery model which gives JCu–Cu ≈ [4t4pd/(Δdp +

Upd)2, (1/Ud)+2/(Up+2Δ)]—for parameters see Section 2.3.
We would like to emphasize here that an additional richness
of the spin-fluctuations spectrum (the hourglass instead of
the spin resonance) does not change the situation with the
smallness of the exchange coupling constant Ũ (and gsf).

Concerning the problem related to the rearrangement of
the SFI spectral function Im χ(Q,ω) in YB2Cu3O6+x [30] we
would like to stress that despite the fact that the latter results
were obtained ten years ago they are not disputed by the new
IMNS measurements [31] on high quality samples of the
same compound (where much longer counting times were
used in order to reduce statistical errors). In fact the results
in [30] are confirmed in [31] where the magnetic intensity
I(q,ω)(∼ Im χ(q,ω)) (for q at and in the broad range of Q)
for the optimally doped YBa2Cu3O6.95 (with Tc = 93 K) is at
least three times smaller than in the underdoped YBa2Cu3O6.6

with Tc = 60 K. This result is again very indicative sign of
the weakness of SFI since such a huge reconstruction would
decrease Tc in the optimally doped YBa2Cu3O6.95 if analyzed
in the framework of the phenomenological SFI theory based
on (10). It also implies that due to the suppression of
Im χ(q,ω) by increasing doping toward the optimal one a
straightforward extrapolation of the theoretical approach
in [81] to the explanation of Tc in the optimally doped
YBa2Cu3O6.95 would require an increase of Ũ to the value
even larger than 4 eV, which is highly improbable.

(b) Ineffectiveness of the Magnetic Resonance Peak. A less
direct argument for smallness of the SFI coupling constant,
that is, g

exp
sf ≤ 0.2 eV and g

exp
sf � gsf, comes from other

experiments related to the magnetic resonance peak in the
superconducting state, and this will be discussed next. In the
superconducting state of optimally doped YBCO and BSCO,
Im χ(Q,ω) is significantly suppressed at low frequencies
except near the resonance energy ωres ≈ 41 meV where a
pronounced narrow peak appears—the magnetic resonance
peak. We stress that there is no magnetic resonance peak
in some families of HTSC cuprates, for instance, in LSCO,
and consequently one can question the importance of the
resonance peak in the scattering processes. The experiments
tell us that the relative intensity of this peak (compared to
the total one) is small, that is, I0 ∼ (1–5)%—see Figure 3. In
underdoped cuprates this peak is present also in the normal
state as it is seen in Figure 2.

After the discovery of the resonance peak there were
attempts to relate it, first, to the origin of the supercon-
ducting condensation energy and, second, to the kink in the
energy dispersion or the peak-dimp structure in the ARPES
spectral function. In order that the condensation energy is
due to the magnetic resonance, it is necessary that the peak
intensity I0 is small [89]. I0 is obtained approximately by
equating the condensation energy Econ ≈ N(0)Δ2/2 with the
change of the magnetic energy Emag in the superconducting
state, that is, δEmag ≈ 4I0 · Emag:

Emag = J
∫∫

dω d2k

(2π)3

(
1− cos kx − cos ky

)
S(k,ω), (11)

where S(k,ω) = (1/π)[1 + n(ω)] Im χ(k,ω) is the spin
structure factor and n(ω) is the Bose distribution function.
By taking Δ ≈ 2Tc and the realistic value N(0) ∼ 1/(10J) ∼
1 states/eV · spin, one obtains I0 ∼ 10−1(Tc/J)

2 ∼ 10−3.
However, such a small intensity cannot be responsible for the
anomalies in ARPES and optical spectra since it gives rise to
small coupling constant λsf,res for the interaction of holes with
the resonance peak, that is, λsf,res ≈ (2I0N(0)g2

sf/ωres) � 1.
Such a small coupling does not affect superconductivity at
all. Moreover, by studying the width of the resonance peak
one can extract an order of magnitude of the SFI coupling
constant gsf. Since the magnetic resonance disappears in
the normal state of the optimally doped YBCO, it can be
qualitatively understood by assuming that its broadening
scales with the resonance energy ωres, that is, γres < ωres,
where the line width is given by γres = 4π(N(0)gsf)

2ωres [89].
This condition limits the SFI coupling to gsf < 0.2 eV. We
stress that in such a way obtained gsf is much smaller (at least
by factor three) than that assumed in the phenomenological
spin-fluctuation theory [12–17, 81] where gsf ∼ 0.6–0.7 eV
and Ũ ≈ 1.6 eV, but much larger than estimated in [89]
(where gsf < 0.02 eV). The smallness of gsf comes out
also from the analysis of the antiferromagnetic state in
underdoped metals of LSCO and YBCO [90], where the
small (ordered) magnetic moment μ(<0.1μB) points to an
itinerant antiferromagnetism with small coupling constant
gsf < 0.2 eV. The conclusion from this analysis is that in
the optimally doped YBCO the sharp magnetic resonance
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[30].

is a consequence of the onset of superconductivity and
not its cause. There is also one principal reason against
the pairing due to the magnetic resonance peak at least in
optimally doped cuprates. Since the intensity of the magnetic
resonance near Tc is vanishingly small, though not affecting
pairing at the second-order phase transition at Tc, then, if it
would be solely the origin for superconductivity, the phase
transition at Tc would be first order, contrary to experiments.
Recent ARPES experiments give evidence that the magnetic
resonance cannot be related to the kinks in ARPES spectra
[91, 92]—see the discussion below.

Finally, we would like to point out that the recent
magnetic neutron scattering measurements on optimally

doped large-volume crystals Bi2Sr2CaCu2O8+δ [93], where
the absolute value of Im χ(q,ω) is measured, are ques-
tioning also the interpretation of the electronic magnetism
in cuprates in terms of the itinerant magnetism. This
experiment shows a lack of temperature dependence of the
local spin susceptibility Im χ(ω) = ∑

q Im χ(q,ω) across
the superconducting transition Tc = 91 K, that is, there is
only a minimal change in Im χ(ω) between 10 K and 100 K.
Note that if the magnetic excitations were due to itinerant
quasiparticles we should have seen dramatic changes of
Im χ(ω) as a function of T over the whole energy range. This
T-independence of Im χ(ω) strongly opposes the theoretical
results in [24–27] which assume that the bosonic spectral
function is proportional to Im χ(ω) and that the former
can be extracted from optic measurements. Namely, the
fitting procedure in [24–27] gives that Im χ(ω) is strongly T-
dependent contrary to the experimental results in [93]—see
more in Section 1.3.2 on optical conductivity.

1.3.2. Optical Conductivity and EPI. Optical spectroscopy
gives information on optical conductivity σ(ω) and on two-
particle excitations, from which one can indirectly extract
the transport spectral function α2

trF(ω). Since this method
probes bulk sample (on the skin depth), contrary to ARPES
and tunnelling methods which probe tiny regions (10–15 Å)
near the sample surface, this method is indispensable.
However, one should be careful not to overinterpret the
experimental results since σ(ω) is not a directly measured
quantity but it is derived from the reflectivity R(ω) =
|(√εii(ω)− 1)/(

√
εii(ω) + 1)|2 with the transversal dielectric

tensor εii(ω) = εii,∞ + εii,latt + 4πiσii(ω)/ω. Here, εii,∞ is
the high-frequency dielectric function, εii,latt describes the
contribution of the lattice vibrations, and σii(ω) describes
the optical (dynamical) conductivity of conduction carriers.
Since R(ω) is usually measured in the limited-frequency
interval ωmin < ω < ωmax, some physical modelling for
R(ω) is needed in order to guess it outside this range—see
more in reviews in [3–6]. This was the reason for numerous
misinterpretations of optic measurements in cuprates, which
will be uncovered below. An illustrative example for this
claim is large dispersion in the reported value of ωpl—from
0.06 to 25 eV—that is, almost three orders of magnitude.
However, it turns out that IR measurements of R(ω) in
conjunction with elipsometric measurements of εii(ω) at
high frequencies allow more reliable determination of σ(ω)
[94].

(1) Transport and Quasiparticle Relaxation Rates. The
widespread misconception in studying the quasiparticle
scattering in cuprates was an ad hoc assumption that the
transport relaxation rate γtr(ω) is equal to the quasiparticle
relaxation rate γ(ω), in spite of the well-known fact that the
inequality γtr(ω) /= γ(ω) holds in a broad-frequency (energy)
region Allen. This (incorrect) assumption was one of the
main arguments against the relevance of the EPI scattering
mechanism in cuprates. Although we have discussed this
problem several times before, we do it again due to the
importance of this subject.
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The dynamical conductivity σ(ω) consists of two parts,
that is, σ(ω) = σ inter(ω) + σ intra(ω) where σ inter(ω) describes
interband transitions which contribute at higher than intra-
band energies, while σ intra(ω) is due to intraband transitions
which are relevant at low energies ω < (1–2) eV. (Note
that in the IR measurements the frequency is usually given
in cm−1, where the following conversion holds: 1 cm−1 =
29.98 GHz = 0.123985 meV = 1.44 K.) The experimental
data for σ(ω) = σ1 + iσ2 in cuprates are usually processed
by the generalized (extended) Drude formula [32–36, 95]:

σ(ω) =
ω2
p

4π
1

γtr(ω)− iωmtr(ω)/m∞
≡

iω2
p

4πω̃tr(ω)
, (12)

where m is the mass of the band electrons while the quantity
ω̃tr(ω) is defined in (19). The expression (12) is a useful
representation for systems with single-band electron-boson
scattering which is justified in HTSC cuprates. However,
this procedure is inadequate for interpreting optical data
in multiband systems such as new high-temperature super-
conductors Fe-based pnictides since even in absence of the
inelastic intra- and interband scattering the effective optic
relaxation rate may be strongly frequency dependent [96].
(The usefulness of introducing the optic relaxation ω̃tr(ω)
will be discussed below.) Here, i = a, b enumerates the plane
axis; ωp, γtr(ω,T), and mop(ω) are the electronic plasma
frequency, the transport (optical) scattering rate, and the
optical mass, respectively. Very frequently it is analyzed the
quantity γ∗tr (ω,T) given by [95]

γ∗tr (ω,T) = m∞
mtr(ω)

γtr(ω,T) = ω Im σ(ω)
Re σ(ω)

. (13)

In the weak coupling limit λep < 1, the formula for
conductivity given in Appendix A, equations (A.20) and
(A.21) can be written in the form of (12) where γtr reads [33–
36]

γtr(ω,T) = π
∑
l

∫∞
0
dνα2

tr,lFl(ν)

×
[

2(1 + 2nB(ν))− 2
ν

ω
− ω + ν

ω
nB(ω+ν)

+
ω− ν

ω
nB(ω− ν)

]
.

(14)

Here nB(ω) is the Bose distribution function. For complete-
ness we give also the explicit form of the transport mass
mtr(ω), see [3–6, 32–36]:

mtr(ω)
m∞

= 1 +
2
ω

∑
l

∫∞
0
dνα2

tr,lFl(ν) ReK
(

ω

2πT
,

ν

2πT

)
,

(15)

with the Kernel K(x, y) = (i/y)+{((y−x)/x)[ψ(1−ix+iy)−
ψ(1 + iy)]} − {y → −y} where ψ is the di-gamma function.
In the presence of impurity scattering one should add γimp,tr

to γtr. It turns out that (14) holds within a few percents
also for large λep(>1). Note that α2

tr,lFl(ν) /=α2
l Fl(ν) and

the index l enumerates all scattering bosons—phonons—spin

fluctuations, and so forth. For comparison, the quasiparticle
scattering rate γ(ω,T) is given by

γ(ω,T) = 2π
∫∞

0
dνα2F(ν)

× {2nB(ν) + nF(ν + ω) + nF(ν− ω)} + γimp,
(16)

where nF is the Fermi distribution function. For complete-
ness we give also the expression for the quasiparticle effective
mass m∗(ω):

m∗(ω)
m

= 1 +
1
ω

∑
l

∫∞
0
dνα2

l Fl(ν)

× Re
{
ψ
(

1
2

+ i
ω + ν

2πT

)
− ψ

(
1
2
− iω − ν

2πT

)}
.

(17)

The term γimp is due to the impurity scattering. By com-
paring (14) and (16), it is seen that γtr and γ are different
quantities, that is, γtr /= γ, where the former describes the
relaxation of Bose particles (excited electron-hole pairs) while
the latter one describes the relaxation of Fermi particles. This
difference persists also at T = 0 K where one has (due to
simplicity we omit in the following summation over l) [32]

γtr(ω) = 2π
ω

∫ ω
0
dν(ω − ν)α2

tr(ν)F(ν),

γ(ω) = 2π
∫ ω

0
dνα2(ν)F(ν).

(18)

In the case of EPI with the constant electronic density of
states, the above equations give that γep(ω) = const for ω >
ωmax

ph while γep,tr(ω) (as well as γ∗ep,tr) is monotonic growing
for ω > ωmax

ph , where ωmax
ph is the maximal phonon frequency.

So, the growing of γep,tr(ω) (and γ∗ep,tr) for ω > ωmax
ph is

ubiquitous and natural for the EPI scattering and has nothing
to do with some exotic scattering mechanism. This behavior
is clearly seen by comparing γ(ω,T), γtr(ω,T), and γ∗tr which
are calculated for the EPI spectral function α2

ep(ω)Fph(ω)
extracted from tunnelling experiments in YBCO (with
ωmax

ph ∼ 80 meV ) [42–45]—see Figure 4.
The results shown in Figure 4 clearly demonstrate the

physical difference between two scattering rates γep and γep,tr

(or γ∗tr ). It is also seen that γ∗tr (ω,T) is even more linear
function of ω than γtr(ω,T). From these calculations one
concludes that the quasilinearity of γtr(ω,T) (and γ∗tr ) is not
in contradiction with the EPI scattering mechanism but it
is in fact a natural consequence of EPI. We stress that such
behavior of γep and γep,tr (and γ∗ep,tr), shown in Figure 4, is in
fact not exceptional for HTSC cuprates but it is generic for
many metallic systems, for instance, 3D metallic oxides, low-
temperature superconductors such as Al, Pb, and so forth—
see more in [3–6] and references therein.

Let us discuss briefly the experimental results for R(ω)
and γ∗tr (ω,T) and compare these with theoretical predictions
obtained by using a single-band model with α2

ep(ω)Fph(ω)
extracted from the tunnelling data with the EPI coupling
constant λep � 2 [42–45]. In the case of YBCO the



12 Advances in Condensed Matter Physics

0

2000

4000

0 500 1000 1500

ω (cm−1)

γ(
ω

)
(c

m
−1

)

0 5000
ω (cm−1)

0

2000

γ∗ tr
(c

m
−1

)

γ

γtr

γ∗tr

(a)

0

0.5

1

1.5

0 200 400 600

ω (cm−1)

α
2
(ω

)F
(ω

)

(b)

Figure 4: (a) Scattering rates γ(ω,T), γtr(ω,T), and γ∗tr —from top
to bottom—for the Eliashberg function in (b). From [33–35]. (b)
Eliashberg spectral function α2

ep(ω)Fph(ω) obtained from tunnelling
experiments on break junctions [42–45]. Inset shows γ∗tr with (full
line) and without (dashed line) interband transitions [3–5].

agreement between measured and calculated R(ω) is very
good up to energies ω < 6000 cm−1, which confirms
the importance of EPI in scattering processes. For higher
energies, where a mead-infrared peak appears, it is necessary
to account for interband transitions [3–5]. In optimally
doped Bi2Sr2CaCu2O6 (Bi2212) [97, 98] the experimental
results for γ∗tr (ω,T) are explained theoretically by assuming

that the EPI spectral function α2
ep(ω)F(ω) ∼ Fph(ω), where

Fph(ω) is the phononic density of states in BSCO, with
λep = 1.9 and γimp ≈ 320 cm−1—see Figure 5(a). At the
same time the fit of γ∗tr (ω,T) by the marginal Fermi liquid
phenomenology fails as it is evident in Figure 5(b).

Now we will comment the so called pronounced linear
behavior of γtr(ω,T) (and γ∗tr (ω,T)) which was one of
the main arguments for numerous inadequate conclusions
regarding the scattering and pairing bosons and EPI. We
stress again that the measured quantity is reflectivity R(ω)
and derived ones are σ(ω), γtr(ω,T), and mtr(ω), which are
very sensitive to the value of the dielectric constant ε∞. This
sensitivity is clearly demonstrated in Figure 6 for Bi-2212
where it is seen that γtr(ω,T) (and γ∗tr (ω,T)) for ε∞ = 1 is
linear up to much higher ω than in the case ε∞ > 1.

However, in some experiments [100–103] the extracted
γtr(ω,T) (and γ∗tr (ω,T)) is linear up to very high ω ≈
1500 cm−1. This means that the ion background and inter-
band transitions (contained in ε∞) are not properly taken
into account since too small ε∞ (�1) is assumed. The recent
elipsometric measurements on YBCO [104] give the value
ε∞ ≈ 4–6, which gives much less spectacular linearity in the
relaxation rates γtr(ω,T) (and γ∗tr (ω,T)) than it was the case
immediately after the discovery of HTSC cuprates, where
much smaller ε∞ was assumed.

Furthermore, we would like to comment two points
related to σ , γtr, and γ. First, the parametrization of σ(ω)
with the generalized Drude formula in (12) and its relation to
the transport scattering rate γtr(ω,T) and the transport mass
mtr(ω,T) is useful if we deal with electron-boson scattering
in a single-band problem. In [36, 96] it is shown that σ(ω) of
a two-band model with only elastic impurity scattering can
be represented by the generalized (extended) Drude formula
with ω and T dependence of effective parameters γeff

tr (ω,T),
meff

tr (ω,T) despite the fact that the inelastic electron-boson
scattering is absent. To this end we stress that the single-
band approach is justified for a number of HTSC cuprates
such as LSCO, BSCO, and so forth. Second, at the beginning
we said that γtr(ω,T) and γ(ω,T) are physically different
quantities and it holds that γtr(ω,T) /= γ(ω,T). In order to
give the physical picture and qualitative explanation for this
difference we assume that α2

trF(ν) ≈ α2F(ν). In that case
the renormalized quasiparticle frequency ω̃(ω) = Z(ω)ω =
ω−Σ(ω) and the transport one ω̃tr(ω)—defined in (12)—are
related and at T = 0 they are given by [32, 36]

ω̃tr(ω) = 1
ω

∫ ω
0
dω′2ω̃(ω′). (19)

(For the definition of Z(ω) see Appendix A.) It gives the
relation between γtr(ω) and γ(ω) as well as mtr(ω) and
m∗(ω), respectively:

γtr(ω) = 1
ω

∫ ω
0
dω′γ(ω′),

ωmtr(ω) = 1
ω

∫ ω
0
dω′2ω′m∗(ω′).

(20)

The physical meaning of (19) is the following: in optical
measurements one photon with the energy ω is absorbed
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Figure 5: (a) Experimental transport scattering rate γ∗tr (solid lines) for BSCO and the theoretical curve by using (A.20) and transport mass
m∗

tr with α2F(ω) due to EPI which is described in text (dashed lines). (b) Comparison with the marginal Fermi liquid theory—dashed lines.
From [3–5, 99].
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Figure 6: Dependence of γ∗tr (ω,T) on ε∞ in Bi2Sr2CaCu2O8 for
different temperatures: ε∞ = 4 (solid lines) and ε∞ = 1 (dashed
lines). On the horizontal axis is ω in units cm−1. From [99].

and two excited particles (electron and hole) are created
above and below the Fermi surface. If the electron has energy
ω′ and the hole ω − ω′, then they relax as quasiparticles
with the renormalized frequency ω̃. Since ω′ takes values
0 < ω′ < ω, then the optical relaxation ω̃tr(ω) is the energy-
averaged ω̃(ω) according to (19). The factor 2 is due to

the two quasiparticles—electron and hole. At finite T , the
generalization reads [32, 36]

ω̃tr(ω) = 1
ω

∫∞
0
dω′[1− nF(ω′)− nF(ω− ω′)]2ω̃(ω′). (21)

(2) Inversion of the Optical Data and α2
tr(ω)F(ω). In prin-

ciple, the transport spectral function α2
tr(ω)F(ω) can be

extracted from σ(ω) (or γtr(ω)) only at T = 0 K, which
follows from (18) as

α2
tr(ω)F(ω) =

ω2
p

8π2

∂2

∂ω2

[
ωRe

1
σ(ω)

]
, (22)

or equivalently as α2
tr(ω)F(ω) = (1/2π)∂2(ωγtr(ω))/∂ω2.

However, real measurements are performed at finite T (at
T > Tc which is rather high in HTSC cuprates) and the
inversion procedure is an ill-posed problem since α2

tr(ω)F(ω)
is the deconvolution of the inhomogeneous Fredholm
integral equation of the first kind with the temperature-
dependent Kernel K2(ω, ν,T)—see (14). It is known that
an ill-posed mathematical problem is very sensitive to
input since experimental data contain less information than
one needs. This procedure can cause, first, that the fine
structure of α2

tr(ω)F(ω) get blurred (most peaks are washed
out) in the extraction procedures and, second, the extracted
α2

tr(ω)F(ω) be temperature dependent even when the true
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data of R(ω) in optimally doped YBCO [105] at T = 100, 200, 300 K
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reconstructed α2

tr(ω)F(ω)’s at T = 100 K. The phonon density of
states F(ω)—dotted line in the inset. From [33–35].

α2
tr(ω)F(ω) is T independent. This artificial T dependence

is especially pronounced in HTSC cuprates because Tc(∼
100 K) is very high. In the context of HTSC cuprates, this
problem was first studied in [33–36] where this picture is
confirmed by the following results: (1) the extracted shape of
α2

tr(ω)F(ω) in YBa2Cu3O7−x as well as in other cuprates is
not unique and it is temperature dependent, that is, at higher
T > Tc the peak structure is smeared and only a single peak
(slightly shifted to higher ω) is present. For instance, the
experimental data of R(ω) in YBCO were reproduced by two
different spectral functions α2

tr(ω)F(ω), one with single peak
and the other one with three-peak structure as it is shown
in Figure 7, where all spectral functions give almost identical
R(ω). The similar situation is realized in optimally doped
BSCO as it is seen in Figure 8 where again different functions
α2(ω)F(ω) reproduce very well curves for R(ω) and σ(ω).
However, it is important to stress that the obtained width of
the extracted α2

tr(ω)F(ω) in both compounds coincide with
the width of the phonon density of states Fph(ω) [33–36, 99].
(2) The upper energy bound for α2

tr(ω)F(ω) is extracted in
[33–36] and it coincides approximately with the maximal
phonon frequency in cuprates ωmax

ph � 80 meV as it is seen
in Figures 7 and 8.

These results demonstrate the importance of EPI in
cuprates [33–36]. We point out that the width of α2

tr(ω)F(ω)
which is extracted from the optical measurements [33–
36] coincides with the width of the quasiparticle spectral
function α2(ω)F(ω) obtained in tunnelling and ARPES
spectra (which we will discuss below), that is, both functions
are spread over the energy interval 0 < ω < ωmax

ph (� 80 meV).
Since in cuprates this interval coincides with the width in
the phononic density of states F(ω) and since the maxima of
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Figure 8: Experimental (solid line) and calculated (dashed line)
data of R(ω) in optimally doped BSCO [106] at T = 100 K. Inset:
the reconstructed α2

tr(ω)F(ω)—solid line. The phonon density of
states F(ω)—dotted line. From [33–35].

α2(ω)F(ω) and F(ω) almost coincide, this is further evidence
for the importance of EPI.

To this end, we would like to comment two aspects
which appear from time to time in the literature. First,
in some reports [24–27] it is assumed that α2

tr(ω)F(ω)
of cuprates can be extracted also in the superconducting
state by using (22). However, (22) holds exclusively in the
normal state (at T = 0) since σ(ω) can be described
by the generalized (extended) Drude formula in (12) only
in the normal state. Such an approach does not hold in
the superconducting state since the dynamical conductivity
depends not only on the electron-boson scattering but also
on coherence factors and on the momentum and energy
dependent order parameter Δ(k,ω). Second, if R(ω)’s (and
σ(ω)’s ) in cuprates are due to some other bosonic scattering
which is pronounced up to much higher energiesωc � ωmax

ph ,
this should be seen in the width of the extracted spectral
function α2

tr(ω)F(ω). In that respect in [25–27] it is assumed
that SFI dominates in the quasiparticle scattering and that
α2

tr(ω)F(ω) ∼ g2
sf Im χ(ω) where Im χ(ω) = ∫

d2kχ(k,ω).
This claim is based on reanalyzing of some IR measurements
[25–27] and the transport spectral function α2

tr(ω)F(ω) is
extracted in [25] by using the maximum entropy method in
solving the Fredholm equation. However, in order to exclude
negative values in the extracted α2

tr(ω)F(ω), which is an
artefact and due to the chosen method, in [25] it is assumed
that α2

tr(ω)F(ω) has a rather large tail at large energies—up
to 400 meV. It turns out that even such an assumption in
extracting α2

tr(ω)F(ω) does not reproduce the experimental
curve Im χ(ω) [107] in some important aspects. First, the
relative heights of the two peaks in the extracted spectral
function α2

tr(ω)F(ω) at lower temperatures are opposite to
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the experimental curve Im χ(ω) [107]—see [25, Figure 1].
Second, the strong temperature dependence of the extracted
α2

tr(ω)F(ω) found in [25–27] is not an intrinsic property
of the spectral function but it is an artefact due to the
high sensitivity of the extraction procedure on temperature.
As it is already explained before, this is due to the ill-
posed problem of solving the Fredholm integral equation
of the first kind with strong T-dependent kernel. Third, the
extracted spectral weight IB(ω) = α2

tr(ω)F(ω) in [25] has
much smaller values at larger frequencies (ω > 100 meV)
than it is the case for the measured Im χ(ω), that is, (IB(ω >
100 meV)/IB(ωmax)) � Im χ(ω > 100 meV)/ Im χ(ωmax)—
see [25, Figure 1]. Fourth, the recent magnetic neutron
scattering measurements on optimally doped large-volume
crystals Bi2Sr2CaCu2O8+δ [93] (where the absolute value
of Im χ(q,ω) is measured) are not only questioning the
theoretical interpretation of magnetism in HTSC cuprates in
terms of itinerant magnetism but also opposing the finding
in [25–27]. Namely, this experiment shows that the local
spin susceptibility Im χ(ω) = ∑

q Im χ(q,ω) is temperature
independent across the superconducting transition Tc =
91 K, that is, there is only a minimal change in Im χ(ω)
between 10 K and 100 K. This T-independence of Im χ(ω)
strongly opposes the (above discussed) results in [24–
27], where the fit of optic measurements gives strong T
dependence of Im χ(ω).

Fifth, the transport coupling constant λtr extracted in
[25] is too large, that is, λtr > 3 contrary to the previous
findings that λtr � 1.5 [33–36, 99]. Since in HTSC one
has λ > λtr, this would probably give λ ≈ 6, which is not
confirmed by other experiments. Sixth, the interpretation of
α2

tr(ω)F(ω) in LSCO and BSCO solely in terms of Im χ(ω) is
in contradiction with the magnetic neutron scattering in the
optimally doped and slightly underdoped YBCO [30]. The
latter was discussed in Section 1.3.1, where it is shown that
Im χ(Q,ω) is small in the normal state and its magnitude
is even below the experimental noise. This means that if
the assumption that α2

tr(ω)F(ω) ≈ g2
sf Im χ(ω) were correct

then the contribution to Im χ(ω) from the momenta 0 <
k� Q would be dominant, which is detrimental for d-wave
superconductivity.

Finally, we point out that very similar (to cuprates)
properties, of σ(ω), R(ω) (and ρ(T) and electronic Raman
spectra), were observed in 3D isotropic metallic oxides
La0.5Sr0.5CoO3 and Ca0.5Sr0.5RuO3 which are nonsupercon-
ducting [108] and in Ba1−xKxBiO3 which is superconducting
below Tc � 30 K at x = 0.4. This means that in all
of these materials the scattering mechanism might be of
similar origin. Since in these compounds there are no
signs of antiferromagnetic fluctuations (which are present in
cuprates), then the EPI scattering plays important role also
in other oxides.

(3) Restricted Optical Sum Rule. The restricted optical sum
rule was studied intensively in HTSC cuprates. It shows
some peculiarities not present in low-temperature super-
conductors. It turns out that the restricted spectral weight
W(Ωc,T) is strongly temperature dependent in the normal

and superconducting state, which was interpreted either to
be due to EPI [39, 40] or to some nonphononic mechanisms
[109]. In the following we demonstrate that the temperature
dependence of W(Ωc,T) = W(0)− βT2 in the normal state
can be explained in a natural way by the T dependence of
the EPI transport relaxation rate γ

ep
tr (ω,T) [39, 40]. Since

the problem of the restricted sum rule has attracted much
interest, it will be considered here in some details. In fact,
there are two kinds of sum rules related to σ(ω). The first
one is the total sum rule which in the normal state reads

∫∞
0
dω σN1 (ω) =

ω2
pl

8
= πne2

2m
, (23)

while in the superconducting state it is given by the Tinkham-
Ferrell-Glover (TFG) sum rule

∫∞
0
dω σS1 (ω) = c2

8λ2
L

+
∫∞

+0
dω σS1 (ω) =

ω2
pl

8
. (24)

Here, n is the total electron density, e is the electron
charge, m is the bare electron mass, and λL is the London
penetration depth. The first (singular) term c2/8λ2

L in (24)
is due to the superconducting condensate which contributes
σS1,cond(ω) = (c2/4λ2

L)δ(ω). The total sum rule represents
the fundamental property of matter—the conservation of
the electron number. In order to calculate it one should use
the total Hamiltonian Ĥtot = T̂e + Ĥint where all electrons,
electronic bands, and their interactions Ĥint (Coulomb, EPI,
with impurities, etc.) are accounted for. Here, Te is the kinetic
energy of bare electrons:

T̂e =
∑
σ

∫
d3xψ̂†σ (x)

p̂2

2m
ψ̂σ(x) =

∑
p,σ

p2

2me
ĉ†pσ ĉpσ . (25)

The partial sum rule is related to the energetics solely
in the conduction (valence) band which is described by the
Hamiltonian of the conduction (valence) band electrons:

Ĥv =
∑
p,σ

ξpĉ
†
v,pσ ĉv,pσ + V̂v,c. (26)

Ĥv contains the band energy with the dispersion εp (ξp =
εp − μ) and the effective Coulomb interaction of the valence

electrons V̂v,c. In this case the partial sum rule in the normal
state reads [110] (for a general form of εp)

∫∞
0
dω σN1,v(ω) = πe2

2V

∑
p

〈
n̂v,p

〉
Hv

mp
, (27)

where the number operator n̂v,p = ∑
σ ĉ
†
pσ ĉpσ ; 1/mp =

∂2εp/∂p2
x is the momentum-dependent reciprocal mass and

V is volume. In practice, the optic measurements are
performed up to finite frequency and the integration over
ω goes up to some cutoff frequency Ωc (of the order of the
band plasma frequency). In this case the restricted sum rule
has the form

W(Ωc,T) =
∫ Ωc

0
dωσN1,v(ω)

= π

2

[
Kd +Π(0)

]
−
∫ Ωc

0
dω

ImΠ(ω)
ω

,

(28)
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where Kd is the diamagnetic Kernel given by (30) below and
Π(ω) is the paramagnetic (current-current) response func-
tion. In the perturbation theory without vertex correction
Π(iωn) (at the Matsubara frequency ωn = πT(2n + 1)) is
given by [39, 40]

Π(iω) = 2
∑

p

(
∂εp

∂p

)2∑
ωm

G
(

p, iω+
nm

)
G
(

p, iωm
)
, (29)

where ω+
nm = ωn + ωm and G(p, iωn) = (iωn − ξp −

Σ(p, iωn))−1 is the electron Green’s function. In the case
when the interband gap Eg is the largest scale in the problem,
that is, when Wb < Ωc < Eg , in this region one has
approximately ImΠ(ω) ≈ 0 and the limit Ωc → ∞ in (28)

is justified. In that case one has Π(0) ≈ ∫Ωc

0 (ImΠ(ω)/ω)dω
which gives the approximate formula for W(Ωc,T):

W(Ωc,T) =
∫ Ωc

0
dω σN1,v(ω) ≈ π

2
Kd

= e2π
∑

p

∂2εp

∂p2
np,

(30)

where np = 〈n̂v,p〉 is the quasiparticle distribution function
in the interacting system. Note that W(Ωc,T) is cutoff
dependent while Kd in (30) does not depend on Ωc. So,
one should be careful not to overinterpret the experimental
results in cuprates by this formula. In that respect the best
way is to calculate W(Ωc,T) by using the exact result in
(28) which apparently depends on Ωc. However, (30) is
useful for appropriately chosen Ωc, since it allows us to
obtain semiquantitative results. In most papers related to the
restricted sum rule in HTSC cuprates it was assumed, due
to simplicity, the tight-binding model with nearest neighbors
(n.n.) with the energy εp = −2t(cos pxa + cos pya) which
gives 1/mp = −2ta2 cos pxa. It is straightforward to show that
in this case (30) is reduced to a simpler one:

W(Ωc,T) =
∫ Ωc

0
dω σN1,v(ω)

≈ πe2a2

2V
〈−Tv〉,

(31)

where 〈Tv〉Hv
= ∑

p εp〈nv〉Hv
is the average kinetic energy of

the band electrons, a is the Cu–Cu lattice distance, and V is
the volume of the system. In this approximation W(Ωc,T) is
a direct measure of the average band (kinetic) energy. In the
superconducting state the partial band sum rule reads

Ws(Ωc,T) = c2

8λ2
L

+
∫ Ωc

+0
dω σS1,v(ω)

= πe2a2

2V
〈−Tv〉s.

(32)

In order to introduce the reader to (the complexity of) the
problem of the T dependence of W(Ωc,T), let us consider
the electronic system in the normal state and in absence of
the quasiparticle interaction. In that case one has np = fp ( fp

3.56

3.58

3.6

3.62

3.64

3.66

4.06

4.08

4.1

4.12

4.14

4.16

0 1 2 3 4

T2 (104K2)

8�
−2
A
l+
D

(e
V

2
)

8�
−2
A
l+
D

(e
V

2
)

0 100 200

T (K)

−T
−1
d
A
l+
D
/d
T

0 100 200

T(K)

−T
−1
d
A
l+
D
/d
T

Tc = 66 K

Tc = 88 K

Figure 9: Measured spectral weight Ws(Ωc,T)(∼ Al+D in figures)
for Ωc ≈ 1.25 eV in two underdoped Bi2212 (with Tc = 88 K and
Tc = 66 K). From [111].

is the Fermi distribution function) and Wn(Ωc,T) increases
with the decrease of the temperature, that is, Wn(Ωc,T) =
Wn(0) − βbT2 where βb ∼ 1/Wb. To this end, let us
mention in advance that the experimental value βexp is much
larger than βb, that is, βexp � βb, thus telling us that the
simple Sommerfeld-like smearing of fp by the temperature
effects cannot explain quantitatively the T dependence of
W(Ωc,T). We stress that the smearing of fp by temperature
lowers the spectral weight compared to that at T = 0 K,
that is, Wn(Ωc,T) < Wn(Ωc, 0). In that respect it is not
surprising that there is a lowering of Ws(Ωc,T) in the BCS
superconducting state, WBCS

s (Ωc,T � Tc) < Wn(Ωc,T �
Tc) since at low temperatures fp is smeared mainly due to the
superconducting gap, that is, fp = [1− (ξp/Ep)th(Ep/2T)]/2,

Ep =
√
ξ2

p + Δ2, ξp = εp − μ. The maximal decrease of

Ws(Ωc,T) is at T = 0.
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Figure 10: (a) Spectral weight Wn(Ωc,T) of the overdoped Bi2212
for Ωc = 1 eV. Closed symbols—normal state. Open symbols—
superconducting state. (b) Change of the kinetic energy ΔEkin =
Ekin,S − Ekin,N in meV per Cu site versus the charge p per Cu with
respect to the optimal value popt. From [112].

Let us enumerate and discuss the main experimental
results forW(Ωc,T) in HTSC cuprates. (1) In the normal state
(T > Tc) of most cuprates, one has Wn(Ωc,T) = Wn(0) −
βexT2 with βexp � βb, that is, Wn(Ωc,T) is increasing by
decreasing T , even at T below T∗—the temperature for the
opening of the pseudogap. The increase of Wn(Ωc,T) from
the room temperature down to Tc is no more than 5%. (2)
In the superconducting state (T < Tc) of some underdoped
and optimally doped Bi-2212 compounds [111, 113, 114]
(and underdoped Bi-2212 films [115]) there is an effective
increase of Ws(Ωc,T) with respect to that in the normal
state, that is, Ws(Ωc,T) > Wn(Ωc,T) for T < Tc. This is a
non-BCS behavior which is shown in Figure 9. Note that in
the tight binding model the effective band (kinetic) energy
〈Tv〉 is negative (〈Tv〉 < 0) and in the standard BCS case
(32) gives that Ws(T < Tc) decreases due to the increase
of 〈Tv〉. Therefore the experimental increase of Ws(T <
Tc) by decreasing T is called the non-BCS behavior. The
latter means a lowering of the kinetic energy 〈Tv〉 which is
frequently interpreted to be due either to strong correlations

or to a Bose-Einstein condensation (BEC) of the preformed
tightly bound Cooper pair-bosons, for instance, bipolarons
[116]. It is known that in the latter case the kinetic energy of
bosons is decreased below the BEC critical temperature Tc.
In [117] it is speculated that the latter case might be realized
in underdoped cuprates.

However, in some optimally doped and in most over-
doped cuprates, there is a decrease of Ws(Ωc,T) at T < Tc
(Ws(Ωc,T) < Wn(Ωc,T)) which is the BCS-like behavior
[112] as it is seen in Figure 10.

We stress that the non-BCS behavior of Ws(Ωc,T) for
underdoped (and in some optimally doped) systems was
obtained by assuming that Ωc ≈ (1–1.2) eV. However, in
[104] these results were questioned by claiming that the
conventional BCS-like behavior was observed (Ws(Ωc,T) <
Wn(Ωc,T)) in the optimally doped YBCO and slightly
underdoped Bi-2212 by using larger cutoff energy Ωc =
1.5 eV. This discussion demonstrates how risky is to make
definite conclusions on some fundamental physics based on
the parameter- (such as the cutoff energy Ωc) dependent
analysis. Although the results obtained in [104] look very
trustfully, it is fair to say that the issue of the reduced spectral
weight in the superconducting state of the underdoped
cuprates is still unsettled and under dispute. In overdoped
Bi-2212 films, the BCS-like behaviorWs(Ωc,T) < Wn(Ωc,T)
was observed, while in LSCO it was found that Ws(Ωc,T) ≈
const, that is, Ws(Ωc,T < Tc) ≈Wn(Ωc,Tc).

The first question is the following. How to explain
the strong temperature dependence of W(Ωc,T) in the
normal state? In [39, 40] W(T) is explained solely in the
framework of the EPI physics where the EPI relaxation
γep(T) plays the main role in the T dependence of W(Ωc,T).
The main theoretical results of [39, 40] are the following:
the calculations of W(T) based on the exact (30) give
that for Ωc � ΩD (the Debye energy) the difference in
spectral weights of the normal and superconducting states
is small, that is, Wn(Ωc,T) ≈ Ws(Ωc,T) since Wn(Ωc,T) −
Ws(Ωc,T) ∼ Δ2/Ω2

c . (2) In the case of large Ωc the
calculations based on (30) give

W(Ωc,T) ≈
ω2

pl

8

[
1− γ(T)

Wb
− π2

2
T2

W2
b

]
. (33)

In the case when EPI dominates one has γ = γep(T) + γimp

where γep(T) = ∫∞0 dz α2(z)F(z) coth(z/2T). It turns out that
for α2(ω)F(ω), shown in Figure 4, one obtains (i) γep(T) ∼
T2 in the temperature interval 100 K < T < 200 K as it is
seen in Figure 11 for the T dependence of W(Ωc,T) [39, 40];
(ii) the second term in (33) is much larger than the last one
(the Sommerfeld-like term). For the EPI coupling constant
λep,tr = 1.5 one obtains rather good agreement between the
theory in [39, 40] and experiments in [104, 111, 113, 114].
At lower temperatures, γep(T) deviates from the T2 behavior
and this deviation depends on the structure of the spectrum
in α2(ω)F(ω). It is seen in Figure 11 that, for a softer Einstein
spectrum (with ΩE = 200 K), W(Ωc,T) lies above the curve
with the T2 asymptotic behavior, while the curve with a
harder phononic spectrum (with ΩE = 400 K) lies below
it. This result means that different behavior of W(Ωc,T) in
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the superconducting state of cuprates for different doping
might be simply related to different contributions of low-
and high-frequency phonons. We stress that such a behavior
of W(Ωc,T) was observed in experiments in [104, 111, 113,
114].

To summarize, the above analysis demonstrates that the
theory based on EPI is able to explain in a satisfactory way
the temperature behavior of W(Ωc,T) above and below Tc
in systems at and near the optimal doping.

(4) α2(ω)F(ω) and the In-Plane Resistivity ρab(T). The
temperature dependence of the in-plane resistivity ρab(T)
in cuprates is a direct consequence of the quasi-2D motion
of quasiparticles and of the inelastic scattering which they
experience. At present, there is no consensus on the origin of
the linear temperature dependence of the in-plane resistivity
ρab(T) in the normal state. Our intention is not to discuss
this problem, but only to demonstrate that the EPI spectral
function α2(ω)F(ω), which is obtained from tunnelling
experiments in cuprates (see Section 1.3.4), is able to explain
the temperature dependence of ρab(T) in the optimally
doped YBCO. In the Boltzmann theory ρab(T) is given by

ρab(T) = ρimp +
4π
ω2
p
γtr(T), (34)

where

γtr(T) = π

T

∫∞
0
dω

ω

sinh2(ω/2T)
α2

tr(ω)F(ω). (35)

The residual resistivity ρimp is due to the impurity scattering.
Since ρ(T) = 1/σ(ω = 0,T) and having in mind that
the dynamical conductivity σ(ω,T) in YBCO (at and near
the optimal doping) is satisfactory explained by the EPI
scattering, then it is to expect that ρab(T) is also dominated
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Figure 12: (a) Calculated resistivity ρ(T) for the EPI spectral
function α2

tr(ω)F(ω) in [118]. (b) Measured resistivity in a(x)-
and b(y)-crystal direction of YBCO [119] and calculated Bloch-
Grüneisen curve (points) for λep = 1 [120].

by EPI in some temperature region T > Tc. This is indeed
confirmed in the optimally doped YBCO, where ρimp is chosen
appropriately and the spectral function α2

tr(ω)F(ω) is taken
from the tunnelling experiments in [42–45]. The very good
agreement with the experimental results [118] is shown in
Figure 12. We stress that in the case of EPI there is always a
temperature region where γtr(T) ∼ T for T > αΘD, α < 1
depending on the shape of α2

tr(ω)F(ω) (for the simple Debye
spectrum α ≈ 0.2). In the linear regime one has ρ(T) �
ρimp + 8π2λep,tr(kBT/�ω2

p) = ρimp + ρ′T .
There is experimental constraint on λtr since λtr ≈

0.25ω2
pl(eV)ρ′(μΩ cm/K). For instance, for ωpl ≈ (2-3) eV

[108] and ρ′ ≈ 0.6 in the oriented YBCO films and ρ′ ≈
0.3-0.4 in single crystals of BSCO, one obtains λtr ≈ 0.6–1.4.
In case of YBCO single crystals, there is a pronounced
anisotropy in ρab(T) [119] which gives ρ′x(T) = 0.6μΩcm/K
and ρ′y(T) = 0.25μΩcm/K. The function λtr(ωpl) is shown in
Figure 13 where the plasma frequency ωpl can be calculated
by LDA-DFT and also extracted from the width (∼ ω∗pl) of
the Drude peak at small frequencies, where ωpl = √

ε∞ω∗pl.
We stress that the rather good agreement of theoretical and
experimental results for ρab(T), in some optimally doped
HTSC cuprates such as YBCO, should not be overinterpreted
in the sense that the above rather simple electron-phonon
approach can explain the resistivity in other HTSC cuprates
and for various doping. For instance, in highly underdoped
systems ρab(T) is very different from the behavior in
Figure 12 and the simple Migdal-Eliashberg theory based
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on the EPI spectral function is inadequate. In this case one
should certainly take into account polaronic effects [8–11],
strong correlations, and so forth. The above analysis on the
resistivity in the optimally doped YBCO demonstrates only
that in this case if in (35) one uses the EPI spectral function
α2(ω)F(ω) obtained from the tunnelling experiments (and
optics) one obtains the correct T dependence of ρa,b(T). This
result is an additional evidence for the importance of EPI.

Concerning the temperature dependence of the resistivity
in other (than YBCO) families of the optimally doped
HTSC cuprates we would like to point out that there is
some evidence that the linear (in T) resistivity is observed
in some of them even at temperatures T < 0.2ΘD [122,
123]. This possibility is argued also theoretically in [124]
where it is shown that in two-dimensional systems with a
broad interval of phonon spectra the quasilinear behavior
of ρab(T) is realized even at T < 0.2ΘD. The quasilinear
behavior of the resistivity at T � 0.2ΘD has been observed
in Bi2(Sr0.97 Pr0.003)2 CuO6 [125], in LSCO, and in 1-layer
Bi-2201 [122, 123, 126, 127], where in all these systems
the critical temperature is rather small, Tc ≈ 10 K. In
that respect all existing theories based on the electron-
boson scattering are plagued and having difficulties to
explain this low-temperature behavior of ρab(T). To this
point, we would like to emphasize here that some of these
(experimental) observations are contradictory. For example,
the results obtained by the Vedeneev group [127] show
that some samples demonstrate the quasilinear behavior
of the resistivity up to T = 10 K but some others with
approximately the same Tc have the usual Bloch-Grüneisen-
type behavior characteristic for the EPI scattering. In that
respect it is very unlikely that the linear resistivity up to
T = 10 K can be simply explained in the standard way by
interactions of electrons with some known bosons either by
phonons or spin fluctuations (magnons). The question why
in some cuprates the linear resistivity is observed up to T =
10 K is still a mystery and its explanation is a challenge for all
kinds of the electron-boson scattering, not only for EPI. In
that respect it is interesting to mention that the existence of
the forward scattering peak in EPI (with the width qc � kF),

which is due to strong correlations, may give rise to the linear
behavior of ρ(T) down to very low temperatures T ∼ ΘD/30
[6, 128, 129]—see more in Section 2.3.4, item (6). We will
argue in Section 1.3.4 that if one interprets the tunnelling
experiments in systems near optimal doping [42–54] in the
framework of the Eliashberg theory one obtains the large EPI
coupling constant λep ≈ 2–3.5 which implies that λtr ∼ (λ/3).
This means that EPI is reduced much more in transport
properties than in the self-energy. We stress that such a large
reduction of λtr cannot be obtained within the LDA-DFT
band-structure calculations, which means that λep and λtr

contain renormalization which do not enter in the LDA-DFT
theory. In Section 2 we will argue that the strong suppression
of λtr may have its origin in strong electronic correlations
[78–80, 130] and in the long-range Madelung energy [3–6].

(5) Femtosecond Time-Resolved Optical Spectroscopy. The
femtosecond time-resolved optical spectroscopy (FTROS)
has been developed in the last couple of years and applied
to HTSC cuprates. In this method a femtosecond (1 fs =
10−15 sec) laser pump excites in materials electron-hole
pairs via interband transitions. These hot carriers release
their energy via electron-electron (with the relaxation time
τee) and electron-phonon scattering reaching states near
the Fermi energy within 10–100 fs—see [131]. The typical
energy density of the laser pump pulses with the wavelength
λ ≈ 810 nm (�ω = 1.5 eV) was around F ∼ 1μJ/cm2

(the excitation fluence F) which produces approximately
3 × 1010 carriers per pulse (by assuming that each photon
produces �ω/Δ carriers, Δ is the superconducting gap).
By measuring photoinduced changes of the reflectivity in
time, that is, ΔR(t)/R0, one can extract information on the
relaxation dynamics of the low-laying electronic excitations.
Since ΔR(t) relax to equilibrium, the fit with exponential
functions is used as

ΔR(t)
R0

= f (t)
[
Ae−t/τA + Be−t/τB + · · ·

]
, (36)

where f (t) = H(t)[1 − exp{−t/τee}] (H(t) is the Heavyside
function) describes the finite rise-time. The parameters A, B
depend on the fluence F. This method was used in studying
the superconducting phase of La2−xSrxCuO4, with x = 0.1
and 0.15 and Tc = 30 K and 38 K, respectively [41]. In that
case one has A /= 0 for T < Tc and A = 0 for T > Tc,
while the signal B was present also at T > Tc. It turns out
that the signal A is related to the quasiparticle recombination
across the superconducting gap Δ(T) and has a relaxation
time of the order τA > 10 ps at T = 4.5 K. At the so
called threshold fluence (FT = 4.2 ± 1.7μJ/cm2 for x = 0.1
and FT = 5.8 ± 2.3μJ/cm2 for x = 0.15) the vaporization
(destroying) of the superconducting phase occurs, where
the parameter A saturates. This vaporization process takes
place at the time scala τr ≈ 0.8 ps. The external fluence is
distributed in the sample over the excitation volume which is
proportional to the optical penetration depth λop(≈150 nm
at λ ≈ 810 nm) of the pump. The energy densities stored
in the excitation volume at the vaporization threshold for
x = 0.1 and x = 0.15 are Up = FT/λop = 2.0± 0.8 K/Cu and
2.6 ± 1.0 K/Cu, respectively. The important fact is that Up is
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much larger than the superconducting condensation energy
which isUcond ≈ 0.12 K/Cu for x = 0.1 andUcond ≈ 0.3 K/Cu
for x = 0.15, that is, Up � Ucond. This means that the
energy differenceUp−Ucond must be stored elsewhere on the
time scale τr . The only present reservoir which can absorb
the difference in energy is the bosonic baths of phonons
and spin fluctuations. The energy required to heat the spin
reservoir from T = 4.5 K to Tc is Usf = ∫ Tc

T Csf(T)dT .
The measured specific heat Csf(T) in La2CuO4 [41] gives
very small value Usf ≈ 0.01 K. In the case of the phonon
reservoir one obtains Uph = ∫ Tc

T Cph(T)dT = 9 K/Cu for
x = 0.1 and 28 K/Cu for x = 0.15, where Cph is the phonon
specific heat. Since Usf � Up − Ucond, the spin reservoir
cannot absorb the rest energy Up − Ucond. The situation
is opposite with phonons since Uph � Up − Ucond and
phonon can absorb the rest energy in the excitation volume.
The complete vaporization dynamics can be described in the
framework of the Rothwarf-Taylor model which describes
approaching of electrons and phonons to quasiequilibrium
on the time scale of 1 ps [132]. We will not go into details
but only summarize by quoting the conclusion in [132]
that only phonon-mediated vaporization is consistent with
the experiments, thus ruling out spin-mediated quasiparticle
recombination and pairing in HTSC cuprates. The FTROS
method tells us that at least for nonequilibrium processes EPI
is more important than SFI. It gives also some opportunities
for obtaining the strength of EPI but at present there is no
reliable analysis.

In conclusion, optics and resistivity measurements in the
normal state of cuprates give evidence that EPI is important
while the spin-fluctuation scattering is weaker than it is
believed. However, some important questions related to the
transport properties remain to be answered. (i) What are
the values of λtr and ωpl? (ii) What is the reason that
λtr � λ is realized in cuprates? (iii) What is the role of
the Coulomb scattering in σ(ω) and ρ(T)? Later on we will
argue that ARPES measurements in cuprates give evidence
for an appreciable contribution of the Coulomb scattering at

higher frequencies, where γ(ω) ≈ γ0 + λcω for ω > ω
ph
max with

λc ∼ 1. One should stress that despite the fact that EPI is
suppressed in transport properties it is sufficiently strong in
the quasiparticle self-energy, as it comes out from tunnelling
measurements discussed below.

1.3.3. ARPES and the EPI Self-Energy. The angle-resolved
photoemission spectroscopy (ARPES) is nowadays one of
leading spectroscopy methods in the solid-state physics
[22, 23]. In some favorable conditions it provides direct
information on the one-electron removal spectrum in a
complex many-body system. The method involves shining
light (photons) with energies between Ei = 5–1000 eV on
samples and by detecting momentum (k)- and energy(ω)-
distribution of the outgoing electrons. The resolution of
ARPES has been significantly increased in the last decade
with the energy resolution of ΔE ≈ 1-2 meV (for pho-
ton energies ∼20 eV) and angular resolution of Δθ �
0.2◦. On the other side the ARPES method is surface-
sensitive technique, since the average escape depth (lesc)

of the outgoing electrons is of the order of lesc ∼ 10 Å,
depending on the energy of incoming photons. Therefore,
very good surfaces are needed in order that the results be
representative for bulk samples. The most reliable studies
were done on the bilayer Bi2Sr2CaCu2O8 (Bi2212) and its
single-layer counterpart Bi2Sr2CuO6 (Bi2201), since these
materials contain weakly coupled BiO planes with the longest
interplane separation in the cuprates. This results in a
natural cleavage plane making these materials superior to
others in ARPES experiments. After a drastic improvement
of sample quality in other families of HTSC materials,
the ARPES technique has became an important method in
theoretical considerations. The ARPES can indirectly give
information on the momentum and energy dependence of
the pairing potential. Furthermore, the electronic spectrum
of the (abovementioned) cuprates is highly quasi-2D which
allows rather unambiguous determination of the initial
state momentum from the measured final state momentum,
since the component parallel to the surface is conserved in
photoemission. In this case, the ARPES probes (under some
favorable conditions) directly the single-particle spectral
function A(k,ω). In the following we discuss mainly those
ARPES experiments which give evidence for the importance
of the EPI in cuprates—see more in [22, 23].

ARPES measures a nonlinear response function of the
electron system and it is usually analyzed in the so-called
three-step model, where the total photoemission intensity
Itot(k,ω) ≈ I1 · I2 · I3 is the product of three independent
terms: (1) I1 that describes optical excitation of the electron
in the bulk, (2) I2 that describes the scattering probabil-
ity of the travelling electrons, and (3) I3 that describes
the transmission probability through the surface potential
barrier. The central quantity in the three-step model is
I1(k,ω) and it turns out that for k = k‖ it can be written
in the form I1(k,ω) � I0(k, υ) f (ω)A(k,ω) [22, 23] with
I0(k, υ) ∼ |〈ψf |pA|ψi〉|2 and the quasiparticle spectral
function A(k,ω) = − ImG(k,ω)/π:

A(k,ω) = − 1
π

ImΣ(k,ω)

[ω − ξ(k)− ReΣ(k,ω)]2 + ImΣ2(k,ω)
.

(37)

Here, 〈ψf |p · A|ψi〉 is the dipole matrix element which
depends on k, polarization, and energy Ei of the incoming
photons. The knowledge of the matrix element is of a great
importance and its calculation from first principles was done
in [133]. f (ω) is the Fermi function; G and Σ = ReΣ +
i ImΣ are the quasiparticle Green’s function and the self-
energy, respectively. We summarize and comment here some
important ARPES results which were obtained in the last
several years and which confirm the existence of the Fermi
surface and importance of EPI in the quasiparticle scattering
[22, 23].

ARPES in the Normal State. (N1) There is well-defined
Fermi surface in the metallic state of optimally and near
optimally doped cuprates with the topology predicted by
the LDA-DFT. However, the bands are narrower than
LDA-DFT predicts which points to a strong quasiparticle
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renormalization. (N2) The spectral lines are broad with
|ImΣ(k,ω)| ∼ ω (or ∼ T for T > ω) which tells us that the
quasiparticle liquid is a noncanonical Fermi liquid for larger
values ofT ,ω. (N3) There is a bilayer band splitting in Bi2212
(at least in the overdoped state), which is also predicted by
LDA-DFT. In the case when the coherent hopping t⊥ between
two layers in the bilayer dominates, then the antibonding and
bonding bands ξa,b

k = ξk±t⊥k with t⊥k = [t⊥(cos2kx−cos2ky)+
· · · ] have been observed. It is worth to mention that the
previous experiments did not show this splitting which was
one of the reasons for various speculations on some exotic
electronic scattering and non-Fermi liquid scenarios. (N4) In
the underdoped cuprates and at temperatures Tc < T < T∗

there is a d-wave-like pseudogap Δpg(k) ∼ Δpg,0(cos kx −
cos ky) in the quasiparticle spectrum where Δpg,0 increases by
lowering doping. We stress that the pseudogap phenomenon
is not well understood at present and since we are interested
in systems near optimal doping where the pseudogap
phenomena are absent or much less pronounced we will
not discuss this problem here. Its origin can be due to a
precursor superconductivity or due to a competing order,
such as spin- or charge-density wave, strong correlations,
and so forth. (N5) The ARPES self-energy gives evidence
that EPI interaction is rather strong. The arguments for
the latter statement are the following: (i) at T > Tc there
are kinks in the quasiparticle dispersion ω(ξk) in the nodal
direction (along the (0, 0) − (π,π) line) at the characteristic

phonon energy ω(70)
ph ∼ (60–70) meV [91], see Figure 14

(top), and near the antinodal point (π, 0) at 40 meV [134]—
see Figure 14 (bottom).

(ii) The kink structure is observed in a variety of the
hole-doped cuprates such as LSCO, Bi2212, Bi2201, Tl2201
(Tl2Ba2CuO6), Na–CCOC (Ca2−xNaxCuO2Cl2). These kinks
exist also above Tc, which excludes the scenario with the
magnetic resonance peak in Im χs(Q,ω). Moreover, since the
tunnelling and magnetic neutron scattering measurements
give small SFI coupling constant gsf < 0.2 eV, then the
kinks are not due to SFI. (iii) The position of the nodal
kink is practically doping independent which points towards
phonons as the scattering and pairing boson. (N6) The
quasiparticles (holes) at and near the nodal-point kN couple
practically to a rather broad spectrum of phonons since at
least three groups of phonons were extracted in the bosonic
spectral function α2F(kN ,ω) from the ARPES effective self-
energy in La2−xSrxCuO4 [135]—Figure 15.

The latter result is in a qualitative agreement with numer-
ous tunnelling measurements [42–54] which apparently
demonstrate that the very broad spectrum of phonons cou-
ples with holes without preferring any particular phonons—
see discussion below. (N7) Recent ARPES measurements
in Bi2212 [92] show very different slope dω/dξk of the
quasiparticle energy ω(ξk) at small |ξk| � ωph and at large
energies |ξk| � ωph—see Figure 16. The theoretical analysis
[137] of these results gives the total coupling constant λZ =
λZep + λZc ≈ 3, and for the EPI coupling λZep ≈ 2, while the
Coulomb coupling (SFI is a part of it) is λZc ≈ 1 [137]—
see Figure 16. (Note that the upper index Z in the coupling
constants means the quasiparticle renormalization in the

normal part of the self-energy.) To this end let us mention
some confusion which is related to the value of the EPI
coupling constant extracted from ARPES. Namely, [22, 23,
138, 139] the EPI self-energy was obtained by subtracting
the high-energy slope of the quasiparticle spectrum ω(ξk) at
ω ∼ 0.3 eV. The latter is apparently due to the Coulomb
interaction. Although the position of the low-energy kink
is not affected by this procedure (if ωmax

ph � ωc), this
subtraction procedure gives in fact an effective EPI self-
energy Σ

ep
eff(k,ω) and the effective coupling constant λZep,eff(k)

only. We demonstrate below that the λZep,eff(k) is smaller
than the real EPI coupling constant λZep(k). The total self-
energy is Σ(k,ω) = Σep(k,ω) + Σc(k,ω) where Σc is the
contribution due to the Coulomb interaction. At very low
energies ω � ωc one has usually Σc(k,ω) = −λZc (k)ω,
where ωc(∼1 eV) is the characteristic Coulomb energies and
λZc is the Coulomb coupling constant. The quasiparticle
spectrum ω(k) is determined from the condition ω− ξ(k)−
Re[Σep(k,ω) + Σc(k,ω)] = 0 where ξ(k) is the bare band-
structure energy. At low energies ω < ωmax

ph � ωc it can be
rewritten in the form

ω− ξren(k)− ReΣ
ep
eff(k,ω) = 0, (38)

with ξren(k) = [1 + λZc (k)]−1ξ(k),

ReΣ
ep
eff(k,ω) = ReΣ

ep
eff(k,ω)

1 + λZc (k)
. (39)

Since at very low energies ω � ωmax
ph one has ReΣep(k,ω) =

−λZep(k)ω and ReΣ
ep
eff(k,ω) = −λZep,eff(k)ω, then the real

coupling constant is related to the effective one by

λZep(k) =
[

1 + λZc (k)
]
λZep,eff(k). (40)

As a result one has λZep(k) > λZep,eff(k). At higher energies
ωmax

ph < ω < ωc, where the EPI effects are suppressed and
Σep(k,ω) stops growing, one has ReΣ(k,ω) ≈ ReΣep(k,ω)−
λZc (k)ω. The measured ReΣexp(k,ω) at T = 10 K near and
slightly away from the nodal point in the optimally doped Bi-
2212 with Tc = 91 K [136] is shown in Figure 16.

It is seen that ReΣexp(k,ω) has two kinks—the first one
at low energy ω1 ≈ ω

high
ph ≈ 50–70 meV which is (as

we already argued) most probably of the phononic origin
[22, 23, 138, 139], while the second kink at higher energy
ω2 ≈ ωc ≈ 350 meV which is due to the Coulomb
interaction. However, the important results in [136] are that

the slopes of ReΣexp(k,ω) at low (ω < ω
high
ph ) and high

energies (ω
high
ph < ω < ωc) are very different. The low-

energy and high-energy slope near the nodal point are shown
in Figure 16 schematically (thin lines). From Figure 16 it is

obvious that EPI prevails at low energies ω < ω
high
ph . More

precisely digitalization of ReΣexp(k,ω) in the interval ω
high
ph <

ω < 0.4 eV gives the Coulomb coupling λZc ≈ 1.1 while

the same procedure at 20 meV ≈ ωlow
ph < ω < ω

high
ph ≈

50–70 meV gives the total coupling constant (λ2 ≡)λZ =
λZep+λZc ≈ 3.2 and the EPI coupling constant λZep(≡ λZep,high) ≈
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2.1 > 2λZep,eff(k), that is, the EPI coupling is at least twice
larger than the effective EPI coupling constant obtained in
the previous analysis of ARPES results [22, 23, 138, 139].
This estimation tells us that at (and near) the nodal point,
the EPI interaction dominates in the quasiparticle scattering
at low energies since λZep(≈ 2.1) ≈ 2λcz > 2λZsf, while at
large energies (compared to ωph) the Coulomb interaction
with λZc ≈ 1.1 dominates. We point out that EPI near the
antinodal point can be even larger than in the nodal point,
mostly due to the higher density of states near the antinodal
point. (N8) Recent ARPES spectra in the optimally doped
Bi2212 near the nodal and antinodal point [139] show a
low-energy isotope effect in ReΣexp(k,ω), which can be well
described in the framework of the Migdal-Eliashberg theory
for EPI [140]. At higher energies ω > ωph obtained in [139]
very pronounced isotope effect cannot be explained by the
simple Migdal-Eliashberg theory [140]. However, there are
controversies with the strength of the high-energy isotope
effect since it was not confirmed in other measurements
[141, 142]—see the discussion in Section 1.3.6(2) related
to the isotope effects in HTSC cuprates. (N9) The ARPES
experiments in Ca2CuO2Cl2 give strong evidence for the
formation of small polarons in undoped cuprates which are
due to phonons and strong EPI, while in the doped systems

quasiparticles are formed and there are no small polarons
[143]. Namely, in [143] a broad peak around −0.8 eV is
observed at the top of the band (k = (π/2,π/2)) with the
dispersion similar to that predicted by the t-J model—see
Figure 17.

However, the peak in Figure 17(a) is of Gaussian shape
and can be described only by coupling to bosons, that is,
this peak is a boson side band—see more in [10, 11] and
references therein. The theory based on the t-J model (in
the antiferromagnetic state of the undoped compound) by
including coupling to several (half-breathing, apical oxygen,
low-lying) phonons, which is given in [144–146], explains
successfully this broad peak of the boson side band by the
formation of small polarons due to the EPI coupling (λep ≈
1.2). Note that this value of λep is for the polaron at the
bottom of the band while in the case where the Fermi surface
exists (in doped systems) this coupling is even larger due to
the larger density of states at the Fermi surface [144–146].
In [144–146] it was stressed that even when the electron-
magnon interaction is stronger than EPI the polarons in
the undoped systems are formed due to EPI. The latter
mechanism involves excitation of many phonons at the
lattice site (where the hole is seating), while it is possible
to excite only one magnon at the given site. (N10) Recent
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soft X-ray ARPES measurements on the electron-doped
HTSC Nd1.85Ce0.15CuO4 [147], and Sm(2−x)CexCuO4 (x =
0.1, 0.15, 0.18), Nd1.85Ce0.15CuO4, and Eu1.85Ce0.15CuO4

[148] show kink at energies 50–70 meV in the quasiparticle
dispersion relation along both the nodal and antinodal,
directions as it is shown in Figure 18.

It is seen from this figure that the effective EPI coupling
constant λep,eff(< λep) is isotropic and λep,eff ≈ 0.8–1. It seems
that the kink in the electron-doped cuprates is due solely to
EPI and in that respect the situation is similar to the one in
the hole-doped cuprates.

ARPES Results in the Superconducting State. (S1) There is an
anisotropic superconducting gap in most HTSC compounds
[22, 23], which is predominately d-wave like, that is, Δ(k) ≈
Δ0(cos kx − cos ky) with 2Δ0/Tc ≈ 5-6 in the optimally
doped systems. (S2) The particle-hole coherence in the
superconducting state which is expected for the BCS-like
theory of superconductivity has been observed first in [149]
and confirmed with better resolution in [150], where the
particle-hole mixing is clearly seen in the electron and hole
quasiparticle dispersion. To remind the reader, the excited
Bogoliubov-Valatin quasiparticles (α̂k,±) with energies Eα±k =√
ξ2

k + |Δk|2 are a mixture of electron (ĉk,σ) and hole (ĉ†−k,−σ),

that is, α̂k,+ = uk ĉk↑ + vk ĉ
†
−k↓, α̂k,− = uk ĉ−k↓ + vk ĉ

†
k↑ where

the coherence factors uk, vk are given by |uk|2 = 1− |vk|2 =
(1 + ξk/Ek)/2. Note that |uk|2 + |vk|2 = 1, which is exactly
observed, together with d-wave pairing Δ(k) = Δ0(cos kx −
cos ky), in experiments in [150]. This is very important
result since it proves that the pairing in HTSC cuprates is of
the BCS type and not exotic one as it was speculated long
time after the discovery of HTSC cuprates. (S3) The kink at
(60–70) meV in the quasiparticle energy around the nodal
point is not shifted (in energy) while the antinodal kink at

ω(40)
ph ∼ 40 meV is shifted (in energy) in the superconducting

state by Δ0(= (25–30) meV), that is, ω(40)
ph → ω(40)

ph + Δ0 =
(65–70) meV [22, 23]. To remind the reader, in the standard
Eliashberg theory the kink in the normal state at ω = ωph

should be shifted in the superconducting state to ωph + Δ0

at all k-points at the Fermi surface. This puzzling result
(that the quasiparticle energy around the nodal point is not
shifted in the superconducting state) might be a smoking
gun result since it makes an additional constraint on the
quasiparticle interaction in cuprates. Until now there is only
one plausible explanation [151] of this nonshift puzzle which
is based on an assumption of the forward scattering peak
(FSP) in EPI—see more in Section 2. The FSP in EPI means
that electrons scatter into a narrow region (q < qc � kF)
around the initial point in the k-space, so that at the most
part of the Fermi surface there is practically no mixing of
states with different signs of the order parameter Δ(k). In
that case the EPI bosonic spectral function (which is defined
in Appendix A) α2F(k, k′,Ω) ≈ α2F(ϕ,ϕ′,Ω) (ϕ is the angle
on the Fermi surface) has a pronounced forward scattering
peak (at δϕ = ϕ − ϕ′ = 0) due to strong correlations—
see Section 2. Its width δϕc is narrow, that is, δϕc � 2π
and the angle integration goes over the region δϕc around
the point ϕ. In that case the kink is shifted (approximately)
by the local gap Δ(ϕ) = Δmax cos 2ϕ—for more details see
[151]. As a consequence, the antinodal kink is shifted by the
maximal gap, that is, |Δ(ϕAN ≈ π/2)| = Δmax while the
nodal gap is practically unshifted since |Δ(ϕAN ≈ π/4)| ≈ 0.
(S4) The recent ARPES spectra [152] in the undoped single
crystalline 4-layered cuprate with the apical fluorine (F),
Ba2Ca3Cu4O8F2 (F0234) give rather convincing evidence
against the SFI mechanism of pairing—see Figure 19.

First, F0234 is not a Mott insulator—as expected from
valence charge counting which puts Cu valence as 2+, but it
is a superconductor with Tc = 60 K. Moreover, the ARPES
data [152] reveal at least two metallic Fermi-surface sheets
with corresponding volumes equally below and above half-
filling—see Figure 20.

Second, one of the Fermi surfaces is due to the electron-
like (N) band (with 20 ± 6% electron-doping) and the
other one due to the hole-like (P) band (with 20 ± 8%
hole-doping) and their splitting along the nodal direction
is significant and cannot be explained by the LDA-DFT
calculations [153]. This electron and hole self-doping of
inner and outer layers is in an appreciable contrast to
other multilayered cuprates where there is only hole self-
doping. For instance, in HgBa2CanCun+1O2n+2 (n = 2, 3)
and (Cu, C)Ba2CanCun+1O3n+2 (n = 2, 3, 4), the inner CuO2

layers are less hole-doped than outer layers. It turns out,
unexpectedly, that the superconducting gap on the N-band
Fermi surface is significantly larger than on the P-one, where
in Ba2Ca3Cu4O8F2 the ratio is anomalous (ΔN/ΔP) ≈
2 and ΔN is an order of magnitude larger than in the
electron-doped cuprate Nd2−xCexCuO4. Third, the N-band
Fermi surface is rather far from the antinodal point at
(π, 0). This is very important result which means that the
antiferromagnetic spin fluctuations with the AF wave-vector
Q = (π,π), as well as the van Hove singularity, are not
dominant in the pairing in theN-band. To remind the reader,
the SFI scenario assumes that the pairing is due to spin
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fluctuations with the wave-vector Q (and near it) which
connects two antinodal points which are near the van Hove
singularity at the hole-surface (at (π, 0) and (0,π)) giving
rise to large density of states. This is apparently not the case
for the N-band Fermi surface—see Figure 20. The ARPES
data give further that there is a kink at ∼85 meV in the
quasiparticle dispersion of both bands, while the kink in
the N-band is stronger than that in the P-band. This result,
together with the anomalous ratio (ΔN/ΔP) ≈ 2, disfavors
SFI as a pairing mechanism. (S5) Despite the presence of
significant elastic quasiparticle scattering in a number of
samples of optimally doped Bi-2212, there are dramatic
sharpenings of the spectral function near the antinodal point
(π, 0) at T < Tc (in the superconducting state) [154].
This effect can be explained by assuming that the small q-
scattering (the forward scattering peak) dominates in the
elastic impurity scattering as it is pointed in [78–80, 130,
155, 156]. As a result, one finds that the impurity scattering
rate in the superconducting state is almost zero, that is,
γimp(k,ω) = γn(k,ω) + γa(k,ω) ≈ 0 for |ω| < Δ0 for any
kind of pairing (s-, p-, d-wave, etc.) since the normal (γn)
and the anomalous (γa) scattering rates compensate each
other. This collapse of the elastic scattering rate is elaborated
in details in [154] and it is a consequence of the Anderson-
like theorem for unconventional superconductors which is
due to the dominance of the small q-scattering [78–80, 130,
155, 156]. In such a case d-wave pairing is weakly unaffected
by nonmagnetic impurities and as a consequence there is

small reduction in Tc [156, 157]. The physics behind this
result is rather simple. The small q-scattering (usually called
forward scattering) means that electrons scatter into a small
region in the k-space, so that at the most part of the Fermi
surface there is no mixing of states with different signs of the
order parameter Δ(k). In such a way the detrimental effect
of nonmagnetic impurities on d-wave pairing is significantly
reduced. This result points to the importance of strong
correlations in the renormalization of the nonmagnetic
impurity scattering too—see discussion in Section 2.

In conclusion, in order to explain the ARPES results
in cuprates it is necessary to take into account (1) the
electron-phonon interaction (EPI) since it dominates in the
quasiparticle scattering in the energy region important for
pairing, (2) the elastic nonmagnetic impurities with the
forward scattering peak (FSP) due to strong correlations,
and (3) the Coulomb interaction which dominates at higher
energies ω > ωph. In this respect, the presence of ARPES
kinks and the knee-like shape of the T dependence of the
spectral width are important constraints on the scattering
and pairing mechanism in HTSC cuprates.

1.3.4. Tunnelling Spectroscopy and Spectral Function α2F(ω).
By measuring current-voltage I-V characteristics in NIS
(normal metal-insulator-superconductor) tunnelling junc-
tions with large tunnelling barrier one obtains from tun-
nelling conductance GNS(V) = dI/dV the so called
tunnelling density of states in superconductors NT(ω).
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Moreover, by measuring of GNS(V) at voltages eV > Δ
it is possible to determine the Eliashberg spectral function
α2F(ω) and finally to confirm the phonon mechanism of
pairing in LTSC materials. Four tunnelling techniques were
used in the study of HTSC cuprates: (1) vacuum tun-
nelling by using the STM technique—scanning tunnelling
microscope; (2) point-contact tunnelling; (3) break-junction
tunnelling; (4) planar-junction tunnelling. Each of these

techniques has some advantages although in principle the
most potential one is the STM technique since it measures
superconducting properties locally [158]. Since tunnelling
measurements probe a surface region on the scale of the
superconducting coherence length ξ0, then this kind of
measurements in HTSC materials with small coherence
length ξ0 (ξab ∼ 20 Å in the a − b plane and ξc ∼ 1–3 Å
along the c-axis) depends strongly on the surface quality
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and sample preparation. Nowadays, many of the material
problems in HTSC cuprates are understood and as a result
consistent picture of tunnelling features is starting to emerge.

From tunnelling experiments one obtains the (energy-
dependent) gap function Δ(ω) in the superconducting state.
Since we have already discussed this problem in [6], we will
only briefly mention some important result. For instance,
in most systems GNS(V) has V-shape in all families of
HTSC hole- and electron-doped cuprates. The V-shape is
characteristic for d-wave pairing with gapless spectrum,
which is also confirmed in the interference experiments on
hole- and electron-doped cuprates [75]. Some experiments
give a U-shape of GNS(V) which resembles s-wave pairing.
This controversy is explained to be the property of the
tunnelling matrix element which filters out states with the
maximal gap.

Here we are interested in the bosonic spectral function
α2F(ω) of HTSC cuprates near optimal doping which can
be extracted by using tunnelling spectroscopy. We inform
the reader in advance that the shape and the energy width
of α2F(ω), which are extracted from the second derivative
d2I/dV 2 at voltages above the superconducting gap, in most
HTSC cuprates resemble the phonon density of states Fph(ω).

This result is strong evidence for the importance of EPI in
the pairing potential of HTSC cuprates. For instance, plenty
of break junctions made from Bi2212 single crystals [42–
45] show that the peaks (and shoulders) in −d2I/dV 2 (or
dips-negative peaks in d2I/dV 2) coincide with the peaks (and
shoulders) in the phonon density of states Fph(ω) measured
by neutron scattering—see Figure 21.

The tunnelling spectra in Bi-2212 break junctions [42–
45], which are shown in Figure 21 indicates that the spectral
function α2F(ω) is independent of magnetic field, which is
in contradiction with the theoretical prediction based on
the SFI pairing mechanism where this function should be
sensitive to magnetic field. The reported broadening of the
peaks in α2F(ω) is partly due to the gapless spectrum of d-
wave pairing in HTSC cuprates. Additionally, the tunnelling
density of states NT(ω) at very low T and for ω > Δ shows
a pronounced gap structure. It was found that 2Δ/Tc =
6.2–6.5, where Tc = 74–85 K and Δ is some average value of
the gap. In order to obtain α2F(ω) the inverse procedure was
used by assuming s-wave superconductivity and the effective
Coulomb parameter μ∗ ≈ 0.1 [42–45]. The obtained α2F(ω)
gives large EPI coupling constant λep ≈ 2.3. Although this
analysis [42–45] was done in terms of s-wave pairing, it
mimics qualitatively the case of d-wave pairing, since one
expects that d-wave pairing does not change significantly the
global structure of d2I/dV 2 at eV > Δ albeit introducing a
broadening in it—see the physical meaning in Appendix A.
We point out that the results obtained in [42–45] were
reproducible on more than 30 junctions. In that respect very
important results on slightly overdoped Bi2212–GaAs and
on Bi2212–Au planar tunnelling junctions are obtained in
[46, 47]—see Figure 22.

These results show very similar features to those obtained
in [42–45] on break junctions. It is worth mentioning
that several groups [48–52] have obtained similar results
for the shape of the spectral function α2F(ω) from the
I-V measurements on various HTSC cuprates—see the
comparison in Figure 23. These facts leave no much doubts
about the importance of the EPI in pairing mechanism of
HTSC cuprates.

In that respect, the tunnelling measurements on slightly
overdoped Bi2Sr2CaCu2O8 [46, 47, 53, 54] give impressive
results. The Eliashberg spectral function α2F(ω) of this
compound was extracted from the measurements of d2I/dV 2

and by solving the inverse problem—see Appendix A. The
extracted α2F(ω) has several peaks in broad energy region
up to 80 meV as it is seen in Figures 22 and 23, which
coincide rather well with the peaks in the phonon density
of states Fph(ω)—more precisely the generalized phonon
density of statesGPDS(ω) defined in Appendix A. In [53, 54]
numerous peaks, from P1–P13, in α2F(ω) are discerned as
shown in Figure 24, which correspond to various groups
of phonon modes—laying in (and around) these peaks.
Moreover, in [46, 47, 53, 54] the coupling constants for these
modes are extracted as well as their contribution (ΔTc) to Tc
as it is seen in Table 1. Note that due to the nonlinearity of the
problem the sum of (ΔTc)i, i = 1, 2, . . . , 13, due to various
modes is not equal to Tc.
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The next remarkable result is that the extracted EPI cou-
pling constant is very large, that is, λep(= 2

∫
dωα2F(ω)/ω) =∑

i λi ≈ 3.5—see Table 1. It is obvious from Figure 24 and
Table 1 that almost all phonon modes contribute to λep and
Tc, which means that on the average each particular phonon
mode is not too strongly coupled to electrons since λi <
1.3, i = 1, 2, . . . , 13, thus keeping the lattice stable.

Let us discuss the content of Table 1 in more details
where it is shown the strength of the EPI coupling and
the relative contribution of different phononic modes to
Tc. In Table 1 it is seen that lower-frequency modes from
P1–P3, corresponding to Cu, Sr, and Ca vibrations, are
rather strongly coupled to electrons (with λκ ∼ 1) which
give appreciable contributions to Tc. It is also seen in
Table 1 that the coupling constants λi of the high-energy
phonons (P9–P13 with ω ≥ 70 meV) have λi � 1
and give moderate contribution to Tc—around 10%. These
results give solid evidence for the importance of the low-
energy modes related to the change of the Madelung energy
in the ionic-metallic structure of HTSC cuprates—the idea
advocated in [3–6] and discussed in Section 2. If confirmed
in other HTSC families, these results are in favor of the
moderate oxygen isotope effect in cuprates near the optimal
doping since the oxygen modes are higher-energy modes and
give smaller contribution to Tc. We stress that each peak
P1–P13 in α2F(ω) corresponds to many modes. For a better
understanding of the EPI coupling in these systems we show
in Figure 25 the total and partial density of phononic states. It

Table 1: Phonon frequency ω, EPI coupling constant λi of the peaks
P1–P13, and contribution ΔTc to Tc of each peak in α2F(ω)—as
shown in Figure 24—obtained from the tunnelling conductance of
Bi2Sr2CaCu2O8. ΔTc is the decrease in Tc when the peak in α2F(ω)
is eliminated. From [53, 54].

No. of peak ω [meV] λi ΔTc [K]

P1 14.3 1.26 7.4

P2 20.8 0.95 11.0

P3 31.7 0.48 10.5

P4 35.1 0.28 6.7

P5 39.4 0.24 7.0

P6 45.3 0.30 10.0

P7 58.3 0.15 6.5

P8 63.9 0.01 0.6

P9 69.9 0.07 3.6

P10 73.7 0.06 3.3

P11 77.3 0.01 0.8

P12 82.1 0.01 0.7

P13 87.1 0.03 1.8

is seen that the low-energy phonons are due to the vibrations
of the Ca, Sr, and Cu ions which correspond to the peaks
P1-P2 in Figures 23 and 24. In order to obtain information
on the structure of vibrations which are strongly involved
in pairing, we show in Figures 26 and 27 the structure of
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these vibrations at special points in the Brillouin zone. It is
seen in Figure 26 that the low-frequency phonons P1-P2 are
dominated by Cu, Sr, Ca vibrations.

Further, based on Table 1 one concludes that the P3
modes are strongerly coupled to electrons than the P4
ones, although the density of state for the P4 modes is
larger. The reason for such an anomalous behavior might
be due to symmetries of the corresponding phonons as it
is seen in Figure 27. Namely, to the P3 peak contribute
axial vibrations of O(1) in the CuO2 plane which are odd
under inversion, while in the P4 peak these modes are
even. The in-plane modes of Ca and O(1) are present in
P3 which are in-phase and out-of-phase modes, while in
P4 they are all out-of-phase modes. For more information
on other modes, P5–P13, see [53, 54]. We stress that the
Eliashberg equations based on the extracted α2F(ω) of the
slightly overdoped Bi2Sr2CaCu2O8 with the ratio (2Δ/Tc) ≈
6.5 describe rather well numerous optical, transport, and
thermodynamic properties [53, 54]. However, in underdoped
systems with (2Δ/Tc) ≈ 10, where the pseudogap phenomena
are pronounced, there are serious disagreements between
experiments and the Migdal-Eliashberg theory [53, 54].
We would like to stress that the contribution of the high-
frequency modes (mostly the oxygen modes) to α2F(ω) may
be underestimated in tunnelling measurements due to their

sensitivity to the surface contamination and defects. Namely,
the tunnelling current probes a superconductor to a depth of
order of the quasiparticle mean-free path l(ω) = vFγ−1(ω).
Since the relaxation time γ−1(ω) decreases with increasing
ω, the mean-free path can be rather small and the effects
of the high-energy phonons are sensitive to the surface
contamination.

Similar conclusion regarding the structure of the EPI
spectral function α2F(ω) in HTSC cuprates comes out from
tunnelling measurements on Andreev junctions (the BTK
parameter Z � 1—low barrier) and Giaver junctions (Z �
1—high barrier) in La2−xSrxCuO4 and YBCO compounds
[160], where the extracted α2F(ω) is in good accordance with
the phonon density of states Fph(ω)—see Figure 28.

Note that the BTK parameter Z is related to the
transmission and reflection coefficients for the normal metal
(1 + Z2)−1 and Z2(1 + Z2)−1, respectively.

Although most of the peaks in α2F(ω) of HTSC cuprates
coincide with the peaks in the phonon density of states, it is
legitimate to put the following question. Can the magnetic
resonance in the superconducting state give significant
contribution to α2F(ω)? In that respect the inelastic magnetic
neutron scattering measurements of the magnetic resonance
as a function of doping [161] give that the resonance energy
Er scales with Tc, that is, Er = (5-6)Tc as shown in Figure 29.
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This means that if one of the peaks in α2F(ω) is due to
the magnetic resonance at ω = Er , then it must shift strongly
with doping as it is observed in [161]. This is contrary
to phonon peaks (energies) whose positions are practically
doping independent. To this end, recent tunnelling exper-
iments on Bi-2212 [55] show clear doping independence of
α2F(ω) as it is seen in Figure 30. This remarkable result
is an additional evidence in favor of EPI and against the
SFI mechanism of pairing in HTSC cuprates which is based
on the magnetic resonance peak in the superconducting
state. In that respect the analysis in [162] of the tunneling
spectra of the electron-doped cuprate Pr0.88Ce0.12CuO4 with
Tc = 24 K shows the existence of the bosonic mode at
ωB = 16 meV which is significantly larger than the magnetic-
resonance mode withωr = (10-11) meV. This result excludes
the magnetic-resonance mode as an important factor which
modifies superconductivity.

The presence of pronounced phononic structures (and
the importance of EPI) in the I(V) characteristics was
quite recently demonstrated by the tunnelling measurements
on the very good La1.85Sr0.15CuO4 films prepared by the
molecular beam epitaxy on the [001]-symmetric SrTiO3

bicrystal substrates [56]. They give unique evidence for
eleven peaks in the (negative) second derivative, that is,
−d2I/dV 2. Furthermore, these peaks coincide with the peaks
in the intensities of the phonon Raman scattering data
measured at 30 K in single crystals of LSCO with 20% of Sr
[57]. These results are shown in Figure 31. In spite of the
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of various groups: Vedeneev et al. [42–45], Gonnelli et al. [52],
Miyakawa et al. [48, 49], and Shimada et al. [46, 47]. The
generalized density of states GPDS for Bi2212 is at the bottom. From
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lack of a quantitative analysis of the data in the framework
of the Eliashberg equations, the results in [56] are important
evidence that phonons are relevant pairing bosons in HTSC
cuprates.

It is interesting that in the c-axis vacuum tunnelling
STM measurements [163] the fine structure in d2I/dV 2 at
eV > Δwas not seen below Tc, while the pseudogap structure
is observed at temperatures near and above Tc. This result
could mean that the STM tunnelling is likely dominated
by the nontrivial structure of the tunnelling matrix element
(along the c-axis), which is derived from the band-structure
calculations [164]. However, recent STM experiments on
Bi2212 [61–63] give information on the possible nature of
the bosonic mode which couples with electrons. In [61–63]
the local conductance dI/dV(r,E) is measured where it is
found that d2I/dV 2(r,E) has peak at E(r) = Δ(r) + Ω(r)
where dI/dV(r,E) has the maximal slope—see Figure 32(a).

It turns out that the corresponding average phonon
energy Ω depends on the oxygen mass, that is, Ω ∼ M−1/2

O ,
with Ω16 = 52 meV and Ω18 ≈ 48 meV—as it is seen
in Figure 32(b). This result is interpreted in [61–63] as an
evidence that the oxygen phonons are strongly involved in
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the quasiparticle scattering. A possible explanation is put
forward in [61–63] by assuming that this isotope effect is due
to the B1g phonon which interacts with the antinodal quasi-
particles. However, this result requires a reanalysis since the
energy of the bosonic mode in fact coincides with the dip and
not with the peak of d2I/dV 2(r,E)—as reported in [61–63].

The important message of numerous tunnelling experi-
ments in HTSC cuprates near and at the optimal doping is
that there is strong evidence for the importance of EPI in the
quasiparticle scattering and that no particular phonon mode
can be singled out in the spectral function α2F(ω) as being
the only one which dominates in pairing mechanism. This
important result means that the high Tc is not attributable
to a particular phonon mode in the EPI mechanism but
all phonon modes contribute to λep. Having in mind that
the phonon spectrum in HTSC cuprates is very broad
(up to 80 meV), then the large EPI constant (λep � 2)
obtained in the tunnelling experiments is not surprising
at all. Note that similar conclusion holds for some other
oxide superconductors such as Ba9.6K0.4BiO3 with Tc = 30 K
where the peaks in the bosonic spectral function/extracted
from tunnelling measurements coincide with the peaks in the
phononic density of states [165–167].

1.3.5. Phonon Spectra and EPI. Although experiments
related to phonon spectra and their renormalization by
EPI, such as inelastic neutron, inelastic X-ray, and Raman
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Figure 25: The phonon density of states F(ω) (PDOS) of
Bi2Sr2CaCu2O8 compared with the generalized density of states
(GPDOS) [159]. Atomic vibrations: O1—O in the CuO2 plane;
O2—apical O; O3—O in the BiO plane. From [46, 47].

scattering, do not give the spectral function α2F(ω), they
nevertheless can give useful, but indirect, information on the
strength of EPI for some particular phonons. We stress in
advance that the interpretation of the experimental results
in HTSC cuprates by the theory of EPI for weakly correlated
electrons is inadequate since in strongly correlated systems,
such as HTSC cuprates, the phonon renormalization due to
EPI is different than in weakly correlated metals [168]. Since
these questions are reviewed in [168], we will briefly enumer-
ate the main points: (1) in strongly correlated systems the
EPI coupling for a number of phononic modes can be signif-
icantly larger than the LDA-DFT and Hartree-Fock methods
predict. This is due to many-body effects not contained in
LDA-DFT [168, 169]. The lack of the LDA-DFT calculations
in obtaining phonon line-widths is clearly demonstrated,
for instance, in experiments on L2−xSrxCuO4—see review
in [170] and references therein, where the bond-stretching
phonons at q = (0.3, 0, 0) are softer and much broader
than the LDA-DFT calculations predict. (Note the wave
vector q is in units (2π/a, 2π/b, 2π/c)—for instance, in these
units (π,π) corresponds to (0.5, 0.5).) (2) The calculation
of phonon spectra is in principle very difficult problem
since besides the complexity of structural properties in a
given material one should take into account appropriately
the long-range Coulomb interaction of electrons as well as
strong short-range repulsion. Our intention is not to discuss
this complexity here—for that see, for instance, [69]—but
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we only stress some important points which will help to
understand problems with which is confronted the theory of
phonons in cuprates.

The phonon Green’s function D(q,ω) depends on the
phonon self-energy Π(q,ω) which takes into account all the
enumerated properties (note that D−1(q,ω) = D−1

0 (q,ω) −
Π(q,ω)). In cases when the EPI coupling constant gep(k, k′)
is a function on the transfer momentum q = k − k′ only,
then Π(q) (q = (q, iωn)) depends on the quasiparticle charge
susceptibility χc(q) = P(q)/εe(q):

Π
(
q
) =

∣∣∣gep(q
)∣∣∣2

χc
(
q
)
, (41)
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Figure 27: Atomic polarization vectors and their frequencies (in
meV) at special points in the Brillouin zone. The larger closed
circles in the lattice are O-ions. Γ − X is along the Cu-O-Cu
direction. Arrows indicate displacements. The modes in square and
round brackets are the transverse and longitudinal optical modes,
respectively. (a) Modes of the P3 peak. (b) Modes of the P4 peak.
From [46, 47, 53, 54].

and P(q) is the irreducible electronic polarization given by

P
(
q
) = −∑

p

G
(
p + q

)
Γc
(
p, q

)
G
(
p
)
. (42)

The screening due to the long-range Coulomb interaction
is contained in the electronic dielectric function εe(q) while
the “screening” due to (strong) correlations is described
by the charge vertex function Γc(p, q). Due to complexity
of the physics of strong correlations the phonon dynamics
was studied in the t-J model but without the long-range
Coulomb interaction [168, 169, 171], in which case one has
εe = 1 and χc(q) = P(q). However, in studying the phonon
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spectra in HTSC cuprates it is believed that this deficiency
might be partly compensated by choosing the bare phonon
frequency ω0(q) (contained in D−1

0 (q,ω)) to correspond to
the undoped compounds [168, 171]. It is a matter of future
investigations to incorporate all relevant interactions in order
to obtain a fully microscopic and reliable theory of phonons
in cuprates. Additionally, the electron-phonon interaction
(with the bare coupling constant gep(q)) is dominated by
the change of the energy of the Zhang-Rice singlet—see
more in Section 2.3—and (41) for Π(q) is adequate one
[6, 168, 169]. Since the charge fluctuations in HTSC cuprates
are strongly suppressed (no doubly occupancy of the Cu 3d9

state) due to strong correlations, and since the suppressed
value of χc(q) cannot be obtained by the band-structure
calculations, this means that LDA-DFT underestimates the
EPI coupling constant significantly. In the following we discuss
this important result briefly.
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(1) Inelastic Neutron and X-Ray Scattering—The Phonon Soft-
ening and the Line-Width due to EPI. The appreciable soft-
ening and broadening of numerous phonon modes has been
observed in the normal state of HTSC cuprates, thus giving
evidence for pronounced EPI effects and for inadequacy of
the LDA-DFT calculations in treating strong correlations and
suppression of the charge susceptibility [6, 10, 11, 168, 171].
There are several relevant reviews on this subject [10, 11, 168,
170, 172] and here we discuss briefly two important examples
which demonstrate the inefficiency of the LDA-DFT-band
structure calculations to treat quantitatively EPI in HTSC
cuprates. For instance, the Cu–O bond-stretching phonon
mode shows a substantial softening at qhb = (0.3, 0, 0) by
doping of La1.85Sr0.15CuO4 and YBa2Cu3O7 [170, 172]—
called the half-breathing phonon, and a large broadening by
5 meV at 15% doping [173–175] as it is seen in Figure 33.
While the softening can be partly described by the LDA-
DFT method [176], the latter theory predicts an order of
magnitude smaller broadening than the experimental one.
This failure of LDA-DFT is due to the incorrect treatment of
the effects of strong correlations on the charge susceptibility
χc(q) and due to the absence of many-body effects which can
increase the coupling constant gep(q)—see more in Section 2.
The neutron scattering measurements in La1.85Sr0.15CuO4

give evidence for large (30%) softening of the OZ
Z with

Λ1 symmetry with the energy ω ≈ 60 meV, which is
theoretically predicted in [177], and for the large line-width
about 17 meV which also suggests strong EPI. These apex
modes are favorable for d-wave pairing since their coupling
constants are peaked at small momentum q [10, 11]. Having
in mind the above results, then it is not surprising that
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the recent calculations of the EPI coupling constant λep in
the framework of LDA-DFT give very small EPI coupling
constant λep ≈ 0.3 [28, 29]. The critical analysis of the LDA-
DFT results in HTSC cuprates is done in [6] and additionally
argued in [10, 11, 178] by pointing their disagreement with

the inelastic neutron and X-ray scattering measurements—as
it is shown in Figure 33.

In Section 2 we will discuss some theoretical approaches
related to EPI in strongly correlated systems but without
discussing the phonon renormalization. The latter problem
was studied in more details in the review articles in [10,
11, 170]. Here, we point out only three (for our purposes)
relevant results. First, there is an appreciable difference in
the phonon renormalization in strongly and weakly correlated
systems. Namely, the change of the phonon frequencies in
the presence of the conduction electrons is proportional to
the squared coupling constant |gq| and charge susceptibility
χc, that is, δω(q) ∼ |gep(q)|2 Re χc, while the line-width is
given by Γω(q) ∼ |gep(q)|2| Im χc|. All these quantities can
be calculated in LDA-DFT and as we discussed above, where
for some modes one obtains that Γ(LDA)

ω(q) � Γ
(exp)
ω(q) . However,

it turns out that in strongly correlated systems doped by
holes (with the concentration δ� 1) the charge fluctuations
are suppressed in which case the following sum rule holds
[10, 11, 171]:

1
πN

∑
q /= 0

∫∞
−∞

dω
∣∣∣Im χc

(
q,ω

)∣∣∣ = 2δ(1− δ)N , (43)

while in the LDA-DFT method one has

1
πN

∑
q /= 0

∫∞
−∞

dω
∣∣∣Im χc(q,ω)

∣∣∣(LDA) = (1− δ)N. (44)

The inequality Γ(LDA)
ω(q) � Γ

(exp)
ω(q) (for some phonon modes)

together with (43)-(44) means that for low doping δ � 1
the LDA calculations strongly underestimate the EPI coupling
constant in the large portion of the Brillouin zone, that

is, one has |g(LDA)
ep (q)| � |g(exp)

ep (q)|. The large softening
and the large line-width of the half-breathing mode at
q = (0.5, 0), but very moderate effects for the breathing
mode at q = (0.5, 0.5), are explained in the framework
of the one slave-boson (SB) theory (for U = ∞) in [171],
where χc(q,ω) (i.e., Γc(p, q) = Γc(p, q)) is calculated in
leading O(1/N) order. We stress that there is another method
for studying strong correlations—the X-method—where the
controllable 1/N expansion is performed in terms of the
Hubbard operators and where the charge vertex Γc(p, q) is
calculated [6, 78–80, 130, 179, 180]. It turns out that in the
adiabatic limit (ω = 0) the vertex functions Γc(pF , q) in
these two methods have important differences. For instance,
Γ(X)
c (pF , q) (in the X-method) is peaked at q = 0—the

so called forward scattering peak (FSP)—while Γ(SB)
c (pF , q)

has maximum at finite |q| /= 0 [181]—see Section 2.3.5. The
enumerated properties of Γ(X)

c (pF , q) are confirmed by the
numerical Monte Carlo calculations in the finite-U Hubbard
model [182], where it is found that FSP exists for all U ,
but it is especially pronounced in the limit U � t. These
results are also confirmed in [183] where the calculations
are performed in the four-slave-boson technique—see more
in Section 2.3.5. Having in mind this difference it would be
useful to have calculations of χc(q,ω) in the framework of
the X-method which are unfortunately not done yet. Second,
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Figure 32: (a) Typical conductance dI/dV(r,E). The ubiquitous features at eV > Δ(gap) with maximal slopes, which give peaks in
d2I/dV 2(r,E), are indicated by arrows. (b) The histograms of all values of Ω(r) for samples with O16—right curve and with O18—left
curve. From [61–63].

the many-body theory gives that for coupling to some modes
the coupling constant |gep(q)| in HTSC cuprates can be
significantly larger than the LDA-DFT calculations predict
[10, 11], which is due to some many-body effects not present
in the latter [169]. In Section 2 it will be argued that for

some phonon modes one has |gep(q)|2 � |g(LDA)
ep (q)|2. For

instance, for the half-breathing mode, one has |gep(q)|2 ≈
3|g(LDA)

ep (q)|2 [10, 11, 169]—see Section 2. These two results
point to an inadequacy of LDA-DFT in calculations of EPI
effects in HTSC cuprates. Third, the phonon self-energy
(Π(q)) and quasiparticle self-energy Σ(k) are differently
renormalized by strong correlations [6, 10, 11, 78–80, 130,
179, 180], which is the reason that Π(q) is much more
suppressed than Σ(k)—see Section 2. The effects of the
charge vertex on Π(q) and Σ(k) are differently manifested.
Namely, the vertex function enters quadratically in Σ(k) and
the presence of the forward scattering peak in the charge
vertex strongly affects the EPI coupling constant gep(q) in
Σ(k):

Σ(k) = −
∑
q

∣∣∣gep(q
)
γc
(

k, q
)∣∣∣2

D
(
q
)
g
(
k + q

)
, (45)

where g(k)(≡ G(k)/Q) is the quasiparticle Green’s function,
γc(k, q) = Γc(k, q)/Q is the quasiparticle vertex, and Q(∼ δ)
is the Hubbard quasiparticle spectral weight—see Section 2.3.
In the adiabatic limit |q| > qω = ωph/vF one has γc(k, q) ≈
γc(k, q) and for q � qc(≈ δ · π/a) the charge vertex is
strongly suppressed (γc(k, q) � 1) making the effective EPI

coupling (which also enters the pairing potential) small at
large (transfer) momenta q. This has strong repercussion
on the pairing due to EPI since for small doping it makes
the d-wave pairing coupling constant to be of the order of
the s-one (λd ≈ λs). Then in the presence of the residual
Coulomb interaction EPI gives rise to d-wave pairing. On the
other side the charge vertex Γc(k, q) enters Π(q) linearly and
it is additionally integrated over the quasiparticle momentum
k—see (42). Therefore, one expects that the effects of the
forward scattering peak on Π(q) are less pronounced than
on Σ(k). Nevertheless, the peak of Γc(k, q) at q = 0 may be
(partly) responsible that the maximal experimental softening
and broadening of the stretching (half-breathing) mode in

La1.85Sr0.15CuO4 and YBa2Cu3O7 is at q
(exp)
hb = (0.3, 0, 0)

[170] and not at qhb = (0.5, 0) for which gep(qhb) reaches
maximum. This means that the charge vertex function
pushes the maximum of the renormalized EPI coupling
constant to smaller momenta q. It would be very interesting
to have calculations for other phonons by including the
vertex function obtained by the X-method—see Section 2.3.

(2) The Phonon Raman Scattering. The phonon Raman
scattering gives an indirect evidence for importance of EPI
in cuprates [184–188]. We enumerate some of them—
see more in [6] and references therein. (i) There is a
pronounced asymmetric line-shape (of the Fano resonance)
in the metallic state. For instance, in YBa2Cu3O7 two Raman
modes at 115 cm−1 (Ba dominated mode) and at 340 cm−1
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Figure 33: Comparison of DFT calculations with experimental results of inelastic X-ray scattering: (a) phonon energies in La1.85Sr0.15CuO4

and (b) in YBa2Cu3O7; (c) phonon line-widths in La1.85Sr0.15CuO4. DFT calculations [28] give much smaller width than experiments [173–
175]. From [178].

(O dominated mode in the CuO2 planes) show pronounced
asymmetry which is absent in YBa2Cu3O6. This asymmetry
means that there is an appreciable interaction of Raman
active phonons with continuum states (quasiparticles).

(ii) The phonon frequencies for some A1g and B1g are
strongly renormalized in the superconducting state, between
(6–10)%, pointing again to the importance of EPI [188]—
see also [6, 37, 38]. To this point we mention that there is a



Advances in Condensed Matter Physics 37

remarkable correlation between the electronic Raman cross-
section S̃exp(ω) and the optical conductivity in the a − b

plane σab(ω), that is, S̃exp(ω) ∼ σab(ω) [6]. In previous
subsections it is argued that EPI with the very broad spectral
function α2F(ω) (0 < ω � 80 meV) explains in a natural
way the ω and T dependence of σab(ω). This means that the
electronic Raman spectra in cuprates can be explained by
EPI in conjunction with strong correlations. This conclusion
is supported by the calculations of the Raman cross-section
[189] which take into account EPI with α2F(ω) extracted
from the tunnelling measurements in YBa2Cu3O6+x and
Bi2Sr2CaCu2O8+x [6, 42–54]. Quite similar properties (to
cuprates) of the electronic Raman scattering, as well as
of σ(ω), R(ω), and ρ(T), were observed in experiments
[108] on isotropic 3D metallic oxides La0.5Sr0.5CoO3 and
Ca0.5Sr0.5RuO3 where there are no signs of antiferromag-
netic fluctuations. This means that low dimensionality and
antiferromagnetic spin fluctuations cannot be a prerequisite
for anomalous scattering of quasiparticles and EPI must be
inevitably taken into account since it is present in all these
compounds.

1.3.6. Isotope Effect in Tc and Σ(k,ω). The isotope effect αTC
in the critical temperature Tc was one of the very important
proofs for the EPI pairing mechanism in low-temperature
superconductors (LTSCs). As a curiosity the isotope effect
in LTSC systems was measured almost exclusively in mono-
atomic systems and in few polyatomic systems: the hydrogen
isotope effect in PdH, the Mo and Se isotope shift of Tc in
Mo6Se8, and the isotope effect in Nb3Sn and MgB2. We point
out that very small (αTC ≈ 0 in Zr and Ru) and even negative
(in PdH) isotope effects in some polyatomic systems of LTSC
materials are compatible with the EPI pairing mechanism
but in the presence of substantial Coulomb interaction
or lattice anharmonicity. The isotope effect αTC cannot be
considered as the smoking gun effect since it is sensitive
to numerous influences. For instance, in MgB2 it is with
certainty proved that the pairing is due to EPI and strongly
dominated by the boron vibrations, but the boron isotope
effect is significantly reduced, that is, αTC ≈ 0.3 and the origin
for this smaller value is still unexplained. The situation in
HTSC cuprates is much more complicated because they are
strongly correlated systems and contain many atoms in unit cell.
Additionally, the situation is complicated with the presence
of intrinsic and extrinsic inhomogeneities, low dimensionality
which can mask the isotope effects. On the other hand new
techniques such as ARPES, STM, and μSR allow studies of
the isotope effects in quasiparticle self-energies, that is, αΣ,
which will be discussed below.

(1) Isotope Effect αTC in Tc. This problem will be discussed
only briefly since more extensive discussion can be found in
[6]. It is well known that in the pure EPI pairing mechanism

the total isotope coefficient α is given by αTC =
∑

i,p α
(p)
i =

−∑i,p d lnTc/d lnM
(p)
i , where M

(p)
i is the mass of the ith

element in the pth crystallographic position. We stress that
the total isotope effect is not measured in HTSC cuprates

but only some partial ones. Note that, in the case when the
screened Coulomb interaction is negligible, that is, μ∗c = 0,
the theory predicts αTC = 1/2. From this formula one can
deduce that the relative change of Tc, δTc/Tc, for heavier
elements should be rather small—for instance, it is 0.02
for 135Ba → 138Ba, 0.03 for 63Cu → 65Cu, and 0.07
for 138La → 139La. This means that the measurements of
αi for heavier elements are confronted with the ability of
the present experimental techniques. Therefore most isotope
effect measurements were done by substituting light atoms
16O by 18O only. It turns out that in most optimally doped
HTSC cuprates αO is rather small. For instance, αO ≈
0.02–0.05 in YBa2Cu3O7 with Tc,max ≈ 91 K, but it is
appreciable in La1.85Sr0.15CuO4 with Tc,max ≈ 35 K where
αO ≈ 0.1-0.2. In Bi2Sr2CaCu2O8 with Tc,max ≈ 76 K one has
αO ≈ 0.03–0.05 while αO ≈ 0.03 and even negative (−0.013)
in Bi2Sr2Ca2Cu2O10 with Tc,max ≈ 110 K. The experiments
on Tl2Can−1BaCunO2n+4 (n = 2, 3) with Tc,max ≈ 121 K are
still unreliable and αO is unknown. In the electron-doped
(Nd1−xCex)2CuO4 with Tc,max ≈ 24 K one has αO < 0.05
while in the underdoped materials αO increases. The largest
αO is obtained even in the optimally doped compounds like
in systems with substitution, such as La1.85Sr0.15Cu1−xMxO4,
M = Fe, Co, where αO ≈ 1.3 for x ≈ 0.4%. In La2−xMxCuO4

there is a Cu-isotope effect which is of the order of the
oxygen one, that is, αCu ≈ αO giving αCu + αO ≈ 0.25–0.35
for optimally doped systems (x = 0.15). In case when
x = 0.125 with Tc � Tc,max one has αCu ≈ 0.8 − 1
with αCu + αO ≈ 1.8 [190, 191]. The appreciable copper
isotope effect in La2−xMxCuO4 tells us that vibrations other
than oxygen ions are important in giving high Tc. In that
sense one should have in mind the tunnelling experiments
discussed above, which tell us that all phonons contribute to
the Eliashberg pairing function α2F(k,ω) and according to
these results the oxygen modes give moderate contribution

to Tc [53, 54]. Hence the small oxygen isotope effect α(O)
Tc in

optimally doped cuprates, if it is an intrinsic property at all
(due to pronounced local inhomogeneities of samples and
quasi-two-dimensionality of the system), does not exclude
the EPI mechanism of pairing.

(2) Isotope Effect αΣ in the Self-Energy. The fine structure
of the quasiparticle self-energy Σ(k,ω), such as kinks and
slopes, can be resolved in ARPES measurements and in
some respect in STM measurements. It turns out that
there is isotope effect in the self-energy in the optimally
doped Bi2212 samples [139, 141, 142]. In the first paper
on this subject [139] it is reported a red shift δωk,70 ∼
−(10–15) meV of the nodal kink at ωk,70 � 70 meV for the
16O → 18O substitution. In [139] it is reported that the
isotope shift of the self-energy δΣ = Σ16 − Σ18 ∼ 10 meV
is very pronounced at large energies ω = 100–300 meV.
Concerning the latter result, there is a dispute since it is not
confirmed in other experiments [141, 142]. However, the
isotope effect in ReΣ(k,ω) at low energies [141, 142] is well
described in the framework of the Migdal-Eliashberg theory
for EPI [140] which is in accordance with the recent ARPES
measurements with low-energy photons ∼7 eV [192]. The
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Figure 34: (a) Effective ReΣ for five samples for O16 (blue) and O18

(red) along the nodal direction. (b) Effective ImΣ determined from
MDC full widths. An impurity term is subtracted at ω = 0. From
[192].

latter allowed very good precision in measuring the isotope
effect in the nodal point of Bi-2212 with T16

c = 92.1 K and
T18
c = 91.1 K [192]. They observed a shift in the maximum

of ReΣ(kN ,ω)—at ωk,70 ≈ 70 meV (it corresponds to the
half-breathing or to the breathing phonon)—by δωk,70 ≈
3.4± 0.5 meV as shown in Figure 34.

By analyzing the shift in ImΣ(kN ,ω)—shown in
Figure 34—one finds similar result for δωk,70 ≈ 3.2 ±
0.6 meV. The similar shift was obtained in STM measure-
ments [61–63] which is shown in Figure 32(b) and can have
its origin in different phonons. We would like to stress two
points: (i) in compounds with Tc ∼ 100 K the oxygen isotope

effect in Tc is moderate, that is, α(O)
Tc < 0.1 [192]. If we

consider this value to be intrinsic, then even in this case
it is not in conflict with the tunnelling experiments [53,

54] since the latter give evidence that vibrations of heavier
ions contribute significantly to Tc—see the discussion in
Subsection 1.3.4 on the tunnelling spectroscopy. (ii) In
ARPES measurements of [192] the effective EPI coupling
constant λep,eff � 0.6 is extracted, while the theory in
Subsection 1.3.3 gives that the real coupling constant is
larger, that is, λep > 1.2. This value is significantly larger than
the LDA-DFT theory predicts λep,LDA < 0.3 [28, 29]. This
again points that the LDA-DFT method does not pick up the
many-body effects due to strong correlations—see Section 2.

1.4. Summary of Section 1. The analysis of experimental data
in HTSC cuprates which are related to optics, tunnelling, and
ARPES measurements near and at the optimal doping gives
evidence for the large electron-phonon interaction (EPI)
with the coupling constant 1 < λep < 3.5. We stress that this
analysis is done in the framework of the Migdal-Eliashberg
theory for EPI which is a reliable approach for systems
near the optimal doping. The spectral function α2F(ω),
averaged over the Fermi surface, is extracted from various
tunnelling measurements on bulk materials and tin films. It
contains peaks at the same energies as the phonon density
of states Fph(ω). So obtained spectral function when inserted
in the Eliashberg equations provides sufficient strength for
obtaining high critical temperature Tc ∼ 100 K. These facts
are a solid proof for the important role of EPI in the
normal-state scattering and pairing mechanism of cuprates.
Such a large (experimental) value of the EPI coupling
constant and the robustness of the d-wave superconductivity
in the presence of impurities imply that the EPI potential
and the impurity scattering amplitude must be strongly
momentum dependent. The IR optical reflectivity data
provide additional but indirect support for the importance
of EPI since by using the spectral function (extracted from
tunnelling measurements) one can quantitatively explain
frequency dependence of the dynamical conductivity, optical
relaxation rate, and optical mass. These findings related to
EPI are additionally supported by ARPES measurements on
BSCO compounds. The ARPES kinks, the phononic features
and the isotope effect in the quasiparticle self-energy in the
nodal and antinodal points at low energies (ω� ωc) persist
in the normal and superconducting state. They are much
more in favor of EPI than for the spin fluctuation (SFI)
scattering mechanism. The transport EPI coupling constant
in HTSC cuprates is much smaller than λep, that is, λtr ∼
λep/3, which points to some peculiar scattering mechanism
not met in low-temperature superconductors. The different
renormalization of the quasiparticle and transport self-
energies by the Coulomb interaction (strong correlations)
hints to the importance of the small-momentum scattering
in EPI. This will be discussed in Section 2.

The ineffectiveness of SFI to solely provide pairing
mechanism in cuprates comes out also from the magnetic
neutron scattering on YBCO and BSCO. As a result, the
imaginary part of the susceptibility is drastically reduced in
the low-energy region by going from slightly underdoped
toward optimally doped systems, while Tc is practically
unchanged. This implies that the real SFI coupling constant

λsf(∼ g2
sf) is small since the experimental value g

(exp)
sf < 0.2 eV
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is much smaller than the assumed theoretical value g(th)
sf ≈

(0.7–1.5) eV.
Inelastic neutron and X-ray scattering measurements in

HTSC cuprates show that the broadening of some phonon
lines is by an order of magnitude larger than the LDA-DFA
methods predict. Since the phonon line-widths depend on
the EPI coupling and the charge susceptibility, it is evident
that calculations of both quantities are beyond the range of
applicability of LDA-DFT. As a consequence, the LDA-DFT
calculations overestimate the electronic screening and thus
underestimate the EPI coupling, since many-body effects due
to strong correlations are not contained in this mean-field
theory. However, in spite of the promising and encouraging
experimental results about the dominance of EPI in cuprates,
the theory is still confronted with difficulties in explaining
sufficiently large coupling constant in the d-channel. At
present there is not such a satisfactory microscopic theory
although some concepts, such as the the dominant EPI
scattering at small transfer momenta, are understood at least
qualitatively. This set of problems and questions will be
discussed in Section 2.

2. Theory of EPI in HTSC

The experimental results in Section 1 give evidence that
the electron-phonon interaction (EPI) in HTSC cuprates
is strong and in order to be conform with d-wave pairing
EPI must be peaked at small transfer momenta. A number of
other experiments in HTSC cuprates give evidence that these
are strongly correlated systems with large on-site Coulomb
repulsion of electrons on the Cu-ions. However, at present
there is no satisfactory microscopic theory of pairing in
HTSC cuprates which is able to calculate Tc and the
order parameter. This is due to mathematical difficulties
in obtaining a solution of the formally exact ab initio
many-body equations which take into account two important
ingredients—EPI and strong correlations [6]. In Section 2.1
we discuss first the ab initio many-body theory of supercon-
ductivity in order to point places which are most difficult
to be solved. Since the superconductivity is low energy
phenomenon (also in HTSC cuprates), one can simplify
the structure of the ab initio equations in the low-energy
sector (the Migdal-Eliashberg theory), where the high-
energy processes are incorporated in the (so called) ideal
band-structure (nonlocal) potential VIBS(x, y) and the vertex
function Γ. This program of calculations of VIBS(x, y), Γ, and
the EPI coupling (matrix elements) gep(x, y) is not realized
in HTSC superconductors due to its complexity. However,
one pragmatical way out is to calculate gep in the framework
of the LDA-DFT method which is at present stage unable
to treat strong correlations in a satisfactory manner. Some
achievements and results of the LDA-DFT methods which
are related to HTSC cuprates are discussed in Section 2.2.

In the case of very complicated systems, such as the HTSC
cuprates, the standard (pragmatical) procedure in physics is
to formulate a minimal theoretical model—sometimes called
toy model—which includes minimal set of important ingre-
dients necessary for qualitative and semiquantitative study

of a phenomenon. As a consequence of the experimental
results, the minimal theoretical model must comprise two
important ingredients: (1) EPI and (2) strong correlations.
In Section 2.3 we will formulate such a minimal theoretical
model—called the t-J model which includes EPI too. In the
framework of this model we will discuss the renormalization
of EPI by strong correlations. In recent years the interest
in these problems is increased and numerous numerical
calculations were done mostly on small clusters with n × n
atoms (n < 8). We will not discuss this subject which
is fortunately covered in the recent comprehensive review
in [10, 11]. The analytical approaches in studying the
renormalization of EPI by strong correlations, which are
based on a controllable and systematic theory, are rather
scarce. We will discuss such a systematic and controllable
theory in the framework of the t-J model with EPI, which
is formulated and solved in terms of Hubbard operators. The
theory of this (toy) model predicts some interesting effects
which might be important for understanding the physics of
HTSC cuprates. It predicts that the high-energy processes
(due to the suppression of doubly occupancy for U � Wb)
give rise to a nonlocal contribution to the band-structure
potential (self-energy Σ(x, y,ω = 0)) as well as to EPI. This
nonlocality in EPI is responsible for the peak in the effective
pairing potential (Vep,eff(q,ω)) at small transfer momenta
q(� qc � kF) [6, 78–80, 130]. The latter property allows that
the (strong) EPI is conform with d-wave pairing in HTSC
cuprates. Furthermore, the peculiar structural properties
of HTSC cuprates and corresponding electronic quasi-two-
dimensionality give an additional nonlocality in EPI. The
latter is due to the change of the weakly screened Madelung
energy which is involved in most of the lattice vibrations
along the c-axis. Since at present there is no quantitative
theory for the latter effect, we tackle this problem here only
briefly. The next task for the future studies of the physics of
HTSC cuprates is to incorporate these structural properties
in the minimal theoretical t-J model.

Finally, by writing this chapter our intention is not to
overview the theoretical studies of EPI in HTSC cuprates—
which is an impossible task—but first to elucidate the
descending way from the (old) well-defined ab initio
microscopic theory of superconductivity to the one of the
minimal model which treats the interplay of EPI and strong
correlations. Next, we would like to encourage the reader to
further develop the theory of HTSC cuprates.

2.1. Microscopic Theory of Superconductivity

2.1.1. Ab Iniitio Many-Body Theory. The many-body theory
of superconductivity is based on the fully microscopic
electron-ion Hamiltonian for electrons and ions in the
crystal—see, for instance, [193, 194]. It comprises mutually
interacting electrons which interact also with the periodic
lattice and with the lattice vibrations. In order to pass
continually to the problem of the interplay of EPI and strong
correlations and also to explain why the LDA-DFT method is
inadequate for HTSC cuprates, we discuss this problem here
with restricted details—more extended discussion can be
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found in [6, 194]. In order to describe superconductivity the
Nambu-spinor ψ̂†(r) = (ψ̂†↑ (r)ψ̂↓(r)) is introduced which
operates in the electron-hole space (ψ̂(r) = (ψ̂†(r))†) where
ψ̂↑(r), ψ̂†↑ (r) are annihilation and creation operators for spin
up, respectively, and so forth. The microscopic Hamiltonian
of the system under consideration contains three parts: Ĥ =
Ĥe+Ĥi+Ĥe-i. The electronic Hamiltonian Ĥe, which describes
the kinetic energy and the Coulomb interactions of electrons,
is given by

Ĥe =
∫
d3rψ̂†(r)τ̂3ε0

(
p̂
)
ψ̂(r)

+
1
2

∫
d3rd3r′ψ̂†(r)τ̂3ψ̂(r)Vc(r− r′)ψ̂†(r′)τ̂3ψ̂(r′),

(46)

where ε0( p̂) = p̂2/2m is the kinetic energy of electron
and Vc(r − r′) = e2/|r − r′| is the electron-electron
Coulomb interaction. Note that in the electron-hole space
the pseudospin (Nambu) matrices τ̂i, i = 0, 1, 2, 3 are Pauli
matrices. Since we will discuss only the electronic properties,
the explicit form of the lattice Hamiltonian Ĥi [6, 194] is
omitted here. The electron-ion Hamiltonian describes the
interaction of electrons with the equilibrium lattice and with
its vibrations, respectively:

Ĥe-i =
∑
n

∫
d3rVe-i

(
r− R0

n

)
ψ̂†(r)τ̂3ψ̂(r)

+
∫
d3rΦ̂(r)ψ̂†(r)τ̂3ψ̂(r).

(47)

Here, Ve-i(r − R0
n) is the electron-ion potential and its

form depends on the level of description of the electronic
subsystem. For instance, in the all-electron calculations one
has Ve-i(r − R0

n) = −Ze2/|r − R0
n| where Ze is the ionic

charge. The second term which is proportional to the
lattice distortion operator Φ̂(r) = −∑n,α ûαn∇αVe-i(r −
R0
n) + Φ̂anh(r) (because of convenience it includes also the

EPI coupling ∇αVe-i) describes the interaction of electrons
with harmonic (∼ ûαn) (or anharmonic ∼ Φ̂anh(r)) lattice
vibrations.

Dyson’s equations for the electron and phonon Green’s
functions Ĝ(1, 2) = −〈Tψ̂(1)ψ̂†(2)〉, D̃(1 − 2) =
−〈TΦ̂(1)Φ̂(2)〉 are Ĝ−1(1, 2) = Ĝ−1

0 (1, 2) − Σ̂(1, 2) and
D̃−1(1, 2) = D̃−1

0 (1, 2) − Π̃(1, 2), where the Ĝ−1
0 (1, 2) =

[(−∂/∂τ1−ε0(p1)+μ)τ̂0−ueff(1)τ̂3]δ(1−2) is the bare inverse
electronic Green’s function. Here, 1 = (r1, τ1), where τ1 is the
imaginary time in the Matsubara technique, and the effective
one-body potential ueff(1) = Ve-i(1) + VH + 〈Φ̂(1)〉, where
VH is the Hartree potential. The electron and phonon self-
energies Σ̂(1, 2) and Π̃(1, 2) take into account many-body
dynamics of the interacting system. The electronic self-energy
Σ̂(1, 2) = Σ̂c(1, 2) + Σ̂ep(1, 2) is obtained in the form

Σ̂(1, 2) = −Veff

(
1, 1

)
τ̂3Ĝ

(
1, 2

)
Γ̂eff

(
2, 2; 1

)
, (48)

where integration (summation) over the bar indices is
understood. The effective retarded potential Veff(1, 1) in (48)

contains the screened (by the electron dielectric function
εe(1, 2)) Coulomb and EPI interactions:

Veff(1, 2) = Vc
(
1− 1

)
ε−1
e

(
1, 2

)
+ ε−1

e

(
1, 1

)
D̃
(
1, 2

)
ε−1
e

(
2, 2

)
.

(49)

The inverse electronic dielectric permeability ε−1
e (1, 2)

= δ(1 − 2) + Vc(1 − 1)P(1, 2)ε−1
e (2, 2) is defined via

the irreducible electronic polarization operator P(1, 2)
= −Sp{τ̂3Ĝ(1, 2)Γ̂eff(2, 3; 2)Ĝ(3, 1+)}. The vertex function
Γ̂eff(1, 2; 3) = −δĜ(1, 2)/δueff(3) in (48) is the solution of the
complicated (and practically unsolvable) integro-differential
functional equation

Γ̂eff(1, 2; 3) = τ̂3δ(1− 2)δ(1− 3)

+
δΣ̂(1, 2)

δĜ
(
1, 2

) Ĝ(1, 3
)
Ĝ
(
4, 2

)
Γ̂eff

(
3, 4; 3

)
.

(50)

Note that the effective vertex function Γ̂eff(1, 2; 3), which
takes into account all renormalizations going beyond the
simple Coulomb (RPA) screening, is the functional of both
the electronic and phononic Green’s functions Ĝ and D̃,
thus making at present the ab initio microscopic equations
practically unsolvable.

2.1.2. Low-Energy Migdal-Eliashberg Theory. If the vertex
function Γ̂eff would be known, we would have a closed set
of equations for Green’s functions which describe dynamics
of the interacting electrons and lattice vibrations (phonons)
in the normal and superconducting state. However, this is
a formidable task and at present far from any practical
realization. Fortunately, we are mostly interested in low-
energy phenomena (with energies |ωn|, ξ � ωc and for
momenta k = kF + δk in the shell δk � δkc near the Fermi
momentum kF ; ωc and δkc are some cutoffs), which allows
us further simplification of equations [1, 2]. Therefore, the
strategy is to integrate high-energy processes—see more in
[194]. Here, we sketch this procedure briefly. Namely, Green’s
function Ĝ(k,ωn) = [iωn − (k2/2m− μ)τ̂3 − Σ̂(k,ωn)]−1 can
be formally written in the form

Ĝ(k,ωn) = Ĝlow(k,ωn) + Ĝhigh(k,ωn), (51)

where Ĝlow(k,ωn) = Ĝ(k,ωn)Θ(ωc − |ωn|)Θ(δkc − δk)
is the low-energy Green’s function and Ĝhigh(k,ωn) =
Ĝ(k,ωn)Θ(|ωn|−ωc)Θ(δk−δkc) is the high-energy one and
analogously D = Dlow(k,ωn) + Dhigh(k,ωn). By introducing
the small parameter of the theory s ∼ (ω/ωc) ∼ (δk/δkc) � 1
one has in leading order Ĝlow(k,ωn) ∼ s−1, Ĝhigh(k,ωn) �
1 and Dlow(k,ωn) ∼ s0, Dhigh(k,ωn) ∼ s2. Note that the
coupling constants (Vei,∇Vei,Vii, etc.) are of the order s0 =
1.

The procedure of separating low-energy and high-
energy processes lies also behind the adiabatic approximation
since in most materials the characteristic phonon (Debye)
energy ωD of lattice vibrations is much smaller than the
characteristic electronic Fermi energy EF (ωD � EF). In the
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small s(� 1) limit the Migdal theory [1, 2] keeps in the
total self-energy Σ linear terms in the phonon propagator
D̃ (D) only. In that case the effective vertex function can be
written in the form Γ̂eff(1, 2; 3) ∼= Γ̂c(1, 2; 3) + δΓ̂ep(1, 2; 3)

[1, 2], where the Coulomb charge vertex Γ̂c(1, 2; 3) = τ̂3δ(1−
2)δ(1 − 3) + δΣ̂c(1, 2)/δueff(3) contains correlations due to
the Coulomb interaction only but does not contain EPI and
phonon propagator D̃ explicitly. The part δΓ̂ep(1, 2; 3) =
δΣ̂ep(1, 2)/δueff(3) contains all linear terms with respect
to EPI. Note that in these diagrams enters the dressed
Green’s function which contains implicitly EPI up to infinite
order. By careful inspection of all (explicit) contributions to
δΓ̂ep(1, 2; 3) which is linear in D̃ one can express the self-

energy in terms of the charge (Coulomb) vertex Γ̂c(1, 2; 3)
only. As a result of this approximation, the part of the self-
energy due to Coulomb interaction is given by

Σ̂c(1, 2) = −V sc
c

(
1, 1

)
τ̂3Ĝ

(
1, 2

)
Γ̂c
(
2, 2; 1

)
, (52)

where V sc
c (1, 2) = Vc(1, 2)ε−1

e (2, 2) is the screened Coulomb
interaction. The part which is due to EPI has the following
form:

Σ̂ep(1, 2) = −Vep
(
1, 2

)
Γ̂c
(
1, 3; 1

)
Ĝ
(
3, 4

)
Γ̂c
(
4, 2; 2

)
, (53)

where Vep(1, 2) = ε−1
e (1, 1)D̃(1, 2)ε−1

e (2, 2) is the screened

EPI potential. Note that Σ̂ep(1, 2) depends now quadratically

on the charge vertex Γ̂c, which is due to the adiabatic
theorem.

It is well known that the Coulomb self-energy Σ̂c(1, 2) is
the most complicating part of the electronic dynamics, but
since we are interested in low-energy physics when s � 1,
then the term Σ̂c(1, 2) can be further simplified by separating
it in two parts:

Σ̂c(1, 2) = Σ̂(h)
c (1, 2) + Σ̂(l)

c (1, 2). (54)

The term Σ̂(h)
c (1, 2) is due to high-energy processes contained

in the product Ĝhigh(1, 2)Γ̂
high
c (2, 2; 1) (e.g., due to the large

Hubbard U in strongly correlated systems) and Σ̂(l)
c (1, 2) is

due to low-energy processes. The leading part of Σ̂(h)
c (1, 2) is 1,

that is, Σ̂(h)
c (1, 2) ∼ s0, while Σ̂(l)

c (1, 2) is small of order 1, that
is, Σ̂(l)

c (1, 2) ∼ s1. For further purposes we define the quantity
V̂0 as

V̂0(1, 2) = {Ve-i(1) +VH(1)}τ3δ(1− 2) + Σ̂(h)
c (1, 2), (55)

where Ve-i, VH are also of order s0. After the Fourier
transform with respect to time (and for small |ωn| � ωc)

Σ̂(h)
c is given by

Σ̂(h)
c (x1, x2,ωn) � Σ(h)

c0 (x1, x2, 0)τ̂3 +
(
Σ̂(h)
c0

)′
(x1, x2, 0) · iωn.

(56)

As we said, Σ(h)
c0 ∼ s0 while (Σ̂(h)

c0 )′ · ωn ∼ s1 because ωn ∼ s1.
From (52) it is seen that the part Σ̂(l)

c (1, 2) contains the low-
energy Green’s function Ĝlow(1, 2) and this skeleton diagram

is of order s1. The similar analysis based on (53) for Σ̂ep(1, 2)
gives that the leading order is s1 which describes the low-
energy part of EPI. After the separations of terms (of s0 and
s1 orders) the Dyson equation in the low-energy region has the
form
[
iωnZc(x, x)− Ĥ0(x, x)− Σ̂(l)

c (x, x,ωn)− Σ̂ep(x, x,ωn)
]

× Ĝlow(x, y,ωn
) = δ

(
x − y

)
τ̂0,

(57)

where x means integration
∫
d3x over the crystal volume.

The Coulomb renormalization function Zc(x, y) = δ(x −
y) − (Σ(h)

0c )′(x, y, 0) and the single-particle Hamiltonian
Ĥ0(x, y) collect formally all high-energy processes which
are unaffected by superconductivity (which is low-energy
process) where

Ĥ0
(

x, y
) =

{(
− 1

2m
∇2

x − μ
)
δ
(

x − y
)

+V (h)
0

(
x, y, 0

)}
τ̂3

(58)

with

V (h)
0

(
x, y, 0

) = {Ve-i(x) +VH(x)}δ(x − y
)

+ Σ(h)
c0

(
x, y, 0

)
.

(59)

One can further absorb Zc(x, y) into the renormalized Green’s
function

Ĝr
(
x, y,ωn

) = Z1/2
c (x, x)Ĝlow(x, y,ωn

)
Z1/2
c

(
y, y

)
, (60)

the renormalized vertex function Γ̂ren(1, 2; 3) =
Z−1/2
c Γ̂cZ−1/2

c , and the renormalized self-energies

Σ̂(l)
r;c,ep

(
x, y,ωn

) = Z−1/2
c (x, x)Σ̂(l)

c,ep
(
x, y,ωn

)
Z−1/2
c

(
y, y

)
(61)

and introduce the ideal band-structure Hamiltonian
ĥ0(x, y) = Z−1/2

c (x, x)Ĥ0(x, y)Z−1/2
c (y, y) given by

ĥ0
(

x, y
) =

{(
− 1

2m
∇2

x − μ
)
δ
(

x − y
)

+VIBS
(

x, y
)}
τ̂3. (62)

Here,

VIBS
(

x, y
) = Z−1/2

c (x, x)V (h)
0

(
x, y

)
Z−1/2
c

(
y, y

)
(63)

is the ideal band-structure potential (sometimes called the
excitation potential) and apparently nonlocal quantity,
which is contrary to the standard local potential Vg(x) in
the LDA-DFT theories—see Section 2.2. The static potential
VIBS(x, y) is of order s0 and includes high-energy processes.

Finally, we obtain the matrix Dyson equation for the
renormalized Green’s function Ĝr(x, y,ωn) which is the basis
for the (strong-coupling) Migdal-Eliashberg theory in the
low-energy region
[
iωnδ(x− x)− ĥ0(x, x)− Σ̂(l)

c,r(x, x,ωn)− Σ̂ep,r(x, x,ωn)
]

× Ĝr
(

x, y,ωn
) = δ

(
x− y

)
τ̂0,

(64)
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where Σ̂(l)
c,r and Σ̂ep,r have the same form as (52)-(53) but

with the renormalized Green’s and vertex functions Ĝr , Γ̂r
instead of Ĝ, Γ̂. We stress that (64) holds in the low-energy
region only. In the superconducting state the set of Eliashberg
equations in (64) are written explicitly in Appendix A, where
it is seen that the superconducting properties depend on the
Eliashberg spectral function α2

kpF(ω). The latter function is
defined also in Appendix A, (A.4), and it depends on material
properties of the system.

The important ingredients of the low-energy Migdal-
Eliashberg theory are the ideal band-structure Hamiltonian

ĥ0(x, y)—given by (62) which contains many-body (excita-
tion) ideal band-structure nonlocal periodic crystal potential

VIBS(x, y). The Hamiltonian ĥ0(x, y) determines the ideal
energy spectrum ε(k) of the conduction electrons and the
wave function ψi,p(x) through

ĥ0
(

x, y
)
ψi,k

(
y
) = [εi(k)− μ]ψi,k(x), (65)

where μ is the chemical potential. We stress that the

Hamiltonian ĥ0(x, y) also governs transport properties of
metals in low-energy region.

After solving (65) the next step is to expand all renor-
malized Green’s function, self-energies, vertices, and the
renormalized EPI matrix element (written symbolically as
gep,r = gep,0Γrenε−1

e ) in the basis of ψi,p(x) and to write
down the Eliashberg equations in this basis. We will not
elaborate further this program and refer the reader to
the relevant literature in [193, 194]. We point out that
even such simplified program of the low-energy Migdal-
Eliashberg theory was never fully realized in low-temperature
superconductors, because the nonlocal potential VIBS(x, y)
(enters the ideal band-structure Hamiltonian h0(x, y)) and
the renormalized vertex function (entering the EPI coupling
constant gep,r) which include electronic correlations are
difficult to calculate especially in strongly correlated metals.
Therefore, it is not surprising at all that the situation is
even more difficult in HTS materials which are strongly
correlated systems with complex structural and material
properties. Due to these difficulties the calculations of the
electronic band structure and the EPI coupling are usually
done in the framework of LDA-DFT where the many-
body excitation potential VIBS(x, y) is replaced by some
(usually local) potentialVLDA(x) which in fact determines the
ground-state properties of the crystal. In the next section we
briefly describe (i) the LDA-DFT procedure in calculating the
EPI coupling constant and (ii) some results of the LDA-DFT
calculations related to HTSC cuprates. We will also discuss
why this approximation is inappropriate when applied to
HTS materials.

2.2. LDA-DFT Calculations of the EPI Matrix Elements. We
point out again two results which are important for the
future microscopic theory of pairing in HTSC cuprates. First,
numerous experiments (discussed in Part I) give evidence
that the EPI coupling constant which enters the normal part
of the quasiparticle self-energy λZep = λs + λd + · · · is rather
large, that is, 1 < λZep < 3.5. In order to be conform with

d-wave pairing the effective EPI potential must be nonlocal
(and peaked at small transfer momenta q), which implies
that the s-wave and d-wave coupling constants are of the
same order, that is, λd ≈ λs. Second, the theory based on the
minimal t-J model, which will be discussed in Section 2.3,
gives that strong electronic correlations produce a peak at
small transfer momenta in the effective EPI pairing potential
thus giving rise to λd ≈ λs. This is a striking property
which allows that EPI is conform with d-wave pairing.
However, the theory is seriously confronted with the problem
of calculation of the coupling constants λZep. It turns out
that at present it is an illusory task to calculate λZep and λd
since it is extremely difficult (if possible at all) to incorporate
the peculiar structural properties of HTSC cuprates (layered
structure, ionic-metallic system, etc.) and strong correlations
effects in a consistent and reliable microscopic theory which
is described in Section 2.1. As it is stressed several times, the
LDA-DFT methods miss some important many-body effects
(especially in the band-structure potential) and therefore fail
to describe correctly screening properties of HTSC cuprates
and the strength of EPI. However, the LDA-DFT methods
are able to incorporate diverse structural properties of HTSC
cuprates much better than the simplified minimal t-J (toy)
model. Here, we discuss briefly some achievements of the
advanced LDA-DFT calculations which are able to take
partially into account some nonlocal effects in the EPI. The
latter are mainly due to the almost ionic structure along the
c-axis which is reflected in the very small c-axis plasma
frequency (ωc � ωab).

The main task of the LDA-DFT theory in obtaining the
EPI matrix elements is to calculate the change of the ground-
state (self-consistent) potential δVg(r)/δRα and the EPI cou-
pling constant (matrix element) gLDA

α (k, k′) (see its definition
below), which is the most difficult part of calculations.
Since in the LDA-DFT method the EPI scattering cannot be
formulated, then the recipe is that the calculated gLDA

α (k, k′)
is inserted into the many-body Eliashberg equations. By
knowing gLDA

α (k, k′) one can define the total (λ) and partial
(λq,ν) EPI coupling constants for the νth mode, respectively
[195], as

λ = 1
Np

∑
q,ν

λq,ν, λq,ν =
pγq,ν

πN(0)ωq,ν
, (66)

where p = 3κ is the number of phonon branches (κ is the
number of atoms in the unit cell) and N(0) is the density
of states at the Fermi energy (per spin and unit cell). The
phonon line-width γq,ν is defined in the Migdal-Eliashberg
theory by

γq,ν = 2πωq,ν
1
N

∑
ll′k

1
2Mωk−q,ν

∣∣eαν(q
) · gα,ll′

(
k, k− q

)∣∣2

×
⎡
⎣nF

(
ξl,k
)− nF

(
ξl,k + �ωq,ν

)

�ωq,ν

⎤
⎦

× δ
(
ξl′,k−q − ξl,k − �ωq,ν

)
.

(67)

Here, eαν (q) is the phonon polarization vectors; nF is the
Fermi function. Since the ideal energy spectrum from (65)
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ξl,k = El,k − μ and the corresponding eigenfunctions ψkl are
unknown, then instead of these one sets in (67) the LDA-
DFT eigenvalues for the lth band ξ(LDA)

l,k and ψ(LDA)
kl . In the

LDA-DFT method the EPI matrix element g(LDA)
α,ll′ is defined

by the change of the ground-state potential δVg(r)/δRα:

g(LDA)
α,ll′ (k, k′) =

〈
ψ(LDA)

kl

∣∣∣∣∣
∑
n

δVg(r)

δRnα

∣∣∣∣∣ψ(LDA)
k′l′

〉
. (68)

The index n means summation over the lattice sites; α =
x, y, z and the wave function ψ(LDA)

kl are the solutions of
the Kohn-Sham equation—see [6]. In the past various
approximations within the LDA-DFT method have been
used in calculating δVg(r)/δRα and λwhile here we comment
some of them only. (i) In most calculations in LTS systems
and in HTSC cuprates the rigid-ion (RI) approximation was
used as well as its further simplifications which inevitably
(due to its shortcomings and obtained small λ) deserves to
be commented. The RI approximation is based on the very
specific assumption that the ground-state (crystal) potential
Vg(r) can be considered as a sum of ionic potentials Vg(r) =∑

n Vg(r − Rn) where the ion potential Vg(r − Rn) and the
electron density ρe(r) are carried rigidly with the ion at Rn

during the ion displacement (Rn = R0
n + ûαn). In the RI

approximation the change of Vg(r) is given by

δVg(r) =
∑
n

∇αVg
(

r− R0
n

)
uαn,

δVg(r)

δRnα
= ∇αVg

(
r− R0

n

)
,

(69)

which means that RI does not take into account changes
of the electron density during the ion displacements. In
numerous calculations applied to HTSC cuprates the rigid-
ion model is even further simplified by using the rigid muffin-
tin approximation (RMTA) (or similar version with the rigid-
atomic sphere)—see discussions in [195–198]. The RMTA
assumes that the ground-state potential and the electron
density follow ion displacements rigidly inside the Wigner-
Seitz cell while outside it Vg(r) is not changed because of
the assumed very good metallic screening (e.g., in simple
metals):

∇αVg(r− Rn) =
{
∇αVg(r− Rn), r in cell n,

0, outside.
(70)

This means that the dominant EPI scattering is due to
the nearby atoms only and that the scattering potential is
isotropic. All nonlocal effects related to the interaction of
electrons with ions far away are neglected in the RMTA.
In this case gLDA

α,n (k, k′) is calculated by the wave function
centered at the given ion R0

n which can be expanded inside
the muffin-tin sphere (outside it the potential is assumed to
be constant) in the angular momentum basis {l,m}, that is,
〈

r | ψ(RMTA)
k

〉
=
∑
lmn

Clm
(
k, R0

n

)
ρl
(∣∣r− R0

n

∣∣)Ylm(φ, θ
)

(71)

(the angles φ, θ are related to the vector r̂ = (r − R0
n)/|r −

R0
n|). The radial function ρl(|r − R0

n|) is zero outside the

muffin-tin sphere. In that case the EPI matrix element is
given by gRMTA

α,n (k, k′) ∼ 〈Ylm|r̂|Yl′m′ 〉 and because r̂ is
vector the selection rule implies that only terms with Δl ≡
l′ − l = ±1 contribute to the EPI coupling constant in
the RMTA. This result is an immediate consequence of the
assumed locality of the EPI potential in RMTA. However,
since nonlocal effects, such as the long-range Madelung-
like interaction, are important in HTSC cuprates, then
additional terms contribute also to the coupling constant
gα,n, that is, gα,n(k, k′) = gRMTA

α,n (k, k′) + gnonloc
α,n (k, k′), where

a part (δgnonloc
α,n ) of the nonlocal contribution to gnonloc

α,n is
represented schematically:

δgnonloc
α,n (k, k′) ∼

〈
Ylm

∣∣∣(R0
n − R0

m

)
α

∣∣∣Yl′m′
〉
. (72)

From (72) comes out the selection rule Δl = l′ − l = 0 for
the nonlocal part of the E − P interaction. We stress that the
Δl = 0 (nonlocal) terms are omitted in the RMTA approach
and therefore it is not surprising that this approximation
works satisfactorily in elemental (isotropic) metals only.
The latter are characterized by the large density of states
at the Fermi surface which makes electronic screening very
efficient. This gives rise to a local EPI where an electron
feels potential changes of the nearby atom only. One can
claim with certainty that the RMTA method is not suitable
for HTSC cuprates which are highly anisotropic systems
with pronounced ionic character of binding and pronounced
strong electronic correlations. The RMTA method applied to
HTSC cuprates misses just this important part—the long-
range part EPI due to the change of the long-range Madelung
energy in the almost ionic structure of HTSC cuprates. For
instance, the first calculations done in [199] which are based
on the RMTA give very small EPI coupling constant λRMTA ∼
0.1 in YBCO, which is in apparent contradiction with the
experimental finding that λep is large—see Section 1.

However, these nonlocal effects are taken into account in
[195] by using the frozen-in phonon (FIP) method in evaluat-
ing of λep in La2−xMxCuO4. In this method some symmetric
phonons are considered and the band structure is calculated
for the system with the super-cell which is determined by
the periodicity of the phonon displacement. By comparing
the unperturbed and perturbed energies the corresponding
EPI coupling λν (for the considered phonon νth mode) is
found. More precisely speaking, in this approach the matrix
elements of δVg(r)/δRκ0,α are determined from the finite dif-
ference of the ground-state potential ΔVg,q,ν(r) = Vg(Rκ

0,L +
Δτκq,ν(L)) − Vg(Rκ

0,L) = ∑
L,κ Δτ

κ
q,ν(L)∂Vg(Rκ

0,L)/∂Rκ
0,L, where

L, κ enumerate elementary lattice cells and atoms in the
unit cell, respectively. The frozen-in atomic displacements
of the phonon Δτκq,ν(L) of the νth mode are given by

Δτκq,ν(L) = Δuq,ν(�/2Mκωq,ν)1/2 Re[eκ,ν(q)eiq·R] where Δuq,ν

is the dimensionless phonon amplitude and the phonon
polarization (eigen)vector eκ,ν(q) fulfills the condition∑

κ e∗κ,ν(q) · eκ,ν′(q) = δν,ν′ . Based on this approach various
symmetric Ag (and some B3g) modes of La2−xMxCuO4 were
studied [195], where it was found that the large matrix
elements are due to unusually long-range Madelung-like,
especial for the c-axis phonon modes. The obtained large
λep ≈ 1.37 is the consequence of the following three main
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facts. (i) The electronic spectrum in HTSC cuprates is
highly anisotropic, that is, it is quasi-two-dimensional. This
is an important fact for pairing because if the conduction
electrons would be uniformly spread over the whole unit cell
then due to the rather low electron density (n ∼ 1021 cm−3)
the density of states on the Cu and O in-plane atoms would
be an order of magnitude smaller than the real value. This
would further give an order of magnitude smaller EPI cou-
pling constant λep. Note that the calculated density of states
on the (heavy) Cu and (light) O in-plane atoms, NCu(0) ∼=
0.54 states/eV and NOxy (0) ∼= 0.35 states/eV, is of same order
of magnitude as in some LTS materials. For instance, in
NbC where Tc ≈ 11 K one has on (the heavy) Nb atom
NNb(0) ∼= 0.58 states/eV and on (the light) C atom NC(0) ∼=
0.25 states/eV. So, the quasi-two-dimensional character of
the spectrum is crucial in obtaining appreciable density of
states on the light O atoms in the CuO2 planes. (ii) In HTSC
cuprates there is strong Cu–O hybridization leading to good
in-plane metallic properties. This large covalency in the plane
is due to the (fortunately) small energy separation of the
electron levels on Cu and Oxy atoms which comes out from
the band-structure calculations [200], that is, Δ = |εCu −
εOxy | ≈ 3 eV. The latter value gives rise to strong covalent
mixing (the hybridization parameter tpd) of the Cudx2−y2

and Opx,y states, that is, tpd = −1.85 eV. It is interesting
that the small value of Δ is not due to the ionic structure
(crystal field effect) of the system but it is mainly due to
the natural falling of the Cudx2−y2 states across the transition-
metal series. So, the natural closeness of the atomic energy
levels of the Cudx2−y2 and Opx, py states is this distinctive feature
of HTSC cuprates which basically allows achievement of
high Tc. (iii) The ionic structure of HTSC cuprates which
is very pronounced along the c-axis is responsible for the
weak electronic screening along this axis and according to
that for the significant contribution of the nonlocal (long-
range) Madelung-like interaction to EPI. It turns out that
because of the ionicity of the structure the La and Oz axial
modes are strongly coupled with charge carriers in the CuO2

planes despite the fact that the local density of states on these
atoms is very small [195], that is,NLa(0) = 0.13 states/eV and
NOz (0) = 0.016 states/eV. (For comparison, on planar atoms
Cu and Oxy one has NCu(0) = 0.54 states/eV and NOxy (0) =
0.35 states/eV.) These calculations show that the lanthanum
mode (with ωq,ν = 202 cm−1) at the q = (0, 0.2π/c) zone
boundary (fully symmetric Z-point) has ten times larger
coupling constant λLa

q,ν(FIP) = 4.8 than it is predicted in
the RMT approximation λLa

q,ν(RMT) = 0.48. The similar
increase holds for the average coupling constant, where
λLa

ν,average(FIP) = 1.0 but λLa
ν,average(RMT) = 0.1. Note that for

the q ≈ 0 La-mode one obtains λLa
ν (FIP) = 4.54 compared

to λLa
ν (RMT) = 0.12. Similar results hold for the axial apex-

oxygen q = (0, 0.2π/c) mode (Oz) with ωq,ν = 396 cm−1

where the large (compared to the RMT method) coupling
constant is obtained: λOz

q,ν = 14 and λOz
ν,average = 4.7, while

for q ≈ 0 axial apex-oxygen modes with ωq,ν = 415 cm−1

one has λOz
ν,average = 11.7. After averaging over all calculated

modes it was estimated that λ = 1.37 and ωlog ≈ 400 K.
By assuming that μ∗ = 0.1 one obtains Tc = 49 K by using

Allen-Dynes formula for Tc ≈ 0.83ωlog exp{−1.04(1+λ)/[λ−
μ∗(1+0.62λ)]}withωlog = 2

∫
dω dωα2(ω)F(ω) lnω/λω. For

μ∗ = 0.15 and 0.2 one obtains Tc = 41 and 32 K, respectively.
We stress that the rather large λep (and Tc) is due to the
nonlocal (long range) effects of the metallic-ionic structure
of HTSC cuprates and non-muffin-tin corrections in EPI, as
was first proposed in [201, 202]. However, we would like to
stress that the optimistic results for λep obtained in [195]
are in fact based on the calculation of the EPI coupling for
some wave vectors q with symmetric vibration patterns and
in fact the obtained λep is an extrapolated value. The all-
q calculations of λep,q which take into account long-range
effects are a real challenge for the LDA-DFT calculations and
are still awaiting.

Finally, it is worth to mention important calculations
of the EPI coupling constant in the framework of the
linear-response full-potential linear-muffin-tin-orbital method
(LRFP-LMTO) invented in [203, 204] and applied to the
doped HTSC cuprate (Ca1−xSrx)1−yCuO2 for x ∼ 0.7 and
y ∼ 0.1 with Tc = 110 K [205]. Namely, these calculations
give strong evidence that the structural properties of HTSC
cuprates already alone make the dominance of small-q
scattering in EPI, whose effect is additionally increased by
strong correlations. In order to analyze this compound in
[205] the calculations are performed for CaCuO2 doped by
holes in a uniform, neutralizing back-ground charge. The
momentum (q = (q‖, q⊥)) dependent EPI coupling constant
(summed over all phonon branches ν) in different L channels
(s, p,d.) is calculated by using a standard expression

λL
(

q
) =M

∑
k,ν

YL
(

k + q
)∣∣∣gk,q,ν

∣∣∣2
YL(k)δ

(
ξk+q

)
δ(ξk). (73)

Here, ξk is the quasiparticle energy, gk,q,ν is the EPI coupling
constant (matrix element) with the νth branch, YL(k) is
the L-channel wave function, and the normalization factor
M ∝ N−1

L (0) with the partial density of states is NL(0) ∝∑
k Y

2
L (k)δ(ξk). The total coupling constant in the L-channel

is an average of λL(q) over the whole 2D Brillouin zone (over
q‖), that is, λL(q⊥) = 〈λL(q‖)〉BZ. We stress three important
results of [205]. First, the s- and d-coupling constants, λs(q),
λd(q), are peaked at small transfer momenta q ∼ (π/3a, 0, 0)
as it is shown in [205, Figure 3]. This result is mainly caused
by the nesting properties of the Fermi surface shown in
[205, Figure 1]. Second, the q-dependence of the integrated
EPI matrix elements |gL,q|2 = λL(q)/χ′′L (q) (with χ′′L (q) ∝∑

k YL(k + q)YL(k)δ(ξk+q)δ(ξk)) for L = s,d is similar to that
of λL(q), that is, these are peaked at small transfer momenta
q � 2kF . Both of these results mean that the structural
properties of HTSC cuprates imply the dominance of small-
q EPI scattering. Third, the calculations give similar values
for λs(q⊥ = 0) and λd(q⊥ = 0), that is, λs = 0.47 for s-
wave and λd = 0.36 for d-wave pairing [205]. The result that
λd ≈ λs is due to the dominance of the small q-scattering
in EPI, which means that the nonlocal effects (long-range
forces) in EPI of HTSC cuprates are very important. This
result together with the finding of the dominance of the
small-q scattering in EPI due to strong correlations [78–
80, 130, 179, 180] mean that strong correlations and the
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peculiar structural properties of HTSC cuprates make EPI
conform with d-wave pairing, either as its main cause or as
its supporter. We stress that the obtained coupling constant
λd = 0.36 is rather small to give d-wave pairing with large
Tc and on the first glance this result is against the EPI
mechanism of pairing in cuprates. However, it is argued
throughout this paper that the LDA methods applied to
strongly correlated systems overestimate the screening effects
and underestimate the coupling constant and therefore their
quantitative predictions are not reliable.

2.3. EPI and Strong Correlations in HTSC Uprates

2.3.1. Minimal Model Hamiltonian. The minimal microscopic
model for HTSC cuprates must include at least three orbitals:
one dx2−y2 -orbital of the Cu-ion and two p-orbitals (px,y) of
the O-ion since they participate in transport properties of
these materials—see more in [6] and references therein. The
electronic part of the Hamiltonian (of the minimal model)
is Ĥ = Ĥ0 + Ĥint—usually called the Emery model (or
the p-d model) [206], where the one-particle tight-binding
Hamiltonian Ĥ0 describes the lowering of the kinetic energy
in the p-d model (with three bands or orbitals):

Ĥ0 =
∑
i,σ

(
ε0
d − μ

)
d†iσdiσ +

∑
j,α,σ

(
ε0
pα − μ

)
p†jασ p jασ

+
∑
i, j,α,σ

t
pd
i jαd

†
iσ p jασ +

∑
j, j′,α,β,σ

t
pp
j j′,αβ p

†
jασ p j′βσ .

(74)

Here t
pd
i jα (i, j enumerate the Cu- and O-sites, resp.) is the

hopping integral between the pα(α = x, y)—and d-states and
t
pp
j j′αβ between the pα- and pβ-states—while ε0

d and ε0
pα are

the bare d- and p-local energy levels and μ is the chemical
potential. This tight-binding Hamiltonian is written in the
electronic notation where the charge-transfer energy Δdp,0 ≡
ε0
d − ε0

p > 0 by assuming that there is one 3dx2−y2 electron on

the copper (Cu2+) while electrons in the p-levels of the O2−

ions occupy filled bands. Ĥ0 contains the main ingredients
coming from the comparison with the LDA-DFT band-
structure calculations. The LDA-DFT results are reproduced
by assuming that tpp � tpd (and ε0

pα = ε0
p ) where the

good fit to the LDA-DFT band structure is found for Δdp,0 ≡
ε0
d − ε0

p ≈ 3.2 eV and tpd(≡ tpd) = (
√

3/2)(pdσ), (pdσ) =
−1.8 eV. The total LDA bandwidth Wb = (4

√
2)|tpd| ∼= 9 eV

[207].
The electron interaction is described by Ĥint:

Ĥint = Ud

∑
i

ndi↑n
d
i↓ +Up

∑
j,α

n
p
jα↑n

p
jα↓ + V̂c + V̂ep, (75)

where Ud and Up are the on-site Coulomb repulsion

energies at Cu and O sites, respectively, while V̂c and V̂ep

describe the long-range part of the Coulomb interaction
of electrons (holes) and EPI, respectively. Note that the
Hubbard repulsion Ud on the Cu-ion is different from its
bare atomic value Ud0(≈16 eV for Cu) due to various kinds
of screening effects in solids [208–210]. It turns out that

in most transition metal oxides one has Ud � Ud0. This
problem is thoroughly studied in [208–210] and applied to
HTSC cuprates. The estimation from the numerical cluster
calculations [211] gives Ud = 9–11 eV and Up = 4–6 eV but
because ndi Ud � n

p
j Up the on-site repulsion on the oxygen

ion is usually neglected at the first stage of the analysis.

Note that in the case of large Ud(� tpd,Δdp,0) the hole
notation is usually used where in the parent compound (and
for |tpd| � Δdp,0) one has 〈ndi 〉 = 1, that is, one hole in
the 3D-shell (in the 3dx2−y2 state) in the ground state. In
the limit of large Ud → ∞ the doubly occupancy on the Cu
atoms is forbidden and only two copper states are possible:
Cu2+—described by the quantum state d†iσ |0〉 with one hole
in the 3D shell and Cu1+—described by |0〉 with zero holes
in the filled 3D shell. In this (hole) notation the oxygen p-
level is fully occupied by electrons, that is, there are no holes
(〈npj 〉 = 0) in the occupied oxygen 2p-shell of O2−. In this
notation the vacuum state |0v〉 (not the ground state) of
the Hamiltonian Ĥ for large Ud corresponds to the closed-
shell configuration Cu1+O2−. In the hole notation the hole
p-level ε0

ph lies higher than the hole d-level ε0
dh, that is,

Δpd,0 ≡ ε0
ph − ε0

dh > 0 (note that in the electron notation
it is opposite) and Ud means repulsion of two holes (in
the 3dx2−y2 orbital) with opposite spins—3d8 configuration
of the Cu3+ ion. Note that ε0

ph = −ε0
p, ε0

dh = −ε0
d, and

tpd,h = −tpd. In the following the index h in tpd,h is omitted.
The reason for ε0

ph > ε0
dh is partly in different energies for

the hole sitting on the oxygen and copper, respectively [207].
From this model one can derive in the limit U → ∞ the
t-J model for the 2D lattice in the CuO2 plane [212, 213],
where now each lattice site corresponds to a Cu-atom. In
the presence of one hole in the 3D-shell then in the undoped
(no oxygen holes) HTSC cuprate each lattice site is occupied
by one hole. By doping the system with holes the additional
holes go onto O-sites. Furthermore, due to the strong Cu–
O covalent binding the energetics of the system implies that
an O-hole forms a Zhang-Rice singlet with a Cu-hole [212].
In the t-J model the Zhang-Rice singlet is described by an
empty site. Since in the t-J model the doubly occupancy is
forbidden, one introduces annihilation (Hubbard) operator
of the composite fermion X̂σ0

i = c†iσ(1−ni,−σ) which describes
creation of a hole (in the 3D-shell of the Cu-atoms) on the
ith site if this site is previously empty (thus excluding doubly
occupancy), that is, the constraint ni,σ + ni,−σ ≤ 1 must be
fulfilled on each lattice site. In this picture the doped-hole
concentration δ means at the same time the concentration of
the oxygen holes, that is, of the Zhang-Rice singlets.

In order not to confuse the reader we stress the difference
in the meaning of the hole in the (p-d) three-band Emery
model and in the single-band (effective) t-J model. In the
Emery model the hole means the absence of the electron
in the filled shell—the 3D shell for Cu atoms(ions) and 2p
shell for O atoms(ions). On the other side the hole on the ith
lattice site in the t-J model means the presence of the Zhang-
Rice singlet on this site.

The bosonic-like operators X̂σ1σ2
i = X̂σ10

i X̂0σ2
i for σ1 /= σ2

create a spin fluctuation at the ith site and the spin operator is
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given by S = X̂σ10
i (−→σ )σ1σ2

X̂0σ2
i where summation over the bar

indices is understood. The operator
∑

σ X̂
σσ
i has the meaning

of the hole number on the ith site. It is useful to introduce
the operator X̂00

i = X̂0σ
i X̂σ0

i at the ith lattice site which is the
number of Zhang-Rice singlets on the ith site. For X̂00

i |0〉 =
1|0〉 the ith site is occupied by the Zhang-Rice singlet, while
for X̂00

i |1〉 = 0|1〉 there is no Zhang-Rice singlet on the ith
site (i.e., this site is occupied only by one 3d9 hole on the Cu
site). This property of X̂00

i is due to the local constraint

X̂00
i +

∑
σ=↑↓

X̂σσ
i = 1, (76)

which forbids doubly occupancy of the ith site by holes. By
projecting out doubly occupied (high-energy) states the t-J
model reads

Ĥt- j =
∑
i,σ

ε0
i X̂

σσ
i −

∑
i, j,σ

ti j X̂
σ0
i X̂0σ

j

+
∑
i, j

Ji j

(
Si · S j − 1

4
n̂in̂ j

)
+ Ĥ3.

(77)

The first term (∼ ε0
i ) describes an effective local energy

of the hole (or the Zhang-Rice singlet), the second one
(∼ ti j) describes hopping of the holes, and the third one
(∼ Ji j) is the Heisenberg-like exchange energy between
two holes. The theory [212] predicts that |ε0

i | � |ti j|.
This property is very important in the study of EPI. Ĥ3

contains three-site term which is usually omitted believing
that it is not important. For charge fluctuation processes it
is plausible to omit it, while for spin-fluctuation processes
it is questionable approximation. If one introduces the
enumeration α,β, γ, λ = 0, ↑, ↓, then the Hubbard operators
satisfy the following algebra:

[
X̂
αβ
i , X̂

γλ
j

]
± = δi j

[
δγβX̂

αλ
i ± δαλX̂γβ

i

]
, (78)

where δi j is the Kronecker symbol. Note that the Hubbard

operators possess the projection properties with X̂
αβ
i X̂

γλ
i =

δβγX̂
αλ
i . The (anti)commutation relations in (78) are

more complicated than the canonical Fermi and Bose
(anti)commutation relations, which complicates the mathe-
matical structure of the theory. To escape these complications
some novel techniques have been used, such as the one slave
boson-technique. In this technique X̂0σ

i = fiσb
†
i , X̂σ1σ2

i =
f †iσ1

fiσ2 are represented in terms of the fermion (spinon)
operator fiσ which annihilates the spin on the ith and the
boson (holon) operator b†i which creates the Zhang-Rice
singlet.

In the minimal theoretical model the electron-phonon
interaction (EPI) contains in principle two leading terms:

Ĥep = Ĥ ion
ep + Ĥcov

ep , (79)

which are the “ionic” one (Ĥ ion
ep ) and the “covalent” one

(Ĥcov
ep ). The “ionic” term describes the change of the energy

of the hole (or the Zhang-Rice singlet) at the ith site due to
lattice vibrations and it reads [6, 78–80, 130]

Ĥ ion
ep =

∑
i,σ

Φ̂iX̂
σσ
i , (80)

where the “displacement” operator

Φ̂i =
∑
Lκ

[
ε
(

R0
i − R0

Lκ + ûi − ûLκ
)
− ε

(
R0
i − R0

Lκ

)]
(81)

(which as in Section 2.1 includes the bare coupling constant)
describes the change of the hole (or Zhang-Rice singlet)
energy ε0

a,i by displacing atoms in the lattice by the vector ûLκ.
In the harmonic approximation the EPI potential is given
by Φ̂i =

∑
gi(q, λ) exp{iqRi}[bq,λ + b†−q,λ] where bq,λ and

b†q,λ are the annihilation and creation operator of phonons
with the polarization λ, respectively. This term describes in
principle the following processes: (1) the change of the O-
hole and Cu-hole bare energies ε0

ph, ε0
dh in the three-band

model due to lattice vibrations, (2) the change of the long-
range Madelung energy (which is due to the ionicity of the
structure) by lattice vibrations along the c-axis, and (3) the
change of the Cu–O hopping parameter tpd in the presence
of vibrations, and so forth. Here, L and κ enumerate unit
lattice vectors and atoms in the unit cell, respectively. Usually,
the EPI scattering is studied in the harmonic approximation
where the phonon operator Φ̂i is calculated in the harmonic
approximation (Φ̂ ∼ û) for the EPI interaction of holes with
some specific phononic modes, such as the breathing and
half-breathing ones [10, 11, 169]. The theory which includes
also all other (than oxygen) vibrations in Φ̂i is still awaiting.

It is interesting to make comparison of the EPI coupling
constants in the t-J model and in the Hartree-Fock (HF)
approximation (which is the analogous of the LDA-DFT
method) of the three-band Emery (p-d) model in (74)-
(75) when the problem is projected on the single band.
For instance, the coupling constant with the half-breathing
mode at the zone boundary in the HF approximation (which
mimics the LDA-DFT approach) is given by

gHF
hb = ±4tpd

∂tpd
∂RCu–O

1
εd − εp

u0, (82)

while the coupling constant in the t-J model gt-Jhb (=
∂ε0/∂RCu–O) is given by

gt-Jhb = ±4tpd
∂tpd

∂RCu–O

⎡
⎣2p2 − 1
εd − εp

+
2p2

Ud −
∣∣∣εd − εp

∣∣∣

⎤
⎦u0, (83)

where p = 0.96—see [10, 11, 169] and references therein.
It is obvious that in the t-J model the electron-phonon
coupling is different from the HF one, since the former
contains an additional term coming from the many-body
effects, which are not comprised by the HF (LDA-DFT)
calculations. The first term in (83) describes the hopping of
a 3D hole into the O 2p-states and this term exists also in the
LDA-DFT coupling constant—see (82). However, the second
term in (83), which is due to many-body effects, describes the
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hopping of an O 2p-hole into the (already) single occupied
Cu 3D state and it does not exist in the LDA-DFT approach.
Since the corresponding dimensionless coupling constant
λhb is proportional to |ghb|2, one obtains that the bare t-J
coupling constant is almost three times larger than the LDA-
DFT one:

λt-Jhb ≈ 3λHF
hb . (84)

This example demonstrates clearly that the LDA-DFT
method is inadequate for calculating the EPI coupling
constant in HTSC cuprates.

Note that there is also a covalent contribution to EPI
which comes from the change of the effective hopping (t)
in of the t-J model (77) and the exchange energy (J) in the
presence of atomic displacements:

Ĥcov
ep = −

∑
i, j,σ

∂ti j

∂
(

R0
i − R0

j

)(ûi − û j

)
X̂σ0
i X̂0σ

j

+
∑
i, j,

∂Ji j

∂
(

R0
i − R0

j

)(ûi − û j

)
Si · S j .

(85)

Here, we will not go into details but only stress that since
|ε0
i | � |ti j| then the covalent term in the effective t-J model is

much smaller than the ionic term—see more in [6, 10, 11, 169]
and references therein—and in the following only the term
Ĥ ion
ep will be considered [6, 78–80, 130].

2.3.2. Controllable X-Method for the Quasiparticle Dynamics.
The minimal model Hamiltonian for strongly correlated
holes with EPI (discussed above) is expressed via the Hub-
bard operators which obey “ugly” noncanonical commuta-
tion relations. The latter property is rather unpleasant for
making a controllable theory in terms of Feynmann diagrams
(for these “ugly” operators) and some other approaches are
required. A possible way out is to express the Hubbard
operators in terms of fermions and bosons (which must be
confined) as, for instance, in the slave boson (SB) method.
However, in real calculations which are based on some
approximations the SB method is confronted with some sub-
tle constraints whose fulfillments require very sophisticated
mathematical treatment. Fortunately, there is a mathemati-
cally controllable approach for treating the problem directly
with Hubbard operators and without using slave-boson
(or fermion) techniques. This method—we call it the X-
method—is based on the general Baym-Kadanoff technique
which allows to treat the problem by the well-defined and
controllable 1/N expansion for the Green’s functions in terms
of Hubbard operators. This approach is formulated in [214]
while the important refinement of the method is done in
[78–80, 130]. In the paramagnetic and homogeneous state
(with finite doping) the Green’s function Gσ1σ2 (1 − 2) is
diagonal, that is, Gσ1σ2 (1− 2) = δσ1σ2G(1− 2) where

G(1− 2) = −
〈
TX̂0σ(1)X̂σ0(2)

〉
= g(1− 2)Q, (86)

with the Hubbard spectral weight Q = 〈X̂00〉 + 〈X̂σσ〉. The
function g(1 − 2) plays the role of the quasiparticle Green’s

function—see more in [6, 78–80, 130, 179, 180]. It turns out
that in order to have a controllable theory (1/N expansion)
one way is to increase the number of spin components from
two to N by changing the constraint (76) into the new one

X̂00
i +

N∑
σ=1

X̂σσ
i = N

2
. (87)

In order to reach the convergence of physical quantities in
the limit N → ∞ the hopping and exchange energy are also
rescaled, that is, ti j = t0,i j /N and Ji j = J0,i j /N . In order to
eliminate possible misunderstandings we stress that in the
case N > 2 the constraint in (87) spoils some projection
properties of the Hubbard operators. Fortunately, these (lost)
projection properties are not used at all in the refined theory.
As a result one obtains the functional integral equation
for G(1, 2), thus allowing unambiguous mathematical and
physical treatment of the problem. In [78–80, 130, 179, 180] it
is developed a systematic 1/N expansion for the quasiparticle
Green’s function g(1 − 2)(= g0 + g1/N + · · · ), Q(= Nq0 +
q1 + · · · ) (also for G(1 − 2)) and the self-energy. For large
N(→ ∞) the leading term isG0(1−2) = g0(1−2)Q0 = O(N)
with g0 = O(1) and Q0 = 〈X̂00

i 〉 = Nδ/2. Here, δ is the
concentration of the oxygen holes (that is, of the Zhang-Rice
singlets) which is related to the chemical potential by the

equation 1 − δ = 2
∑

p nF(p) with nF(p) = (eε0(k)−μ + 1)
−1

.
The quasiparticle Green’s function g0(k,ω) and the quasipar-
ticle spectrum ε0(k) in the leading order are given by

g0(k,ω) ≡ G0(k,ω)
Q0

= 1
ω − [ε0(k)− μ] , (88)

ε0(k) = εc − δ · t(k)−
∑

p
J0
(

k + p
)
nF
(

p
)
. (89)

The level shift is εc = ε0 + 2
∑

p t(p)nF(p) and t(p) is the
Fourier transform of the hopping integral ti j—see more in
[6].

Let us summarize the main results of the X-method in
leading O(1)-order for the quasiparticle properties in the t-J
model [6, 78–80, 130, 179, 180]. (i) The Green’s function
g0(k,ω) describes the coherent motion of quasiparticles whose
contribution to the total spectral weight of the Green’s
function G0(k,ω) is Q0 = Nδ/2. The coherent motion of
quasiparticles is described in leading order by G0(k,ω) =
Q0g0(k,ω) and the quasiparticle residuum Q0 disappears in
the undoped Mott insulating state (δ = 0). This result is
physically plausible since in the Mott insulating state the
coherent motion of quasiparticles, which is responsible for
finite conductivity, vanishes. (ii) The quasiparticle spectrum
ε0(k) plays the same role as the eigenvalues of the ideal band-

structure Hamiltonian ĥ0(x, y) (it contains the excitation
potential VIBS(x, y) which is due to high-energy processes of
the Coulomb interaction). So, if we would consider εtb(k) =
−t(k) as the tight-binding parametrization of the LDA-DFT
band-structure spectrum which takes int account only weak
correlations (with the local potential Vxc(x)δ(x − y)), then
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one can define a nonlocal excitation potential VtJ
IBS(x, y) =

Ṽ tJ
IBS(x, y) +Vxc(x)δ(x− y) which mimics strong correlations

in the t-J model

Ṽ tJ
IBS

(
x, y

) ≈ V0δ
(

x − y
)

+ (1− δ)t
(

x − y
)− J̃(x− y

)
.

(90)

Here, V0 = 2
∑

p t(p)nF(p) and t(x − y) is the Fourier

transform of t(k) while J̃(x − y) is the Fourier transform
of the third term in (89). The relative excitation potential
Ṽ tJ

IBS(x, y) is due to strong correlations (suppression of
doubly occupancy on each lattice site) and as we will see
below it is responsible for the short-range screening of EPI
in such a way that the forward scattering peak appears in
the effective EPI interaction—see discussion below. (iii) For
the very low doping ε0(k) is dominated by the exchange
parameter if J0 > δ · t0. However, in the case when J0 �
δ · t0 there is a band narrowing by lowering the hole-
doping δ, where the band width is proportional to the hole-
concentration δ, that is, Wb = z · δ · t0. (iv) The O(1)-order
quasiparticle Green’s function g0(k,ω) and the quasiparticle
spectrum ε0(k) in the X-method have similar form as the
spinon Green’s function g0, f (k,ω) = −〈T fσ f †σ 〉k,ω and the
spinon energy εs(k) in the SB method. However, in the SB
method there is a broken gauge symmetry in the metallic

state (with δ /= 0) which is characterized by 〈b̂i〉 /= 0. This
broken local gauge symmetry in the slave-boson method in
O(1) order, which is due to the local decoupling of spinon
and holon, is in fact forbidden by Elitzur’s theorem. On the
other side the local gauge invariance is not broken in the X-
method where Green’s function G0(k,ω) describes motion
of the composite object, that is, simultaneous creation of
the hole and annihilation of the spin at a given lattice site,
while in the SB theory there is a spin-charge separation

because of the broken symmetry (〈b̂i〉 /= 0). The assumption

of the broken symmetry 〈b̂i〉 /= 0 gives qualitative satisfactory
results for the quasiparticle energy for the caseN = ∞ inD >
2 dimensions. However, the analysis of response functions
and of higher-order 1/N corrections to the self-energies very
delicate in the SB theory and special techniques must be
implemented in order to restore the gauge invariance of the
theory. On the other side the X-method is intrinsically gauge
invariant and free of spurious effects in all orders of the 1/N
expansion. Therefore, one expects that these two methods
may deliver different results in O(1) and higher order in
response functions. This difference is already manifested in
the calculation of EPI where the charge vertex in these two
methods is peaked at different wave vectors q, that is, at
q = 0 in the X-method and |q| /= 0 in the SB method—
see Section 2.3.5. (v) In [215, 216] it is shown that in the
superconducting state the anomalous self-energies (which
are of O(1/N)-order in the 1/N expansion) of the X- and
SB-methods differ substantially. As a consequence, the SB
method [217] predicts false superconductivity in the t-J
model (for J = 0) with large Tc (due to the kinematical
interaction), while the X-method gives extremely small Tc(≈
0) [215, 216]. So, although the two approaches yield some

similar results in leading O(1)-order they, are different at
least in next to leading O(1/N)-order.

2.3.3. EPI Effective Potential in the t-J Model. The theory
of EPI in the minimal t-J model based on the X-method
predicts that the leading term in the EPI self-energy Σep is
given by the expression [6, 78–80, 130]

Σep(1, 2) = −Vep
(
1− 2

)
γc
(
1, 3; 1

)
g0
(
3− 4

)
γc
(
4, 2; 2

)
, (91)

where the screened (by the dielectric constant) EPI potential

Vep(1− 2) = ε−1
e

(
1− 1

)
V 0
ep

(
1− 2

)
ε−1
e

(
2− 2

)
(92)

andV 0
ep(1−2) = −〈TΦ̂(1)Φ̂(2)〉 is the “phonon” propagator

which may also describe an anharmonic EPI. It is obvious
that (91) is equivalent to (53) in spite the fact that the theory
is formulated in terms of the Hubbard operators. The charge
vertex γc(1, 2; 3) = −δg−1

0 (1, 2)/δueff(3) corresponds to the
the renormalized vertex Γc,r in (53) and it describes the
screening by strong correlations. It depends on the relative
excitation potential Ṽ tJ

IBS(x, y). The electronic dielectric func-
tion εe(1−2) describes the screening of EPI by the long-range
part of the Coulomb interaction. Note that in the harmonic
approximation Φ̂(1) contains the bare EPI coupling constant
g0
ep and lattice displacement û, that is, Φ̂ ∼ g0

epû—see more
in [6]. (Note that in the above equations summation and
integration over bar indices are understood.) The self-energy
Σep(k,ω) due to EPI reads

Σep(k,ω) =
∫∞

0
dν
〈
α2F(k, k′, ν)

〉
k′R(ω, ν), (93)

with R(ω, ν) = −2πi(nB(ν) + 1/2) +ψ(1/2 + i)−ψ(1/2− i(ν +
ω)/2πT) where nB(ν) is the Bose distribution function and
ψ is di-gamma function. The Eliashberg spectral function is
given by

α2F(k, k′,ω) = N(0)
∑

ν

∣∣gν(k, k− k′)
∣∣2

× δ(ω − ων(k− k′))γ2
c (k, k− k′),

(94)

where gν(k, p) is the EPI coupling constant for the νth
mode, where the renormalization by long-range Coulomb
interaction is included, that is, gν(k, p) = g0

ep,ν(k, p)/εe(p).
〈· · · 〉k denotes Fermi-surface average with respect to the
momentum k and N(0) is the density of states renormalized
by strong correlations. The effect of strong correlations in
the adiabatic limit is stipulated in the charge vertex function
γc(k, k − k′) which, as we will see in Section 2.3.4, changes
the properties of Vep(q, ν) drastically compared to weakly
correlated systems. In fact the charge vertex depends on
frequency ω but in the adiabatic limit (ωph � W) and
for qvF > ωph it is practically frequency independent, that

is, γ(ad)
c (k, q,ω) ≈ γc(k, q,ω = 0) where the latter is real

quantity. For J = 0 in the t-t′ model the 1/N expansion
gives N(0) = N0(0)/q0 where q0 = δ/2. For J /= 0 the density
of states N(0) does not diverge for δ → 0 where N(0)(∼
1/J0) > N0(0). The bare density of states N0(0) is calculated in
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absence of strong correlations, for instance, by the LDA-DFT
method.

Depending on the symmetry of the superconducting
order parameter Δ(k,ω) (s- and d-wave pairing) various
projected averages (over the Fermi surface) of α2F(k, k′,ω)
enter the Eliashberg equations. Assuming that the super-
conducting order parameter transforms according to the
representation Γi of the point group C4v of the square lattice
(in the CuO2 planes) the appropriate symmetry-projected
spectral function is given by

α2Fi
(

k̃, k̃′,ω
)
= N(0)

8

∑
ν, j

∣∣∣gν

(
k̃, k̃− Tj k̃′

)∣∣∣2

× δ
(
ω − ων

(
k̃− Tj k̃′

))

× γ2
c

(
k̃, k̃− Tj k̃′

)
Di
(
j
)

(95)

where k̃ and k̃′ are momenta on the Fermi line in the
irreducible Brillouin zone (1/8 of the total Brillouin zone).
Tj , j = 1, . . . , 8 denotes the eight point-group transfor-
mations forming the symmetry group of the square lattice.
This group has five irreducible representations which we
distinguish by the label i = 1, 2, . . . , 5. In the following we
discuss the representations i = 1 and i = 3, which correspond
to the s- and d-wave symmetry of the full rotation group,
respectively. Di( j) is the representation matrix of the jth
transformation for the representation i. Assuming that the
superconducting order parameter Δ(k,ω) does not vary
much in the irreducible Brillouin zone, one can average over

k̃ and k̃′ in the Brillouin zone. For each symmetry one
obtains the corresponding pairing spectral function α2Fi(ω):

α2Fi(ω) =
〈〈
α2Fi

(
k̃, k̃′,ω

)〉
k̃

〉
k̃′

, (96)

which governs the transition temperature for the order
parameter with the symmetry Γi. For instance, α2F3(ω) is
the pairing spectral function in the d-channel and it gives
the coupling for d-wave superconductivity (the irreducible
representation Γ3—sometimes labelled as B1g). Performing
similar calculations for the phonon-limited resistivity, one
finds that the resistivity is related to the transport spectral
function α2Ftr(ω):

α2
trF(ω) =

〈〈
α2F(k, k′,ω)[v(k)− v(k′)]2

〉〉
kk′

2〈〈v2(k)〉〉kk′
. (97)

The effect of strong correlations on EPI was discussed in
[130] within the model where gν(k, p) and the phonon

frequencies ων(k̃ − k̃′) are weakly momentum dependent.
In order to elucidate the main effect of strong correlations
on EPI and α2Fi(ω) we consider the latter functions for a
simple model with Einstein phonon, where these functions
are proportional to the (so called) relative coupling constant
Λi:

Λi = 1
8
N(0)
N0(0)

8∑
j=1

〈〈∣∣∣γc
(

k̃, k̃− Tj k̃′
)∣∣∣2

))
k̃k̃′
Di
(
j
)
. (98)

Similarly, the resistivity ρ(T)(∼ λtr ∼ Λtr) is renormalized by
the correlation effects where the transport coupling constant
Λtr is given by

Λtr = N(0)
N0(0)

〈〈∣∣∣γc
(

k̃, k̃− Tj k̃′
)∣∣∣2

[v(k)− v(k′)]2
))

kk′

2〈〈v2(k)〉〉kk′
.

(99)

As we see, all projected spectral functions α2
i F(ω) depend

on the charge vertex function γc(k, q) which describes the
screening (renormalization) of EPI due to strong corre-
lations (suppression of doubly occupancy) [78–80, 130].
This important ingredient (which respects also the Ward
identities) is a decisive step beyond the MFA renormalization
of EPI in strongly correlated systems which was previously
studied in connection with heavy fermions—see review in
[218].

2.3.4. Charge Vertex and the EPI Coupling. The charge vertex
function γc(k, q) (in the adiabatic approximation) has been
calculated in [78–80, 130, 179, 180] in the framework of
the 1/N expansion in the X-method—see also [6]—and
here we discuss only the main results. Note that γc(k, q)
renormalizes all charge fluctuation processes, such as the
EPI interaction, the long-range Coulomb interaction, the
nonmagnetic impurity scattering, and so forth. In fact
γc(k, q) describes specific screening due to the vanishing of
doubly occupancy in strongly correlated systems. Note that the
latter constraint is at present impossible to incorporate into
the LDA-DFT band-structure calculations, thus making the
latter method unreliable in highly correlated systems. In [78–
80, 130, 179, 180] γc(k, q,ω) was calculated as a function of
the model parameters t, t′, δ, J in leading O(1) order of the
t-J model:

γc
(

k, q
) = 1−

6∑
α=1

6∑
β=1

Fα(k)
[

1̂ + χ̂
(
q
)]−1

αβ
χβ2
(
q
)
, (100)

where χαβ(q) = ∑
p Gα(p, q)Fβ(p), Fα(k) = [t(k), 1,

2J0 cos kx, 2J0 sin kx, 2J0 cos ky , 2J0 sin ky], and Gα(p, q)
= [1, t(p + q), cos px, sin px, cos py , sin py]Π(p, q). Here,
Π(k, q) = −g(k)g(k + q) and q = (q, iqn), qn = 2πnT , p =
(p, ipm), pm = πT(2m + 1). The physical meaning of the
vertex function γc(k, q) is following: in the presence of an
external (or internal) charge perturbation there is screening
due to the change of the excitation potential VtJ

IBS(x, y), that
is, of the change of the bandwidth, as well as of the local
chemical potential. The central result is that for momenta
k lying at (and near) the Fermi surface the vertex function
γc(k, q,ω = 0) has very pronounced forward scattering peak
(at q = 0) especially at very low doping concentration
δ(�1), while the backward scattering is substantially
suppressed, as it is seen in Figure 35 where γc(kF , q,ω = 0) is
shown. The peak at q = 0 is very narrow at very small doping
since its width qc is proportional to the doping δ, that is,
qc ∼ δ(π/a) where a is the lattice constant. It is interesting
that γc(k, q), as well as the dynamics of charge fluctuations,
depend only weakly on the exchange energy J and are mainly
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Figure 35: Adiabatic (ω = 0) vertex function γ(kF , q) of the t-J
model as a function of the momentum aq with q = (q, q) for three
different doping levels δ. From [130].

dominated by the constraint of having no doubly occupancy
of sites, as it is shown in [78–80, 130, 179, 180].

The existence of the forward scattering peak in γc(k, q) at
q = 0 is confirmed by numerical calculations in the Hubbard
model, which show that this peak is very pronounced at
large U [182]. This is important result since it proves that
the 1/N expansion in the X-method is reliable method in
studying charge fluctuation processes in strongly correlated
systems. The strong suppression of γc(k, q) at large q(∼ kF)
means that at small distances the charge fluctuations are
strongly suppressed (correlated). Such a behavior of the
vertex function means that a quasiparticle moving in the
strongly correlated medium digs up a giant correlation hole
with the radius ξch(∼ π/qc) ≈ a/δ, where a is the lattice
constant. As a consequence of this effect the renormalized
EPI becomes long ranged which is contrary to the weakly
correlated systems where it is short ranged.

By knowing γc(k, q) one can calculate the relative
coupling constants Λ1 ≡ Λs, Λ3 ≡ Λd, Λtr, and so forth.
In the absence of correlations and for an isotropic band one
has Λ1 = Λtr = 1, Λi = 0 for i > 1. The averages in Λs,
Λd, and Λtr were performed numerically in [130] by using
the realistic anisotropic band dispersion in the t-t′-J model
and the results are shown in Figure 36. For convenience, the
three curves are multiplied with a common factor so that
Λs approaches 1 in the empty-band limit δ → 1, when
strong correlations are absent. Note that the superconducting
critical temperature Tc in the weak coupling limit and in

the ith channel scales like T(i)
c ∼ exp(−1/(λ0Λi − μ∗i ) where

λ0 is some effective coupling constant which depends on
microscopic details. The parameter μ∗i is the effective residual
Coulomb repulsion in the ith superconducting channel. We
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Figure 36: Normalized s-wave Λs, d-wave Λd , and transport Λtr · δ
coupling constants as a function of doping δ for t′ = 0 and J = 0.
From [179, 180].

stress here several interesting results which come out from
the above theory and which are partially presented in Figures
35 and 36.

(1) In principle the bare EPI coupling constant g0
λ (k, q)

depends on the quasiparticle momentum k and the trans-
fer momentum q. In the t-J model the EPI coupling
is dominated by the ionic coupling Ĥ ion

ep (see (80)) and
corresponding EPI depends only on the momentum transfer
q, that is, g0

λ (k, q) ≈ g0
λ (q) while for the much smaller

covalent coupling Ĥcov
ep depends on both k and q [6, 10, 11].

However, the EPI couplings for most phonon modes are
renormalized by the charge vertex and since the latter is
peaked at small momentum transfer q = |k − k′| then
the maxima of the corresponding effective potentials are
pushed toward smaller values of q. The further consequence
of the vertex renormalization is that in the absence of
strong correlations the bare EPI coupling |g0(k, q)|2 for some
phonon modes (which enters in the effective t-J model) is
detrimental for d-wave pairing; it can be less detrimental or
even supports it in the presence of strong correlations (since
the maximum is pushed toward smaller q). To illustrate
this let us consider the in-plane oxygen breathing mode
with the frequency ωbr which is supposed to be important
in HTSC cuprates. The bare coupling constant (squared)

for this mode is approximately given by |g0
br(k, q)|2 =

|g0
br|

2
[sin2(qxa/2)+sin2(qya/2)] which reaches maximum for

large q = (π/a,π/a). By extracting the component in the d-
channel one has

∣∣∣g0
br(k− k′)

∣∣∣2 =
∣∣∣g0

br

∣∣∣2
[

1−
(

1
4

)
ψd(k)ψd(k′) + · · ·

]

(101)
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with

ψd(k) = cos kxa− cos kya. (102)

This gives the repulsive coupling constant λ0
d in the d-

channel, that is,

λ0
d =

2
ωbr

〈
ψd(k)

∣∣∣g0
br(k− k′)

∣∣∣2
ψd(k′)

)
< 0. (103)

However, in the presence of strong correlations one expects
that the effective coupling constant is given approximately

by |geff
br (k, k − k′)| ≈ |g0

br(k− k′)|2γ2
c (kF , k − k′) which is at

small doping δ suppressed substantially at large q since γ2
c

starts to fall off drastically at q ∼ qc ∼ δ(π/a). The latter
property makes the effective coupling constant (in the d-
channel) λeff

d for these modes less negative or even positive
(depending on the ratio ξch/a ∼ 1/δ), that is, one has λeff

d >
λ0
d. We stress again that this analysis is only qualitative (and

semiquantitative) since it is based on the t-J model while
the better quantitative results are expected in the strongly
correlated three-band Emery model with Ud � t,Δpd—see
[6, Appendix D]. Unfortunately, these calculations are not
finalized until now.

(2) In weakly correlated systems (or, e.g., in the empty-
band limit δ → 1) the relative d-wave coupling constant Λd

is much smaller than the s-wave coupling constantΛs, that is,
Λd � Λs as it is seen in Figure 36. Furthermore, Λs decreases
with decreasing doping.

(3) It is indicative that independently on the value of
t′ /= 0 or t′ = 0 the coupling constant Λs and Λd meet each
other (note that Λs > Λd for all δ) at some small doping
δ ≈ 0.1–0.2 where Λs ≈ Λd. We would like to stress that
such a unique situation (with Λs ≈ Λd) was practically
never realized in low-temperature and weakly correlated
superconductors and in that respect the strong momentum-
dependent EPI in HTSC cuprates is an exclusive but very
important phenomenon.

(4) By taking into account the residual Coulomb repul-
sion of quasiparticles then the s-wave superconductivity
(which is governed by Λs) is suppressed, while the d-
wave superconductivity (which is governed by Λd) stays
almost unaffected, since μ∗s � μ∗d . In that case the d-wave
superconductivity which is mainly governed by EPI becomes
more stable than the s-wave one at sufficiently low doping
δ. This transition between s- and d-wave superconductivity
is triggered by electronic correlations because in the model
calculations [78–80, 130] the bare EPI coupling is assumed
to be momentum independent, that is, the bare coupling
constant contains the s-wave symmetry only.

(5) The calculations of the charge vertex γc are performed
in the adiabatic limit, that is, for ω < q · vF(q) the frequency
ω in γc can be neglected. In the nonadiabatic regime, that
is, for ω > q · vF(q), the function γ2

c (kF , q,ω) may be
substantially larger compared to the adiabatic case because
γc(kF , q,ω) tends to the bare value 1 for q = 0. This means
that EPI for different phonons (with different energies ω) is
differently affected by strong correlations. For a given ω the
EPI coupling to those phonons with momenta q < qω = ω/vF
will be (relatively) enhanced since γc(kF , q,ω) ≈ 1, while the

coupling to those with q > qω = ω/vF will be substantially
reduced due to the suppression of the backward scattering by
strong correlations [37, 38]. These results are a consequence
of the Ward identities and generally hold in the Landau-
Fermi liquid theory [219].

(6) The transport EPI coupling constant Λtr is sig-
nificantly reduced in the presence of strong correlations
especially for low doping (δ � 1) where Λtr < Λ/3. This
result is physically plausible since the resistivity is dominated
by the backward scattering processes (large q ∼ kF) which
are suppressed by strong correlations—the suppression of
γc(kF , q,ω) at large q.

The theory based on the forward scattering peak in
EPI is a good candidate to explain the linear temperature
behavior of the resistivity down to very small temperatures
T(∼ ΘD/30) ≈ 10 K in some cuprates with low Tc(≈10 K)

[6, 128, 129]. One physically rather plausible model, which
is based on the forward scattering peak in EPI, is elaborated
in [128]. It takes into account (i) the quasiparticle scattering
on acoustic (a) and on optic (o) phonons, (ii) the extended
van Hove singularity in the quasiparticle density of states
N(ξ) which in some cuprates is very near the Fermi surface,
and (iii) the umklapp and “undulation” (due to the flat
regions at the Fermi surface) processes with vk′

∼= −vk—
this condition can partly increase the EPI coupling. The
transport Eliashberg function α2

trF(ω) is calculated similarly
to (97) by using the definition of α2F(k, k′,ω) in (95) with

the renormalized coupling constant g(r)
ν (k − k′) = gν(k −

k′)γc(k − k′) of the ν = a, o mode, respectively. In [128] it is
assumed a phenomenological form for the forward scattering
peak in γc(k−k′) with the cutoff qc � kF (and which mimics
the exact results from [78–80, 130, 179, 180]). Since the
scattering of the quasiparticles on phonons (with the sound
velocity vs) is limited to small-q transfer processes (with
q < qc), then the maximal energy of the acoustic branch
is not the Debye energy ΘD(≈ kFvs) but the effective Debye
energy ΘA(≈ qcvs) � ΘD. In the case of Bi2201 in [128] it is
taken (from the numerical results in [78–80, 130, 179, 180])
that qc ≈ kF/10 which gives ΘA ≈ (30–50)K . As a result
the calculated α2

trF(ω) gives that ρab(T) ∼ T down to very
low T(∼ 0.2ΘA) ≈ 10 K. The slope (dρab/dT) is governed
by the effective EPI coupling constant for acoustic phonons.
In systems with the extended van Hove singularity (in N(ξ))
near the Fermi surface, which is the case in Bi-2201, the
effective coupling constant for acoustic phonons can be
sufficiently large to give experimental values for the slope
(dρab/dT) ∼ (0.5–1)μΩcm/K—for details see [128]. This
physical picture is applicable also to cuprates near and at
the optimal doping but since in these systems Tc is large the
linearity of ρab(T) down to very low T is “screened” by the
appearance of superconductivity.

(7) The width of the forward scattering peak in γc(kF , q)
is very narrow in underdoped cuprates—with the width qc ∼
δ(π/a)—which may have further interesting consequences.
For instance, HTSC cuprates are characterized not only by
strong correlations but also by the relatively small Fermi
energy EF , which is in underdoped systems not much larger
than the characteristic (maximal) phonon frequency ωmax

ph ,
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that is, EF � 0.1–0.3 eV, ωmax
ph � 80 meV. Due to the

appreciable magnitude of ωD/EF it is necessary to correct
the Migdal-Eliashberg theory by the non-Migdal vertex
corrections due to the EPI. It is well known that these
vertex corrections lower Tc in systems with the isotropic
EPI. However, the non-Migdal vertex corrections in systems
with the forward scattering peak in the EPI coupling
with the cutoff qc � kF may increase Tc which can be
appreciable. The corresponding calculations [220, 221] give
two interesting results: (i) there is an appreciable increase of
Tc by lowering Qc = qc/2kF , for instance, Tc(Qc = 0.1) ≈
4Tc(Qc = 1); (ii) even small values of λep < 1 can give
large Tc. The latter results open a new possibility in reaching
high Tc in systems with appreciable ratio ωD/EF and with
the forward scattering peak in EPI. The difference between
the Migdal-Eliashberg and the non-Migdal theory can be
explained qualitatively in the framework of an approximative
McMillan formula for Tc (for not too large λ) which reads

Tc ≈ 〈ω〉e−1/(λ̃−μ∗). The Migdal-Eliashberg theory predicts

λ̃(ME) ≈ λ

1 + λ
, (104)

while the non-Migdal theory [220, 221] gives

λ̃(n-ME) ≈ λ(1 + λ). (105)

For instance, Tc ∼ 100 K in HTSC oxides can be explained by
the Migdal-Eliashberg theory for λ(ME) ∼ 2, while in the non-
Migdal theory much smaller coupling constant is needed,
that is, λ(n-ME) ∼ 0.5.

(8) The existence of the forward scattering peak in EPI
can in a plausible way explain the ARPES puzzle that the
antinodal kink is shifted by the maximal superconducting
gap Δmax while the nodal kink is unshifted. The reason is
(as explained in Section 1.3.3) that due to strong correlations
the EPI spectral function α2F(k, k′,Ω) ≈ α2F(ϕ − ϕ′,Ω) is
strongly peaked at ϕ− ϕ′ = 0 [151].

(9) The scattering potential on nonmagnetic impurities is
renormalized by strong correlations giving also the forward
scattering peak in the impurity scattering potential (ampli-
tude) [155]. The latter effect gives large d-wave channel in
the renormalized impurity potential, which is the reason that
d-wave pairing in HTSC cuprates is robust in the presence of
nonmagnetic impurities (and defects) [6, 155].

2.3.5. EPI and Strong Correlations—Other Methods. The
calculations of the static (adiabatic) charge-vertex γc(kF , q)
in the X-method are done for the case U = ∞ [78–80, 130,
179, 180] where it is found that it is peaked at q = 0—
the forward scattering peak (FSP). This result is confirmed
by the numerical Monte Carlo calculations for the finite-U
Hubbard model [182], where it is found that FSP exists for all
U , but it is especially pronounced in the limit t � U . These
results are additionally confirmed in the calculations [183]
within the four slave-boson method of Kotliar-Rückenstein
where γc(kF , q) is again peaked at q = 0 and the peak is also
pronounced at t� U .

There are several calculations of the charge vertex in the
one slave-boson method [219, 222–224] which is invented to

study the limit U → ∞. It is interesting to compare the
results for the charge vertex in the X-method [78–80, 130,
179, 180] and in the one slave-boson theory [222] which are
calculated in O((1/N)0) order. For instance, for J = 0 one
has

γ(X)
c

(
k, q

) = 1 + b
(

q
)− a(q

)
t(k)[

1 + b
(

q
)]2 − a(q

)
c
(

q
) ,

γ(SB)
c

(
k, q

) = 1 + b
(

q
)− a(q

)[
t(k) + t

(
k + q

)]
/2[

1 + b
(

q
)]2 − a(q

)
c
(

q
) .
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The explicit expressions for the “bare” susceptibilities
a(q), b(q), and c(q) can be found in [78–80, 130]. It is
obvious from (106) that γ(X)

c (k, q = 0) = γ(SB)
c (k, q = 0)

but the calculations give that max{γ(X)
c (k, q)} is for q =

0, while max{γ(SB)
c (k, q)} is for |q| /= 0 [181]. So, the SB

vertex is peaked at finite q which is in contradiction with the
numerical Monte Carlo results for the Hubbard model [182]
and with the four slave-boson theory [183]. The reason for
the discrepancy of the one slave-boson (SB) in studying EPI
with the numerical results and the X-method is not quite
clear and might be due to the symmetry breaking of the local
gauge invariance in leading order of the SB theory.

2.4. Summary of Section 2. The experimental results in
HTSC cuprates which are exposed in Section 1 imply that
the EPI coupling constant is large and in order to be
conform with d-wave pairing this interaction must be
very nonlocal (long range), that is, weakly screened and
peaked at small transfer momenta. In absence of quantitative
calculations in the framework of the ab initio microscopic
many-body theory the effects of strong correlations on
EPI are studied within the minimal t-J model where this
pronounced nonlocality is due to two main reasons: (1)
strong electronic correlations and (2) the combined metallic-
ionic layered structure in these materials. In case (1) the
pronounced nonlocality of EPI, which is found in the
t-J model system, is due to the suppression of doubly
occupancy at the Cu lattice sites in the CuO2 planes, which
drastically weakens the screening effect in these systems. The
pronounced nonlocality and suppression of the screening
are mathematically expressed by the charge vertex function
γc(kF , q,ω) which multiplies the bare EPI matrix element.
The vertex function is peaked at q = 0 and strongly
suppressed at large q, especially for low (oxygen) hole-
doping δ � 1 near the Mott-Hubbard transition. Such a
structure of γc gives that the d-wave and s-wave coupling
constants are of the same order of magnitude around and
below some optimal doping δop ≈ 0.1, that is, λd ≈ λs.
This is very peculiar situation never met before. Since the
residual effective (low-energy) Coulomb interaction is much
smaller in the d-channel than in the s-channel, that is,
μ∗s � μ∗d (with the possibility that μ∗d < 0), then the
critical temperature for d-wave pairing is much larger than

for the s-wave one, that is, T(d)
c � T(s)

c . Since all charge
fluctuation processes are modified by strong correlations,
then the quasiparticle scattering on nonmagnetic impurities
is also drastically changed; the pair-breaking effect on d-wave
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pairing is drastically reduced. This nonlocal effect, which is
not discussed here—see more in [6] and references therein—
is one of the main reasons for the robustness of d-wave
pairing in HTSC oxides in the presence of nonmagnetic
impurities and numerous local defects. The development of
the forward scattering peak in γc(kF , q) and suppression at
large q(� qc = δ(π/a)) give rise to the suppression of
the transport coupling constant λtr making it much smaller
than the self-energy coupling constant λ, that is, one has
λtr ≈ λ/3 near the optimal doping δ = 0.1–0.2. Thus the
behavior of the vertex function and the dominance of EPI in
the quasiparticle scattering resolve the experimental puzzle
that the transport and the self-energy coupling constant take
very different values, λtr,ep � λep. Note that this is not the
case with the SFI mechanism which is dominant at large
q ≈ Q = (π,π) thus giving λtr,sf ≈ λsf. This result means that
if in the SFI mechanism one fits the temperature-dependent
resistivity (governed by λtr,sf) then one obtains very low Tc.

We stress that the strength of the EPI coupling constants
λep, λep,d is at present impossible to calculate since it is
difficult to incorporate strong correlations and numerous
structural effects in a tractable microscopic theory.

2.5. Discussions and Conclusions. Numerous experimental
results related to tunnelling, optics, ARPES, inelastic neu-
tron, and X-ray scattering measurements in HTSC cuprates
at and near the optimal doping give evidence for strong
electron-phonon interaction (EPI) with the coupling con-
stant 1 < λep < 3.5. The tunnelling measurements furnish
evidence for strong EPI which give that the peaks in the
bosonic spectral function α2F(ω) coincide well with the peaks
in the phonon density of states Fph(ω). The tunnelling spectra
show that almost all phonons contribute to Tc and that no
particular phonon mode can be singled out in the spectral
function α2F(ω) as being the only one which dominates in
pairing mechanism. In light of these results the small oxygen
isotope effect in optimally doped systems can be partly due
to this effect, thus not disqualifying the important role of
EPI in pairing mechanism. The compatibility of the strong
EPI with d-wave pairing implies an important constraint
on the EPI pairing potential—it must be nonlocal, that is,
peaked at small transfer momenta. The latter is due to (a)
strong electronic correlations and (b) the combined metallic-
ionic structure of these materials. If the EPI scattering is
the main player in pairing in HTSC cuprates, then this
nonlocality implies that at and below some optimal doping
(δop ∼ 0.1) the magnitude of the EPI coupling constants in
d-wave and s-wave channel must be of the same order, that
is, λep,d ≈ λep,s. This result in conjunction with the fact that
the residual effective Coulomb coupling in d-wave channel is
much smaller than in the s-wave one, that is, μ∗s � μ∗d (with
the possibility that μ∗d < 0) gives that the critical temperature
for d-wave pairing is much larger than for s-wave pairing.

The numerous tunnelling, ARPES, optics, and magnetic
neutron scattering measurements give sufficient evidence
that the spin-fluctuation interaction (SFI) plays a secondary
role in pairing in HTSC cuprates. Especially important
evidence for the smallness of SFI (in pairing) comes from the
magnetic neutron scattering measurements which show that

by varying doping slightly around the optimal one there is a
huge reconstruction of the SFI spectral function Im χ(q,ω)
(imaginary part of the spin susceptibility) for q ≈ Q, while
there is very small change in the critical temperature Tc.
These experimental results imply important constraints on
the pairing scenario for systems at and near optimal doping:
(1) the strength of the d-wave pairing potential is provided
by EPI (i.e., one has λep,d ≈ λep,s) while the role of the
residual Coulomb interaction and SFI, together, is to trigger
d-wave pairing; (2) the Migdal-Eliashberg theory, but with
the pronounced momentum dependent of EPI, is a rather
good starting theory.

The ab initio microscopic theory of pairing in HTSC
cuprates fails at present to calculate Tc and to predict the
magnitude of the d-wave order parameter. From that point
of view it is hard to expect a significant improvement
of this situation at least in the near future. However, the
studies of some minimal (toy) models, such as the single-
band t-J model, allow us to understand part of the physics
in cuprates on a qualitative and in some cases even on a
semiquantitative level. In that respect the encouraging results
come from the theoretical studies of the EPI scattering in
the t-J model by using controllable mathematical methods in
the X-method formulated in terms of the Hubbard operators
[78–80, 130, 179, 180]. This theory predicts dressing of
quasiparticles by strong correlations which dig up a large-
scale correlation hole of the size ξch ∼ a/δ for δ � 1. These
quasiparticles respond to lattice vibrations in such a way
to produce an effective long-range electron interaction (due
to EPI), that is, the effective pairing potential Veff(q,ω) is
peaked at small transfer momenta q—the forward scattering
peak. This theory (of the toy model) is conform with the
experimental scenario by predicting the following results: (i)
the EPI coupling constants in d-wave and s-wave channels
are of the same order, that is, λep,d ≈ λep,s, at some optimal
doping δop ∼ 0.1; (ii) the transport coupling is much
smaller than the pairing one, that is, λtr ≈ λ/3; (iii) due
to strong correlations there is forward scattering peak in
the potential for scattering on nonmagnetic impurities, thus
making d-wave pairing robust in materials with a lot of
defects and impurities. Applied to HTSC superconductors at
and near the optimal doping, this theory is a realization of
the Migdal-Eliashberg theory but with strongly momentum
dependent EPI coupling, which is conform with the pro-
posed experimental pairing scenario. This scenario which is
also realized in the t-J toy model may be useful in making a
(phenomenological) theory of pairing in cuprates. However,
all present theories are confronted with the unsolved and
challenging task—the calculation of Tc. From that point of
view we do not have at present a proper microscopic theory
of pairing in HTSC cuprates.

Appendix

A. Spectral Functions

A.1. Spectral Functions α2F(k, k′,ω) and α2F(ω). The quasi-
particle bosonic (Eliashberg) spectral function α2F(k, k′,ω)
and its Fermi surface average α2F(ω) = 〈〈α2F(k, k′,ω)〉〉k,k′
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enter the quasiparticle self-energy Σ(k,ω), while the trans-
port spectral function α2Ftr(ω) enters the transport self-
energy Σtr(k,ω) and dynamical conductivity σ(ω). Since the
Migdal-Eliashberg theory for EPI is well defined, we define
the spectral functions for this case and the generalization to
other electron-boson interaction is straightforward. In the
superconducting state Matsubara Green’s functions Ĝ(k,ωn)
and Σ̂(k,ωn) are 2 × 2 matrices with the diagonal elements
G11 ≡ G(k,ωn), Σ11 ≡ Σ(k,ωn) and the off-diagonal
elements G12 ≡ F(k,ωn), Σ12 ≡ Φ(k,ωn) which describe
superconducting pairing. By defining iωn[1 − Z(k,ωn)] =
[Σ(k,ωn) − Σ(k,−ωn)]/2 and χ(k,ωn) = [Σ(k,ωn) +
Σ(k,−ωn)]/2, the Eliashberg functions for EPI in the pres-
ence of the Coulomb interaction (in the singlet pairing
channel) read [70, 225–227]

Z(k,ωn) = 1 +
T

N
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λZkp
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Z
(
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D
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(A.1)

where ω−nm ≡ ωn − ωm, ωn = πT(2n + 1), Φ(k,ωn) ≡
Z(k,ωn)Δ(k,ωn), D = ω2

mZ
2 + (ε − μ + χ)2 + Φ2, and N(μ)

is the density of states at the Fermi surface. (In studying
some problems, such as optics, it is useful to define the
renormalized frequency iω̃n(iωn)(≡ iωnZ(ωn)) = ωn−Σ(ωn)
or its analytical continuation ω̃(ω) = Z(ω)ω = ω − Σ(ω)).
These equations are supplemented with the electron number
equation n(μ) (μ is the chemical potential):

n
(
μ
) = 2T

N

∑
p,m

G
(
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eiωm0+

= 1− 2T
N

∑
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ε
(
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D
(

p,ωm
) .

(A.2)

Note that in the case of EPI one has λΔkp(νn) = λZkp(νn)(≡
λkp(νn)) (with νn = πTn) where λkp(νn) is defined by

λkp(νn) = 2
∫∞

0
dν

ν

ν2 + ν2
n
α2

kpF(ν), (A.3)

α2
kpF(ν) = N

(
μ
)∑
κ
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κ,kp
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Bκ
(

k− p, ν
)
, (A.4)

where Bκ(k− p; ν) is the phonon spectral function of the κth
phonon mode related to the phonon propagator

Dκ
(

q, iνn
) = −

∫∞
0
dν

ν

ν2 + ν2
n
Bκ
(

q, ν
)
. (A.5)

However, very often it is measured the generalized phonon
density of states GPDS(ω)(≡ G(ω)) (see Section 1.3.4)
defined by G(ω) = ∑

i(σi/Mi)Fi(ω)/
∑

i(σi/Mi). Here, σi and
Mi are the cross-section and the mass of the ith nucleus and

Fi(ω = (1/N)
∑

q |εiq|2δ(ω − ωq) is the amplitude-weighted
density of states.

The renormalized coupling constant gren
κ,kp(≈ g0

κ,kpγε
−1
e )

in (A.4) comprises the screening effect due to long-range
Coulomb interaction (∼ ε−1

e —the inverse electronic dielec-
tric function) and short-range strong correlations (∼ γ—
the vertex function)—see more in Section 2. Usually in the
case of low-temperature superconductors (LTS) with s-wave
pairing the anisotropy is rather small (or in the presence of
impurities it is averaged out) which allows an averaging of
the Eliashberg equations [70, 225–227]:
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where ω−nm = ωn − ωm, α2F(ω) = 〈〈α2F(k, k′,ω)〉〉k,k′ , and
〈〈· · · 〉〉k,k′ is the average over the Fermi surface. The above
equations can be written on the real axis by the analytical
continuation iωm → ω + iδ where the gap function is
complex, that is, Δ(ω) = ΔR(ω) + iΔI(ω). The solution
for Δ(ω) allows the calculation of the current-voltage
characteristic I(V) and tunnelling conductance GNS(V) =
dINS/dV in the superconducting state of the NIS tunnelling
junction where INS(V) is given by

INS(V) = 2e
∑
k,p

∣∣∣Tk,p

∣∣∣2
∫∞
−∞

dω

2π
,

AN (k,ω)AS
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)[
f (ω)− f (ω + eV)

]
.

(A.7)

Here, AN ,S(k,ω) = −2 ImGN ,S(k,ω) are the spectral func-
tions of the normal metal and superconductor, respectively,
and f (ω) is the Fermi distribution function. Since the
angular and energy dependence of the tunnelling matrix
elements |Tk,p|2 is practically unimportant for s-wave
superconductors, then the relative conductance σNS(V) ≡
GNS(V)/GNN(V) is proportional to the tunnelling density of
states NT(ω) = ∫ AS(k,ω)d3k/(2π)3, that is, σNS(ω) ≈ NT(ω)
where

NT(ω) = Re

⎧⎪⎨
⎪⎩

ω + iγ̃(ω)√(
ω + iγ̃(ω)

)2 − Z̃2(ω)Δ(ω)2

⎫⎪⎬
⎪⎭. (A.8)

Here, Z̃(ω) = Z(ω)/ReZ(ω), γ̃(ω) = γ(ω)/ReZ(ω), Z(ω) =
ReZ(ω) + iγ(ω)/ω, and the quasiparticle scattering rate in the
superconducting state γs(ω,T) = −2 ImΣ(ω,T) is given by

γs(ω,T) = 2π
∫∞

0
dνα2F(ν)Ns(ν + ω)

× {2nB(ν) + nF(ν + ω) + nF(ν− ω)} + γimp,
(A.9)
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where Ns(ω) = Re{ω/(ω2 − Δ2(ω))1/2 is the quasiparticle
density of states in the superconducting state; nB,F(ν) are
Bose and Fermi distribution function, respectively. Since the
structure of the phonon spectrum is contained in α2F(ω),
it is reflected on Δ(ω) for ω > Δ0 (the real gap obtained
from Δ0 = ReΔ(ω = Δ0)) which gives the structure
in GS(V) at V = Δ0 + ωph. On the contrary one can
extract the spectral function α2F(ω) from GNS(V) by the
inversion procedure proposed by Kulić [6] and McMillan
and Rowell [228]. It turns out that in low-temperature
superconductors the peaks of −d2I/dV 2 at eVi = Δ +
ωph,i correspond to the peak positions of α2F(ω) and F(ω).
However, we would like to point out that in HTSC cuprates
the gap function is unconventional and very anisotropic,
that is, Δ(k, iωn) ∼ cos kxa − cos kya. Since in this case the
extraction of α2F(k, k′,ω) is difficult and at present rather
unrealistic task, then an “average” α2F(ω) is extracted from
the experimental curve GS(V). There is belief that it gives
relevant information on the real spectral function such as
the energy width of the bosonic spectrum (0 < ω < ωmax)
and positions and distributions of peaks due to bosons. It
turns out that even such an approximate procedure gives
valuable information in HTSC cuprates—see discussion in
Section 1.3.4.

Note that in the case when both EPI and spin-fluctuation
interaction (SFI) are present one should make difference
between λZkp(iνn) and λΔkp(iνn) defined by

λZkp(iνn) = λsf,kp(iνn) + λep,kp(iνn),

λΔkp = λep,kp(iνn)− λsf,kp(iνn).
(A.10)

In absence of EPI, λZkp(iνn) and λΔkp(iνn) differ by sign, that is,

λZkp(iνn) = −λΔkp(iνn) > 0 since the SFI potential is repulsive
in the singlet pairing channel.

a. Inversion of Tunnelling Data. Phonon features in the
conductance σNS(V) at eV = Δ0 + ωph make the tunnelling
spectroscopy a powerful method in obtaining the Eliashberg
spectral function α2F(ω). Two methods were used in the past
for extracting α2F(ω).

The first method is based on solving the inverse problem
of the nonlinear Eliashberg equations. Namely, by measuring
σNS(V), one obtains the tunnelling density of statesNT(ω)(∼
σNS(ω)) and by the inversion procedure one obtains α2F(ω)
[228]. In reality the method is based on the iteration
procedure—the McMillan-Rowell (MR) inversion, where in
the first step an initial α2Fini(ω), μ∗ini, and Δini(ω) are inserted
into Eliashberg equations (e.g., Δini(ω) = Δ0 for ω < ω0 and
Δini(ω) = 0 for ω > ω0) and then σini(V) is calculated. In the
second step the functional derivative δσ(ω)/δα2F(ω) (ω ≡
eV) is found in the presence of a small change of α2Fini(ω)
and then the iterated solution α2F(1)(ω) = α2Fini(ω) +
δα2F(ω) is obtained, where the correction δα2F(ω) is given
by

δα2F(ω) =
∫
dν

[
δσini(V)
δα2F(ν)

]−1[
σexp(ν)− σini(ν)

]
. (A.11)

The procedure is iterated until α2F(n)(ω) and μ∗(n) converge to
α2F(ω) and μ∗ which reproduce the experimentally obtained
conductance σ

exp
NS (V). In such a way the obtained α2F(ω)

for Pb resembles the phonon density of states FPb(ω),
which is obtained from neutron scattering measurements.
Note that the method depends explicitly on μ∗ but on
the contrary it requires only data on σNS(V) up to the
voltage Vmax = ωmax

ph + Δ0 where ωmax
ph is the maximum

phonon energy (α2F(ω) = 0 for ω > ωmax
ph ) and Δ0 is

the zero-temperature superconducting gap. One pragmatical
feature for the interpretation of tunnelling spectra (and for
obtaining the spectral pairing function α2F(ω)) in LTS and
HTSC cuprates is that the negative peaks of d2I/dV 2 (or
peaks in −d2I/dV 2) are at the peak positions of α2F(ω) and
F(ω). This feature will be discussed later on in relation with
experimental situation in cuprates.

The second method has been invented in [229, 230] and it
is based on the combination of the Eliashberg equations and
dispersion relations for Green’s functions—we call it GDS
method. First, the tunnelling density of states is extracted
from the tunnelling conductance in a more rigorous way
[231]:

NT(V) = σNS(V)
σNN(V)

− 1
σ∗(V)

∫ V
0
du

× dσ∗(u)
du

[NT(V − u)−NT(V)],

(A.12)

where σ∗(V) = exp{−βV}σNN(V) and the constant β are
obtained from σNN(V) at large biases—see [229, 230].NT(V)
under the integral can be replaced by the BCS density of
states. Since the second method is used in extracting α2F(ω)
in a number of LTSC as well as in HTSC cuprates—see
below—we describe it briefly for the case of isotropic EPI at
T = 0 K. In that case the Eliashberg equations are given by
[70, 225–227, 229, 230]:
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(A.13)

where
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1
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)
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Here μ∗ is the Coulomb pseudopotential, the cutoff ωc is
approximately (5–10)ωmax

ph , and Δ0 = Δ(Δ0) is the energy
gap. Now by using the dispersion relation for the matrix
Green’s functions Ĝ(k,ωn) one obtains [229, 230]

Im S(ω) = 2ω
π

∫∞
Δ0

dω′
NT(ω′)−NBCS(ω′)

ω2 − ω′2 , (A.15)
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where S(ω) = ω/[ω2 − Δ2(ω)]1/2. From (A.13) one obtains
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Based on (A.12)-(A.16) one obtains the scheme for
extracting α2F(ω):

σNS(V), σNN(V) −→ NT(V),

−→ Im S(ω) −→ Δ(ω) −→ α2F(ω).
(A.17)

The advantage in this method is that the explicit knowledge
of μ∗ is not required [229, 230]. However, the integral
equation for α2F(ω) is linear Fredholm equation of the first
kind which is ill defined—see the discussion in Section 1.3.2
item (2)

b. Phonon Effects in NT(ω). We briefly discuss the physical
origin for the phonon effects in NT(ω) by considering a
model with only one peak, at ω0, in the phonon density of
states F(ω) by assuming for simplicity μ∗ = 0 and neglecting
the weak structure in NT(ω) at nω0 + Δ0, which is due to
the nonlinear structure of the Eliashberg equations [232].
In Figure 37 it is seen that the real part of the gap function
ΔR(ω) reaches a maximum at ω0 + Δ0 then decreases and
becomes negative and zero, while ΔI(ω) is peaked slightly
beyond ω0 + Δ0 that is the consequence of the effective
electron-electron interaction via phonons.

It follows that for ω < ω0 +Δ0 most phonons have higher
energies than the energy ω of electronic charge fluctuations
and there is overscreening of this charge by the ions giving
rise to attraction. For ω ≈ ω0 + Δ0 the charge fluctuations
are in resonance with ion vibrations giving rise to the peak
in ΔR(ω). For ω0 + Δ0 < ω the ions move out of phase with
respect to the charge fluctuations giving rise to repulsion and
negative ΔR(ω). This is shown in Figure 37(b). The structure
in Δ(ω) is reflected on NT(ω) as shown in Figure 37(c)
which can be reconstructed from the approximate formula
for NT(ω) expanded in powers of Δ/ω:

NT(ω)
N(0)

≈ 1 +
1
2

[(
ΔR(ω)
ω

)2

−
(
ΔI(ω)
ω

)2
]
. (A.18)

As ΔR(ω) increases above Δ0, this gives NT(ω) > NBCS(ω),
while for ω � ω0 + Δ0 the real value ΔR(ω) decreases while
ΔI(ω) rises and NT(ω) decreases giving rise for NT(ω) <
NBCS(ω).

A.2. Transport Spectral Function α2
trF(ω). The spectral func-

tion α2
trF(ω) enters the dynamical conductivity σi j(ω) (i, j =

1

1.1
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Figure 37: (a) Model phonon density of states F(ω) with the
peak at ω0. (b) The real (solid) ΔR and imaginary (dashed) part
ΔI of the gap Δ(ω). (c) The normalized tunnelling density of
states NT(ω)/N(0) (solid) compared with the BCS density of states
(dashed). From [232].

a, b, c axis in HTS systems) which generally speaking is a
tensor quantity given by the formula

σi j(ω) = −e
2

ω

∫
d4q

(2π)4 γi
(
q, k + q

)

×G(k + q
)
Γ j
(
q, k + q

)
G
(
q
)
,

(A.19)

where q = (q, ν) and k = (k = 0,ω) and the bare current
vertex γi(q, k + q; k = 0) is related to the Fermi velocity
vF,i, that is, γi(q, k + q; k = 0) = vF,i. The vertex function
Γ j(q, k + q) takes into account the renormalization due to all
scattering processes responsible for finite conductivity [233].
In the following we study only the in-plane conductivity at
k = 0. The latter case is realized due to the fact that the long
penetration depth in HTSC cuprates and the skin depth in
the normal state are very large. In the EPI theory, Γ j(q, k +
q) ≡ Γ j(q, iωn, iωn + iωm) is the solution of an approximative
integral equation written in the symbolic form [118] Γ j =
vj + VeffGGΓ j . The effective potential Veff (due to EPI) is
given by Veff =

∑
κ |gren

κ |2Dκ, whereDκ is the phonon Green’s
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function. In such a case the Kubo theory predicts σ intra
ii (ω)

(i = x, y, z):

σii(ω) =
ω2
p,ii

4iπω

{∫ 0

−ω
dν th

(
ω + ν

2T

)
S−1(ω, ν)

+
∫∞

0
dν

[
th
(
ω + ν

2T

)
− th

(
ν

2T

)]
S−1(ω, ν)

}
,

(A.20)

where S(ω, ν) = ω+Σ∗tr(ω+ν)−Σtr(ν) + iγ
imp
tr , and γ

imp
tr is the

impurity contribution. In the following we omit the tensor
index ii in σii(ω). In the presence of several bosonic scattering
processes the transport self-energy Σtr(ω) = ReΣtr(ω) +
i ImΣtr(ω) is given by

Σtr(ω) = −
∑
l

∫∞
0
dνα2

tr,lFl(ν)[K1(ω, ν) + iK2(ω, ν)],

K1(ω, ν) = Re
[
Ψ
(

1
2

+ i
ω + ν

2πT

)
−Ψ

(
1
2

+ i
ω − ν

2πT

)]
,

K2(ω, ν) = π

2

[
2cth

(
ν

2T

)
− th

(
ω + ν

2T

)
+ th

(
ω − ν

2T

)]
.

(A.21)

Here α2
tr,lFl(ν) is the transport spectral function which mea-

sures the strength of the lth (bosonic) scattering process and
Ψ is the di-gamma function. The index l enumerates EPI,
charge, and spin-fluctuation scattering processes. Like in the
case of EPI, the transport bosonic spectral function α2

tr,lF(Ω)
defined in (97) is given explicitly by

α2
tr,lF(ω) = 1

N2
(
μ
)
∫
dSk

vF,k

∫
dSk′

vF,k′

×

⎡
⎢⎣1− viF,kv

i
F,k(

viF,k

)2

⎤
⎥⎦α2

kk′,lF(ω).

(A.22)

We stress that in the phenomenological SFI theory [12–17]
one assumes that α2

kk′F(ω) ≈ N(μ)g2
sf Im χ(k − p,ω), which,

as we have repeated several times, can be justified only for
small gsf, that is, gsf �Wb (the bandwidth).

In case of weak coupling (λ < 1), σ(ω) can be written
in the generalized (extended) Drude form as discussed in
Section 1.3.2.
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[38] M. L. Kulić and O. V. Dolgov, “Forward scattering peak in
the electron-phonon interaction and impurity scattering of
cuprate superconductors,” Physica Status Solidi (B), vol. 242,
no. 1, pp. 151–178, 2005.

[39] A. E. Karakozov, E. G. Maksimov, and O. V. Dolgov,
“Electromagnetic response of superconductors and optical
sum rule,” Solid State Communications, vol. 124, no. 4, pp.
119–124, 2002.

[40] A. E. Karakozov and E. G. Maksimov, “Optical sum rule in
metals with a strong interaction,” Solid State Communica-
tions, vol. 139, no. 2, pp. 80–85, 2006.

[41] P. Kusar, V. V. Kabanov, S. Sugai, J. Demsar, T. Mertelj, and D.
Mihailovic, “Controlled vaporization of the superconducting
condensate in cuprate superconductors sheds light on the
pairing boson,” Physical Review Letters, vol. 101, Article ID
227001, 2008.

[42] L. N. Bulaevskii, O. V. Dolgov, I. P. Kazakov, et al., “A tun-
nelling study of the oxide superconductors La2−xSrxCuO4−y
and EuBa2Cu3O7,” Superconductor Science and Technology,
vol. 1, no. 4, pp. 205–209, 1988.

[43] S. I. Vedeneev, A. G. M. Jansen, P. Samuely, V. A. Stepanov, A.
A. Tsvetkov, and P. Wyder, “Tunneling in the ab plane of the
high-Tc superconductor Bi2Sr2CaCu2O8+δ in high magnetic
fields,” Physical Review B, vol. 49, no. 14, pp. 9823–9830,
1994.

[44] S. I. Vedeneev, A. G. M. Jansen, A. A. Tsvetkov, and P. Wyder,
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“Electron-phonon interactions in superconducting
La1.84Sr0.16CuO4 films,” Physical Review Letters, vol. 101,
no. 24, Article ID 247004, 2008.

[57] S. Sugai, S. Shamoto, M. Sato, T. Ido, H. Takagi, and S.
Uchida, “Symmetry breaking on the phonon Raman spectra
only at the superconductor compositions in La2−xSrxCuO4,”
Solid State Communications, vol. 76, no. 3, pp. 371–376, 1990.

[58] F. Marsiglio, et al., “Eliashberg treatment of the microwave
conductivity of niobium,” Physical Review B, vol. 50, p. 7023,
1994.

[59] O. Klein, E. J. Nicol, K. Holczer, and G. Grüner, “Conduc-
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[168] O. Rösch and O. Gunnarsson, “Electron-phonon interaction
in the t-J model,” Physical Review Letters, vol. 92, no. 14,
Article ID 146403, 2004.

[169] K. J. von Szczepanski and K. W. Becker, “Coupling of elec-
trons and phonons in a doped antiferromagnet,” Zeitschrift
für Physik B, vol. 89, no. 3, pp. 327–334, 1992.

[170] D. Reznik, “Giant electron-phonon anomaly in doped
La2CuO4 and other cuprates,” Advances in Condensed Matter
Physics, vol. 2010, Article ID 523549, 2010.

[171] G. Khaliullin and P. Horsch, “Theory of the density fluc-
tuation spectrum of strongly correlated electrons,” Physical
Review B, vol. 54, no. 14, pp. R9600–R9603, 1996.

[172] L. Pintschovius, “Electron-phonon coupling effects explored
by inelastic neutron scattering,” Physica Status Solidi (B), vol.
242, no. 1, pp. 30–50, 2005.

[173] D. Reznik, L. Pintschovius, M. Ito, et al., “Electron-phonon
coupling reflecting dynamic charge inhomogeneity in copper
oxide superconductors,” Nature, vol. 440, no. 7088, pp. 1170–
1173, 2006.

[174] D. Reznik, L. Pintschovius, M. Fujita, K. Yamada, G. D. Gu,
and J. M. Tranquada, “Electron-phonon anomaly related to
charge stripes: static stripe phase versus optimally doped
superconducting La1.85Sr0.15CuO4,” Journal of Low Tempera-
ture Physics, vol. 147, no. 3-4, pp. 353–364, 2007.

[175] L. Pintschovius, D. Reznik, W. Reichardt, et al., “Oxygen
phonon branches in YBa2Cu3O7,” Physical Review B, vol. 69,
no. 21, Article ID 214506, 2004.

[176] K.-P. Bohnen, R. Heid, and M. Krauss, “Phonon dispersion
and electron-phonon interaction for YBa2Cu3O7 from first-
principles calculations,” Europhysics Letters, vol. 64, no. 1, pp.
104–110, 2003.

[177] T. Bauer and C. Falter, “The impact of dynamical screening
on the phonon dynamics of LaCuO,” Physical Review B, vol.
80, Article ID 094525, 2009.

[178] D. Reznik, G. Sangiovanni, O. Gunnarsson, and T. P.
Devereaux, “Photoemission kinks and phonons in cuprates,”
Nature, vol. 455, no. 7213, pp. E6–E7, 2008.
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