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Understanding how temperature affects cod (Gadus morhua) ecology is important for forecasting how populations will develop as
climate changes in future. The effects of spawning-season temperature and habitat size on cod recruitment dynamics have been inves-
tigated across the North Atlantic. Ricker and Beverton and Holt stock–recruitment (SR) models were extended by applying hierarch-
ical methods, mixed-effects models, and Bayesian inference to incorporate the influence of these ecosystem factors on model
parameters representing cod maximum reproductive rate and carrying capacity. We identified the pattern of temperature effects
on cod productivity at the species level and estimated SR model parameters with increased precision. Temperature impacts vary geo-
graphically, being positive in areas where temperatures are ,58C, and negative for higher temperatures. Using the relationship derived,
it is possible to predict expected changes in population-specific reproductive rates and carrying capacities resulting from temperature
increases. Further, carrying capacity covaries with available habitat size, explaining at least half its variability across stocks. These pat-
terns improve our understanding of environmental impacts on key population parameters, which is required for an ecosystem
approach to cod management, particularly under ocean-warming scenarios.
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Introduction
Evaluation of stock status and recovery policies in fisheries man-
agement relies heavily on biological reference points estimated
from the parameters of single-stock, stock–recruit (SR) models
(Hilborn and Walters, 1992; Mace, 1994; FAO, 1995; Myers and
Mertz, 1998a; Quinn and Deriso, 1999; Needle, 2002; ICES,
2003). In this context, the key parameters of SR models are the
maximum reproductive rate at low stock size, and the maximum
long-term equilibrium spawner biomass (i.e. the carrying capacity,
K, of the specific ecosystem for the stock). Together, these par-
ameters determine, for example, how quickly suppressed popu-
lations might recover and to what level. Further, Martell et al.
(2008) showed recently that SR models can be parameterized in
terms of key management quantities, e.g. maximum sustainable
yield (MSY) and fishing mortality required to achieve MSY
(FMSY). Therefore, it is now possible to allow for more transparent
application of SR models in fisheries management, especially when
informative priors for these reference points are used.

SR models are often characterized by non-stationarity, causing
the parameters to vary within stocks (Walters, 1987; Myers and
Mertz, 1998b; Needle, 2002). This variability is caused mainly by
changes in the factors shaping the reproductive success of stocks:

ecosystem conditions (e.g. trends in key biotic or abiotic variables,
including physicochemical conditions, food availability, and
abundance of predators and/or competitors) and fisheries exploi-
tation (Walters, 1987; Hilborn and Walters, 1992; Kuparinen and
Merilä, 2008; Rijnsdorp et al., 2009). These factors, also acting
interactively (Perry et al., in press), directly affect survival prob-
abilities, especially of the early life stages, and the reproductive
output of the stock (through changes in age and size composition)
and can also induce phenotypic or evolutionary changes in bio-
logical traits controlling productivity (e.g. behaviour, fecundity,
growth rates, age and size at maturity, habitat selection). As a
result, inferences based on the SR parameters, such as estimated
recovery rates and target stock recovery levels, will have additional
uncertainty and, in some cases, could give overly optimistic (or
pessimistic) estimates of the resilience of populations to pertur-
bations such as exploitation and ecosystem variability.

Usually, ecosystem conditions are not explicitly included in the
derivation of SR models. As a consequence, estimated parameters
are insensitive to non-random changes in ecosystem properties
that affect population dynamics. This situation has at least two
consequences. First, the ability of parameter values themselves to
reflect true levels of future stock productivity deteriorates when
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new ecosystem conditions (e.g. foodweb configurations, tempera-
tures) develop in the region occupied by the stock. In other words,
parameter values may no longer be reliable under different ecosys-
tem circumstances. There are many examples of situations where
stock productivity has changed (for instance through regime
shifts; ICES, 2007a), and there will be more in future (for instance,
as climate change progresses). Second, variability of parameters (a
measure of their uncertainty) is larger than if ecosystem factors
that affect stock productivity were identifiable, quantifiable, and
incorporated directly in SR models.

Here, we apply and develop analytical methods, with the aim to
identify potential environmental patterns in recruitment dynamics
and also to improve the estimation of biology-based SR model
parameters across North Atlantic stocks of cod (Gadus morhua).
First, given the nature of the cod multistock SR datasets, we use
hierarchical modelling approaches to describe SR dynamics both
within and across stocks. Hierarchical modelling is especially suit-
able in the present case, where multiparameter SR models are
fitted to a wide range of cod stocks, which are expected to be
related to some extent in their responses. Moreover, combining
information across stocks allows borrowing strength for the esti-
mation of individual parameters from the broader dataset
(Ntzoufras, 2009). Therefore, these methods are advantageous,
especially for stocks with shorter time-series, because they can
reduce the uncertainty in estimates of SR model parameters
(Myers and Mertz, 1998b; Myers, 2001). Second, we incorporate
ecosystem properties in the analytical process to investigate
whether accounting for such effects can provide an improved rep-
resentation of SR dynamics. The hierarchical methodology
implemented in this context allows one to quantify the magnitude
and shape of the functional response of the parameters derived to
variations in ecosystem properties at different ecological levels of

organization. Most importantly, we attempt to maintain a
balance between statistical and biological reasoning; SR models
(Ricker and Beverton and Holt, BH) developed based on fish bio-
logical processes, rather than solely on the statistical
goodness-of-fit, are employed. The approach therefore stands in
the middle ground between assessment and management objec-
tives, aiming to enhance understanding of natural processes or
implement the precautionary approach, respectively.

The study has two related objectives. First, hierarchical
approaches are employed to estimate SR model parameters and
their uncertainty for all 21 cod stocks in the North Atlantic.
Second, the outputs from the analysis are used to increase our
understanding of how the productivity of individual cod stocks
varies geographically, over time, and in relation to ecosystem
properties. In the latter context, we focus on temperature
because that variable has been shown to have important impacts
on cod biology (e.g. Planque and Frédou, 1999; Brander, 2000;
Drinkwater, 2005). Hierarchical approaches are used to quantify
how local variations in temperature affect productivity and carry-
ing capacity within a single stock, as well as the aggregate
species-level functional response (both mean and uncertainty),
across the range of cod stocks, as well as whether uncertainty in
SR model parameters can be reduced by incorporating ecosystem
properties.

Material and methods
Data
Our database consists of spawning-stock biomass (S), recruitment
(R), and spring surface layer (0–100 m) temperature (T) time-series
(presented in Figure S1), and habitat size (between 40 and 300 m
deep) for each of 21 North Atlantic cod stocks (Table 1, Figure 1).

Table 1. Summary of codes, geographic locations, time-series length, recruitment, and S (spawning-stock biomass) data sources and SPRF¼0

estimates for the stocks used in the analyses.

Stock Area SPRF50 (kg) Habitat size (km2) Year range Reference for stock data

codgb Georges Bank (5Z) 23.8a 85 306 1978–2004 O’Brien et al. (2005)
codgom Gulf of Maine (5Y) 27.9a 47 629 1982–2003 Mayo and Col (2005)
cod4x Western Scotian Shelf (4X) 14.7a 64 331 1983–2000 Clark et al. (2002)
cod4vsw Eastern Scotian Shelf (4VsW) 11.7a 91 656 1970–2001 Fanning et al. (2003)
cod4tvn* Southern Gulf of St Lawrence (4TVn) 7.0a 80 338 1950–2004 Chouinard et al. (2006)
cod3pn4rs* Northern Gulf of St Lawrence (3Pn4RS) 4.1a 89 734 1974–2003 Fréchet et al. (2005)
cod3ps* Southern Newfoundland (3Ps) 5.9a 55 509 1977–2002 Brattey et al. (2004)
cod3no* Grand Banks (3NO) 6.3a 114 967 1959–2004 Power et al. (2005)
cod3m Flemish Cap (3M) 9.8a 17 398 1972–1993 Vázquez and Cerviño (2002)
cod2j3kl* Northern Newfoundland (2J3KL) 7.4a 263 893 1962–1989 Bishop et al. (1993)
cod-iceg* Iceland (Va) 18.9b 63 158 1955–2003 ICES DB 2006
cod-farp* Faroe Plateau (Vb) 11.6b 12 883 1961–2004 ICES DB 2006
cod-arct* Northeast Arctic (I, II) 12.1b 858 979 1946–2003 ICES DB 2006
cod-coas* Norwegian Coastal (IIa) 6.2c 234 615 1984–2004 ICES DB 2006
cod-2224* Western Baltic (IIId—west) 5.3b 41 823 1970–2005 ICES DB 2006
cod-2532* Eastern Baltic (IIId—east) 3.3c 131 019 1966–2003 ICES DB 2006
cod-kat Kattegat (IIIa—east) 7.8b 19 926 1971–2004 ICES DB 2006
cod-347d North Sea (IIIa, IV, VIId) 18.2b 418 821 1963–2004 ICES (2007b)
codviia Irish Sea (VIIa) 12.7b 23 940 1968–2005 ICES (2006)
cod-7ek Celtic Sea (VIIe–k) 19.9b 177 620 1971–2005 ICES DB 2006
codvia West of Scotland (VIa) 12.9b 81 016 1978–2004 ICES (2006)

Data for most Northeast Atlantic stocks were extracted from the 2006 ICES Stock Assessment Summary Database (ICES DB 2006; http://www.ices.dk/
datacentre/StdGraphDB.asp), unless otherwise stated. The stocks marked with an asterisk display significant autocorrelation at lag 1 in the log(R/S)
time-series. SPRF¼0 refers to spawners produced per recruit (SPR) in the absence of fishing mortality (F). The areas are shown in Figure 1.
aShelton et al. (2006).
bGoodwin et al. (2006).
cEstimated by the authors.
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Figure 1. Fisheries statistical areas in (a) the western, and (b, next page) the eastern North Atlantic. The locations of the cod stocks are listed
in Table 1. The maps are reproduced with the permission of FAO.
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Population data for the eastern and western stocks were
extracted from ICES and NAFO (Northwest Atlantic Fisheries
Organization) published reports, respectively (Table 1). The esti-
mates are based on sequential population analyses, standardized
usually with fisheries-independent (such as research trawl
survey) data.

Cod prerecruits (eggs, larvae, and pelagic juveniles; approxi-
mately ages 0 to ca. 3–4 months) are the most sensitive to temp-
erature, so it is during that period that possible effects can emerge
(Brander, 2000). We assumed that the upper water layer between 0

and 100 m was representative of the pelagic environment experi-
enced by these stages, so spring (March–May) temperature data
in the 0–100 m water layer were used. The time-series for the
eastern North Atlantic were extracted from the ICES oceano-
graphic database (http://www.ices.dk/datacentre/), and data for
the western areas were compiled using the DFO (Fisheries and
Oceans Canada) oceanographic databases (Gregory, 2004). Note,
however, that special considerations apply to certain areas; for
the eastern Baltic stock (ICES Subdivisions 25–32), temperature
estimates were obtained by averaging over ICES Subdivisions

Figure 1. Continued.
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25–29, because the low salinity in Subdivisions 30–32 is
unfavourable for cod reproduction (Nissling and Westin, 1991).
For the Barents Sea (arct), temperature was estimated for the
area south of 788N because cold water can limit cod distribution
(Ottersen et al., 1998). For similar reasons, temperature for the
Icelandic cod (iceg) corresponds to the region south of 628N in
Division Va (ICES, 2005). Spatial restrictions were also applied
in four Northwest Atlantic areas [Flemish Cap (NAFO Division
3M), Grand Bank (3NO), and western and eastern Scotian Shelf
(4VsW and 4X)], which extend offshore into areas that could be
affected by the Gulf Stream; for those areas, temperature obser-
vations south of 428N were excluded. For area 3M, temperature
data from the Flemish Cap only were used.

Estimates of juvenile habitat size (40–300 m) were also com-
piled for every area because available space at that stage is
assumed to limit cod recruitment (Myers and Cadigan, 1993). A
similar index is associated with a significant proportion (36%)
of the long-term mean recruitment of 20 cod stocks in the
North Atlantic (MacKenzie et al., 2003). It is assumed that
habitat area is a reasonable proxy for the large number of processes
and mechanisms that influence juvenile cod survival, but which
remain poorly quantified in most areas of the North Atlantic.
Habitat size was estimated by calculating the area between 40
and 300 m in the fisheries division occupied by the stocks
(Figure 1). Note that the same spatial considerations regarding
the exclusion of certain subareas for the estimation of the T time-
series were also taken into account. Therefore, by available habitat
size, we define the continental shelf area between the 40- and
300-m bathymetric contours within the entire statistical, ICES or
NAFO, division(s) occupied by each stock, but excluding certain
subareas, as described in the paragraph above.

To combine data on recruitment across cod stocks, the time-
series have to be standardized for differences in life-history charac-
teristics affecting reproductive output. For example, recruitment in
some stocks is estimated at age 1, but at age 3 in others.
Standardization was performed following the method used in pre-
vious meta-analyses of cod recruitment (e.g. Myers et al., 1999,
2001). According to this method, recruit numbers are multiplied
by the stock-specific SPRF¼0 parameter (spawners produced per
recruit in the absence of fishing mortality), estimated as a function
of natural mortality, weight-at-age, and age-at-maturity (Mace,
1994; Myers and Mertz, 1998b). In this way, recruits are trans-
formed to total spawner biomass produced per spawner over its life-
time in the absence of fishing, and this also affects the interpretation
of the SR model parameters, as discussed later. For most stocks, esti-
mates of the SPRF¼0 parameter are provided by Goodwin et al.
(2006) and Shelton et al. (2006); for the others, they were estimated
using data extracted from the assessment reports (Table 1).

Modelling and statistical analyses
Hierarchical models
Hierarchical or multilevel modelling is a rigorous probabilistic
framework appropriate for combining data and making inference
across various independent sources with similar characteristics
and expected to exhibit comparable patterns in their dynamics
(Berliner, 1996; Hilborn and Liermann, 1998; Wikle, 2003;
Gelman et al., 2004; Gelman and Hill, 2007). The method makes
use of these similarities to define a common population distri-
bution, from which the unit-specific (here, stock) parameters are
sampled (Gelman et al., 2004). The common distribution not

only allows an improved fit of the model to the data, but also
structures dependence among parameters, thereby avoiding over-
fitting (Gelman et al., 2004). In this context, the exchangeability
assumption plays a key role (Gelman et al., 2004; Ntzoufras,
2009). The assumption is used when no relevant information,
apart from the modelled data, is available to distinguish among
the stock-specific parameters, so no ordering or grouping can be
applied (Gelman et al., 2004). As will be shown later, however, it
is possible to relax the exchangeability assumption by introducing
stock-specific characteristics, besides the SR data, potentially influ-
encing the parameters (Su et al., 2004). An additional advantage of
hierarchical inference is that, especially when combined with
state–space modelling methods, it allows for the explicit incorpo-
ration, and hence isolation, of the observation and systematic
model error (Meyer and Millar, 2001), usually characterizing fish-
eries models (Hilborn and Walters, 1992; MacKenzie et al., 2003).
This point is further considered in the Discussion section.

Implementation of the models is based on decomposing them
into three stages or levels (Berliner, 1996; Wikle, 2003; Clark, 2007;
McCarthy, 2007). The first level describes the probability of the
data, given the explanatory variables and the parameters describing
the corresponding effects (i.e. the functional form of the SR
model). The second level describes the variation in the parameters
that determine the dynamics in the first level. Its importance is
twofold because at that level we define (i) the functional form for
how ecosystem factors affect the parameters, and (ii) the distribution
of SR model parameters across cod stocks. The latter can be extended
to account for mechanisms generating among-stocks differences, so
this stage is also referred to as the stock-level model. The third level is
the parameter model, and it concerns the hyperparameters used to
define the probability distributions of the parameters in the previous
stages. These last two levels are based on the assumption that certain
SR model parameters are connected across stocks and also on the
exchangeability assumption; hence, they lie in the core of the hier-
archical inference. The common probability distribution and the
process generating the parameters, or describing the differences
among them, are both described by the hyperparameters of the
third stage and, therefore, form the interface for the combination
of the individual datasets and, consequently, for exchange of esti-
mation strength across stocks (Gelman et al., 2004).

Owing to their probabilistic background, most hierarchical
applications have been implemented under the Bayesian paradigm
(Gelman et al., 2004; Clark, 2007). Hierarchical Bayesian inference
averages over the above levels of uncertainty and variability by like-
lihood (data model), priors (process or stock-level models), and
hyperpriors (parameter model) to produce the posterior distri-
bution of the SR model parameters (see also Supplementary
material). The posterior distributions are interpreted as descrip-
tions of the uncertainty about the parameters. Another popular
framework in this context is frequentist mixed (or variance com-
ponents) modelling (Searle et al., 1992; Snijders and Bosker, 1999;
Demidenko, 2004; West et al., 2006; Clark, 2007; Gelman and Hill,
2007). In particular, the estimated variance components describe
variability across stocks. Mixed models can be regarded as a com-
bination of Bayesian and frequentist approaches (Demidenko,
2004), with results parallel to empirical Bayesian inference
(Robinson, 1991; Snijders and Bosker, 1999). Both Bayesian and
frequentist mixed models treat some parameters as random vari-
ables, with common (estimated) variances. For frequentists, the
hyperparameters and additional unknown parameters used to
specify the variance of the random effects and other parts of the
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model are considered fixed, but unknown, and are estimated from
the data by maximizing their likelihood (or a similar measure).
The distributions of the estimates describe sampling variability
(uncertainty of estimates under resampling). In the Bayesian infer-
ence, however, these parameters are given hyper-prior distri-
butions, and the full (posterior) distribution of the parameter is
estimated (Demidenko, 2004).

Both approaches have some advantages for implementing mul-
tilevel modelling (Clark, 2007; Gelman and Hill, 2007). Mixed
models are usually quick and easy to fit, but estimation may fail
under certain circumstances. For instance, the non-linear, mixed-
models approach does not have a closed-form solution, leading to
more computationally intensive estimation algorithms and to less
reliable inference results (Pinheiro and Bates, 2000). Bayesian hier-
archical models, on the other hand, are more flexible, allowing
estimation for more complex model structures, as well as easier
inference about the uncertainty of variance components.

In this study, the hierarchical SR models were developed mainly
in the Bayesian framework and simulated in BUGS (Lunn et al.,
2000). Mixed modelling approaches, implemented in the R
language and environment for statistical computing using the
nlme library (Pinheiro and Bates, 2000), were also employed in
a complementary manner to identify the best model structure
for the linear SR models. The parameter estimates provided by
the two frameworks were compared and, as will be shown, there
was sufficient comparability, justifying the choice of combining
both methods. Subsequently, the more flexible Bayesian frame-
work was used to implement complex, non-linear, SR model for-
mulations, to estimate inferential uncertainty about all model
parameters, and to present key results. Both mixed modelling
and Bayesian terminology were used to describe the SR model
development below to provide a more complete overview of the
principles and methods of hierarchical models.

SR models
The Ricker SR model (Ricker, 1954) is one of the standard models
used in fisheries science (Hilborn and Walters, 1992):

Rt ¼ ARICSte
�BSt e1t ; ð1Þ

where R is recruitment, standardized as described previously, S the
spawner biomass, t denotes year for S and year class for R, and the
process errors 1t are assumed to be lognormal and multiplicative.
Parameter ARIC represents the slope of the curve near the origin
and is related to stock productivity and the density-independent
survival rate. In the present case, where standardized recruitment
is used, it can be interpreted as the average rate at which replace-
ment spawners are produced per spawner over its lifetime at low
spawner abundance and in the absence of fishing mortality. This
rate is standardized across stocks for differences in weight-,
maturity-, and natural mortality-at-age that are incorporated in
the standardization parameter SPRF¼0. Therefore, as will be
shown in detail below, ARIC can depend on a number of time-
varying factors, such as temperature, accounting for effects on pre-
recruit survival rates and also for potential fluctuations in the
SPRF¼0 components.

Parameter B is related to carrying capacity because 1/B)
equals spawner biomass when recruitment reaches the maximum
(Smax, also termed beta), and 2B represents the density (stock)-
dependent mortality dominating after this point. The parameter
therefore depends on habitat size, which differs across regions

and can cause, and explain, at least some of the across-stocks varia-
bility in beta. Moreover, the suitable habitat available can also be
influenced by ecosystem variables and vary in time within each
stock (Kell et al., 2005a). The possibility for within-stock tempera-
ture effects on beta, as well as the among-stocks relationship
between beta and habitat size, is investigated below.

The K indices for a given stock i can be derived using the fol-
lowing formulation of the Ricker SR model, expressed in terms
of the curve’s maximum point Rmax and Smax (Brander and
Mohn, 2004a, b): Rt ¼ expð1ÞðRmax=SmaxÞSte

�St=Smax . According
to that formula, the parameters of the Ricker model can be
expressed as ARIC¼ exp(1)(Rmax/Smax) and beta ¼ 1/B ¼ Smax.
Therefore, Kmax, representing the maximum number of
recruits produced by the maximum number of spawners
sustained by the ecosystem (i.e. Rmax), is estimated as
Kmax;i ¼ Rmax;i ¼ ARIC

i � betai= expð1Þ. Keq is the carrying capacity
when S and R are at equilibrium (i.e. when R ¼ S) and hence is a
useful parameter for management, representing the minimum
spawner biomass required to produce replacement recruitment:
KRIC

eq;i ¼ logðARIC
i Þ � betai. The Ricker model can be linearized by

natural log-transformation and assuming lognormal errors:
log(Rt/St) ¼ log(ARIC) 2 BSt þ 1t. To simplify notation, the
Ricker model for stock i is written as

yit ¼ aRIC
i þ bRIC

i xit þ 1it; ð2Þ

where yit ¼ log(Rit/Sit), xit ¼ Sit; aRIC
i ¼ logðARIC

i Þ;b
RIC
i ¼ �Bi

¼ �1=beta ¼ �1=Smax, and i denotes the stock. For simplicity,
we denote aRIC

i as alpha, understanding that alpha ¼ log(ARIC).
The errors in this and the following models are assumed to be
stock-specific.

The BH (Beverton and Holt, 1957) model is also broadly used
for the study of SR dynamics:

Rt ¼
ABHSt

1þ St=KBH
e1t : ð3Þ

Ricker and BH SR models display similar behaviour at the limit of
low S (i.e. compensation); therefore, parameter A (denoted as ABH

for the BH model) has common interpretation and estimation in
both models (Myers et al., 1999). Parameter KBH has the same
dimensions as S and can be interpreted as the “threshold
biomass” resulting in half the maximum recruitment, which
equals ABH

� KBH.
The BH model cannot be linearized and, as discussed above,

was developed in the Bayesian framework. In this context, a
useful reformulation is the following:

yit ¼ aBH
i þ logðbBH

i Þ � logðbBH
i þ xitÞ þ 1it; ð4Þ

where yit ¼ log(Rit/Sit), xit ¼ Sit, aBH
i ¼ logðABH

i Þ; bBH
i ¼ KBH

i ;
and i denotes the stock. In this form, the model is linear to aBH

i ,
which has the same interpretation as aRIC

i of the Ricker model
in Equation (2) and will also be denoted as alpha, and bBH

i is com-
parable with the Ricker model Smax ¼ beta ¼ �1=bRIC

i , because it
corresponds to S, resulting in half the maximum recruitment given
by expðaBH

i Þ � bBH
i . For simplicity, bBH

i is also termed beta (dis-
tinction between the Ricker and BH model parameters is made
on the basis of context, or reference is made to both parameters
jointly). We can also estimate K at equilibrium, Keq, for the BH
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model as KBH
eq;i ¼ expðaBH

i Þðb
BH
i � 1Þ. Recruitment K indices under

the two SR models are estimated as a function of alpha and beta, so
depend on both density-independent and -dependent processes
represented by each parameter.

The SR models were, subsequently, developed in the “multi-
level” framework. The Ricker model is used to present this
section, simplifying notation by dropping the SR model identi-
fiers, i.e. using ai and bi in the place of aRIC

i and bRIC
i , respectively.

However, the same approaches apply to the BH model and its
parameters aBH

i and bBH
i . Estimation for this model is described

in the Supplementary material.
A convenient way to conceptualize the multilevel SR framework

is by starting with a simple regression model fitted to all stocks
(Gelman and Hill, 2007). This type of model is referred to as a
complete-pooling model and is based on the “extreme” assump-
tion that each parameter is fixed to a certain value, common
across stocks. For the Ricker model, the complete-pooling model
can be written simply as yit ¼ a þ bxit þ 1it, with 1it �iid Nð0;s2

yÞ:
The previous model can be written in another generalized way,

as in Equation (2). In this form, it corresponds to the no-pooling
model, a classic regression model that can be estimated for each
stock separately, using indicators and assuming that parameters
are completely independent across stocks. In the Bayesian frame-
work, the data-level models represent the likelihood, describing
the distribution of the data given the model. In other words,
they convey information about the range of parameter values
that are most consistent (likely) with the data for each stock
(Gelman and Hill, 2007).

Hierarchical modelling is a compromise between these two
extremes, imposing a soft constraint on the stock-specific par-
ameters by assuming that they are derived from a common prob-
ability distribution (Gelman and Hill, 2007). The lowest-level
model is extended by introducing the next level of complexity,
i.e. specifying the distribution of the data model (i.e. the Ricker
SR model) parameters across stocks. These across-stock distri-
butions of the parameters represent the stock-level models and
are estimated from the full dataset, so strength is borrowed
across stocks. Usually, Gaussian distributions are assumed:

ai � Nðma;s
2
aÞ ð5aÞ

and

bi � Nðmb;s
2
bÞ; ð5bÞ

where ma and s2
a (or mb and s2

b) are the mean and variance of the
parameter alpha (or b ¼ 21/beta) distribution, respectively. The
distribution means, ma and mb, are referred to as fixed effects in
mixed-models terminology, and they represent the average value
of the corresponding parameter across all stocks, whereas s2

a

and s2
b are the variance components (Searle et al., 1992;

Pinheiro and Bates, 2000). The previous stock-level models
[Equations (5a) and (5b)] can also be written as:

ai ¼ ma þ ai ð6aÞ

and

bi ¼ mb þ bi; ð6bÞ

where ai � Nð0;s2
aÞ and bi � Nð0;s2

bÞ are the stock-level model
errors referred to as random effects and represent the deviation
of stock i parameter ai or bi from the corresponding across-stocks
mean. Jointly, they are represented by a multivariate normal
distribution:

ai

bi

� �
� N

ma

mb

� �
;

s2
a rsasb

rsasb s2
b

� �� �
;

where r is the correlation between the random effects. In the
Bayesian context, the stock-level models represent the priors,
which usually convey the existing (i.e. before the data under
study are seen) knowledge of the parameters and are hence used
to update or weight the likelihood. In the present context,
however, whereby priors are common to all stocks, they are used
to incorporate information on the distribution of parameters
across stocks, which is relevant to obtaining individual estimates.

Consequently, the Ricker data-level model incorporating the
stock-level models is

yit ¼ ma þ ai þ ðmb þ biÞxit þ 1it : ð7Þ

It is assumed that the residuals 1it � Nð0;s2
yiÞ associated with each

stock are independent and that the residuals and random effects
are independent of each other. The parameter s2

yi is also a variance
component (Searle et al., 1992).

The stock-level models partially pool the parameters towards
the mean of the distribution, so the estimates are referred to as
shrinkage estimates (Gelman and Hill, 2007). For instance, the
estimate of ai can be expressed as a weighted average of the
no-pooling, stock-specific model �yi � b�xi, corresponding to aRIC

i

in Equation (2) and its mean across stocks (the fixed effect) ma:

âi �
ni=s

2
yi

ni=s2
yi þ 1=s2

a

ð�yi � b�xiÞ þ
1=s2

a

ni=s2
yi þ 1=s2

a

ma; ð8Þ

where s2
yi is the stock-specific model variance and ni the number of

observations for stock i (Gelman and Hill, 2007). Pooling is stron-
ger when s2

a is small and for stocks with fewer observations and
greater variability (s2

yi). The stock-specific weight
ðni=s

2
yiÞ=ðni=s

2
yi þ 1=s2

aÞ is defined as the reliability of the corre-
sponding stock mean, and the ratio of the two weights is the
ratio of the true variance s2

a to the error variance s2
yi=ni. As the

true values are unknown, they are substituted by their estimates
in Equation (8). The above estimate âi is also known as the pos-
terior mean or the empirical Bayes estimate, because it is obtained
by combining the stock with the population (representing the
prior, in this context) information (Snijders and Bosker, 1999).

Incorporating ecosystem effects
Having introduced the hierarchical model as composed of uncer-
tainty/variation levels [within (data-level) and across (process-
and parameter-level) stocks], it is straightforward to extend the
previous model to incorporate ecosystem (log-transformed
habitat size, H, and temperature, T) effects on the parameters.
The stock-level models [Equations (6a) and (6b)], describing the
across-stocks variation in the parameters, are simply modified to

Hierarchical modelling the population dynamics of North Atlantic cod 839
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account for the effects of these predictors. Therefore, stock-specific
parameters are standardized for differences in known character-
istics of the ecosystems occupied by cod stocks.

Temperature
Initially, both parameters alpha and beta are allowed to be
temperature-dependent, so the stock-specific SR parameters are
now also time-varying. Different functional forms of these
relationships can be assumed and tested. To facilitate model com-
parison using the linear, mixed modelling framework, the relation-
ships are initially assumed to be quadratic to allow for
dome-shaped impacts, whereby the size and the magnitude of
the effect depend on the temperature range. Therefore,

ait ¼ coi þ mcT1
Tit þ mcT2

T2
it ð9aÞ

and

bit ¼ doi þ mdT1
Tit þ mdT2

T2
it : ð9bÞ

Those relationships, however, can impose structural constraints
on the effect because they imply equal rates of increase and
decrease in the parameters with temperature beyond the
optimum point. Therefore, more flexible relationships, such as
the inverse polynomials (Nelder, 1966), were also tested using
the Bayesian models. For example, the dependence of parameter
alpha on temperature can be written as:

ait ¼ expðcoi þ mcT1
Tit þ mcT2

T�1
it Þ: ð9cÞ

Note that the temperature time-series in Equations (9a) and (9b)
were centred to the overall (across stocks) mean (i.e. average of all
Tit observations) to remove the correlation between the first- and
the second-order term estimates. Therefore, the intercepts coi and
doi in the above relationships represent the stock-specific values of
alpha and beta at across-stocks mean temperature. These among-
stocks differences remain after accounting for temperature effects
and can be attributed to additional ecosystem factors affecting the
SR-model parameters in a relatively stable manner. The intercepts
can be modelled by assuming across-stocks distributions (stock-
level models):

coi � Nðmco
;s2

co
Þ ð10aÞ

and

doi � Nðmdo
;s2

do
Þ ð10bÞ

These models describe the (constant in time) divergence
between the stock-specific alpha or beta estimate and the across-
stocks grand mean mco

or mdo
, respectively. The coefficients

describing the temperature effect on alpha and beta, (mcT1
, mcT2

)
and (mdT1

, mdT2
), respectively, are assumed to be common across

stocks. This assumption can be relaxed by imposing stock-level
models on the coefficients. For instance, mcT1

in Equation (9a)
can be substituted by the stock-specific terms
cT1i � NðmcT1

;s2
cT1
Þ. Consequently, the Ricker SR model,

updated to incorporate temperature effects on alpha and beta, is

yit ¼ ait þ bitxit þ 1it; ð11Þ

where ait and bit are given by Equations (9a) [or (9c)] and (9b),
respectively.

Habitat size
As discussed previously, parameter b ¼ 21/beta of the Ricker
model is a proxy of the carrying capacity of the ecosystem for
stock i. K is expected to be positively related to the size of the
stock-specific habitat, defined as the juvenile feeding ground,
where space can be a limiting factor causing density-dependent
effects (Myers et al., 2001; Myers, 2002). Initially, a quadratic
relationship is assumed to allow for the possibility of non-linear
effects. Differences in habitat size can, therefore, explain part of
the across-stocks variability in b ¼ 21/beta, which is represented
by the distribution of intercepts, doi, in the stock-level model
[Equation (10b)]. Therefore, H (the natural log of the habitat
area, centred to the mean to eliminate correlation between the
coefficients) is included as a predictor in Equation (10b) and the
b stock-level model becomes

doi � Nðmko
þ fH1Hi þ fH2H2

i ;s
2
ko
Þ: ð12Þ

Combining Equations (9a), (9b), (10a), (11), and (12), the full
model is

yit ¼ coi þ cT1iTit þ cT2iT
2
it þ ðkoi þ fH1Hi þ fH2H2

i

þ dT1iTit þ dT2iT
2
itÞxit þ 1it; ð13Þ

with random effects coi � Nðmco
;s2

co
Þ; cT1i � NðmcT1

;s2
cT1
Þ;

cT2i � NðmcT2
;s2

cT2
Þ; koi � Nðmko

;s2
ko
Þ; dT1i � NðmdT1

;s2
dT1
Þ; and

dT2i � NðmdT2
;s2

dT2
Þ: Also, note that Equation (9c) can be used

instead of Equation (9a).
The model can be conceptualized in the following ways

(Gelman and Hill, 2007). The first way is with a two-level
model, with the first level describing the dependence of yi on xi

for each stock i, through the Ricker SR model updated to
include temperature-related processes in its functional form, as
in Equation (11). The second level includes the across-stocks dis-
tributions of the first-level model parameters [i.e. stock-level
models in Equations (10a) and (12)]. In the second way, in the
Bayesian inference framework, the second-level model [Equation
(12)] imposes different prior distributions for the bi values,
which are now non-exchangeable, because they depend on the
stock-specific Hi.

Identification of best model structure
For the mixed models, likelihood ratio tests (LRT) were used to
compare the different formulations fitted using REML (restricted
maximum likelihood) or ML (maximum likelihood), depending
on whether the test applied to random or fixed components,
respectively (Pinheiro and Bates, 2000). The LRT results generally
agree with the AIC (Akaike Information Criterion) comparisons.

The Deviance Information Criterion (DIC; Spiegelhalter et al.,
2002), a generalization of the AIC, was used to compare the differ-
ent Bayesian model formulations. The DIC is estimated as DIC ¼
mean deviance þ 2pd. The mean deviance is estimated as 22 �
the log-likelihood averaged over the number of simulations,
hence quantifying the lack of model fit (smaller is better). The
addition of pd, the effective number of parameters, is a penalty
for complex models. In other words, using the DIC criterion, we
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seek models with good technical fit (high likelihood) that are not
overly complex or overfitted.

Assessments of model suitability
The uncertainty associated with the estimated model parameters
was compared between the hierarchical Bayesian Ricker (HBR)
and the single-stock Ricker (SSR) models to assess the degree of
“borrowing strength” achieved with the former models. The
HBR goodness-of-fit was also evaluated in terms of the coherence
between the trends in the fitted and observed data.

Comparison of uncertainty in SR model parameters between
HBR and SSR
The precision in the estimates of alpha and beta ¼ 21/b were
compared between the hierarchical and the single-stock Ricker
models to demonstrate the reduction in uncertainty that could
be achieved by applying a hierarchical approach incorporating
ecosystem properties (e.g. temperature and habitat size effects).
As the parameter estimates differ in both their means (m) and stan-
dard errors (s.e.), the latter were expressed in units of the mean by
using the s.e./m ratio, here defined as an estimate of uncertainty
indicator (i.e. analogous to the more familiar coefficient of varia-
bility). For alpha, the SSR estimate corresponds to an estimate
under the long-term, stock-specific temperature conditions
experienced by the stock during the period for which data were
available. Therefore, when comparing the values of alpha from
the HBR and SSR models, the hierarchical alpha values corre-
sponding to stock-specific mean temperatures were used. The
comparison itself was conducted by calculating the ratio of the
single-stock to hierarchical-uncertainty indicators. Values .1,
therefore, quantify the reductions in uncertainty achieved using
hierarchical approaches.

Evaluation of pattern coherence between data and model
predictions
The ability of the Ricker-Bayesian model to reproduce the main
trends and fluctuations in the observed recruitment survival
over time was evaluated by plotting the observed SR data and com-
paring the patterns with the predictions of the hierarchical SR
models. Also, the coherence between recruitment survival and
productivity patterns with temperature was assessed.

Results
Ricker SR model formulation
Both mixed modelling and Bayesian approaches were used to
identify the final structure of the hierarchical linear Ricker SR
model. Therefore, the two methods, based on different principles,
were first checked for consistency in the parameter estimates, and
the results were satisfactory (Figure S2).

The simplest model form [Equation (7)] was used as the basis
to build the final model by identifying (i) whether the random
effects associated with alpha and beta should be assumed indepen-
dent or correlated, (ii) whether the residual variance should be
assumed common or stock-specific, and (iii) the significance
and the patterns of the temperature and the habitat-size effects.
In particular, we were interested in exploring the possible tempera-
ture effect, so this effect was tested as the final one, where other
non-significant effects were eliminated. The mixed-Ricker (MR)
model codes and structure and the AIC, statistics, and p-values
of LRT are summarized in Table 2. Ta
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Table 2. Continued

Model code

Model structure
AIC (fitting

method)
logLik (fitting
method) [d.f.]

Hypothesis tested
(model comparison)

LRT
p-value

(L. ratio)Fixed effects Random effects

MR3.HQ.TAQ
yit ¼ðcoi þ mcT1

Tit þ mcT2
T2

it
Þ

þ ðkoi þ fH1Hi þ fH2H2
i Þxit þ 1it

as in MR3.HL.TAL 1 550.2
(ML);
1 606.8
(REML)

2746.1 (ML);
2774.4
(REML) [29]

Quadratic dependence of ai on
temperature (T ); mcT1

¼ mcT2
¼ 0

(MR3.HQ.TAQ vs. MR3.HQ)

,0.01
(15.0)

MR3.HQ.TBL yit ¼ai þ ðkoi þ fH1Hiþ

fH2H2
i þ mdT1

TitÞxit þ 1it

ai � Nðma;s
2
aÞ, koi � Nðmko

;s2
ko
Þ 1 562.6 (ML) 2753.3 (ML)

[28]
Linear dependence of bi on temperature

(T ); mdT1
¼ 0 (MR3.HQ.TBL vs.

MR3.HQ)

0.46 (0.6)

MR3.HQ.TBQ yit ¼ai þ ðkoi þ fH1Hi þ fH2H2
i

þ mdT1
Tit þ mdT2

T2
itÞxit þ 1it

As in MR3.HQ.TBL 1 562.2 (ML) 2752.3 (ML)
[29]

Quadratic dependence of bi on
temperature (T ); mdT1

¼ mdT2
¼ 0

(MR3.HQ.TBQ vs. MR3.HQ)

0.23 (2.9)

MR3.HQ.TAQ.RS yit ¼ðcoi þ cT1iTit þ cT2iT
2
it
Þ

þ ðkoi þ fH1Hi þ fH2H2
i Þxit þ 1it

coi � Nðmco
;s2

co
Þ, cT1i � NðmcT1

;s2
cT1
Þ,

cT2i � NðmcT2
;s2

cT2
Þ, koi � Nðmko

;s2
ko
Þ

1 609.4
(REML)

2773.7 (REML)
[31]

Across-stocks differences in the influence
of T on alpha; scT1 ¼ scT2 ¼ 0
(MR3.HQ.TAQ.RS vs. MR3.HQ.TAQ)

0.5 (1.4)

MR3.HQ.AC yit ¼ai þ ðkoi þ fH1Hi þ fH2H2
i Þxit

þ riyit�1 þ 1it

As in MR3.HQ 1 398.3 (ML) 2651.2 (ML)
[48]

– –

MR3.HQ.TAQ.AC yit ¼ðcoi þ mcT1
Tit þ mcT2

T2
it
Þ

þ ðkoi þ fH1Hi þ fH2H2
i Þxitþ

riyit�1 þ 1it

As in MR3.HQ.TAQ 1 386.6 (ML) 2643.3 (ML)
[50]

Quadratic dependence of ai on
temperature (T ) after first-order
differencing of yit; mcT1

¼ mcT2
¼ 0

(MR3.HQ.TAQ.AC vs. MR3.HQ.AC)

,0.01
(15.7)

MR3.HL.r As in MR3.HL, but fitted only to stocks with low autocorrelation in yit 665.3 (ML) 2317.7 (ML)
[15]

– –

MR3.HL.TAL.r
yit ¼ðcoi þ mcT1

Tit

þ ðkoi þ fH1Hi þ fH2H2
i Þxit þ 1it

As in MR3.HQ.TAQ 660.7 (ML) 2314.4 (ML)
[16]

Linear dependence of ai on temperature
(T ); mcT1

¼ 0 (MR3.HL.TAL.r vs.
MR3.HL.r)

0.01 (6.6)

DIC DDIC

Bayesian models
BR3.HQ As in MR3.HQ 1 508
BR3.HQ.TAQ As in MR3.HQ.TAQ 1 489 219
BR3.HQ.TAQ.RS As in MR3.HQ.TAQ.RS 1 480 29
BR3.HQ.TAN.RS As in MR3.HQ.TAQ.RS, but using the inverse polynomial [Equation (9c)] to

describe the dependence of alpha on T
1 500 þ20

For every model, the AIC, the restricted log-likelihood (logLik; estimated using ML and/or REML), and the number of parameters (d.f.) are given. For the model comparisons, the p-values and the statistic (L. ratio)
of the LRT are given. Models found to be superior in each pair of comparisons are emboldened.
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The final MR model (MR3.HQ.TAQ) includes non-linear H
and T effects on beta and alpha, respectively, common T-related
slopes (mcT1

and mcT2
) across stocks, independent random effects,

and heterogeneous (stock-specific) errors syi (Table 2, Figure 2).
The model was also implemented in the Bayesian framework
(BR3.HQ.TAQ; Table 2), the only difference being that the H
effects were introduced directly on beta (i.e. on Smax).

Although no significant differences were found among stocks
for the T-related slopes (cT1i and cT2i), the terms were allowed to
be stock-specific in a Bayesian model (BR3.HQ.TAQ.RS) by intro-
ducing a stock-level model on the corresponding parameters. This
choice was also supported by the DIC model-selection criterion
(1480 vs. 1489 of BR3.HQ.TAQ; Table 2). Therefore, the model
was allowed to estimate the best possible parameters for each
stock, while accounting for uncertainty. For comparison, the
model omitting the T effect on alpha was also fitted. The DIC of
that model was 1508, considerably higher than the DIC of
BR3.HQ.TAQ.RS (1480; Table 2).

The Ricker model was also fitted using the inverse polynomial
[Equation (9c)] to describe the dependence of alpha on tempera-
ture (BR3.HQ.TAN.RS). The Bayesian framework was used to
implement this model, because the relationship is non-linear.
The results showed that the quadratic dependence used in the
BR3.HQ.TAQ.RS provided a superior fit (Table 2). The final
Bayesian model (BR3.HQ.TAQRS) used to produce the results
presented next becomes

yit ¼ ðcoi þ cT1iTit þ cT2iT
2
itÞ � xitb

RIC
i þ 1it; ð14Þ

where coi � Nðmco
;s2

co
Þ; cT1i � NðmcT1

;s2
cT1
Þ; cT2i � NðmcT2

;s2
cT2
Þ;

beta ¼ �1=bRIC
i � Nðko þ fH1Hi þ fH2H2

i ;s
2
ko
Þ; and

1it �iid Nð0;s2
yiÞ: The model provided satisfactory results when

tested for distributional assumptions (independence of within-
stock errors and normality of random effects).

Autocorrelation
Autocorrelation at lag 1 in log(Rt/St) was significant for certain
stocks (Table 1). To identify whether autocorrelation was respon-
sible for the improved goodness-of-fit of the MR3.HQ.TAQ
model, including the T effect on the alpha parameter, two different
approaches were employed. Initially, first-differencing for these
stocks was used by introducing log(Rt21/St21) as an explanatory
variable in the model, and allowing the corresponding coefficients
to be stock-specific. The ML models with and without the T effect
(MR3.HQ.TAQ.AC and MR2.HQ.AC, respectively) were fitted
and compared with LRT. The test shows that the T-related terms
remained significant (Table 2), although first-differencing
decreases the statistical power by increasing the Type-II error
rate (Pyper and Peterman, 1998). The second approach involved
fitting MR3.HQ and MR3.HQ.TAQ only to the ten stocks exhibit-
ing a low degree of autocorrelation. However, reducing the
number of stocks resulted in non-significant, second-order
terms related to the T and H effect, mcT2

and fH2; respectively.
Instead, therefore, the models MR3.HL.r and MR3.HL.TAL.r,
including only the linear terms, were compared. The LRT also
revealed that, in that case, including the T effect would improve
the model fit, with p ¼ 0.01 (Table 2).

Temperature effects on Ricker alpha
The identified species-level relationship between alpha and T can
be estimated based on the means of the related terms, mco

; mcT1
;

and mcT2
(Figure 3a). The relationship shows a dome-shaped func-

tional response to temperature; the curve is nearly flat between 4.5
and 68C and peaks at �58C, whereas alpha declines sharply at
temperatures outside the 4.5–68C range, roughly corresponding

Figure 2. Stock-specific residual standard errors (+s.e.) obtained from the Ricker-Bayesian model plotted vs. sample size.
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to the first and fourth quartiles of cod spawning-season T. The
within-stocks alpha–T relationships have a similar functional
form, depending on the experienced T range (Figure 3b,
Table 3). The positive and/or negative effects of temperature on
cod recruitment dynamics were also evident for many stocks,
based on the coherence between the recruitment survival patterns
and the temperature-driven fluctuations in alpha (Figure S3).

No significant differences were identified among the slopes cT1i

and/or cT2i describing the non-linear dependence of alpha on T
(Figure S4). Therefore, the critical temperature, the point after
which the negative effects on alpha prevail, estimated as 2cT1i/
2cT2i, does not differ significantly across stocks and can be con-
sidered equal to the species estimate of �58C (Figure 3a).
However, stocks are expected to differ in the alpha rate of

change [i.e. as given by differentiating Equation (9a)]: dait/
dT ¼ cT1i þ 2TpcT2i, where Tp is their current temperature.
Therefore, the expected proportional change in ait, dait resulting
from, for example, a 38C increase in the current average tempera-
ture of each stock can be estimated (Figure 4a, Table 3). Rates of
change in alpha are generally positive for stocks with current
mean spring temperature ,48C, but become increasingly negative
above �58C (Figure 4a, Table 3).

The stock-specific intercepts coi represent alpha at a common T
(equal to the overall mean of the T observations) across stocks,
hence represent the among-stocks differences in alpha left unex-
plained by the variability in T. There are significant differences
between stocks: cod-coas, cod3no, and cod3pn4rs have the
lowest, and cod-347d, cod-arct, cod2j3kl, and cod-iceg the
highest estimates compared with the across-stocks mean, mco

(Figure 5). It is also clear that the deviations are greater, and nega-
tive usually, for stocks at intermediate or lower mean spring temp-
eratures (Figure 5).

Evidence for temperature effects in no-pooling Ricker SR
models
For comparison, individual-stock (no-pooling) Ricker models
were also fitted, assuming either linear or quadratic dependence
of alpha on T. In the former case, significant (p , 0.1) negative
effects were found for three stocks (cod-347d, cod-farp, and
codgb) and positive effects for cod3no and cod2j3kl, and in the
latter (p , 0.1 for the quadratic term) for cod-arct, cod-coas,
and codviia. It is notable that most of these stocks are located in
the upper T range, whereas the effect was not significant for
most stocks, with a considerable proportion of the observations
in the mid-range 4.5–68C. Also, pooling of the T-related slopes
towards the mean in the multilevel Bayesian model is stronger
for stocks with less data in the analysis [Figure 6a and b; see also
Equation (8)].

Figure 3. (a) The relationship between alpha and temperature
(black line) on the cod species level, estimated by the Ricker-Bayesian
model. The grey lines correspond to the 95% credibility intervals. (b)
The stock-specific relationships between alpha and temperature
estimated by the Ricker-Bayesian model for the individual stocks.
Error bars (+s.e.) are also plotted for the observations at lowest and
highest temperature. See Figure 2 for stock symbol codes.

Table 3. Mean, maximum, and minimum stock-specific alpha
values estimated by the Ricker multilevel model.

Stock Mean Minimum Maximum Change (%)

cod-2224 2.84 2.59 2.91 26.77
cod-2532 1.87 1.50 2.00 217.05
cod-347d 4.52 4.25 4.70 212.77
cod-7ek 1.87 1.62 2.35 223.72
cod-arct 3.53 3.06 3.60 7.85
cod-coas 0.64 0.39 0.95 290.32
cod-farp 2.08 1.65 2.33 230.54
cod-iceg 3.23 2.97 3.32 29.01
cod-kat 1.92 1.71 1.99 211.56
cod2j3kl 2.55 1.47 3.38 35.54
cod3m 2.73 2.60 2.76 22.99
cod3no 1.16 0.29 1.42 36.63
cod3pn4rs 1.05 0.53 1.70 53.11
cod3ps 1.84 1.61 2.13 26.31
cod4tvn 2.05 1.93 2.10 7.60
cod4vsw 2.59 2.37 2.62 20.54
cod4x 1.59 1.55 1.60 5.15
codgb 2.05 1.56 2.30 222.36
codgom 2.55 2.32 2.59 26.43
codvia 2.23 2.04 2.56 229.59
codviia 2.14 1.53 2.36 220.75

The column labelled “Change” refers to the change in mean alpha induced
by an increase in current mean T by 38C.
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The dependence of Ricker beta on habitat size
The spawner biomass producing maximum recruitment, accord-
ing to the Ricker SR model (beta ¼ Smax ¼ �1=bRIC

i ), depends
on H (log of habitat size, defined as the area between 40 and
300 m; Figure 7a). The parameter is relatively constant when the
log of habitat size is below the across-stocks mean, but then
increases exponentially (Figure 7a). The model was also
explored in terms of the pooling introduced in the beta parameter
by the stock-level model, beta ¼ �1=bRIC

i � Nðko þ fH1Hi

þ fH2H2
i ;s

2
ko
Þ: Pooling of the individual estimates towards the

stock-level model predictions is stronger in the cases where
less information is available, i.e. for stocks with smaller
sample size [Figure 7c, Equation (8)]. The pooling (or shrink-
age) also gives plausible estimates of the parameters (positive
values) for all stocks, even when the individual SR model
gives results (cod-coas, cod3m, and cod3no) that are meaning-
less (i.e. negative estimates for beta ¼ �1=bRIC

i ; which has
units of S).

Figure 5. Stock-specific coi estimates obtained from the Ricker (black error bars) and BH (grey error bars) hierarchical Bayesian models. The
error bars correspond to 95% credibility intervals. The stocks are ordered by increasing mean T (right y-axis).

Figure 4. (a) The ratios (+s.e.) between alpha estimated at mean stock-specific T and the alpha corresponding to a 38C increase plotted
against current mean temperature. The same result applies also to Keq. (b) The corresponding plot for Kmax.
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The extent of across-stock variation in beta explained by differ-
ences in the habitat size can also be estimated using the r2-based
statistic (Gelman and Hill, 2007):

r2 ¼ 1�
EðVkoiÞ

EfVð�1=b̂ RIC
i Þg

;

where �1=b̂ RIC
i � Nðko þ fH1Hi þ fH2H2

i ;s
2
ko
Þ; and V is the

finite-sample variance operator across stocks. The numerator rep-
resents the average variance in koi � Nð0;s2

ko
Þ, i.e. in the average

variance of beta ¼ �1=b̂ RIC
i left unexplained by H, and the

denominator the average variance among the stock-specific beta
values. Note that the expectations are averaging over the uncer-
tainty of the model using posterior simulations, so leading to a
lower estimate, comparable with the traditional adjusted r2

(Gelman and Hill, 2007). The intermediate value of r2 obtained
(0.48) shows that habitat size can explain almost half the observed
variation in beta among cod stocks. In particular, the beta values
for stocks located in areas with low or intermediate average T
tend to be higher than those predicted by the model (Figure 7a).
This can also be shown by plotting the beta values estimated on
a per-unit-area basis (Figure 7d). This comparison shows that
stocks with higher estimates of beta per km2 tend to be located
in waters with intermediate mean temperature.

Effects of temperature and habitat size on carrying
capacity
The T effects on alpha also have implications for the K-related par-
ameters Kmax and Keq, which depend on both alpha and beta
Ricker parameters, as described above. Therefore, for a given
stock, K is time-varying, following the fluctuations of alpha with
T (Tables S1 and S2). The proportional change in the average
Kmax induced by a 38C increase in the mean stock-specific

temperatures is given by exp(dait) (Figure 4b, Table S2), whereas
the change in Keq is equal to dait (Figure 4a, Table 3). It follows
that the across-stocks pattern in both K indices is similar to
that for dait/dT, with the impact becoming progressively more
negative in areas currently having higher mean temperatures,
whereas for stocks inhabiting colder water, it is expected that the
change will be positive, other factors remaining equal (Figure 4a
and b).

On a per-unit-area basis, it is evident that there are extensive
differences (�30-fold) in K across stocks (Figure S5, and
Tables S1 and S2), similar to the respective pattern demonstrated
by the beta values (Figure 7d). This was expected because the
functional form of the relationship between K and habitat size is
determined by the exponential-like, non-linear model of beta
with H (Figure 7a), accounting for part of the variability across
stocks. The variability in K is also driven by the across-stocks
differences in the alpha values, represented by the pattern in the
intercepts coi (Figure 5). Therefore, the stocks with higher K per
unit area (e.g. cod in 3M, Iceland, North Sea, Kattegat, and the
western Baltic; Figure S5) are among those with the higher esti-
mates of beta per km2 (Figure 7d) and coi (Figure 5).

Comparison of BH and Ricker multilevel SR model results
The multilevel BH model, analogous to the final Ricker SR model
given by Equation (14), is

yit ¼ ðcoi þ cT1iTit þ cT2iT
2
itÞ þ logðbBH

i Þ � logðbBH
i þ xitÞ

þ 1it; ð15Þ

where bBH
i � Nðko þ fH1Hi þ fH2H2

i ;s
2
ko
Þ; coi � Nðmco

;s2
co
Þ;

cT1i � NðmcT1
;s2

cT1
Þ; and cT2i � NðmcT2

;s2
cT2
Þ:

The two SR models, Ricker and BH, provided similar estimates
for the alpha-related terms coi (Figure 5), cT1i, and cT2i (Figure S4).

Figure 6. The ratio between the T-related slopes obtained from the no-pooling Ricker models assuming quadratic dependence of alpha on T
and the corresponding slopes obtained from the Bayesian Ricker model [(a) cT1i, (b) cT2i] plotted against sample size. The pooling is less (ratio
close to 1) for stocks with more data. See Figure 2 for stock symbol codes.
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Consequently, the critical T and dait, which depend on the pre-
vious terms, are not significantly different. In addition, the form
of the stock-level model between bBH

i (beta) and log habitat size
(H) is analogous to the corresponding Ricker submodel
(Figure 7b). However, the BH submodel has a better fit, as quan-
tified by the r2 statistic, explaining �70% of the across-stocks
variability in the parameter. The model provided, in general,
higher point estimates for beta. The difference, however, is con-
siderable only in a few cases, namely for cod-iceg, cod4tvn,
cod2j3kl, and cod-2532 (Figure 7d). Following the pattern in
beta, there are substantial differences in the mean estimates of
Keq provided by the two SR models (Table S1) and to a lesser
extent in Kmax (Table S2). The relationship between K and log
habitat is non-linear, as in the Ricker model, so per-unit-area com-
parisons of the parameters are not straightforward.

Reduction in parameter uncertainty
There was a substantial increase in precision for both alpha and
beta parameters when estimated from the HBR compared with
the SSR models, especially for stocks with shorter time-series
(Figure 8a). The reduction in uncertainty was stronger for beta,
for which the average reduction was 70%, and highest for northern
Gulf of St Lawrence (cod3pn4rs), northern (cod2j3kl), and Celtic
Sea (cod-7ek) cod. For alpha (estimated at mean stock-specific T),
the decrease in uncertainty was 44%, and it was higher for Grand
Bank (cod3no), Norwegian coastal (cod-coas), Celtic Sea
(cod-7ek), and Flemish Cap (cod3m) cod stocks.

HBR model performance
The fitted SR curves obtained from the HBR model were better
able to capture some of the trends in recruitment than an SSR

Figure 7. The fitted stock-level model of beta as a function of H (log habitat size) in (a) the Ricker (corresponding to �1=bRIC
i ¼ Smax and (b)

the BH (corresponding to bBH
i ¼ KBH

i ) multilevel Bayesian models. (c) The ratio of beta estimated from the Bayesian-Ricker model (HBR) and
the corresponding estimate obtained from individual, stock-specific, Ricker models (SSR) plotted against sample size. The ratio is closer to 1
(representing less pooling) for stocks with more observations. (d) The beta (expressed as 2KBH for the BH and as Smax ¼ �1=bRIC

i for the
Ricker model; ’000 t km22) parameter estimates and 95% credibility intervals obtained from the Bayesian Ricker (black error bars) and BH
(grey error bars) hierarchical models, ordered by increasing mean temperature (right y-axis). The vertical black and grey lines correspond to
the across-stocks means of the Ricker and BH beta parameters, respectively. See Figure 2 for stock symbol codes.
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model without temperature effects (Figure 9). The confidence
intervals of the fit were also narrower, especially at higher
spawner biomass, because of the greater estimation accuracy in
the alpha and beta parameters (Figure 8a). For most stocks, the
predicted curves seem to follow the patterns rather well (e.g.
cod-7ek, cod-arct, cod-farp, cod-iceg, cod-kat, cod-2224,
cod2j3kl, cod3pn4rs, cod3ps, codgb, codviia). The error sum of
squares obtained from the HBR was reduced for many stocks com-
pared with the SSR models (Figure 8b). This can be an effect of
partial pooling which, by definition, assigns more weight to obser-
vations closer to the mean. Alternatively, for those stocks, T and S
fluctuations could not explain effectively the variation in recruit-
ment and that other factors were driving the patterns instead. It
is also notable that, for most, there was substantial coherence
between the recruitment survival and alpha (Figure S3), under-
lying the significance of thermal effects on cod productivity.

Discussion
The main objective of our study was to investigate the effects of
ecosystem properties (e.g. spawning-season temperature and
nursery-ground size) on cod alpha and beta SR parameters
across the North Atlantic distribution of the species. We employed
two complementary hierarchical methods, mixed modelling and
Bayesian inference, to combine data on all cod stocks in an analysis
of both Ricker and BH SR relationships. We found two main
results.

First, there is a dome-shaped relationship between alpha, and
hence also K, and temperature, identified using both the Ricker
and BH SR models (Figure 3). Consequently, the influence of T
is positive in colder waters down to �58C, which is close to the
mean of the cod spawning-season thermal range and the

temperature at which cod egg survival is greatest in laboratory
experiments (Pepin et al., 1997), and negative for stocks inhabiting
warmer water. These findings imply that ocean warming will cause
considerable impacts on both alpha and K, and hence on cod SR
dynamics. More importantly, the models allow inference on
both the sign and the extent of these effects at both species and
individual stock level. Regarding the effect of habitat, beta (repre-
senting Smax ¼ �1=bRIC

i in the Ricker, and bBH
i ¼ KBH

i in the BH
model), which is also a K component and also describes density-
dependent regulation, depends on area size following an
exponential-like relationship, partly causing the observed across-
stocks differences in K per unit area. Additional biological
interpretations of these results follow below.

Our second main result is that we quantified how much uncer-
tainty in SR model parameters could be reduced by incorporating
environmental information directly in the hierarchical Bayesian
SR model framework. In some cases, it was possible to produce
parameter estimates for stocks whose estimates in a single-stock
(no-pooling) framework were otherwise ecologically meaningless
or statistically insignificant. Hence, in cases where no functional
relationship exists between spawner biomass and recruitment at
the single-stock level, Bayesian-based approaches can be a means
to estimate and predict the dynamics of these stocks under exploi-
tation and environmental (temperature) scenarios (Hilborn and
Liermann, 1998; Myers et al., 2001). Moreover, the uncertainty
in the alpha and beta parameters of Ricker models can be
reduced, on average, by 44 and 70%, respectively, if they are esti-
mated in a hierarchical framework (Figure 8a). Given that uncer-
tainty continues to be a major impediment to reliable forecasting
of fish population dynamics, especially in changing environments
and ecosystem structures (ICES, 2007a), our results could lead to

Figure 8. (a) Stock-specific ratios of the estimation uncertainty indicators in the SSR (without temperature effects) to HBR models, for alpha
(grey dots) and beta (black dots). Estimation uncertainty indicators for alpha and beta are defined as s.e./mean, i.e. expressing the standard
error of a parameter in units of the mean. In the HBR, alpha estimates correspond to average stock-specific temperature. Estimation precision
ratios for beta have been omitted in cases when the individual models gave implausible estimates (cod3m, cod3no, and cod-coas). The stocks
are ordered by increasing sample size (from the bottom to the top). The uppermost larger symbols and the corresponding solid grey and black
lines indicate the average of the alpha and beta ratios, respectively. The dashed line indicates unity, i.e. equal estimation precision between the
models. (b) Ratios of the ESS (error sum of squares) obtained from the SSR to the HBR model against sample size. See Figure 2 for stock symbol
codes. The dashed line indicates unity, i.e. equal ESS between the models.
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more reliable forecasts (i.e. less uncertainty) and scenarios of stock
dynamics (e.g. recoveries) under different exploitation and temp-
erature scenarios.

The study was based on stock-and-recruit data extracted from
published stock assessments. Therefore, and unavoidably, it suffers

from shortcomings inherent to that framework and hence
common to the SR modelling approaches (Hilborn and Walters,
1992; Needle, 2002). One important source of non-stationarity
in SR models stems from the way stocks are defined for operational
purposes, which may or may not agree with the “stock” concept

Figure 9. Fitted Ricker SR curves (solid lines) and 95% confidence intervals (dashed lines). Grey lines correspond to the SSR model fits without
the effect of temperature, and black lines to the Bayesian model with the effect of temperature (HBR). Symbols are observed data. Note that
recruitment is expressed in replacement spawners.
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from an ecological and/or evolutionary perspective (Hilborn and
Walters, 1992; Waldman, 1999; Waples and Gaggiotti, 2006). For
management, stocks are assumed to consist of discrete, homo-
geneous units, with negligible exchange with neighbouring
stocks. However, such exchanges (e.g. migration, source/sink pro-
cesses related to the drift of eggs and larvae) do occur (Metcalfe,
2006). Moreover, some stocks consist of several subpopulations
within a management area and whose abundance and productivity
might change over time (Robichaud and Rose, 2001; Metcalfe,
2006; Heath et al., 2008). Both these mechanisms can introduce
uncertainty to SR models for single stocks, e.g. by increasing
observation error in the estimation of spawning stock (Hilborn
and Walters, 1992).

Also, the stock and recruit time-series are not direct obser-
vations, but estimates provided by VPA analyses, based on data
subject to observation error. Therefore, the SR data are subject
to uncertainty, introducing measurement error or
error-in-variables bias in the SR models (Walters and Ludwig,
1981). In addition, spawner biomass is not always fully represen-
tative of the annual rate of egg production, because the age and
length structure of a stock, also driven by exploitation, play an
important role in reproductive output and success (Trippel,
1999; Marshall et al., 2003) and can also determine the sensitivity
of recruitment to climate (Perry et al., 2009). In general, however,
the measurement error in S does not affect seriously the alpha esti-
mates in the Ricker model (Kehler et al., 2002). Second, the corre-
lation of S levels with previous deviations of R, through system
dynamics, introduces time-series bias in the analysis and can
result in underestimation of optimum stock size (Walters, 1985).
Nevertheless, it has been shown that time-series bias is usually of
less importance when Ricker SR models are applied to cod
stocks (Myers and Barrowman, 1995). A relatively new approach
that can effectively address the above problems, at least for semel-
parous species, is the application of state–space methodology in a
Bayesian framework for modelling SR relationships (Meyer and
Millar, 2001). The application of this method to iteroparous
species is not straightforward unless estimates of the observation
error are available or can be assumed because the dependence of
S and R on previous observations is more complex. Potential
improvements in the present approach could involve changes in
the estimation of the SPRF¼0 parameters and of the habitat size,
as discussed below.

Hierarchical modelling approaches in SR studies
A hierarchical multilevel approach offers a number of advantages
which have been demonstrated to be particularly useful for the
analyses of fisheries data (e.g. Hilborn and Liermann, 1998;
Myers, 2002; Michielsens and McAllister, 2004; Su et al., 2004).
The methods are based on the stock-level models describing the
variation among stock-specific parameters across the species
range. For beta, these models are extended to include habitat
size as an individual stock predictor, which can partly explain
the observed variation. In a Bayesian framework, the stock-level
models can also be used to introduce existing knowledge into
the model (Gelman and Hill, 2007). Here, however, an empirical
Bayesian approach was used wherein priors are uninformative
or, for beta, depend on H (log habitat size).

An alternative method to model across-stocks variation in par-
ameters would have been to fit separate (no-pooling) models to
each stock and then to model the stock-specific parameters.
Multilevel methods, however, combine these two stages in a

single model, so that inference is based on both within- and
among-stocks variability, incorporating uncertainty in all par-
ameters. Therefore, the stock-level models are used to convey
information about the probability distribution of the parameter
estimated by all-stocks data. As the inference about single-stock
parameters is based on these priors, strength is “borrowed”, and
the “loan” (pooling) is higher for “poorer” (limited or highly vari-
able observations) stocks. Consequently, the empirical Bayesian
inference is superior to that of no-pooling models, especially
when the latter provide implausible estimates or lack the required
power to demonstrate the significance of certain terms. Our
analyses have provided several examples where the pooled
parameter estimates or their uncertainty improved relative to the
single-stock estimates.

Our hierarchical modelling approach also incorporated an
alternative formulation of SR–environment models to evaluate
specifically how the parameters of SR models vary with ecosystem
properties. This approach disaggregates the parameter into a
simple regression model, using the environmental effects as pre-
dictors [e.g. Equations (9a) or (9c) and (9b)]. Mathematically,
the approach is similar to, for example, including additional
environmental terms in the log-transformed version of the
Ricker model. However, disaggregating the parameters explicitly
and modelling them in response to ecosystem properties can be
beneficial. For example, it was possible to quantify and visualize
the functional form of the relationship between alpha and temp-
erature and to use the Bayesian framework to quantify the
reduction in uncertainty of these parameter estimates.

Effects of temperature on alpha and carrying capacity
Bringing together data, and particularly temperature, across the
entire North Atlantic distribution of cod has allowed inference
on the functional form of the relationship between alpha and T
at a species level. It is worth noting that the T effect remains sig-
nificant even after first-order differentiation of the R/S data,
although the method is known to increase Type-II error prob-
ability, when employed for low-frequency environmental signals
(Pyper and Peterman, 1998). Temperature has opposite effects at
the upper (negative) and lower (positive) thermal extremes,
roughly corresponding to waters with T above or below 58C,
respectively. Owing to the quadratic form, the strength of the
effect is stronger for temperatures closer to the extremes, and
weakest at the middle, “neutral” 4.5–68C interval (Figure 3).
Similar geographic patterns have been observed in the response
of cod recruitment to temperature across certain stocks (Planque
and Frédou, 1999; Brander, 2000). Consequently, the effect of a
potential increase in mean temperature will be more pronounced
for stocks inhabiting areas closer to the distribution limits.
Therefore, alpha for cod in the northern Gulf of St Lawrence
(3Pn4RS), with the lowest mean T, could be expected to increase
by .50%, whereas in the Celtic Sea, where mean T is highest,
the decrease would be �24% (Figure 4a; Table 3). These predic-
tions are, of course, only preliminary and assume that other eco-
system properties will react in future to such a temperature
change in the manner they have in the past. When they do not,
the model predictions may not be valid. An example of such a
case is cod in the southern Gulf of St Lawrence, which collapsed
in the early 1990s and is expected to be extirpated within 40
years even if fishing mortality is eliminated. The reason for the
failed recovery and expected extirpation is an increase in the
natural mortality of adult cod (Swain and Chouinard, 2008).
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Notwithstanding, we note that the effect of temperature is not
necessarily (only) a direct physiological effect on a particular life-
history stage, but rather an ecosystem-level thermal indicator aver-
aged over modest temporal and spatial scales, i.e. a regional sea
during spring. The temperature data, therefore, are indices that
integrate a large number of processes which affect early life
history in cod (including direct physiological effects on, for
example, growth rates, but also effects on the foodweb that
might also affect survival), and whose net effects within and
among entire stocks is reflected in the results detected here. The
mechanisms through which temperature affects cod early life
history are many, complex, and non-linear (Planque and
Frédou, 1999; Sundby, 2000; Drinkwater, 2005; Rijnsdorp et al.,
2009). They include the reproductive potential of spawners, e.g.
spawning time, weight-at-age, adult condition, and maturation,
and the biological processes controlling early life stages, such as
incubation time, size-at-hatch, growth rate, and stage duration.
In addition, temperature is a proxy for other ecosystem-level pro-
cesses, whose importance varies across stocks, but includes wind-
induced turbulence, food availability, displacement of spawning
areas, and predator abundance (Sundby and Fossum, 1990;
deYoung and Rose, 1993; Beaugrand et al., 2003; Houde, 2008).

Our observation that alpha peaked at T �58C is consistent with
other macro-ecological investigations of cod ecology. For instance,
the average temperature in cod spawning locations across the
North Atlantic (Sundby, 2000), the narrower temperature range
experienced by cod during their spawning season, as revealed by
tagging studies (D. Righton, Cefas, per. comm.), and laboratory
experiments on temperature effects on cod eggs and larvae
(Rombough, 1997; Jordaan and Kling, 2003), suggest that the
optimal thermal range for cod early life stages is around 5–78C.
Therefore, we believe that the temperature datasets used in this
study are representative of the thermal conditions influencing
cod recruitment dynamics by acting on processes relevant across
its distribution. This suggestion is also supported by the fact
that no significant differences were found among the stock-
specific, T-related slopes in the alpha models (Figure S4),
suggesting that the impact of temperature across stocks is an ade-
quate description of the relationship. Consequently, the estimated
species-level, dome-shaped relationship between reproductive rate
and temperature can be used as a prior for the parameterization of
cod SR models designed to incorporate the potential influence of
ocean warming, hence incorporating more biological knowledge
in stock assessments and management.

In the present context, where we use standardized recruitment
time-series (multiplied by SPRF¼0) and allow for T-effects, alpha
can be interpreted as the maximum rate at which spawners
produce replacement spawners, in the absence of fishing mortality,
given the temperature conditions during the spawning season in a
particular year. Therefore, “maximum” should not be interpreted
in absolute terms because it has a temporal, temperature-dependent
component. Therefore, it is possible to produce a set of SR curves,
corresponding to the mean, minimum, and maximum alpha esti-
mates, that show the most pronounced differences.

The SPRF¼0 parameter depends on weight-at-age, which is
affected by T (Brander, 1995, 2007; Dutil and Brander, 2003).
Therefore, it can be inferred that the relationship between alpha
and T also describes SPRF¼0 fluctuations, assuming that that par-
ameter is temperature-dependent and varies around a mean value
corresponding to the mean estimates used for recruitment stan-
dardization. Hence, an alternative approach would be to use time-

varying estimates of SPRF¼0 (Shelton et al., 2006), either to stan-
dardize recruitment or as an explicit component of SR models.

It was also demonstrated that factors other than temperature
influence alpha, causing the across-stocks variability in the inter-
cepts of the alpha–T relationship (Figure 5). The differences are
more pronounced among stocks located in colder water, whereas
in warmer areas, T seems to be the limiting factor. Indeed, there
is evidence that environmental variables, such as the North
Atlantic Oscillation (Stige et al., 2006), affect cod recruitment
across the North Atlantic. In addition, fishing can impact the
spawning potential of a stock by altering age- and size-at-maturity
and/or growth rate (Ottersen et al., 2006; Perry et al., 2009;
Planque et al., 2009). Biotic interactions with prey, predator, or
competing species affect the productivity and survival rates of
both early stage and adult cod (Lilly et al., 2008; Swain and
Chouinard, 2008). The reasons for the among-stocks variability
in alpha, whether of local- or species-level importance, bear
further investigation. It would also be pertinent to employ
similar methods to study cod response to other forcing factors,
e.g. primary productivity, and to compare the magnitude and
functional response to such factors with those documented here
for temperature.

Finally, we note that our results for the parameter alpha agree
with previous studies employing similar models to study SR
dynamics (Myers et al., 1999, 2001), which have concluded that
alpha is relatively constant across cod stocks. The average variation
among the stock-specific alpha parameters in our study is approxi-
mately sevenfold, and the mean (corresponding to mean T) esti-
mates are comparable with those obtained by Myers et al. (2001)
applying a non-linear mixed-BH model to an older version of
the cod dataset and using slightly different estimates of SPRF¼0.
Moreover, similar studies have suggested that the across-cod-
stocks differences in alpha are related to mean bottom temperature
in each region (Myers et al., 2002).

Carrying capacity, defined as the equilibrium S (Keq) or as the S
producing the maximum replacement spawner biomass (Kmax),
depends on alpha and is a dynamic variable varying temporally
according to the fluctuations in alpha driven by T. Further, K is
an exponential function of alpha, except for Keq obtained from
the Ricker model, so temperature effects are more severe for K.
For example, if mean T increased by 38C, Kmax for northern cod
(2j3kl) would be expected to increase approximately 2.5-fold,
compared with a �35% increase in alpha (Figure 4). In the
Celtic Sea, the reduction in K would be �44%, whereas the
decrease in alpha was estimated at 24%.

Effects of habitat size on beta
Habitat size was defined as the area suitable for the settlement of
juveniles and, hence, for density-dependent processes. Owing to
the log-transformation of H, the model is quite robust to exact
definitions of habitat size. The definition of H was able to rep-
resent some of the density-dependent processes in both BH and
Ricker cases; this finding is, therefore, consistent with the results
of earlier studies that showed that beta (¼Smax), on a per-km2

basis, differed significantly among cod stocks (Myers et al.,
2001), and that habitat size is a significant correlate of mean
recruitment level in North Atlantic cod stocks (MacKenzie et al.,
2003). The variance explained (r2) by the relationship is higher
using the BH model (70 vs. 48% for the Ricker model), indicating
that the employed habitat definition is mostly representative of the
density-dependent mechanisms incorporated in that SR model.
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The dependence of beta on the log-transformed habitat size, under
both SR models, was described by a quadratic submodel [Equation
(12)], showing an exponential type of increase with increasing H
for the most part (i.e. Figure 7a and b). Other types of submodel
were also considered, but the posteriors of the parameters showed
poor convergence.

Example case study interpretation: temperature and
North Sea cod
Our results on the impacts of temperature on alpha and beta
should be compared with other studies of cod ecology and
might help interpret past dynamics of individual cod stocks. As
an example, we briefly consider the North Sea cod stock, which
has declined in recent decades as a consequence of both fishing
and changing ecosystem conditions (especially temperature and
zooplankton; Beaugrand et al., 2003; Kell et al., 2005a). We note
initially that the long-term mean average condition in ten cod
stocks in the North Atlantic is higher in warmer waters and that
these stocks, including the North Sea stock, should therefore be
able to withstand higher levels of exploitation (Rätz and Lloret,
2003). Moreover, alpha from Ricker SR models for these ten
stocks was positively and linearly correlated with cod condition
(Rätz and Lloret, 2003). Our analyses showed that alpha decreased
at temperatures exceeding ca. 58C. When considered together, our
results and those of Rätz and Lloret (2003) suggest that, at warmer
temperatures, the processes affecting different components of
stock productivity, e.g. adult condition, growth, production of
eggs and larvae, and survival of juveniles, may have different func-
tional responses to temperature.

For example, in the North Sea, the negative temperature influ-
ence on recruitment documented here and by others (Planque and
Frédou, 1999; Brander, 2000) is believed to be related to larval/
pelagic 0-group feeding processes and zooplankton community
dynamics (Beaugrand et al., 2003). However, the analysis of inter-
actions between adult condition, alpha, and temperature (Rätz and
Lloret, 2003) shows that cod condition should still be high in the
North Sea even at warm temperatures. In addition, the scaling of
the temperature variable in the different analyses was different: our
study used temperature at spawning time, whereas the study of
Rätz and Lloret (2003) employed annual means. The latter
scaling may account for temperature effects during winter on
cod condition, for example, which may yield a different functional
response than the effect of spring temperature on cod recruitment
and early juvenile survival.

Nevertheless, the current state of the North Sea cod stock
suggests that exploitation has been so heavy that the beneficial
effect of warm temperature on North Sea cod condition has
been offset by greater fishing mortality of adults and juveniles
and a reduced production of recruits associated with changes in
the plankton community. Several modelling analyses suggest that
less-intense exploitation would allow the stock to recover,
despite the negative impact of warmer temperature on cod recruit-
ment (Cook and Heath, 2005; Kell et al., 2005a). These modelling
results are supported by archaeological studies which have shown
that cod were common in coastal areas of the North Sea (and the
neighbouring Kattegat) in the Atlantic Warm Period (ca. 7000–
3900 BC) although temperatures were 2–38C higher than late
20th century temperatures (Enghoff et al., 2007) and, therefore,
similar to those expected near the end of the 21st century associ-
ated with global climate change. Moreover, recent tagging studies
show that adult cod occasionally occupy warm water in the North

Sea (Neat and Righton, 2007). Given these findings, we believe that
reduced exploitation could help sustain North Sea cod popu-
lations well into the 21st century.

Perspectives and conclusions
Multilevel models are particularly useful for identifying and quan-
tifying processes acting on a broad scale, such as in determining
fish population dynamics across their distribution. We have
described the response of cod recruitment and K to temperature,
allowing for the effect of habitat size to approximate density-
dependent mechanisms. It would also be interesting to develop
similar approaches for other fish species. Applying hierarchical
models to a study of environmental impacts on key forage or com-
peting species of cod, either separately or combined in multispe-
cies models, may also improve predictions of the implications of
ocean warming for the structuring of local ecosystems and their
trophic flows (Worm and Myers, 2003; Frank et al., 2007).

Developing hierarchical SR models under the Bayesian para-
digm can also be useful for fisheries management, and especially
for the implementation of the precautionary approach. A precau-
tionary approach is based on defining limit and target reference
points for the state of a stock and the exploitation rates, and
requires formal consideration of scientific uncertainty in their esti-
mation (FAO, 1995). For many ICES stocks, however, the manage-
ment procedures ignore key sources of uncertainty, resulting in
inconsistent or even inappropriate biomass and fishing mortality
reference points (Kell et al., 2005b). Therefore, the development
of operating models representing state-of-the-art knowledge of
the underlying population dynamics and that are robust to uncer-
tainty has been proposed to address this problem (Kell et al.,
2005b). Also, it has been shown that only 17% of the ICES
stocks actually had the necessary estimates of reference points
needed to implement a precautionary harvest control rule and
also that a large proportion of US stocks had uncertain stock
status (Cadrin and Pastoors, 2008). A hierarchical Bayesian
approach, such as that presented here, can therefore offer at least
three advantages in terms of reference-point estimation: (i) inte-
gration over uncertainty in the parameters, including non-
stationarity attributable to environmental effects, (ii) improved
precision by borrowing strength from a multistock dataset and
incorporating more biological knowledge in the form of priors,
and (iii) derivation of consistent reference points also for data-
poor stocks. In addition, the results of this study in terms of the
dependence of cod maximum reproductive rate on temperature
and of carrying capacity and density-dependence on habitat size
can also be used as priors in similar studies, especially when inves-
tigating potential climate-change effects on cod recruitment.

Supplementary material
The following supplementary material is available at ICESJMS
online: Hierarchical model estimation procedures: Bayesian infer-
ence and additional tables (S1–S2) and figures (S1–S5) as listed in
the text.
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