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Symmetry is a vast subject, significant in art and nature. Mathematics lies at its root,
and it would be hard to find a better one on which to demonstrate the working of the
mathematical intellect

(Hermann Weyl)
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Zusammenfassung

In den letzten Jahren hat sich die Nutzung von Symmetrien in Anwendungen der semidefi-
niten Optimierung als vorteilhaft erwiesen. Die vorliegende Arbeit untersucht Möglichkei-
ten der Nutzung diskreter Symmetrien im Kontext dreier Problemfelder: In der polynomi-
ellen Optimierung, beim Positivitätstest symmetrischer Polynome und in der kombinato-
rischen Optimierung. Die Arbeit präsentiert hierzu neue Zugänge, ermöglicht damit neue
Einsichten in die zugrunde liegenden Paradigmen der Symmetrienutzung und sie studiert
ein konkretes Beispiel der kombinatorischen Optimierung.

Semidefinite und polynomielle Optimierung

Seien f, g1, . . . , gm reelle Polynome in n Unbestimmten. Durch die Polynome g1, . . . , gm

werde dann eine so genannte semialgebraische Menge

K := {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0}

beschrieben. Unter einem polynomiellen Optimierungsproblem (POP) verstehen wir nun
das Problem das x∗ ∈ Rn zu bestimmen, für welches (falls existent) gilt

f(x∗) = min
x∈K

f(x).

Die Momentenmethode zur Lösung der oben beschriebenen Probleme geht auf N.Z. Shor
[Sho87] aus dem Jahr 1987 zurück und überführt das polynomielle Problem in ein konve-
xes. Dieser Ansatz wurde in den letzten Jahren von Lasserre [Las01], sowie in dualer Form
durch Parrilo [Par03] vorangetrieben. Das so entstandene Relaxierungsschema zielt darauf
hin ab, polynomielle durch semidefinite Optimierungprobleme (SDP) zu approximieren.
Vorteilhaft hierbei ist, dass sich die Optimalwerte solcher linearen Optimierungsprobleme
über dem Kegel der positiv definiten Matrizen leichter bestimmen lassen.

Die Ausgangsidee dieses Zugangs besteht darin, statt des Minimums von f das größte
reelle λ zu bestimmen, so dass f − λ als eine Summe von Quadraten in R[X1, . . . , Xn]
geschrieben werden kann. Da sich dieses Positivitätszertifikat als semidefinites Programm
realisieren lässt, ist das gesuchte λ leichter zu bestimmen und bildet eine untere Schranke
für den globalen Optimalwert f ∗. Diese Approximation liefert in vielen Fällen schon eine
sehr gute Näherung und wurde mittlerweile unter Zuhilfenahme tiefgehender Resultate der
semi-algebraischen Geometrie (Hilberts 17. Problem der Darstellbarkeit nichtnegativer
Polynome, dem Momentenproblem und den Positivstellensätzen) in vielfacher Hinsicht
weiterentwickelt, so dass unter relativ allgemeingültigen Voraussetzungen eine Hierarchie
von wachsenden SDPs für ein polynomielles Optimierungsproblem konstruiert werden
kann, deren sukzessive Werte zum Optimalwert des Ausgangsproblems konvergieren.
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Zwar lassen sich semidefinite Probleme leichter lösen als polynomielle, jedoch beinhal-
tet die SDP–Relaxierung der Ordnung k in der Hierarchie in der Regel O(n2k)-Variablen
und lineare Matrixungleichungen (LMIs) der Größe O(nk). Dieses exponentielle Anwach-
sen der auftretenden Matrixgrößen macht es schwer hohe Relaxierungsstufen mit einem
Computer zu konkretisieren. Es ist daher notwendig, spezifische Besonderheiten einzelner
Probleme zu nutzen, um eine Vereinfachung möglich zu machen. Eine solche Besonder-
heit ist Symmetrie, und wir präsentieren in dieser Arbeit verschiedene Zugänge, diese
vorteilhaft auszunutzen.

Ausnutzen der Symmetrie im
”
Lasserre–Relaxierungs–Schema“

Im Kontext des Lasserre–Relaxierungsschemas für polynomielle Optimierung zeigen wir
in dieser Arbeit, wie sich Symmetrien auf zwei Ebenen vorteilhaft nutzen lassen: Einer-
seits auf der Seite der polynomiellen Formulierung mittels des so genannten geometrischen
Quotienten, andererseits auf der Seite der semidefiniten Relaxierung mittels der Blockdia-
gonalisierung.

Der erste Ansatz bedient sich der Invariantentheorie, sowie der von Procesi und Schwarz
(siehe [PS85,Brö98]) gegebenen semi-algebraischen Darstellung des so genannten Orbit-
raums. Hierbei nutzen wir die Tatsache, dass sich die von Procesi und Schwarz gegebene
Beschreibung des Orbitraums als polynomielle Matrixungleichung realisieren läßt. Dies
ermöglicht uns, ein Relaxierungschema im geometrischen Quotienten zu definieren (The-
orem 3.11). Mit diesem Schema lässt sich die Tatsache ausnutzen, dass der Übergang
zum Invariantenring R[X]G in vielen Fällen eine deutliche Reduzierung des Grades der
Polynome mit sich bringt.

Das Studium der Blockdiagonalisierung von SDPs geht auf Arbeiten von Schrijver [Sch79,
Sch05a] (im Kontext von Matrix ∗-Algebren) und Gatermann und Parillo [GP04] (im
Kontext von Darstellungstheorie) zurück und hat in letzter Zeit vielfache Anwendung im
SDP Bereich gefunden [KOMK01,Sch05a,Gij05,Lau07b,BV08,BV09,BNdOFV09].

In der vorliegenden Arbeit richten wir ein spezielles Augenmerk auf solche SDPs, die
im Relaxierungsschema von Lasserre entstehen, bei dem sich die Symmetrie des Aus-
gangsproblems auf die Matrizen im Relaxierungsschema überträgt. Eine grundlegende
Untersuchung von Symmetrie im Kontext des klassischen Momentenproblems ist mittler-
weile auch von Cimpric, Kuhlmann und Scheiderer [CKS09] geleistet. Wir erarbeiten hier
symmetrische Versionen des Satzes von Putinar (Theorem 3.2 und Theorem 3.4) und ver-
wenden diese dazu, eine die Symmetrie nutzende Relaxierung für ein POP zu definieren.
Diese ist direkt blockdiagonal, d.h. an die Stelle der großen Momenten- und Lokalisie-
rungsmatrizen treten Matrizen kleinerer Dimension. Auch dieses Relaxierungsschema hat
die Konvergenzeigenschaft des ursprünglichen Schemas (Theorem 3.6).
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Positivität symmetrischer Polynome und das
”
Grad–Prinzip“

Um in polynomiellen Optimierungsproblemen, bei denen sowohl die Zielfunktion f als
auch die Nebenbedingungen gi durch symmetrische Polynome gegeben sind, die Symme-
trie vielfältig ausnutzen zu können, untersuchen wir eingehend, ob und inwiefern sich die
hohe Symmetrie der Problemformulierung in diesem speziellen Fall auch auf die Lösungen
überträgt. Ein elementarer und allgemein bekannter Vertreter solcher Probleme ist bei-
spielsweise die Frage, welches Rechteck mit den Seitenlängen a und b bei gegebenem
Umfang 2a+2b den Flächeninhalt maximiert. Die Symmetrie der Problemstellung in den
Variablen a und b spiegelt sich hierbei in der Symmetrie der Lösung - des Quadrates - wi-
der. In diesem Fall überträgt sich also die gesamte Symmetrie der Problemstellung auf die
Lösung. Bereits der französische Philosoph und Mathematiker Olry Terquem betrachtete
1840 Probleme der obigen Bauart. In Verallgemeinerung des gegebenen Beispiels postu-
lierte er dazu, es sei unter solchen Bedingungen evident, dass das Optimum stets in einem
symmetrischen Punkt angenommen werde (vgl. [Ter40]). Obgleich Terquems Postulat von
einem ästhetischen Standpunkt aus betrachtet durchaus wünschenswert erscheinen mag,
wurden bereits einige Jahre nach der Veröffentlichung Terquems vom russischen Mathe-
matiker Bouniakovsky [Bou54] Beispiele von symmetrischen Problemen angegeben, welche
keine symmetrischen Lösungen besitzen.

In diesem Kontext von symmetrischen Polynomen beweisen wir daher ein Grad–Prinzip,
welches genauer quantifiziert, wie viel Symmetrie eines durch symmetrische Polynome von
festem Grad gegebenen Optimierungsproblems auf die Lösungen übertragen wird. Wenn
man mit Ad bzw. A+

d diejenigen Punkte in Rn bzw. Rn
≥0 bezeichnet, welche höchstens d

verschiedene Komponenten bzw. d verschiedene positive Komponenten aufweisen, lautet
unser Resultat zur Frage der Symmetrie der Lösungen:

Theorem

Es seien f, g1, . . . , gm ∈ R[X1, . . . , Xn] symmetrische Polynome und

K := {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Der Grad von f sei d und wir setzen k := max
{
2, ⌊d

2
⌋, deg g1, . . . , deg gm

}
.

Dann gilt:

inf
x∈K

f(x) = inf
x∈K∩Ak

f(x) und

inf
x∈K∩Rn

+

f(x) = inf
x∈K∩A+

k

f(x).

Die Symmetrie der Lösung hängt also maßgeblich vom Grad der vorkommenden Polynome
ab.

Den Schlüssel zum Beweis dieses Grad–Prinzips bilden jene reellen univariaten Polynome,
deren Nullstellen alle auf der reellen Achse liegen. Mittels der klassischen Formel von Vieta
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lassen sich die Werte der elementarsymmetrischen Polynome als Koeffizienten univariater
Polynome sehen. Dadurch wird es möglich, die Beweisschritte anhand von Aussagen zu
erhalten, welche sich direkt aus dem Satz von Rolle ergeben. Unter dem Blickwinkel
globaler Optimierung betrachtet, liefert das obige Theorem eine Charakterisierung der
Positivität symmetrischer Polynome anhand ihrer Werte auf der k-dimensionalen Menge
Ak. Als direktes Korollar ergibt sich daher das so genannte Halb–Grad–Prinzip, welches
von Vlad Timofte in [Tim03] zum ersten Mal formuliert und bewiesen wurde.

Korollar

Es sei F ∈ R[X] ein symmetrisches Polynom vom Grad d und wir setzen

k := max{2, ⌊d
2
⌋}.

Dann gilt: Genau dann ist F (x) ≥ 0 für alle x ∈ Rn, wenn F (y) ≥ 0 für alle y ∈ Ak. Des
Weiteren gilt: Genau dann ist F (x) ≥ 0 für alle x ∈ R

n
+, wenn F (y) ≥ 0 für alle y ∈ A+

k .

Die ursprünglich von Timofte stammende Aussage, welche in [Tim03] unter Zuhilfenahme
von Differentialgleichungen abgeleitet wurde, erhält durch unseren Zugang über univariate
Polynome somit einen elementaren Beweis.

Darüber hinaus zeigt sich eine Beziehung unseres Zugangs zu einem Satz von Thomas
Foregger [For87]:

Theorem

Sei n ≥ 2 und ferner sei φ(x) = φ(x1, . . . , xn) eine reelle Linearkombination von elemen-
tarsymmetrischen Polynomen. Des Weiteren sei

Cγ :=

{

x ∈ [0, 1]n :
n∑

i=1

xi = γ

}

.

Angenommen die Funktion φ : Cγ → R hat ein lokales Extremum a ∈ int(Cγ) im relativen
Inneren von Cγ, dann ist entweder φ konstant oder a ist der symmetrische Punkt in Cγ ,
d.h. a = ( γ

n
, . . . , γ

n
).

Wir werden in einer genauen Analyse des ursprünglich von Foregger gelieferten Beweises
zeigen, dass dieser fehlerhaft ist. Des Weiteren werden wir darlegen, dass sich ein Beweis
von Foreggers Satz auch unmittelbar aus unseren Überlegungen zum Beweis des Grad–
Prinzips ergibt.

Optimierung mit symmetrischen Polynomen

Unter den diskreten Gruppen nimmt die symmetrische Gruppe Sn durch ihre reichhaltige
Kombinatorik eine herausragende Stellung ein. Daher erarbeiten wir alle im Folgenden
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dargestellten Möglichkeiten zur Symmetrienutzung ausführlich am Beispiel der Gruppe
Sn.

Wir benutzen dazu die klassische Konstruktion der irreduziblen Darstellungen der Gruppe
Sn von Wilhelm Specht [Spe37], die wir für unsere Bedürfnisse verallgemeinern. Mit diesen
so erhaltenen Spechtpolynomen zeigt sich, dass die symmetrie–angepasste Momentenrela-
xierung sehr explizit angegeben werden kann (Theorem 5.5). Unsere hierbei erarbeiteten
Techniken geben Antworten auf die von Gatermann und Parrilo ( [GP04] S. 124) explizit
als offen bezeichnete Frage nach einer kombinatorischen Charakterisierung der isotypi-
schen Komponenten in diesem Fall. Mittels der Kombinatorik der irreduziblen Darstel-
lungen der Gruppe Sn, den so genannten Specht-Moduln, können wir nämlich auch ein
Grad-Prinzip für die symmetrie–angepasste Momentenrelaxierung im Fall der Gruppe Sn

zeigen: Die Größe der zu betrachtenden Matrizen und somit auch die Komplexität der
zu führenden Berechnungen hängt in diesem Fall nur vom Grad der Relaxierungsstufe ab
(Theorem 5.7).

Als eine direkte Folgerung der symmetrie–angepassten Momentenrelaxierung können wir
in der hierzu dualen Sichtweise konkrete Darstellungssätze für symmetrische Summen
von Quadraten angeben (Theorem 5.10). Insbesondere lassen sich dadurch positive Sn–
invariante Formen in den drei Hilbert–Fällen (n = 1, d = 2 und (n, d) = (3, 4)) charakte-
risieren (Korollare 5.11, 5.12, 5.13).

Weiterhin werden wir zeigen, dass sich auch das Grad–Prinzip bei SDP-Relaxierungen
gewinnbringend anwenden lässt. Dazu studieren wir, wie sich mit Hilfe dieses Prinzips
ein Relaxierungsschema definieren lässt, welches das symmetrische polynomielle Optimie-
rungsproblem in n Variablen vom Grad d durch eine Familie von Lasserre–Relaxierungen
in d Variablen annähert. Wir zeigen, dass unter den allgemeinen Voraussetzungen an das
polynomielle Optimierungsproblem (Putinar–Bedingung) auch dieses Schema eine zum
Optimum konvergierende Folge von Näherungen liefert (Theorem 5.14). Darüber hinaus
können wir in einigen Fällen die endliche Konvergenz dieses Schemas zeigen (Theorem
5.16). Obwohl im allgemeinen Fall positive symmetrische Polynome vom Grad 4 nicht
unbedingt als Summe von Quadraten darstellbar sind, folgern wir in Theorem 5.17, dass
sich die Frage der Positivität in diesem Fall auf eine Frage nach einer Darstellung als
Summe von Quadraten überführen lässt.

Des Weiteren zeigen wir, wie der Ansatz über den Orbitraum in einer Beispielklasse
von Potenzsummenproblemen gewinnbringend genutzt werden kann. Die von uns stu-
dierte Klasse verallgemeinert hierbei ein Problem, welches von Brandenberg und Theo-
bald [BT06] untersucht wurde. Wir zeigen dabei, wie der von uns definierte Ansatz der
Relaxierung im Orbitraum dazu verwendet werden kann, sowohl obere als auch untere
Schranken für Probleme dieser Bauart anzugeben, welche sich einfach berechnen lassen
(Theoreme 5.21 und 5.22).
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Schranken für kombinatorische Probleme der Codierungstheorie

Die ursprünglichen Anwendungen von semidefiniter Optimierung liegen zu einem großen
Teil in der kombinatorischen Optimierung (z.B. [Lov79]). Daher zeigen wir am Beispiel
einer Frage aus der Kombinatorik von Codes, wie sich die reichhaltige Symmetrie des
Problems gewinnbringend nutzen lässt.

Klassisch wird in der Theorie binärer Codes der so genannte Hamming–Abstand dH(x, y)
verwendet. Dieser ist für zwei Elemente x, y ∈ Fn

2 definiert als

dH(x, y) := #{xi 6= yi}.

In den 1970er Jahren konnte Delsarte [Del73] einen vielbeachteten Ansatz zur Abschätzung
der Größe von Codes mit gegebenem Minimalabstand vorstellen, welcher auf der Lösung
linearer Programme beruht. Schrijver [Sch79] sowie unabhängig davon McEliece, Rode,
und and Rumsey [MRR78] stellten einige Jahre später einen Zusammenhang zwischen
Delsartes LP–Methode und einer Symmetrisierung des von Lovász definierten Graph–
Parameters ϑ her, welcher als Lösung eines SDPs definiert ist. Dieser Zusammenhang
hat in den letzten Jahren zu neuen SDP basierten Schranken für Codes mit gegebenem
Hamming–Abstand geführt [Sch05a,Lau07b,Gij05,GMS10].

In dieser Arbeit liefern wir SDP–basierte Abschätzungen für die Größen von Codes, welche
von so genannten Pseudodistanzen abhängen. Im Gegensatz zum Hamming–Abstand,
der für Paare von Punkten definiert ist, sind solche Pseudodistanzen für allgemeine k-
Tupel von Punkten definiert. Ein Beispiel für eine solche Pseudodistanz, zu welcher wir
auch numerische Resultate für unsere Methode liefen, ist der verallgemeinerte Hamming–
Abstand. Dieser wurde von Cohen, Litsyn und Zémor [CLZ94] erstmalig definiert und geht
auf Arbeiten von Ozarow und Wyner [OW84] im Umfeld der praktischen Anwendung
zurück.

Unsere Methode zur Konstruktion von SDP–basierten Schranken in diesem Fall folgt der
von Schrijver in [Sch05a] für Tripel benutzte Idee, den für Graphen definierten Parameter
ϑ′ auf Hypergraphen zu verallgemeinern. Ein entscheidender Wesenszug unseres Zugangs
ist, dass wir die hohe Symmetrie des Hamming–Würfels geschickt ausnutzen können, um
die entstandenen SDPs zu vereinfachen. Nur so ist es möglich die resultierenden Program-
me numerisch zu lösen.

Gliederung dieser Dissertation

Diese Arbeit ist wie folgt gegliedert: Das erste Kapitel führt in die semidefinite und poly-
nomielle Optimierung ein. Zuerst stellen wir hierzu eine kurze Einführung in die Theorie
der semidefiniten Programme zur Verfügung, wobei wir uns auf die für die Arbeit relevan-
ten Aspekte begrenzen. In diesem Zusammenhang führen wir auch den Parameter ϑ ein.
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Danach führen wir aus, wie sich ausgehend von Hilberts Charakterisierung von positiven
Polynomen als Summen von Quadraten die SDP–basierten Ansätze zur polynomiellen
Optimierung entwickelten.

Im zweiten Kapitel stellen wir eine kurze Einführung in die moderne mathematische Sicht-
weise auf Symmetrie bereit. Namentlich beschäftigen wir uns mit Darstellungs– und Inva-
riantentheorie, wobei wir uns beide Male auf den Fall von endlichen Gruppen beschränken.
Wir beginnen mit Grundzügen linearer Darstellungstheorie, wobei insbesondere das Lem-
ma von Schur für das weitere Vorgehen wichtig ist. Insbesondere führen wir aus, wie sich
Darstellungstheorie im Kontext von semidefiniter Programmierung als wichtiges Hilfsmitt-
tel zur Reduktion der Rechenkomplexität erweist. Danach stellen wir den kombinatori-
schen Zugang zur Darstellungetheorie der symmetrischen Gruppe Sn bereit. Der Überblick
auf die mathematische Verwendung von Symmetrie wird durch eine kurze Darstellung der
Invariantentheorie abgerundet.

Im dritten Kapitel der Arbeit untersuchen wir, wie sich die Invarianz eines polynomiellen
Optimierungsproblems unter einer endlichen Gruppe im Kontext von SDP–Relaxierungen
ausnutzen lässt und stellen dazu zwei Vorgehensweisen bereit: Einerseits diskutieren wir,
wie sich Symmetrie im Kontext des Momentenproblems mittels linearer Darstellungs-
theorie ausnutzen lässt. Hierbei entwickeln wir ein symmetrie–angepasstes Relaxierungs-
Schema. Andererseits zeigen wir auch auf, wie Invariantentheorie direkt auf der Ebene des
polynomiellen Optimierungsproblems vorteilhaft genutzt werden kann.

Im vierten Kapitel beschäftigen wir uns mit der Frage der Positivität symmetrischer Po-
lynome. Wir betrachten dazu eine Verallgemeinerung eines Resultats von Vlad Timofte.
Wir zeigen auf, wie sich diese Verallgemeinerung auf eine Frage über Nullstellen von reel-
len univariaten Polynomen überführen lässt und können somit einen neuen elementaren
Beweis sowohl für das Grad- als auch das Halbgradprinzip angeben.

Das fünfte Kapitel dient dazu, die eingeführten Techniken zur Symmetrieausnutzung am
Beispiel der Symmetrischen Gruppe Sn genauer zu studieren. Zur genauen Beschreibung
der symmetrie–angepassten Relaxierung eines (POP) gehen wir daher im ersten Abschnitt
daran, die klassische Darstellungstheorie der Gruppe Sn in diesen Kontext zu überführen.
Dadurch sind wir in der Lage, die Situation im Fall von Sn-invarianten POPs genauer zu
beleuchten und erhalten zusätzlich Darstellungssätze für positive symmetrische Formen in
den so genannten Hilbert–Fällen. Anschließend zeigen wir auf, wie sich mittels des Grad–
Prinzips ein Relaxierungs–Schema definieren lässt. Zum Abschluss studieren wir anhand
einer Klasse von Potenzsummen den Orbitraum–Zugang.

Im sechsten Kapitel erarbeiten wir SDP–basierte Schranken für ein kombinatorisches Pro-
blem aus der Codierungstheorie. Wir erläutern dazu kurz den Zusammenhang zwischen
der Delsarte–Methode und dem SDP–Parameter ϑ. Daran anschließend zeigen wir auf,
wie eine Verallgemeinerung dieses Parameters zu Schranken für das betrachtete Code–
Problem führt. Um die bei diesem Vorgehen entstehenden SDPs für interessante Wahlen
der Eingabeparameter in numerisch behandelbare SDPs kleinerer Größe zu verwandeln,
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zeigen wir danach, wie sich die Symmetrie des Hamming–Würfels nutzen lässt. Abschlie-
ßend geben wir kurz Beziehungen unseres Zugangs zu einer allgemeinen Methode an und
stellen die numerischen Resultate vor.
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Abstract

In recent years using symmetry has proven to be a very useful tool to simplify compu-
tations in semidefinite programming. In this dissertation we examine the possibilities
of exploiting discrete symmetries in three contexts: In SDP–based relaxations for poly-
nomial optimization, in testing positivity of symmetric polynomials, and combinatorial
optimization. In these contexts the thesis provides new ways for exploiting symmetries
and thus deeper insight in the paradigms behind the techniques and studies a concrete
combinatorial optimization question.

Semidefinite and polynomial optimization

Let f, g1, . . . , gm be real polynomials in the n unknowns x1, . . . , xn. The polynomials
g1, . . . , gm then describe a semialgebraic set defined as

K := {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Finding x∗ ∈ Rn which (if existent) satisfies

f(x∗) = min
x∈K

f(x)

is called a polynomial optimization problem (POP). The moment method designed to at-
tack the kind of problems introduced above is based on work by N.Z. Shor [Sho87] dating
to the year 1987. It uses the fact that a nonconvex polynomial optimization problem
can be encoded into convex programs through the theory of moments and positive poly-
nomials. This idea has been recently expanded on by Lasserre [Las01], and in the dual
viewpoint by Parillo [Par03]. It yields a relaxation scheme which aims to approximate
polynomial problems with semidefinite optimization problems (SDP). These linear opti-
mization problems over the cone of symmetric matrices are easier to handle.

The basic idea behind this approach is to approximate the global minimum of f by the
largest real λ such that f − λ can be written as a sum of squares (SOS) in R[X1, . . . , Xn].
This certificate for positivity can be realized as a semidefinite program and thus the λ in
question provides an upper bound for the global minimum that can be determined quite
efficiently. This first approximation already yields pretty good bounds for the global
optimum f ∗ and has by now been developed further using some deep results from real
algebraic geometry such as Hilbert’s 17-th problem, Hamburger’s moment problem and
the so called Positivstellensätze. The result is that for a given POP that satisfies rela-
tively general conditions one can construct a hierarchy of growing SDP–relaxations whose
optimal solutions converge towards the optimal solution of the initial problem.
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Exploiting symmetries in SDP–based relaxations for polynomial optimization

In this thesis we show how in the context of the Lasserre relaxation scheme for polynomial
optimization symmetries can be advantageously used on two levels: On the one hand
directly at the level of the polynomial formulation using the so-called geometrical quotient,
on the other hand at the level of the semidefinite relaxation by using block diagonalization
techniques.

The first approach uses invariant theory and the semialgebraic characterization of the so-
called orbit space that Procesi and Schwarz [Brö98,PS85] provided. Here we use the fact
that this description of the orbit space can be realized as a polynomial matrix inequality
(PMI). This allows us to define a relaxation scheme in the geometric quotient (Theorem
3.11). This scheme allows exploitation of the fact that the transition to the invariant ring
R[X]G leads in many cases to a significant reduction of the degree of the polynomials
involved.

The study of block diagonalizations of SDPs was initiated by Schrijver [Sch79, Sch05a]
(in the general framework of matrix ∗-algebras)) and by Gatermann and Parrilo [GP04]
(in the context of representation theory) and was recently used in may applications of
SDPs [KOMK01,Sch05a,Gij05,Lau07b,BV08,BV09,BNdOFV09].

We provide a systematic treatment of block diagonalization in the setting of Lasserre’s
relaxation using the moment approach. Cimpric, Kuhlmann, and Scheiderer recently stud-
ied foundational aspects of symmetries in the problems of moments [CKS09]. Instead of
considering a general SDP framework, we focus our attention on the specific SDPs coming
from the relaxation where the symmetries on the original variables of the optimization
problem induce specific additional symmetry structure on the moment and localizing ma-
trices of the SDP–relaxation. To this end we suggest that a symmetry–adapted version of
the relaxation scheme can be defined directly by using an appropriate basis for the mo-
ments. Here, the formulation of the relaxation scheme in the symmetry–adapted base will
yield us symmetry–adapted versions of Putinar’s Theorem (Theorem 3.2 and Theorem
3.4) and a symmetry–adapted relaxation scheme that converges (Theorem 3.6) under the
same assumptions on the initial problem.

Positivity of symmetric polynomials and the degree principle

In order to exploit symmetries in the context of optimization problems that are defined
by symmetric polynomials it will be useful to examine how much of the initial symmetry
is carried over to the solutions. Indeed, many optimization problems that are given in a
symmetric setting share the pleasant property that their solutions can be found among
symmetric points, i.e. points that are invariant to the action of the symmetric group. The
best known elementary example is that among all rectangles with given perimeter 2a+2b
the square maximizes the area. This was already observed by the French mathematician
and philosopher Orly Terquem. In 1840 he studied problems of the above type. In [Ter40]
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he postulated that it is evidently true that under the circumstances described above the
optima will always be among the symmetric points. However already some years after
Terquem the Russian mathematician Bouniakovsky [Bou54] provided concrete examples
of symmetric optimization problems that have no symmetric solution.

In the setting of symmetric optimization problems under symmetric constraints we will
derive a theorem that analyzes how much symmetry carries over to the minimizers in more
detail. We will show that the symmetry of minimizers depends mainly on the degree of
the polynomials involved.

Denoting the points in Rn (resp. Rn
≥0) that have no more than d distinct (positive)

components by Ad (resp. A+
d ) our result is phrased in the following theorem.

Theorem

Let f, g1, . . . , gm ∈ R[X1, . . . , Xn] be symmetric and set

K = {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

If f is of degree d and k := max
{
2, ⌊d

2
⌋, deg g1, . . . , deg gm

}
, then

inf
x∈K

f(x) = inf
x∈K∩Ak

f(x) and

inf
x∈K∩Rn

+

f(x) = inf
x∈K∩A+

k

f(x).

Hence the symmetry of the solution depends largely on the degree of the polynomials
involved. The key to the proof of this degree principle lies in the study of the real
univariate polynomials whose zeros lie all on the real axis. By means of the classical
formula of Vieta the values of the elementary symmetric polynomials can be seen as
coefficients of univariate polynomials. This makes it possible to obtain the steps of the
proof based on statements which follow directly from the classical theorem of Rolle. When
turning back this result to the positivity side of global optimization we recover a theorem
which was initially proven by Vlad Timofte [Tim03], who established this result via the
bounded solutions of a differential equation.

Corollary

Let F0 ∈ R[X] be a symmetric polynomial of degree d and let k := max
{
2, ⌊d

2
⌋
}
. Then

the inequality F0(x) ≥ 0 holds for all x ∈ Rn (respectively x in the positive orthant Rn
+)

if and only if it holds for all x ∈ Ak (respectively x ∈ A+
k ). Furthermore there is x ∈ Rn

with F0(x) = 0 if and only if there is x ∈ Ak with F0(x) = 0.

The reduction from Theorem 4.2 allows us to establish Timofte’s theorem in a more
natural way.

We will also mention a connection to the following theorem of Thomas Foregger [For87].
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Theorem

Let n ≥ 2, and suppose φ(x) = φ(x1, . . . , xn) is a real linear combination of elementary
symmetric polynomials. Further set

Cγ :=

{

x ∈ [0, 1]n :
n∑

i=1

xi = γ

}

.

Assume that the function φ : Cγ → R has a local extremum a ∈ int(Cγ) in the relative
interior of Cγ then either φ is constant or a is the symmetric point in Cγ, i.e. a =
( γ

n
, . . . , γ

n
).

We will point out why Foregger’s arguments used to prove his statement do not go through
and are beyond repair. Therefore we will also apply the ideas used to prove the degree
principle in order to deduce a correct proof for Foregger’s theorem.

Optimizing with symmetric polynomials

In the discrete groups, the symmetric group Sn has -also due to its rich combinatorics- a
prominent position. Therefore, we work out all the possibilities to exploit symmetries in
detail using the example of the symmetric group Sn.

We use the classical construction of the irreducible representations of the group Sn due to
Wilhelm Specht [Spe37], which we generalize to our needs. Using the resulting Specht poly-
nomials we show that the symmetry–adapted moment–relaxation can be specified very
explicitly (Theorem 5.5). This provides the tools for some explicitly stated open issues
in the study of unconstrained optimization of symmetric polynomials in Gatermann and
Parrilo [GP04] (p. 124) (who – mentioning the lack of explicit formulas for the isotypic
components – refer to the study of examples and asymptotics). By means of the combi-
natorics of the irreducible representations of the group Sn, the so-called Specht modules,
we can deduce a degree principle for the symmetry–adapted moment relaxation in the
case of the group Sn: The size of the resulting matrices and thus the complexity of the
calculations in this case depends only on the degree of the relaxation (Theorem 5.7).

As a direct consequence of the symmetry–adapted moment relaxation we can specify in the
dual viewpoint concrete representations for symmetric sums of squares (Theorem 5.10).
In particular, we can characterize positive Sn-invariant forms in the three Hilbert cases
(n = 1, d = 2, and (n, d) = (3, 4)) (Corollary 5.11, 5.12, 5.13).

Furthermore, we show that the Degree Principle can be applied profitably to exploit
symmetries in the context of SDP–relaxations. To this end we study how to define a
relaxation scheme based on this principle. This scheme will approximate the symmetrical
polynomial optimization problem in n variables of degree d by a family of Lasserre-type
relaxations in d variables. We show that under the general conditions on the polynomial
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optimization problem (Putinar’s condition) this scheme also provides a sequence of ap-
proximations that converge to the optimum (Theorem 5.14). In addition, we can prove
the finite convergence of this scheme in some cases (Theorem 5.16).

Although in the general case of symmetric polynomials of degree 4 it is not necessarily true
that positive polynomials can be represented as a sum of squares, we show in Theorem
5.17 that we can transform the question of positivity into a question of a sum of squares
representation in this case.

Furthermore, we show how the approach of the orbit space can be fruitfully used in
a special class of symmetric powersum–problems. The class studied here generalizes a
problem that was investigated by Brandenberg and Theobald [BT06]. We show that in
this case our approach to relaxation in the orbit space can be used to deduce both upper
and lower bounds for problems of this type which can be calculated easily (Theorems 5.21
and 5.22).

SDP based bounds for generalized Hamming distances

To a large extent the initial applications of semidefinite optimization come from combi-
natorial optimization (for example [Lov79]). By means of a question coming from com-
binatorics of codes we show how the rich symmetry of this problem can be used to our
benefit to make concrete calculations possible.

In the theory of binary codes mainly the so-called Hamming distance dH(x, y) is studied.
For two elements x, y ∈ Fn

2 it is defined as

dH(x, y) = #{xi 6= yi}.

In the 1970s Delsarte [Del73] was able to provide an approach to estimating the size of
codes with given minimum distance, which is based on the solution of linear programs.
A few years later Schrijver [Sch79], and independently McEliece, Rode, and Rumsey
[MRR78] provided a link between Delsarte’s LP method and a symmetrization of the
graph parameter ϑ defined by Lovász, which is defined as the solution of an SDP. In
recent years this relationship has led to new SDP–based bounds for codes with a given
Hamming distance [Sch05a,Lau07b,Gij05,GMS10].

In this thesis we provide SDP–based bounds for the size of codes, which depend on
so-called pseudo-distances. In contrast to the Hamming distance, which is defined for
pairs of points, such pseudo-distances are defined for general k-tuples of points. An
example of such a pseudo-distance which will be used to provide numerical results for our
method is the generalized Hamming distance. This was first defined by Cohen, Litsyn,
and Zémor [CLZ94] and goes back to works of Ozarow and Wyner [OW84] in the context
of practical applications.

Our method to obtain SDP–based bounds in this case follows the idea initiated by Schrijver
in [Sch05a] for triples and generalizes the parameter ϑ

′

to hypergraphs. A key feature of
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our approach is that we can make use of the high symmetry of the Hamming cube to
simplify the resulting SDPs. Only with this simplifications it is possible to solve the
resulting programs numerically.

Structure of this thesis

This thesis is structured as follows: The first chapter gives an introduction to semidef-
inite and polynomial optimization. First, we give a brief introduction to the theory of
semidefinite programs and limit ourselves to the aspects necessary in this thesis. In this
context, we also define the parameter ϑ. We then expose how Hilbert’s characterization
of positive polynomials as sums of squares leads to the developement of the SDP–based
approach to polynomial optimization.

The second chapter provides a brief introduction to the modern mathematical view point
on symmetry. In particular, we deal with representation and invariant theory. In both
cases we restrict ourselves to the case of finite groups. We start with linear representation
theory, in particular, where especially Schur’s lemma will be important. We then point
out how representation theory can be used in the context of semidefinite programming as
an important tool to reduce the computational complexity. We expose the connection of
the representation theory of the symmetric group Sn to combinatorial objects and finally
complete the overview with a summary of invariant theory.

In the third chapter of the thesis we investigate in more detail how the invariance of a
polynomial optimization problem under a finite group can be explored in the context of
SDP-relaxations and provide two approaches: On the one hand, we discuss how symmetry
can be exploited in the context of the moment problem using linear representation theory.
Here we develop a symmetry–adapted relaxation scheme. On the other hand, we also point
out how invariant theory can be directly used profitably at the level of the polynomial
formulation of the optimization problem.

In the fourth chapter, we deal with the issue of positivity of symmetric polynomials. We
consider a generalization of a result by Vlad Timofte. We show how this generalization
leads to a question about real roots of univariate polynomials and get a new elementary
proof for both the Degree and the Half-Degree-Principle in this way.

The fifth chapter is used to study the techniques introduced for exploiting symmetry
using the example of the symmetric group Sn in more detail. In order to deduce a precise
description of the symmetry–adapted relaxation of a (POP) in this setting, we translate
the classical representation theory of the group Sn into this context. This puts us in a
position to further illuminate the situation in the case of Sn-invariant POPs more precisely
and also receive representations for positive symmetric polynomials in the so-called Hilbert
cases. Then we show how to define a relaxation scheme by means of the Degree Principles.
Finally, we study the orbit space approach in an example of power sums optimization.

In the sixth chapter we develop SDP–based bounds to a combinatorial problem coming
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from coding theory. We briefly explain the relationship between the method of Delsarte
and the SDP parameter ϑ. Then we show how a generalization of this parameter can be
used to define SDP based bounds for generalized pseudo–distances. We then show how to
use the rich symmetry of the Hamming cube to transform resulting otherwise intractable
SDPs in numerical treatable SDPs of smaller size. Finally, we briefly discuss relations of
our approach to other methods and provide numerical results.

The research presented in this dissertation is partially based on work with several co-
authors:

The article [RT08] was used as ground for chapter one. Chapters two and five are based
on work initiated in [JLRT06]. The main part of chapter four is based on [Rie10]. The
connection to a theorem of Foregger and related questions are discussed in [KKR11].
Chapter six is presenting joint work with Christine Bachoc [BR11a]. In chapter seven we
present a conjecture on the geometry of the cone of positive symmetric polynomials. Very
recently this conjecture has been confirmed for the quartic case in [BR11b]. The thesis
aims to relate the work presented in the mentioned articles and present it in a combined
setting.
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1
SDP and polynomial optimization

Dieser Umstand führte Minkowski
zum ersten Mal zu der Erkenntnis,
daß überhaupt der Begriff des
konvexen Körpers ein fundamentaler
Begriff in unserer Wissenschaft ist
und zu deren fruchtbarsten
Forschungsmitteln gehört

Nachruf auf Hermann Minkowski

David Hilbert

LET R[X] := R[X1, . . . , Xn] denote the ring of real polynomials and consider polyno-
mials f, g1, . . . , gm ∈ R[X]. Solving polynomial optimization problems of the form

minimize f(x) where x is constrained to lie in a semialgebraic set

K := {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0}

is known to be a hard task in general. In recent years however, the interplay of semidefinite
programming and algebraic geometry has led to new paradigms for solving or approximat-
ing these types of hard optimization problems. The key to these new paradigms consists in
taking a view point in which the originally non–convex problem is reformulated in a con-
vex structure. This convex structure then can be used to design semidefinite relaxations.
In the first section of the present chapter we will present the basic ideas of semidefinite
programs. In the second section we will show how the classical results on sums of squares
representations for positive polynomials and moments of probability measures can be used
to generate a SDP relaxation scheme that will provide naturally a converging sequence of
lower bounds for the initial problem.
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SDP and polynomial optimization

1.1 Semidefinite programming

1.1.1 From LP to SDP

Semidefinite programming (SDP) evolved in the 1970s as a natural generalization of linear
programming (LP). In both optimization paradigms one asks to minimize or maximize a
linear function under additional constraints. In the classical case of LP the constraints
are given by linear inequalities. Therefore an LP can be described by the following normal
form:

inf cTx
s.t. Ax = b ,

x ≥ 0 (x ∈ Rn),

�
�

�
�1.1

where A ∈ R
m×n and c ∈ R

n, b ∈ R
m.

The feasible set given by the constraints is in this case a convex polyhedron

P := {x ∈ R
n : Ax = b, x ≥ 0} .

Although algorithmic approaches for solving such special cases of constraint optimization
problems can be traced back to Fourier, it was George Danzig who introduced the Simplex
Algorithm as a method to solve LPs in the late 1940’s. His algorithm and the use of LPs in
real life problems initiated a wave of intense research on linear optimization. Whereas the
complexity of the Simplex algorithm is still an open field of research, LPs can in practice
be solved very efficiently with the Simplex method.

Besides the Simplex method, which is still today the major method used by most industrial
applications of LP, other possibilities for solving linear programs have been proposed. A
major theoretical result was obtained by Khachiyan [Kha79] in 1979. He was able to show
that the Ellipsoid algorithm, which was proposed by N.Z. Shor in 1972 can be used to solve
LPs with rational input data in polynomial time. However, in practice this algorithm does
not seem to be convenient. Only five years later, in 1984, Karmarkar [Kar84] introduced
the so called interior point method. With this technique it is possible to solve a linear
optimization problem with rational input data in O(

√
n log(1/ε)) arithmetic steps up to a

prescribed accuracy ε > 0. In contrast to the ellipsoid algorithms, interior point methods
can be implemented quite efficiently. So using interior point methods a linear program
with rational input data is solvable in polynomial time.

Von Neumann already seems to have seen the fact that taking a dual view on a linear
program can be profitable. To every LP in the normal form

�
�

�
�1.1 we can define the dual

program to be

sup bT y
s.t. ATy + s = c ,

s ≥ 0 .

�
�

�
�1.2
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1.1 Semidefinite programming

The primal and dual linear programs we associated to each other with this duality are
connected by the so called weak duality and strong duality for linear programs. The first
of these guarantees that the objective value of any feasible solution of the dual already
gives a lower bound for the primal. The second states that if we have an optimal value of
one of both programs, this values (if finite) agrees with the optimal value of the other.

Besides the applications of LP in industrial and military application for which LP initially
was designed, combinatorial questions were also solved with linear programming methods.
In this spirit semidefinite programming (SDP) was first discussed as a generalization of
LP. The basic idea of an SDP is to replace the linear condition x ≥ 0 on the vector x ∈ Rn

by a positivity condition on a matrix variable X ∈ Rn×n.

We first give some notation: The set of all real symmetric n × n matrices is denoted
with Symn(R). A matrix A ∈ Symn(R) is called positive semidefinite if xtAx ≥ 0 for
all x ∈ Rn. The set of all positive semidefinite matrices is denoted by Sym+

n (R). If in
fact xtAx > 0 holds for all x ∈ R

n\ {0} we say that A is positive definite and we write
Sym++

n (R) for the set of all positive definite matrices. The following theorem gives some
equivalent conditions for positive semidefiniteness of a matrix A ∈ Symn(R):

Theorem 1.1

Let A ∈ Symn(R). Then the following are equivalent

1. A ∈ Sym+
n (R).

2. xtAx ≥ 0 for all x ∈ Rn.

3. All eigenvalues of A are nonnegative.

4. There is a unique lower triangular matrix L ∈ R
n×n with Ljj > 0 for all j such that

LLT = A.

5. All principal minors of A are nonnegative.

The fourth of the above equivalent conditions, which guarantees that we can define a real
“square root” of any positive semidefinite matrix is also called Cholesky–decomposition.

We also remark the following useful characterization of semidefiniteness.

Theorem 1.2 (Schur complement)
Suppose M ∈ Symn(R) is given as

M =

(
A B
BT C

)

with A in Sym++
n (R) and C in Symn(R). Then we have that M is positive (semi-)definite

if and only if C − BTA−1B is positive (semi-)definite.
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SDP and polynomial optimization

The matrix C − BTA−1B in the above theorem is called the Schur complement of A in
M .

In order to define a linear function on Symn(R) we will use the following scalar product.

Definition 1.3

Let A,B ∈ Symn(R) then we define 〈A,B〉 := Tr(A · B)

Let C,A1, . . . , Am ∈ Symn(R). Then with the notations from above we define the normal
form of a semidefinite program (SDP) to be the following:

inf 〈C,X〉
s.t. 〈Ai, X〉 = bi , 1 ≤ i ≤ m,

X � 0, where X ∈ Symn(R) .

Again as in the case of linear programming the feasible set

S := {X ∈ Symn(R) : 〈Ai, X〉 = bi , 1 ≤ i ≤ m, X � 0}

is a convex set. In analogy to the polyhedra in the LP case the convex sets that can
be represented with SDP constraints are called spectrahedra. In recent years the interior
point methods which were originally proposed for linear programming were extended to
semidefinite programming and provide algorithmic efficient methods for solving SDPs.

1.1.2 Duality in SDPs

Just like in the linear programming case we have an associated duality theory for semidef-
inite programming. Let C,A1, . . . , Am ∈ Symn(R) and b ∈ R

m define an SDP in the
normal form above. The dual problem to the normal form above is defined as

sup bty
s.t. y ∈ Rm, C −∑m

i=1Aiyi � 0,

where y ∈ Rm is the decision variable.

The main interest in duality again comes from the relation of optimal values for the primal
and the dual. Again we have that one can be used to bound the other:

Theorem 1.4 (Weak Duality)
Let X be primally feasible and y be dually feasible, then we have

〈C,X〉 ≥ bty.
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1.1 Semidefinite programming

Proof. The proof just follows by carefully inspecting the difference 〈C,X〉− bty. We have

〈C,X〉 − bty = 〈C −
m∑

i=1

Aiyi, X〉 ≥ 0.

Nevertheless, strong duality will not always hold as the following example shows.

Example 1.5

Consider the following SDP:

inf x1

s.t.





0 x1 0
x1 x2 0
0 0 x1 − 1



 � 0 .

By examining the positive semidefinite condition one finds that the spectrahedron that de-
fines the feasible set is in fact given by {(x1, x2) ∈ R

2 : x1 = 0, x2 ≥ 0}. Hence we get the
optimal values for the objective function to be 0. Now if one considers the corresponding
dual we get:

sup−y2

s.t.





y1 (1 − y2)/2 0
(1 − y2)/2 0 0

0 0 y2



 � 0.

In the dual case the feasible set is given by {(y1, y2) ∈ R2 : y1 ≥ 0, y2 = 1}. Therefore we
get an optimal value of −1.

So, in general we cannot expect that strong duality also holds. The following definition
will provide an additional assumption necessary to ensure a strong duality.

Definition 1.6

An SDP problem in canonical form is strictly feasible if the spectrahedron

{X ∈ Symn(R) : 〈Ai, X〉 = bi , 1 ≤ i ≤ m, and X � 0}

contains a positive definite point X ∈ Sym++
n (R).

Now, if we have strict feasibility of an SDP we can expect strong duality:

Theorem 1.7 (Strong Duality)
Let (P ) and (D) denote a pair of dual semidefinite programs and let p∗ respectively d∗

denote the optimal values of (P ) respectively (D). If p∗ is finite and (P ) strictly feasible
then we have that also the dual problem is feasible and moreover the optimal values p∗ and
d∗ agree.
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SDP and polynomial optimization

1.1.3 Lovász ϑ–number

In this section we want to establish an example that shows some links between the semidef-
inite programming and combinatorial problems. As already mentioned in the previous
section these links bear the roots of semidefinite programs.

A fundamental object in combinatorics is the notion of a graph. Let V be a finite set of
vertices and define the edges as a finite set of pairs E ⊂ V × V . A graph Γ = (V,E) is a
set of vertices with corresponding edges. An independent set in a graph Γ = (V,E) is a
set of vertices such that no edge in E connects any pair of vertices in the independent set.
The maximal size of an independent set in a graph Γ is denoted by α(Γ). The chromatic
number χ(Γ) is the minimum number of colors that are needed to color the vertices in
such a way that no two connected vertices have the same color. In other words it is a
minimal partition of the vertex set into independence sets. The problem to calculate α(Γ)
or χ(Γ) for an arbitrary graph is an NP -hard problem (see for example [Law76]).

In his seminal paper [Lov79] Lovász introduced a parameter ϑ(Γ) as the solution to a
semidefinite program to bound the parameters α(Γ) and χ(Γ).

Let V = {v1, . . . , vn} and S ⊂ V any independent vertex set. We consider the character-
istic function 1S of S and construct the function FS : V × V → R defined by

FS(vi, vj) :=
1

|S| 1S(vi) 1S(vj).

This function FS is positive semidefinite, i.e., the n × n matrix M indexed by V , with
coefficients Mi,j := FS(vi, vj), is positive semidefinite.

Further by the definition of M it is clear that we have M ∈ Symn(R). As 1S is the
characteristic function of S and the set S contains by its definition only vertices that do
not share an edge the following three properties of the matrix M also hold:

1. Mi,j = 0 if {vi, vj} ∈ E,

2.
∑n

i=1Mi,i = 1,

3.
∑n

i,j=1Mi,j = |S|.
Keeping the above properties of M in mind, we define the theta number with the following
program:

Definition 1.8

The theta number of the graph Γ = (V,E) with V = {v1, v2, . . . , vn} is

ϑ(Γ) = max
{∑

i,j Bi,j : B ∈ Rn×n, B � 0
∑

iBi,i = 1,
Bi,j = 0 (i, j) ∈ E

}
.

�
�

�
�1.3
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The dual program for ϑ is defined as:

ϑ(Γ) = min
{

t : B � 0
Bi,i = t− 1,
Bi,j = −1 (i, j) /∈ E

}
.

�
�

�
�1.4

Notice that as
�
�

�
�1.3 is strictly feasible by strong duality the two definitions will provide

the same value.

Given a graph Γ, its complementary graph Γ is defined by switching edges and non-edges.
Using these definitions, Lovász could show the following remarkable bounds on the graph
parameters introduced above.

Theorem 1.9 (Sandwich theorem)

α(Γ) ≤ ϑ(Γ) ≤ χ(Γ)

Proof. The first inequality follows directly from the properties of M defined above.

For the second inequality, consider a coloring of Γ. This coloring defines a function
c : V → {1, . . . , k}. Using this function we define the matrix C with Ci,j = −1 if
c(i) 6= c(j), Ci,i = k − 1 and Ci,j = 0 otherwise. The so defined matrix C provides a

feasible solution of
�
�

�
�1.4 and thus ϑ(Γ) ≤ χ(Γ).

As the ϑ-number is defined as the optimal solution of a semidefinite program it is easier
to calculate and provides by the above theorem an approximation of graph-invariants
that are otherwise hard to compute. Beginning with Lovász’s work many other SDP–
relaxations of hard problems have been proposed in graph theory and in other domains,
so Lovász’s remarkable result can be seen as the root of a long list of applications of
semidefinite programming.

1.2 Optimization and real algebraic geometry

Finding the optimal value of a polynomial function under additional polynomial con-
straints is a problem that arises naturally in many applications. In this section we will
outline the recent research on how the relation of optimization problems of the form

p∗ = inf p(x)
s.t. g1(x) ≥ 0, . . . , gm(x) ≥ 0 ,

�
�

�
�1.5

with classical questions of sums of squares decompositions of positive polynomials provides
methods to generate a sequence of relaxations that converge to the solution. First we will
study the particular case of global optimization and then use the dual viewpoint in order
to show how general polynomial optimization problems can be attacked.
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1.2.1 Global optimization and sums of squares

In the case of a global optimization the polynomial problem
�
�

�
�1.5 specializes to finding

the minimum of a real polynomial function i.e.,

inf
x∈Rn

f(x).
�
�

�
�1.6

Now we consider the set

Pn := {f ∈ R[X], such that f(x) ≥ 0 ∀x ∈ R
n} .

Further we denote Pn,d the elements in P of degree d.

As we find that for all λ, γ ≥ 0 and p, q ∈ Pn (in Pn,d) the polynomial λp + γq is again
in Pn (in Pn,d) we can conclude that Pn and Pn,d are in fact convex cones. With this

observation in mind we can transfer the initial global optimization problem
�
�

�
�1.6 into the

framework of convex optimization by a simple but effective change of view:

sup
f−λ∈Pn

λ.
�
�

�
�1.7

This new formulation as a convex problem in an infinite dimensional vector space is in
general as hard to handle as the original problem. However, it provides a powerful way of
relaxing the original problem based on the following definition.

Definition 1.10

We say that a polynomial p ∈ R[X] is a sum of squares (SOS) if there are polynomials
q1, . . . , qm ∈ R[X] such that p =

∑m
i=1 q

2
i . The set of all sums of squares of given degree

d in n variables will be denoted by Σn,d. Further we will denote Σn as the set of all sums
of squares in n variables.

From an algorithmic point of view sums of squares are easier to handle than positive
polynomials. Powers and Wörmann [PW98] showed that using the Gram Matrix method
one can decide wether a given polynomial is a sum of squares with the help of semidefinite
programs.

In order to present how the connection from sums of squares to SDPs is established,
let p ∈ R[X] be of even degree 2d and let Y denote the vector of all monomials in the
variables X1, . . . , Xn of degree at most d; so the vector Y consists of

(
n+d

d

)
components.

Every polynomial s = s(X) of degree d is uniquely determined by its coefficient relative
to Y and p decomposes into a form

p =
∑

j

(sj(X))2 with polynomials sj of degree at most d
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1.2 Optimization and real algebraic geometry

if and only if we have that with the coefficient vectors sj of the polynomials sj(X) we
find

p = Y T
(∑

j

sjs
T
j

)
Y .

With the Cholesky–decomposition (see Theorem 1.1) this holds exactly if and only if
the matrix Q :=

∑

j sjs
T
j is positive semidefinite. So the existence of a sums of squares

decomposition of p follows by providing a feasible solution to a semidefinite program, i.e
we have

Lemma 1.11

A polynomial p ∈ R[X] of degree 2d is a sum of squares, if there is a positive semidefinite
matrix Q with

p = Y TQY.

With this observation in mind the following problem can be solved using semidefinite
programs:

max
p−λ∈Σn,d

λ.
�
�

�
�1.8

As obviously every p ∈ Σn is positive and hence Σn ⊂ Pn, it is clear that a solution of
�
�

�
�1.8

gives an upper bound for the problem
�
�

�
�1.7 . In view of the implications of this inclusion

it is natural to ask if also the converse might be true.

This question of how to characterize the cone of positive polynomials in terms of sums of
squares of polynomials is in fact a classical one. It goes back to Hilbert and Minkowski.
The latter had to defend his thesis at the University of Königsberg. His opponent in this
public defense was Hilbert. Among other questions related to quadratic forms, Minkowski
was asked if all positive polynomials were in fact a sum of squares of polynomials. It is
interesting to note, that in the case of univariate polynomials this is true, as stated in the
following theorem.

Theorem 1.12

Let f ∈ R[t] be a univariate polynomial. Then we have f(t) ≥ 0 for all t ∈ R if and only
if p ∈ Σ1.

Proof. As f has only real coefficients over C we have a factorization in the form f = qq̄
where q = q1+iq2 and q̄ = q1−iq2 for some real polynomials q1, q2. From this factorization
we deduce that f = q2

1 + q2
2

During his defense Minkowski argued that for any arbitrary number of variables it should
no longer be true that the two cones of positive polynomials and SOS-polynomials coin-
cide. However, his arguments were not precise. Motivated by Minkowski’s argumentation
Hilbert began to investigate this problem. In his seminal paper of 1888 [Hil88] he was able
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to derive the following beautiful characterization of all cases in which positive polynomials
are sums of squares.

Theorem 1.13 (Hilbert)
We have equality in the inclusion Σn,d ⊆ Pn,d exactly in the following three cases:

1. The univariate case n = 1.

2. The quadratic case d = 2.

3. The case n = 2, d = 4.

That positivity coincides with the sums of squares property in the univariate case was
already explained in the above theorem. Further the second statement follows from
Cholesky–decomposition of every positive semidefinite quadratic form. The proof of
the third case is far from being obvious so we will not include it here (for a reference
see [PRSS04,Sch10] and [PS10] for an elementary proof).

However, it is even more surprising that the characterization in Hilbert’s statement above
really covers all cases. Hilbert’s original proof for the fact that the inclusion is strict in
the other cases was not constructive at all. He was able to show the existence of positive
polynomials that are not sums of squares by observing that polynomials of degree d
satisfy linear relations, known as the Cayley–Bacharach relations, which are not satisfied
by polynomials of full degree 2d. It took until the 1960s until the first concrete counter
example showing the strict inclusion was given by Motzkin.

Theorem 1.14

The Motzkin Polynomial

X4Y 2 +X2Y 4 − 3X2Y 2 + 1

is positive but not a sum of squares.

After Motzkin’s initial example more positive polynomials that are not sums of squares
were constructed. In particular Bosse [Bos07] was able to construct many examples of two
dimensional polynomials that are positive but not sums of squares. Very recently Blekher-
man [Ble10] could provide a geometrical construction of faces of the sums of squares cone
Σn,d that are not faces of the cone Pn.

Despite the negative result that in general a positive polynomial is not always a sums of
squares of polynomials Hilbert could later show that every bivariate nonnegative polyno-
mial is a sums of squares of rational functions. In his list of 23 problems he then asked if
this is true in general, i.e., if every nonnegative polynomial could be represented as sum of
squares of rational functions. This 17th of Hilbert’s problems very much initiated the de-
velopment of modern real algebraic geometry and was solved by Emil Artin in 1927. Artin
could establish the following fundamental characterization of positive polynomials:

32



1.2 Optimization and real algebraic geometry

Theorem 1.15

Let p ∈ R[X] such that p(x) ≥ 0 for all x ∈ Rn. Then there are rational functions
q1, . . . , qm ∈ R(X) such that p =

∑m
i=1 q

2
i .

Although this beautiful statement relates positive polynomials to sums of squares, the fact
that rational functions need to be considered makes it a priori hard to use an approach
similar to

�
�

�
�1.8 based on this characterization as there is no bound on the degrees of the

denominators needed in the representation of a positive polynomial as sums of squares of
rational functions.

1.2.2 Positivstellensätze

In contrast to algebraic geometry over algebraically closed fields such as the complex
numbers, real algebraic geometry is concerned with the problem of finding real solutions
to systems of polynomial (in-)equalities.

A set K ⊂ Rn is called a basic closed semialgebraic set if it can be described as the set of
solutions in the form

K = {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0} ,

where gi ∈ R[X], and basic open semialgebraic set if all inequalities above are replaced by
strict inequalities (i.e., gi(x) > 0).

In general the term semialgebraic set is used for the finite union of basic sets. A funda-
mental question in this setting is to decide, if a given semialgebraic set is empty or not.
In classical algebraic geometry the corresponding question on systems of equations can be
decided using a fundamental result due to Hilbert:

For f1, . . . , fk ∈ C[X] we denote by I(f1, . . . , fk) the ideal generated by f1, . . . , fk. In
this setting Hilbert established the following characterization of the cases when the vari-
ety V (I(f1, . . . , fk)), i.e., the common set of zeros of all polynomials in I(f1, . . . , fk), is
empty.

Theorem 1.16 (Hilbert’s Nullstellensatz)
The following two are equivalent:

1. The set {x ∈ Cn : fi(x) = 0 for 1 ≤ i ≤ k} is empty.

2. 1 ∈ I(f1, . . . , fk).

The remarkable consequence of Hilbert’s Nullstellensatz is that it gives an explicit algebraic
certificate of the emptiness of any algebraic set:

Indeed, if one can find any polynomials g1, . . . , gk such that

1 = f1g1 + . . .+ fkgk
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this relation provides that

{x ∈ C
n : f1(x) = · · · = fk(x) = 0} is empty.

While the criterion of Hilbert’s Nullstellensatz is of course also sufficient if one is inter-
ested in the emptiness of real semialgebraic sets it is not necessary. For example every
quadratic polynomial of the form ax2 + bx + c poses two complex roots. Yet, only when
the discriminant D = b2 − 4ac is nonnegative we will find real roots. This easy exam-
ple already suggests that the situation with semialgebraic sets is more delicate. After
Hilbert’s fundamental result in algebraic geometry it took until the 1960 until Krivine
and Stengle could provide an analogue of Hilbert’s Nullstellensatz for the semialgebraic
setting. The name Positivstellensatz is used for this statement to signify the connection
to Hilbert’s Nullstellensatz. We will need the following definitions in order to state the
Positivstellensatz:

Definition 1.17

For f1, . . . , fk ∈ R[X] the algebraic cone generated by g1, . . . , gk is defined as

A(f1, . . . , fk) =






p ∈ R[X] : p =

∑

I⊆{1,...,n}
sI

∏

i∈I

gi







with polynomials sI ∈ Σn.

Moreover we define the multiplicative monoid as

M(f1, . . . , fk) :=

{
r∏

i=1

gi : gi ∈ {f1, . . . , fk} , r ∈ N

}

.

With these notations defined we are ready to state the Positivstellensatz due to Stengle
[Ste73]:

Theorem 1.18 (Positivstellensatz)
Let f1, . . . , fk, g1, . . . , gs, h1, . . . , hl ∈ R[X]. Then the following are equivalent:

1. The set

K := {x ∈ R
n : fi(x) ≥ 0, gj(x) 6= 0, ht(x) = 0 ∀i, j, t}

is empty.

2. There are polynomials F ∈ A(f1, . . . , fk), G ∈ M(g1, . . . , gs) and H ∈ I(h1, . . . , hl)
such that

F +G2 +H = 0.
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1.2 Optimization and real algebraic geometry

With this statement at hand let us reexamine the case of the quadratic polynomial x2 +
bx+ c and assume that D = b2 − 4c < 0. We now define the polynomials

F := 1, G :=
X + b

2
√

c− b2

4

, and H :=
−(X2 + bX + c)

c− b2

4

and see that the relation F +G2 +H = 0 is satisfied.

The Positivstellensatz can already be used in a suitable way for finding the optima of a
real valued polynomial over a semialgebraic set K. For this purpose we note the following
corollary:

Corollary 1.19

Let K := {x ∈ Rn : g1(x) ≥ 0, . . . gm(x) ≥ 0}. Then f ∈ R[X] is nonnegative on K, i.e.,
f(x) ≥ 0 ∀x ∈ K if there is k ∈ N and F ∈ A(−f, g1, . . . , gm) with F + f 2k = 0.

With the above corollary minimizing a polynomial f on the set K translates therefore
into the task to determine the largest real λ such that the polynomial f − λ has such a
certificate. The main concern with this statement is that it does not provide any possibility
to control the degrees of the polynomials involved. This in turn makes it hard to find
them algorithmically.

Hence it is necessary to add further refinements to the assumptions in order to make it
algorithmically possible to link semidefinite programming techniques with positivity. The
first of these additional assumptions is that K is a compact set. In the setting of compact
sets Schmüdgen [Sch91] was able to show the following result:

Theorem 1.20 (Schmüdgen)
Let K := {x ∈ Rn : g1(x) ≥ 0, . . . gk(x) ≥ 0} be a compact set and f be a polynomial that
is positive on K. Then f ∈ A(g1, . . . , gk).

So with the additional hypotheses that K is compact Schmüdgen’s characterization gives
already a wide simplification to the Positivstellensatz of Stengle. For the purpose of the
semidefinite relaxation a further assumption will provide a version which is more suitable
for optimization purposes. This was first observed by Putinar [Put93] who proved that
by assuming in addition to the compactness of K a further constraint directly on the
polynomials that defineK, it is possible to derive a tighter characterization for polynomials
that are strictly positive on K.

Definition 1.21

Given polynomials g1, . . . , gm ∈ R[X] the quadratic module generated by g1, . . . , gm is
defined as

QM(g1, . . . , gm) := {s0 + s1g1 + · · ·+ smgm : s0, . . . , sm ∈ Σn}
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A quadratic module QM(g1, . . . , gm) is called archimedean if

N −
n∑

i=1

x2
i ∈ QM(g1, . . . , gm)

for some N ∈ N.

Theorem 1.22 (Putinar’s Positvstellensatz)
Let K := {x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0} be a compact set and assume that the cor-
responding quadratic module QM(g1, . . . , gm) is archimedean. Then every polynomial p
that is strictly positive on K – i.e., p(x) > 0 holds for all x ∈ K – is in QM(g1, . . . , gm)
and has therefore a representation of the form

p = s0 + s1g1 + · · · + smgm

�
�

�
�1.9

with s0, . . . , sm ∈ Σ.

The archimedean condition seems at first a bit unhandy. In the following theorem due
to Schmüdgen [Sch91] we collect equivalent conditions on when a quadratic module is
archimedean.

Theorem 1.23

The following are equivalent:

1. QM(g1, . . . , gm) is archimedean.

2. There exist finitely many t1, . . . , ts ∈ QM(g1, . . . , gm) such that the set

{x ∈ R
n : t1(x) ≥ 0, . . . , ts(x) ≥ 0}

is compact and
∏

i∈I ti ∈ QM(g1, . . . , gm) for all I ⊂ {1, . . . , s}.
3. There is a p ∈ QM(g1, . . . , gm) such that {x ∈ R

n : p(x) ≥ 0} is compact.

It is interesting to note that the strict positivity of p is in general necessary for the
statement in Putinar’s Positivstellensatz to be true. Indeed the following elementary
example shows that the statement is not correct for nonnegative polynomials.

Example 1.24

Consider the one dimensional semialgebraic set

K :=
{
x ∈ R : (1 − x2)3 ≥ 0

}
.

The corresponding quadratic module QM((1 −X2)3) is archimedean as we have

2 − x2 =
2

3
+

4

3

(
X3 − 3

2
X
)2

+
4

3

(
1 −X2

)3
.
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Now consider the polynomial p(X) = 1 −X2. As K is in fact equal to the interval [0, 1]
we have p ≥ 0 on K. Now, if we assume a representation of p in the form

�
�

�
�1.9 we would

have
1 −X2 = s0(X) + s1(X)(1 −X2)3 with s0, s1 ∈ Σ1 .

�
�

�
�1.10

But this implies that the right hand side of
�
�

�
�1.10 has to vanish at x = 1. Now, as we

examine the order of the root x = 1 we find that on the right hand side x = 1 is a root of
order at least 2, whereas on the left hand side p vanishes only of order 1 at x = 1. This
clearly gives a contradiction and hence a representation in the form

�
�

�
�1.10 is impossible.

1.2.3 Duality and the moment problem

We already explained in the context of linear and semidefinite programming that the
concept of duality is fundamental if one considers optimization problems. In the case of
positive polynomials the duality will provide a link to the moment problem. This classical
problem arose within Stieltjes’ creation of the analytical theory of continued fractions.
Later Hamburger made it a question of its own right.

Given a sequence y = (yα)α∈Nn the moment problem asks to characterize the necessary
and sufficient conditions that need to be posed on (yα) to guarantee that there is a Borel
measure µ with

yα =

∫

xαdµ.

Let µ be a measure on Rn. Then µ defines a linear map from R[X] to R defined as
L(f) =

∫
fdµ. We denote with Mn the positive hull of the L ∈ Hom(R[X],R) which

are coming from integration. With these notations defined the classical moment problem
translates to characterizing the elements in Mn. Take for example v ∈ Rn and define a
linear function as evaluation at v, i.e., Lv(f) := f(v). Then the corresponding measure is
just the Dirac–measure supported at v.

It follows directly from the principles of integration that a linear map that comes from
integration should not map positive polynomials to the negative reals. That this require-
ment is already enough was first proven by Haviland [Hav36]. His result characterizes all
linear maps that come from integration.

Theorem 1.25 (Haviland’s Theorem)
Let L ∈ Hom(R[X],R) be a linear functional. Then the following are equivalent:

1. There exists a Borel measure µ with L(f) =
∫
fdµ for all f ∈ R[X].

2. L(f) ≥ 0 ∀f ∈ P.

With this in mind we will expose the connection to positive polynomials and duality. For
this recall that P is a convex cone. To every convex cone we can associated its dual cone
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defined as follows.

Definition 1.26

Let V be an R–vector space and K ⊂ V a cone. Then its dual cone K∗ is defined

K∗ := {L ∈ Hom(V,R) : L(y) ≥ 0, for all y ∈ K} .

So Haviland’s Theorem in fact states that P∗
n = Mn.

We have already seen that the cone Pn is very hard to handle but that we could make
use of the cone Σn (see Definition 1.10) and the inclusion Σn ⊂ Pn. Also on the dual side
we will profit from the corresponding dual inclusion:

Given L ∈ Hom(R[X],R) we can associate a bilinear form L by

L : R[X] × R[X] 7→ R

(p, q) 7→ L(p · q).

Now let M+
n denote the positive hull of elements in Hom(R[X],R) such that the corres-

ponding bilinear form L is positive semidefinite. We now have

Proposition 1.27

For a linear functional L ∈ Hom(R[X],R) we have L(f) ≥ 0 for all f ∈ Σn if and only if
the associated bilinear from L is positive definite. In other words Σ∗

n = M+
n .

In particular this yields Hamburger’s original solution to the 1-dimensional Moment prob-
lem:

Theorem 1.28

A sequence of real numbers y0, y1, y2, . . . is a sequence of moments from a measure on the
real line if and only if








y0 y1 y2 . . .
y1 y2 y3 . . .
y2 y3 y4 . . .
...

...
...

. . .








is positive semidefinite.

1.2.4 General optimization and Lasserre’s method

With the duality exposed in the last section the following dual approach using the moment
problem was introduced by Lasserre [Las01] in order to solve more general optimization
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problems. For given p, g1, . . . , gm ∈ R[X] we now consider the general optimization prob-
lem of the form

inf p(x) subject to g1(x) ≥ 0, . . . , gm(x) ≥ 0 .

Its feasible set K ⊂ Rn is the basic closed semialgebraic set

K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . , m} .

�
�

�
�1.11

For reasons described below we will need the following technical assumption:

Assumption 1.29

The feasible set K defined in (1.11) is compact and there exists a polynomial u ∈ R[X]
such that the sublevel set {x ∈ Rn : u(x) ≥ 0} is compact and u has the representation

u = u0 +

m∑

j=1

uj gj

�
�

�
�1.12

for some sums of squares polynomials u0, u1, . . . , um ∈ R[X].

Recall from Theorem 1.23 that this assumption in turn implies that the quadratic module
generated by the polynomials g1, . . . , gm is in fact archimedean. Furthermore it guarantees
that K is compact and therefore the infimum is attained on K.

Like in the case of global optimization the idea is to convexify the problem. To this end
we consider the following equivalent problem:

p∗ = min
x∈K

p(x) = min
µ∈Π(K)

∫

p dµ ,
�
�

�
�1.13

where Π(K) denotes the set of all probability measures µ supported on the set K.

From Haviland’s theorem we know that measures correspond to linear maps which map
nonnegative polynomials to R

+. Now, given a polynomial p that is nonnegative on K we
see that for every positive ε > 0 the polynomial p + ε is in fact positive. As under the
assumption made above the quadratic module QM(g1, . . . , gm) is archimedean we find by
Putinar’s Positivstellensatz that p + ε ∈ QM(g1, . . . , gm). This was used by Putinar to
characterize the linear maps L ∈ Hom(R[X],R) that come from integration with respect
to measures µ ∈ Π(K).

Theorem 1.30 (Putinar)
Suppose Assumption 1.29 holds for the set K and define g0 := 1.

A linear map L ∈ Hom(R[X],R) is the integration with respect to a probability measure
µ on K i.e.,

∃µ ∀p ∈ R[X] : L(p) =

∫

p dµ,

39



SDP and polynomial optimization

if and only if L(1) = 1 and for 0 ≤ i ≤ m the bilinear forms

Lgi
: R[X] × R[X] 7→ R

(p, q) 7→ L(p · q · gi)

are all positive semidefinite.

With this characterization we can restate
�
�

�
�1.13 in the form

p∗ = min {L(p) : L ∈ Hom(R[X],R), L(1) = 1 and each Lgi
� 0} .

�
�

�
�1.14

Now fix any basis B = {b1, b2, . . .} of the vector space R[X] (for example the monomial
basis xα) and consider the infinite dimensional moment matrix M(y) defined by

M(y)i,j := L(bi · bj) .

Furthermore for each gk define in an analogous manner the localizing matrix M(gk ∗ y)
by

M(gk ∗ y)i,j := L(gk · bi · bj).

Now suppose we have a sequence y indexed by the elements of B. Then this sequence
comes from a measure µ supported on K if and only if the resulting matrices are positive
semidefinite.

With these matrices a truncated version of
�
�

�
�1.14 can be constructed.

Let k ≥ k0 := max {⌈deg p/2⌉, ⌈deg g1/2⌉, . . . , ⌈deg gm/2⌉}, and consider the hierarchy of
semidefinite relaxations:

Qk :
infy

∑

α pαyα

Mk(y) � 0 ,
Mk−⌈deg gj/2⌉(gj ∗ y) � 0 , 1 ≤ j ≤ m,

�
�

�
�1.15

with optimal value denoted by infQk (and minQk if the infimum is attained).

Although each of the relaxation values might not be optimal for the original problem,
Lasserre was able to derive the following convergence result.

Theorem 1.31 (Lasserre)
Let Assumption 1.29 hold and consider the hierarchy of SDP-relaxations (Qk)k≥k0 defined
in (1.15). Then the sequence (infQk)k≥k0 is monotone non-decreasing and converges to
the optimal value p∗, that is,

inf Qk ↑ p∗ as k → ∞.
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Although there are conditions that make it possible to decide if an optimal value has been
reached after a certain iteration (see for example [HL05,Las10]), in general only in some
situations finite convergence can be guaranteed:

Let p, g1, . . . gm ∈ R[X] and V (g1, . . . , gm) := {x ∈ Rn : g1(x) = . . . = gn(x) = 0}. We
consider the problem

inf
x∈V (g1,...,gm)

p(x).

Laurent [Lau07a] could show that finite convergence occurs in the situation where the
feasible set is given by finitely many points

Theorem 1.32 (Laurent)
If the ideal generated by g1, . . . , gm is zero-dimensional then the Lasserre relaxation scheme
of the above problem has finite convergence i.e there is an l ≥ k0 such that

inf Ql = p∗.

1.2.5 Polynomial matrix inequalities

An interesting case of a polynomial optimization problem which will be relevant for some
of our approaches arises when the polynomial constraints can be realized as positive semi-
definiteness of a matrix whose entries are polynomials. To be more precise:

Consider the set Symm(R) of real symmetric m ×m-matrices. A polynomial matrix in-
equality (PMI) optimization problem is an optimization problem of the form

f ∗ = min f(x)
s.t. G(x) � 0,

where f is a real polynomial and G : Rn → Symm(R) is a polynomial mapping (i.e., each
entry Gij(X) of the symmetric matrix G(X) ∈ Symm(R) is a polynomial in the variables
X = (X1, . . . , Xn).)

Theorem 1.1 states that in order for a matrix to be positive semidefinite, all its principle
minors have to be nonnegative. So, a first idea to derive bounds on the optimal solution
of a PMI could be to explicitly write down the inequalities that would ensure the non-
negativity of the principal minors of the matrix G(x). This in turn leads to a polynomial
problem and one could use the standard techniques described in the previous section.
Although this is possible one would have to deal with polynomials of large degree. Even
if all G(x)i,j are linear polynomials the polynomial inequalities one needs to consider are
of degree m. This high degree could make it already hard to explicitly calculate the first
possible relaxation.

To overcome this problem an SDP hierarchy was proposed in [HL06] that takes the
semidefiniteness of a polynomial matrix into account. The basic idea is to generalize
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the standard approach in a suitable way by defining a localizing matrix for the matrix
G(x),

M(G ∗ y)i,j,l,k = L(bi · bj ·G(x)l,k) .

Let k ≥ k0 := max {⌈deg f/2⌉, ⌈degG(x)i,j⌉}. Then with these notations at hand one can
define a relaxation in an analogous manner:

Qk :
infy

∑

α fαyα

Mk(y) � 0 ,
Mk−m(G ∗ y) � 0 .

�
�

�
�1.16

In order to guarantee the convergence of this relaxation one needs to assume Putinar’s
condition viewed in this setting:

Assumption 1.33

Suppose that there is u ∈ R[X] such that the level set {x ∈ R
n : u(x) ≥ 0} is compact

and u has the representation

u = u0 + 〈R(X), G(X)〉
�
�

�
�1.17

for some sums of squares polynomials u0 ∈ R[X] and a sums of squares matrix R(X) ∈
R[X]m×m.

Now we have the following:

Theorem 1.34

If G(x) meets the Assumption 1.33 then the sequence (inf Qk)k≥k0 is monotone non-
decreasing and converges to f ∗; that is,

inf Qk ↑ f ∗ as k → ∞.
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2
Representation and invariant theory

Denn wer den Schatz,
das Schöne, heben will,
Bedarf der höchsten Kunst:
Magie der Weisen

Faust

Goethe

DURING all times symmetry has been attributed to beauty and truth. However, it
was not until the 19th century that the pioneers Niels Abel and Evariste Galois gave

rise to a quantification of symmetry by their abstract concept of a group. This chapter
explains this abstract point of view as far as needed in this thesis. Namely, we will focus on
linear representation theory and invariant theory, where we will restrict ourselves to finite
groups in both cases. The first section will provide some basics from linear representation
theory and we will expose how the concept of representations can be used in order to
simplify semidefinite programs. In the second section we will study the representation
theory of the symmetric group Sn. Finally, in the last section we will provide some basics
of invariant theory.

2.1 Linear representation theory

The aim of representation theory is to understand groups by representing their elements
as linear transformations of a vector space. In this way structural questions on a group
can be analyzed by means of linear algebra. On the other hand we will expose here
that also properties of matrices like positive semidefiniteness can be easier checked when
additionally a group action is assumed. A standard reference for linear representation
theory is e.g. [Ser01], which we mainly follow in this chapter. Although the concepts of
linear representation theory are defined over any fields, in this chapter we will mostly
assume that the ground field is the complex numbers.
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Definition 2.1

Let G be a finite group. A representation of G is a finite dimensional vector space V
together with a group–homomorphism

ρ : G→ GL(V )

into the group of invertible linear transformations of V . The degree of the representation
is the dimension of V .

Two representations (V, ρ) and (V ′, ρ′) of the same group G are equivalent if there is an
isomorphism φ : V → V ′ such that

ρ′(g) = φρ(g)φ−1 for all g ∈ G.

Another way of looking at representations is to observe that a representation ρ induces
an action of G on V and hence one obtains a G–module structure on V . Also, given
a G–module V let φ : G → GL(V ) be the map sending g to v 7→ gv. Then clearly φ
is a representation of G. So the concepts of G–modules and representations of G are
equivalent notions.

Once we have chosen a basis b1, . . . , bn for V we can identify the image of G under ρ as
a matrix subgroup X of the invertible n× n matrices with complex coefficients. We will
write X(g) for the matrix corresponding to g ∈ G.

A linear map φ : V → W between two G–modules is called a G–homomorphism if
φ(g(v)) = φ(v) for all g ∈ G and v ∈ V . The set of all G–homomorphism between V
and W is denoted by HomG(V,W ) and two G–modules are called isomorphic, if there is
a G–isomorphism from V to W .

Let V be a G–module, then the endomorphism algebra of V is defined to be

End V := {φ : V → V : φ is a G–homomorphism} .

If we work with a matrix representation, this corresponds to the notion of the commutant
algebra, which is defined as

ComX :=
{
T ∈ C

n×n : TX(g) = X(g)T for all g ∈ G
}
.

Example 2.2

1. The one-dimensional representation V = C with g(v) = v for all g ∈ G and v ∈ C

is called the trivial representation.

2. Take any set S on which G acts and set C {S} = ⊕s∈SCes with formal symbols es

(s ∈ S). Then the obvious action of G on C {S} defined via g(es) = eg(s) turns
C {S} into a G–module. In the special case when S = G this is called the regular
representation.
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The key objects to study the structure of the action of G on a vector space V are the
fixed subspaces. If there is a proper submodule W of V (i.e., a G–invariant subspace
W of V ) then the representation (ρ, V ) is called reducible. In the other case, if the only
G–invariant subspaces are V and {0}, then (V, ρ) is called irreducible.

Let 〈·, ·〉 be a scalar product on V . In general, this does not need to be G–invariant.
However, we can use it to define an invariant one by setting

〈x, y〉G :=
1

|G|
∑

g∈G

〈g(x), g(y)〉.

Suppose now that the G–module V is reducible, i.e., there is another G–module W ⊂ V .
Using the fact that we have a G–invariant scalar product on V we see that also

W⊥ := {y ∈ V 〈x, y〉G = 0, for all x ∈W}

is in fact a G−module. Using this argument iteratively one gets the decomposition of a
G–module into a direct sum of irreducible submodules:

Theorem 2.3 (Maschke’s theorem)
Any G–module V 6= {0} defined over a field with characteristic zero is the direct sum of
irreducible G–submodules W1, . . . ,Wk:

V = W1 ⊕W2 ⊕ · · · ⊕Wk.
�
�

�
�2.1

However, this decomposition is not necessarily unique. Nevertheless, for every irreducible
representation Wi the sum of all irreducible components isomorphic to Wi and occurring
in V is uniquely determined. Each of theses sums

Vi :=

mi⊕

j=1

Wj

is called an isotypic component.

If in contrast to the above theorem the characteristic of the ground field is positive, a
similar result only holds if the characteristic does not divide the size of G.

Consider two groups G1 and G2 and define their product G := G1 × G2. Let V1 be a
G1-module and V2 be a G2-module. Now, the vector space V := V1 ⊗ V2 has a basis
{v1

1 ⊗ v2
1, . . . , v

1
n ⊗ v2

m} where {v1
1, . . . , v

1
n} is a basis of V1 and {v2

1, . . . , v
2
m} is a basis of

V2. Using this basis of V we can define an action of G on V by setting gv = g1v
1
i ⊗ g2v

2
j

for v = v1
i ⊗ v2

j and with g = (g1, g2) ∈ G.

Let V be a G module and X be a corresponding matrix group. Then the character

χ : G→ C
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of V is the map defined by

χ(g) = Tr(X(g)) for all g ∈ G.

Although we chose a basis for the matrix representation, the trace does not depend on this
arbitrary choice. Hence the character only depends purely on the representation. Given
two characters χ1, χ2 we define a scalar product by setting

〈χ1, χ2〉 :=
1

|G|
∑

g∈G

χ1(g) · χ2(g).

We note the following.

Proposition 2.4

Let χ1, χ2 : G→ C be characters of two representations V1, V2. Then we have

1. χ(g) = χ(g′) for all g′ in the same conjugacy class of g.

2. If χ is the character of V1 ⊕ V2, then χ = χ1 + χ2.

3. If χ is the character of V1 ⊗ V2, then χ = χ1 · χ2.

By considering the resulting characters we get that the irreducible representations of the
products of two groups can be constructed using tensor products:

Proposition 2.5

Let G1 and G2 be two groups. Then any irreducible (G1 ×G2)–module V is isomorphic to
V1 ⊗ V2 where V1 and V2 are irreducible modules for G1 and G2.

A fundamental goal is to construct the irreducible representations of a given group G. A
fruitful way to do this can be to use subgroups or larger groups and study the behavior
of the irreducible representations under restriction or induction:

Definition 2.6

Let H < G be a subgroup.

1. Restriction: If V is a G–module then V is also an H-module. V ↓G
H will be used

to denote the resulting H-module. If χ is the character of V then the resulting
character will be denoted by χ↓G

H .

2. Induction: Consider a complete system of representatives {x1, . . . , xt} of G/H , so
that G = x1H ∪ · · · ∪ xtH . Then

V ↑G
H=

t⊕

i=1

xiV
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where the left action of G is as follows: for every i, we can find j and h ∈ H that
both depend on g such that gxi = xjh. Now define gxiv := xj(hv). The resulting
character will be denoted by ψ↑G

H .

The duality between the operations of restriction and induction is expressed in the fol-
lowing important theorem:

Theorem 2.7 (Frobenius reciprocity)
Let H be a subgroup of G and let χ be a character of H and ψ a character of G. Then

〈χ↑G
H , ψ〉 = 〈χ, ψ↓G

H〉.

The following fundamental observation that was first proven by Issai Schur in 1905 will
play a central role in our usage of representation theory:

Theorem 2.8 (Schur’s lemma)
Let V and W be two irreducible representations of a group G. Then a G–homomorphism
φ from V to W is either zero or an isomorphism. In particular, a homomorphism from
V to itself is equivalent to multiplication by a scalar.

Proof. Let φ be a G–homomorphism. Then it is clear that kernel of φ and the image of
φ are G–invariant. Hence if φ is neither an isomorphism nor the zero map, its kernel will
be a non trivial G–submodule of V and its image a non trivial G–submodule of W , which
is a contradiction.

Although Schur’s lemma is not very hard to prove it is fundamental in the sense that
various properties of irreducible representations become visible through it. We note some
of these in the following corollaries.

Corollary 2.9

Let W be an irreducible representation and V any other representation. Then the mul-
tiplicity of irreducible representations isomorphic to W that are contained in V equals
dim Hom(W,V ).

Corollary 2.10

Two characters χ1, χ2 corresponding to distinct irreducible representations are orthogonal
i.e., we have 〈χ1, χ2〉 = 0.

Corollary 2.11

Let V be an irreducible G–module and 〈·, ·〉G be a non-trivial invariant Hermitian form
on V . Then 〈·, ·〉G is unique up to a real scalar multiple.
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Corollary 2.12

Let V := m1W1 ⊕m2W2 ⊕ . . .⊕mkWk be a complete decomposition of a representation V
such that dimWi = di. Then we have:

1. dimV = m1d1 + . . .+mkdk,

2. EndV ≃⊕k
i=1 Cmi×mi .

3. Let χ be the character of V and χi the character of Wi then we have 〈χ, χi〉 = mi.

4. There is a basis of V such that

a) the matrices of the corresponding matrix group X are of the form

X(g) =
k⊕

l=1

mi⊕

j=1

X(l)(g),

where X(l) is a matrix representation corresponding to Wl.

b) The corresponding commutant algebra is of the form

ComX ≃
{

k⊕

l=1

(Mi ⊗ Idl
)

}

,

where Ml ∈ Cml×ml and Idl
denotes the identity in Cdl×dl.

A basis for V as in the corollary above is called symmetry adapted basis. If we are given
any matrix representation it is interesting to explicitly calculate such a basis:

Let X be a matrix representation associated with V and Y l(g) := (Y l(g))i,j be any
matrix representation corresponding to an irreducible representation Wl. We define for
α, β = 1, . . . , dl the following map:

πα,β :=
ni

|G|
∑

g∈G

Y l
β,α(g−1)X(g).

Proposition 2.13

With the notation from above the map π1,1 is a projection from V onto a subspace Vl,1

isomorphic to Wl. Further π1,β maps Vl,1 onto Vl,β which is another irreducible component
of V isomorphic to Wl.

In other words the above defined π can be used to calculate a symmetry adapted basis.

Keeping the above in mind, our main interest in representation theory comes from the
possibility of applying Schur’s lemma to matrix calculations. More precisely, consider a
linear representation ρ : G→ GLn(C) and let X ∈ C

n×n a matrix such that

ρ(g)X = Xρ(g) for all g ∈ G.
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2.1 Linear representation theory

If the representation ρ decomposed as ρ = m1ρ1 ⊕ . . . ⊕mkρk, with di = dim ρi we can
use a symmetric adapted based for Cn in order to block diagonalize X. Indeed, let T be
a matrix collecting the elements of a symmetry adapted basis as columns. Then we find
by the above corollary that Y := T−1XT has block diagonal form with k blocks Yi of
dimension mi ·di corresponding to the irreducible representations. These blocks Yi further
decompose into di equal blocks Bi of dimension mi, so Y is of the form:

Y =






Y1 0
. . .

0 Yk




 , with Yi :=






Bi 0
. . .

0 Bi




 .

Thus we arrive in a situation, where the matrix has been simplified quite a lot.

In this section we presented the theory of linear representations in the context of complex
representation. However, in the sequel, we will be mostly concerned with finite groups
acting linearly on a real vector space and symmetric real matrices. A generalization of
the classical theory to the real case is presented for example in [Ser01]. In this case one
has to distinguish three cases: Absolutely irreducible representations, representations of
complex type, and very rarely representations of quaternian type. In the first case the
real irreducible representation ρi(g), which is given by real matrices stays irreducible if
one extends the scalars to the complex numbers. In the other two cases a real irreducible
representation decomposes further into two complex irreducible representations: in the
case of complex type into two complex conjugate representations, in the quaternian case
into twice a complex irreducible. However, one can define a real symmetry adapted basis
for the real representation (see [FW93,GSS88] and the example below).

Example 2.14

The cyclic group C4 acts on R4 by cyclicly permuting coordinates. Then a symmetry
adapted basis for the complexification of this representation to C

4 is given by the Fourier
basis:

T =








1 i −1 −i
1 1 1 1

1 −i −1 i

1 −1 1 −1







.

Now by combining the conjugate complex representations we get a symmetry adapted
basis for R4: Denote by t(1), . . . , t(4) the columns above. Then the real matrix with
columns (t(1), t(2) + t(4), t(3), 1

i
(t(2) − t(4))) defines a symmetry adapted basis for R4.

Now we want to explain how representation theory can be applied to SDPs in the case
when the program is invariant by a group action. Following mainly [GP04,Val08,BGSV10]
we will expose how in this case we can use the above results from Schur’s lemma to
simplify the complexity i.e., the dimensions of the matrices, drastically by using block
diagonalization.
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Consider the following semidefinite program in canonical form:

inf 〈C,X〉
s.t. 〈Ai, X〉 = bi , 1 ≤ i ≤ m,

X � 0, where X ∈ Symn(R) ,

and we will denote L :=
{
X ∈ Sym+

n (R) : 〈Ai, X〉 = bi, for 1 ≤ i ≤ m
}

the correspond-
ing spectrahedron and y∗ its optimal value.

Now assume that (Rn, ρ) is an n-dimensional representation of a finite group G. As we can
always chose an orthonormal basis for Rn with respect to a G–invariant scalar product,
we can assume without loss of generality that the corresponding matrices are orthonormal
i.e., we have ρT (g)ρ(g) = Id for all g ∈ G. Now this representation naturally carries over
to a representation σ on Symn(R) by:

σ(g)(X) := ρ(g)TXρ(g), for X ∈ Symn(R) and g ∈ G.

A given subset L ⊆ Symn(R) is now called invariant with respect to σ if for all X ∈ L we
have σ(g)(X) ∈ L, for all g ∈ G.

By the construction of σ we see that the cone of positive semidefinite matrices Sym+
n is

always an invariant set. Further a linear functional 〈C,X〉 is invariant with respect to
σ, if 〈C, σ(g)(X)〉 = 〈C,X〉 for all g ∈ G. Finally, a semidefinite program is said to
be a σ-invariant SDP if both the cost function 〈C,X〉 as well as the feasible set L are
σ-invariant.

The key observation for an invariant SDPs is that due to convexity we can restrict its
feasible set L to the smaller set

LG := {X ∈ L : σ(g)(X) = X for all g ∈ G}

of feasible matrices that are G–invariant.

To an invariant semidefinite program in canonical form we construct the following G–
symmetrized version:

inf 〈C,X〉
s.t. 〈Ai, X〉 = bi , 1 ≤ i ≤ m,

X = σ(g)(X) for all g ∈ G,
X � 0, where X ∈ Symn(R) .

Its optimal value is denoted by y∗G, On the one hand it now follows that every feasible
solution to the G–symmetrized version gives a feasible solution to the original semidefinite
program. This implies y∗G ≤ y∗. On the other hand if the matrixX is feasible for the initial
semidefinite program which is G–invariant we have that also for every g ∈ G the matrix
σ(g)(X) is feasible and 〈C,X〉 = 〈C, σ(g)(X)〉 for every g ∈ G. Hence we can apply the
so called Reynolds Operator to X i.e., XG := 1

|G|
∑

g∈G σ(g)(X) yielding a feasible solution

XG ∈ LG. This in turn implies y∗G ≤ y∗ and we have the following.
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Theorem 2.15

To every σ–invariant semidefinite program there is a G–symmetrized version which gives
the same optimal value.

Now consider the decomposition of

R
n := W 1

1 ⊕W 1
2 ⊕ . . .W 1

m1
⊕W 2

1 . . .⊕W k
mk

into real irreducible representations such that the W i
j are isomorphic for all j with with

dimW i
j = dj. As ρ is supposed to be orthogonal we can assume the resulting real

symmetry-adapted basis of R
n to be orthonormal. The elements of this basis will be

denoted by
{
v1
11, . . . , v

1
1d1
, . . . , vk

mkdk

}
, i.e., the elements

{

vj
i1, . . . , v

j
idj

}

form an orthonor-

mal R-basis of the G-module W j
i in the above decomposition.

Let T be the matrix collecting the elements of the symmetry adapted basis as columns
now we have that for every matrix X ∈ LG the matrix M := T TXT is block diagonal and
hence X � 0 if and only if M � 0.

Now, we define for every l in {1, . . . , k} a ml ×ml matrix Ml component wise by

Ml,i,j := (vl
i1)

TXvl
j1.

A finer analysis of Corollary 2.12 and the related basis transformation yields that

M =
k⊕

l=1

(Ml ⊗ Idi
),

hence M � 0 if and only if Ml � 0 for all 1 ≤ l ≤ k.

In order to write down the resulting SDP in block-diagonal form in a convenient way the
following ml ×ml matrices El(i, j) with coefficients

El,u,v(i, j) :=

dl∑

h=1

vk
uh(i) · vk

vh(j)

are used.

With these zonal matrices we can reconstruct the matrix X given the matrices Ml by

Xij =
k∑

l=1

〈Ml, El(i, j)〉.

Hence the symmetrized version of the SDP simplifies to

inf〈C,X〉
s.t. 〈Ai,j, X〉 = bi , 1 ≤ j,≤ m, 1 ≤ i ≤ k,

Xi,j =
∑k

l=1〈El(i, j),Ml〉,
Ml � 0, where Ml ∈ Symmi

(R), 1 ≤ l ≤ k.
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2.2 Symmetric group

The representation theory of the symmetric group was one of the topics that founded mod-
ern representation theory. Already Frobenius and Young could describe the irreducible
characters of the symmetric group in a beautiful combinatorial way. Our exposition mainly
follows [Sag01].

The objects used to derive combinatorial description are so called Young tableaux. We
will start to present these objects in the first section. Although the irreducible characters
where already understood in the beginning of the 20th century it was not before the 1930’s
when Wilhelm Specht was able to construct the associated irreducible representations
combinatorially. These irreducible representations therefore are called Specht modules.
We will construct these modules in the second section. Finally we remark how the so
called permutation representation, which will be needed later, decomposes.

2.2.1 Young tableaux

Definition 2.16

For n ≥ 1, a partition λ of n is a sequence of positive integers λ = (λ1, λ2, . . . , λl) satisfying
λ1 ≥ λ2 ≥ . . . λl > 0 and

∑l
i=1 λi = n. We will write λ ⊢ n to denote that λ is a partition

of n.

The number 5 for example has the following partitions:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

In order to obtain a complete description of the irreducible representations in an inductive
way it will be important to compare two partitions. This will be done by the so called
dominance order : We write λ�µ for two partitions λ, µ ⊢ n if λ1 + · · ·+λi ≥ µ1 + · · ·+µi

for all i. With these first definitions at hand we can define the Young Diagram associated
with a partition.

Definition 2.17

A Young Diagram associated with a partition λ ⊢ n is a set of n boxes that are arranged
in left-justified row, such that the number of boxes in the i-th row is exactly λi

1.

For example the Young Diagram associated with (2, 2, 1) ⊢ 5 is of the form

.
1The way we note Young tableaux follows the English notation (see [Sag01]). Some authors follow the

French notation and thus their Young tableaux will be an up side down reflection of the ones used
here
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2.2 Symmetric group

Partitions of n are interesting for the representation theory of Sn because, as we will see
later on, they naturally describe the irreducible representations. As a first step to this
end we associate with each partition λ a so called Young group:

Definition 2.18

Let λ ⊢ n. Then a subgroup of Sn of the form

Sλ = Sλ1 × Sλ2 × . . .× Sλl

is called a Young Group corresponding to λ.

Our interest in these groups comes from the fact that the induced representation 1↑Sn

Sλ
,

where 1 denotes the trivial representation, will be essential to describe the irreducible
representations.

A nice combinatorial way to characterize the modules 1↑Sn

Sλ
will be given using so called

Young tableaux :

Definition 2.19

A Young tableau of shape λ ⊢ n is a Young Diagram together with an entry in every
box from {1, . . . , n}, and each of these numbers occurs exactly once. A standard Young
tableau is a Young tableau in which all rows and columns are numbered increasingly.

Example 2.20

For the partition (2, 2, 1) ⊢ 5, two possible Young tableau are given by

1 3
5 2
4 ,

1 3
2 5
4 .

Only the second one is a standard Young tableau.

The action of Sn on {1, . . . , n} induces an action on the set of Young tableaux. Two
Young tableaux t1 and t2 are called row equivalent if the corresponding rows of the two
tableaux contain the same numbers. The classes of equivalent Young tableaux are called
tabloids, and the equivalence class of a tableau t is denoted by {t}.
Let {t} be a λ–tabloid. Then the group Sλ1 × . . . × Sλl

stabilizes {t}. The action of Sn

gives rise to an Sn-module:

Definition 2.21

Suppose λ ⊢ n. The permutation module Mλ corresponding to λ is the Sn-module defined
by Mλ = C {{t1} , . . . , {tl}}, where {t1} , . . . , {tl} is a complete list of λ–tabloids.

Observe that the module Mλ can be seen as a realization of the induced representation
of Sn from the trivial representation of Sλ1 × . . . × Sλl

. This observation justifies the
following proposition.
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Proposition 2.22

If λ ⊢ n then Mλ is a cyclic module, generated by any given λ–tabloid. Furthermore, we
have dimMλ = n!

(λ1!·λ2!···λm!)
.

Example 2.23

If λ = (1, 1, . . . , 1) ⊢ n then Mλ ∼= CSn. In case λ = (2, 1) a complete list of λ–tabloids is
given by the representatives

1 2
3 ,

1 3
2 ,

2 3
1 .

�
�

�
�2.2

Each tabloid is stabilized by a Young group isomorphic to S2 × S1.

2.2.2 Specht modules

The smallest non trivial case of a symmetric group is the group S2 := {1, σ1}. This
group is abelian and hence all irreducible representations are one-dimensional. One is
just the trivial representation 1, the other corresponds to the signum of the permutations,
i.e., sgn(1) = 1, sgn(σ1) = −1. Now the irreducible representations of higher symmetric
groups can be interfered using the induction defined in Definition 2.6 inductively using
these two.

Definition 2.24

Let t be a Young tableau for λ ⊢ n, and let Ci be the set of entries in the i-th column of
t. The group CStabt = SC1 ×SC2 × · · · × SCν

(where SCi
is the symmetric group on Ci)

is called the column stabilizer of t.

Now given λ ⊢ n and tλ a λ-tableau. By interchanging the rows of tλ with its columns we
construct a new tableau tλ′ corresponding to another partition λ

′ ⊢ n. This partition λ′

is called the transposition of λ. With this notation the following fundamental result due
to Frobenius and Young characterizes all irreducible representations of Sn.

Theorem 2.25 (Frobenius–Young–correspondence)
With the definitions from above for every λ ⊢ n it holds that

1↑Sn

Sλ

⋂

sgn↑Sn

S
λ
′

is an irreducible representation of Sn.

Now as the irreducible representations of the symmetric group Sn are in 1-1-correspon-
dence with the conjugacy classes of Sn and therefore with the partitions of n, the above
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theorem really provides a complete list of all irreducible representations of Sn. A con-
struction of the corresponding Sn modules is given by the so called Specht modules. This
will be explained in the following.

For λ ⊢ n, the polytabloid associated with a λ-tableau t is defined by

et =
∑

σ∈CStabt

sgn(σ)σ {t} .

Then for a partition λ ⊢ n the Specht module Sλ is the submodule of the permutation
module Mλ spanned by the polytabloids et. Now recall that every tabloid {t} is stabilized
by Sλ and further by construction of the polytabloid we have σ(et) = sgn(σ) · et. for
all σ ∈ Sλ′ . Hence we find that the cyclic module spanned by the various et is in fact
isomorphic to the representation Sλ defined above. So the following theorem can be
established.

Theorem 2.26

For every λ ⊢ n the Specht module Sλ is an irreducible Sn module. Further the set

{et | t is a standard λ− tableau}

is a basis of Sλ.

So the dimension of Sλ denoted by fλ is given by the number of standard Young tableaux
for λ ⊢ n.

Example 2.27

For n ≥ 2, we have the decomposition into irreducible components M (n−1,1) = S(n) ⊕
S(n−1,1). Namely, since the one-dimensional subspace spanned by the sum t1 + · · · + tn
is closed under the action of Sn, we have a copy of the trivial representation (which is
isomorphic to the Specht module S(n)) as irreducible component in M (n−1,1). Moreover,
since the tabloids in

�
�

�
�2.2 are completely determined by the entry in the second row, we

have identified a copy of the (n − 1)-dimensional Specht module S(n−1,1) in M (n−1,1).
Indeed, the permutation module M (n−1,1) decomposes as M (n−1,1) = S(n) ⊕ S(n−1,1).

2.2.3 Decomposing the permutation module

The decomposition of the partition module Mµ for a general partition µ ⊢ n will be of
special interest for us. It can be described in a rather combinatorial way as follows:
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Definition 2.28

1. A generalized Young tableaux of shape λ is a Young tableau T for λ such that the
entries are replaced by any n-tuple of natural numbers. The content of T is the
sequence µi such that µi is equal to the number of i′s in T .

2. A generalized Young tableau is called semi standard, if its rows weakly increase and
its columns strictly increase.

3. For λ, µ ⊢ n the Kostka number Kλµ is defined to be the number of semi standard
Young tableaux of shape λ and content µ.

For example, the tableau
1 1 2
2 3

is semi-standard, whereas the tableau

1 1 2
1 2

is not semi-standard.

The significance of the above definitions lies in the fact that the semi standard Young
tableaux of shape λ and content µ can be used to define a basis for Hom(Sλ,Mµ). Com-
bining this basis with the statement in Corollary 2.9 gives the following theorem, which
originates from Young’s work and describes the decomposition of the permutation mod-
ule.

Theorem 2.29 (Young’s rule)
Let µ ⊢ n and consider the permutation module Mµ. Then we have the following decom-
position:

Mµ =
⊕

λ�µ

KλµS
λ.

2.3 Invariant theory

Invariant theory is a classical field of mathematical study. Its roots can be traced back
to Gauß and his work on quadratic forms. In this section we will provide some basics
of invariant theory as far as it will be needed in the sequel. For further insight into
this fascinating topic we refer to [CLO07, Stu93], from which we collect the statements
presented in this section.

Let G be a finite group and ρ : G 7→ GLn be a representation of G on V = Cn. Now
the action of G on V can be extended to an action of G on the ring of polynomials
C[X] = C[X1, . . . , Xn] by setting f g := f(ρ(g)(x)) for all g ∈ G.
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Definition 2.30

A polynomial f ∈ C[X] is called invariant if f g = f for all g ∈ G. The set of all invariant
polynomials is denoted by C[X]G.

As the invariance property is not affected by addition or multiplication with an invariant
polynomial, the set of invariants from a ring:

Proposition 2.31

Let G be a finite group, then C[X]G is a subring of C[X].

A very useful tool to work with polynomials in invariant setting is the so called Reynolds
operator defined as follows.

Definition 2.32

For a finite group G the map RG(f) := 1
|G|
∑

g∈G f
g is called the Reynolds operator of G.

We collect some of the interesting properties of RG below. They mostly follow by explicit
calculations.

Proposition 2.33

The Reynolds operator of a finite group G has the following properties:

1. RG is a C[X]G- linear map.

2. For f ∈ C[X] we have RG(f) ∈ C[X]G.

3. RG is the identity map on C[X]G i.e., RG(f) = f for all f ∈ C[X]G.

As seen above C[X]G is a subring of C[X]. However, it is not obvious whether there exists
a finite generating set of this subring. This was a wide area of research in the second half
of the 19th century and so the fact that Hilbert in 1890 could provide a proof in the case
of finite groups using new techniques brought him international recognition.

Theorem 2.34

Let G be a finite group. Then the invariant ring C[X]G is generated by finitely many
homogeneous invariants.

In his 14-th problem Hilbert asked whether for all groups the set of invariants would be
finitely generated. By giving a counter example to this question, Nagata could prove in
1959 that not all invariants are generated finitely.

Suppose that G is a finite group then we can represent the invariant ring in the form

C[X]G = C[f1, . . . , fm]

for some finite set of generators. We will also use the term fundamental invariants for
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these generators. This now implies that every f ∈ C[X]G can be expressed as

f = g(f1, . . . , fm)

for some polynomial g ∈ C[y1, . . . , ym]. However, it does not need to be the case that g is
uniquely defined. In the case that there are two polynomials g1, g2 ∈ C[y1, . . . , ym] with

g1(f1, . . . , fm) = g2(f1, . . . , fm),

we define h = g1 − g2. This provides an algebraic relation h(f1, . . . , fm) = 0 among the
fundamental invariants. In this case any element in C[X]G is only defined up to this
algebraic relation h(f1, . . . , fm) = 0.

If we denote the set of fundamental invariants F := {f1, . . . , fm} then

IF = {h ∈ C[y1 . . . , ym] : h(f1, . . . , fm) = 0}

denotes the algebraic relations among f1, . . . , fm. This ideal of relations IF is in fact a
prime ideal in C[y1, . . . , ym].

Definition 2.35

Let F := {f1, . . . , fm} be a set of polynomials in C[X]. Then the evaluation homomor-
phism EvF is given by

EvF (g) := g(f1, . . . , fm).

Now let F be a set of generators of C[X]G, we know that EvF maps C[y1, . . . , ym] to C[X]G.
As observed above, the kernel of EvF is exactly the ideal IF . Now the first isomorphism
theorem implies the following.

Proposition 2.36

Let C[X]G = C[f1, . . . , fm] and IF be the ideal of relations. Then there is an isomorphism

C[y1, . . . , ym]/IF ≃ C[X]G.

A more geometric picture of the situations is obtained by associating the ideal of relations
IF with the variety VF = V (IF ) ⊂ C

m. We note the following.

Proposition 2.37

1. VF is the smallest variety containing the parametrization

y1 = f1(x1, . . . , xn)
...

...

ym = fm(x1 . . . , xn).
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2. IF = I(VF ), i.e., IF is the ideal of all polynomials vanishing on VF .

3. VF is an irreducible variety.

4. Let C[VF ] be the coordinate ring of VF . Then there is an isomorphism

C[VF ] ≃ C[X]G.

Definition 2.38

Let a ∈ Cn, then the orbit of a denoted by Ga is the set of points to which a is mapped
to under the action of G, i.e.,

Ga := {g(a) g ∈ G} .

The set of all G–orbits on Cn is denoted by Cn/G and is called the orbit space.

As we have that the orbits Ga and Gb of two points in Cn are either equal or disjoint,
the action of G on Cn naturally defines an equivalence relation by a ∼ b if and only if
b = g(a) for some g ∈ G.

Theorem 2.39

Let G be a finite group and suppose that C[X]G = C[f1, . . . , fm] then

1. The polynomial mapping F : Cn → VF defined by

F (a1, . . . , an) = (f1(a), . . . , fm(a))

is surjective i.e., it covers all of VF .

2. The map sending the G–orbit Ga to the point F (a) ∈ VF is a bijective map from
Cn/G to VF .
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3
Exploiting symmetries in SDP based

relaxations for polynomial optimization

Ce qui embellit le désert, dit le petit
prince, c’est qu’il cache un puits
quelque part

Le petit prince

Antoine de Saint-Exupéry

ALTHOUGH the semidefinite relaxations for polynomial optimization problems intro-
duced in the first section provide a way to attack otherwise hard problems in general

the sizes of the resulting SDPs grow fast with the problem size:

Typically, the SDP-relaxation of order k in the hierarchy involves O(n2k) variables and
linear matrix inequalities (LMIs) of size O(nk). Therefore, and in view of the present
status of SDP solvers, the applicability of the basic methodology is limited to small or
medium size problems unless some specific characteristics are taken into account.

One of these characteristics is symmetry. Indeed a lot of problems for which one wishes to
calculate the SDP relaxations are naturally equipped with a sort of symmetry. Therefore,
exploiting this additional structure is one of the major techniques to reduce the compu-
tational effort that needs to be invested in order to solve these problems. This chapter
develops two methods to exploit symmetries in the setting of SDP based relaxations for
polynomial optimization. To this end we follow two distinct ways.

First we provide a systematic treatment of the block diagonalization in the setting of
Lasserre’s relaxation. Using the framework of linear representation theory we suggest a
that a symmetry-adapted version of the relaxation scheme, that is block-diagonal can be
defined directly using an appropriate basis for the moments. Further we show that under
Putinar’s condition (Assumption 1.33) the resulting sequence of approximations converges
to the optimal value of the initial polynomial optimization problem.
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Secondly we investigate the possibilities of exploiting symmetries in the context of the
formulation of the polynomial optimization problems. This approach will be based on
results from invariant theory. Namely we show how the description of the real part of
the orbit space (Definition 2.3.7), which was initially given by Procesi and Schwarz, can
be combined with Lasserre’s Relaxation Scheme for Polynomial Matrix Inequality (PMI)
problems (see Chapter 1.2.5 ) in order to design an relaxation scheme in the geometric
quotient.

3.1 A block diagonal relaxation scheme

We assume that finite group G acts on Rn via a linear representation ρ and recall that to
every f ∈ R[X] and g ∈ G we can associate a polynomial f g := f(g−1(X)) hence G also
acts on the ring of polynomials.

Let g1, . . . , gm ∈ R[X] and K be the basic closed semialgebraic set defined by these
polynomials. Via the linear representation ρ each g ∈ G maps K to another semi algebraic
set σ(K) and we will denote

KG :=
⋂

g∈G

σ(K) .

In the sequel we will often assume that K is invariant under the action of G i.e., K = KG.
Note that this does not necessarily require that any of its generators gi is invariant under
the action of G on R[X].

Dually we can also define an action of G on the set of measures. For each measure µ with
support in Rn, ρ induces an action of G on Π(Rn) by setting g(µ(f)) := µ(f g).

A measure µ on K is said to be G-invariant if for all f ∈ R[X] and g ∈ G we have

∫

K

f dµ =

∫

K
f g dµ =

∫

g−1(K)

f dµ,

and the subset of all invariant probability measures on K by Π(K)G. For a comprehensive
foundational treatment of invariant measures we refer to [CKS09]. Here, we mainly need
the following simple connection:

Lemma 3.1

With the definitions above we have

1. For any semi-algebraic set K we have Π(K)G = Π(KG)G.

2. Let f be a G-invariant function then supx∈K f(x) = supµ∈Π(K)G

∫
fdµ.

Proof. (1) As KG is contained in K the inclusion ⊇ is obvious. For the other direction
assume that µ ∈ Π(K)G is such that µ(B) > 0 for some B ∈ B with B 6⊆ KG.
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Hence there is a σ ∈ G such that B is not contained in σ(K). But this implies that σ−1(B)
is not contained in K which is a contradiction because µ is supposed to be invariant under
the action of G.

(2) Let f be aG-invariant function and (xk) be a sequence inK such that (f(xk)) converges
to f ∗ = supx∈K f(x). Recall that

f ∗ = inf
µ∈Π(K)

∫

fdµ ≤ inf
µ∈Π(KG)

∫

fdµ as K ⊆ KG

≤ inf
µ∈Π(KG)G

∫

fdµ = inf
µ∈Π(K)G

∫

fdµ .

To each xk we can define a Dirac measure µk supported in xk. Now this gives a converging
sequence (

∫
f(x)dµk). Define the measures µ∗

k := 1
|G|
∑

σ∈G σ(µk), this implies µ∗
k ∈

Π(K)G for every k.

Since f is G-invariant,
∫
f(x)dµ∗

k = f(xk) which in turn implies
∫
f(x)dµ∗

k → f ∗ ≤
infµ∈Π(K)G

∫
fdµ, and so f ∗ = infµ∈Π(K)G

∫
fdµ.

So in order to find the supremum or infimum of an invariant function on an invariant set
K we only have to consider the invariant measures supported on K. Hence to make a
relaxation scheme for this setting similar to the one presented in the previous section, we
only have to take those linear maps L ∈ Hom(R[X],R) into account that are invariant
with respect to G.

Generalizing Putinar’s Theorem to this situation we can also characterize them by looking
at bilinear forms.

Theorem 3.2

Let g1, . . . , gm be G-invariant, define K := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}, and let
Ls ∈ Hom(R[X],R) be a G-linear map. Suppose Assumption 1.29 holds for the set K and
set g0 := 1. Consider the bilinear forms

Ls
gi

: R[X] × R[X] → R

(p, q) 7→ 1

|G|
∑

σ∈G

Ls(p · q · gσ
i ) .

Then Ls is the integration with respect to an invariant probability measure on K if and
only if Ls

gi
� 0 for all 0 ≤ i ≤ m.

Proof. Suppose µ is a G-invariant measure supported in K. From Proposition 3.1 we
deduce that for every polynomial gi the measure µ is actually supported on

⋂

σ∈G

{x ∈ R
n : gσ

i (x) ≥ 0} .
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Hence according to Theorem 1.22 the bilinear form (p, q) 7→ 1
|G|
∑

σ∈G L(p·q ·gσ) is positive
semi definite and therefore all the Ls

gi
are psd. On the other hand, if the forms Ls

gi
are

positive semi definite then at least one of the summands also has to be. But the linear
form Ls is invariant and thus every summand is positive semi definite.

So an invariant optimization problem can be rephrased as

p∗ = inf
{
Ls(p) : Ls ∈ Hom(R[X],R) is G-linear,Ls(1) = 1 and each Ls

gi
� 0
}
.

�
�

�
�3.1

Now we can make use of the results from representation theory. Namely as for every fixed
d ∈ N the space R[X]d of polynomials of degree at most d can be viewed as a G-module
there exists a decomposition of the form

�
�

�
�2.1

R[X]d = V1 ⊕ V2 ⊕ · · · ⊕ Vh

�
�

�
�3.2

with Vi = Wi1 ⊕ · · · ⊕Wiηi
and νi := dimWij. Here, the Wij are the irreducible compo-

nents and the Vi are the isotypic components i.e., the direct sum of isomorphic irreducible
components. The component with respect to the trivial irreducible representation corres-
ponds to the invariant polynomials of degree at most d. The elements of the other isotypic
components are called semi-invariants.

From now on let us assume that all the gi are G-invariant.

Recall that for any compact group G there is a scalar product 〈·, ·〉 on R[X] which is
G-invariant i.e., 〈g, f〉 = 〈gσ, fσ〉 for every f, g ∈ R[X] and every σ ∈ G.

We assume a decomposition of R[X]d like in
�
�

�
�3.2 above, consider Vi = Wi1 ⊕ · · · ⊕Wiηi

and pick any bi,1,1 ∈Wi1. Then using the fact that the Wij are isomorphic for all j we can
find bi,j,1 ∈ Wij such that φi,j(bi,j,1) = bi,j+1,1, where φi,j is a G-isomorphism that maps
Wi,j to Wi,j+1. Now using for example by Gram-Schmidt every bi,j,1 can be extended to an
orthogonal basis ofWij . As the resulting basis B = {b1,1,1, . . . , bh,ηh,νh

} will be a symmetry-
adapted basis of R[X]d we can combine Schur’s Lemma and the above generalization of
Putinar’s Theorem and deduce the following proposition:

Proposition 3.3

Let g1, . . . , gm be G-invariant, define K := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}, and let
Ls ∈ Hom(R[X],R) be a G-linear map. Suppose Assumption 1.29 holds for the set K and
set g0 := 1.

For every d ∈ N let R[X]d be decomposed as in
�
�

�
�3.2 , take any symmetry-adapted basis B

as described above and for all i define

Si := {bi,1,1, bi,2,1, . . . , bi,ηi,1} .

Then a G-linear map Ls : R[X] → R is the integration with respect to a measure µ
supported on K if and only if every of the bilinear maps Ls

gi
restricted to all Si is positive

semidefinite.
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Proof. By Proposition 3.2 we have to ensure that the bilinear maps Ls
gi

are psd. Now by
Corollary 2.11 we have that on every irreducible component Wi,j the Hermitian forms Ls

gi

and 〈·, ·〉G agree up to a real multiplicative constant i.e., 〈a, b〉G = λijLs
gi
(a · b). But as

every bi,j,1 can be extended to an orthonormal (with respect to 〈·, ·〉G) basis of Wi,j, this
in turn implies that Ls

gi
is positive semi definite if and only if its restrictions on every set

Si := {bi,1,1, bi,2,1, . . . , bi,ηi,1} are positive semi definite.

We also record the following symmetric version of Putinar’s Positivstellensatz.

Theorem 3.4

Let f, g1, . . . , gm ∈ R[X] be G-invariant polynomials and consider

K = {x ∈ R
n : g1(x) ≥ 0, . . . gm(x) ≥ 0} .

If f is strictly positive on K, then

f =
∑

si

σsi

0 +

m∑

k=1

gk

∑

si

σsi

k ,

where σsi

j ∈ ΣR[X]2si
and R[X]si

denotes the i-th isotypic component of R[X].

Proof. If f > 0 on K, then also for the polynomial fG :=
∑

π∈G f(π−1(x))0 we have
fG > 0 on K and hence f = 1

|G|f
G. By applying the classical version of Putinar’s

Positivstellensatz f can be represented in the form

f = σ0 +

m∑

k=1

gkσk with σ0, σk ∈ ΣR[X]2.

Now by letting G act on this expression we get for fG:

fG =
∑

π∈G

σ0(π
−1(x))

︸ ︷︷ ︸

=:σ
′

0

+

m∑

k=1

∑

π∈G

gk(π
−1(x))

︸ ︷︷ ︸

=|G|gk

∑

π∈G

σk(π
−1(x))

︸ ︷︷ ︸

=:σ
′

k

.

Thus we conclude that there is Putinar type representation of f = 1
|G|f

G, with G-invariant

SOS-polynomials 1
|G|σ

′

k. Now as was observed in [GP04] (Theorem 5.3) every G-invariant

SOS polynomials σ
′

k has a SOS-representation with sums of squares coming from the
isotypic components.

Now putting all this together we can derive the following: For every k ∈ N let Bk :=
{b1, b2, . . .} be a basis of the real vector space of invariant polynomials in n variables
of degree at most 2k. Let V1, V2, . . . , Vh denote the distinct irreducible representations
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of a given group G. Further let Sj
k :=

{

sj
1, s

j
2, . . . , s

j
ηj

}

contain the first elements of a

symmetry-adapted basis for the polynomials of degree at most k. Then we define the
symmetry-adapted moment matrix Ms(y) by

Ms
k(y) :=

⊕

j

Ms
k,j(y), where Ms

k,j(y)u,v := Ls(sj
u · sj

v).
�
�

�
�3.3

The entries of Ms(y) are indexed by the elements of Bk. Also we define the symmetry-
adapted localizing matrices in a similar manner.

Let pbi
denote the coefficients of p in the basis B and define the symmetry-adapted relax-

ation

Qs
k :

infy

∑

i pbi
ybi

Ms
k(y) � 0 ,

Ms
k−⌈deg gj/2⌉(gj y) � 0 , 1 ≤ j ≤ m

�
�

�
�3.4

with optimal value denoted by infQs
k (and minQs

k if the infimum is attained).

Remark 3.5

The symmetry-adapted setting defined above can give a significant reduction of the SDPs
that need to be calculated. Indeed the number of variables involved equals the size of
Bk. Furthermore, the symmetry-adapted moment matrix is block diagonal and the size
of each block equals ηi.

A generalization of Theorem 1.31 to this setting can now be reformulated as follows.

Theorem 3.6

Let Assumption 1.29 hold and let (Qs
k)k≥k0 be the hierarchy of SDP-relaxations defined in�

�
�
�3.4 . Then (inf Qs

k)k≥k0 is a monotone non-decreasing sequence that converges to p∗ i.e.,
inf Qs

k ↑ p∗ as k → ∞.

Proof. As Π(K)G ⊆ Π(K) one has inf Qs
k ≥ inf Qk for all k ≥ k0. In addition, for any

measure µ on K we let µ# = 1
|G|
∑

σ∈G σ(µ). As K is supposed to be G-invariant we

have µ# is on K. This proves that inf Qs
k ≤ p∗ for all k ≥ k0, and so, inf Qk ≤ inf Qs

k ≤ p∗

for all k ≥ k0. Combining the latter with Proposition 1.31 yields the desired result.

Remark 3.7

If not all gi are invariant but the set K is invariant or even if just the set of optimal
values is invariant, one still can only look at invariant moments. However the above
block structure will only apply for the moment matrix and the localizing matrices for
the invariant polynomials. Note that however still the variables in the localizing matrices
correspond to a basis for the space of invariants.

We will study the resulting hierarchy for the case of the symmetric group in chapter 5.
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3.2 PMI-relaxations via the geometric quotient

As a second possibility to explore symmetries we will use the techniques of Invariant theory
as presented in chapter 2 namely the characterization of the orbit space. This approach
leads very naturally to polynomial matrix inequalities (PMI). The key feature of this
procedure is that in some cases, this can decrease the degrees of the polynomials strongly.
In chapter 5 we will demonstrate this phenomenon in a certain case for symmetric power
sum problems, where we will use this approach in order to obtain easy to calculate lower
bounds and sometimes even upper bounds for these minimization problems by a very
simple SDP relaxation.

Recall from Theorem 2.34 that the ring C[X]G is finitely generated and the coordinate
ring of an algebraic variety, the so called orbit space. The Hilbert map π : Cn → Cm

associated to the inclusion C[X]G ⊆ C[X] discussed in Theorem 2.39 provides a surjective
homomorphism from Cn to this orbit space.

In order to study optimization problems we need to restrict to the reals instead to work
with complex numbers. In contrast to the algebraically closed case the problem is that if
we restrict π to Rn in general, the resulting map π̃ will not be surjective. Nevertheless,
the projection

π̃ : R
n → R

n/G ⊆ R
m

x 7→ (π1(x), . . . , πm(x))

defines an embedding of the orbit space into Rm. We highlight this phenomenon with the
following example:

Example 3.8

Let G = D4 be the dihedral group acting on R2. In this case fundamental invariants that
generate C[X, Y ]D4 are given by f1 = x2 + y2 and f2 = x2y2. As f1 and f2 are in fact
algebraically independent, we find that Cn/D4 ≃ C2. Now we restrict the map π to R2.
Obviously, the image of π(R2) is contained in R2. On the other hand, as f1(x, y) ≥ 0
for all (x, y) ∈ R2, we find that π−1(−1, 0) 6∈ R2. Therefore, the restricted map π̃ is not
surjective.

Therefore, in oder to describe the image of Rn under π̃ we need add further constraints. In
the above example for instance it is clear that as f1(x, y) ≥ 0 for all (x, y) ∈ Rn we must
have that π̃(R2) ⊆ {(z1, z2) ∈ R

2 : z1 ≥ 0}. In view of the example it seems therefore
promising to add such positivity constraints to characterize the image π̃(Rn) as a semi
algebraic subset of Rn. This is in fact possible and the characterization has been done
by Procesi and Schwarz, who have determined polynomial inequalities which have to be
taken additionally into account in order to characterize the embedding of Rn/G into the
coordinate variety of the invariant ring of G (see also Bröcker [Brö98]) and we will outline
this briefly:
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As G is a finite group we know that there exists a G-invariant inner product 〈·, ·〉. For a
polynomial p the differential dp is defined by dp =

∑n
j=1

∂p
∂xj
dxj . Then carrying over the

inner product to the differentials yields 〈dp, dq〉 =
∑n

j=1
∂p
∂xj

· ∂q
∂xj

. The inner products

〈dπi, dπj〉 (i, j ∈ {1, . . . , m}) are G-invariant, and hence every entry of the symmetric
matrix

J = (〈dπi, dπj〉)1≤i,j≤m

is G-invariant.

Following the ideas of [PS85] this construction now can be used to describe the real part
of the orbit space.

Theorem 3.9 (Procesi, Schwarz)
Let G ⊆ GLn(R) be a compact matrix group, and let π = (π1, . . . , πm) be fundamental
invariants of G. Then the orbit space is given by polynomial inequalities,

R
n/G = π(Rn) = {z ∈ R

n : J(z) � 0, z ∈ V (I)} ,

where I ⊆ R[z1, . . . , zm] is the ideal of relations of π1, . . . , πm.

Example 3.10

Let us explore this result by continuing the above example. We have ∂f1

∂x
= 2x, ∂f1

∂y
= 2y,

∂f2

∂x
= xy2, ∂f2

∂y
= x2y. This yields the matrix

A =

(
4(x2 + y2) 8x2y2

8x2y2 4(x2y4 + y2x4)

)

.

Now we translate the entries of A into the two invariants f1 and f2 and get

J =

(
4f1 8f2

8f2 4f1f2

)

.

The principle minors of J are 4f1, 4f1f2 and 4f1 · 4f1f2 − (8f2)
2. With these we can

characterize π(R2) as

R
2/D4 :=

{
(z1, z2) ∈ R

2 : 4z1 ≥ 0, 4z1z2 ≥ 0, 4z1z2.(8z2)
2 ≥ 0

}
.

Let p̃ and g̃1, . . . , g̃m be the expressions for p and g1, . . . gm in the primary invariants. By
Theorem 3.9, the G-symmetric optimization problem

�
�

�
�1.5 can be equivalently expressed

in the orbit space:
inf p̃(z)
s.t. z ∈ V (I) ,

g̃1(z) ≥ 0, . . . , g̃m(z) ≥ 0,
J(z) � 0 .

�
�

�
�3.5
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3.2 PMI-relaxations via the geometric quotient

This is a PMI (as introduced in Section 1.2.5) and one can use the techniques introduced
there to derive an SDP relaxation scheme. Let s1(z), . . . , st(z) be the t algebraic relations
between the fundamental invariants π1, . . . πm. Then we can build the following sequence
of SDP relaxations

Qq
k :

infy

∑

α pαyα

Mk(y) � 0 ,
Mk−m(J ∗ y) � 0 ,

Mk−⌈deg g̃j/2⌉(g̃j y) � 0 for 1 ≤ j ≤ m,
Mk−⌈deg sl/2⌉(sl y) = 0 for 1 ≤ l ≤ t.

�
�

�
�3.6

Theorem 3.11

Let p, g1, . . . , gm be G invariant. If the PMI in
�
�

�
�3.6 meets condition 1.33 the sequence

(infQq
k)k≥k0 is monotone non-decreasing and converges to p∗; that is,

inf Qq
k ↑ p∗ as k → ∞.

Proof. By Theorem 3.9 the problem described by p and g1, . . . , gm is equivalent to 3.5.
Now we can conclude with Theorem 1.34.

Remark 3.12

It would be very interesting to characterize the situations where 3.9 meets condition 1.33
in terms of the original set K, in particular those situations where both of the resulting
SDP relaxations converge.

69





4
Positivity for symmetric polynomials

The chief forms of beauty are order
and symmetry and definiteness, which
the mathematical sciences
demonstrate in a special degree

Metaphysics

Aristotle

CERTIFYING that a given polynomial in n real variables is positive had been one of the
main motivations leading to the development of modern real algebraic geometry. In

this chapter we are going to investigate the positivity question for symmetric polynomials
from an optimization point of view. Many optimization problems that are given in a
symmetric setting share the pleasant property that their solutions can be found among the
symmetric points, i.e., the points that are invariant to the action of the symmetric group.
The best known elementary example for instance is that among all rectangles with given
perimeter a+b the square maximizes the area. This was already observed by Terquem who
postulated in [Ter40] this to be a general fact. Contrary to this postulate it was observed
already some rears after Terquem by the Russian mathematician Bouniakovsky [Bou54]
that in general there does not need to be a symmetric point amongst the minimizers of a
symmetric problem.

The main result presented in this chapter will analyze how much symmetry will be passed
on to the minimal points of general symmetric polynomials under symmetric constraints.
We will show that the symmetry of minimizers is depending mainly on the degree of the
polynomials involved.

When turning this result back to the positivity side of global optimization we recover a
theorem which was initially proven by Vlad Timofte [Tim03], who established this result
via the bounded solutions of a differential equation. Although his proof is correct, it does
not fully visualize the situation. The reduction from Theorem 4.2 allows us to establish
Timofte’s theorem in a more natural way.
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Further we will explain the connection to a theorem of Foregger [For87]. It was pointed
out to us by Salma Kuhlmann and Alexander Kovačec [KK10] that Foregger’s attempt
to prove his statement seems to be flawed. We will point out why it is in fact to be
beyond repair and also give a correct reasoning based on the proof of Theorem 4.2 in the
discussion at the end.

Finally, we will remark in the discussion at the end of this chapter that a similar result
holds for even symmetric polynomials.

4.1 The statements

The points in R
n that are invariant with respect to the permutation action of the sym-

metric group Sn are precisely those consisting only of one distinct component. The more
distinct the components of a point x are, the less symmetric is x. So the following defini-
tions can be seen as a measure of symmetry:

Definition 4.1

1. For x ∈ Rn let n(x) = # {x1, . . . , xn} denote the number of distinct components of x
and n∗(x) = # {x1, . . . , xn |xj 6= 0} denote the number of distinct non zero elements.

2. For d ∈ N let Ad := {x ∈ Rn : n(x) ≤ d} i.e., the points in Rn with at most d
distinct and A+

d :=
{
x ∈ Rn

+ : n∗(x) ≤ d
}

i.e points with at most d distinct positive
elements.

So for example A1 consists of the symmetric points.

Using these sets as a measure of symmetry the following theorem will be the essence of
this chapter.

Theorem 4.2

Let F0, F1, . . . , Fm ∈ R[X]Sn be symmetric and

K = {x ∈ R
n : F1(x) ≥ 0, . . . , Fm(x) ≥ 0} .

If F0 is of degree d and k := max{2, ⌊d
2
⌋, degF1, . . . , degFm} then

inf
x∈K

F0(x) = inf
x∈K∩Ak

F0(x) and

inf
x∈K∩Rn

+

F0(x) = inf
x∈K∩A+

k

F0(x).

So although it is true that the minimizers need not to be amongst the fully symmetric
points our statement shows that some of the symmetry still can be expected when look-
ing for the minima. In Chapter 5 we will show how Theorem 4.2 can be used to exploit
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4.1 The statements

symmetry in the context of solving symmetric optimization problems. As an immediate
consequence we note the following implications for deciding emptiness of real algebraic
varieties given by symmetric polynomials i.e., the question if a system of symmetric equa-
tions has a real solution:

Corollary 4.3 (Degree principle)
Let F1, . . . , Fk ∈ R[X]Sn be symmetric polynomials of degree at most d. Then the real
variety

VR(F1, . . . , Fk)

is empty if and only if

VR(F1, . . . , Fk) ∩Ad

is empty.

Proof. Let F0 := x1 + . . .+ xn. Now as

inf
x∈VR(F1,...,Fk)

F0(x) <∞ if and only if VR(F1, . . . , Fk) 6= ∅

we can conclude with Theorem 4.2.

As was already mentioned also the following statement due to Timofte is an immediate
corollary:

Corollary 4.4 (Half degree principle for inequalities)
Let F ∈ R[X]Sn be a symmetric polynomial of degree d and define k := max

{
2, ⌊d

2
⌋
}
.

Then F is non negative i.e., F (x) ≥ 0 for all x ∈ R
n if and only if F (y) ≥ 0 for all

y ∈ Ak. Further F is copositive, i.e., F (x) ≥ 0 for all x ∈ Rn
+ if and only if F (y) ≥ 0 for

all y ∈ A+
k .

Proof. This follows immediately from Theorem 4.2 as for all F0 we have F0 ≥ 0 if any
only if infx∈Rn F0 ≥ 0.

In addition to the inequality case it was pointed out by David Grimm [Gri05] that as
Ak is connected for all k we also can deduce a half degree principle for symmetric real
hypersurfaces from the above corollary:

Corollary 4.5 (Half degree principle for hypersurfaces)
Let F0 ∈ R[X]Sn be of degree d and let k := max

{
2, ⌊d

2
⌋
}
. Then there is x ∈ R

n with
F0(x) = 0 if and only if there is x ∈ Ak with F0(x) = 0.

Proof. Suppose there is no y ∈ Ak with F (y) = 0. As Ak is connected and F0 continuous
we find that either F0(x) > 0 or all x ∈ Ak or F0(x) < 0 for all x ∈ Ak. This in any case
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Positivity for symmetric polynomials

implies that F0 is either strictly positive or strictly negative and thus we can interfere
that F0 has no zeros.

Remark 4.6

In view of the second corollary it seems natural to ask, if the half degree principle does in
general also apply to any system of symmetric equalities. However, if one considers the
set K := {x ∈ Rn : x1 + x2 + x3 = 0, x2

1 + x2
2 + x2

3 = 1, x3
1 + x3

2 + x3
3 = 0}, one finds K is

not empty but K ∩ A2 is empty.

Besides symmetric polynomials, also even symmetric polynomials can be of interest. A
polynomial f is called even symmetric if it is symmetric and involves only monomials of
even degree. Alternatively, f is invariant by the hyper-octahedral group Sn ≀ S2. We will
show in the discussion at the end that using the proof of Theorem 4.2 we are able to
directly deduce the corresponding theorem for even symmetric polynomials:

Theorem 4.7

Let F0, F1, . . . , Fm ∈ R[X]Sn be even symmetric consider

K = {x ∈ R
n : F1(X) ≥ 0, . . . , Fm(X) ≥ 0} .

If F0 is of degree 2d and k := max
{
⌊d

2
⌋, degF1, . . . , degFm

}
, then

inf
x∈K

F0(x) = inf
x∈K∩Ak

F0(x).

On the way to prove Theorem 4.2 we will examine critical points of linear functions on
the orbit space of Sn. This will also provide a proof of the following theorem which was
originally published by Foregger in [For87].

Theorem 4.8

Let n ≥ 2, let φ(x) = φ(x1, . . . , xn) be a real linear combination of elementary symmetric
polynomials, and define

Cγ :=

{

x ∈ [0, 1]n :
n∑

i=1

xi = γ

}

.

Suppose φ : Cγ → R attains at a point a ∈ int(Cγ), the relative interior of Cγ, a local
extremum. Then φ is constant or a is the symmetric point in Cγ, i.e., a = ( γ

n
, γ

n
, . . . , γ

n
).

The new proof we give in the final discussion seems necessary since we will show that the
original proof given by Foregger in [For87] is beyond repair.
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4.2 Symmetric polynomials and the orbit space of Sn
Symmetric polynomials are a very classical object of study which appeared naturally
already in study of the formation of coefficients of polynomials from their roots. In fact
the classical formula of Vieta will have a prominent importance for the proof of Theorem
4.2.

The group Sn is finite and therefore from Hilbert’s Finiteness Theorem 2.34 we can in-
terfere that there is a finite set of polynomials generating the ring C[X]Sn of invariant
polynomials. Among the possible polynomials for this generating set the following two
families are of special interest:

Definition 4.9

For n ∈ N, we consider the following two families of symmetric polynomials.

1. For 0 ≤ k ≤ n let pk :=
k∑

i=i

Xk
i denote the k-th power sum polynomial

2. For 0 ≤ k ≤ n let ek :=
∑

1≤i1<i2<...<ik≤n

Xi1Xi2 · · ·Xik denote the k-th elementary

symmetric polynomial

These two families of symmetric polynomials are linked to each other by the so called
Newton identities (see e.g. [Mea92]):

k(−1)kek +
k∑

i=1

(−1)i+kpiek−i = 0.
�
�

�
�4.1

As already indicated above the importance of the two families comes from the fact that
they generate the invariant ring in this case, i.e., we have the following:

Theorem 4.10

Let R be any ring. Then the ring of symmetric polynomials R[X]Sn is a polynomial ring
in the n elementary symmetric polynomials e1, . . . , en, i.e. every symmetric polynomial F
can uniquely be written as F = G(e1, . . . , en) for some polynomial G ∈ R[X].

Proof. Let F be a symmetric polynomial and we are going to compare the monomial
involved in F using lexicographic order on the degrees i.e., xα1

1 · · ·xαn
n ≥Lex x

β1

1 · · ·xβn
n if

∑
αi >

∑
βi or if the first non zero element of the sequence (αi − βi) is positive.

Let a ·xγ1
1 · · ·xγn

n be the biggest monomial with respect to the Lex-order. As F is supposed
to be symmetric it follows that γ1 ≥ γ2 ≥ · · · ≥ γn. Now we consider the polynomial
H := a ·eγ2−γ1

1 ·eγ3−γ2

2 · · · eγn
n . The greatest monomial of H is equal to a ·xα1

1 · · ·xαn
n hence if

we consider F̃ = F −H this term will get lost. Now we can use the same arguments with
F̃ . As the leading monomial of each step will be canceled this procedure will terminate
and give us a description of F as polynomial in the elementary symmetric polynomials
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e1, . . . , en. It remains to show that this representation is unique, i.e., that e1, . . . , en are
really algebraically independent. Suppose, that there is 0 6= G ∈ R[z1, . . . , zn] such that
g(e1(x), . . . , en(x)) is identically zero. Now consider any monomial za1

1 · · · zan
n of G then

the initial monomial of ea1
1 · · · ean

n will be xa1+a2+...+an

1 xa1+a2+...+an

2 · · ·xa1+a2+...+an
n . But as

the linear map

(a1, . . . , an) 7→ (a1 + . . .+ an, a2 + . . .+ an, . . . , an)

is injective, all other monomials of G will have different initial monomial. The lexi-
cographically largest monomial is not cancelled by any other monomial, and therefore
G(e1, . . . , en) 6= 0.

We remark that due to the Newton identities 4.1 every ei(x) can be expressed uniquely
using the power sum polynomials. Hence we get the following corollary immediately:

Corollary 4.11

Let R be a ring of characteristic 0. Then the ring of symmetric polynomials R[X]Sn is a
polynomial ring in the first n power sum polynomials p1, . . . , pn.

Let F be a given real symmetric polynomial of degree d ≤ n, then the above theorem can
be used to further analyze the elementary symmetric polynomials that need to be taken
into consideration. We find in fact:

Proposition 4.12

Let F ∈ R[X] be symmetric of degree d. Then there is unique polynomial G ∈ R[Z1, . . . , Zd]
of the form

G = G1(Z1, . . . , Z⌊ d
2
⌋) +

d∑

i=⌊ d
2
⌋+1

Gi(Z1, . . . Zd−i)Zi,
�
�

�
�4.2

with Gi ∈ R[Z1, . . . , Zd] such that

F = G(e1, . . . , ed).

Proof. A proof for the announced expression of G in equation
�
�

�
�4.2 can be given by care-

fully inspecting the above constructive proof of Theorem 4.10 But we will deduce the claim
directly from the statement in Theorem 4.10. Let G ∈ R[Z1, . . . , Zn] be the unique polyno-
mial with F = G(e1, . . . , en). Take a finite set I ⊂ Zn

≥0 such that G =
∑

i∈I giZ
i1
1 · · ·Z in

n ,

with gi ∈ R. As ei1
1 · · · ein

n is a homogeneous polynomial of degree i1 + 2i2 + · · ·+ nin and
degF = d, we infer gi = 0 for all i with

∑

l lil > d. Now assume that j ≥ ⌊d
2
⌋ + 1 and

ij ≥ 1. Then the condition
∑

l lil ≤ d implies first that ij = 1 and further that ik = 0 for
all k > d − j. This means that the sum of terms of G that contain Zj with j ≥ ⌊d

2
⌋ + 1

can be written in the form
∑d

j=⌊ d
2
⌋Gj(Z1, . . . Zd−j)Zj for certain polynomials Gj. Finally
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4.2 Symmetric polynomials and the orbit space of Sn

combining all the other terms of G into a polynomial G1(Z1, . . . , Z⌊ d
2
⌋) we arrive at the

above representation.

To emphasize the impact that the above proposition has for the considerations in this
chapter note that by Proposition 4.12 we have for the polynomial G ∈ R[Z1, . . . , Zn]
representing F in elementary symmetric polynomials the following:

1. There will be no monomial that contains a variable Zj, j > d.

2. There will be no monomial that contains two variables Zj , Zi with i, j ≥ ⌊d
2
⌋.

3. The variables Zj with i ≥ ⌊d
2
⌋ occur at most linearly in every monomial.

These properties in mind clearly it would be preferable to work with the polynomial
function G : Rn → R instead of F . As was exposed in Chapter 2 this is possible if one
works over an algebraically closed field as the Hilbert map π : Cn → Cn/Sn is surjective
in this case (see Theorem 2.39).

Although we have seen the general machinery to describe the real part of the orbit space in
the last chapter, in the case of the symmetric group this can be even seen more elementary
by the following geometrical arguments:

Every x ∈ C
n can be viewed as the n roots of the univariate polynomial

f =
n∏

i=1

(T − xi).

The classical Vieta formula implies that f can also be written as

f = T n − e1(x)T
n−1 + . . .± en(x).

Using geometric language the identification of the n roots with the n coefficients can be
thought of as giving rise to a surjective map

π : Cn −→ Cn

x := (x1, . . . , xn) 7−→ π(x) := (e1(x), . . . , en(x))
.

Obviously π is constant on Sn orbits and hence the ring C[X]Sn is exactly the coordinate
ring of the image of π which thus coincides with the orbit space.

It is worth mentioning that π has very nice continuity properties: Obviously the coeffi-
cients of a univariate polynomial f depend continuously on the roots, but also the converse
is true:

Theorem 4.13

Let f =
∏k

i=1(T − xi)
mi =

∑n
j=0 ajT

j be a univariate polynomial and define 0 < ε <

|mini6=j xi − xj |/2. Then there is δ > 0 such that every polynomial g =
∑n

j=0 bjT
j with

coefficients satisfying |aj − bj | < δ has exactly mi zeros in the disk around xi with radius
ε.
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Proof. See for example Theorem. 1.3.1 in [RS02] .

As we want to know about the points having real pre-image we will restrict π to Rn.
In this case the restriction maps into Rn but it fails to be surjective: Already the easy
example X2 + 1 shows that we can find n real coefficients that define a polynomial with
strictly less than n real zeros. Polynomials with real coefficients that only have real roots
are sometimes called hyperbolic. The right tool to characterize the univariate hyperbolic
polynomials is the so called Sylvester-Matrix:
Let K be any field of characteristic 0 and take f = T n + a1T

n−1 + . . . + an ∈ K[T ] a
univariate normalized polynomial. Its n zeros α1, . . . , αn exist in the algebraic closure of
K. For r = 0, 1, . . . let pr(f) := αr

1 + . . . + αr
n be the r-th power sum evaluated at the

zeros of f . Although it seems that this definition involves the a priori not known algebraic
closure of K and the roots of f , which are also not known a priori, these numbers are well
defined. We have pr(f) ∈ K and using Vieta and the Newton relations, we can express
the power sums as polynomials in the coefficients of f .

Definition 4.14

The Sylvester Matrix S(f) of a normalized univariate polynomial of degree n is given by

S(f) := (pj+k−2(f))n
j,k=1.

Without too much abuse of notation we will use S(z) for every z ∈ Rn to denote the
Sylvester Matrix of corresponding polynomial whose coefficients are z.

Now the key observation we will need is Sylvester’s version of Sturm’s theorem.

Theorem 4.15

Let R be a real closed field and f ∈ R[T ] a normalized polynomial of degree n ≥ 1.

1. The rank of S(f) is equal to the number of distinct zeros of f in the algebraic closure
R(

√
−1).

2. The signature of S(f) is exactly the number of real roots of f .

See for example [KS89,BPR06] or [Syl53] for proofs of the above statements.

Remark 4.16

If one choses the set of elementary symmetric polynomials e1(x), . . . , en(x) as primary
invariants and proceeds according to the theory used in Section 2 of Chapter 3, one finds
that the Sylvester Matrix agrees (up to a scalar factor) with the matrix J in Theorem 3.9
in this case.

Using the above theorem we see that f ∈ R[T ] is hyperbolic if and only if S(f) is positive
semidefinite (denoted by S(f) � 0). Now the strategy in order to prove Theorem 4.2 is to
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take the view point of the real orbit space. Instead of F on Rn, we will have to examine
G over the set

H := {z ∈ R
n : T n − z1T

n−1 + . . .± zn has only real roots}

and the sets

Hk := {z ∈ H : T n − z1T
n−1 + . . .± zn has at most k distinct zeros}.

So Theorem 4.2 follows directly from the following

Theorem 4.17

Let F ∈ R[X] of degree d ≥ 2 and G ∈ R[Z1, . . . , Zd] such that F = G(e1, . . . ed). Then
we have:

1. G(H) = G(Hd),

2. inf
z∈H

G(z) = inf
z∈Hk

G(z) for all 2 ≤ ⌊d/2⌋ ≤ k ≤ n,

3. inf
z∈H∩Rn

+

G(z) = inf
z∈Hk∩Rn

+

G(z) for all 2 ≤ ⌊d/2⌋ ≤ k ≤ n.

Before we give the proof of the above theorem and thus the proof of Theorem 4.2, we will
need some very elementary facts about polynomials with only real roots. We will show
these facts about hyperbolic polynomials in the next section.

4.3 Hyperbolic polynomials

The main problem that we will have to deal with in order to prove the main theorems
is the question which changes of the coefficients of a hyperbolic polynomial will result in
polynomials that are still hyperbolic. This question is in fact very old and has already been
studied by Pólya, Schur and Szegő (see for example [Obr63,PS14, PS98]). However, we
will argue that already some implications of the following classical statements on the roots
of real univariate polynomials which can be found for example in [Kat84, Obr63, PS98]
will be sufficient to prove the main statements.

Proposition 4.18

Let f ∈ R[T ]. Then the following hold:

1. The n complex roots of f depend continuously on the coefficients, i.e. there are n
continuous functions r1, . . . , rn depending on the coefficients that parametrize the
roots.
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2. If α ∈ C is a root of f then also its complex conjugate ᾱ ∈ C is a root of f .

3. Let a, b ∈ R with a < b and f(a) = f(b) = 0. Then the derivative polynomial f
′

has
a root in (a, b).

Now the following statements on hyperbolic polynomials follow immediately from these
facts by careful inspection of the possible roots.

Corollary 4.19

Let f = T n + a1T
n−1 + . . .+ an be hyperbolic. Then the following hold:

1. Let a, b ∈ R with a ≤ b. If f has k roots (counted with multiplicities) in [a, b] then
f

′

has at least k − 1 roots in [a, b] (also counted with multiplicities).

2. All higher derivatives of f are also hyperbolic.

3. If a ∈ R is a root of order k of f ′ then a is also a root of order k + 1 of f .

4. If ai = ai+1 = 0 then aj = 0 for all j ≥ i.

Proof. Let t1 < x2 < . . . < tp be the distinct real roots of f and assume d1, . . . , dp as
respective multiplicities.

(1) If a = b then f has a multiple root of order dj at tj = a. Hence its derivative has a
root of order dj − 1 at tj . If a < b at each ti the derivative f

′

has a root of order di − 1.
Further from Proposition 4.18 (3) we see that f

′

has a root in each open interval (ti, ti+1).
Hence in total f

′

has at least d1 − 1 + d2 − 1 + . . .+ dk − 1 + (k − 1) = d− 1 zeros.

(2) f has n zeros on the real line and by (1) it follows from Proposition 4.18 (3) that f
′

has its n − 1 roots on the real line, and so by induction all further derivatives are also
hyperbolic.+

(3) Otherwise the number of roots does not match.

(4) If ai = ai+1 = 0 there is a derivative of f with a multiple root at t = 0. But then t = 0
is also a multiple root of f of order n− i+ 1 hence aj = 0 for all j ≥ i.

As already mentioned we want to know, which small perturbations of coefficients of a
hyperbolic polynomial will result in a hyperbolic one.

Proposition 4.20

Let f ∈ R[T ] be a hyperbolic polynomial of degree n with exactly k distinct roots.

(a) If k = n then for any non zero polynomial g of degree at most n there exists δn > 0
such that for 0 < ε < δn the polynomials f ± g are also hyperbolic with n distinct
roots.

(b) If k < n then for each 1 ≤ s ≤ k there is a polynomial gs of degree n − s and a
δs > 0 such that for all 0 < ε < δs the polynomials f ± εgs are also hyperbolic and
have strictly more distinct zeros.
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4.3 Hyperbolic polynomials

Proof. (a) This follows directly by Proposition 4.18 (1) and (2).

(b) Let x1, . . . , xk be the distinct roots of f . We can factor

f =

(
s∏

i=1

(T − xi)

)

︸ ︷︷ ︸

:=p

·g1,

where the set of zeros of g1 contains only elements from {x1, . . . xk} and g1 is of
degree n − s. Now we can apply (a) to see that p ± εs is hyperbolic for all εs < δs.
Furthermore we see that p ± εs has none of its roots in the set {x1, . . . , xk}. Hence
(p± εs) · g1 = f ± εsg1 is hyperbolic and has more than k distinct roots.

As we also want restrict to Rn
+ the following easy observation will also be useful:

Proposition 4.21

The map π maps Rn
+ onto H+ := Rn

+ ∩H.

By definition of the set H+ it could be possible that there are all sorts of polynomials
with zero coefficients. But to conclude the main theorem also in the version on H+ we
will need the following proposition which follows from Corollary 4.19.

Proposition 4.22

Let f := T n + a1T
n−1 + . . .+ an be a hyperbolic polynomial with only non negative roots.

If an−i = 0 for one i then an−j = 0 for all j ≤ i.

Proof. First observe that if f has only positive roots then by Proposition 4.18(3) all its
derivatives share this property. If an−i = 0 we know that the i-th derivative f (i) of f has
a root at t = 0. But as f (i−1) has also only positive roots, also f (i−1)(0) = 0. Now the
statement follows since Corollary 4.19 (3) now implies that f has a multiple root of order
i at t = 0.

To study the polynomials on the boundary of H+ the following consequence of Proposition
4.20 will be helpful:

Proposition 4.23

Let f ∈ R[T ] be a hyperbolic polynomial of degree n with k < n distinct roots and assume
that for m < k the polynomial f has a root of order m at T = 0. Then for each 1 ≤ s ≤ k
there is a polynomial gs of degree n− s with m-fold root at T = 0 and δs > 0 such that for
all 0 < ε < δs the polynomials f ± εg are also hyperbolic and have strictly more different
zeros.
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Positivity for symmetric polynomials

Proof. Just consider the hyperbolic polynomial f̃ := f
T m of degree n − m with k − m

distinct zeros. Applying 4.20 to f̃ we get g̃s of degree n − m − s but then obviously
gs := g̃sT

m meets the announced statements.

4.4 Proof of the main theorem

This last section uses the statements about univariate polynomials given in the previous
section to prove the main statements. The proofs will be based on a elementary optimiza-
tion problem. In order to introduce this problem we will first give some notation:

Recall that to each Sn orbit of any x ∈ Rn we associate the polynomial

f =
n∏

i=1

(T − xi) = T n +
n∑

i=1

(−1)iaiT
n−i,

We will consider optimization problems over sets of the form

H(a1, . . . , as) := {z ∈ R
n : z1 = a1, . . . , zs = as, T

n − z1T
n−1 + . . .± zn is hyperbolic},

i.e. over the set of all monic hyperbolic polynomials of degree n that agree with f on the
leading s+ 1 coefficients.

Now for the proof of the main theorem will take a look at linear optimization problems
of the from:

min ctz

z ∈ H(a1, . . . , as),

where c ∈ R
n defines any linear function and a1, . . . , as are fixed. To make the later

argumentation easier, we set the minimum of any function over the empty set to be
infinity.

A priori it may not be obvious that such problems have an optimal solution. But, this is
a consequence of the following lemma:

Lemma 4.24

For any s ≥ 2 every set H(a1, . . . , as) is compact.

Proof. As the empty set is compact we can assume that there is z ∈ H(a1, a2). Let
x1, . . . , xn be the roots of fz := T n − z1T

n−1 + . . .± zn. Then we have e1(x) = −a1 and
e2(x) = a2. Hence we have

∑n
i=1 x

2
i = (e1(x))

2 − 2e2(x) = a2
1 − 2a2. This shows that

x is contained in a ball, thus H(a1, a2) is bounded, and hence so is H(a) ⊆ H(a1, a2).
Furthermore as by Proposition 4.18 (1) the roots of a polynomial depend continuously on
the coefficients it is clear that H(a) is closed and therefore compact.
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4.4 Proof of the main theorem

We will use Hk(a1, . . . , as) to refer to the points in H(a1, . . . , as)∩Hk, i.e. to those monic
hyperbolic polynomials which have at most k distinct zeros and prescribed coefficients
a1, . . . , as.

The crucial observations which will be the core of the theorems we want to prove lies in
the geometry of the optimal points of the above optimization problems. This is noted in
the following lemma:

Lemma 4.25

Let n > 2, s ∈ {2, . . . , n}, c ∈ Rn with cj 6= 0 for at least one j ∈ {s + 1, . . . , n} and
a ∈ Rs such that H(a) 6= ∅. We consider the optimization problem

min
z∈H(a)

ctz.

Let M denote the set of minimizers of this problem. Then we have ∅ 6= M ⊆ Hs(a).

Proof. Since by the above lemma H(a) is compact, there is at least one minimizer z,
showing the nonemptyness of M . So if M ⊆ Hs(a) we are done.
Hence to prove the statement by contradiction we assume that M 6⊆ Hs(a). Take z ∈M
such that the number k of roots of the monic polynomial

fz := T n − z1T
n−1 + . . .± zn

is maximal. By assumption s < k ≤ n. If k = n we chose y ∈ Rn such that cty < 0. By
Proposition 4.20 (a) we deduce that there is a δn > 0 such that for all 0 < ε < δn we find
that the polynomial fz + ε(y1T

n−1 + . . .± yn) is still hyperbolic. Thus by the choice of y
we have z + εy ∈ H(a) but by construction we have ct(z − εy) < ctz for all 0 < ε < δn
which clearly contradicts the optimality of z. If on the other hand we have k < n then by
Proposition 4.20 we find y ∈ {0}k × Rn−k and δk > 0 such that for

g := T n−k − yk+1T
n−k−1 + . . .± yn

we have that f ± εg is hyperbolic for all 0 < ε < δk. Thus by the choice of y the point
z ± εy will be in H(a) for all 0 < ε < δk. Without loss of generality we may assume that
cty ≤ 0. This in turn implies

ct(z + εy) ≤ ctz ≤ z − εy,

since z is supposed to be a minimizer we must have that also (z + εy) is a minimizer.
However, by Proposition 4.20 f − εg has strictly more distinct components, which clearly
contradicts our choice of z and we can conclude.

From the above lemma we can conclude the following important corollary:

Corollary 4.26

Every set H(a1, . . . , as) 6= ∅ with s ≥ 2 contains a point z̃ with z̃ ∈ Hs(a1, . . . , as).
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Proof. If n ∈ {1, 2} the statement is clear. So we can assume n > 2. Take c ∈ Rn with
ci 6= 0 for one i > s Then the function ctz will not be constant over H(a1, . . . , as). But
as H(a1, . . . , as) is compact we know the minimal value is attained and we can conclude
with Lemma 4.25.

To transfer the half degree principle to Rn
+ we will also need to know what happens to the

minima when we intersect a set H(a1, . . . , as) with R
n
+. We denote this intersection with

H+(a1, . . . , as) and define

H(s,+)(a1, . . . , as) := H+(a1, . . . , as) ∩Hs(a1, . . . , as) ∪H(a1, . . . , as, 0, 0, . . . , 0).

With these appropriate notations we have a same type of argument as in Lemma 4.25:

Lemma 4.27

Let s ∈ {2, . . . , n}, c ∈ Rn with cj 6= 0 for at least one j ∈ {s+ 1, . . . , n} and a ∈ Rs such
that H+(a) 6= ∅. Consider the optimization problem

min
z∈H+(a)

ctz.

Let M denote the set of minimizers of this problem. Then we have ∅ 6= M ⊆ H(s,+)(a).

Proof. The argument works out almost the same way as in Lemma 4.25: Indeed if
z ∈ H+(a1, . . . , as) has strictly positive components small perturbations of these will
not change the positivity and the same arguments can be used. So just the cases of
z ∈ H+(a1, . . . , as) with zero components need special consideration. So assume we have
a z̃ ∈ H(a1, . . . , as) with zero components such that

ctz̃ = min
z∈H+(a1,...,as)

ctz.

But with Proposition 4.22 we see that there is i ∈ {1, . . . , n} such that z̃j = 0 for all
j ≥ i. If i ≤ s + 1 we have already that that z̃ ∈ H(s,+)(a1, . . . , as) But if s + 1 < i
we can see from Proposition 4.23 that there is 0 6= ỹ ∈ {0}s × Ri−s × {0}n−i such that
z̃1 ± εỹ ∈ H(a1, . . . , as)∩RN

+ for small positive ε and argue as in the previous lemma.

Now to we are able to deduce the proof of Theorem 4.17:

Proof of Theorem 4.17.

1. We know from Proposition 4.12 that

G = G1(Z1, . . . , Z⌊ d
2
⌋) +

d∑

i=⌊ d
2
⌋+1

Gi(Z1, . . . Zd−i)Zi.
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4.4 Proof of the main theorem

So G is constant on any set H(a1, . . . , ad). As we have

⋃

(a1,...,ad)∈Rd

H(a1, . . . , ad) = H,

the first statement in Theorem 4.17 follows now directly from Corollary 4.26.

2. We will have to see that

min
z∈H⊂Rn

G(z) = min
z∈Hk

G(z).

Again we decompose the space in the form:

⋃

(a1,...,ak)∈Rk

H(a1, . . . , ak) = H

Therefore

min
z∈H

G(z) = min
a1,...,ak

min
z∈H(a1,...,ak)

G(z).

But for fixed z1 = a1, . . . , zk = ak the function G(z) is just linear and now we can
apply Lemma 4.25 and see that:

min
z∈H(a1,...,ak)

G(z) = min
z∈Hk(a1,...,ak)

G(z).

and we get the second statement in Theorem 4.17.

3. Again the function G is linear over the sets H+(a1, . . . , ak) and we can argue as
above by using Lemma 4.27.
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4.5 Discussion

To conclude this chapter we want to give short discussion on some related issues:

As was already mentioned in the introduction, Foregger stated a theorem concerning
critical points of elementary symmetric functions. Here we will remark that Foregger’s
Theorem 4.8 can be deduced using the same ideas that were used to establish the main
theorem. This new proof we give here seems necessary since the original proof given by
Foregger in [For87] fails as we will explain in the following:

Using exactly the notation used in [For87], Foregger defines on page 383 the set

Cγ∗ =

{

y ∈ R
s :

s∑

i=1

yi = γ∗, yi ∈ [0, 1]

}

⊂ R
s.

Then he derives on p.384 for s < n, c ∈ Rn−s constant, and y ∈ Rs, the first two lines
in the following chain; the third line then is a consequence of noting that E0(y) = 1, and
E1(y) = γ∗.

0 = φ∗(y)

=

n∑

k=0

Ek(y)

n∑

r=k

crEr−k(c) −
n∑

r=2

crEr(0, c)

=
n∑

r=0

crEr(c) + γ∗
n∑

r=1

crEr−1(c) −
n∑

r=2

crEr(0, c) +
n∑

k=2

Ek(y)
n∑

r=k

crEr−k(c).

Now Foregger claims that

n∑

r=k

crEr−k(c) = 0, for k = 2, 3, . . . , n.
�
�

�
�4.3

But we remark that y ∈ R
s, so the definition of the elementary symmetric functions

requires Es+1(y) = · · · = En(y) = 0. This is a fact not taken into consideration in
[For87]. At any rate, since the functions 1, E2, E3, . . . , Es are linearly independent on C∗

γ

we may infer the equations
�
�

�
�4.3 for k = 2, . . . , s. The problem is that these equations

are claimed by Foregger not only for k = 2, . . . , s, but for k = 2, . . . , n, and then used in
the order k = n, n− 1, ..., 1, to derive that cn, cn−2, . . . , c1, are 0. However, this reasoning
is impossible once we take Es+1(y) = · · · = En(y) = 0 into account. But then the proof
given by Foregger fails.

The following connection to Lemma 4.27 will now provide a valid proof.

Proof of Theorem 4.8. We assume that the function φ(x) :=
∑n

i=1 ciei(x) in Foregger’s
theorem is not constant, but a ∈ int(Cγ), is a local extremum distinct from the symmetric
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point in Cγ, i.e., a 6= γ
n
1n. To deduce Foregger’s statement we can now proceed as in

Lemma 4.27:

Indeed, consider the α := (e1(a), . . . , en(a)) ∈ H(γ) ∩ π([0, 1]n). As then with the same
type of arguments as in the proof of Lemma 4.27 we can either find β1, β2 ∈ H(γ) such
that ctβ1 < ctα < ctβ2 or we find β3 in the interior of H(γ) with ctβ3 = ctα. As a is in
the relative interior of Cγ we could chose β1, β2, β3 ∈ H(γ)∩ π ((0, 1)n). Hence both cases
contradict the fact the α is an extremum for the linear function ctx on π(Cγ) respectively
that a is an extremum of φ on Cγ.

As it was was remarked in the beginning, the statements given here generalize directly to
even symmetric polynomials. To see this just observe that the fundamental invariants in
this case are p2, . . . , p2n (see [Hum92] Example 3.12). So every even symmetric polynomial
F ∈ R[X] of degree 2d has a unique representation in the form F (X) = G(p2, . . . , p2n).

Now if we substitute variables such that ui = x2
i we arrive at a symmetric polynomial

F̃ (u1, . . . un) = G(p1, . . . , pn). By variable substitution we have F (Rn) = F̃ (Rn
+). Thus

we can apply Theorem 4.17 in order to deduce the analogous statement in Theorem 4.7
for even symmetric polynomials.

Finally we also mention the following equivalent formulation of Corollary 4.26 in terms of
univariate polynomials:

Proposition 4.28

Let f ∈ R[T ] be a univariate polynomial of degree n which factors

f =
n∏

i=1

(T − xi), with xi ∈ R,

then for every d ∈ {1, . . . , n} there is f̃d ∈ R[T ], with deg(f − f̃d) < n− d and f̃d has only
d distinct roots all of which are real.
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5
Optimizing with symmetric polynomials

The universe is built on a plan the
profound symmetry of which is
somehow present in the inner
structure of our intellect.

Paul Valery

AMONGST the discrete groups the symmetric group Sn has - also due to its rich
combinatorics - a prominent position. Therefore this chapter aims to work out all the

possibilities to exploit symmetries in detail using the example to the symmetric group Sn.
While the representation theory of the symmetric group is a classical topic (as reviewed in
Chapter 2.2), it yields some interesting (even somewhat surprising) results in our setting.

First, in Section 5.1 we discuss the block diagonalization for the symmetric group. By
realizing the irreducible components in a suitable basis of polynomials (generalized Specht
polynomials as defined below), the moment matrix can be characterized rather explicitly
(Theorem 5.6).

As corollaries, we derive some concrete representation theorems for symmetric polynomials
in Section 5.2.

In Section 5.3 we show how to reduce an SDP-relaxation to a family of lower-dimensional
relaxations with the help of the degree principle provided in chapter 4. In the special case
of symmetric polynomials of degree 4 this reduces the non-negativity problem to an SOS
problem (and thus to a semidefinite feasibility problem), see Theorem 5.17.

Finally we will provide SDP-based upper and lower bounds for a special class of symmetric
optimization problems.
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Optimizing with symmetric polynomials

5.1 Moment matrices for the symmetric group

Recall from the preliminaries presented in chapter 2 that the irreducible representations
of Sn are in natural bijection with the partitions of n. In order to construct a suitable
generalized moment matrix we will need a graded decomposition of the vector space R[X]
into Sn-irreducible components. A classical construction of Specht gives a realization of
the Specht modules as polynomials (see [Spe37]):

For λ ⊢ n let tλ be a λ-tableau and C1, . . . , Cν be the columns of tλ. To tλ we associate
the monomial X tλ :=

∏n
i=1X

l(i)−1
i , where l(i) is the index of the row of tλ containing

i. Note that for any λ-tabloid {tλ} the monomial X tλ is well defined, and the mapping
{tλ} 7→ X tλ is an Sn-isomorphism. For any column Ci of tλ we denote by Ci(j) the element
in the j-th row and we associate a Vandermonde determinant:

VanCi
:= det






X0
Cj(1)

. . . X0
Cj(k)

...
. . .

...
Xk−1

Cj(1)
. . . Xk−1

Cj(k)




 =

∏

i<l

(XCj(l) −XCj(i)).

The Specht polynomial stλ associated to tλ is defined as

stλ :=

ν∏

j=1

VanCj
=

∑

σ∈CStabtλ

sgn(σ)σ(X tλ) ,

where CStabtλ is the column stabilizer of tλ.

By the Sn-isomorphism {tλ} 7→ X tλ , Sn operates on stλ in the same way as on the
polytabloid etλ . If tλ,1, . . . , tλ,k denote all standard Young tableaux associated to λ, then
the set of polynomials stλ,1

, . . . , stλ,k
are called the Specht polynomials associated to λ.

The observation implies (see [Spe37]):

Proposition 5.1

The Specht polynomials stλ,1
, . . . , stλ,k

span an Sn-submodule of R[X] which is isomorphic
to the Specht module Sλ.

While these polynomials already give a realization of the Specht modules in terms of
polynomials, for the construction of the symmetry-adapted moment matrix we need to
generalize this construction to realize these modules in terms of polynomials with pre-
scribed exponent vectors. In the following, let n ∈ N and β := (β1, . . . , βn) be an n-tuple

of non-negative integers, and let R
{
Xβ
}

be the linear span of all monomials X β̃ such

that β̃ and β are permutations of one another. By construction each R
{
Xβ
}

is closed
under the action of Sn and therefore has the structure of an Sn-module.

Denote by wt(β) =
∑n

i=1 βi the weight of β. Let b1, . . . , bm be the distinct components
of β (called the parts of β), ordered (decreasingly) according to the multiplicity of the
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occurrence in β. Further let Ik = {j : βj = Ik}, 1 ≤ k ≤ m; note that the sets I1, . . . , Im
define a partition of {1, . . . , n}. Setting µk := |Ik|, the vector µ = (µ1, . . . , µm) consists
of monotonously decreasing components and thus defines a partition of n. We call µ ⊢ n
the shape of β. The stabilizer of the monomial Xβ is isomorphic to Sµ1 × . . .× Sµm

.

Proposition 5.2

For β ∈ Nn
0 , the Sn-module R

{
Xβ
}

is isomorphic to the permutation module Mµ, where
µ is the shape of β.

Proof. Recall from Definition 2.21 that Mµ is spanned by the set of all µ-tabloids. For
every monomial X β̃ and its associated set partition I1, . . . , Im we construct a µ-tableau
by placing the indices that correspond to Ik into the k-th row. As the order of the indices
in each Ik is arbitrary we get in fact an identification of X β̃ with the row equivalence class
of the constructed µ-tableau. So each X β̃ corresponds uniquely to a µ-tabloid. Since this
identification commutes with the action of Sn, we obtain an Sn-isomorphism.

Now let λ ⊢ n be another partition of n. In order to construct the realizations of the
Specht module Sµ as submodule of R

{
Xβ
}
, we look at pairs (tλ, T ), where tλ is a fixed

λ-tableau and T is a generalized Young tableau with shape λ and content µ. For each
pair we construct a monomial X(tλ,T ) ∈ R

{
Xβ
}

from its parts b1, . . . , bm in the following
way:

Let tλ(i, j) and T (i, j) denote the element in the i-th row and j-th column of tλ and T .
Then define

X(tλ,T ) :=
∏

(i,j)

X
bT (i,j)

tλ(i,j) .

Let C1, . . . , Cν be the columns of tλ, then we associate to each column Ci a polynomial

VanCi,T := det







X
bT (1,i)

Ci(1)
. . . X

bT (1,i)

Ci(k)
... . . .

...

X
bT (k,i)

Ci(1)
. . . X

bT (k,i)

Ci(k)






.

As in Specht’s construction we form the product polynomial

s(tλ,T ) =
ν∏

i=1

VanCi,T

and set (by summation over the row equivalence class of T )

S(tλ,T ) :=
∑

S∈{T}
s(tλ,T ) .
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Lemma 5.3

Let T be a generalized Young tableau with shape λ and content µ. The generalized Specht
polynomial S(tλ,T ) generates a cyclic Sn submodule R

{
S(tλ,T )

}
of R

{
Xβ
}

which is iso-
morphic to the Specht module Sλ.

Proof. By Proposition 5.2 we can follow Young’s decomposition of Mµ (Theorem 2.29).
Therefore we associate to every T with shape λ and content µ an Sn-homomorphism from
Mλ to Mµ defined by

ΘT,tλ : {tλ} 7→
∑

S∈{T}
X(tλ,S)

and the cyclic structure of Mλ. If Θ̄T,tλ denotes the restriction of this homomorphism to
the Specht module Sλ we get an element of Hom(Sλ,Mµ). Let CStab(tλ) be the column
stabilizer associated to the Young tableau tλ. Then the restriction amounts to say that

Θ̄T,tλ(etλ) = Θ̄T,tλ(
∑

σ∈CStab

sgn(σ)σ {tλ}) =
∑

σ∈CStab

ΘT,tλ(sgn(σ)σ {tλ}).

As we have s(tλ,T ) =
∑

σ∈CStab(tλ)
sgn(σ)σ(X(tλ,T )) is follows that S(tλ,T ) is the image of etλ

under Θ̄T,tλ .

Remark 5.4

Note the following connection of the generalized Specht polynomials to the classical Schur
polynomials. For a non-negative vector λ = (λ1, . . . , λl) the generalized Vandermonde
determinant

aλ := det
(

(X
λj

i )1≤i,j≤l

) �
�

�
�5.1

(as a polynomial in X1, . . . , Xl) is called the alternant of λ. Moreover, for a partition λ
of length l the Schur function sλ is defined by

sλ =
aλ+δ

aδ
,

where δ := (l− 1, l− 2, . . . , 1, 0) ∈ Zl. It is well known that sλ is a symmetric polynomial
in X1, . . . , Xl (also called a Schur polynomial). Hence, the alternant

�
�

�
�5.1 can be written

as
aλ = sλ−δ · aδ .

�
�

�
�5.2

Now the polynomials VanCi,T defined above can be seen as the alternant associated to the

numbers (bT (1,i), . . . , bT (k,i)) and thus by
�
�

�
�5.2 as the product of a Schur polynomial with

a classical Vandermonde determinant.

Let T 0
λ,µ denote the set of semi standard generalized Young tableaux of shape λ and content

µ (see Definition 2.28). To conclude we can summarize the above considerations.
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Theorem 5.5

For β of weight d we have

R
{
Xβ
}

=
⊕

λ�µ

⊕

T∈T 0
λ,µ

R
{
S(tλ,T )

}
.

The multiplicity of the Specht modules Sλ in this Sn-module is equal to the Kostka number
Kλµ, where λ ⊢ n is the shape of β (which will be denoted µ(β) in the sequel).

Proof. By Lemma 5.3 each Specht polynomial gives rise to an irreducible component. As
from Proposition 5.2 we deduce that R

{
Xβ
}

is isomorphic to Mλ we can apply Young’s
rule (Theorem 2.29) in order to identify the number of distinct irreducible components
with the Kostka numbers.

Based on these results, we can construct a symmetry-adapted moment matrix of order
k. By

�
�

�
�3.3 the blocks are labeled by partitions of n. In order to construct the block

for a fixed λ we have to take into account the various β = (β1, . . . , βn) with wt(β) = k
and shape λ. For a given d, let c(λ, d) be the number of β ∈ Nn

0 with wt(β) = d which
have shape λ. The decomposition from Theorem 5.5 translates into the moment setting
as follows.

Corollary 5.6

For k ∈ N, the k-th symmetry-adapted moment matrix Ms
k(y) is of the form

Ms
k(y) =

⊕

λ⊢n

Ms
k,λ(y).

With κλ :=
∑k

d=0 c(β, d)Kλµ(β) the size of Ms
k,λ(y) is equal to κλ × κλ.

Proof. The distinct irreducible representations are indexed by partitions of n. There-
fore by Remark 3.5 the size κλ of the block of Ms

k(y) corresponding to the irreducible
component Sλ equals the number of submodules of R[X]≤k isomorphic to Sλ. As we have

R[X]≤k =
k⊕

d=0

⊕

β∈Nn
0 , wt(β)=k

R
{
Xβ
}
,

Theorem 5.5 implies κλ =
∑k

d=0 c(β, d)Kλµ(β).

The following remarkable consequence can be seen as a degree principle for Lasserre’s
relaxation.

Theorem 5.7

For all n ≥ 2k the symmetry-adapted moment matrix of order k has the same structure,
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i.e., the same number and sizes of blocks and variables. In particular, up to the computa-
tion of the block decomposition the complexity of the question if a symmetric polynomial
of degree 2k in n variables is a sum of squares is only depending on k.

Proof. First observe that by Remark 3.5 the number of variables equals the dimension of
the R vector space of symmetric polynomials of degree at most 2k. Therefore it corres-
ponds to the number of n-partitions of 2k, which is just the number of partitions of 2k
for all n ≥ 2k. So we see that the number of variables does not increase in n once n ≥ 2k.

Now set n0 = 2k and let l be the number of partitions of k, β(1), . . . , β(l) ∈ N
n0
0 the distinct

exponent vectors modulo permutation with wt(b(i)) = k, 1 ≤ k ≤ l, and λ(i) ⊢ n0 be the
shape of β(i). The rest of the proposition follows if we can show that for every n ≥ n0

there exist partitions λ̃(1), . . . , λ̃(m) of n such that κλ̃(i) = κλ(i) for all 1 ≤ i ≤ m and
κλ̃ = 0 for all other λ̃ ⊢ n.

First note that the β̃(i) which are exponent vectors come from the β(i) by adding n− n0

zeros. As n ≥ n0 ≥ 2k this implies that the possible λ̃(i) are of the form λ̃(i) := (λ
(i)
1 +

n− n0, λ
(i)
2 , . . . , λ

(i)
t ). Since Kλµ = 0 whenever µ 6 �λ we conclude that the possible µ̃ we

have to consider are of the form µ̃ := (µ1 + n − n0, µ2, . . . , µt) for one µ ≥ λ(i). But in
this setting we have Kλµ = Kλ̃µ̃ and the statement follows.

Example 5.8

We illustrate the techniques for a small example with n = 3 and k = 2. The mo-
ment variables are indexed by partitions of the numbers 1, 2, 3, 4 with three parts, i.e.,
y1, y2, y3, y4, y11, y22, y21, y111, y211. The irreducible components are indexed by the parti-
tions λ ⊢ (3), thus λ ∈ {(3), (2, 1), (1, 1, 1)}. The β we have to take into account are
(0, 0, 0), (1, 0, 0), (2, 0, 0), (1, 1, 0) with shape µ(1) = (3), µ(2) = (2, 1), µ(3) = (2, 1), µ(4) =
(2, 1). The semi-standard generalized Young tableaux with shape µ and content λ ∈
{
λ(1), . . . , λ(4)

}
from Lemma 5.3 are:

• For µ = (3): 1 1 1 , 1 1 2 .

• For µ = (2, 1):

1 1
2 .

• For µ = (1, 1, 1): There is no generalized semi-standard Young tableau correspond-
ing to the above λ(i).

For µ = (3), corollary 5.6 yields a 4 × 4-block, with basis polynomials
{
1, X1 +X2 +X3, X

2
1 +X2

2 +X2
3 , X1X2 +X1X3 +X2X3

}
.
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5.2 Sums of squares-representations for symmetric polynomials

Thus

M(3) :=









1 3 y1 3 y2 3 y11

3 y1 3 y2 + 6 y11 3 y3 + 6 y21 6 y21 + 3 y111

3 y2 3 y3 + 6 y21 3 y4 + 6 y22 6 y31 + 3 y211

3 y11 6 y21 + 3 y111 6 y31 + 3 y211 3 y22 + 6 y211









.

For µ = (2, 1) we obtain a 3 × 3-block, with basis polynomials

{
2X3 −X2 −X1, 2X

2
3 −X2

2 −X2
1 ,−2X1X2 +X2X3 +X3X1

}
.

Thus

M(2,1) =







6 y2 − 6 y11 6 y3 − 6 y21 6 y21 − 6 y111

6 y3 − 6 y21 6 y4 − 6 y22 −6 y211 + 6 y31

6 y21 − 6 y111 −6 y211 + 6 y31 6 y22 − 6 y211






.

Remark 5.9

We remark that the techniques presented above also provide the tools for some explicitly
stated open issues in in the study of unconstrained optimization of symmetric polynomials
in Gatermann and Parrilo [GP04] (p. 124) who – mentioning the lack of explicit formulas
for the isotypic components – refer to the study of examples and asymptotics.

5.2 Sums of squares-representations for symmetric poly-

nomials

From the dual point of view, the results presented in Section 5.1 imply the following sums
of squares decomposition theorem: In the following we let S be a set of monomials and
denote R {S} the R–vector space generated by the elements of S. Then Σ(R {S})2 will
be the shorthand notation for all polynomials that are sums of squares in the elements of
R {S}.

Theorem 5.10

Let p ∈ R[X1, . . . , Xn] be symmetric and homogeneous of degree 2d. If p is a sum of
squares then p can be written in the form

p =
∑

β⊢d

∑

λ⊢n

∑

T∈T 0
λ,µ(β)

Σ(R
{
S(tλ,T )

}
)2 ,

where β runs over the non-negative partitions of d with n parts.
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Proof. The statement follows from dualizing Theorem 5.5.

Especially for the cases when the notion of non-negativity coincides with the sums of
squares decomposition this yields the following corollaries:

Corollary 5.11

Let p ∈ R[X1, X2] be a symmetric homogeneous form of degree 2d. If p is non-negative
then p can be written in the form

p =
∑

α1,α2∈N0,α1+α2=d

Σ(R {Xα1
1 Xα2

2 +Xα2
1 Xα1

2 })2 + Σ(R {Xα1
1 Xα2

2 −Xα2
1 Xα1

2 })2 .

Corollary 5.12

Let p ∈ R[X1, . . . , Xn] be symmetric and homogeneous quadratic form. If p is non-negative
then p can be written in the form

p = α(X1 + · · ·+Xn)2 + β
∑

i<j

(Xj −Xi)
2 = (α+ (n− 1)β)

∑

X2
i + 2(a− b)

∑

i6=j

XiXj .

with some coefficients α, β ≥ 0.

Corollary 5.13

Let p ∈ R[X1, X2, X3] be a symmetric and homogeneous of degree 4. If p is non-negative
then p can be written in the form

p = (α + 2δ)M4 + (2α + 2ε+ γ − δ)M22 + (β − ω)M31 + (β + 2γ + 2ω − 2ε)M211,

where

M4 :=
∑

(X4
i ),M22 :=

∑

i6=j

X2
i X

2
j ,M31 :=

∑

i6=j

X3
i Xj, and M211 :=

∑

i6=j 6=k

X2
i XjXk,

such that α, γ, δ, ε ≥ 0 and αγ ≥ β2 and δε ≥ ω2.

5.3 Using the degree principle

As a further way to exploit symmetries in SDP -based relaxations we want to show
how to construct a family of low dimensional problems of lower-dimensional relaxations
by applying the degree principle (Theorem 4.2). The idea behind this aproach is that
the set Ak can be represented as a finite union of k-dimensional linear subspaces. By
restricting the initial problem to each of this subspaces individually we arrive at a family
of k dimensional polynomial optimization problems.
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5.3 Using the degree principle

For n, k ∈ N a vector ω := (ω1 . . . , ωk) of positive, non-increasing integers with n =
ω1 + . . .+ωk is called a k-partition of n. Let Ω denote all possible k-partitions of n. Then
for each ω = (ω1 . . . , ωk), let

fω := f(t1, . . . , t1
︸ ︷︷ ︸

ω1

, t2, . . . , t2
︸ ︷︷ ︸

ω2

, . . . , tk, . . . , tk
︸ ︷︷ ︸

ωk

) ∈ R[t1, . . . , tk] .

Similarly, let Kω :=
{
(t1, . . . , tk) ∈ Rk : g1

ω(t) ≥ 0, . . . , gk
ω(t) ≥ 0

}
. With these nota-

tions at hand we can use Theorem 4.2 in order to transform the original optimization
problem in n variables into a set of new optimization problems that involve only k vari-
ables,

inf
x∈K

f(x) = inf
ω∈Ω

min
x∈Kω

fω(x) .
�
�

�
�5.3

Now one can apply the usual relaxation scheme to every of the above k-dimensional
problems separately. For each ω ∈ Ω let Qω

l be the l-th relaxation
�
�

�
�1.15 of minx∈Kω fω.

Putting these ideas together we obtain:

Theorem 5.14

Let f, g1, . . . , gm ∈ R[X] symmetric such that K := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}
meets Putinar’s condition. Let d be the degree of f and set

k := max

{

⌊d
2
⌋, deg g1, . . . , deg gm

}

.

Then the sequence infω Q
ω
k converges to infx∈K f for l → ∞.

Proof. By Theorem 4.2 there is a k-partition ω ∈ Ω of n with minx∈K f = minx∈Kω
fω.

It suffices to show that Kω also meets Putinar’s condition. Since K meets Putinar’s
condition, there is u ∈ R[X] with u = u0+

∑m
j=1 ujgj for some sums of squares polynomials

u0, . . . , um such that the level set of u is compact. This representation carries over to uω

which also has a compact level set.

Remark 5.15

At first sight it might not look profitable to replace one initial problem by a family of
new problems. However note that for fixed k ∈ N the number of k-partitions of any n is
bounded by (n+k)k. On the other hand a polynomial optimization problem in n variables
yields a moment matrix of size O(n2l) in the l−th relaxation step of Lasserre’s scheme.
In view of the polynomial bound (for fixed k) on the number of k-partitions it is therefore
profitable to use the degree-principle based relaxation.

The process of building the k-dimensional problems can be related to breaking the sym-
metries as the resulting problems will in general no longer be invariant to a symmetric
group Sk. However as dimensions drop there are situations (in particular for m = k)
where we will get finite convergence.
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Theorem 5.16

Let f, g1, . . . , gk ∈ R[X] be symmetric such that the polynomials gi are of degree at most
k, and f is of degree at most 2k. Further assume that the variety V (g1, . . . , gk) ⊂ C

n has
codimension k. Then the relaxation sequence infω Q

ω
l will converge to infx∈V (g1,...,gk) after

finitely many steps.

Proof. By Theorem 4.2 the problems that give rise to the sequence of relaxation schemes
are k-dimensional. The main observation is that under the circumstances described above
each of the resulting varieties V ω := V (g1

ω, . . . , gk
ω) is zero dimensional and then Laurent’s

Theorem (1.32) can be applied to deduce the announced statement. To see that these
varieties contain only finitely many points we proceed as follows:

It was shown in Corollary 4.11 that every symmetric polynomial g of degree k in n
variables can be uniquely written as a polynomial in the first k power sum polynomials
p1(X), . . . , pk(X), where pi(X) =

∑n
j=1X

i
j.

Let γ1 . . . , γk ∈ R[Z1 . . . , Zk] be polynomials such that

γi(p1(X), . . . , pn(X)) = gi(X).

The fact that the polynomials p1, . . . , pn are algebraically independent establishes that
C

n/Sn is in fact isomorphic to C
n.

As the variety

V (g1, . . . , gk)

is Sn invariant, its image in the quotient Cn/Sn is given by

Ṽ := {z ∈ C
n : γi(z) = 0 for all 1 ≤ i ≤ k} .

Now as Sn is a finite group the codimension of Ṽ is also k. But this implies that

Ṽ ∩ {z ∈ C
n : zk+1 = . . . = zn = 0}

is zero dimensional. Therefore, there are just finitely many z := (z1, . . . , zk) for which
γi(z) = 0 holds for all k with 1 ≤ i ≤ k.

Now let ω = (ω1, . . . , ωk) be any k-partition of n and consider

V ω := V (g1
ω, . . . , gk

ω) ⊂ C
k.

Let p̃i :=
∑k

j=1 ωjt
k
j , then we get gi

ω(t) = γi(p̃1(t), . . . , p̃k(t)). So at the points in y ∈ V ω

we have

p̃1(y) = z1, ..., p̃k(y) = zk

for one of the finitely many z = (z1, .., zk), with γi(z) = 0 for all 1 ≤ i ≤ k. And thus
there are just finitely many points in V ω.
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5.4 Lower and upper bounds for power sum problems

Closely related to the question of finite convergence is the description of polynomials
that are positive but not sums of squares. By Hilbert’s Theorem 1.13, every nonnegative
ternary quartic polynomial is a sum of squares. For quartics in more than three variables
this is not true in general, not even for symmetric polynomials (see Example 5.18 below).
For symmetric polynomials of degree 4, deciding the non-negativity can be reduced to an
SOS problem and thus to a semidefinite optimization problem.

Theorem 5.17

Let f ∈ R[X] be a symmetric polynomial of degree 4. Then f is non-negative if and only
if for all ω ∈ Ω the polynomials fω are SOS.

Proof. As f is of degree 4, all the fω are polynomials of degree 4 in two variables. Hence,
by Hilbert’s theorem every fω is non-negative if and only if it is a sum of squares.

Example 5.18

Choi and Lam [CL78] have shown that the homogenous polynomial of degree 4

f =
∑

X2
i X

2
j +

∑

X2
i XjXk − 4X1X2X3X4

in four variables is non-negative, but not a sum of squares. By Theorem 5.17, the non-
negativity of f is equivalent to the property that the following two homogeneous polyno-
mials in two variables are sum of squares.

f1 = X4
2 + 4X2

2X
2
4 +X4

4 + 2X3
4X2 ,

f2 = 4X4
2 + 6X2

2X
2
4 − 2X3

2X4 .

However, the SOS property of the polynomials easily follow from their non-negativity of
their de-homogenized versions (which are univariate polynomials) and Hilbert’s Theorem.

5.4 Lower and upper bounds for power sum problems

For constrained polynomial optimization problems described by power sums, the orbit
space approach defined in Chapter 3 can become particularly simple. The following class
of optimization problems generalizes a class studied by Brandenberg and Theobald (
[BT06])

Definition 5.19

Let n,m, q ∈ N with q ≥ m, m ≤ n + 1, and given some vector γ ∈ Rm−1, consider the
symmetric global optimization problem

Pnmq : min
n∑

i=1

Xq
i s.t.

n∑

i=1

Xj
i = γk , j = 1, . . . , m− 1,

�
�

�
�5.4
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with optimal value denoted min Pnmq.

In this section, we are going to provide upper and lower bounds for Pnmq.

Choose the fundamental invariants πj = 1
n
pj (1 ≤ j ≤ n) where pj :=

∑n
i=1X

j
i denotes

the power sum of order j.

Then the matrix M(z) in Theorem 3.11 specializes to the Sylvester matrix (see Definition
4.14).

We can exploit the double occurrence of power sums: within the optimization problem
and within the Sylvester matrix. To this end we consider the following Hankel matrix.

Definition 5.20

For z = (z0, . . . , z2n−2) we define the Hankel-matrix H(z) to be

H(z) =










z0 z1 z2 · · · zn−1

z1 z2 z3 · · · zn

z2 z3 z4 · · · zn+1
...

...
...

. . .
...

zn−1 zn zn+1 · · · z2n−2










.
�
�

�
�5.5

Now using this notation we can use H(z) in order to define an SDP-based bound. Namely,
for m ≤ n + 1 and m ≤ q ≤ 2n − 2, consider the following semidefinite optimization
problem

Lnmq = min
s

{ sq | Hn(s) � 0 ; s0 = n ; sj = γj , j = 1, . . . , m− 1} .
�
�

�
�5.6

Theorem 5.21

Let n,m, q ∈ N with m ≤ n + 1, m ≤ q ≤ 2n− 2, and let Pnmq be as in (5.4). Then one
obtains the following lower bounds on min Pnmq.

(a) min Pnmq ≥ Lnmq.

(b) If q = m = 2r for some r, write

Hr+1(s) =

(

Hr(γ) ur(γ)

uT
r (γ) s2r

)

; ur(γ)
T = (γr, . . . , γ2r−1),

with γ0 = n. Then min Pnmq ≥ ur(γ)
THr(γ)ur(γ).

Proof. (a) Consider the equivalent formulation to problem
�
�

�
�5.4 in the orbit space form

(
�
�

�
�3.5 ). With the definition of the Hankel matrix in

�
�

�
�5.5 it follows that every solution to

the resulting PMI is feasible for the above defined SDP
�
�

�
�5.6 .
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(b) In case q = m = 2r < 2n, we observe r < n and

Hn(s) =

(

Hr+1(s) U(s)

UT (s) V (s)

)

,

for some appropriate (possibly empty) matrices

U(s) ∈ R
(r+1)×(n−r−1) and V (s) ∈ R

(n−r−1)×(n−r−1).

Therefore, Hn(s) � 0 implies Hr+1(s) � 0, and the final result follows from Schur’s
complement (Theorem 1.2) applied to the Hankel matrix Hr+1(s).

In certain cases, we can complement this lower bound for problem
�
�

�
�1.5 by an upper

bound. The idea is to consider potential solutions x ∈ Rn of Pnmq with at most m
non-zero components.

The key will be again to consider a univariate polynomial. Let f ∈ R[t] be written

f(t) := tm +

m−1∑

k=0

fm−1t
j ,

and denote x1, . . . , xm the m roots (counting multiplicities) of f . By Theorem 4.15 we
have that a necessary and sufficient condition for all roots of f to be real is that that
S(f) � 0. Now notice that in the power sum bases the first ⌊n

2
⌋ leading principle minors

of S(f) and the Hankel matrix Hm(s), where Hm(s) is the Hankel matrix defined in (5.5)
with si = pi(x1 . . . , xm), coincide.

When q ≤ 2m− 2, we investigate the following SDP problem

Unmq = min
s

{ sq | Hm(s) � 0 ; s0 = m ; sj = γj, j = 1, . . . , m− 1} ,
�
�

�
�5.7

which the same as (5.6) except that we now have a Hankel matrix Hm(s) of dimension m
instead of Hn(s) of dimension n.

Now by the Newton identities (4.1) it is well known that the power sums pk =
∑m

j=1 x
k
j ,

k ≥ 0, of f are known polynomials in its coefficients {fj}, and conversely, the coefficients
fj of f are polynomials in the pj ’s. i.e., we can write

fj = Pj(p0, . . . , pm−1) , j = 0, 1, . . .

for some polynomials Pj ∈ R[p0, . . . , pm−1].

Hence if one knows pj for all j = 1, . . . , m − 1, then one may compute the fj’s for all
j = 1, . . . , m − 1, and therefore, we can choose as unknown of our problem the variable
f0 (the only (constant) coefficient of f that we do not know), and write

pj = Pj(f0, . . . , fm−1) = Qj(f0) , j = m,m+ 1, . . .
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for some known polynomialsQj ∈ R[f0]. We claim thatQj is affine whenever j ≤ 2m−1.

Indeed, this follows from by careful examination of the Newton identities:

pm = −p0f0 − p1f1 − · · · − pm−1fm−1 ,

pm+1 = −p1f0 − · · · − pm−1fm−2 − pmfm−1

= −p1f0 − · · · − pm−1fm−2 + fm−1(p0f0 + p1f1 + · · ·+ pm−1fm−1)

= −f0(p1 − p0fm−1) − f1(p2 − fm−1p1) − · · · − fm−1(pm − fm−1pm−1) ,

pm+2 = −p2f0 − · · · − pm−1fm−3 − pmfm−2 − pm+1pm−1

= −p0(s2 − pm−2s0 + pm−1s1 − s0p
2
m−1) − · · · ,

pm+3 = −f0(p3 − p0fm−3 + · · · ) − · · ·

Therefore, with q ≤ 2m− 2, the SDP problem (5.7) reads

Unmq = min
f0

{Qq(f0) : Hm(s) � 0} ,
�
�

�
�5.8

where s0 = m and all the entries sj of Hm(s) are replaced by their affine expression Qj(f0)
whenever m ≤ j ≤ 2m− 2. This is an SDP with the single variable f0 only!

Theorem 5.22

Let n,m, q ∈ N with m ≤ n and q ≤ 2m− 2. Let Pnmq be as in (5.4) and let Unmq be as
in (5.8). Then

min Pnmq ≤ Unmq.
�
�

�
�5.9

In addition, if Pnmq has an optimal solution x∗ ∈ Rn with at most m non-zero entries,
then min Pnmq = Unmq and so Pnmq has the equivalent convex formulation (5.8).

Proof. Let p0 be an optimal solution of the SDP (5.8), and consider the monic polynomial
p ∈ R[X] of degree m which satisfies the Newton identities with sj = γj, j = 1, . . . , m−
1. The vector x = (x1, . . . , xm) of all its roots (counting multiplicities) is real because
Hm(s) � 0, i.e., its Hankel matrix Hm(s) formed with its Newton sums sj , j = 1, . . . , 2m−
2 (and s0 = m), is positive semidefinite. Let x∗ = (x, 0, . . . , 0) ∈ Rn. By definition of the
Newton sums of p, one has

n∑

i=1

(x∗i )
k =

m∑

i=1

xk
i = γk, k = 1, . . . , m− 1,

which shows that x∗ is feasible for Pnmq. Therefore, Unmq = sq ≥ min Pnmq, the desired
result.

Example 5.23

Consider the optimization problem Pn44

P344 : min
3∑

i=1

x4
i s.t.

3∑

i=1

xi = 0;
3∑

i=1

x2
i = 1 ,

3∑

i=1

x3
i = 0 ,
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which occurs in the determination of radii of regular simplices (see [BT06]).

It has finitely many solutions; namely x1 = 0, x2 = 1√
2
, x3 = − 1√

2
and the permutations

thereof. Therefore min P344 = 1
2
. On the other hand,

H3(s) =





3 0 1
0 1 0
1 0 s4





and so by Theorem 5.21(b) we obtain min P344 ≥ (1, 0)

(
1/3 0
0 1

)(
1
0

)

= 1
3
, a strict

lower bound which in this case is also equal to L344. The reason for the gap between L344

and P344 is that there does not exist a polynomial of degree 3 with Newton sums γj and
s4 = 1/3. So the positive semidefinite matrix

H3(s) =





3 0 1
0 1 0
1 0 1/3





is not the Hankel matrix of some polynomial p ∈ R[X] of degree 3.

With regard to an upper bound, consider problem Pn44 with n ≥ m = q = 4 so that
q ≤ 2m− 2 = 6. There are four coefficients f0, f1, f2 and f3. Since p0 = 4, p1 = 0, p2 = 1,
p3 = 0, the Newton identities allow to compute f0, f1, f2, f3 via

f3 = −p1 = 0 ,

f2 = (p2
1 − p2)/2 = −1/2

f1 = (p3
1 + 2p3 − 3p1p2)/6 = 0.

Then we can express p4, p5, p6 affinely in terms of f0 since we have

p4 = −f3p3 − f2p2 − f1p1 − 4f0 = 1/2 − 4f0 ,

p5 = −f3p4 − f2p3 − f1p2 − f0p1 = 0 ,

p6 = −f3p5 − f2p4 − f1p3 − f0p2 = 1/4 − 2f0 − f0 = 1/4 − 3f0.

Solving the semidefinite program

min
p0







1

2
− 4f0 :







4 0 1 0
0 1 0 1

2
− 4f0

1 0 1
2
− 4f0 0

0 1
2
− 4f0 0 1

4
− 3f0







� 0







yields the solution p0 = 1/16, showing min Pn44 ≤ 1/16. Indeed, this solution is optimal.

So when q ≤ 2m−2, we have obtained lower and upper bounds on min Pnmq which permits
to check the quality of the feasible solution obtained from the upper bound Unmq.
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Hamming distances

What is the difference between
method and device? A method is a
device which you used twice.

George Pólya

THIS final chapter discusses the possibilities of bounding sizes of codes using semidefi-
nite programming. In order to obtain numerical results for these SDPs resulting from

interesting parameter choices, exploiting symmetries will be an essential step.

A code is a subset C of a finite set X where the elements are called the words. These
words can be seen as n-tuples over a finite alphabet K. Here the alphabet will consist of
the two element set {0, 1} and the set of words can be identified with the vector space Fn

2 .
Given two distinct elements of the code one can assign a distance to the two code words
in order to measure how much the words differ from each other. We define this Hamming
distance dH(x, y) of two elements x, y ∈ Fn

2 to be

dH(x, y) := #{xi 6= yi},

i.e., the number of places where two words x and y are distinct. The minimal distance
of a code C then is the minimum of the Hamming distances of all possible pairs of words
i.e., dmin(C) := minx 6=y∈C dH(x, y).

Given this setting an interesting combinatorial question in the construction of good codes
is how many distinct words can be combined into a code given that the code has a pre-
scribed minimal distance. We will denote by A(n, d) the maximal cardinality that a code
C ⊂ Fn

2 can have, given that the words in C have at least the prescribed minimal dis-
tance d. In the early 1970’s Philippe Delsarte [Del72] provided an approach to bound
the numbers A(n, d) using linear programming. These linear programming methods have

105



SDP based bounds for generalized Hamming distances

been until very recently the most powerful tools to estimate A(n, d), and Delsarte’s meth-
ods were also transferred into other extremal problems as for example the famous sphere
packing problem. Already some years later Schrijver [Sch79] and independently McEliece,
Rodemich, and Rumsey [MRR78] observed a connection between the Delsarte’s bound and
the ϑ–number of a graph associated with this problem. However it was not before 2005,
when a further developed SDP-based construction was used by Schrijver [Sch05a] in order
to obtain better bounds for the numbers A(n, d).

In this chapter we will present an SDP based method in a similar setting. We will consider
Hn := Fn

2 the n-dimensional Hamming cube. But instead of the usual Hamming distance
we will consider so called pseudo–distances that involve k–tuples of points instead of pairs.
An example of such a pseudo–distance which is studied in coding theory is the generalized
Hamming distance.

Definition 6.1

The generalized Hamming distance of k elements of Hn is defined by:

dH,k(x1, . . . , xk) = #{j, 1 ≤ j ≤ n : #{(x1)j, . . . , (xk)j} ≥ 2}
= #{j, 1 ≤ j ≤ n : ((x1)j, . . . , (xk)j) /∈ {0k, 1k}}

This notion was introduced in [CLZ94], and takes its origin in the work of Ozarow and
Wyner, and of Wei, who studied the generalized Hamming weight of linear codes in view
of cryptographic applications. When k = 2, dH,2(x1, x2) is nothing else than the usual
Hamming distance. A first systematic treatment of bounds in such cases was provided
by Bachoc and Zémor in [BZ10]. The authors there give an SDP–method for 3-tuples
distances. In this chapter we aim to generalize their approach to general k–tuples.

6.1 Delsarte’s bound

The first linear programming approach to give bounds for codes was introduced by
Philippe Delsarte in his thesis. The important observation made by Delsarte was that he
could use the distribution of the Hamming distance in a code to design a linear program.

More precisely, Delsarte observed that there is a family of orthogonal polynomials, the so
called Krawtchouk polynomials Kn

k (t) (see Definition 6.4 below) which satisfy a positivity
property, namely for all C ⊂ Hn we have:

∑

(x,y)∈H2
n

Kn
k (dH(x, y)) ≥ 0.

�
�

�
�6.1

The variables for the linear programming bound are related to the distance distribution
(xi)0≤i≤n of a code C defined as

xi :=
1

|C| |{(x, y) ∈ C2 : dH(x, y) = i}|.
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6.1 Delsarte’s bound

Using the above positivity condition 6.1 Delsarte concluded that the xi satisfy the following
linear inequalities:

1.
∑n

i=0K
n
k (i)xi ≥ 0 for all 0 ≤ k ≤ n,

2. xi ≥ 0,

3. x0 = 1,

4.
∑n

i=0 xi = |C|.
Furthermore the premise on the minimal distance dH(C) ≥ d implies that xi = 0 for
i = 1, . . . , d− 1.

These inequalities were used by Delsarte to obtain a linear program in real variables yi,
the optimal value of which gives and upper bound for the number A(n, d) [Del72]:

max
{∑n

i=0 xi : xi ≥ 0,
x0 = 1,
xi = 0 if i = 1, . . . , d− 1
∑n

i=0K
n
k (i)xi ≥ 0 0 ≤ k ≤ n

}

�
�

�
�6.2

Later McEliece, Rodemich, and Rumsey and independently Schrijver discovered a fun-
damental connection between Delsarte’s linear programming bound and a strengthening
of the ϑ–number defined in Chapter 2. This strengthened parameter ϑ′ is obtained by
adding a nonnegativity constraint to the original definition of ϑ (see Definition 1.8):

Definition 6.2

For a graph G = (V,E) the parameter ϑ
′

(G) is defined by

ϑ
′

(Γn
k) = max

{∑

i,j Bi,j : B ∈ Rn×n, B � 0
∑

iBi,i = 1,
Bij ≥ 0,
Bi,j = 0 (i, j) ∈ E

}

�
�

�
�6.3

The connection of this parameter to Delsarte’s approach comes from considering the graph
Γ = (Hn, E(d)) whose vertex set is the Hamming space Hn = {x1, . . . , } and two vertices
xi, xj ∈ Hn are connected by an edge if their Hamming distance is strictly less than d.
Now the stability number of Γ is precisely the number A(n, d) and therefore the number
ϑ′(Γ) provides an upper bound: Thus we can conclude the following theorem.

Theorem 6.3

The optimal solution of the following SDP provides an upper bound for A(n, d):

ϑ
′

(Γ) = max
{∑

i,j Bi,j : B ∈ R2n×2n

∑

iBi,i = 1,
Bi,j = 0 whenever 0 < dH(xi, Xj) < d
Bij ≥ 0,
B � 0

}

�
�

�
�6.4
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At first sight it may seem that the above SDP
�
�

�
�6.4 is more complicated than the linear

programming bound given by Delsarte. Indeed the size of the matrix B is exponential in
n and instead of an LP we have to deal with an SDP. However, the insight of the above
mentioned authors was that

�
�

�
�6.4 can be symmetrized and brought into the form of a

linear program that agrees with the version given by Delsarte.

To see this we consider the group Aut(Hn) of distance preserving automorphisms of the
Hamming cube. This means the elements of Aut(Hn) are precisely those bijections σ :
Hn → Hn which preserve Hamming distances. This group has order 2nn! and is generated
by all n! permutations of the n coordinates and all 2n switches of 0 and 1. The key in
order to relate

�
�

�
�6.4 with Delsarte’s bound now comes by exploiting the symmetry of this

very big group.

The first crucial observation to make is that the decomposition into irreducible Aut(Hn)–
modules is given by

Hn = H0
n ⊕H1

n ⊕ . . .⊕Hn
n ,

where H i
n := {x ∈ Hn : |x| = i|}.

This gives that all irreducible Aut(Hn)-modules involved in the decomposition have multi-
plicity 1. Recalling the arguments presented in Chapter 2 this observation implies that in
fact all Aut(Hn) invariant matrices can be block diagonalized into matrices decomposing
into blocks of size 1 × 1. Hence the SDP

�
�

�
�6.4 will simplify into a linear program.

Further using Fourier analysis on the Hamming cube, one can even more explicitly char-
acterize the invariant matrices. To obtain this description of these matrices, the following
family of orthogonal polynomials is important:

Definition 6.4

For 0 ≤ k ≤ n we define the Krawtchouk polynomial Kk by

Kn
k (t) =

k∑

j=0

(−1)j

(
t

j

)(
n− t

k − j

)

.

With these polynomials the positive semidefinite Aut(Hn) invariant matrices are charac-
terized as follows:

Theorem 6.5

A matrix A ∈ R
2n×2n

is Aut(Hn) invariant and positive semidefinite, if and only if

A(x, y) =
n∑

k=0

fkK
n
k (dh(x, y)),

for nonnegative numbers f0, . . . , fn.
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See [Sch79,Val08,CS99] for more details and a proof. Now applying the above character-
ization to

�
�

�
�6.4 we arrive on an alternative way at the classical Delsarte bound.

This viewpoint that connects the formulation of ϑ′ to the code problem was later used by
Schrijver [Sch05a] in order to derive a strengthening of Delsarte’s LP-bounds via semidef-
inite programming. This way is in fact the route we are about to take in the next section
in order to define similar bounds for codes with generalized Hamming distances.

6.2 SDP-bounds via a generalized ϑ′

In this section we aim to give a generalization of Lovasz’s ϑ–number to hypergraphs and
use this in order to derive bounds for generalized Hamming distances. Instead of pairs of
words we will have to deal with k–tuples.

Let C ⊂ Hn be a subset of the Hamming space such that for all z = (z1, . . . , zk) ∈ Ck,
we have that z belongs to some given set Ω. In the very same way as the graph Γ used
in the previous section this situation can be visualized with a combinatorial structure: A
hypergraph is a set of vertices and hyperedges where each hyperedge can connect more
than 2 vertices. Such a hypergraph is said to be k-uniform, if each hyperedge connects
exactly k vertices. Thus, by defining hyperedges between a k-tuple of words (z1, . . . , zk)
if and only if (z1. . . . , zk) 6∈ Ω we naturally associate a k-uniform hypergraph to this
situation.

In the context of a pseudo–distance f(z1, . . . , zk) we want to study codes C such that f(z)
is restricted to some range of values, for all z ∈ Ck. This leads to the following definition
of Ω:

Definition 6.6

For k ∈ N, s ≤ k, and δ > 0 set

Ω = Ω(f, s, δ) = {z ∈ Hk
n : f(zi1 , . . . , zis) ≥ δ for all 1 ≤ i1 < · · · < is ≤ k and zil 6= zim}.

Following the standard notation in coding theory, the maximal number of elements of a
code C such that Ck ⊂ Ω is denoted A(n,Ω). In this section we show how to obtain an
upper bound for A(n,Ω) by means of a semidefinite program.

Now to give bounds A(n,Ω) we start from the same ideas as were used in the definition
of the ϑ-parameter. We consider the following function FC : Hk

n → R:

FC(z1, . . . , zk) :=
1

|C| 1C(z1) · · · 1C(zk),

where 1C is the characteristic function of the set C.

The analogy to the definition of ϑ becomes clearer by observing that FC has following
properties:
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1. We have FC(z1, . . . , zk) = FC(z′1, . . . , z
′
k) for all {z1, . . . , zk} = {z′1, . . . , z′k}. This

in turn implies that FC(z) only depends on the set {z1, . . . , zk} rather than on the
k-tuple (z1, . . . , zk).

2. For all k − 2 tuples (z1, . . . , zk−2) ∈ Hk−2
n , the application

(x, y) 7→ FC(z1, . . . , zk−2, x, y)

is positive semidefinite.

3. FC(z1, . . . , zk) ≥ 0.

4. FC(z1, . . . , zk) = 0 if (z1, . . . , zk) /∈ Ω.

5.
∑

x∈Hn
FC(x) = 1.

6.
∑

(x,y)∈H2
n
FC(x, y) = |C|.

Remark 6.7

Note that with (1) it makes sense to define FC(z1, . . . , zs) for s < k being the value
of χ at any k-tuple (y1, . . . , yk) with {y1, . . . , yk} = {z1, . . . , zs}, e.g., (y1, . . . , yk) =
(z1, . . . , zs, zs, . . . , zs).

A closer analysis of condition (2) shows that an even stronger condition holds:

Proposition 6.8

The function FC(z1, . . . , zk) defined above satisfies:

(2’) For all (z1, . . . , zk−2) ∈ Hk−2
n , and all I ⊂ {1, . . . , k − 2},

(x, y) 7→
∑

I⊂J⊂{1,...,k−2}
(−1)|J |−|I|FC(zj (j∈J), x, y) � 0 and ≥ 0.

Proof. Since the last expression equals
∏

i∈I

1C(zi)
∏

i/∈I

(1 − 1C(zi)) 1C(x) 1C(y),

the above proposition is immediate.

These conditions now can be used to define two cones of functions F : Hk
n → R which

will lead to a semidefinite program which will be used to derive bounds on the numbers
A(n,Ω).

Definition 6.9

For k ∈ N we define the set C0
k , respectively Ck, to be the functions

F : Hk
n → R
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such that

F (z1, . . . , zk) = F ({z1, . . . , zk}) for all (z1, . . . , zk) ∈ Hk
n, F (z1, . . . , zk) ≥ 0,

and
(x, y) 7→ F (z1, . . . , zk−2, x, y) � 0,

respectively

(x, y) 7→
∑

I⊂J⊂{1,...,k−2}
(−1)|J |−|I|F (zj(j∈J), x, y) � 0,

and takes nonnegative values for all (z1, . . . , zk−2) ∈ Hk−2
n , and all I ⊂ {1, . . . , k − 2}.

Example 6.10

Let us work out the positive semidefinite conditions in the definition of Ck for small k.

1. For k = 2, it is clear that it agrees with the standard notion of the cone of two
variable positive definite functions on Hn.

2. For k = 3, the positive semidefinite conditions on F are
{

(x, y) 7→ F (z1, x, y) � 0

(x, y) 7→ F (x, y) − F (z1, x, y) � 0.

3. For k = 4, we have the following three positive semidefinite conditions:






(x, y) 7→ F (z1, z2, x, y) � 0

(x, y) 7→ F (z1, x, y) − F (z1, z2, x, y) � 0

(x, y) 7→ F (x, y) − F (z1, x, y) − F (z2, x, y) + F (z1, z2, x, y) � 0.

Now we can define a semidefinite program whose optimal value provides an upper bound
for the number of elements of any code C such that Ck ⊂ Ω.

max
{∑

(x,y)∈H2
n
F (x, y) : F : Hk

n → R,

F ∈ C0
k

F (z1, . . . , zk) = 0 if (z1, . . . , zk) /∈ Ω
∑

x∈Hn
F (x) = 1

}
.

�




�

	
P 0

k

Similarly, a program
�

�

�

�Pk is defined by the same conditions except F ∈ Ck.

Theorem 6.11

The optimal values of the above defined semidefinite programs, denoted ϑk(Ω) and ϑ0
k(Ω),

satisfy:
A(n,Ω) ≤ ϑk(Ω) ≤ ϑ0

k(Ω).
�
�

�
�6.5
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Let 2 ≤ s ≤ k and let Ω ⊂ Hs
n. Then Ω obviously induces subsets Ω(k) ⊂ Hk

n, and we
have

A(n,Ω) ≤ · · · ≤ ϑk(Ω(k)) ≤ ϑk−1(Ω(k − 1)) ≤ · · · ≤ ϑs(Ω).
�
�

�
�6.6

The same inequalities hold for ϑ0
k.

Proof. The inequality ϑk ≤ ϑ0
k is obvious by the inclusion Ck ⊂ C0

k . Together with the
above discussion, we have

�
�

�
�6.5 . It is clear that A(n,Ω) = A(n,Ω(k)) thus A(n,Ω) ≤

ϑk(Ω(k)) for all k ≥ s. If F is a feasible solution for the program defining ϑk(Ω(k)), then
F (z1, z2, . . . , zk−1) provides a feasible solution for ϑk−1(Ω(k− 1)) with the same objective
value, thus the inequality ϑk(Ω(k)) ≤ ϑk−1(Ω(k − 1)).

6.3 Exploiting symmetries

The sizes of the above defined SDPs are out of reach for current SDP–solvers for interesting
choices of n. Therefore it is necessary to exploit the action of the group of automorphisms

of Hn in order to reduce the complexity of the SPD
�




�

	Pk and
�




�

	
P 0

k . Recall that this group

of automorphisms Aut(Hn) is the semi–direct product of the group of translations by
elements of Hn with the group of permutations on the n coordinates.

For the sake of simplicity of the exposition we deal in the remaining with the weaker

but simpler to expose version
�




�

	
P 0

k . The block diagonalization of the matrices in Ck then

follows the same line of ideas.

By its definition the set Ω is invariant under the action of G := Aut(Hn). From this it

follows that the SDP
�




�

	
P 0

k is G–invariant thus by the arguments provided in Chapter 2 we

can restrict in
�




�

	
P 0

k to the G-invariant functions F . Therefore we need a characterization

of those elements of the cone C0
k which are G-invariant.

In what follows we will look at a k-tuple z of points z1, . . . , zk in Hn and we want to first
characterize its stabilizer under G. Without loss of generality we can choose the k-tuple
in such a way that z1 is the zero word and the k-tuple is ordered lexicographically and we
need to study the action of G on k-tuples (z1, . . . , zk) ∈ Hk

n .

This has already been done in [BZ10]. The orbits can be characterized using the following
notation:

Definition 6.12

For z = (z1, . . . , zk) ∈ Hk
n , and for u ∈ Fk

2, let

nu(z) := #{ j, 1 ≤ j ≤ n : ((z1)j , . . . , (zk)j) = u}
and let the weight distribution of z be defined by

W(z) := (nu(z))u∈Fk
2
.
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In order to understand the above definition it is useful to visualize z using the (k, n)
matrix M(z) whose i-th line equals zi. In this view the number nu(z) corresponds to the
number of columns of z which are equal to u:

M(z) =










z1 = 000 . . . 0 . . . . . .
z2 = 111 . . . 1 . . . . . .
... =

...
...

zk = 111 . . . 1
︸ ︷︷ ︸

nu(x)

. . . . . .










.

With this notation Bachoc and Zémor characterized the action of Aut(Hn) on k−tuples:

Proposition 6.13 (Bachoc-Zémor)
Let z, y ∈ Hk

n. Then we have

z ∼Aut(Hn) y if and only if W(z) = W(y).

Now a natural number n will be associated with its binary representation bin(n). This
notation alows to define the number ti as ti = nωi

(z) where ωi = bin(2i) for every i in
[0 . . . 2k−1 − 1]. Now the following proposition which characterizes the stabilizer of z is
straight forward:

Proposition 6.14

Let Gz < Aut(Hn) be the stabilizer of a k-tuple z. Then

Gz
∼= St0 × St1 × . . .× St

2k−1
−1
.

In order to calculate the zonal matrices for a block diagonalization, we need to decompose
the space C(Hn) of functions F : Hn → R into irreducible Gz–modules. We start with
the decomposition into irreducibles for Sn. This is rather classical (see [Val08] and the
references therein):

As obviously each of the sets H i
n := {x ∈ Hn : |x| = i|} is closed under the action of Sn,

a first orbit decomposition will give us

C(Hn) = C(H0
n)⊥C(H1

n)⊥ . . .⊥C(Hn
n ).

We follow the notation provided in Chapter 2 and denote M (n−i,i) the module correspond-
ing to 1↑Sn

Sn−i×Si
. Now we study the action of Sn on C(H i

n). As each element in C(H i
n)

is stabilized by a group isomorphic to Sn−i × Si we can conclude that as an Sn module
C(H i

n) is isomorphic to M (n−i,i) when i ≤ n
2

and to M (i,n−i) otherwise.
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Now using Young’s Rule (see Theorem 2.29) this characterization immediately yields the
decomposition of C(H i

n) into irreducibles:

C(Hm
n ) =

{
W n

0,m ⊥ . . . ⊥W n
m,m, when 0 ≤ m ≤ ⌊n/2⌋,

W n
0,m ⊥ . . . ⊥W n

n−m,m, otherwise,

where W n
k,m are irreducible Sn-modules isomorphic to S(n−k,k). The dimension of W n

k,m

i.e., the number of standard Young tableaux for (n− k, k) is dn
k =

(
n
k

)
−
(

n
k−1

)
.

Furthermore, the corresponding zonal matrices Ek(x, y) have been explicitly characterized
by several authors (see for example [Sch05a,Val08] and the references therein) using the
so called Hahn polynomials.

The Hahn polynomials associated with the parameters n, s, t with 0 ≤ s ≤ t ≤ n are
the polynomials Qk(n, s, t; x) with 0 ≤ k ≤ min(s, n − t) uniquely determined by the
properties:

1. The degree of Qk in the variable x is k.

2. They are orthogonal polynomials for the weights

0 ≤ i ≤ s w(n, s, t; i) =

(
s

i

)(
n− s

t− s + i

)

.

3. Qk(0) = 1.

Theorem 6.15 (Schrijver, Vallentin)
If k ≤ s ≤ t ≤ n− k, wt(x) = s, wt(y) = t,

Ek,s,t(x, y) = |X|
(

t−k
s−k

)(
n−2k
t−k

)

(
n
t

)(
t
s

) Qk(n, s, t; s− |x ∩ y|).

If wt(x) 6= s or wt(y) 6= t, Ek,s,t(x, y) = 0.

In order to relate the decomposition for the group Gz with the above decomposition we
will need some notations:

For x ∈ Hn and i ∈ [0, . . . , 2k−1 − 1] we define x(i) to be a word in Hti such that the con-
catenation of all x(i) equals x. Further for every weight distribution ω := (ω0, . . . ω2k−1−1)
we can define the set

Hω
n := {x ∈ Hn : |x(i)| = wi}.

These sets give rise to the following decomposition

C(Hn) =
⊕

ω

C(Hω
n ),
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which is exactly the decomposition into the various orbits.

Furthermore we have the decomposition of Sti-modules:

C(Hti) =

ωi=ti⊕

ωi=0

C(Hωi
ti ).

Now we can use the decomposition of x ∈ Hn into (x(1), x(2), . . . , x(2k−1−1)) to define

φ :
⊗ C(Hωi

ti ) −→ C(Hω
n )

⊗fi 7−→ f(x) =
∏

i f(x(i))
.

As φ preserves the group action we only need to decompose each Sti-module C(Hωi
ti ).

Again using Young’s Rule for the group Sti we get:

C(Hti)
ωi =

{
W ti

0,ωi
⊥ . . . ⊥W ti

ωi,ωi
, when 0 ≤ ωi ≤ ⌊ti/2⌋,

W ti
0,ωi

⊥ . . . ⊥Wti−ωi,ωi
, otherwise.

Putting all this together we see that the irreducible representations of

St0 × · · · × St
2k−1

−1

that will appear in the decomposition are indexed by

K = (k0, . . . , k2k−1−1) with 0 ≤ ki ≤ ⌊ti/2⌋

and we can announce the following theorem.

Theorem 6.16

Let T = (t0, . . . , t2k−1−1) such that
∑2k−1−1

i=0 ti = n and let

ST = St0 × St1 × . . .× St
2k−1

−1
.

Then the following holds:

1. The decomposition into irreducible ST spaces is given by

C(Hn) =
⊕

ω

⊗

ki≤min(ωi,ti−ωi)

W ti
ki,ωi

.

2. The dimension of an irreducible component belonging to K is given by
∏

i d
ki

i .

3. The corresponding zonal matrices are given by

ET
K(x, y) =

⊗

i

Eti
ki

(x(i), y(i)).
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Proof. The first and second statement follow directly from the above argumentation and
(3) can be deduced from these.

Now in order to characterize the elements of C0
k we let z := (z1, . . . , zk−2) ∈ Hk−2

n . The
orbit oG(z) of such a k − 2−tuple z under the action of G is characterized by a sequence
of non negative integers T = (t0, . . . , t2k−3−1) as described above.

Each ti is associated to a set of indices Ii such that ti = |Ii| and the columns of M(z)
with these indices equal either bin(2i) or bin(2k−2 − 1 − 2i). For x ∈ Hn, let x(i) denote
the restriction of x to the indices in Ii. Let, for 0 ≤ ki ≤ ⌊ti/2⌋,

ET
K(z1, . . . , zk−2, x, y) := ⊗Eti

ki
((x− z1)(i), (y − z1)(i)).

�
�

�
�6.7

It is clear that ET
K(z1, . . . , zk−2, x, y) is invariant under the action of G, in other words

that
ET

K(g(z1), . . . , g(zk−2), g(x), g(y)) = ET
K(z1, . . . , zk−2, x, y) for all g ∈ G.

Thus we can conclude that the matrices

ET
K(z, x, y) := ET

K(z1, . . . , zk−2, x, y) where K = (k0, . . . ) varies,

characterize the cone of Gz-invariant positive definite functions, where Gz denotes the
stabilizer of z in G, namely we have:

Proposition 6.17

Let f : H2
n → R be Gz-invariant. Then f � 0 if and only if, for all K,

∑

(x,y)∈H2
n

f(x, y)ET
K(z, x, y) � 0.

Using this characterization we can go back to the G-invariant functions F and we obtain
the following characterization for the elements in C0

k .

Theorem 6.18

Let f : Hk
n → R be G invariant. Then we have F ∈ C0

k if and only if, for all z ∈ Hk−2
n ,

with T = oG(z), and all K,
∑

(x,y)∈H2
n

F (z, x, y)ET
K(z, x, y) � 0.

�
�

�
�6.8

With these thoughts at hand we can construct the simplified version which exploits the
symmetry.

In order to avoid confusion, we adopt the notation

U = (u0, u1, . . . , u2k−1−1)

116



6.3 Exploiting symmetries

for the sequence of integers associated with an orbit of G acting on Hk
n, and we denote

by Ok the set of these orbits.

We freely identify the sequence U and the element of Ok which is represented by U .
Since F and ET

K are G-invariant, they define functions on Ok, that we continue to denote
respectively F (U) and ET

K(U). Let |U | denotes the number of elements in the orbit
represented by U . Then define the variables

XU := |U |F (U).
�
�

�
�6.9

Further define the mapping τ : Ok → Ok−2 that sends

U = oG((z1, . . . , zk)) to τ(U) = oG((z1, . . . , zk−2)).

Then with this definitions
�
�

�
�6.8 is equivalent to

∑

U∈Ok : τ(U)=T

XUE
T
K(U) � 0.

�
�

�
�6.10

The reduction of the SDP
�




�

	
P 0

k will be completed by also taking the property

F (z1, . . . , zk) = F ({z1, . . . , zk})
into account. This just implies that F is in fact a function on the orbits of G on Pk(Hn),
the set of subsets of Hn with at most k elements. This set of orbits will be denoted Os

k.
The obviously defined mapping

set : Ok → Os
k sends oG((z1, . . . , zk)) to oG({z1, . . . , zk}).

Note that it is not true that ET
K(U) = ET

K(U ′) if set(U) = set(U ′).

For V ∈ Os
k, V 6= ∅, let

ST
K(V ) :=

∑

U : τ(U)=T, set(U)=V

ET
K(V ).

With this we obtain

Theorem 6.19

The optimal value of the SDP
�




�

	
P 0

k agrees with the optimal value of the following:

max
{
∑

V ∈O2
XV : (XV )V ∈Os

k
∈ R,

∑

V

XV S
T
K(V ) � 0,

XV ≥ 0,
XV = 0 if V /∈ Ω,

X1 = 1
}

�




�

	
P ′

k
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where the semidefinite constraint is required for all T = (ti) ∈ Ok−2, and all K = (ki),
0 ≤ ki ≤ ⌊ti/2⌋, where Ω := {set(oG(z)), z ∈ Ω} and where 1 ∈ Os

k denotes the unique
G-orbit of singleton.

6.4 Final remarks and numerical results

In this last section we will provide a link to a general framework introduced by Laurent.
Her combinatorial moment matrix can be seen as a generalization of all types of hierarchies
which have been defined for combinatorial problems so far. Secondly we are presenting
the list of numerical results which were obtained using the approach described above for
the generalized hamming distance.

6.4.1 The general framework

The hierarchy proposed in this chapter can be seen as a specific instance of a more general
approach. This combinatorial moment matrix -approach was introduced by Laurent (see
Laurent [Lau09]). Let V be a finite set and consider its power set P(V ). Given a sequence
(y)α of real numbers indexed by the elements of P(V ) (i.e., by the subsets of V ) we define
the combinatorial moment matrix as follows:

Definition 6.20

Let (yα) be a sequence as defined above. The combinatorial moment matrix M(y) is the
P(V ) × P(V )-matrix matrix given by

[M(y)]S,T = yS∪T .

Take any subset C ⊆ V and consider the characteristic function 1C of C, which leads
naturally to a sequence y ∈ {0, 1}P(V ) by setting

yS =
∏

v∈S

1C(v) for all S ∈ P(V ).

This construction implies that the moment matrix M(y) is positive semidefinite since
M(y) = yyT . Now the following theorem of Laurent naturally provides a general frame-
work into which the SDP-approach used in this chapter fits.

Theorem 6.21 (Laurent)
Let M(y) be a moment matrix with y∅ = 1 and M(y) � 0. Then M(y) is a convex
combination of moment matrices M(y1), . . . ,M(yk), where yi is obtained from lifting a
vector in {0, 1}V .
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6.4 Final remarks and numerical results

For any graph Γ = (V,E) with vertex set V the above Theorem 6.21 yields that the
independence number can be calculated by the following:

α(Γ) = max
{∑

v∈V

y{v} : y∅ = 1, yS = 0 if S contains an edge,

M(y) � 0
}

.

�
�

�
�6.11

Although this shows that the independence number is actually given by an SDP, this
exponential size of the combinatorial moment matrix makes it impossible to actually
calculate it. So one has to restrict to suitable sub matrices.

For example, to recover the SDP given in
�




�

	
P 0

k define Pk(Hn) to be the set of subsets

of Hn of cardinality at most k. Then for all S ∈ Pk(Hn) of size |S| = k − 2 consider
the sub matrix of MS(y) of elements yX∪Y , where X, Y run over the elements of Pk(Hn),
containing S, and of a size such that |X ∪ Y | ≤ k. If k = 2, this agrees exactly the
SDP-bounds proposed by Schrijver in [Sch05a].

After the research that led to this chapter had been carried out, Gijswijt, Mittelmann
and Schrijver [GMS10] presented a semidefinite bound to improve the current bounds
related to the ordinary Hamming distance. Their work in fact generalizes our approach
to all S ⊂ P4(Hn). Albeit their SDPs contain far more constrains, some numerical
comparison for small values of n ≤ 12 suggest that the results that can be obtained using
the approach presented in this chapter applied to the classical Hamming distance, do not
differ too much.

6.4.2 Numerical results for the generalized Hamming distance

Finally we present numerical results. The following table gives bounds for codes with
prescribed minimal generalized Hamming distance dH,4. Mostly we were using the weaker
constraints resulting from C0

4 as it turned out that the SDPs coming from the C4 are
already for n ≥ 14 very hard to solve and numerically unstable with the solvers used to
obtain the results. However, for small n ≤ 13 we found that the optimal value of the two
SDPs differs only marginally.

The numerical results were obtained by using first a MAGMA program to generate the

SDPs in the form
�




�

	
P ′

k . Then the SDPA online solver [FFK+10] was used to calculate the

resulting SDPs for n ≤ 17. The SDPs resulting for n = 18, 19 were calculated by Hans
Mittelmann [Mit10]. In Table 6.1 we list our results. Every column corresponds to a
choice of n. In each row we have collected the corresponding value of the SDP in bold
versus the best known bounds as presented by Bachoc and Zémor in [BZ10].
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Table 6.1. Bounds on A(n, d4, m)

m\n 8 9 10 11 12 13 14 15 16 17 18 19
4 90 179 355 706 1402 2740 5495 6529

96 192 384 768 1536 3072 6144 12288

5 45 89 177 342 665 1264 2370 4959 5381

48 96 192 384 768 1536 3072 6144 11565

6 24 44 87 169 307 569 1072 2068 3797 5950

24 48 96 192 384 768 1536 3072 6144 12288

7 12 24 43 84 167 299 541 1025 1612 3645 4771

12 24 48 96 192 384 768 1536 3072 6144 12288

8 12 24 41 79 151 290 520 975 1612 3521 3765

12 24 48 96 192 384 768 1536 3072 6144 12288

9 12 24 40 75 142 269 479 879 1660 3123

12 24 48 96 192 384 768 1536 3072 6144

10 12 24 39 72 136 258 479 859 1568

12 24 48 96 192 384 768 1536 3072

11 12 21 38 70 131 243 460 817

12 24 48 96 192 384 768 1536

12 10 21 37 68 126 237 445

12 24 48 96 192 384 768

13 10 20 36 66 121 225

12 24 48 96 192 384

14 10 20 36 64 117

12 24 48 96 192

15 10 20 35 60

12 24 48 96

16 10 20 35

11 24 48

17 10 20

11 24

18 9

10
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7
Some open problems and future

prospect

In the following we present some open problems, that arose during the preparation of this
thesis and will be the ground for further research.

A conjecture on the asymptotic geometry of the symmetric SOS cone

The introduction of this thesis explained the great importance of the two cones Pn and Σn

for the freshly emerged paradigms in polynomial optimization. The fact that in general
polynomial optimization is hard is reflected on the difference of these two cones. In
[Ble06] Blekherman was able to provide deep insight in the geometry of the difference of
these two objects. He could show that for fixed degree and growing number of variables
asymptotically there are by far more positive polynomials than polynomials that are sums
of squares. In chapter five we studied the geometry of the sums of squares cone for fixed
degree. Here we have that the dimension of the space of symmetric polynomials of degree
2d equals exactly the number of partitions of 2d – denoted by p(2d). Hence we see that
for n ≥ 2d each of the cones ΣSn

n+1,2d of symmetric sums of squares of degree 2d and PSn

n,2d

of positive symmetric polynomials of degree 2d is in fact a cone in Rp(2d). Furthermore, a
main result was, that the decomposition into semi-invariants is independent of the number
of variables once n ≥ 2d. This in turn implies that every f ∈ ΣSn

n,2d naturally corresponds

to a polynomial f̃ ∈ Σ
Sn+1

n+1,2d. On the other hand the number of constraints that the the
coefficients of a symmetric polynomial in fixed degree has to verify in order to be positive
grows with the number of variables. Thus the cone PSn

n,2d gets more and more constraint.

These two observations combined give rise to the following conjecture:

Conjecture 7.1

Asymptotically for d fixed and n→ ∞ the difference of the two cones PSn

n,2d and ΣSn

n,2d gets
smaller.

Very recently this conjecture was verified for the special case d = 4. Together with
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Blekherman we show in [BR11b] that actually

lim
n→∞

PSn

n,4 = lim
n→∞

ΣSn

n,4

holds. So the more variables we allow the more unlikely it gets that a positive symmetric
polynomial is not a sum of squares.

Topology of symmetric real varieties

The topology of real varieties is described by the so called Betti numbers. Their sum can be
seen as a measure of complexity and therefore bounding these numbers has implications
to complexity theory. For general real varieties given by polynomials the best known
bounds on the betti numbers are exponential in the number of variables. In the view of
Theorem 4.2 and its implications on the complexity of deciding if a given symmetric real
variety of fixed degree is empty (Corollary 4.26) Saugata Basu asked whether the presence
of symmetry makes better bounds possible. Following Milnor’s classical approach [Mil64]
this could be done by Morse theory. The classical Morse-lemma (see for example [BPR06])
states that the sum over all Betti numbers of S := {x ∈ Rn : F (X) = 0} is in fact
bounded by the number of critical points of a Morse function on S. Now if one considers
the critical points of a symmetric polynomial F of degree d it follows from chapter 4 that
its critical points lie in “small” orbits, i.e. the critical points lie in a set A⌊ d

2
⌋. However as

it turned out the problem is that some of the points in A⌊ d
2
⌋ in fact have asymptotically

large orbits: Indeed, consider the simple case of points not having more than two distinct
components. For every n the point

x := (t, t, . . . , t
︸ ︷︷ ︸

⌊n/2⌋

,

⌈n/2⌉
︷ ︸︸ ︷
s, s, s, . . . , s)

clearly lies in A2 ⊂ R
n. However if x is a critical point of F then also all points in the orbit

of x are critical points. This in turn implies that the number of critical points behaves
asymptotically like the central binomial coefficients, thus exponential in n. So either a
finer analysis of the arguments used in chapter 4 can provide ways to exclude such points
as critical points or the answer to Basu’s question is negative.

Generalizing the degree principle

One of the main motivations to study the original proof of Timofte for the degree and half
degree principle was to obtain ways to generalize these beautiful statements to the case
of other invariant polynomials. Besides the immediate generalization to even symmetric
polynomials this is an open question. However the new proof given in this thesis made it
clearer which two properties of symmetric functions are mainly responsible:
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1. Independence of the generators: This allowed us to derive the statement on the
polynomial G, i.e. we could exclude some of the generators due to their degree.

2. Compactness of the level set: The fact that each set p2(X) = a is either empty or
compact also played a very big role in order to conclude that the minimizers coincide
with the critical points.

By a famous Theorem of Chevalley, Shephard, and Todd the first will generalize to all
groups which are generated by pseudo reflections. Further even in the case that the gen-
erators cannot be chosen to be independent, one could still hope to use other information
from the original polynomial F in addition to the degree to deduce a desired represen-
tation of the resulting polynomial in the generators. The compactness of the levelsets
however seems harder to replace.
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