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Abstract
The cochlear implant (CI) represents, for almost 25 years now, the gold
standard in the treatment of children born deaf and for postlingually
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biocompatibility of a CI’s surface components. Furthermore, certain
parts of the implant face considerable mechanical challenges, such as
the need for the electrode array to be flexible and resistant to breakage,
and for the implant casing to be able to withstand external forces.
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As these implants are in the immediate vicinity of themiddle-earmucosa
and of the junction to the perilymph of the cochlea, the risk exists – at
least in principle – that bacteria may spread along the electrode array
into the cochlea. The wide-ranging requirementsmade of the CI in terms
of biocompatibility and the electrode mechanism mean that there is
still further scope – despite the fact that CIs are already technically
highly sophisticated – for ongoing improvements to the properties of
these implants and their constituent materials, thus enhancing the ef-
fectiveness of these devices.
This paper will therefore discuss fundamental material aspects of CIs
as well as the potential for their future development.
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1 The cochlear implant

1.1 Clinical requirements

The chief clinical requirements that have to be fulfilled
by a cochlear implant derive from the main functional
principle of the implant: the differential, site-specific
transfer of charge to the auditory nerve and the tonotopic
hearing sensation that this generates. The CI systems
currently available have developed largely out of cardiac
pacemaker technology. In this regard it has proved pos-
sible to draw on broad empirical experience, not only in
relation to the use of suitable materials (silicone, ceram-
ics, titanium and platinum), but also in terms of benefiting
from the already existing production technology (Figure 1).
In the early phase when CIs were first being introduced,
this meant that even at that initial stage these implants
had good biocompatibility [1]. Ensuring the long-term
stability and long-term function of CIs is one of the main
clinical needs within the requirement profile for these
implants. The reasons for this are twofold: the early age
at implantation, and the high average life expectancy of
the recipients, who continue to receive technical interven-
tion into their senior years. The intention, therefore, is to
give implants a functional life of several decades. The
choice of implant materials is thus of crucial significance
– the aim being, as far as possible, to prevent the need

for revision surgery or for operations to replace the im-
plant, as this delays auditory rehabilitation and places a
strain on the recipient.

Figure 1: The implantable portion of the cochlear implant: (1)
Transmitter coil in a silicone sheath; (2): Electronics enclosed
in a titanium casing; (3): Electrode with platinum contacts in
a silicone array; (4): Cochleostomy site; (5): Silicone cable in

the middle-ear/mastoid region.

As well as meeting the material requirements geared to
long-term stability, the materials used must (as far as
possible) be hypoallergenic. In addition to their biological
compatibility, the long-term technical integrity of the im-
plants is therefore a further important necessity. The
clinical demands made of a CI were described as follows
in 1992 by E. Lehnhardt (modified after [2]):
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• The materials used must be biocompatible (i.e. phys-
ically tolerated);

• The insertion of the electrode array should not cause
any additional damage;

• The surgical technique used should be as non-invasive
as possible;

• There needs to be efficient, non-damaging electrical
stimulation of the auditory nerve on a sustained basis;

• There must be no increased risk of infection caused
by the implant and by the access route to the fluid-
filled spaces of the cochlea.

1.2 Clinical provision: status

At present, some 2,000 cochlear implants are fitted in
Germany every year. By way of comparison, around
66,000 cardiac pacemakers are implanted there annually
[3]. The technical execution of the surgical procedure is
now standard medical practice. Alongside routine unilat-
eral implantation, bilateral CI fitting has become an es-
tablished approach in recent years, whichmakes possible
a considerable improvement in both spatial hearing and
speech understanding for CI users [4]. Bilateral implanta-
tion, especially among recipients fitted in early childhood,
has now become virtually the standard therapy for deaf-
born children.
The large incision (“Hannover C-incision”, Figure 2)
formerly used has nowbeen abandonedbymost surgeons
in favour of considerably smaller, primarily retroauricular
access routes (Figure 3) [5]. This has made for a consid-
erable reduction in the rate of postoperative infection [6],
[7]. A possible cause of this could be the fact that, where
the smaller incision is used, this allows the superior blood
supply to the skin flap to be preserved [8]. The surgical
procedure generally involves mastoidectomy, posterior
tympanotomy, and the drilling of a cochleostomy in order
to insert the intracochlear electrode array. Many surgeons
create a bony recess in the bone of the skull, which serves
to accommodate the implant (i.e. as an implant bed) and
thus provide protection against undesired mobilization
of the device. A connecting tunnel between the implant
bed and the mastoid is often also used, which allows
protection of the electrodes at the point where they exit
the implant, as well as serving to additionally fix the
device in place within the bone. The use of auxiliary ma-
terials [9], [10], [11] to hold the implant in position (such
as sutures, osteosyntheticmaterial, bone cement, Dacron
sutures and titanium clips) has therefore been discontin-
ued by many surgeons as the implant can be adequately
secured by modifying the surgical technique accordingly
(i.e. by creating a bony implant bed and bony projections
in the area of the mastoid in order to protect the elec-
trode). The main reason for this change in practices lies
in the observation that, viewed in the long term, some of
the auxiliary materials used show insufficient biocompat-
ibility or have led to local irritation. These include the
formation of cochleastomas following the use of Dacron
sutures for securing the electrode array in the rear wall
of the ear canal. Overall, both the surgical procedure and

the long-term stability of thematerials used have resulted
in a high degree of technical reliability and surgical safety.

Figure 2: Preoperative marking of the incision line for the
“Hannover C” incision formerly used, showing the large wound

surface that results.

Figure 3: Smaller, retroauricular incision in use today (left ear,
dummy implant).

2 General material requirements
for a cochlear implant
A cochlear implant, unlike many other implants used in
human applications, has a number of very different re-
quirements to fulfil. These include mechanical stability
and charge transfer to the auditory nerve, as well as
biocompatibility and long-term stability.
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2.1 Mechanical requirements

Themechanical requirements for a cochlear implant vary
greatly with regard to the individual components. The
implant’s outer casing needs to be a stable and fluid-tight
enclosure that securely houses the electronics. This is a
not insignificant aspect in terms of ensuring the device’s
long-term functioning. Important materials that have
found application over the years include titanium and
ceramics, each of which combines a number of beneficial
properties. Although ceramic materials have high resis-
tance to breakage, almost all CI manufacturers now fa-
vour titanium instead for housing the implant’s electronic
components. This is because ceramics have proved prone
to a lack of leak-tightness, leading to implant failure, and
because their mechanical resistance to external forces
(such as impact trauma to the head) is poorer than that
of titanium. Moreover, the most important parts of the
implant casing are coated with a layer of silicone
(Figure 1). In a 2002 analysis (carried out at Hannover
Medical School) of the reasons for removal of CIs manu-
factured by Advanced Bionics and Cochlear, a technical
defect was identified in 97 cases (i.e. 66.4% of these
explantations), of which 13 were attributable to a lack of
leak-tightness and a further 54 to impact damage [12].
The investigations carried out during this study related
to the augmentation of the standard that governs “active
implantable medical devices” specifically for cochlear
CIs. In this connection, proposals for a uniform reporting
standard to be followed bymanufacturers and implanting
centres in the event of implant failure have been drawn
up by Battmer et al. [13].
The second part of the implant, the electrode array, needs
to exhibit not only great flexibility but also long-term
mechanical stability if it is not to give rise to cable breaks
in the bend of the array, or to a lack of leak-tightness (the
latter being caused by short-circuiting). Modern CI elec-
trodes usually consist of a silicone carrier material in
which the platinum contacts and the input wires (plati-
num-iridium 90/10 with insulating Teflon coating) are
embedded.
Certain CI electrodes place complex demands onmechan-
ical geometry, as the electrode bodies are preformed;
example include the Nucleus Contour system (Cochlear
Ltd.) or the Helix electrode from Advanced Bionics. The
bent shape of the electrode (Figure 4) is designed to re-
duce the distance between the electrode and the neuron-
al cells in the modiolus, thus leading to focused stimula-
tion. Elasticmaterials are able to reduce insertion trauma,
although the electrodemust have the necessary stiffness
to ensure it can be inserted atraumatically, and be posi-
tioned safely and reproducibly within the cochlea. Coch-
lear’s Contour electrode has an elasticity of 4.8x108 Pa
at the tip and 4.0x108 Pa at the base. The side adjacent
to the modiolus is somewhat more elastic than the outer
side. The Nucleus straight electrode, however, has lower
flexural rigidity at the tip. The elasticity module at the tip
is 1.8x108 Pa, whereas the flexural rigidity of the base
(4.9x108 Pa) [14], [15] is similar to that of the Contour

electrode. Electrode stiffness is thus determined less by
the carrier material (i.e. silicone, with an elasticity module
of 4.5x105 Pa) and more (indeed, chiefly) by the internal
Pt/Ir wires, whose geometric configuration is the main
influence on the electrode’s mechanical properties [15].
It is frictional forces that play the most significant role in
terms of electrode insertion [16], [17]. Comparative
studies have revealed Contour electrodes and the Nucle-
us straight electrode to have similar frictional coefficients
on themodiolar side, with the Contour electrode exhibiting
considerably lower frictional coefficients on the lateral
side [18].

Figure 4: View of preformed electrodewithmodified tip (Softip®,
Cochlear Ltd).

The choice of material plays a major part, especially with
regard to the development of new electrode designs, as
here the electrode is required tomeet other requirements
in terms of its mechanical properties. Examples include
electrodes with a soft tip and low contact pressure on the
basilar membrane and the outer wall of the cochlea
(Softip®, Cochlear Ltd., Figure 4) [19], as well as the de-
velopment of new access routes to the cochlea, as for
example with the endosteal electrode [20], [21]. Here,
the use of novel carrier materials (such as new polymers)
could lead to the electrodes’ mechanical properties being
optimized [22]. Furthermore, the literature contains indi-
vidual reports on applications in animal experiments in-
volving electrode arrays, surface-coated with polymers,
which bring about alterations in the electrodemechanism
[23], [24].

2.2 Biological requirements

With regard to the middle-ear region, the biological re-
quirements for cochlear implant electrode arrays relate
to the possibility of contact with bacteria and the potential
spread of pathogens along the electrode array into the
recipient’s inner ear [25]. It is important to ensure that
the cochleostomy is well-sealed and to prevent a sheath
of connective tissue forming around the electrode array
(Figure 5) [26]. The fact that pathogens come into contact
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with the electrode surface relatively frequently in the
middle-ear region means a risk exists that a biofilm will
form or, in extreme cases, that bacteria will spread from
the middle ear into the inner ear [27], [28], [29] or the
cerebrospinal fluid, and that meningitis may occur. It is
thus especially important to securely seal the coch-
leostomy (Figure 6) [30], [31].

Figure 5: Histological section through the cochlea of a guinea
pig showing formation of new connective tissue and bone in
the area of the scala tympani (EK: electrode channel; scala
vestibuli (Sc. V.); scala media (Sc. M.); RK: Rosenthal channel,

BDG: connective tissue, K: bone).

Figure 6: View of the cochleostomy during the insertion of a
cochlear implant electrode.

2.3 Electrical requirements

The chief function of the cochlear implant involves facili-
tating charge transfer from the electrode array to the
auditory nerve and the hearing sensation that this gener-
ates. At present, all CI manufacturers use platinum con-
tacts in electrode production [2]. Moreover, iridium oxide
coatings have been investigated in certain studies, which
showed beneficial effects in terms of what happens to
impedance following implantation [32], [33].
The demands placed on electrode contacts are highly
exacting with regard to the potential functional life of
implants (>20 years). It is essential to avoid corrosion

[34] and to prevent the electrode contacts being damaged
or destroyed. Long-term stimulation of neural tissue in-
volving a charge density of <30 µC/cm-2 geometric/phase
is generally regarded as safe [35], provided the stimula-
tion is pulsatile in nature and the electrode surface is
relatively large [2]. This value is well below those at which
electrochemical responses can be expected. With plati-
num electrodes, gas is observed to form at values of
300 µC/cm-2 geometric/phase and above, owing to elec-
trochemical changes [36]. If neural damage occurs even
at low values, this should be interpreted as the result of
electrical stimulation of the neural structures and not as
being attributable to noxious chemical substances gener-
ated by undesired electrochemical responses [2]. Corro-
sion of the platinum can be observed at 500 µs/pulse
and above, or at or above a current density of 2 mA/mm2

[37]. These values, too, are well below the parameters
used in clinical practice (namely 0.9 mA and
25 µs/phase). Platinum is thus an extremely safe mater-
ial for human applications involving cochlear implantation.

2.4 Long-term stability

Alongside mechanical considerations (such as the need
to prevent electrode breakage and thus short-circuiting),
density-related aspects play a particularly important role
in determining implants’ long-term stability. Implants
sometimes fail a number of years after implantation, al-
though it is most likely to happen within the first two
years. For example, a study byMaurer et al. [38], involving
three different implant types, revealed the cumulative
survival rate to be 93.2% two years after implantation
and 92.7% five years post-implantation. These findings
show that the technical integrity of implants in present-
day use has reached a high level but still has scope for
further improvement.

3 Currently used materials and
their properties

3.1 Overview

The use of cochlear implants involves the following ma-
terials coming into contact with the human body: silicone,
platinum, titanium and ceramics. Platinum is used as the
electrode contact. For the Teflon-coated wires between
the receiver/stimulator and the electrode contacts, plat-
inum/iridium 90/10 is used. The wires are embedded in
silicone, and thus do not come into contact with human
tissue. The electronics within the implant body are housed
in a tightly sealed casing which – depending onmanufac-
turer and implant series – is made of either ceramics or
titanium. The materials that come into contact with the
human body are dealt with more fully below.
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3.2 Silicone

Silicones are polymers that are built around a frame of
silicon and oxygen atoms, on which hydrocarbon radicals
(which, in the case of silicones used in medicine, are
usually methyl groups [39]), are often present. The indi-
vidual polymer chains may differ in length and in the de-
gree of crosslinking. Chain length and cross-linkage are
critical in determining the physical properties of silicones
[40]. These materials have been used in medicine for
more than 60 years now [39].
Silicones for use inmedicine are regarded as having good
biostability [39]. Owing to their flexibility and stability,
thesematerials are used for various prostheses (including
blood vessels, finger joints, heart valves and prosthetic
outer ears) [41]. There are, however, indications that sil-
icones' properties change following implantation; in other
words, a kind of ‘ageing’ process sets in [42], [43]. Fur-
thermore, Leslie et al. [44] have been able to show that
the internal environment within the body also affects this
process of deterioration in silicones. This means that sil-
icones, despite their excellent biocompatibility, still have
potential for improvement.

3.3 Platinum

Precious metals such as platinum are preferred as con-
tact materials where electrical stimulation is involved, as
they have low chemical reactivity and are highly resistant
to corrosion. However, even precious metals can, upon
electrical stimulation, partially dissolve or form unstable
surface films. The extent of these undesired effects de-
pends upon the density of the charge that is transmitted
during electrical stimulation and on the polarity of the
stimulus [45], [46]. Platinum is very well tolerated by the
body and, as it is relatively soft in comparison with iridium,
is easier to work with. Even after around 2,000 hours of
stimulation testing in animal experiments, and as much
as 10,000 hours of such testing in humans, no stimulus-
induced corrosion has been detected [34]. Platinum
therefore constitutes the best electrodematerial currently
available.

3.4 Titanium

Titanium is particularly suitable for applications in which
rigidity, low weight and high resistance to corrosion are
essential. Titanium is an inert and solid metal. Its use for
the casing of the receiver/stimulator has its origins in
experience with cardiac pacemaker technology. In order
to securely seal the pacemaker housing, a ceramic ma-
terial has been developed that bonds permanently to
both the metal of the wires and to the titanium of the
casing [35]. This became the standard technique for
sealing the point where the wires exit the pacemaker and
was adopted in the development of certain cochlear im-
plants [47]. Where titanium is used as a casing material,
the receiver coil must be placed outside the casing. Titani-
um is therefore the material most commonly used by

manufacturers for enclosing the electronic components
of CIs.

3.5 Ceramics

Ceramic materials are non-metallic composites that fre-
quently consist of a matrix made of a base material per-
meated with various other substances. Thematerials that
a given ceramic contains determine its subsequent
properties, as does the nature of the production process.
Ceramics used for technical applications are commonly
based on aluminium oxide (Al2O3).
Ceramics are used (see section 4.4) for sealing the points
where the wires emerge from the implant casing. They
also find (or found) application as a casing material for
enclosing the electronic components. An advantage of
using ceramicmaterials for this purpose is that the receiv-
er coil can be placed within the casing, as ceramics do
not greatly affect signal transmission. However, the ma-
terial is more brittle than titanium and thus more prone
to breakage under significant mechanical stress
(Figure 7).

Figure 7: Cochlear implant with cracked casing (here, ceramic
casing) following application of mechanical force caused by

the wearer falling on the implant.

4 Clinical application of
biomaterials used

4.1 Allergic reaction/material
incompatibility

The literature contains only isolated instances in which
a demonstrable allergic reaction or intolerance to silicone
(where it is the principal material in cochlear implants)
is described [48], [49], [50]. These cases, however, have
prompted the provision of test kits in which material
samples are made available by the manufacturers in
laminar or rod form for implantation at a site (such as
the forearm) that is well away from the ear (Figure 8).
This procedure allows individualized compatibility testing
– involving an observation period of around six weeks –
intended to rule out allergic responses to the CI material
which is to be implanted.
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Figure 8: Individual compatibility test designed to rule out allergic reactions to the cochlear implant material. Left: preparation
of the forearm; centre: incision for the creation of a subcutaneous pocket; right: positioning of the test material beneath the

skin.

Taking into account the total number of cochlear implan-
tations, the probability of silicone intolerance occurring
is low [51]. In the majority of cases where an allergy is
suspected, the actual problem is more likely to involve a
chronic infection or the formation of bacterial biofilm.

4.2 Formation of connective tissue
around the implant (electrode and
casing)

Although silicone possesses a number of beneficial
properties that make it possible to use it for producing
both flexible electrodes and biocompatible implant
sheaths, it does also have certain disadvantageous
characteristics. These include a relatively strong ability
to induce connective-tissue growth, which can be ob-
served around both the electrode array [52] and the im-
plant casing. Encapsulation of the implant casing can
yield definite advantages, as this provides additional fix-
ation for the implant and makes unwanted displacement
less likely. Formation of connective tissue around the
cochleostomy site is also desirable, as this seals off the
inner ear from the middle ear, which both prevents
perilymph leaking out of the inner ear andmakes it harder
for bacteria to ascend from the middle ear into the inner
ear. Within the cochlea, however, the formation of con-
nective tissue is undesirable, as this sheath of connective
tissue around the electrodes acts as an insulating layer
that impedes the transfer of charge from the electrode
array to the auditory nerve and thus leads to a postoper-
ative increase in electrical impedance [53]. As stable,
low impedance is essential if the electrical stimulation of
the cochlea’s neuronal structures is to be effective and
safe, reduction of connective-tissue growth (or even its
avoidance altogether) is to be sought [54]. Intraoperative
administration of steroids could reduce postoperative
tissue response [55]. Various studies have investigated
the reductive effect of a range of steroid preparations on
postoperative fibroblast growth in cochlear implantation,
although a solution of triamcinolone acetonide (Kenacort®

A; 40 mg/ml) has proven highly effective [55]. Measure-
ments reveal that patients in whom Triamcinoline (Triam-
hexal 40®) was used have significantly lower impedance
than a control group [33]. A long-term study by a research
team headed by De Ceulaer, in which the effect of one-
time intracochlear administration of steroids immediately

prior to electrode insertion was investigated, revealed a
significant reduction in impedance even twomonths after
implantation [56].

4.3 Revision surgery

Clinical observations made in relation to revision surgery
not only show marked formation of connective and scar
tissue around the implant and/or electrode array, but
also reveal the sheathing of the array by connective tissue
in the cochlea [2], [35]. In the event that the implant
needs replacing, the electrode can be successfully rein-
serted in the vast majority of cases [57], so that – despite
the electrode array being enveloped in connective tissue
within the cochlea – the creation and dilatation of a
passage with the electrode of the new implant prove
successful. Rühl et al. [58] were able to demonstrate that
the outcome of speech understanding tests one year on
from reimplantation was as good as, if not better than,
that before reimplantation. The literature contains descrip-
tions of how, in exceptional cases, the existing electrode
array is held in place within the cochlea by encircling it
with a “wall” of scar tissue or bone [59]. The difficulty in
such instances is that further attempts to extract the array
can only partially remove it, with a residual portion remain-
ing within the cochlea [60]. This calls for an intraoperative
decision as to whether only one electrode – albeit incom-
plete and basally positioned – can be inserted or whether
a double array can be introduced into the cochlea by
means of two cochleostomies.

4.4 Formation of biofilm

The formation of a biofilm constitutes as as-yet-unsolved
problem in cochlear implantation. Biofilms result when
micro-organisms colonize boundary surfaces. They consist
of a thin layer of mucous (i.e. a film) and form primarily
in aqueous or moist systems, either at the aqueous sur-
face or at its interface with a solid.
Cochlear implantation provides a good example of how
these infections can occur as introduced infections that
gain access during surgery; in principle, middle-ear infec-
tions [61] [62], [63] can also spread and thus result in
bacterial colonies that form on components of the im-
plant. Infections usually affect themagnetic unit, with the
electrode less often affected [64]. The silicone surface
of the magnet unit provides bacteria or biofilms with a
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good point of adhesion, making them virtually inaccessi-
ble to conventional, local or systemically applied antibiot-
ics. In cochlear implant revision surgery, S. aureus has
often been found [65], [66]. Clinically, the cases in
question are marked by a postoperative healing process
that is initially normal [66]. Over the subsequent weeks
and months, however, recurrent swelling – which often
spontaneously opens – occurs at the implant site or the
mastoid (Figure 9). It tends to discharge only a relatively
small amount of putrid secretion and there is often strong
formation of granulation tissue (Figure 10) around the
implant [67]. The implant surface is usually already infec-
ted in these cases, i.e. a biofilm has already formed on
the implant surface by this time. Despite antibiotic therapy
and rinsing with disinfectant solutions, these biofilms are
generally prone to recurrence, so that there is often no
choice but to remove the implant. The implant usually
shows no macroscopic changes in these cases.

Figure 9: Swelling around the implant site in a case where the
implant is chronically infected. Right of picture: spontaneous

perforation of the skin.

Figure 10: Infected cochlear implant with marked formation
of granulation tissue around the implant.

Formation of biofilm is a clinically relevant problem as,
in general, despite several swab samples being taken, it
is not possible to clearly identify the pathogens involved,
and treatment with antibiotics tends to lead to only a
short-term improvement in the situation [68]. Often the

only clinical option in these cases is to remove the im-
plant, leaving the intracochlear electrode in place as an
intracochlear placeholder. The intracochlear electrode is
usually unaffected by the infection. After an infection-free
phase of around three months, the reimplantation of the
CI can then be carried out.
Changes in design – in order to avoid dead volume, for
example – can be instrumental in reducing the risk of
infection [69], whereas infections of the middle ear in-
crease the probability that the implant will become infec-
ted [70].
It is not always easy tomake a clinical distinction between
an infection of the implant or formation of biofilm on the
one hand, and intolerance of the implantmaterials (espe-
cially silicone) on the other; this task occasionally poses
the physician a difficult challenge. In individual cases, an
allergy test using test electrode materials, as described
above, may be helpful in resolving this.
One complication of cochlear implantation is a heightened
risk of meningitis [71]. As the mechanisms of infection
have not yet, however, been fully clarified, various
mechanisms are discussed in the literature [72]. The CI
reduces the pathogen threshold required to induce
meningitis. The cochleostomy in and of itself, however,
does not increase the risk of infection [73]. Animal exper-
iments show that the infection occurs only via the direct
route (i.e. themiddle ear or inner ear) and not systemically
or intraperitoneally [74].

4.5 Clinical recommendations for action

In view of the large numbers of implants and the relatively
low rates of infection and intolerance, preoperative testing
with implant materials would not appear justified. How-
ever, it is essential that implantation be performed under
completely sterile conditions so that the implant is not
placed at risk through bacterial contamination, and in
order that reimplantation – which is expensive, as well
as time-consuming for the recipient – can be avoided.

5 Prospects for biomaterials
development in cochlear implants

5.1 The implant of the future –
objectives for new developments in
implants

5.1.1 Clinical requirements

Implant development is set to pursue a number of clinical
objectives into the future. The focus will be on enhancing
biomaterial properties with regard to biocompatibility and
optimizing the nerve-electrode interface (Figure 11), as
well as on reducing size (especially that of the intracoch-
lear electrode array) and increasing the number of
channels that can be stimulated independently of each
other.
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Figure 11: Section through a temporal bone and the cochlea
with inserted perimodiolar cochlear implant electrodes in the
scala tympani, showing the electrode contact surfaces facing

towards the modiolus.

The effectiveness of electrical auditory prostheses must
be optimized to the extent that hearing ability can be
achieved which is as natural as possible. This entails,
among other things, a considerable improvement in
electrical channel separation and thus stimulus selectivity,
a reduction in unspecific tissue growth, protection of
neuronal cells and the regeneration of neuronal dendrites
that form a cell-specific contact with the electrically con-
ducting electrode material. The current objectives in this
field revolve around the development of new multifunc-
tional electrodes that couple conventional electrode
functions with new bioactive functions. Current ap-
proaches to optimization take in the entire process chain
– involving design, material, electrode production and
surface functionalization, and including the individual
adjustments made to each recipient’s own particular
anatomy.
With regard to optimizing the biocompatibility properties
of the cochlear implant’s surface materials which come
into contact with body tissue, the dominant notion is that
of preventing the formation of connective tissue around
the intracochlear electrode array, in order to facilitate
improved charge transfer to the auditory nerve at this
point (Figure 5). In addition to the use of completely new
implantmaterials – in particular, new silicone substances
– the functionalization of conventional silicones also
merits consideration here. This can be achieved by sur-
face structuring (i.e. physical functionalization), by the
binding or release of drugs at the electrode array (i.e.
drug delivery functionalization), by coating with polymers
(i.e. chemical functionalization), by applying a layer of
cells in order to release biological substances (i.e. biologic-
al functionalization), or by coating with polymers and
signal proteins (i.e. biochemical functionalization)
(Figure 12).
Two goals closely related to these ideas are optimizing
the CI’s nerve-electrode interface by means of releasing
substances into the inner ear (known as local drug deliv-
ery) and developing these approaches to the stage where
they are technically feasible, as specifically applied to CI
systems currently in use (involving, for example, structural
modification of electrode arrays for fluid release). The

development of biomimetic implants requires them to be
specifically designed with the target tissue in mind.

5.1.2 Biomaterial requirements

If cochlear implant technology is to continue to advance,
especially in terms of surgery aimed at preserving hearing
(advances in which include Cochlear Ltd.'s Hybrid L sys-
tem and MedEl GmbH’s Flex EAS), this necessitates the
further miniaturization of the electrode systems in order
to minimize both the insertion trauma caused and the
resulting formation of connective tissue around the in-
tracochlear part of the electrode. Moreover, thematerials
employed shouldmake it possible to use a larger number
of electrode contacts than has previously been the case,
thus allowing better intracochlear frequency resolution.
The technology that might be used here could borrow
from chip technology, with switching circuits sited directly
on the electrode array and active electronic elements on
the intracochlear electrode array.

5.2 New implant materials

5.2.1 Teflon

PTFE (poly(tetrafluoroethylene)), also known as Teflon, is
a thermally and chemically highly stable polymer that is
very hydrophobic. Teflon is already used to a limited ex-
tent in commercially available cochlear implants (specific-
ally, for insulating the wires between the implant body
and the electrode contact). In laboratory investigations,
a movable Teflon strip has been used in order to enable
the electrode array to be placed within the cochlea in a
position close to themodiolus [75]. Experiments involving
Teflon have also been conducted with a view to using it
for sealing cochleostomy sites, although this technique
did not become established [76], [29].
Among the current applications for Teflon are its use in
vascular prostheses [77], [78], [79] and in investigations
with a view to repairing defects in the abdominal wall
[80], which have demonstrated its fundamental biocom-
patibility. Extending these applications to CIs would thus
appear conceivable.

5.2.2 Electrically conducting polymers

Promising developments in the material sciences have
demonstrated the technical feasibility of electrically con-
ducting polymers. Depending on their chemical structure,
synthetic materials may possess electrically conducting,
semiconducting or isolating properties. It was through
the use of thesematerials for electronic applications that
the term “polymer electronics” was coined. Whereas
electronic components made of plastic would have been
inconceivable only recently, they are now well on the way
towards becoming reality.
Conductive polymers are usually produced by adding
small quantities of oxidizing agents such as chlorine,
bromine, iodine or arsenic pentafluoride to create the
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Figure 12: The development of biomimetic implants: different methods of surface functionalization.

polymer matrix. In the process, they acquire electrical
conducting abilities comparable to those of metallic
conductors [81], [82]. The first applications considered
for conductive polymers included batteries and accumu-
lators. Other semiconducting polymers are used primarily
in the field of optoelectronics and in photonic components
[83]. The use of such materials in medical engineering
is, however, problematic in terms of how biocompatible
these substances are at present. Conjugated polymers
in a conductive state are, almost without exception, insol-
uble, infusible and not very elastic. The metal-like ability
to conduct is inextricably bound up with the solid state
and a crystalline arrangement. One means of producing
modifiable electrically conducting polymers involves the
copolymerization of electrically conducting substances
with conventional polymers, such as polyacetylene in
polyethylene, polystyrol or polypyrrol [84], [85].
The potential benefits of using modified polymers as
electrode materials consist in the improved mechanical
properties of the electrode array and in the scope for
placing a considerably higher number of electrode con-
tacts on the electrode array. This approach could lead to
the electrode having considerably enhanced overall flex-
ibility and thus to further optimization of electrodes that
have the potential to help preserve hearing. However,
polymer-based implants must, in terms of their long-term
stability and electrical transmission properties, be held
up as the benchmark for conventional implant materials,
so that immediate clinical application is not yet expected
at the present time.

5.2.3 Polyimides

Even in the early phase of cochlear implant development,
the fundamental biocompatibility of polyimides was
demonstrated. For example, the basic usability of these

materials in the cochlea has been successfully shown
[86]. Polyimides are polymers that are chemically stable,
electrically insulating and very easy to work with [87],
[88], [89], [90]. Fibroblast growth on polyimide surfaces
is comparable with that on polystyrene surfaces [91].
Polyimides are already in use today for flexible electrodes
[92] and as a carrier material for gold wires in the power
supply system for subretinal implants [93]. Furthermore,
the flexibility of these substances enables a smooth
transaction to be facilitated between the electrode (with
its particular mechanical properties) and the tissue, in
order to prevent damage caused by minute movements
of the electrodes (as during neural stimulation, for ex-
ample) [94], [95], [96]. Polyimides thus constitute a
promising new prospect for electrodemanufacture, which
may in the future be incorporated into the production
process for CIs.

5.2.4 Silicon electrodes

Thanks to the very rapid development of chip technology,
which has in recent years led to a radical reduction in the
size of the components used, it is conceivable that these
methods could also be used for multichannel electrode
systems [97]. The use of this technology, i.e. the placing
of active electrode systems on the intracochlear compo-
nent of the electrode, could lead to automation andmake
the production process a good deal faster, in turn leading
to a reduction in the price of implants. This technology
also offers scope for optimizing the coupling between the
nerve and electrode. It is conceivable that implant func-
tions could be transferred from the implant casing to the
electrode array (i.e. into the cochlea), so that these ad-
vances could ultimately lead to the creation of a purely
intracochlear electrode array that replaces the implant
casing used thus far. This process could draw on diverse
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aspects of retinal implant development, in which similar
approaches are being pursued with a view to using active
electrode systems for the eye. This involves silicon-based
photodiode arrays being implanted under the retina; in
these arrays, the stimulating electrodes stimulate the
retinal neurones [98]. A key prerequisite for the applica-
tion of these systems is that they are demonstrably
biocompatible for the inner ear. At the present time, suf-
ficient data relating to the cochlea – such that would in-
dicate that this technology can be rapidly transferred into
clinical use – are not available. However, the possibility
of cost-effective mass production of electrodes, in partic-
ular, does make for an interesting prospect with regard
to the introduction of this technology into the CI manufac-
turing process.

5.3 Modification of surface properties

5.3.1 Physical functionalization of surfaces

The only way to change biomaterial properties in terms
of biocompatibility is to alter the surface geometry
(Figure 13). The long-term objective of optimized nerve-
electrode interaction can therefore be achieved both by
choosing a new carrier material [99] and through the
structural modification of already known materials and
their surfaces. For silicone, which is chiefly used for the
surface of cochlear implants, the micro- and nanostruc-
turing of the implant surface play a key role here. Investi-
gations using in vitro models have already demonstrated
the crucial effect of microstructuring the silicone surface
in terms of reducing the growth of connective tissue.
Various laser techniques are used for generating the
surface structures (Figure 14), such as laser ablation,
two-photon polymerization, laser-inducedmelting dynam-
ics, lithography and moulding. Nanostructures can thus
specifically influence the hydrophobicity of the surface
and, in turn, material-cell interaction as well.
Altering surface topography by using ultra-short laser
pulses provides an example of the physical functionaliza-
tion of CI materials. In vitro, microstructures of linear
configuration generated by means of laser ablation can
both reduce the growth of connective-tissue cells
(Figure 15) [100] and influence the direction of growth
of neuronal cells [101]. Individual research projects (in-
cluding ventures in close collaboration with industry) are
already underway, the aim of which is to translate into
clinical applications the technological advances achieved
with CIs (Collaborative Research Centre (SFB) 599: project
T1).
A number of research teams have also already been able
to show that, by structuring the surface of materials on
the nanometric scale, we can considerably influence the
rate at which connective-tissue cells adhere to these
surfaces. The studies by Spatz et al. [102], [103], [104]
can be regarded as groundbreaking in this field; they
demonstrated that structural differences of only a few
nanometres in scale dramatically alter the interactive
behaviour between material and cell.

Figure 13: Schematic representation of physical surface
functionalization: alteration of surface topography.

Figure 14: Example of linear microstructure on silicone,
generated through ablation by ultrashort laser pulses.

Figure 15: Example of physical surface functionalization:
cultivation of cells growing adherently (fibroblasts, duration of

culture: three days) on laser-structured silicone surface
(structural width 10 µm).

The modification of surface structure is thus highly likely
to lead to a change in tissue-implant interaction, despite
the base material used being essentially the same. This
phenomenon has also been demonstrated for various
fields of application other than the cochlea, such as
dental implants [105], [106], [107]. Highly promising
scope for further advances in CI technology is emerging
here.
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5.3.2 Chemical and biological functionalization
of surfaces

The use of chemically modified implant surfaces
(Figure 16) and the biochemical bonding of active agents
to the implant (Figure 17) is another promising approach
by which the development of cochlear implant systems
can be driven forward [108]. Not only does this idea have
potential in terms of the basic applicability of implant
coatings for reducing biofilm formation on implants and
electrodes, it is also of particular importance in terms of
optimizing nerve-electrode interaction [109]. In this re-
gard, this approach is based on the use of biodegradable
polymers as an integral part of the CI’s electrode array,
which (following their degradation) lead to biologically
active substances being released from the electrode array
(SFB/Transregio 37: subproject C4).

Figure 16: Schematic representation of biochemical surface
functionalization: binding of signal molecules onto the

electrode.

Figure 17: Schematic representation of chemical surface
functionalization: binding of polymer chains onto the electrode.

Dental and orthopaedic implants are coated with growth
factors (such as BMP-2) specifically in order to stimulate
the formation of new bone. Various research teams have
investigated a combination of BMPs and prosthetic joints
in order to successfully optimize the process whereby the
implant is incorporated into the surrounding tissue during
the healing period [110], [111]. These generally exploit
the principle of adsorption of growth factor proteins at
the surface, so that the release of the substance – and,
ultimately, the specific intended effect of the factor in
question – is achieved over a concentration gradient. Al-
though inductive effects have been described using this
method, disadvantages are also evident. Firstly, relatively
high quantities of the active substance are required in
order to bring about the desired effects [112]. Secondly,
the implants need to be specially pre-treated, which
makes their clinical use more difficult and casts doubt
on the method’s practicability.
Implants with a drug delivery function have already be-
come routine clinical practice in other branches of medi-
cine. A good example are coronary stents, the use of

which has successfully reduced the restenosis rate of
stents [113], [114], [115].
The chemical and biochemical surface functionalization
of CIs is, both for the electrode array and for the implant
casing, a (biomimetic) intervention option for which differ-
ent biological objectives can be pursued. There is good
reason to believe that findings from studies in which
surfaces are coated with drugs can be transferred from
the field of stent technology to that of cochlear implanta-
tion; joint interdisciplinary research projects have thus
been initiated in response to this aspect (SFB 599: sub-
project D2).

5.3.3 Biological functionalization of surfaces

The use of genetically modified cells or stem cells as a
connecting element between the residual nerve cells of
the cochlea and the electrode array is a fascinating pro-
spect – which has already been successfully demon-
strated in animal experiments – in terms of facilitating
initial steps in the regeneration of the inner ear
(Figure 18). Certain animal experiments have been able
to show that genetically altered cells placed on an in-
tracochlear array led to an increase in the survival rate
of spiral ganglion cells (first auditory neuron of the audi-
tory nerve; Figure 19) following deafness. The outcome
of these investigations is encouraging and suggests that
the findings can, in principle, be exploited in order to op-
timize the nerve-electrode interface through biological
functionalization of cochlear implants.
These developments could ultimately lead to the CI sys-
tem being used as an intracochlear therapy option (includ-
ing stem cell therapy). The application of neural stem
cells is conceivable here, which could create a connecting
bridge between the residual nerve cells of the cochlea
and the electrode array in order to facilitate enhanced
charge transfer to the auditory nerve. That stem cells are
generally detectable in the inner ear, and that modified
cells can be used as cochlear stem cells which can be
applied in the inner ear, has already been demonstrated
both in vitro and in animal experiments. A combination
of biological intervention strategies with conventional
approaches to CI therapy offers scope both for improving
the effectiveness of these implants and for drawing up
strategies for regenerative therapy.
Regenerating lost hair cells by transplanting stem cells
into the cochlea or through stimulation of local stem cells
is a highly ambitious research approach [116], [117],
[118]. However, it will probably not be possible in the
near future to reproduce the complex anatomy of the or-
gan of Corti and the perfect integration of a wide range
of specialized cell types within a very compact space
[119].
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Figure 18: Schematic representation of biological surface
functionalization: binding of adherent cells onto the electrode.

Figure 19: A representative example showing the consequences
of deafness in the region of the spiral ganglion. Histological
view of the spiral ganglion cells (SGC) in the Rosenthal channel
(A) when hearing was normal, (B) six weeks after deafening,
withmost of the SGCs having degenerated. Sc.T. scala tympani.

5.4 Fundamentals of drug delivery in the
inner ear (neurotrophic effects)

Sensorineural hearing loss leads, as a secondary effect,
to the degeneration of the spiral ganglion cells, which are
the target cells of electrical stimulation by the cochlear
implant. In order to enhance the effectiveness of the CI,
these neurones should be protected from progressive
degeneration. Because of the blood-cochlear barrier
[120], [121], it is not possible for many systematically
applied molecules that potentially have a therapeutic
action in the inner ear to reach their target location [122].
The inner ear thus constitutes a compartment or chamber
that is unique within the human body, which could be
treated by means of local drug delivery that uses the CI
as a means of access (Figure 20). The potential for this

combined function – i.e. for using the CI electrode array
to deliver drugs – is obvious and thus offers considerable
possibilities for further advances in the implant system.
Animal experiments have been able to show that the
local application of drugs, combined with electrical stim-
ulation by an implant, can lead to improved outcomes
[123], [124]. By additionally using the CI as a drug depot,
substances such as nerve growth factors could prevent
progressive degeneration of the auditory neurones and
thus enhance the effectiveness of these implants for long-
term use [125], [122]. Steroids and other substances
could also be applied in conjunction with the CI in order,
for example, to minimize or even prevent tissue growth
around the electrode and thus postoperatively maintain
impedance at a low level.

Figure 20: Schematic representation of drug delivery from the
electrode body. Use of the cochlear implant as a means of

access for local drug delivery.

Various research teams have begun exploring these as-
pects and have attempted to modify CIs so that they can
also serve as intracochlear drug depots [126], [127],
[128]. Questions regarding dosage and the potential for
controlling substance release are receiving a great deal
of attention. Active agents must be applied at concentra-
tions that achieve sufficiently high biological effective-
ness. Furthermore, this intervention must not present
the patient with an additional risk. Studies on the effec-
tiveness and the technical feasibility of long-term applica-
tion of drugs are still at the animal experimental stage.
However, the findings to date are promising and suggest
that this approach could soon see clinical transfer.

5.4.1 Substances

Awide range of substances are currently under discussion
with a view to mediating therapeutic effects on a local
basis in the inner ear. In addition to glucocorticoids (such
as dexamethasone) there are a number of other factors
that play a part, such as antioxidants, neurotrophic
factors, neurotrophines and cytokines.
Glucocorticoids (specifically, triamcinolone) in particular
have been tested in clinical trials as to their effect in re-
ducing electrical impedance following cochlear implanta-
tion [33]. The rationale here consists in reducing growth
of connective tissue around the electrode array following
implantation – an effect which has also been demon-
strated for the period up to initial fitting – in order to fa-
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cilitate an improvement in charge transfer to the auditory
nerve. Dexamethasone, by contrast, did not lead to a re-
duction in electrical impedance following one-time admin-
istration [129], although it does protect against further
hearing loss caused by electrode insertion trauma during
implantation [130].
Another class of substances that shows protective effects
on spiral ganglion cells in the inner ear are the antioxi-
dants. These can significantly increase the survival of
spiral ganglion cells following deafness [131], [132],
[133]. This effect has its basis in the fact that the forma-
tion of free radicals which arise during ototoxic trauma
can be counteracted by the use of antioxidants such as
trolox (a water-soluble analogue to vitamin E) and ascorbic
acid. This leads both to improvements in the animal
subjects’ electrical hearing threshold and to a significant
increase (compared with a control group) in the number
of surviving spiral ganglion cells [134].
Neurotrophic factors are proteins that act as regulators
of neuronal differentiation. They influence both the
neuronal development of the central and peripheral
nervous system and the development of the auditory
system. In animal experiments, the number of spiral
ganglion cells that survive following deafening increased
significantly (compared with untreated ears) through
cochlear application of nerve growth factors [135], [136],
[137], [138], [139], [140]. It has also been demonstrated
that neurotrophic factors cause nerve structures to re-
elongate, with the electrophysiologically relevant stimulus
parameters also showing improvement upon receiving
combined electrical stimulation (i.e. electrical stimulation
plus drug application) [141]. In particular, brain-derived
neurotrophic factor (BDNF) appears capable of locally
generating protective effects within the inner ear [142],
[143], [144], [145], [146], [147]. However, other research
teams have shown that discontinuing local treatment of
the cochlea with BDNF leads to accelerated degeneration
of the spiral ganglions cells that previously were preserved
by the factor [148]. It would thus appear expedient to
either apply the factor over a long-term period or to
maintain the protective effect by using other forms of in-
tervention, such as electrical stimulation. The most im-
portant neurotrophic factors (fibroblast growth factor,
neurotrophine, glial cell line-derived neurotrophic factor,
insulin-like growth factor, and transforming growth factor
β) are discussed below, as is their proven effect on spiral
ganglion cells. In vitro and in vivo findings obtained using
these factors will then be discussed in detail.
The fibroblast growth factor (FGF) family, which has 25
members, is involved in numerous intracellular processes
such as cell differentiation, proliferation and survival
[149]. In otological neurogenesis, various FGFs play a
part and mediate their function by specifically binding to
FGF receptors created by alternative splicing.
The family of neurotrophines (NT) is formed from small
secretory proteins including nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), neurotrophin-3
(NT-3) and neurotrophin-4/5 (NT-4/5). These proteins
are important for neuronal differentiation and neuronal

survival [150], [151]. They mediate their effect by means
of tyrosine kinase receptors and via the low-affinity p75
neurotrophin receptor [152]. Both NT-3 and BDNF are
expressed by the inner-ear epithelium. It has been shown
that NT-3 promotes the survival of cochlear neurones,
whereas BDNF also appears to be responsible for the
survival of vestibular neurones [153]. Both the develop-
ment and survival of spiral ganglion cells are influenced
primarily by NT-3 and by glial cell line-derived neurotrophic
factor (GDNF) [154].
The GDNF family consists of four members: GDNF,
artemin (ARTN), persephin (PSP) and neurturin (NTN)
[155]. All of these substances activate a common signal
component, the transmembrane tyrosinkinase RET
membrane proteins; these are anchored to themembrane
via glycosylphosphatidyl-inositol, are known as GDNF
family receptor alpha (GFRα) [156], and act as co-recep-
tors for tyrosine kinase RET [157].
The insulin-like growth factor system (IGF) consists of the
growth factors IGF I, II and relaxin, as well as various in-
sulin-like peptides [158]. In mammals, these proteins
bind to specific receptors that are located in the plasma
membrane of the target cells. Studies have shown that
IG I is responsible for the proliferation, differentiation and
survival of neurones in the inner ear [159].
Among the neurotrophic factors, the superfamily of
transforming growth factor-β-(TGF-β) is, with more than
50members, the largest andmost important group [160],
[161]. The chief effects of this group of substances relate
to their protective influence both onmotor neurones [162]
and (in particular) on the cells of the inner ear. Both pro-
tective effects on spiral ganglion cells [163], [164] and
regenerative effects have been successfully demonstrated
here [165], [166]. This class of substances appears par-
ticularly effective when applied shortly before ototoxic
trauma [167], [168], [137].
For cytokines such as erythropoetin (EPO), too, a protect-
ive effect on the spiral ganglion cells of the inner ear has
been demonstrated [169]. Erythropoetin is regarded as
a regulator of the progenitor cells of erythrocytes (see
overview in [170], [171]). However, EPO also helps pro-
mote the survival of neuronal cells, as for example follow-
ing injury to the spinal cord [172]. Moreover, in the pres-
ence of EPO the expression and production of BDNF is
increased [173]. In cultivated spiral ganglion cells, al-
though administration of EPO had no observed effect on
cell survival, it was found to increase neurite growth
[174]. The expression of EPO and its receptors in the in-
ner ear has been achieved only recently [175], paving
the way for the first successful intervention in animal ex-
periments that is aimed at protecting inner-ear structures
[176], [177].

5.4.2 In vitro findings

Cell culture experiments are the first step in investigating
drugs as to their neuroprotective effects on living cells.
The cultivation of isolated spiral ganglion cells in
neonatal rats represents a well established in vitro model
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for studying the impact of neurotrophic factors [178],
[179], [180]. The effects of neurotrophic factors such as
BDNF, GDNF, artemin, meteorin, NGF, NT-3, NT-4/5 and
CNTF on the survival of spiral ganglion cells and neurite
resprouting have been explored in detail. BDNF concen-
trations of 50 and 100 ng/ml are described as those
most effective for optimal survival of spiral ganglion cells
in vitro [179], [181], [182], [183]. Studies have demon-
strated that GDNF has a survival-promoting effect on
neonatal spiral ganglion cells in vitro at a concentration
between 100 pg/ml [139], [184] and 100 ng/ml [183].
Significantly enhanced neuritogenesis, i.e. a marked in-
crease in the length of outgrown spiral ganglion cell
neurites (as compared with an untreated control group),
has been achieved at a concentration between 10 and
50 ng/ml BDNF [180], [185], [186]. Trophic effects of
GDNF application on cultivated spiral ganglion cells have
not yet been described in the literature. These results
suggest that BDNF is a potentially suitable candidate for
mediating neuroprotective effects in the inner ear.

5.4.3 In vivo findings

The majority of animal experimental studies on the
neuroprotective effect of BDNF, GDNF and electrical
stimulation have been performed on guinea pigs [138],
[187], [188], [189]. As considerations on the application
of neurotrophic factors in humans with a view to treating
patients with sensorineural hearing loss and subsequent
degeneration of the spiral ganglion cells, many research
teams initially deafen the animal subjects using ototoxins
[140], [142], [146] or by exposing them to noise [139].
Kuang [140] has shown – as has Ylikoski et al. [139] –
that 50 ng/ml GDNF, administered directly after deafen-
ing, can significantly protect the spiral ganglion cells from
secondary degeneration. Yagi et al. [142] and Kanzaki
et al. [146] applied GDNF bymeans of adenoviral vectors
(AdGDNF) and, here too, the results of both research
teams reveal significant protection of the nerve cells after
deafening. Even if the onset of GDNF therapy (100 ng/ml)
is delayed until three weeks post-deafening, it still has
potential to protect the spiral ganglion cells [190].
Intracochlearly administered BDNF (50 ng/ml), applied
for 14 days on the seventh day after ototoxic treatment,
brings about significantly improved survival of the spiral
ganglion cells [138]. Gillespie et al. [188] demonstrated
that BDNF, NT-3, NT-4/5 and NGF – each administered
at a concentration of 62.5 µg/ml – can prevent the de-
generation of these cells progressing further after 14
days of deafness. Even where therapy with BDNF + FGF,
NT-3 or CNTF was delayed until one to six weeks after
deafening, this therapy still protected the cells from de-
generation to a significant extent [191], [192], [193],
[194], [145].
Through protecting the spiral ganglion cells from degen-
erating after deafness, and the related provision of a
larger population of these cells for electrical stimulation
via the CI, supportive local treatment with neurotrophic

factors has great potential for enhancing the outcome of
cochlear implantation.

5.5 Technical implementation of
inner-ear drug delivery

5.5.1 Surface drug delivery (via coating)

The release of biologically active substances from the
surface of a cochlear implant electrode array is a prom-
ising approach that is currently being addressed by a di-
verse range of research projects (including Transregio
37: subproject C4). The basic approach has already been
outlined in section 5.3.2.

5.5.2 Fluid-based drug delivery (via pump)

Figure 21: Model investigation of electrode prototypes for
delivery of fluids within the cochlea. Shown here: release of a
dye at both the tip and side of the electrode array as a means

of intracochlear fluid application.

Figure 22: Schematic structure of a cochlear implant with
integral micropump (MedEl GmbH) showing a septum port
between the implantable pump (i.e. the circular structure on

the right) and the implant (left).

Fluid-based delivery of biologically active substances by
means of a cochlear implant can be made possible, for
example, by using an implantable pump that is connected
to the CI system. A number of individual electrode proto-
types have already been produced for this purpose
(Figure 21) and have demonstrated the basic feasibility
of such an approach [127], [128]. In addition to the
challenge of creating a usable system that is clinically
safe, an implantable, preferably refillable pump that al-
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lows fluid delivery within the cochlea will be necessary if
this approach is to become reality. The production of in-
dividual prototypes (Figure 22) has already paved the
way for this.
Underlying investigations into fluid movements in the
natural cochlear and the distribution pattern of sub-
stances applied into the cochlea have been carried out
by the team headed by A. Salt [195], [196]. This group
has, for example, developed a technique for sequential
sampling of perilymph from the scala tympani [197].
Computer models have also been developed that allowed
simulation of the distribution of the substances applied
into the cochlea [198], [199].
Animal experimental studies suggest that pump rates of
around 0.5 µl per hour could be used [143], [200]. These
low volumes pose a considerable challenge in terms both
of fluid flow within the cochlea and the positioning of the
possible openings for drug delivery, as well as the accur-
acy of the implantable pump [201]. Here, too, initial in-
vestigations confirm the basic technical feasibility of this
approach and thus lay the foundation for further upcom-
ing clinical application studies.

5.5.3 Anti-inflammatory nanoparticles

A major focus in nanobiotechnology is antimicrobial sur-
face coating of implants. In some studies, it was primarily
nano-silver that proved more effective than other mater-
ials as an anti-inflammatory agent and infection suppress-
ant [202], since it – in addition to the antibiotic effect –
also has lower toxicity. Work on endoprosthetic hip joints
has shown that reduced infection rates, enhanced
biocompatibility and a reasonable useful life for the im-
plants are possible [203]. Furthermore, the perioperative
use of antibiotics can be reduced in this way, so that sil-
ver-coated implants are characterized overall by a highly
favourable cost-benefit ratio. The application of these
techniques for cochlear implants thus appears, in prin-
ciple, to be promising.

5.5.4 Nanoparticles and cochlear implants

The miniaturization of drug carriers down to nanoscale
level has led to strategies being devised whose aim is –
by using nanoparticles – to allow cochlear implant-based
release of drugs for local therapy of the inner ear. Nano-
particles, functioning as non-viral vectors of biogenic
agents (e.g. genes, neuroptrophic factors and steroid
sequences), protected from the effects of the body’s
metabolism, are to be transported specifically to the de-
sired target location and time-released. Integrating a
minute (nanoscale) drug depot into a CI could for ex-
ample, under this approach, lead to targeted release of
neurotrophic factors and eventually to an improvement
in nerve-electrode interaction.
The uptake of nanoparticles has already been demon-
strated in the inner ear [204], as has the fundamental
biocompatibility of the particles used in terms of pre-
serving inner-ear structures and their function [205]. That

nanoparticles can be used in the inner ear has thus
already been evidenced, so that here – by combining the
fluid-based application of substances and nanoparticle
technology – the use of modified biomaterials for CIs is
opening up a new field for inner-ear intervention.

6 Outlook
By taking materials and technologies that already exist
in the field of cochlear implantation and combining them
with new approaches aimed at optimizing the biomaterials
used, a wide range of possibilities is opened up for further
advances in these implants. In particular, the fact that
scope is being incorporated for surface functionalization
of conventional materials, for introducing new implant
materials and also for developing strategies on local drug
delivery, indicates the prospects that are emerging for
additional improvements in biocompatibility and for op-
timizing the nerve-electrode interface. Both approaches
could thus, in the long term, lead to a marked functional
improvement in the implant systems currently in use.
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