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the influence of visual tasks on short and long-term memory for visual features was investigated 
using a change-detection paradigm. subjects completed 2 tasks: (a) describing objects in natural 
images, reporting a specific property of each object when a crosshair appeared above it, and (b) 
viewing a modified version of each scene, and detecting which of the previously described objects 
had changed. When tested over short delays (seconds), no task effects were found. over longer 
delays (minutes) we found the describing task influenced what types of changes were detected in 
a variety of explicit and incidental memory experiments. Furthermore, we found surprisingly high 
performance in the incidental memory experiment, suggesting that simple tasks are sufficient to 
instill long-lasting visual memories.
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IntroductIon

During everyday life people are engaged in many tasks which rely 

heavily on visual information about the environment around them. 

Different tasks have different informational demands: Finding a sticky-

note on your desk requires searching for a yellow rectangle among desk 

clutter, whereas writing on the same note requires details about the 

orientation of the paper’s surface and the location of your pen. Given 

the wide range of details which can be extracted about an object, it has 

been argued that people cannot process them all equally. Instead, they 

preferentially process the details of an object which are relevant to their 

current task (Hayhoe, 2000). Eye tracking in block-pattern copying ex-

periments has revealed that task relevant blocks often receive multiple 

fixations, and the order of the fixations suggest that just one aspect, 

such as the color, or the location of an object is acquired during a single 

fixation (Ballard, Hayhoe, & Pelz, 1995). Neurophysiology work in 

monkeys has shown that task-relevant stimuli produce much stronger 

responses in many visual areas of the brain, such as LIP (Kusunoki, 

Gottlieb, & Goldberg, 2000) and V4 (Connor, Gallant, Preddie, & Van 

Essen, 1996). Even in early visual areas, such as V1, the firing rates of 

neurons are modulated by both visual input and the monkey’s current 

task (Crist, Li, & Gilbert, 2001). Task-dependent modulation of neural 

firing seems to be present at all levels in the visual system. 
 In this paper we investigate if the greater degree of processing 

for task-relevant features results in a more long-lasting representation 

of those features in visual memory for natural objects. We call this 

hypothesis “the task-relevant memory advantage”. It predicts that the 

features of objects which are relevant to a person’s current task will be 

more accurately recalled later. We hypothesize that this is driven by 

two mechanisms: (a) visual memory encodes the features of objects 

at different levels of strength1, and (b) the strength is modulated by 

how much those features are related to the subject’s current task. In this 

work we measure the task-relevant memory advantage in a variety of 

human psychophysical paradigms which also allow us to investigate 

the capacity of visual memory for natural scenes, and the extent that 

visual memories are formed purely by the act of engaging in simple 

tasks. Understanding how memories are formed during tasks is par-

ticularly important, since our every day life is predominantly driven 

by tasks. If the nature of each task influences what kinds of features 

are encoded, then the representations (both long and short term) that 

people form about their environment will reflect the tasks they engage 

in. 

 Most work on visual memory for natural scenes has focused 

on what objects are encoded, but not which aspects of those objects. 

Rensink, O’Regan, and Clark (1997) showed that people repeatedly 
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missed large changes to natural scenes when made between 80 ms grey 

masks. Some changes, however, were noticed more easily than others 

(those designated as “central interest objects” in a norming study where 

subjects wrote a short sentence describing the scene), suggesting that 

some aspects of a scene are significantly more likely to be encoded 

in memory. Eye-tracking studies using the same stimuli (O’Regan, 

Deubel, Clark, & Rensink, 2000) showed that subjects were more likely 

to look at central interest items, which raises the possibility that the 

advantage for detecting changes to these items is due to a bias to fixate 

them. Interestingly, looking at a changing item did not always lead to 

change detection. Even when subjects looked directly at the location of 

change, 40% of the time they did not notice when a change occurred 

during a blink. This suggests that subjects did not encode everything 

near fixation. What was being encoded, however, is difficult to infer 

from their data. The authors suggest that subjects, while often attend-

ing to the objects near the center of gaze, were sometimes attending to 

objects outside the center of gaze instead. A plausible alternative in-

terpretation of the data, however, is that at any given moment subjects 

were only processing certain features of the objects at the center of gaze 

and changes were only detected when those features changed. 

 The change detection literature has lead to some debate about 

the visual memory capacity for natural scenes. The Rensink et al. 

(1997) study is sometimes cited as evidence that visual memory is 

very limited, because people have such difficulty detecting changes 

(e.g., Noe, Pessoa, & Thompson, 2000). However, change blindness 

could be due to other factors, such as failures in the comparison 

process (Hollingworth, 2003; Simons & Rensink, 2005). Indeed, later 

work has shown that some aspects of natural scene memory can be 

surprisingly better than suggested by earlier change detection litera-

ture. Hollingworth (2004) showed that visual memory for the objects 

in computer rendered indoor scenes is quite accurate if subjects are 

forced to attend to the objects in a controlled order, and asked to detect 

changes to the previously attended objects in a Two-Alternative Forced 

Choice (2AFC) paradigm. Visual short-term memory (the last one or 

two items attended) was nearly perfect, and visual long-term memory 

for scenes (and many of the objects within them), though less accurate, 

persisted for several minutes. While subjects did forget many of the ob-

jects they fixated, they nonetheless remembered specific visual details 

about hundreds of recently fixated objects. How complete, however, 

were the representations subjects formed? It is possible that when peo-

ple encode an object in visual memory they are able to accurately rep-

resent all of its features. On the other hand, in most of Hollingworth’s 

work, subjects only had to search for a single type of change (object 

replacement), which may have limited the types of features subjects 

needed to encode. Visual memory for all types of features may not 

have been equally long-lasting. Converging evidence for this comes 

from the work of Tatler, Gilchrist, and Rusted (2003). Subjects freely 

viewed natural scenes, and then were tested immediately in a 4AFC 

paradigm on either the presence of items in the scene, their location, 

color, or shape. It was found that the longer subjects viewed the scenes, 

the better their memory for all of these features, however the rate of 

improvement varied for different features; for instance color memory 

did not improve much after 5 s of viewing, whereas shape memory 

was still improving significantly even after 10 s. This suggests that 

features were encoded at different levels of strength initially, and with 

additional viewing time the encoding strength of those features could 

be improved. 

 In our prior work we also found evidence for selective processing 

of different features of objects (Triesch, Ballard, Hayhoe, & Sullivan, 

2003; Droll, Hayhoe, Triesch, & Sullivan, 2005). Subjects were given 

the task of sorting colored blocks onto different conveyor belts based 

on their visual features in a Virtual Reality (VR) simulation. On a small 

percentage of trials, a change was made to a block while the subject 

was moving it. Even though the changed block was at the center of 

attention, many of the changes were missed, even when subjects were 

explicitly instructed to monitor for changes. Changes were least likely 

to be missed, however, when they were to the task-relevant features of 

the block. This suggests that task-relevant features of individual objects 

can receive preferential encoding in visual working memory. This re-

sult is somewhat surprising in light of the proposal made by Luck and 

Vogel (1997) that visual working memory can accurately store three or 

four objects, independent of the number of features of those objects. If 

the number of features does not matter, why would people only encode 

some features, or encode those features at different levels of strength? 

Our result could be made compatible with Luck and Vogel’s view if it 

is assumed that engaging in an active task prevents people from using 

their memory to its fullest capacity. Recently, however, other studies 

very similar to Luck and Vogel’s have found that the visual complexity 

of the objects decreases the number of objects that can be accurately 

maintained (Wheeler & Treisman, 2002; Delvenne & Bruyer, 2004; 

see also Alvarez & Cavanagh, 2004, for converging evidence from a 

different paradigm). If the number of features that can be represented 

accurately is limited, then it is sensible that our visual memory system 

minimizes the encoding of task-irrelevant features. 

Other researchers have also used VR to explore how interacting 

with an environment can influence visual memory and change detec-

tion. Wallis and Bülthoff (2000) had subjects drive or passively observe 

a VR driving simulator. They found subjects were more likely to detect 

changes to items near the road, and that this effect increased when sub-

jects had to drive the simulator, rather than just passively observing a 

pre-recorded route. While this provides further evidence that a task can 

influence what objects people encode in memory, it does not speak to 

whether the encoding of specific features is influenced as well. Similarly, 

Dornhoefer, Unema, and Velichkovsky (2002) had subjects pretend they 

were driving a car while viewing static pictures of roads and found that 

change detection was better for driving related changes (pedestrians 

and vehicles) than for driving unrelated changes (trees and signs). This 

suggests that a task can influence which objects in natural scenes are 

likely to be encoded in visual memory. This was not the central ques-

tion of interest to their research, however, and thus they did not control 

for low-level saliency effects or include a condition were subjects had 

to pretend to engage in a non-driving task. It is therefore, at best weak 

evidence of task-effects in natural scenes, and also does not speak to 

whether the encoding of different features is influenced in natural tasks.
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In the present work we ask if the task-relevant visual memory ad-

vantage that we found in VR also applies to pictures of natural scenes, 

specifically the same images used by Rensink and O’Regan in the stud-

ies described earlier. There are important differences between prior 

change detection research with natural scenes and our virtual reality 

experiments. The VR world is interactive and full of movement, but is 

visually simple and looks almost the same between trials, whereas the 

research with natural scenes uses highly complex, but static stimuli, 

and entirely new images are shown on each trial. Because of these dif-

ferences, subjects show different visual memory capacities for objects 

in these experiments. Specific details of many objects in natural scenes 

can be remembered quite accurately over the period of several minutes. 

A specific configuration of blocks in our VR experiments, however, is 

likely to be lost as soon as a new trial with a new configuration of blocks 

begins. Thus, the task effects found in the VR experiments may be due 

to the greater difficulty subjects have remembering the stimuli. 

In the following experiments we will explore how a simple describ-

ing task influences performance at detecting changes to different types 

of features of objects in natural scenes. In the first experiment we will 

show that when tested immediately after describing a scene, no task 

effects are found. In three following experiments we show that when 

tested over longer delays, task effects are found under a variety of con-

ditions. 

ExpErImEnt 1: ActIvE vIEwIng tAsk 
And ImmEdIAtE mEmory tEst

This experiment tests if a simple task - describing a single feature 

(color, identity [name], or location) of several objects within a scene - 

would selectively improve people’s memory2 for the feature described. 

Memory for the scenes was tested immediately after subjects described 

each scene by asking subjects to locate a change made to that scene. 

According to the task-relevant memory advantage hypothesis, subjects 

who describe the color of objects should perform better at detecting 

color changes, subjects who name objects should be better at detecting 

the addition or removal of objects from the scene, and subjects who 

describe the location of objects in the scene should be better at detect-

ing that an object had moved within the scene. A baseline condition 

with no task was also included to compare the effect of having an active 

task versus just memorizing the scene. 

The describing task controlled which objects subjects attended to 

and the order that they attended to them. This allowed us to test two 

additional questions: (a) To what extent do recently attended objects 

have a more detailed representation in memory? (b) Does Rensink’s 

central versus marginal object distinction derive exclusively from the 

increased likelihood that subjects will fixate those objects?

Method
StimuluS

Sixty college students participated in the experiment (15 per condi-

tion). In this experiment, and all that follow, subjects were replaced if 

they were colorblind or had seen any of the stimuli before. 

AppArAtuS 
In this experiment and all that follow, stimuli were presented on 

a 15” LCD display at an average viewing distance of 0.6 m (subjects 

were free to move their head). The experiment was programmed using 

Matlab and the PC Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

mAteriAlS
We used 48 pictures of indoor and outdoor natural scenes taken 

from Rensink et al. (1997).  In this stimulus set each original scene was 

3

Original (0.5 s)

+ crosshair (2 s max)

Say {name, 
color, or
location}
then click to 

continue.

Repeats 8 
times with 
different 
crosshair 
locations

After all crosshairs 
are shown

1

All crosshairs shown at once
on changed image.

Click on change to continue
(10 s max)

2

Grey mask
(0.5 s)

4

Note: crosshairs enlarged in figure for visibility

Figure 1.

example trial from experiment 1. 
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paired with a changed version generated by photo manipulation soft-

ware. Either an object’s color was changed (color change), its location 

was changed (translation change), or an object was removed or added 

to the scene (object change). Sixteen changes of each type were includ-

ed. Half of the changes were made to objects rated as “central interest” 

based on the criteria that subjects frequently mentioned these objects 

when instructed to describe the pre-change version of these scenes in 

an independent norming study. The other half of changes were made 

to “marginal interest” objects, so designated because subjects did not 

mention them in the norming study. The low-level salience of the 

changes (number of different pixels, luminance, and color differences) 

were made roughly equal across central and marginal interest items. 

Full details of the construction of these stimuli can be found in Rensink 

et al. (1997). We also generated 14 practice stimuli which had the same 

manipulations as the Rensink stimuli, but with more obvious changes 

so that subjects could quickly learn what was expected of them.

Eight objects were selected for subjects to describe in each scene, 

equally distributed between central interest and marginal interest ob-

jects as long as a sufficient number of objects appeared in the scene (in 

a few scenes there were only three central interest objects, in which case 

five of the objects selected would be of marginal interest). Crosshairs 

were placed on top of these objects during the experiment. One of the 

eight crosshairs was on top of the object that would change in the scene 

(or on top of the location where an object would appear), centered on a 

location where the pixels would change between images. If the change 

in the scene involved an object moving (translation change), the cross-

hair on top of that object would also move; otherwise the placement of 

crosshairs was identical between the original images and their changed 

counterparts. 

procedure
Subjects had two tasks (see Figure 1). They completed both tasks 

for a single scene before moving on to the next one. First, they viewed 

a single version of a scene and described eight objects in the image. 

These objects were designated by displaying a crosshair over each ob-

ject, one at a time, for up to 2 s. After describing the object, subjects 

would click the mouse button to advance to the next crosshair. If they 

did not click in time, the next crosshair would appear automatically. 

Before displaying each crosshair the scene was shown unobscured for 

500 ms. Crosshairs were displayed in a random order between scenes 

and subjects, counterbalanced to uniformly distribute the length of the 

time intervals between describing the object that would change and 

searching for that change.

After all eight objects were described the scene was replaced with a 

grey mask for 500 ms, and then the subjects began the change detection 

task. The changed version of the scene was shown and all eight cross-

hairs for that image were superimposed on the screen at once. Subjects 

had 10 s to click on the crosshair that was on top of the changed object, 

and were told to guess if they were unsure.

Subjects were split into four between group conditions with differ-

ent versions of the scene describing task: (a) name objects (name task), 

(b) say the dominant color of objects (color task), (c) say if the object 

was in the foreground or background of the scene (location task), or (d) 

a taskless control where subjects just memorized the objects under the 

crosshairs and did not have to describe anything. In the control condi-

tion subjects viewed each crosshair for 1.13 s, which was the average 

crosshair viewing time across subjects in the other three conditions. 

Each subject completed just one condition, but all subjects saw the 

same set of images, crosshair locations, and object changes.

Results and discussion 
tASk effectS 

We analyzed change detection accuracy using a repeated measures 

ANOVA in a three change type by three task analysis (the taskless 

condition was not included). There was no main effect of subject task, 

F(2,42) = 2.9, p = .06, though the p value was close to the standard .05 

A. Robinson & J. triesch •  Visual memory for natural scenes

Figure 2.

 Accuracy on change detection task for experiment 1. dashed line represents chance performance. 
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threshold for significance, suggesting that the type of task may have 

had an impact on overall accuracy rate for all change types. There was 

a strong main effect of change type, F(2,84) = 131, p < .0001, driven 

by the difficulty subjects had detecting translation changes. Indeed, 

subjects were only slightly above chance detecting translation in our 

paradigm (19% vs. chance at 12.5%).  There was, however, no signifi-

cant interaction effect, F(4,84) = 1.4, p = .25, suggesting that all change 

types were equally detectable across tasks (see Figure 2). 

The lack of interaction suggests that the describing task had no ef-

fect on our subjects’ ability to recall different features of the scenes over 

short retention intervals. To assess this directly, we collapsed across 

color, location, and name tasks, and compared them to the taskless 

control condition. A repeated measures ANOVA found that the task-

less condition was not reliably different from the collapsed conditions; 

main effect F(1,58) = 0.3, p = .5; interaction F(2,116) = 0.2, p = .8. 

This analysis strongly suggests that the performance in the task-

less control condition was equivalent to conditions where subjects 

described the objects in scenes. This implies that subjects can conduct 

the describing task and memorize the scene in parallel about as well 

as when just focusing on memorizing the scene. The describing task 

does not interfere with or enhance scene memory over the retention 

intervals tested in this experiment.

order effectS
Change detection performance did not depend on the number of 

intervening crosshairs between looking at the object that would change 

and conducting the change detection task. We quantified this with a 

linear regression analysis, which measured how well change detection 

performance could be predicted by how many additional crosshairs 

were displayed in a scene after a crosshair had been placed over the 

item that would change. The fit (R = .01) indicates no linear relation-

ship between these variables. In addition, visual inspection of the data 

did not suggest that any higher-order relationships were present. 

If subjects had been relying on short-term memory, we would 

have expected at least some change detection advantage for the most 

recently described items. The lack of order effects suggests that change 

detection performance was driven by long-term memory of the scene 

(see the general discussion section at the end of this paper for full 

consideration of what type of memory was tested). These representa-

tions appear to be fairly long-lasting, as once formed they did not fade 

significantly with time (subjects spent an average of 13.6 s describing 

each scene) or with interference from focused attention on up to seven 

other objects.  

item effectS
Change detection performance was compared for “central” and 

“marginal” interest items in a repeated measures ANOVA with two 

factors: “interest” and change type (Figure 3). Translation changes were 

not included since performance was near chance for these items. In ad-

dition, we did not include the subjects who participated in the taskless 

condition, since the lack of task may have left extra time for subjects 

to make extra saccades during or between trials. There was a main 

effect of interest, F(1,44) = 75, p < .0001, with changes to central inter-

est items detected more often than for marginal interest items. There 

was also a main effect of change type, F(1,44) = 7, p < .01, with color 

changes being easier to detect. In contrast to the central and marginal 

interest changes, the low-level salience of the color and object changes 

were not equated, so this result is likely due to how these stimuli were 

constructed, rather than a general advantage for remembering colors. 

Finally, there was an interaction between factors, F(1,44) = 18, 

p < .0001, with color changes being less influenced by the “interest” 

manipulation.

Conclusions
 Previous eye tracking studies with the same stimuli have shown that 

subjects are more likely to saccade to central interest items (O’Regan 

et al., 2000). This raises the possibility that the change detection ad-

vantage for central interest objects within a scene may be reducible to 

what objects subjects’ saccade to, since changes to saccade targets are 

more likely to be noticed (Henderson & Hollingworth, 2003). O’Regan 

argues that a bias to saccade to central interest items does not explain 

the effect since subjects sometimes detect changes to objects outside of 

the fixation, suggesting that change detection is driven by the location 

of attention, not fixation. While this is a plausible argument, it doesn’t 

rule out that a fixation bias is causing the central item advantage.

In our data, however, subjects were always forced to attend to the 

object that would change, even when it was of marginal interest to the 

scene. While it is possible that subjects made additional fixations on the 

central interest items in the 500 ms gap between trials, our experience of 

running ourselves in pilot versions of this experiment suggests that this 

A. Robinson & J. triesch •  Visual memory for natural scenes

Figure 3.

Accuracy of change detection for central and marginal interest 
items in experiment 1.
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was exceedingly rare. Identifying and describing each object in 2 s or 

less was fairly demanding, and the 500 ms pause was just enough time 

to prepare for the onset of the next trial. In addition, we found that it felt 

very unnatural to look away from an object while describing it. Thus, 

fixation tendencies do not appear to explain the effect, or at least play a 

much smaller role than in free viewing paradigms such as O’Regan et 

al. (2000). Instead, it appears that memory for central interest items re-

ally is better. One possible contribution to this effect is that the central 

interest items play a more semantically important role in the scene; if 

they are added or removed it changes the interpretation of the scene. 

This semantic change serves as an additional cue for the target of the 

change. Indeed, object changes were much more likely to be detected 

for central than marginal interest items. This theory also explains why 

color changes are less impacted by the central versus marginal interest 

manipulation: Changing the color of these items rarely if ever changes 

the interpretation of the scene. Note, however, that there was a small 

improvement in color change detection rate for central interest items. 

This suggests an additional advantage for remembering central interest 

items which cannot be due to the color change influencing the semantic 

interpretation of the scene. Perhaps this is due to additional fixations 

on central interest items made in the gap between trials, though as dis-

cussed above we feel that these extra fixations would have been very rare.

We found no evidence for an interaction between the describing 

task and memory accuracy. It is somewhat surprising that describing 

precisely the feature of an object that will change confers no advantage 

for detecting that change only a few seconds later. It seems that the 

processing necessary to conduct the describing task did not influence 

the representations subjects formed of the scene, apparently refuting 

our hypothesis that the task-relevant features of objects are better en-

coded in memory. 

On the other hand, the change detection task was performed al-

most concurrently with the describing task. Perhaps describing each 

object did not consume all of subjects’ attention, and subjects could 

also concurrently deploy attention to memorizing additional features 

of the object they were describing. Since subjects had many chances 

to practice change detection, they may have learned precisely what 

features to encode and maintain in memory to do well on the task, 

and this knowledge may have allowed them to diminish any effects 

the describing task would have otherwise had on how objects in the 

scene were encoded in memory. Indeed, Tatler et al. (2003) suggests 

that the amount of time people have to view a scene influences how 

many features of the objects in that scene are remembered, with 

more time leading to more features. Since completing the describ-

ing task took a while, subjects likely had enough time to also encode 

features they knew would be useful for the change detection task.

Another potential reason why the describing task had no impact 

on performance was that subjects were able to retain a great deal of 

information about the scenes over short periods of time. Irrelevant de-

tails for the describing task might have been encoded less strongly than 

task-relevant details, but perhaps over the retention period tested, ei-

ther level of encoding was sufficient to maintain performance. Perhaps 

over a longer retention period, however, the differences in encoding 

strength would become more detectable. In Experiments 2-4 we will 

empirically test these two possibilities.

ovErvIEw of ExpErImEnts 2, 3, And 4

In the following series of experiments we switch to testing longer-

term memory, using a paradigm where the retention period is                                

1-4 min instead of just a few seconds). This allows us to test the effect 

of the describing task on memory under conditions of either explicit 

or incidental encoding. In Experiment 2, we show that task effects on 

memory do develop over longer retention intervals, by giving subjects 

a surprise memory test after all scenes are described. In Experiment 3, 

we show these task effects remain even when subjects know that their 

memory for the scenes they describe will be tested but do not know 

what sort of test or what features will be tested. In Experiment 4, we 

show that when subjects learn what features will change, the describing 

task still influences longer-term retention of those features, though less 

consistently than in Experiment 3.

ExpErImEnt 2: surprIsE mEmory tEst 
AftEr dEscrIbIng scEnEs
The describing task should have maximal impact on what subjects 

remember about a scene when subjects are unaware that there is any-

thing expected of them other than describing the scene. In addition, if 

differences in task-relevant and task-irrelevant encoding are difficult to 

detect over short retention periods, then with more delay these differ-

ences might become accentuated. 

These two manipulations are naturally combined by giving 

subjects a surprise memory test after they have finished the describ-

ing task for all scenes. In this new paradigm, change detection per-

formance will depend on features that are encoded in long-term 

visual memory as an automatic byproduct of the describing task. 

Method
SubjectS

Forty four college students, all of whom were new subjects, partici-

pated in the experiment (22 per condition). 

Stimuli
 Five scenes with color changes and five scenes with object changes 

were selected from Experiment 1. To maximize power we selected only 

the scenes where subjects had detected changes 50% (± 5%) of the time. 

This criterion excluded all translation changes. Four additional images 

were selected for the subjects to practice the describing task; change 

detection was not conducted for these images.

procedure 
Subjects were told they were in an object naming experiment, 

and that their responses would be recorded. First they conducted the 

describing task for the four practice images and then the ten experi-

mental images, using the same crosshair locations as in Experiment 1. 

A. Robinson & J. triesch •  Visual memory for natural scenes
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In a between subjects manipulation, half described the color of objects 

(color task) and half named the objects (name task). The timing for the 

describing trials was identical to Experiment 1. Subjects described the 

versions of scenes that had been manipulated digitally, so that change 

detection trials would be conducted on images free of any manipu-

lation artifacts. This was done to prevent subjects from searching for 

manipulation artifacts to aid in guessing which object changed. Since 

the object change trials were created by digitally removing an object 

from the scene, this meant that during change detection, the five object 

change trials always showed objects being added to the scene. 

After describing all images, subjects were shown new instructions 

informing them that they were really in a memory experiment and 

explaining the change detection task. Their change detection perform-

ance was then tested on the ten experimental images, shown in the 

reverse order from when subjects had described them, so that a wide 

range of retention intervals would be tested (on average, as short as 

55 s, and as long as 262 s, depending on whether the image was the 

last one described, or the first one, respectively). Since the experi-

ment was self-paced, there was minor variability in the length of the 

retention intervals tested. Unlike Experiment 1, there was no time out 

for the change detection trials, since early piloting found that many 

subjects would otherwise timeout on the first few change detection 

trials. Instead, when 10 s were up, the computer beeped and subjects 

were verbally reminded to “just guess” if they had to. At the end of 

the experiment we administered a questionnaire to see if subjects had 

guessed that they should try to memorize the images they were naming 

during the first half of the experiment. 

Results and discussion

timing 
Subjects spent an average of 16 s per image during the describing 

task, 55 s reading the instructions for the surprise memory test, and 

then 7 s per image searching for changes. The average time spent on 

each task between subjects in the color condition and name condition 

differed by no more than 2%. The length of time spent inspecting each 

image to detect the change suggests that subjects conducted a serial 

search of the image, guided by the location of the crosshairs, and that 

change detection was not driven by bottom-up processes immediately 

drawing attention to the change location.

tASk effectS
 In contrast to Experiment 1, the percent correct data collected in 

this experiment was markedly non-normal, probably due to the smaller 

number of scenes that each subject was tested on. For this reason we 

conducted planned comparisons between different conditions using 

the nonparametric Mann-Whitney U test (see Figure 4).  

Subjects who completed the name task were at a relative disadvan-

tage at detecting color changes, as compared to subjects who described 

the color of the objects (U = 164; p = .022). This suggests the subjects 

who named objects did not encode the color of the objects as strongly 

because it was of less relevance to their task.

Subjects who completed the color task were at a relative disadvan-

tage at detecting object changes as compared to subjects who named 

the objects in the scene (U = 144, p = .007).  This is somewhat remark-

able, given that the color under the crosshair changed by virtue of the 

object under the crosshair changing. This suggests these subjects did 

not form as long-lasting a representation of the identity of the set of 

objects they described, even though they could later recall what color 

those objects were.

QueStionnAire
At the end of the experiment we asked subjects to write the answer 

to two questions: “Before you started the experiment, did you think it 

would involve any memory tests?” and then “Did you make any effort 

to memorize what the pictures looked like?”. Out of 44 subjects, 42 gave 

an unequivocal no to both questions. For 2 subjects, the answers were 

more ambiguous; 1 subject in the object naming condition responded 

“Not really” to both questions, and 1 subject in the color condition 

responded “Yes” to the first and “No” to the second. This suggests that 

our cover story about studying object identification was convincing, 

and that most, if not all subjects, did not attempt to memorize the ob-

jects they viewed. 

overAll AccurAcy
Given the long delay between describing the images and the memory 

test, and the fact that subjects were not expecting the memory test, we 

were surprised to find that subjects did so well at change detection. In 

Experiment 2, on average subjects correctly identified 59% of object 

changes, and 30% of color changes. In comparison, in Experiment 

1 subjects detected 50% of the changes in the same images. Purely 
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Figure 4.

Performance on change detection task in experiment 2. dashed line 
represents chance performance.
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random guessing for these stimuli would lead to only 12.5% correct3, 

suggesting that subjects were remembering quite a lot of detail about 

the scenes. 

Conclusions
Our subjects exhibited long-lasting visual memory for the details 

of natural scenes. These memories were formed even though our 

subjects had no prior reason to remember the scenes. Furthermore, 

this experiment shows that a subject’s task can influence memory for 

particular features of natural scenes when subjects were not instructed 

to memorize anything. Note, however, that subjects were also able to 

detect changes that were not task relevant at an above-chance level, 

demonstrating that multiple features were encoded, including non-

task relevant features. This suggests that different features of an object 

can be encoded with different levels of strength. The stronger the en-

coding, the more likely they are to recall the feature when tested later. 

Since subjects did not know they were in a memory experiment, this 

difference cannot be due to different levels of active rehearsal. Rather, 

it suggests that people’s default strategy while viewing natural scenes is 

to most strongly encode the details which are relevant to the person at 

that time. Since the describing task biased which details were impor-

tant, it biased which features were best encoded in long-term memory. 

If, however, all details where known to be important (because of an 

upcoming memory test) perhaps people would be able to encode all 

features of an object with equal accuracy, even if they did not know 

specifically which features were important. Alternatively, the difference 

in performance could be due to the difference in delay, with task effects 

showing up only after greater delays. 

ExpErImEnt 3: ExpEctEd mEmory 
tEst AftEr dEscrIbIng scEnEs

This experiment tests how much of the task effects in Experiment 2 

were due to concealing the memory test from subjects until after all 

images were described. A secondary question is if overall memory per-

formance would increase if subjects knew that remembering the scene 

would be useful. Finally, the presentation procedure was modified to 

facilitate direct comparisons of task-relevant and irrelevant recall rate 

over different retention intervals. 

Method
obServerS

Forty four college students, all of whom were new subjects, partici-

pated in the experiment (22 per condition). 

Stimuli 
Same as Experiment 2.

procedure 
Identical to Experiment 2, except that before describing any im-

ages subjects were told they would be tested for subtle visual details of 

the scenes they described, and they should try to remember as much 

about the scenes as they could. After describing all images, the same 

instruction text as in Experiment 2 was presented to explain the exact 

procedure of the memory test.

In addition, we manipulated the random ordering of images to re-

duce variability between subject groups. Twenty two random orderings 

of scenes were created and each was used once for subjects completing 

the color task and once for the subjects completing the name task. In 

this way, between groups the same set of random stimuli orders were 

seen, so that any difference in performance would be due to subject 

variation and the subjects’ task, and not due to the order in which 

stimuli were presented.

Results and discussion 
timing

On average, subjects spent 17 s describing each image, 47 s reading 

the change detection instructions after finishing the describing task, 

and 7 s per image searching for changes. The difference between aver-

age timings for the two tasks was at most 2%. Timing was also very 

similar to that of Experiment 2, except for reading the instructions 

between describing scenes and searching for changes, which subjects 

finished an average of 8 s quicker in this experiment. 

tASk effectS 
The describing task influenced the features that subjects could re-

call about the originally described images (see Figure 5).

Though it was not quite statistically significant, subjects who com-

pleted the name task were at a relative disadvantage at detecting color 

changes, as compared to subjects who described the color of the objects 

(U = 169, p = .07). Subjects who completed the color task were at a rela-
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Figure 5.

Performance on change detection task in experiment 3. 

dashed line represents chance performance.

 

0 

20 

40 

60 

80 

100 

%
 C

or
re

ct
 C

ha
ng

e 
D

et
ec

tio
n 

Color Object 

Change Type 

Name 
Color 

Error Bars: 

 ± 1 SEM 

Subject Task p = .02 p = .07 

http://www.ac-psych.org


AdvAnces in cognitive PsychologyReseARch ARticle

http://www.ac-psych.org2008 • volume 4 • 1-149

tive disadvantage at detecting object changes as compared to subjects 

who named the objects in the scene (U = 143, p = .02).  

overAll AccurAcy 
In Experiment 3 accuracy increased over Experiment 2 by an 

average of 5% (see Figure 6). This increase, however, was not sta-

tistically reliable when we compared the average performance of 

subjects in Experiment 3 to the average performance of subjects in            

Experiment 2 (U = 803, p = .17). Thus, knowing that the experiment 

involved memory had at most a small effect and possibly no effect on 

how well subjects detected changes.

order effectS
The task-relevant advantage was only found in Experiments 2 and 

3, where the delay between describing images and change detection 

was much longer than in Experiment 1 (on average, 46 to 253 s longer, 

depending on the serial order of each image). Thus the length of delay 

may play an important role in measuring the task-relevant memory 

advantage. To explore this further, we analyzed how subjects’ change 

detection performance varied as a function of how long ago they de-

scribed the stimulus (see Figure 7). 

For color changes there is a trend of decreasing accuracy with 

increasing retention intervals, for both task relevant and irrelevant 

conditions (the best fit lines are y = -4.6x + 18%, and y = -2.4x + 15%, 

respectively; x represents retention interval), though the data is noisy. 

The task-relevant advantage exists for seven out of ten retention inter-

vals, suggesting that task-relevance improved color recall for most of 

the duration of the experiment. Extrapolating from the best fit lines, 

however, it appears that the task-relevant advantage, as well as the 

majority of memory for object color would disappear if tested much 

beyond the longest intervals in this experiment. 

For object changes the decrease in performance is less pronounced 

for both task relevant and irrelevant conditions (the best fit lines are      

y = -1.6x + 65%, and y = -0.5x + 51%, respectively). For eight out of ten 

retention intervals, subjects who named the objects were more accurate 

than subjects who described object color. The task-relevant advantage 

appears to be present for the duration of the experiment, and perhaps 

would extend over even longer delays if tested. Across conditions, it 

appears that the rate of decay for task relevant and irrelevant features 

is similar, though it would appear that task-relevant features do decay 

somewhat faster. 

Our data suggests that the task-relevant advantage develops some-

where between when subjects describe the scene and when they finish 

reading the change detection instructions. The advantage might be 

present immediately when the individual objects are first encoded in 

working memory, though the lack of task effects in Experiment 1 pro-

vides tentative evidence against this. Alternatively, the advantage could 

occur via (relatively) task-sensitive transfer to a longer-term memory. 

Perhaps the initial accessibility of relevant and irrelevant details is simi-

lar, but by 46 s later, task irrelevant features are less strongly encoded.

 

Conclusions
Even though subjects knew a memory test was imminent, their per-

formance was still modulated by the demands of the describing task. 

People cannot encode all the features of an object with equal strength 

merely by knowing that such maximal encoding would be useful. 

General instructions like “remember everything you can” appear to 

have at most a minimal effect on how much (or what types) of visual 

details are encoded in long-term memory. However, what if subjects 

knew exactly what features were useful to encode for the change detec-

tion task? Would the describing task still influence their memory?
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ExpErImEnt 4: dElAyEd mEmory tEst 
AftEr chAngE dEtEctIon trAInIng 
Experiments 2 and 3 tested extended retention intervals and found 

task relevant encoding advantages. In both of these experiments sub-

jects did not know what sort of features would change, or how their 

memory would be tested. Perhaps the task-relevant advantage was 

found because, without explicit guidance, the strength of visual memo-

ries was governed by the level of processing of the different features 

necessary for the describing task. If a person has explicit long-term 

goals, however, such as memorizing the details likely to change, it may 

be possible to reallocate memory to the features which are most useful 

for these long-term goals. Alternatively, it may be that the describ-

ing task necessarily influences the strength of long-term memory for 

the task-relevant features. Experiment 4 tests this by having subjects 

practice the change detection task 24 times before memory accuracy is 

measured over extended intervals. This practice should be sufficient to 

learn what details are most useful to encode, and allow us to test if such 

knowledge can override the effects of the describing task. By adding 

practice trials, however, we also introduce new variation in the delay 

between the describing task and the change detection task. Previously 

subjects were delayed by reading instructions for the change detection 

task after finishing the describing task, but now subjects first read those 

instructions during the practice trials. We expected subjects to speed 

up when reading the instructions again during the experimental trials; 

we ran one version of the experiment which allowed this (Experiment 

4a), and another which forced a delay of 47 s between describing the 

last scene and starting change detection (Experiment 4b). 

Method
SubjectS

Eighty eight college students participated in this experiment, all of 

whom were new subjects (44 were run in Experiment 4a, and 44 in 

Experiment 4b). 

Stimuli
Experimental stimuli were the same as in Experiments 2 and 3. The 

training stimuli were taken from Experiment 1, with all translation 

changes removed, for a total of 24 practice scenes.

procedure 
Subjects first practiced the paradigm from Experiment 1, where 

change detection followed immediately after describing a scene. We 

used ten images that included many obvious changes, selected to help 

subjects learn what changes to expect. Then subjects practiced the pro-

cedure from Experiment 3 on another set of 14 images. Before begin-

ning the final procedure, subjects rested for 30 s to mitigate any fatigue 

caused by the 24 practice trials. Then they completed an exact replica-

tion of Experiment 3, which included reading all the instructions again 

to preserve timing between tasks. In Experiment 4a subjects started 

the change detection task immediately after reading the instructions, 

whereas in Experiment 4b subjects also read the instructions, but were 

not allowed to proceed to the next task until a total of 47 s had passed. 

These subjects were to sit quietly and wait during any remaining time 

between finishing reading the instructions and the end of the 47 s delay.  

We also used the same set of 22 random orderings of the experimental 

stimuli as in Experiment 3.

Results and discussion
timing 

In Experiment 4a, subjects spent 16 s per image on the describing 

task, 30 s reading the instructions for change detection, and then 7 s 

per image looking for changes. The only difference for Experiment 4b 

was that subjects were forced to spend 47 s looking at the change de-

tection instructions. Differences in timing between color and naming 

tasks were minimal for Experiments 4a and 4b. Subjects in the color 

task were faster by 9% on describing trials, and 6% faster on change 

detection trials.
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tASk effects 
Both Experiments 4a and 4b found significant effects of the 

describing task on change detection rate, though the magnitude 

of the effect was not consistent across conditions (see Figure 8). In 

Experiment 4a object changes were significantly easier to detect when 

subjects had completed the name task (U = 127, p = .006), whereas 

the color changes were not significantly affected by task (U = 196, p 

= .28). Though Experiment 4b showed the same direction of effects, 

the pattern of significance was reversed; statistically reliable task effects 

were found for color changes (U =115, p = .003), but not for object 

changes (U = 210, p = .43).  This difference between Experiments 4a 

and 4b is somewhat surprising given the difference between the two 

is only how long the delay was between the describing task and the 

change detection task. Since different groups of subjects were run for 

Experiments 4a and 4b, it seems likely that much of the difference has 

to do with inter-subject variability, and the difference in delay may 

only contribute negligibly. Since the main question of Experiment 4 

is the impact of training on task effects, the key point is that for both 

Experiments 4a and 4b, task effects were found, in the same direction 

as in Experiments 2 and 3. Since the delay differences were rather small 

(30 vs. 47 s), and not related to the theoretical question of interest, we 

conducted one final analysis where Experiments 4a and 4b results were 

combined to average out any differences. In this final analysis, we still 

found task effects, this time for both types of change (color U = 621, p 

= .003; object U = 659, p = .009). 

Conclusions 
Experiment 4 shows that memory for the features of an object is 

modulated by a task, such as describing a scene, even when an expected 

memory test also places clear demands on what features should be re-

membered best. Though the magnitude of the effect is not as consistent 

across change types as in Experiments 2 and 3, the fact that a statistical-

ly significant effect was found in both Experiments 4a and 4b suggests 

that task effects on memory will generally be found whenever memory 

is tested over a significant delay. The reason that Experiment 1 did not 

find an effect of the describing task appears largely due to the short de-

lay between initial exposure to the scenes and the change detection test.

ovErAll conclusIon And summAry

In this research we investigated how the simple task of describing 

aspects of objects influences the representation of objects in memory. 

Short-term memory did not appear to be influenced by the describing 

task. Longer-term memory, however, was influenced by the describing 

task, whether subjects knew they were in a memory test or not. Even 

when subjects had a chance to learn exactly what kind of details to 

memorize about a scene, the describing task still influenced long-term 

memory for the scenes. 

It is possible that short-term memory would also be influenced by 

the describing task if the memory test was unexpected. This is a dif-

ficult hypothesis to test, however, since at most each subject would only 

be able to participate in one trial. Furthermore, the need for change-

detection instructions presents a lower bound on testing short-term 

memory. In our current experiments reading and understanding these 

instructions for the first time typically takes at least 40 s. A simpler 

change-detection paradigm might reduce this time significantly, but 

even so the subject would be distracted by reading the instructions. 

Thus, extending the current task to a short-term surprise paradigm 

would be exceedingly difficult. In our prior work conducted in VR, 

however, we have found evidence for task-related modulation of the 
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Figure 8.

Performance on change detection task in experiments 4a, 4a, and 4a+4b combined. dashed line represents chance performance. 
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features in short-term memory (Triesch et al., 2003; Droll et al., 2005), 

leaving open the possibility of similar effects for natural scenes, if an ex-

periment could be designed which overcomes the difficulties described 

above. One option would be to use an implicit measure of change 

detection, so that subjects would not have to read or comprehend 

any instructions between viewing the natural scene and being tested. 

One question about the current results is whether the task-relevant 

memory advantage found is due only to visual memory, or whether 

some form of verbal memory is contributing to the effect. The argument 

here is that when viewing a changed scene, and looking at a crosshair, it 

might be possible to recall the specific word that was uttered previously. 

This seems unlikely, however, since subjects in Experiment 1 did not re-

ceive any benefit from describing the objects over just looking at them. 

It is unclear why subjects in Experiments 2, 3, and 4 would have better 

recall of what they said than subjects in Experiment 1. If anything, they 

should be much worse, since accurate verbal memory is maintained by 

actively rehearsing, and subjects had no opportunity to do so because 

they were constantly describing scenes. While there is long term verbal 

memory for scene descriptions, it appears to be fairly abstract, and not 

even sufficient to differentiate between having viewed a picture of a 

scene, or just a verbal description of it (Intraub & Hoffman, 1992).

Our results extend Hollingworth’s (2004) finding that memory 

for natural scenes is quite good, even over significant delays. Our 

work demonstrates detailed, long-lasting memory for the identity of 

objects in a scene and their color. We also show that this memory is 

accurate enough to allow subjects to pick out the changed objects from 

among seven distracters, as opposed to Hollingworth’s task where 

only one target was highlighted in a 2AFC change/no change task. 

An important question is what sort of memory supports this 

ability. The lack of order effects in Experiment 1 shows that subjects 

were not using working or short-term memory to detect changes. 

It is probably unwise, however, to place these memories in the 

same category as long term memories which last days or years. In 

Experiment 3, where retention was measured over the length of the 

experiment, color memory was close to chance by the end of the 

experiment, even when color was task-relevant. This suggests that 

color information lasts several minutes, but not longer. Clearly, peo-

ple can form long-term color memories that last for days or lifetimes, 

but our task did not lead to this. Melcher (2001) has suggested the 

existence of a “medium term” visual memory, which lasts over the 

period of a few minutes, which matches the timecourse we observed. 

On the other hand, detection of object additions was still quite 

good by the end of Experiment 3, though accuracy here too decreased 

with time. This suggests that the representation of the items in a scene 

has relatively different temporal dynamics than the representation 

of surface characteristics of those items. To fully flesh this out, more 

kinds of surface changes should be explored. It is interesting to note 

that in Hollingworth (2004), subjects were also quite good at detecting 

when an object was exchanged for a different exemplar of the same 

category (e.g., one brand of hammer for another), even after several 

minutes delay. Clearly, subjects are remembering more than just the 

category of the objects in the scene; our data suggests not their color, 

but perhaps some other properties such as shape and local texture. 

This is further evidence for a medium-term memory, since long-term 

memory is often thought to be more categorical in nature (Pani, 2000). 

Whether it is truly necessary to posit a medium-term visual mem-

ory system is unclear, however. Perhaps the behavior observed is due 

to different dynamics within a single long-term memory system; this 

is a question for future work. Another question of interest is whether 

subjects were using explicit memory (that is to say, they could identify 

explicitly what changed about the object they clicked on), or if their 

performance was more driven by implicit processes, with most of their 

correct responses driven by correctly “guessing” where the change oc-

curred, without precisely knowing what the change was. We did not 

collect any data that can address this question, but it would be interest-

ing in future work to address this question either in a questionnaire at 

the end of the experiment, or by requiring that subjects also report the 

nature of the change on each trial.

Our findings could be used to argue against the minimal memory 

capacity explanation of change blindness. On the other hand, over 

short intervals, such as in Experiment 1, subjects only detected 60% 

of color or whole object changes, supporting the argument that the 

representation of natural scenes is relatively sparse. One explanation 

for this conflict is that there is a per-scene capacity limit. Only a few 

objects and features can be accurately encoded and maintained for a 

single scene, but when multiple scenes must be remembered, the to-

tal number of objects maintainable increases. Alternatively, the poor 

performance for short intervals might be due to a failure to compare 

the changed item to the memory trace of its pre-changed status, as ar-

gued by Simons, Chabris, Schnur, and Levin (2002); Angelone, Levin, 

and Simons (2003); Hollingworth (2003); Mitroff, Simons, and Levin 

(2004); as well as by Simons and Rensink (2005). This is likely to be a 

small contribution in our paradigm, however, since the eight cued ob-

jects always included the changed object, and subjects had up to 2 s per 

cued item to compare it to the memory trace of its pre-change version. 

We also found that this accurate memory is formed even when 

people make no conscious effort to memorize a scene. When we 

compared performance in Experiments 2 and 3, we found that trying 

to memorize the scene without any idea of what aspects needed to be 

memorized did not improve memory much over the encoding caused 

as a byproduct of engaging in the describing task. This suggests that 

whenever a task causes a person to attend to aspects of a scene, those 

aspects are likely to be encoded into a long-term store. Asking a person 

to memorize a scene is just a different task which causes them to attend 

to the scene, but does not appear to produce a fundamental difference 

in how memory is allocated, unless additional guidance is provided.

Furthermore, tasks, which might be considered distracting, might 

actually elevate the strength of long-term memory beyond what is 

found when no task is given. Experiment 4 showed that even when 

subjects know exactly what aspects of a scene need to be encoded for 

optimal performance on the memory test, a concurrent task such as de-

scribing the scene can improve performance when the demands of that 

task are compatible with the memory test. Thus, in everyday life, where 

people are constantly engaged in tasks, memory may be significantly 
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better than observed in laboratory experiments where subjects are sim-

ply required to remember as much as possible. Whether this improved 

memory for specific features necessitates a decreased memory for the 

task-irrelevant features is a question for future research.

Similar issues have been considered in the verbal and word memory 

literature for some time, though there the question is which words are 

recalled, not what word features. Tulving and Thomson (1973) suggest 

that even for simple lists of words, the experimental context influences 

how words are encoded, and thus, what words are most likely to be 

recalled at test. Another highly related concept from this literature is 

transfer-appropriate processing. Morris, Bransford, and Franks (1977) 

showed that the ability to recall a word was increased when subjects 

memorized the word using a rhyming task, and then were prompted to 

recall the word using a rhyming cue, as compared to when a rhyming-

unrelated task was performed during memorization. This shows that 

memory performance is best when the type of processing at test is 

maximally similar to the type of processing during memorization. Our 

results can be taken as a general confirmation that a similar kind of ef-

fect is seen for visual memories. Our result differs not just in modality, 

however, but also in that our cue is the changed object itself, whereas in 

the Morris et al. work, the cue is an entirely different word, who’s con-

nection to the original word has been enhanced by the task.  In the do-

main of memory for sentences and paragraphs, it has also been shown 

that different types of encoding tasks change what is best remembered, 

suggesting that memory is anything but a passive store, and that or-

ganization and encoding depend on how the information is acquired 

(Einstein, McDaniel, Owen, & Cote, 1990). This is, however, perhaps 

less surprising for semantically meaningful information, such as text, 

than it is for visual memory for the features of objects in natural scenes. 

We found that whole object changes were detected more frequently 

than color changes in Experiments 2, 3, and 4. This may suggest that 

long-term visual memory is organized into individual objects, with 

different features bound to each object. Thus, if you can detect a color 

change, you should be able to detect a whole object change, since in 

order to encode the color of the object; you would also need to encode 

the object’s identity. Conversely, our results suggest that all the features 

of an object need not be equally easy to recall, so being able to detect 

an object change does not necessarily mean that a color change could 

be detected. 

While this seems like a sensible organization of visual memory, it is 

possible to imagine how to design an experiment where the reverse set 

of results might be found. Simply make the object changes very subtle, 

such as changing the object type from a tube of toothpaste to a tube of 

paint, while making very large color changes (such as a white tube of 

toothpaste that becomes Day-Glo orange). Thus, while our results are 

compatible with features being bound into individual objects, further 

research will be necessary to show the extent to which this is the actual 

organization of visual memory.

All of the task effects we found suggest that different features of 

objects are not equally easy to recall. Instead, the ease of recalling a 

feature depends, at least in part, on what the subject was doing when 

they viewed the object.  This suggests that visual memory (be it long- or 

medium-term) is not allocated equally across the features of an object. 

Rather, different features are encoded at different strengths, depend-

ing on the task(s) that caused them to be encoded in the first place. 

As discussed in the introduction, this interpretation of the results is 

compatible with previous experiments with more artificial scenes, such 

as our own work in Virtual Reality. 

There are other possible explanations of our current results, how-

ever. In particular, encoding could be the same, irrespective of task, but 

there could be a difference in what happens at recall; for instance, the 

naming task could have cued subjects to attend to object identity during 

the recall stage, increasing the likelihood of detecting object changes. 

This could be tested in future experiments by having subjects complete 

two blocks of trials: one with the naming task, and one with the color 

task, before having their memory tested. At test time, subjects would 

be shown images from both blocks, intermixed in random order. If 

the describing task influences encoding, then its effects should still be 

measurable even when images from the two blocks are intermixed at 

recall. On the other hand, if the describing task just biases recall, then 

doing both types of tasks before the recall stage should significantly 

reduce or eliminate task effects.  This should be a particularly interest-

ing area for future research. 

footnoteS
1 While our working hypothesis is that the strength of visual 

memory traces can vary, since we can only test people’s recall ability, 

it is possible that some other mechanism is at play. For instance, re-

call performance might be better because of several different reasons, 

including increased encoding strength of the memory trace, less inter-

ference, or because the task-relevance of the feature increases the ease 

with which the trace of that feature can be recalled during the memory 

test. The purpose of this research is to show that memory performance 

depends on the task; future work will be necessary to confirm that it is 

due to differences in encoding strength.
2 Note that for conciseness, when the term memory is used in this 

paper, we are referring to visual memory, as opposed to verbal or other 

modal memory systems.
3 It is possible that chance performance was actually higher than 

12.5%. We did not conduct a no-change version of the experiment to 

see if subjects could guess what the changed items would be without 

having seen both versions of each scene. It seems unlikely that subjects 

would be good at this, however, as the most likely cue for such guesses, 

photo manipulation artifacts, were only visible during the describing 

part of the experiment, when subjects had no reason to look for them, 

and furthermore, these artifacts were rather subtle. Therefore, 12.5% 

seems a good estimate of chance performance.
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