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Chapter 1

Introduction

The future hadron circular accelerators SIS-100/SIS-300 of the FAIR complex of
GSI are superconducting machines and shall accelerate high-intensity beams. Su-
perconducting magnets are known to drive nonlinear fields usually up to one order
of magnitude higher than room-temperature magnets. This is due to a limited accu-
racy in cabling the coils and to persistent currents after each energy ramp. Magnet
nonlinearities are of main concern because particles having large oscillations or mov-
ing close to the pipe are subject to chaotic motion resulting in unstable trajectories
and eventually in beam loss. In high energy proton colliders the beam size is usually
small compared to the dimensions of the pipe. The region of stability (dynamic
aperture) is also large enough to contain the entire beam. This is not the case for
the heavy ion synchrotron SIS-100 where the beam occupies transversely a large
fraction of the pipe and the dynamic aperture is close to both the beam contour and
the wall. A continuous monitoring of the “nonlinearity budget” is mandatory not
only to reach the expected beam quality, but also to avoid radiation and quenching
damages driven by losses of high energy particles at the dipole walls.

The commissioning of new large accelerators, as well as of existing machines
after the periodic maintenance, might become a tedious task in presence of uncor-
rected magnet polarities or problems in the power supply connections. While for
dipoles and quadrupoles established beam-based methods for detecting wrong mag-
net strengths already exist (closed orbit and linear optics), state-of-art techniques
for skew quadrupoles and sextupoles are either time consuming or limited to the
measurement of global quantities (amplitude dependent detuning, minimization of
tune split and nonlinear chromaticity). A beam-based method to infer on-line both
the strength and the polarity of corrector magnets in few machine cycles is therefore
desirable especially in machines with a large number of correctors.

Furthermore, high-gradient superconducting quadrupoles induce linear coupling
between the transverse planes because of both skew quadrupole field errors and
limited accuracy installing the magnets in the beam line (tilting angle). Betatron
coupling is of concern because it makes the beam rotate in the x − y plane. In
high-intensity heavy ion synchrotrons any rotation would lead to beam scraping, as
the beam fills almost entirely the elliptical pipe at injection energy. On the other
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8 CHAPTER 1. INTRODUCTION

hand, it is under consideration to operate the existing SIS-18 as booster for the
SIS-100 with equal transverse emittances at flat top. During multi-turn injection
a partial exchange of the beam emittance from the horizontal plane to the vertical
is also foreseen to protect the injection septum in high-intensity operations. Both
manipulations can be obtained with controlled betatron coupling to be artificially
driven by external skew quadrupoles.

Both the heavy ions synchrotrons SIS-100 and SIS-300 shall operate in a regime of
beam current and energy where the repulsive space-charge force Fs is not negligible.
The latter one scales with the beam parameters according to

Fs ∝
ZI

A(γβ)3
,

where Z is the charge state, A is the mass number, I the averaged beam current,
γ and β are the relativistic factors. Machines like RHIC and LHC operate or shall
operate either at much higher energies or at lower beam current such that Fs plays
a negligible role in the beam dynamics. Space-charge effects are known to drive halo
formation (with consequent risk of beam loss), the Montague resonance and the
consequent spontaneous emittance exchange if the transverse tunes are close to each
other, Qx ' Qy. As these resonances are excited in machines with unsplit tunes
only, i.e. Qx and Qy have the same integer part, it is of no concern for machines
like the SIS-18 (Qx = 4.29, Qy = 3.28), whereas it must be cured or avoided in the
SIS-100/SIS-300.

The aim of this thesis is threefold:

- to develop a beam-based method to measure lattice nonlinearities and betatron
coupling;

- to study the emittance exchange driven by betatron coupling and space charge;

- to develop fast techniques to correct betatron coupling and to control the emit-
tance exchange between the transverse planes.

The proposed technique to measure lattice nonlinearities is an extension of the
method proposed by Tomás [1] of measuring the resonance driving terms (RDT)
using beam position monitor (BPM) data. Once the beam is transversally displaced
(either by fast kicker magnets or ac exciters), it experiences coherent oscillations
that can be turn by turn recorded by all the BPMs in the ring. The spectrum of
these oscillations can be inferred via FFT. From the difference between the spectral
line amplitudes between two consecutive BPMs nonlinearities are localized. This
technique was already applied to SPS in 2002, when strong extraction sextupoles
were powered and then localized using BPM data. In this thesis the same approach is
used and extended not only to localize nonlinearities but also to infer their strengths
and polarities.

Presently, the SIS-18 is not equipped with turn-by-turn multi-BPM acquisition
system necessary to perform this analysis. In this thesis it is shown how powerful
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this tool can be to improve the knowledge of the bare machine and to cure the most
harmful lattice errors. Therefore, the machine optimization for any SIS-18 high
current operations would profit from the implementation of such a system in the
next future.

The emittance exchange driven by betatron coupling is also studied by using the
resonance driving terms formalism. Here the goal is to improve existing formulae
to describe some counter-intuitive features, like the emittance variation along the
ring observed in multi-particle simulations. A systematic numerical study is also
performed in order to derive heuristic scaling laws for the stop band widths of
space-charge resonances in the region Qx ' Qy. Multi-particle simulations are also
run to study possible strategies to control or to avoid the exchange.

The same mathematical formalism is eventually applied to betatron coupling
and its equivalence with the traditional matrix formalism is proven. Here the goal
is to use the same turn-by-turn harmonic analysis to provide a fast method for
measuring and correcting linear coupling using BPM data, without the traditional
time-consuming scan of the skew quadrupole families.

The proposed technique to measure lattice nonlinearities has been experimen-
tally tested using existing BPM data from SPS at CERN, since no turn-by-turn
multi-BPM acquisition is presently available in the SIS-18. For the same reason
BPM data from RHIC have been used for testing the new algorithm to measure and
correct betatron coupling in a single machine cycle. Emittance exchange is experi-
mentally observed in the SIS-18 using rest gas monitor (RGM) data. As far as the
Montague resonance is concerned, since the SIS-18 is a machine with split tunes, it
was not possible to carry out any new measurements. The proposed scheme to avoid
the emittance exchange is therefore noly numerically tested, running multi-particle
simulations with particle-in-cell (PIC) space-charge solver.

In this thesis only the 4D betatronic motion is studied. Synchrotron motion, as
well as dispersive and chromatic effects, are not taken into account when deriving
new formulae. However BPM data from SPS and RHIC used to validate the theory
were acquired using bunched beams. Emittance measurements in the SIS-18 were
carried out with a coasting beam at injection plateau (11.4 MeV/u).

The new theoretical findings on the turn-by-turn harmonic analysis are the result
of a collaboration with R. Tomás (CERN) and R. Calaga (BNL). Both provided the
BPM data for testing the new algorithms.

Experimental studies carried out at GSI have profited from the new RGM de-
signed and installed in the SIS-18 during 2004 by T. Giacomini and P. Forck. Despite
the lack of a turn-by-turn BPM acquisition system, linear optics measurements in
the SIS-18 have been carried out making use of a unconventional acquisition system
developed for this purpose by P. Moritz.

From the computational point of view, single- and multi-particle simulations have
been run making use of the MICROMAP libraries developed by G. Franchetti (GSI)
and the group of Bologna lead by prof. G. Turchetti.
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This thesis is structured as follows.

In Chapter 2 an overview of the GSI complex of accelerators and a brief descrip-
tion of the SIS-18 instrumentation related to this study are given. The expected
performances in view of the SIS-18 upgrade for FAIR are also outlined together with
the main beam dynamics issues that are at the basis to this work.

In Chapter 3 the mathematical formalism is presented. The resonance driving
terms (RDT) are defined and their relations with the BPM spectral lines and the
magnet strengths are derived using the Lie algebra. The main results already derived
in the literature are reviewed here and presented in a unified formalism to be used
as basis for the new derivations of the next chapters.

In Chapter 4 a new algorithm to infer the magnet strengths from BPM data is
derived and applied to existing SPS data. In the first order approximation the RDT
(to be measured by using BPM data) are related to the magnet strengths through a
linear system whose analytical solution is derived here. Countermeasures for some
of the most important experimental limitations, such as BPM calibration errors, are
also outlined.

In Chapters 5 and 6 the RDT formalism is used to derive new formulae describing
the betatronic motion close to the difference resonance (1,-1). Expressions for the
single particle and RMS emittances in terms of the RDT f1001 and the distance from
the resonance ∆ = Qx − Qy are derived here. The use of the Lie algebra leads to
explicit relations for the single particle invariants and for decoupling the equations
of motion. The equivalence with the traditional matrix approach is proven. The
counter-intuitive emittance variation along the ring is shown to be consistent with
the variation along the ring of f1001. The emittance exchange curves observed in
multi-particle simulations when approaching the resonance, in the static as well as
in the dynamic case, are eventually compared with new and existing formulae.

Chapter 7 is devoted to the experimental results obtained in the SIS-18. Measure-
ment and localization of nonlinearities require the use of several BPMs distributed
along the ring. Presently only one BPM is equipped with the necessary turn-by-turn
acquisition system and only standard optics measurement could be performed. In
the first part of this chapter this acquisition system is described and the results mea-
suring the SIS-18 tunes and chromaticity are discussed. The second part focuses on
the emittance measurement. Emittances are inferred from the beam profiles mea-
sured by the recently installed rest gas monitor (RGM). A short description of this
device is therefore given before presenting the main results in manipulating the beam
emittances (exchange and equilibration).

In Chapter 8 a new algorithm for a fast measurement and the correction of
betatron coupling is derived making use of the RDT formalism. It is shown how
from BPM data it is possible to measure not only the resonance stop band width
|C|, but also its phase Θ. This leads to an immediate definition of the best setting of
the corrector skew quadrupoles, without need of any scan. The method is described
here, applied to RHIC BPM data and compared with standard techniques.

In Chapter 9 the emittance exchange driven by space charge is numerically inves-
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tigated. Multi-particle simulations for different beam parameters (initial emittances
and currents) and different working points (unsplit and split tunes) are run. From
the exchange curve scaling laws for the resonance stop band width and the shift
of the resonance center are derived. It is also proven why the Montague resonance
cannot be excited in machines with split tunes. Eventually, a possible strategy to
suppress the effects of the Montague resonance in machines with unsplit tunes by
using a normal quadrupole is illustrated.



12 CHAPTER 1. INTRODUCTION



Chapter 2

Motivations

2.1 The heavy ion synchrotron SIS-18 at GSI

The heavy ion synchrotron SIS-18 is a part of the complex of accelerators at GSI,
composed of the linear accelerator UNILAC, the synchrotron SIS-18 and the storage
ring ESR. The layout of the complex is sketched in the upper picture of Fig. 2.1.
The ions (partially or fully stripped) out of UNILAC are injected in the SIS-18 at
energy of 11.4 MeV/u, with a multi-turn injection scheme.

After acceleration the beam is extracted at different energies according to the ion
species: up to 2 GeV/u for light ions, 1 GeV/u for heavy ions. After either a fast
or a slow extraction the beam is delivered to experimental targets, as well as to the
cancer therapy station, to ESR and the fragment separator FRS.

The ESR can store stable beam coming from the SIS-18 as well as radioactive
beam generated by the primary beam hitting a thick target. During the storage
of unstable beam mass measurements are performed. Stable beam instead can be
cooled down and re-injected and accumulated in the SIS-18. Both SIS-18 and ESR
are equipped with electron coolers. In the storage ring stochastic cooling can be
also performed.

In the framework of the new facility for antiproton and ion research (FAIR) the
SIS-18 shall also operate as booster for the new heavy ion synchrotron SIS-100 and
accelerate protons coming out from the new high-intensity proton linac. The layout
of the planned facility is sketched in the bottom picture of Fig. 2.1.

General description

The SIS-18 is a normal-conducting machine able to accelerate beam species from
proton up to Uranium. The main design parameters are listed in Tab. 2.1.

The focusing system consists of 12 periods, each one containing at injection energy
a quadrupole triplet FDF. During ramp and at flat top the quadrupoles of the third
family are turned off and the lattice switches to a duplet FD. At injection the phase
advance per cell is almost 129o horizontally and 99o vertically.

13
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Figure 2.1: View of the actual complex of accelerators and the planned complex for the
FAIR project at GSI.



2.1. THE HEAVY ION SYNCHROTRON SIS-18 AT GSI 15

Ion species: p to 238U73+

Final energies: 4.5 GeV (p), 2 GeV/u (Ne10+), 1 Gev/u (U73+)

Circumference: 216.72 m

Magnetic rigidity: 18 Tm

# of periods: 12

Bending radius: 10 m

Injection scheme: horizontal multi-turn-injection

Injection energy: 11.4 MeV/u

Acceptance: 200 (horizontal) 50 (vertical) mm mrad

Momentum spread: ±1× 10−3 (FWHM) without cooling

Working point: 4.29, 3.29

RF frequency range: 0.85 - 6.02 MHz

Harmonic number: 4

Extraction scheme: fast, slow (∆T ≤ 8 s)

Resid. gas pressure: 4 × 10−11 mbar

Table 2.1: Main parameter list of the SIS-18

SIS-18 instrumentation

The SIS-18 is equipped with a large collection of instruments used to control the
beam and measure its parameters. In this section a brief description of those instru-
ments of interest in the context of the present work is given.

The beam positioning system consists of 12 dual-plane BPMs located at the
end of the 12 focusing periods. Two additional phase pick-ups are available and
used for the transverse feedback system. A resonant pick-up is also installed for
Schottky measurement (tunes and momentum spread). A turn-by-turn multi-BPM
acquisition system is under development. Presently a 20 MHz 4-channel 12 bits PCI
card with a resolution of δx/x ' 10−3 is available for turn-by-turn sampling of a
single BPM [2, 3]. A new 500 MHz single-BPM acquisition system has been recently
installed and tested [4].

Transverse beam profiles are measured by a recently developed residual gas mon-
itor. A detailed description of this hardware is given in Sec. 7.4.

Transverse betatron oscillations can be driven either by a transverse kicker mag-
net used for tune measurement (Q-kicker), or by a horizontal noise shaker originally
developed for knock-out extraction. A vertical shaker is also installed but not in
use.

Resonant extraction and chromaticity correction are performed by means of 12
normal sextupoles independently powered. 8 independent skew quadrupoles have
been recently installed for linear coupling resonance correction and optimization of
multi-turn-injection. An additional normal quadrupole is also installed for correction
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of the half-integer resonance.

2.2 Motivations in view of the SIS-18 upgrade and FAIR

The SIS-18 top intensity reached so far with 238U+73 is of 4 ÷ 5 × 109 particles at
0.5 Hz extracted at 1 GeV/u. The SIS-18 upgrade program [5] in the framework of
the FAIR project foresees an increase of the extracted beam intensity staged in to
phases. In the first one, the SIS-18 shall be upgraded to deliver 2 × 1010 particles
(238U+73) at 1 Hz to the new Super Fragment Separator (SFR). In the second phase
it shall operate as booster of the SIS-100 with a nominal intensity of 1011 particles
(238U+28) at 2.6 Hz. Both stages, among other aspects, require a precise control
and manipulation of the beam parameters at injection as well as at extraction and
a continuous monitoring of lattice coupling and nonlinearities.

The SIS-18 shall also accelerate protons out of the new high-intensity proton
linac [6]. Improving the injection scheme at low energy would result in a more
compact and convenient linac design.

In this section the main motivations of the present study are outlined. Most of the
new algorithm and schemes discussed in this work could not be tested and applied
directly to the SIS-18, as the needed turn-by-turn acquisition of beam position
monitors (BPM) is still under development. BPM data from the Super Proton
Synchrotron (SPS) of CERN and the Relativistic Heavy Ion Collider (RHIC) of
BNL were used. Both machines are also briefly described.

2.2.1 Measurement of nonlinearities

Nonlinearities in circular hadron accelerators are closely related to the shrinking of
the dynamic aperture (stable region in phase phase) and to the deterioration of the
beam quality. For high-intensity beams occupying almost the entire pipe aperture,
among other effects, uncontrolled nonlinearities drive unstable motion for particles
close to the beam pipe, resulting in particles hitting the vacuum chamber, electron
clouds, vacuum break-down and eventually unacceptable beam loss.

The SIS-18 is a normal-conducting machine operating with transverse tunes sepa-
rated by one integer (split tunes). The tune separation mitigates the strengths of the
most dangerous resonances and the nonlinear field errors in the room-temperature
magnets are usually one order of magnitude lower than the one driven by super-
conducting magnets. The monitoring the eddy currents during ramp is anyway of
help preventing emittance blow-up.

A continuous monitoring of both the strength and polarities of extraction sex-
tupoles will be also of help improving the spill structure during slow extraction over
several seconds [7].

Both the SIS-100 and SIS-300 are super-conducting machines with tunes having
the same integer part (unsplit tunes ). Control and correction of nonlinearities in
the magnet fields are therefore mandatory at any stage of the machine cycle.
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2.2.2 Linear coupling studies

Natural lattice linear coupling is driven by errors and tilted installations of the
focusing quadrupoles and is usually compensated or controlled by means of skew
quadrupoles (i.e. normal quadrupoles rotated of 45o).

The most critical stage as far as linear coupling is concerned is the injection
phase, where the working point is usually chosen to be close to the difference reso-
nance, namely with almost equal fractional part of the tunes. In this region linear
coupling drives a fast emittance transfer between the two transverse planes. With
the horizontal emittance usually larger than the vertical acceptance (i.e. the maxi-
mum acceptable emittance) this exchange might drive losses due to a vertical beam
scraping. Correcting linear coupling after injection is therefore beneficial preventing
such losses.

On the other hand a controlled linear coupling can be of help during multi-turn-
injection. The beamlets out of the injector have a vertical emittance lower than
the vertical acceptance. Multi-turn-injection is performed horizontally and a fast
emittance transfer to the vertical plane can increase the injection efficiency. Such a
scheme was proposed and successfully applied for the first time at the PS-booster [8]
and has been proposed for the SIS-18 [9].

Increasing the injection efficiency at low energy will be beneficial also for the
proton linac under design at the IAP [6], lowering its final energy and, in turn, its
cost.

for the SIS-18 operations as booster of the SIS-100 it might be advantageous
to have equal emittances at extraction. In this work a scheme to achieve such
equilibration via linear coupling is presented.

2.2.3 Analysis of RHIC and SPS data

Both the algorithm and the software written to measure sextupolar nonlinearities
from BPM data have been tested using data acquired in 2002 in the Super Proton
Synchrotron (SPS) of CERN [1, 10, 11]. The SPS turn-by-turn multi-BPM acquisi-
tion [12] and the presence of eight strong sextupoles for resonant extraction offered
a unique opportunity for this purpose and a proof that such measurements will be
possible also in the SIS-18 as soon as an analogous acquisition system will be ready.

Since the SPS is a machine operating with unsplit tunes linear coupling correction
requires one family of skew quadrupoles only, whereas in machines with split tunes
like the SIS-18 at least two families are necessary requiring a different correction
strategy (See discussion in Sec. 8.1). The same software for BPM data analysis
has been therefore updated for linear coupling studies and tested using data of
the super-conducting Relativistic Heavy Ion Collider (RHIC) of the Brookhaven
National Laboratories, whose nominal working point is Qx = 28.28, Qy = 29.29.
Most of the RHIC BPM data were acquired after exciting the beam with an AC
dipole [13], whose advantage with respect to the traditional Q-kicker is that neither
decoherence nor emittance blow up is induced, preserving the beam quality and
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increasing the experimental resolution. This makes possible to perform measurement
in parasitic without deteriorating the beam before extraction, and, more important,
to monitor the beam optics during ramp. The success of this technique in RHIC has
a direct impact on the SIS-18, where a similar AC shaker was originally installed
for knock-out extraction and is suitable for these type of measurement.



Chapter 3

Resonance driving terms (RDT):
theoretical basis

The new theoretical findings on lattice nonlinear beam dynamics and betatron linear
coupling presented in the next chapters are based on the description in normal
forms of the betatronic motion. In this chapter the theoretical background of this
formalism is outlined, reviewing the main results derived in Refs. [1, 15]. The
intent is here also of introducing a unified formalism to be used as basis for the
new derivations of Chapter 4, since in the literature slightly different notations and
resonance classifications exist.

The normal form approach has been independently proposed and developed in
the 90’s by the Bologna group [16, 17, 18, 19] and E. Forest [20, 21, 22] for a
detailed description of the betatron motion driven by nonlinearities. The application
of this complex mathematical tool in the realm of particle accelerators is justified
by two main aspects: the beam dynamics is dominated by linear potentials and
nonlinearities are described with polynomial terms (multipolar expansion) whose
effects are usually small perturbations making the motion quasi-periodic.

Once the beam is transversely displaced (either by fast kicker magnets or AC
exciters), it experiences coherent oscillations that can be recorded turn by turn by
beam position monitors (BPM). The spectrum of these oscillations can be inferred
via FFT. If the lattice is free from nonlinearities the spectrum contains the betatron
tune line only, whereas introducing nonlinearities secondary spectral lines appear.

Bartolini and Schmidt [15], constructing the normal form of the one-turn map,
already clarified the connection between the spectrum of the complex variable x−ipx
and the resonances excited by sextupoles, i.e. between the secondary lines and the
sextupolar resonance driving terms (RDTs).

In the following sections the map approach to describe the betatron motion in
circular accelerators is outlined together with the nonresonant normal form trans-
formation. The corresponding RDTs are then defined and explicited in terms of the
observable BPM spectral lines.

19
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3.1 Physics assumptions and hypothesis

The approach we present is based on a first order nonresonant normal form.

The following analysis is limited up to the sextupoles. Higher multipoles, such
as octupoles, can still be studied with a first order normal form, but only in absence
of sextupoles, whose second order terms are of the same order of magnitude as the
octupolar first order terms.

Effects due to chromaticity and dispersion are not taken into account.

Dealing with the complex variable x−ipx, also the momentum px must be inferred
from BPM data. It is well-known [25] how to derive px at one BPM looking at the
position of the next BPM provided that the region between the two probes is free
from nonlinearities. So far no analogous relations have been derived without this
assumption. In this chapter we refer to “BPM” as a pair (or two pairs if they are
single-plane monitors) of pick-ups whose region in between is free of nonlinearities,
namely a location were both x and px can be inferred exactly. If this condition is
not satisfied, a more subtle approach using either one or three BPMs should be used
(see Chapter 4).

In the derivation of our algorithm we make use of the optical functions at the
magnets and BPM locations. Effects due to lattice errors, such as beta beating, are
not taken into account.

3.2 One-turn map, Hamiltonian coefficients and nonlinearities

Following the approach given in [15] and [1], the beam centroid at a certain position
b (BPM) is modeled as a single particle whose transport after one turn is described
by the one-turn (symplectic) map acting on the 4D vector Xb = (x, px, y, py)|b

Xb,i = MbXb,i−1, Mb = MW+1

W
∏

w=1

e:Hw :Mw, (3.1)

where W is the number of nonlinear multipoles. According to fig. 3.1, Mw is the
linear map describing the linear elements (dipole, drift or quadrupole) between the
nonlinear magnets w − 1 and w. The latter ones are described by the Hamiltonian
Hw and e:Hw: is the Lie operator. The linear map MW+1 is introduced to take into
account the linear section between the last multipole and the position b. It can been
shown [1] that moving to the complex Courant-Snyder coordinates

(

x̂
p̂x

)

=

(

(βx)
−1/2 0

αx(βx)
−1/2 (βx)

1/2

)

(

x
px

)

,

hx,± = x̂± ip̂x =
√

2Jxe
∓i(φx+φx,0) , (3.2)
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Figure 3.1: Schematic view of a ring and its transfer maps, Mw refer to sections free of
nonlinearities, Hw represent the nonlinear kicks.

the one-turn map simplifies to

Mb =
W
∏

w=1

e:H̃bw :R , (3.3)

where R is the rotation matrix describing the linear motion (its angles are 2π times
the betatron linear tunes) and H̃bw is the Hamiltonian expressed in the new coor-
dinates propagated by the map describing the linear lattice between the observation
point b and the w-th multipole. Defining the coordinate 4D vector

hw = (hw,x,+ , hw,x,− , hw,y,+ , hw,y,−) , (3.4)

the propagation is defined as

hbw = Mb ·Mb+1 · · ·Mwhw . (3.5)

In the complex Courant-Snyder coordinate the above relation is a rotation whose
angle is the phase advance between the points w and b (as the propagation is a linear
map composition the actions Jx,y do not change)

hbw,q,± = hw,q,± e∓i∆φ
b
w,q (3.6)

and H̃bw becomes

H̃bw = Hw(hbw) . (3.7)

Applying the properties of the Lie operator and using the Campbell-Backer-Hausdorf
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theorem up to the first order the product in Eq. (3.3) reads

W
∏

w=1

e:H̃bw : ' e:H̃b:, H̃b = H̃b(Jx, Jy, φx, φy) =

W
∑

w=1

H̃bw . (3.8)

According to Eqs. (3.3) and (3.8), in the complex Courant-Snyder coordinates, up
to the first order, the one-turn map is factorized in a rotation and a Lie operator
containing the sum of all the nonlinear contributes properly propagated.

We derive now an explicit expression for the Hamiltonians Hw introduced in (3.1).
Dealing with the Lie operator, Hw are integrated Hamiltonians and all the nonlinear
elements are modeled as thin kicks. The starting point is the multipolar expansion

Hw = −<
[

∑

n≥2

(Kn−1 + iJn−1)
(x+ iy)n

n!

]

w

=
∑

n≥2

H(n)
w . (3.9)

According to this nomenclature, the skew quadrupole (n = 2) coefficient is J1 [m−1],
the normal sextupole (n = 3) coefficient is K2 [m−2] whereas J2 [m−2] refers to the

skew sextupole (n = 3). In the complex Courant-Snyder coordinates H
(n)
w reads

H̃(n)
w =

n=j+k+l+m
∑

jklm

hw,jklmh
j
w,x,−h

k
w,x,+h

l
w,y,−h

m
w,y,+ (3.10)

=

n=j+k+l+m
∑

jklm

hw,jklm(2Jx)
j+k

2 (2Jy)
l+m

2 ei[(j−k)(φx+φx,0)+(l−m)(φy+φy,0)] .

The coefficients hw,jklm are real and proportional to the multipole strengths via
(see APPENDIX A for the derivation)

hw,jklm = −
[

Kw,n−1Ω(l +m) + iJw,n−1Ω(l +m + 1)
]

j! k! l! m! 2j+k+l+m
il+m

(

βw,x
)

j+k

2
(

βw,y
)

l+m
2 ,

Ω (i) = 1 if i is even, Ω(i) = 0 if i is odd . (3.11)

Ω(i) is introduced to select either the normal or the skew multipoles. According to
the above relation the dimensions of hw,jklm are

[hw,jklm] = m−(n−1) · m
j+k

2 · m
l+m

2 = m1− j+k+l+m

2

⇑ ⇑ ⇑
Kn−1, Jn−1

(

βw,x
)

j+k

2
(

βw,y
)

l+m
2

From Eqs. (3.6)-(3.7) H̃bw eventually reads

H̃bw =

n=j+k+l+m
∑

jklm

hw,jklme
i[(j−k)∆φb

w,x+(l−m)∆φb
w,y ]hjw,x,−h

k
w,x,+h

l
w,y,−h

m
w,y,+ , (3.12)

where ∆φbw is the phase advance between the locations b and w.
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3.3 Normal form, resonance driving terms and BPM spectrum

The Hamiltonian H̃b defined in Eq. (3.8) depends on both the actions Jx, Jy and
the phases φb,x, φb,y. Nonresonant normal form coordinates can be introduced to
obtain a Hamiltonian (i.e. a one-turn map) depending on the action variables only,
e.g. Hb(Ix, Iy). The transformation is performed by a generating function F

F =

n=j+k+l+m
∑

jklm

fjklmζ
j
x,−ζ

k
x,+ζ

l
y,−ζ

m
y,+ (3.13)

=

n=j+k+l+m
∑

jklm

fjklm(2Ix)
j+k

2 (2Iy)
l+m

2 ei[(j−k)(ψx+ψx,0)+(l−m)(ψy+ψy,0)] ,

where ζq,± =
√

2Iqe
∓i(ψq+ψq,0). Ix,y, ψx,y and ψx,y,0 are the new actions, phases and

arbitrary initial conditions respectively. The symbolic expression for the transfor-
mation is

e:−F :e:H̃:Re:F : = e:H(Ix,Iy):R . (3.14)

It can be shown [24] that, making again use of the CBH theorem up to the first

order, the generating function terms f
(b)
jklm at a certain location b are related to the

Hamiltonian coefficients hw,jklm via

f
(b)
jklm =

h
(b)
jklm

1 − e2πi[(j−k)Qx+(l−m)Qy ]
=

∑

w

hw,jklme
i[(j−k)∆φb

w,x+(l−m)∆φb
w,y ]

1 − e2πi[(j−k)Qx+(l−m)Qy ]
, (3.15)

where the sum is over all the nonlinear elements and ∆φbw is the phase advance
between the wth multipole and the location b. The resonance driving terms (RDTs)
fjklm (at any location) diverge when a resonance occurs, i. e. when

(j − k)Qx + (l −m)Qy = p p ∈ N . (3.16)

From the inverse transformation truncated to the first order

h(N) = e:F (N):ζ(N) ' h(N) + [F (N), ζ(N)] (3.17)

it is possible to explicit turn by turn the Fourier components of the complex Courant-
Snyder variables at location b:

hx,−(b, N) =
√

2Ixe
i(2πνxN+ψb,x,0) − (3.18)

2i
∑

jklm

jf
(b)
jklm(2Ix)

j+k−1
2 (2Iy)

l+m
2 ei[(1−j+k)(2πνxN+ψb,x,0)+(m−l)(2πνyN+ψb,y,0)]
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and

hy,−(b, N) =
√

2Iye
i(2πνyN+ψb,y,0) − (3.19)

2i
∑

jklm

lf
(b)
jklm(2Ix)

j+k

2 (2Iy)
l+m−1

2 ei[(k−j)(2πνxN+ψb,x,0)+(1−l+m)(2πνyN+ψb,y,0)] .

The nonlinear tunes νx,y appear in the above expression instead of Qx,y introduced in
(3.15), since this approach takes into account possible detuning due to either linear
coupling or amplitude dependent effects.

Expressions (3.18) and (3.19) have the following form:

hq,−(b, N) = a
(b)
q,0e

i2πNνq +
∑

jklm

a
(b)
jklme

i2πN(θj,kνx+ωl,mνy)

a
(b)
q,0, a

(b)
jklm ∈ C , θj,k, ωl,m ∈ N .

The first term on the r.h.s. is the fundamental or tune line. Its position in the
spectrum provides the fractional part of the tune ν. The secondary lines contained
in the summation are instead generated by the nonlinear magnets as well as by
skew quadrupoles and depend on the RDTs fjklm. Their amplitude and phase in
the horizontal spectrum are given by

H(1 − j + k, l −m) = 2 · j|f (b)
jklm|(2Ix)

j+k−1
2 (2Iy)

l+m
2 (3.20)

φ(1−j+k,l−m) = φfb,jklm + (1 − j + k)ψb,x,0 + (m− l)ψb,y,0 −
π

2
, (3.21)

whereas in the vertical plane

V (k − j, 1 +m− l) = 2 · l|f (b)
jklm|(2Ix)

j+k

2 (2Iy)
l+m−1

2 (3.22)

φ(k−j,1+m−l) = φfb,jklm + (k − j)ψb,x,0 + (1 − l +m)ψb,y,0 −
π

2
. (3.23)

φf
(b)

jklm denotes the phase of the RDTs fjklm. The horizontal and vertical tune lines
are represented by H(1, 0) and V (0, 1) respectively. Their amplitudes and phases
are

H(1, 0) =
√

2Ix, φH(1,0) = ψb,x,0 , (3.24)

V (0, 1) =
√

2Iy, φV (0,1) = ψb,y,0 . (3.25)

Note that from equations (3.16)-(3.19), the spectral lines H(1 − j + k, l − m) and
V (k − j, 1 − m + l) appear only if j 6= 0 and l 6= 0 respectively. In Sec. 3.4 the
correspondences between excited spectral lines and RDTs are listed. Note that the
analogous classification given in [15] is incorrect for those entries concerning the
vertical plane 1. In Fig. 3.2 some typical BPM spectra obtained by single particle
tracking are also shown.

1The sign of the horizontal component of the vertical spectral lines has to be inverted. One of the Author (FS) recognized the error.
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multipole kind n potential term index relations

norm. quad. x 2 x2 j + k = 2 m+ l = 0

norm. quad. y 2 y2 j + k = 0 m+ l = 2

skew quad. 2 xy j + k = 1 m+ l = 1

norm. sext. 1 3 x3 j + k = 3 m+ l = 0

norm. sext. 2 3 xy2 j + k = 1 m+ l = 2

skew sext. 1 3 y3 j + k = 0 m+ l = 3

skew sext. 2 3 x2y j + k = 2 m+ l = 1

Table 3.1: Selection of index relative to skew quadrupole, normal and skew sextupole.

3.4 Resonance classification and nomenclature

The starting point for a complete classification (up to the first order) of RDTs,
spectral lines and excited resonances are the following relations:

(j − k)Qx + (l −m)Qy = p ∈ N excited resonance (3.26)

H(1 − j + k,m− l) horizontal line, if j 6= 0 (3.27)

V (k − j, 1 − l +m) vertical line, if l 6= 0 (3.28)

Not all the coefficients fjklm are of interest to us, since only some of them are
related to the multipoles. The generic potential xsyq selects the index j+k = s and
m + l = q, as shown in table 3.1.

The indexes select in turn the driven resonances and the relative spectral lines.
The latter are explicitly related to the RDTs in tab 3.2, where the line amplitudes
|ajklm| and the phases φajklm are derived from equations (3.20)-(3.23).

Since the line H(0, 0) is driven by two RDTs (f2100 and f1011) it is not consid-
ered an observable. Table 3.3 shows eventually how to compute the RDTs from the
spectral lines, i.e. how to remove the dependences from Ix,y and φx,y,0. Note that
these relations apply only to properly calibrated BPMs and turn-by-turn oscillations
without decoherence.

QUADRUPOLE TERM ∝ x2, y2

n jklm resonance horiz. line V-line |ajklm| φa
jklm

2 1100 (2, 0) (1, 0) F (2Ix)1/2 ψx,0

2 0011 (0, 2) (0, 1) F (2Iy)1/2 ψy,0
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SKEW QUADRUPOLE TERM ∝ xy

n jklm resonance H-line V-line |ajklm| φa
jklm

2 0110 (1,-1) (1, 0) 2|f0110|(2Ix)1/2 φ
f
0110 + ψx,0 − π

2

2 1001 (1,-1) (0, 1) 2|f1001|(2Iy)1/2 φ
f
1001 + ψy,0 − π

2

2 1010 (1,1) (0,−1) (−1, 0)
H: 2|f1010|(2Iy)1/2

V: 2|f1010|(2Ix)1/2

H: φf
1010 − ψy,0 − π

2

V: φf
1010 − ψx,0 − π

2

NORMAL SEXTUPOLE TERM ∝ x3

n jklm resonance H-line V-line |ajklm| φa
jklm

3 1200 (1,0) (2, 0) 2|f1200|(2Ix) φ
f
1200 + 2ψx,0 − π

2

3 2100 (1,0) (0, 0) 4|f2100|(2Ix) φ
f
2100 − π

2

3 3000 (3,0) (−2, 0) 6|f3000|(2Ix) φ
f
3000 − 2ψx,0 − π

2

NORMAL SEXTUPOLE TERM ∝ xy2

n jklm resonance H-line V-line |ajklm| φa
jklm

3 0111 (1,0) (1, 1) 2|f0111|(2Ix2Iy)1/2 φ
f
0111 + ψx,0 + ψy,0 − π

2

3 0120 (1,-2) (1,−1) 4|f0120|(2Ix2Iy)1/2 φ
f
0120 + ψx,0 − ψy,0 − π

2

3 1002 (1,-2) (0, 2) 2|f1002|(2Iy) φ
f
1002 + 2ψy,0 − π

2

3 1011 (1,0) (0, 0) (−1, 1)
H: 2|f1011|(2Iy)

V: 2|f1011|(2Ix2Iy)1/2

H: φf
1011 − π

2

V: φf
1011 − ψx,0 + ψy,0 − π

2

3 1020 (1,2) (0,−2) (−1,−1)
H: 2|f1020|(2Iy)

V: 4|f1020|(2Ix2Iy)1/2

H: φf
1020 − 2ψy,0 − π

2

V: φf
1020 − ψx,0 − ψy,0 − π

2

SKEW SEXTUPOLE TERM ∝ y3

n jklm resonance H-line V-line |ajklm| φa
jklm

3 0012 (0,1) (0, 2) 2|f0012|(2Iy) φ
f
0012 + 2ψy,0 − π

2

3 0021 (0,1) (0, 0) 4|f0021|(2Iy) φ
f
0021 − π

2

3 0030 (0,3) (0,−2) 6|f0030|(2Iy) φ
f
0030 − 2ψy,0 − π

2
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SKEW SEXTUPOLE TERM ∝ x2y

n jklm resonance H-line V-line |ajklm| φa
jklm

3 1101 (0,1) (1, 1) 2|f1101|(2Ix2Iy)1/2 φ
f
1101 + ψx,0 + ψy,0 − π

2

3 2001 (2,-1) (−1, 1) 4|f2001|(2Ix2Iy)1/2 φ
f
2001 − ψx,0 + ψy,0 − π

2

3 0210 (2,-1) (2, 0) 2|f0210|(2Ix) φ
f
0210 + 2ψx,0 − π

2

3 1110 (0,1) (1,−1) (0, 0)
H: 2|f1110|(2Ix2Iy)1/2

V: 2|f1110|(2Ix)
H: φf

1110 + ψx,0 − ψy,0 − π
2

V: φf
1110 − π

2

3 2010 (2,1) (−1,−1) (−2, 0)
H: 4|f2010|(2Ix2Iy)1/2

V: 2|f2010|(2Ix)
H: φf

2010 − ψx,0 − ψy,0 − π
2

V: φf
2010 − 2ψx,0 − π

2

Table 3.2: List of spectral lines driven by resonances and corresponding RDTs. ”F” means
that the line is the fundamental one. Note that the half-integer resonance driven by normal
quadrupoles is not derived from Eq. (3.26), because the latter one refers to the perturbative
terms only.
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Figure 3.2: Examples of BPM spectra from single particle tracking simulation with beta-
tron linear coupling driven by skew quadrupoles.
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Figure 3.3: Examples of BPM spectra from single particle tracking simulation with non-
linearities driven by normal sextupoles.
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RDT amplitude phase

fjklm |fjklm| φ
f
jklm

f0110
V (1,0)
2H(1,0) φV (1,0) − φH(1,0) + π

2

f1001
H0,1()
2V (0,1) φH(0,1) − φV (0,1) + π

2

fH
1010

H(0,−1)
2V (0,1) φH(0,−1) + φV (0,1) + π

2

fV
1010

V (−1,0)
2H(1,0) φV (−1,0) + φH(1,0) + π

2

f0111
V (1,1)

2H(1,0)V (0,1) φV (1,1) − φH(1,0) − φV (0,1) + π
2

f0120
V (1,−1)

4H(1,0)V (0,1) φV (1,−1) − φH(1,0) + φV (0,1) + π
2

f1002
H(0,2)

2V (0,1)2 φH(0,2) − 2φV (0,1) + π
2

f1011
V (−1,1)

2H(1,0)V (0,1) φV (−1,1) + φH(1,0) − φV (0,1) + π
2

fH
1020

H(0,−2)
2V (0,1)2 φH(0,−2) + 2φV (0,1) + π

2

fV
1020

V (−,1−1)
4H(1,0)V (0,1) φV (−1,−1) + φH(1,0) + φV (0,1) + π

2

f1200
H(2,0)

2H(1,0)2 φH(2,0) − 2φH(1,0) + π
2

f3000
H(−2,0)
6H(1,0)2 φH(−2,0) + 2φH(1,0) + π

2

f1101
H(1,1)

2H(1,0)V (0,1) φH(1,1) − φH(1,0) − φV (0,1) + π
2

f2001
H(−1,1)

4H(1,0)V (0,1) φH(−1,1) + φH(1,0) − φV (0,1) + π
2

f0210
V (2,0)

2H(1,0)2 φV (2,0) − 2φH(1,0) + π
2

f1110
H(1,−1)

2H(1,0)V (0,1) φH(1,−1) − φH(1,0) + φV (0,1) + π
2

fH
2010

H(−1,−1)
4H(0,1)V (0,1) φH(−1,−1)+ φH(1,0) + φV (0,1) + π

2

fV
2010

V (−2,0)
2H(1,0)2 φV (−2,0) + 2φH(1,0) + π

2

f0012
V (0,2)

2V (0,1)2 φV (0,2) − 2φV (0,1) + π
2

f0030
V (0,−2)
6V (0,1)2 φV (0,−2) + 2φV (0,1) + π

2

Table 3.3: Formulae to infer fjklm from the secondary lines assuming properly calibrated
BPMs and turn-by-turn oscillations without decoherence.
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Chapter 4

Magnet strength measurement from
BPM data

The possibility of reconstructing the magnetic potential experienced by the beam
in particle accelerators can be of great help during the machine commissioning and
the routine maintenance. Once the corrector magnets such as skew quadrupoles and
sextupoles are installed in the beam line, it is important to check that the power
supplies generate the requested magnetic strengths and polarities. Field errors in
dipoles and focusing quadrupoles, especially if superconducting, are also important
to be continuously monitored to avoid dynamic aperture reductions.

If several BPMs are available, it is possible to localize the nonlinearities [1] from
the variation along the ring of the RDTs. This method was successfully applied
to the CERN SPS [10] where the RDTs were measured and polarity errors were
detected and corrected. The minimization of the RDT f1001 was also used to cor-
rect betatron linear coupling in the SPS providing an alternative method to the
minimization of the tune split ∆Qmin.

So far no explicit relations have been established between the spectral lines, or
the RDTs, and the magnet strengths 1. Making use of the formalism outlined in the
Chapter 3, such new relations are derived here and applied to the same SPS data
of [1], after some considerations on experimental issues.

4.1 From BPM spectrum to magnet strength

Nonzero multipole strengths, for example a skew quadrupole gradient J1 6= 0, as well
as a sextupolar gradient K2 6= 0, result in a perturbing Hamiltonian via Eq. (3.11)
and (3.12).
If the beam is transversely displaced it experiences coherent oscillations driven by
both the (linear) focusing lattice and the coupling and/or nonlinear forces. The
complex variable hq,± is constructed from the recorded oscillations via Eq. (3.2) and
described as superposition of several harmonics whose amplitudes are proportional

1In the following the general expression “magnet strength” is used referring to both the corrector magnet strength and the field
error

31
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to the RDTs according to (3.18) and (3.19).
The fundamental lines provides the fractional parts of the tunes νx,y and the factors
√

2Ix,y and ψx,y,0 necessary to infer the RDTs using Eq. (3.20)-(3.24).
If detuning effects are negligible, the measured tune νx,y corresponds to the linear
one, Qx,y, which can be directly used to infer the Hamiltonian coefficients hw,jklm
via

f
(b)
jklm =

hw,jklme
i[(j−k)∆φb

w,x+(l−m)∆φb
w,y ]

1 − e2πi[(j−k)Qx+(l−m)Qy]
, (4.1)

corresponding to Eq. (3.15) for W = 1. Inverting Eq. (3.11), the magnet strength is
eventually inferred.

4.2 Magnet strengths from RDT variation along the ring

The direct relation Kw,n−1, Jw,n−1 ↔ hw,jklm ↔ f
(b)
jklm is valid under the condition

that a single multipole drives the hjklm terms along the machine. If many multipoles
of the same kind (i.e. described by the same set of index jklm) are present, Eq. (4.1)
does not hold anymore. The summation over all multipoles and the availability of
several BPMs lead to the linear system (3.15) whose analytic solution is derived in
APPENDIX B.

The difference of the resonance driving terms at two observation locations (BPMs)
of the ring, w and w− 1, depends only on the multipoles placed between these two
locations

ĥw,jklm = f
(w)
jklme

−i[(j−k)∆φw,w−1
x +(l−m)∆φw,w−1

y ] − f
(w−1)
jklm , (4.2)

where ∆φw,w−1
q are the phase advances between the two locations and f

(w)
jklm are the

RDTs measured at the w-th BPM. The l.s.h. of the above equation is therefore an
observable given by

ĥw,jklm =
∑

τ

hτ,jklme
i[(j−k)∆φw−1

τ,x +(l−m)∆φw−1
τ,y ] . (4.3)

The sum runs over all the multipoles between the (w − 1)-th and the w-th BPMs,
and ∆φw−1

τ,q are the phase advances between those multipoles and the (w − 1)-th
BPM. hτ,jklm are the Hamiltonian coefficients defined in Eq. (3.11).
Eq. (4.2) reveals the most important feature of this approach: from the variation of
the RDT fjklm between two locations the total strength of the multipoles in between

ĥw,jklm is inferred.
In Fig. 4.1 the variation along the SIS-18 ring of |f1001| is plotted showing abrupt

jumps corresponding to skew quadrupoles (single particle tracking simulation).
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Figure 4.1: .Variation of |f1001| along the SIS-18 ring together with the locations of the
simulated skew quadrupoles.

As shown in [1, 26] and reported in Sec. B.2 the variation along the ring of the
RDT becomes weaker approaching a resonance, where fjklm is invariant.

In general it is not possible to extract from ĥw,jklm directly the strengths K and
J . Nevertheless, in the case of only one multipole between two consecutive BPMs,
Eq. (4.2) simplifies to

hw,jklme
−i[(j−k)∆φw

x +(l−m)∆φw
y ] = f

(w)
jklme

−i[(j−k)∆φw,w−1
x +(l−m)∆φw,w−1

y ] − f (w−1). (4.4)

If the betatron phase and the beta functions at the multipole are known, from the
l.s.h. of the above equation and Eq. (3.11), the strength Kw,n−1 or Jw,n−1 is inferred.

Even if the amplitudes of the RDTs change only in presence of nonlinear magnets
switched on, it is not true that the latter ones make always the RDTs change. Indeed,
particular lattice configurations exist, which can make the method fail, as shown in
Sec. B.1.

4.3 Experimental aspects

In the previous chapter we assumed ideal BPMs with calibration factors ηx,y = 1.
This assumption might not hold in a real accelerator due to calibration errors and
pick-up tilting. Misalignment error are less severe, since they produce an off-center
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signal whose only effect is to drive a zero-frequency line that we are not interested
in.

Wrong momentum reconstruction from two consecutive BPMs due to nonlin-
earities placed in between introduces another error when computing the complex
Courant-Snyder variable hq,−.

The computation of hq,−, as well as Eq. (4.2), makes also use of the Twiss param-
eters ∆φ and β at the BPM location. Deviation from the model of the real linear
optics is another source of error when inferring the magnet strength ĥjklm.

These experimental aspects are addressed in this section, together with some
strategies aimed to reduce the sources of errors.

4.3.1 BPM calibration factor

Calibration errors result in a wrong BPM signal and a scaled complex Courant-
Snyder variable according to

hx,− = ηx(x̂− ip̂x), hy,− = ηy(ŷ − ip̂y) , (4.5)

where it is assumed that the calibration factors of the two consecutive pick-ups are
the same. The normalizations listed in table 3.3 were introduced to remove the
dependence of the secondary spectral lines on the actions and phases and infer the
RDTs. If calibration factors need to be taken into account, that normalization in-
troduces a dependence on ηx,y. From Eqs. (3.20) and (3.22)

|fHjklm| ∝
1

ηj+k−2
x ηl+my

horizontal spectrum,

|fVjklm| ∝
1

ηj+kx ηl+m−2
y

vertical spectrum.

(4.6)

As shown in [1, 10] for the RDTs excited by skew quadrupoles, a solution is pro-
vided combining the spectral line amplitudes in such a way to cancel out both ηx and
ηy. Since f0110 = f ∗

1001 and f1010 is visible in both the horizontal and vertical spectra,

|f1001| =
√

fV0110 · fH1001 =
1

2

√

V (1, 0)H(0, 1)

H(1, 0)V (0, 1)
, (4.7)

|f1010| =
√

fV1010 · fH1010 =
1

2

√

V (−1, 0)H(0,−1)

H(1, 0)V (0, 1)
, (4.8)

do not depend anymore on the calibration factor.
This approach does not work for higher multipoles. A way to remove this dependence
and infer f3000, for example, is first to divide the line amplitude for the amplitude



4.3. EXPERIMENTAL ASPECTS 35

of the tune line

H̃(−2, 0) =
H(−2, 0)

H(1, 0)
= 6|f3000|

√

2Ix , (4.9)

and repeat the measurement for different kick amplitude (∝
√

2Ix). From the slope
of the linear fit f3000 is eventually inferred [10].

4.3.2 Do we really need to reconstruct the momentum?

The momentum reconstruction from two consecutive BPMs in the Courant-Snyder
coordinates reads [25]

p̂i,x = (x̂i+1 − x̂i cos ∆φx)/ sin ∆φx , (4.10)

or, equivalently, if an up-stream BPM is used,

p̂i,x = (−x̂i−1 + x̂i cos ∆φx)/ sin ∆φx , (4.11)

where ∆φx is the phase advance between the two BPMs. These relations hold only
in absence of nonlinearities in between. If this condition is not satisfied a systematic
error is introduced. In [27] a new (real) observable has been introduced from the
turn-by-turn signals of three BPMs

χ(N) =
x̃1

cos δx,1
+ x̃2(tan δx,1 + tan δx,2) +

x̃3

cos δx,2
, (4.12)

where x̃ is the Courant-Snyder variable normalized to the amplitude of the founda-
mental betatron oscillation x̃ = x̂/H(1, 0), δx,1 = ∆φx,1 − π/2, and δx,2 = ∆φx,2 −
π/2. ∆φx,1 and ∆φx,2 are the phase advances between the first and the second BPM
and between the second and the third respectively. The construction of χ does not
require any momentum reconstruction, and its FFT depends on the local nonlinear-
ities, namely

χjklm =
∑

q

ei[(1−j+k)φxq+(m−l)φyq ]SEN(φxq)hq,jklm . (4.13)

The above summation extends over the multipoles in between the three BPMs,
hq,jklm are the coefficient defined in (3.11) of the q-th multipole, φxq and φyq are the
phase advances between the first BPM and the q-th multipole, and SEN(φxq) is
defined as

{

sin φxq
√

1 + tan2 δx,1 if φxq < ∆φx,1
sin(φxq − δx,1 − δx,2)

√

1 + tan2 δx,2 if φxq > ∆φx,1
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If one multipole is placed in between the three BPMs, its strength and polarity can be
unambiguously inferred, provided that the phase advance between the multipole and
the first BPM is known. The analytical proof of these statements and expressions
is given in [27].

If only one multipole is placed between the BPMs even one BPM is enough to
measure its strength, despite the fact that the RDTs are not anymore observable.
According to eq.(3.18) the turn-by-turn observable x̂ = <{hx,−} reads

x̂(b, N) =

√
2Ix
2

[ei(2πνxN+ψb,x,0) + c.c.] −

2<
{

i
∑

jklm

jf
(b)
jklm(2Ix)

j+k−1
2 (2Iy)

l+m
2 ×

ei[(1−j+k)(2πνxN+ψb,x,0)+(m−l)(2πνyN+ψb,y,0)]
}

.

For any complex number z, <{iz} = −={z} and the above summation simplifies in

∑

jklm

2j(2Ix)
j+k−1

2 (2Iy)
l+m

2 ={f (b)
jklme

i[(1−j+k)(2πνxN+ψx,b,0)+(m−l)(2πνyN+ψb,y,0)]} .

For the sake of clarity we limit our analysis to the sextupolar terms f
(b)
3000 and f

(b)
1200.

After some algebra, the above expression reads

(2Ix)e
iπ
2

[

(3f
∗(b)
3000 − f

(b)
1200 ) · ei2(2πνxN+ψb,x,0) − (3f

(b)
3000 − f

∗(b)
1200 ) · e−i2(2πνxN+ψb,x,0)

]

The first and second terms are complex conjugate and correspond to the H(2, 0)
and H(−2, 0) lines respectively. The amplitude and the phase of the tune line can
still be used to remove the dependence on Ix and ψb,x,0. A linear fit can also be
used in the case the calibration factors must be taken into account. The complex

quantity 3f
(b)
3000 − f

∗(b)
1200 is therefore observable. From eq. (3.15)

3f
(b)
3000 − f

∗(b)
1200 = 3

∑

w hw,3000e
−3i∆φx,bw

1 − ei6πQx
−
∑

w h
∗
w,1200e

i∆φx,bw

1 − ei2πQx
, (4.14)

with hw,1200 = 3hw,3000 = Kw,2β
3/2
w,x/16, some algebra yields the linear system

3f
(b)
3000 − f

∗(b)
1200 =

∑

w

hw,1200

[ e−3i∆φx,bw

1 − ei6πQx
− ei∆φx,bw

1 − ei2πQx

]

, (4.15)

where ∆φx,bw is the horizontal phase advance between the b-th BPM and the w-th
multipole and the summation extends over all the multipoles. The above linear
system can be numerically inverted providing the strengths hw,1200.
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4.3.3 Upon the dependence on the model

According to eq. (3.2) the optical functions at the BPMs location are needed to
construct the complex signal hx,−. Nevertheless for practical uses we are interested
only to its spectrum, i.e its Fourier Transform F{x̂i − ip̂i,x}. As this is a linear
operator, the computation can be split in two steps.
With x̂i = x/

√

βi,x , F{x̂i} = ηx/
√

βi,xF{xi}, the constant 1/
√

βi,x can be included
in the calibration factor providing

F{x̂i} = η∗xF{xi} . (4.16)

According to eq. (4.10), we have

F{p̂i,x} =
ηi+1,x

sin ∆φi,i+1
F{x̂i+1} − ηi,x cot ∆φi,i+1F{x̂i} .

Assuming that the calibration factor is the same for the two consecutive BPMs, i.e.
ηi,x = ηi+1,x = ηx, and extracting η∗x = ηx/

√

βi,x, the above equation reads

F{p̂i,x} = η∗x

[

√

βi,x
√

βi+1,x

1

sin ∆φi,i+1
F{xi+1} − cot ∆φi,i+1F{xi}

]

. (4.17)

The ratio
√

βi,x/
√

βi+1,x is equal to the ratio between the amplitudes of the i-th and
the (i + 1)-th tune lines. It is therefore observable and measured from F{xi} and
F{xi+1}. The same holds for ∆φi,i+1, which is the difference between the phases of
the i-th and the (i + 1)-th tune lines.

Eqs. (4.17) and (4.16) show that F{x̂i − ip̂i,x}, and hence the RDTs, can be
inferred in a model-independent way from the FFT of the pure BPM data xi and
xi+1, without moving to the complex Courant-Snyder coordinates. The dependence
on the calibration factor η∗x can be removed according to Sec. 4.3.1. The same applies
to the vertical signal.

4.4 Analysis of existing SPS data

During 2002 a measurement campaign aimed to measure the RDTs was carried
out in the Super Proton Synchrotron (SPS) of CERN [1, 10, 11]. Seven strong
sextupoles were connected to introduce large non-linearities. Their locations and
the model parameters are listed in Tab. 4.1. Other 108 sextupoles used for the
chromaticity correction where also turned on. These sextupoles are grouped in four
families, whose parameters are listed in Tab. 4.2.

The new software application bpm2rdt has been developed for the analysis of
BPM data and is documented in APPENDIX E. The code reads in input the
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name location [m] K2 [m−1] βx [m] h3000 [m−1/2]

LSE.1060 766.2 0.44629 96.335 8.7913

LSE.1240 1342.2 0.44629 92.238 8.2365

LSE.2060 1918.2 0.44629 100.542 9.3734

LSE.2240 3646.1 -0.44629 100.210 -9.3271

LSE.4060 4222.0 -0.44629 90.488 -8.0032

LSEN.424 4798.0 -0.44629 97.020 -8.8852

LSE.5240 5373.9 -0.44629 94.413 -8.5300

Table 4.1: List and parameters of the excited normal sextupoles.

BPM turn-by-turn data and the Twiss parameters to construct hq,−(N) and χ(N)
introduced in Sec. 4.3.2. Then it performs the FFT of these variables, finds the peaks
of the Fourier spectra and infers the RDTs fjklm, the strengths ĥjklm and the local
terms χjklm. All these observables are printed out together with the corresponding
values of the model, computed from the nominal values of strengths and the Twiss
parameters.

In Fig. 4.2 an example of turn-by-turn BPM data is shown together with the
computed spectrum of hx,−(N). The tune line H(1, 0) is the largest peak at 0.1758,
whereas the secondary line H(−2, 0) driven by f3000 is visible at 0.6484.
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Figure 4.2: . Example of SPS turn-by-turn BPM data x(N) (left) and BPM spectrum
F{x̂i−ip̂i,x} (right). Note the tune lineH(1, 0) at 0.1758 and the secondary lineH(−2, 0)
driven by f3000 at 0.6484. (SPS BPM data 2002, courtesy of R. Tomás and F. Schmidt)
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family name # K2 [m−1] βx [m]

LSFA 36 -0.02245 ∼100

LSFB 18 -0.04496 ∼100

LSDA 18 0.08417 ∼22

LSDB 36 0.06641 ∼22

Table 4.2: Strengths of the sextupole families used for chromaticity correction.

Note that the relations listed in Tab. 3.2 are derived assuming turn-by-turn os-
cillations without decoherence and properly calibrated BPM. To take into account
the decoherence of the SPS data the measured f3000 and χ3000 were multiplied by 2
according to Ref. [1].

BPM noise has been found to introduce large fluctuations when averaging several
data sets. In Ref. [1] a BPM pre-analysis was carried out to detect and remove all the
BPM producing a background noise higher than a certain threshold. The strategy
adopted here does not include any data pre-processing: noisy BPMs are rejected
a posteriori when the statistical fluctuations in the measured quantities are higher
than 20%.
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Figure 4.3: RDT f3000 along the ring. Error bars correspond to 1σ. Only the values from
BPMs providing fluctuations smaller than 20% are shown (SPS BPM data 2002, courtesy
of R. Tomás and F. Schmidt).
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In Fig. 4.3 the measured f3000 is plotted around the ring together with the predic-
tion from the model. Model and measurement are in good agreement as in [10, 11].
However the measured f3000 shows visible jumps at locations where they were not
expected. This is due to a wrong momentum reconstruction and can be proven by
measuring the local resonance term χ3000, which does not need of any momentum
reconstruction, see Fig 4.4. These local resonance terms are similar to the ĥ3000 but
are computed from three BPMs and are strictly local. Their value only depends on
the sources placed between the three BPMs. Therefore, from the figure we conclude
that there are only seven dominating sextupolar sources placed at the location of
the strong sextupoles.

Due to the BPM distribution, LSE.1240, LSE.2240 and LSEN.424 fulfill the con-
dition of being the only source of nonlinearities between the two adjacent BPMs.
The other four extraction sextupoles have at least another chromaticity sextupole
in between the two adjacent BPMs. However the extraction sextupoles are much
stronger than the chromaticity sextupoles and as first approximation the latter ones
might be neglected. Therefore the Hamiltonian terms ĥ3000 at the location of the
BPM next to the seven extraction sextupoles si read

|ĥ(si)
3000| '

Ksi,2β
3/2
si,x

48
(4.18)

In Fig. 4.5 the measured ĥ3000 are plotted together with the predictions from the
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Figure 4.4: Measured and expected absolute value of χ3000. Error bars correspond to 3σ.
Only the values providing fluctuations smaller than 20% are shown (SPS BPM data 2002,
courtesy of R. Tomás and F. Schmidt).
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model. The agreement for |ĥ3000| varies from 3% (LSEN.424) to 28% (LSE.4060).
Error in the phases is of about 10%, confirming the correct setting of the polarities.
Due to the lattice configuration of the SPS the phases of ĥ3000 provide a direct
measurement of their polarities as shown in the figure.
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Figure 4.5: Measured and expected absolute value and phase of ĥ3000 corresponding to the
seven excited extraction sextupoles. Error bars correspond to 3σ (SPS BPM data 2002,
courtesy of R. Tomás and F. Schmidt).
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Chapter 5

Betatron coupling and emittance
transfer: static case

Emittance transfer between planes has been widely studied in the framework of
betatron linear coupling [8, 28, 29, 30]. The understanding of this mechanism is of
help in both optimizing the multi-turn injection, distributing horizontal emittance
in the vertical plane, and preventing beam losses when the emittance in one plane
is larger than the acceptance in the other one.

Equations governing this process have been already derived from the equation
of motion of a single particle. This results in coupled differential equations whose
explicit solutions have been found in the smooth approximation only and assuming a
uniformly distributed skew quadrupole representing the global betatron coupling. A
more general treatment has been also derived in the C matrix notation [31], leading
to relations straightforward to implement numerically, but difficult to explicit in
terms of observables.

Emittance transfer has been studied mainly in two different processes, namely
the static approaching to the resonance [8, 28] driving an emittance sharing, and the
recently developed dynamical resonance crossing [29, 30], which lead to a complete
emittance exchange between the two planes.

In this chapter we use the RDT formalism illustrated in Chapter 3 to derive
analogous equations describing the emittance sharing in terms of f1001. The new
relations are able to describe the emittance transfer , turn by turn as well as aver-
aged in time, to higher accuracy than the existing formulae. The advantage of this
approach is that no differential equations need to be solved and the assumption of
having a smooth lattice is removed. With respect to the C matrix approach, the
dynamics is now parameterized by one complex number f1001, instead of four real
matrix elements. Explicit relations connecting the matrix and the RDT approaches
are given in APPENDIX D.

In the following analysis betatron coupling is assumed to be weak enough and the
dynamic crossing slow enough to make the particle distribution be always matched.
This condition is essential for the derivation of the new formulae when computing
the RMS emittance εx from the single particle emittance Ex. Longitudinal coupling

43
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is not take into account, as well as chromaticity, dispersion and tune modulation
driven by synchrotron motion, as the beam under study is assumed to be coasting.

5.1 Short review of previous theory

Static approaching to the resonance refers to the exploration of the resonance stop
band in several machine cycles. From cycle to cycle the tune in one plane is usually
varied, keeping the other fixed. Both tunes are anyway fixed during each cycle. Close
to the resonance, the transverse planes share their RMS emittances. The amount of
sharing depends on the strength of the coupling and the distance from the resonance
condition. On the resonance the two emittances (averaged over several turns) are
equal, i.e. εx = εy. Analytic formulae were previously derived [8, 28] for a constant
focusing lattice with uniform betatron coupling whose integrated strength is given
by [32]

C = − 1

2π

∮

ds j(s)
√

βx(s)βy(s)e
−i(φx(s)−φy(s))+is/R∆ , (5.1)

where R is the machine radius, j(s) the smoothly distributed skew quadrupole
strength and ∆ the distance from the resonance of the bare tunes (fractional part):

∆ = Qx −Qy . (5.2)

C is also known as the “tune difference on the coupling resonance”, ∆Qmin. The
transverse RMS emittances, averaged over a time T >> 1/|C|, are coupled according
to

εx = εx0 +
|C|2

∆2 + |C|2
εy0 − εx0

2
(5.3)

εy = εy0 −
|C|2

∆2 + |C|2
εy0 − εx0

2
(5.4)

In Fig. 5.1 RMS emittances from multi-particle simulations are plotted versus ∆
and compared with Eqs. (5.3)-(5.4) for two different amounts of coupling, |C| = 1%
and |C| = 0.2% respectively. In the latter case the RMS curves show an asymme-
try not foreseen by the existing formulae (5.3)-(5.4). In the simulation, the realis-
tic SIS-18 lattice was used and betatron coupling was generated by random skew
quadrupolar components at the end of each focusing quadrupole.
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Figure 5.1: RMS emittances against ∆ = Qx −Qy from multi-particle simulations com-
pared with Eqs. (5.3)-(5.4) for |C| = 1% (left) and |C| = 0.2% (right) generated by
distributed random skew quadrupole components in the focusing quadrupoles of the SIS-
18.

5.2 Betatron motion close to the (1,-1) resonance

Close to the difference resonance (1,-1) a complete Lie expansion (i.e. including all
orders) of the turn-by-turn BPM signal defined in Eq. (3.2) is derivable in terms of
the RDT f1001, namely

hx(N) = cos 2f
√

2Ixe
i(2πNQh+ψx0) − ieiq sin 2f

√

2Iye
i(2πNQv+ψy0) (5.5)

hy(N) = cos 2f
√

2Iye
i(2πNQv+ψy0) − ie−iq sin 2f

√

2Ixe
i(2πNQh+ψx0) , (5.6)

where N is the turn number, Ix,y and ψx0,y0 are the normal form single particle
invariants and phases respectively. f and q are the amplitude and phase of f1001

defined by

f1001 = feiq . (5.7)

An expression of f1001, approximated up to first order, reads

f̄1001 =

∑

w

Jw,1
√

βwx β
w
y e

i(∆φw,x−∆φw,y)

4(1 − e2πi(Qh−Qv))
. (5.8)

The difference between the above definition and the one given in Eq. (3.15) is in
that here the eigen tunes Qh, Qv appear instead of the bare tunes Qx, Qy. The
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substitution makes the quasiresonant f1001 not to diverge for ∆ → 0. Outside the
resonance stop band the two expressions are equivalent.

The derivation of Eqs. (5.5)-(5.6) is given in APPENDIX C. In matrix notation
the above system reads

(

hx(N)
hy(N)

)

=
(

cos 2f −ieiq sin 2f
−ie−iq sin 2f cos 2f

)(

ei2πNQh 0
0 ei2πNQv

)

( √
2Ixe

iψx0
√

2Iye
iψy0

)

(5.9)

The system evaluated at N = 0 and inverted reads

( √
2Ixe

iψx0
√

2Iye
iψy0

)

=
(

cos 2f ieiq sin 2f
ie−iq sin 2f cos 2f

)

( √
Ex0e

iφx0
√

Ey0e
iφy0

)

, (5.10)

where we explicited hq(0) =
√

Eq0e
iφq0 , with Eq0 and φq0 the initial single particle

emittance and phase in the Cartesian coordinates respectively.

5.3 Single particle emittances

Single particle emittances Ex,y can be described in terms of the normal form invari-
ants according to

Ex,y(N) = |hx,y(N)|2 . (5.11)

Eqs. (5.5) and (5.6) yield

Ex(N) = cos2 2f (2Ix) + sin2 2f (2Iy) + Φ (5.12)

Ey(N) = cos2 2f (2Iy) + sin2 2f (2Ix) − Φ (5.13)

Φ = 2
√

2Ix2Iy cos 2f sin 2f sin [q − (ψx0 − ψy0) − 2πN(Qh −Qv)] ,

where q and f are the phase and the amplitude of f1001 defined in Eq (5.7). The
sum of the two emittances reads

Ex(N) + Ey(N) = 2Ix + 2Iy = Ex0 + Ey0 (5.14)

and is constant in time, where Ix,y are invariants.

In order to remove the dependence of Ex,y on Ix,y and to make explicit the depen-
dence on the initial emittances, we substitute Eq. (5.10) in Eq. (5.9). The complex
Courant-Synder variables are therefore given by
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hx(N) =
√

Ex0e
i(2πNQh+φx0)

[

cos2 2f + e−i2πN∆e sin2 2f
]

+ (5.15)

i
√

Ey0e
i(2πNQv+φy0+q) cos 2f sin 2f

[

ei2πN∆e − 1
]

hy(N) =
√

Ey0e
i(2πNQv+φy0)

[

cos2 2f + ei2πN∆e sin2 2f
]

+ (5.16)

i
√

Ex0e
i(2πNQh+φx0−q) cos 2f sin 2f

[

1 − e−i2πN∆e
]

,

where ∆e = Qh − Qv is the distance from the resonance of the eigen-tunes. The
single particle emittances Ex,y = |hx,y|2 are obtained

Ex(N) = Ex0 + sin2 4f
[

1 − cos (2πN∆e)
]Ey0 − Ex0

2
+ R(φx0, φy0) (5.17)

Ey(N) = Ey0 − sin2 4f
[

1 − cos (2πN∆e)
]Ey0 − Ex0

2
− R(φx0, φy0) , (5.18)

where R(φx0, φy0) is a linear combination of sin (φx0 − φy0) and cos (φx0 − φy0).

5.4 RMS emittances

Turn-by-turn RMS emittances are computed by averaging over the particle dis-
tribution the single particle emittances given in Eqs. (5.17)-(5.18). The matching
condition results in a particle distribution which is independent on the phases φx,y.
Therefore the average cancels out R(φx, φy), yielding

εx(N) = εx0 + sin2 (4|f1001|)
{

1 − cos (2πN∆e)
}εy0 − εx0

2
(5.19)

εy(N) = εy0 − sin2 (4|f1001|)
{

1 − cos (2πN∆e)
}εy0 − εx0

2
, (5.20)

where we have substituted f = |f1001|. The two emittances oscillate in time (e.g. in
N) with frequency ωN = 2π∆e. On the resonance the frequency is ω0 = 2π|C|, with
|C| the tune separation at ∆ = 0. Unless betatron coupling is extremely low and
∆ ' 0, or a turn-by-turn emittance monitor is available, these oscillations cannot be
detected by any hardware integrating the signal over many turns. A further aver-
aging over N >> 1/|C| is therefore required to derive an averaged RMS emittance.
The time integration removes the oscillating term, with ∆e independent on time,
yielding

εx = εx0 + sin2 (4|f1001|)
εy0 − εx0

2
(5.21)

εy = εy0 − sin2 (4|f1001|)
εy0 − εx0

2
(5.22)
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In Fig. 5.2 the turn-by-turn RMS emittances from SIS-18 multi-particle simulation
are plotted for |C| = 0.128 and three different working points. The closer ∆ is to 0
(resonance condition) the larger is the amount of shared emittance and the slower
is the exchange frequency. In the same pictures the horizontal lines correspond to
the averaged RMS emittance.
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Figure 5.2: vertical (top) and horizontal (bottom) turn-by-turn RMS emittance from SIS-
18 multi-particle simulation. Betatron coupling of |C| = 0.0128 is introduce by random
skew quadrupolar components at the end of each focusing quadrupoles. Simulations are
repeated for three working points ∆ = 0.028, 0.01, 0.0. Horizontal lines correspond to
the integrated RMS emittance. Stars are derived from Eqs. (5.19)-(5.20).
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5.5 From f1001 to formulae in the literature

Previously derived formulae (5.3)-(5.4) are obtained from the above relations under
several approximations. Assuming the observation point at the origin, i.e. s = 0,
from Eq. (5.8) we obtain

|f̄1001| ' 1

8| sin (π∆e)|
∣

∣

∣

∑

w

Jw,l

√

βwx β
w
y e

i(∆φw,x−∆φw,y)
∣

∣

∣
(5.23)

' 1

8π|∆e|
∣

∣

∣

∑

w

Jw,1

√

βwx β
w
y e

i(φw,x−φw,y)
∣

∣

∣
,

with ∆e << 1 and sin (π∆e) ' π∆e. The above summation is closely related to the
integral |C0| defined as follow

C0 = − 1

2π

∮

ds j(s)
√

βx(s)βy(s)e
−i(φx(s)−φy(s)) , (5.24)

with

|C0| =
1

2π

∣

∣

∣

∮

ds
∑

w

Jw,1δ(s− sw)
√

βx(s)βy(s)e
−i(φx(s)−φy(s))

∣

∣

∣
(5.25)

=
1

2π

∣

∣

∣

∑

w

Jw,1

√

βwx β
w
y e

i(φw,x−φw,y)
∣

∣

∣
.

Expanding the sine up to the first order sin x ' x and replacing f1001 ' f̄1001,
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Figure 5.3: |C0| against ∆ for |C| = 1% (left) and |C| = 0.2% (right) generated by
distributed random skew quadrupole components in the focusing quadrupoles of the SIS-
18.
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the latter defined in Eq. (5.8), we obtain

sin2 (4|f1001|) ' 16|f̄1001|2 '
C2

0

∆2
e

. (5.26)

After substituting ∆2
e = ∆2 + |C0|2 [16], Eqs. (5.21)-(5.22) eventually read

εx = εx0 +
1

2

|C0|2
∆2 + |C0|2

(εy0 − εx0) (5.27)

εy = εy0 −
1

2

|C0|2
∆2 + |C0|2

(εy0 − εx0) . (5.28)

Eqs. (5.3)-(5.4) are obtained expanding |C0|2 as Taylor series around ∆ = 0, namely
|C0|2 ' |C|2 + O(∆). Note that the approximation made in Eq. (5.26) provides a
way to compute the maximum error |f1001| − |f̄1001|: for ∆ → 0, |C0| → ∆e and
|f1001| → π

8
, whereas |f̄1001| → 1/4.

The phase eis/R∆ inside the integral (absent in C0) makes |C| independent of
∆. In case of a single skew quadrupole driving betatron coupling, as well as in
the smooth approximation, |C0| = |C|. In case instead of several localized skew
quadrupoles |C0| exhibits a dependence on ∆. For ∆ << 1 this dependence appears
to be linear as shown in Fig. 5.3. Related to this dependence is the asymmetry of
sin (4|f1001|) inside the stop band as shown in Fig. 5.4, as well as the asymmetry in
the emittance sharing.

In Fig. 5.5 our new formulae (5.21)-(5.22) are compared with the simulated RMS
emittances and the predictions from the previous model, Eqs. (5.3)-(5.4): for a
coupling |C| = 1% both formulae follow the RMS values, whereas for |C| = 0.2%
only the new formulae describe properly the sharing curve.
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Figure 5.4: sin (4|f1001|) against ∆ for |C| = 1% (left) and |C| = 0.2% (right) generated
by distributed random skew quadrupole components in the focusing quadrupoles of the
SIS-18.
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Figure 5.5: The same RMS emittances of Fig. 5.1 compared with previous formulae
Eqs. (5.3)-(5.4) and the new formulae Eqs. (5.21)-(5.22) for |C| = 1% (left) and |C| =
0.2% (right).

5.6 Computing and measuring f1001

The approximate expression of f1001 given in Eq. (5.8) might not be enough accu-
rate close to the resonance. This relation is indeed derived from a first order normal
form, and higher order contributions need to be taken into account. Nevertheless
Eqs. (5.5)-(5.6) provide a direct way to compute (and measure) f1001 = feiq: the
spectrum of turn-by-turn oscillations of a test particle contains two peaks, namely

H(1, 0) = cos 2f
√

2Ixe
iψx0 H(0, 1) = −ieiq sin 2f

√

2Iye
iψy0 (5.29)

V (0, 1) = cos 2f
√

2Iye
iψy0 V (1, 0) = −ie−iq sin 2f

√

2Ixe
iψx0 (5.30)

It is easy to prove that

cos 2f =
|H(1, 0)|

√

|H(1, 0)|2 + |V (1, 0)|2
=

|V (0, 1)|
√

|V (0, 1)|2 + |H(0, 1)|2
(5.31)

sin 2f =
|H(0, 1)|

√

|V (0, 1)|2 + |H(0, 1)|2
=

|V (1, 0)|
√

|H(1, 0)|2 + |V (0, 1)|2
(5.32)

q = φH(0,1) − φV (0,1) +
π

2
= φH(1,0) − φV (1,0) −

π

2
, (5.33)

where φV (m,n) and φH(m,n) are the phases of the spectral peaks V (m,n) and H(m,n)
respectively. f1001 can be therefore inferred numerically from hx,y(N) ( as well as
measured using a kicked beam) inverting the above relations. In Fig. 5.6 the exact
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Figure 5.6: |f̄1001| from Eq. (5.8) (blue line) compared with |f1001| from Eq. (5.31) against
∆. Note how on the resonance, ∆ = 0, |f̄1001| = 1/4 whereas |f1001| = π/8.

|f1001| as computed from the above relations is plotted against ∆ and compared
with the approximate expression |f̄1001| given in Eq. (5.8). Note that for ∆ > |C|
the above formulae and the one given in Tab. 3.3 to infer f1001 are equivalent.

If a fast emittance monitor is available, fitting the turn-by-turn oscillations of
RMS emittances with Eqs. (5.19)-(5.20) provides an alternative way to infer both
∆e and |f1001| for any working point. In Tab. 5.1 the fit results are listed at s = 0
together with the values computed from Eq.(5.8) and the FFT of a test particle.
The fit is performed on the data corresponding to Fig. 5.2.

∆ = −0.028 ∆ = −0.010 ∆ = −0.005

|f1001|2 0.0101 (0.0104) 0.0352 (0.0355) 0.0501 (0.0505)

∆e 0.0324 (0.0320) 0.0173 (0.0171) 0.0143 (0.0143)

Table 5.1: Fitted values obtained from the turn-by-turn emittance oscillations according
to Eqs. (5.19)-(5.20) for different working points. The data correspond to the bottom plots
of Fig. 5.2. In parenthesis the values from the model.

If no turn-by-turn emittance monitor is available, ∆e is no longer observable, the
time integration removing the oscillating term. Nevertheless |f1001| is still measur-
able from Eqs. (5.21)-(5.22).
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5.7 Generalized coordinates and decoupled motion

In this section we provide a way to decouple the equations of motion alternative to
the one given in [31]. In the decoupled planes the motion is a pure rotation whose
frequencies are given by the eigen-tunes Qh,v. Explicit expressions for the single
particle invariants are also derived.

Defining

h =
(

hx
hy

)

F =
(

cos 2f −ieiq sin 2f
−ie−iq sin 2f cos 2f

)

(5.34)

a =

( √
2Ixe

iψx0√
2Ixe

iψx0

)

Q =
(

ei2πQh 0
0 ei2πQv

)

, (5.35)

system (5.9) can be written in a more compact notation

h(N) = FQNa ⇒ h(N) = FQN (F−1F)a . (5.36)

with Fa = h(0),

h(N) = FQNF−1h(0) , (5.37)

or equivalently

h(N) = FQ(F−1F)QN−1F−1h(0) . (5.38)

Eq. (5.37) applied to the (N − 1)th turn reads

h(N − 1) = FQN−1F−1h(0) , (5.39)

providing the recursive turn-by-turn relation

h(N) = FQF−1h(N − 1) . (5.40)

New generalized coordinates can be defined as

h̃(N) = F−1h(N) , (5.41)

where F−1 is the matrix of Eq. (5.10). In the new variables system (5.40) is decoupled

h̃(N) = Qh̃(N − 1) . (5.42)

The solution is a pure rotation, and Ẽq = |h̃q(N)|2 = |h̃q(0)|2 = 2Iq are the invari-
ants (see Eq. (5.10)). Note that for an uncoupled lattice f1001 → 0 and F → I,
where I is the identity matrix, h̃q(N) → hq(N) and 2Iq → Eq0. Eq. (5.10) provides
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Figure 5.7: Turn-by-turn single particle emittances (left horizontal, right vertical) from
tracking (Black curve) compared with the one obtained from Eq. (5.37) (Green diamonds)
and |h̃(N)|2 (blue curve) introduced in Eq. (5.41).

also the dependence of the invariants on the initial emittances and f1001

√

2Ix = |
√

Ex0e
iφx0 cos 2f + i

√

Ey0e
iφy0+q sin 2f | (5.43)

√

2Iy = |
√

Ey0e
iφy0 cos 2f + i

√

Ex0e
iφx0−q sin 2f | . (5.44)

The turn-by-turn evolution of the generalized (decoupled) coordinates is given by

h̃x(N) = |
√

Ex0e
iφx0 cos 2f + i

√

Ey0e
iφy0+q sin 2f | ei2πNQh (5.45)

h̃y(N) = |
√

Ey0e
iφy0 cos 2f + i

√

Ex0e
iφx0−q sin 2f | ei2πNQv . (5.46)

In presence of betatron coupling Ẽq = |h̃q|2 replaces the single particle emittance Eq

as adiabatic invariant. As Eq is invariant for slow tune modulations in an uncoupled
lattice, Ẽq is constant for a slow tune variation in a coupled lattice.

In Fig. 5.7 the turn-by-turn single particle emittances computed from tracking is
compared with the ones obtained propagating the initial condition via Eq. (5.37), re-
vealing an excellent agreement. It is also confirmed that |h̃x,y(N)|2 remain invariant,
up to some fast oscillations, whose origin might be numerical.

5.8 Emittance variation along the ring

Eqs. (5.19)-(5.20) reveal a counterintuitive aspect of the emittance behavior along
the ring: in Chapter 3 it was shown how |f1001| remains constant in regions free
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of betatron coupling, whereas it exhibits abrupt jumps after a localized source of
coupling (see Fig. 4.1). Approaching the resonance conditions these jumps become
less visible, and |f1001| tends to remain constant along the ring as shown in [1, 26]
and reported in APPENDIX B. Jumps of |f1001| result in variations of the amount
of shared emittance along the ring, according to Eqs. (5.19)-(5.20).

This is indeed confirmed by multi-particle simulations shown in Fig. 5.8: the
vertical RMS emittance is plotted turn by turn at three different locations of the
SIS-18, for different ∆ and for two different amounts of coupling. εy (as well as
εx), at any locations, oscillates with frequency ωN = 2π∆e, which is invariant. The
minimum of the oscillations is also invariant, εy0 = 20 mm mrad: this occurs when
cos (2πN∆e) = 1 in Eqs. (5.19)-(5.20), regardless on the local value of |f1001|. On
the other hand the upper crest occurs when cos (2πN∆e) = 0 and its value depends
on the local value of |f1001|; the relative difference tends to zero approaching the
resonance, as |f1001| remains constant along the ring.
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Figure 5.8: Multi-particle simulations of the turn-by-turn RMS emittance oscillations for
two different amounts of coupling and three working points. The three lines correspond
to different locations where the emittances were computed.
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Chapter 6

Betatron coupling and emittance
transfer: dynamic case

One of the constraints imposed in Chapter 5 was the invariance of the bare tunes
Qx,y within the machine cycle. Explicit expressions for the single particle invariants
Ix,y were derived and the connection between single particle emittance Ex,y and
Ixy was established. This resulted in a fast emittance exchange between the two
transverse planes and an averaged emittance sharing depending on the amount of
betatron coupling and the distance from the resonance.

In this chapter we discuss the effect of a slow tune variation and the dynamical
crossing of the resonance stop band. As for the static case, new formulae containing
f1001 are derived and the connection with previous analogous relations is discussed.

6.1 Short review of previous theory

Dynamical resonance crossing refers to the exploration of the resonance stop band
in a single machine cycle by slowly sweeping one or both bare tunes, i.e. introducing
a time dependence (usually linear) in ∆. The two emittances become equal on the
resonance and completely exchange at the end of the crossing, assuming that both
the starting point ∆in and the final one ∆out are large enough compared with the
resonance stop band |C| defined in Eq. (5.1). Analytic formulae were derived in [29]
for a constant focusing lattice with a uniformly distributed betatron coupling. The
two averaged emittances are in this case coupled according to

εx = εx0 +
|C|2

∆2 + |C|2 ± ∆
√

∆2 + |C|2
εy0 − εx0

2
(6.1)

εy = εy0 −
|C|2

∆2 + |C|2 ± ∆
√

∆2 + |C|2
εy0 − εx0

2
, (6.2)

where ∆ = Qx − Qy, Qx,y the (fractional part of the) bare tunes. The factor

∆
√

∆2 + |C|2 makes possible the exchange, and ± depends on the crossing direction.
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The adiabatic condition in this case refers to a tune variation slow enough to keep
the particle distribution always matched with the lattice. As for the static case, we
make use of the matching condition when computing the RMS emittances εx,y for
the single particle emittances Ex,y.

Another assumption is that the tune variation is performed over a number of
turns Nt >> 1/|C|, with Nt the integration time of the emittance monitor. Within
Nt both the tunes and f1001 are assumed to be almost constant.

6.2 Single particle emittances

As the single particle emittance Ex,y is invariant for slow tune modulations in an

uncoupled lattice, Ẽx,y = |h̃x,y|2 = 2Ix,y remains constant for a slow tune variation
in a coupled lattice. On the resonance ∆ = 0 the two invariants exchange abruptly.
This exchange is related to the change in the phase q of f1001 by π as shown in
Fig. 6.1.
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Figure 6.1: 2Ix,y (left) and q (right) against the distance from the resonance ∆.

To show how this abrupt exchange occurs we compute 2Ix,y from Eqs. (5.43)-
(5.44)

2Ix = cos2 2f Ex + sin2 2f Ey −
√

ExEy sin 4f sin (φx − φy − q) (6.3)

2Iy = cos2 2f Ey + sin2 2f Ex +
√

ExEy sin 4f sin (φx − φy − q) , (6.4)

where as usual f1001 = feiq. Sum and difference read respectively

2Ix + 2Iy = Ex + Ey = Ex0 + Ey0 (6.5)

2Ix − 2Iy = cos 4f (Ex − Ey) − 2
√

ExEy sin 4f sin (φx − φy − q) . (6.6)
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For a given particle close to the resonance, i.e. ∆ ' 0 and f ' π/8, the tune working
point ∆ = ±δ, where δ ' 0, are not equivalent since

(2Ix − 2Iy)
∣

∣

∣

−δ
= −2

√

ExEy sin (φx − φy − q) (6.7)

(2Ix − 2Iy)
∣

∣

∣

δ
= +2

√

ExEy sin (φx − φy − q) . (6.8)

Indeed q(δ) = q(−δ) − π and φx,y(δ) ' φx,y(−δ). The crossing therefore makes the
difference change sign, while the sum remains constant. This is equivalent to say
that the crossing makes 2Ix and 2Iy exchange while crossing the discontinuity ∆ = 0.
The two invariants C1 and C2 and Eqs. (5.12)-(5.13) therefore read

C1 = 2Ix C2 = 2Iy before crossing (6.9)

C1 = 2Iy C2 = 2Ix after crossing (6.10)

Ex(N) = cos2 2f C1 + sin2 2f C2 + Φ (6.11)

Ey(N) = cos2 2f C2 + sin2 2f C1 − Φ (6.12)

Φ =
√

C1C2 cos 4f sin [q − (ψx0 − ψy0) − 2πN∆e] (6.13)

6.3 RMS emittances

The computation of the RMS emittances requires the knowledge of the RMS values
of C1,2. The adiabatic condition can be invoked to keep the particle distribution
always matched and therefore independent of the betatron phases. As for the static
case, when the RMS values are computed, terms proportional to sin (φx0 − φy0) and
cos (φx0 − φy0) cancel out. Eqs. (6.3)-(6.4) evaluated at N = 0 yield

{

c1 = cos2 2f0 εx0 + sin2 2f0 εy0
c2 = cos2 2f0 εy0 + sin2 2f0 εx0

before crossing (6.14)

{

c1 = cos2 2f0 εy0 + sin2 2f0 εx0
c2 = cos2 2f0 εx0 + sin2 2f0 εy0

after crossing , (6.15)

where f0, εx0 and εy0 are the initial absolute value of f1001 and RMS emittances
respectively. The average over N >> 1/|C| cancels out Φ and the RMS averaged
emittances eventually read

εx = c1 + sin2 2|f1001|(c2 − c1)

εy = c2 − sin2 2|f1001|(c2 − c1) .

It can be shown that the above relations are equivalent to

εx = ch + Tf (cv − ch) (6.16)

εy = cv − Tf (cv − ch) , (6.17)
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where

ch = cos2 2f0 εx0 + sin2 2f0 εy0 (6.18)

cv = cos2 2f0 εy0 + sin2 2f0 εx0 (6.19)

Tf =

{

sin2 (2|f1001|) before crossing

cos2 (2|f1001|) after crossing
. (6.20)

With this notation the exchange of the invariants is implicit in Tf whereas ch and
cv remain constant. Note that the above relations hold for a starting point not
necessarily far from the resonance, mandatory condition for the existing formulae
Eqs. (6.1)-(6.2). As shown in Fig. 6.2 the agreement between the RMS emittances
computed from multi-particle simulations and new formulae remains excellent for
any starting points, whereas discrepancies appear with the existing formulae.

In order to re-derive previous formulae we assume a starting point far enough
from the resonance stop band, such that f0 ' 0, ch ' εx0 and cv ' εy0. We also
rewrite Tf as

sin2 2f =
1 − cos 4f

2
=

1 −
√

1 − sin2 4f

2
(6.21)

cos2 2f =
1 + cos 4f

2
=

1 +
√

1 − sin2 4f

2
. (6.22)

Substituting sin2 4f ' 16f̄ as done in Eq. (5.26), after some algebra we obtain

sin2 2f ' 1

2

|C0|2
∆2 + |C0|2 + |∆|

√

∆2 + |C0|2
(6.23)

cos2 2f ' 1

2

|C0|2
∆2 + |C0|2 − |∆|

√

∆2 + |C0|2
, (6.24)

with C0 defined in Eq. (5.24). Under these assumptions Eqs. (6.16)-(6.17) read

εx = εx0 +
|C0|2

∆2 + |C0|2 ± ∆
√

∆2 + |C0|2
εy0 − εx0

2
(6.25)

εy = εy0 −
|C0|2

∆2 + |C0|2 ± ∆
√

∆2 + |C0|2
εy0 − εx0

2
. (6.26)

The sign in the denominator depends on the crossing direction. Eqs. (6.1)-(6.2) are
eventually obtained expanding |C0|2 ' |C|2 as done for the static case.
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Figure 6.2: Dynamical crossing from multi-particle simulations: the RMS emittances are
plotted together with Eqs. (6.16)-(6.16) and Eqs. (6.1)-(6.2) for several starting points.
A betatron coupling of |C| = 1% was introduced with random errors in the normal
quadrupoles of the SIS-18 lattice.
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Chapter 7

Optics and emittance measurements in
the SIS-18

The SIS-18 is presently not equipped with a turn-by-turn multi-BPM acquisition
system. Its implementation is still in the prototyping phase. In order to investigate
the feasibility and the effectiveness of RDT measurement in the SIS-18, a preliminary
turn-by-turn acquisition system over two BPMs was developed during 2003 and 2004
making use of a more cost-effective hardware. Despite the fact that the turn-by-
turn sampling was working properly at the front-end of each one of the two pick-ups,
problems in synchronizing the two systems prevented any RDT measurement.

In the SIS-18 it has been always observed that a shift exists between the set
Q-values and the measured ones. The turn-by-turn analysis provides a method for
a fast machine tuning alternative to the Schottky analysis. Single BPM data were
therefore used for tune and nonlinear chromaticity measurements, the latter one
providing informations on the global lattice nonlinearities. Both the hardware and
the measurement results are described in the first part of this chapter.

At the end of 2004 a new residual gas monitor (RGM) was commissioned in
the SIS-18, allowing the measurement of the transverse emittances. The emittance
curves were used to infer both |C| and the |f1001|, providing an alternative technique
to the harmonic analysis of BPM data. First evidences of emittance equilibration
were also observed. For the first time, two skew quadrupoles have been used to
compensate betatron coupling. Both the hardware and the measurement results
obtained during 2005 are described in the second part of this chapter.

7.1 SIS-18 turn-by-turn BPM acquisition system

From the experimental point of view, the crucial issue for the measurement of the
RDT is the correct turn-by-turn construction of the complex signal x̃− ip̃x defined
in Eq. (3.2), which means:

1 correct triggering and BPM turn-by-turn synchronization

2 Correct px reconstruction
63
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3 Correct transformation to the normalized coordinates

Point 2. requires that the region between two consecutive pick-ups be free from non-
linearities. In this case the momentum can be inferred from the data of the neighbor
BPMs [25]. Since the real linear optics not always corresponds to the model, the
optical functions needed in point 3. are derived directly from the spectrum of x and
y at each BPM [33]. Both points 2. and 3. depend anyway on the proper BPM
data acquisition: not synchronized data would produce uncorrelated time series xN
and pxN and wrong optical functions.

A new PC data acquisition system has been developed during 2003 and 2004 by
Peter Moritz. The analog signals (Σ and ∆) from a pick-up are digitized by means of
a 20 MHz 4-channel PCI card installed on a PC. As trigger the event generator (Q-
kicker signal) is used, whereas the sampling (turn-by-turn) clock is provided by the
RF master signal (divided by the harmonic number h = 4). The data are stored in
12-bits integer words, providing a resolution δΣ/Σ = δ∆/∆ ' 5× 10−4 and δx/x '
10−3. A post-processing software was developed to convert these numbers in mm
and perform the FFT of the time series (speeded up by a peak-search routine [34]).

This approach differs from the one used, for example, at the CERN PS [35]
where the sampling is performed in continuous mode with a fast digitizer at high
frequency (500 MHz). The beam position at each turn is then obtained from the full
data stream with a peak-search algorithm. The advantages of our PCI card system
are the lower hardware costs (a factor ten with respect to the fast digitizer) and
smaller storage memory requirements and output files, already suitable for post-
processing. The drawback is that the synchronization must be guaranteed during
the acquisition since a wrong setting would compromise the entire acquisition, the
full data being nonrecoverable. With a continuous fast sampling (each 2 ns) this
risk is automatically avoided.

A first test using one BPM was performed in 2003 when the betatron tunes were
measured with an accuracy of 0.3%. In the first half of 2004 a second PCI card was
installed and a second BPM connected. To synchronize the two acquisitions both
the trigger and the sampling clock of the second card have been delayed by the time-
distance between the two BPMs. The SIS-18 has a strictly 12-fold superperiodicity
and the 12 available BPMs are placed at the end of each period, hence this distance
corresponds to 1/12 of the revolution time (4.689 µs). All tests were performed at
the injection energy (11.4 MeV/u). To check the synchronization of the two cards
we compared the phase advances between the two BPMs from the model with the
ones obtained from the measured spectra ψBPM2

x,y,0 − ψBPM1
x,y,0 . In Fig. 7.1 the result

of this test is plotted, showing a poor agreement made worse by the proximity of
the vertical phase advance to 90o, which makes the optical functions reconstruction
problematic using the algorithm described in [33]. The use of SVD methods would
prevent such a problem.

The reason for this bad synchronization is not yet well understood and requires
more dedicated tests. One reason might be the 32-bit bus of the PCI card, which
might have prevented the simultaneous storage of all the 4 channels.
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Figure 7.1: measured phase advance between the two BPMs with respect to the model.

7.2 Tune measurement

On October 23 2004 turn-by-turn BPM data were acquired after displacing trans-
versely a low intensity beam by means of 45o-rotated fast dipole magnet (Q-kicker).
The phase-pickup (originally meant for Schottky analysis) was used instead of one of
the twelve BPMs at the end of each focusing period because of the higher resolution.
The machine and beam parameters are listed in Tab. 7.1. The measurement was
carried out in parasitic and the electron cooler used for the main beam was kept
on during our acquisition. Two sets of data were acquired for two different tune
working points.

Beam: 124Xe47+

injected current: ∼ 1 µA

injected # of particles: ∼ 6 × 106

energy: 11.27 MeV/u

RF Voltage: 0 kV

Qx 4.29; 4.21

Qy 3.31; 3.20

tune shift at injection: ∆Qx,∆Qy < 10−4

Table 7.1: Beam parameters during tune measurement of October 23 2004.

The phase-pickup showed a noise whose frequency of 87.43 kHz was such to
produce in the FFT diagram a line at 0.41, as illustrated in Fig. 7.2. As this
line was far enough from the expected tune lines, this was of no concern for the
measurement.
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The measured betatron tunes (fractional part) are shifted with respect to the
input values given in the control room software SISMODI :

Qmea
x = 0.3189 ± 0.0002 Qinput

x = 0.2900 (7.1)

Qmea
y = 0.1971 ± 0.0005 Qinput

y = 0.2100 (7.2)

Qmea
x = 0.3379 ± 0.0002 Qinput

x = 0.3100 (7.3)

Qmea
y = 0.1875 ± 0.0001 Qinput

y = 0.2000 (7.4)

Qmea
x −Qinput

x ' 0.028 Qmea
y −Qinput

y ' 0.013 (7.5)

Comparisons between older and more recent tune measurements reveal that these
shifts are rather cycle-dependent. Nevertheless the measured tunes are well repro-
ducible for each kind of cycle. The performed FFT using N =256 turns ensures
an error ∝ 1/N 2 ≈ 10−5. The maximum measured fluctuation is within 0.3%. An
example of recorded (vertical) data and corresponding FFT is shown in Fig. 7.3.

The solenoidal field from the the electron cooler introduces linear coupling be-
tween the two planes. The presence of the horizontal tune line in the vertical spec-
trum V (1, 0), absent when the cooler was turned off, is a proof of this.

One of the effects of a non-zero chromaticity is to add sidebands to the spectral
lines at distance ±qQs, where Qs is the synchrotron tune and q is an integer. From
the spacing between the sidebands Qs can be inferred. Such “satellite” lines have
been observed during our measurement (one example is shown in the right plot of
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Figure 7.3: Vertical turn-by-turn data and corresponding FFT (Q-kicker voltage =34 kV).

fig. 7.4), providing the following value for the synchrotron tune

Qs = 0.0038 ± 0.0012 , (7.6)

compatible (despite the large uncertainty of ∼ 30%) with the nominal value1

Qs =

√

|η|ehV̂ Z
2πmpγβ2c2A

' 0.0045 (7.7)
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Figure 7.4: Measured synchrotron tune (left) and example of satellite lines excited by
chromaticity (right).

1η = 0.93696, h = 4, V̂ = 2 kV, Z = 47, A = 124, mp = 1.67 · 10−27kg, γ = 1.0120,
β = 0.15361
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7.3 Nonlinear chromaticity measurement

Particles with off momentum δ = (p − ps)/(ps), where ps is the momentum of the
synchronous particle, experience different focusing strengths and in turn different
tunes. For a linear lattice the latter ones show a linear dependence on δ, whose
coefficient Q′ is called “natural chromaticity”

Q = Qo +Q′δ . (7.8)

Any dependences on higher powers of δ are related to lattice nonlinearities. The
underlying idea is that sextupolar (K2) and decapolar (K4) field components in
the dipoles and octupolar components (K3) inside the quadrupoles produce a lin-
ear, cubic and quadratic dependence of the tune on δ respectively. Measuring the
chromaticity outside the linear region and fitting the data with a cubic polynomial
provide information on the distributed multipolar components along the ring

Qx,y = Q0,x,y +Q′
x,yδ +

Q′′
x,y

2
δ2 +

Q′′′
x,y

6
δ3 (7.9)

⇑ ⇑ ⇑
K2 K3 K4

Once the cubic curve is inferred, the nonlinear model is constructed following the
same procedure as in [36]. The main focusing quadrupoles are tuned to reproduce
with MAD the Q0,x,y. In the same way a sextupolar kick is introduced at the center
or at the end of each dipole in order to reproduce the linear chromaticity Q′

x,y.
Next an octupolar kick is added at each quadrupole to fit the quadratic terms Q′′

x,y.
Eventually decapolar kicks are inserted in the dipoles to reproduce the third order
terms Q′′′

x,y.
To check the quality of the model, the dependence of the tune on the kick ampli-

tude I can be used. This dependence can be obtained imparting kicks with different
amplitudes to the beam and measuring the tunes. In general a parabolic dependence

ν = ν0 − µI2 (7.10)

is obtained. µ is a constant parameter to be inferred experimentally. On the other
side, MAD tracking simulations using the new lattice can be run with the same kick
strengths. The comparison between the two curves will establish the quality of the
derived lattice model, e.g. µMAD ' µexp .

By definition chromaticity is inferred from measuring the tune Qx,y by varying
the momentum deviation δ and keeping the magnetic lattice unchanged. The tune
is measured as shown in the previous section offsetting the beam with a Q-kicker.
The variation of δ is performed “by hand” changing the RF cavity frequency [32].
In practice this is done via the so-called “radial steering”: a change of frequency
corresponds to a change of energy which produces a closed orbit radius shift. The SIS
control program allows the user to manipulate such radius keeping fixed the magnetic
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Figure 7.5: Measured horizontal and vertical tunes versus momentum offset (Error bars
correspond to 1σ).

lattice. To a radial steering 4R corresponds a momentum deviation, according to
δ = (4R)/(Rαc), where R is the average machine radius (RSIS = 34.492 m) and
αc is the momentum compaction (for the working point Qx = 4.29 and Qy = 3.27,
αc,SIS = 0.04). During the measurement, for technical reasons the steering was
limited to -1 cm < 4R < 1 cm. Such a measurement was performed in 2003 and
the results are shown in Fig. 7.5

Beam loss after kicking the beam was observed (see left plot of Fig. 7.6) and
the impossibility of reducing the kicker strength prevented a better setup. This in
turn drove a decoherence of the BPM signal over about 128 turns (see right plot
of Fig. 7.6). The strong amplitude dependent detuning and the fast decoherence
induced large fluctuations in the measured tunes. The limited radial steering range
did not allow an explorations over a larger region of δ. All this resulted eventually
in a poor fit quality and in the impossibility to infer a reliable nonlinear behavior
(especially in the vertical plane), and to cross-check the results measuring the tunes
at different Q-kicker strengths.
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Figure 7.6: Left: Beam loss monitor (BLM) display with visible beam loss occurred after
kicking the beam. Right: example of BPM signal with fast decoherence.
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7.4 The SIS-18 residual gas profile monitor (RGM)

Residual Gas Monitors (RGM) provide a non-destructive beam profile measurement
of circulating ion beam. The beam interacts with the residual gas (mainly com-
posed of H2) within the beam path and produces residual gas ions and electrons
as schematically shown in Fig. 7.7. An electrostatic field E1 accelerates the ion-
ization products (ions) towards a Micro Channel Plate (MCP). When the particles
reach the MCP surface secondary electrons are produced and are accelerated into
the channels by E2. Inside the channels they are multiplied by a factor of about
100. A wire array behind the MCP collects the secondary electrons and is connected
to an adequate electronic device (current to voltage converter and adc).

Pictures of the RGM installed in the SIS-18 and commissioned during 2004 [37] by
T. Giacomini and P. Forck are shown in Fig. 7.8. The duration of one measurement
(one single beam profile) can be switched between 0.5 and 5 ms. At injection energy
these times correspond to ∼ 102 and ∼ 103 turns, with the revolution time ∼ 4.7 µs.
Every 10 ms a new measurement starts. A turn-by-turn acquisition system is under
development [38].

The dimensions of the MCPs are 100 mm x 30 mm and the active area is 100
mm x 26 mm. They are fixed in two sockets of glass ceramics and are fitted with
two flat metal springs which are gold coated. An array of 64 wires with diameters
of 1.5 mm and distances of 0.6 mm to each other is placed behind the MCPs. This
wire array configuration determines the spatial resolution of 2.1 mm.

Figure 7.7: Schematic description of the residual gas ionization driven by the beam and
of data acquisition (courtesy of T. Giacomini and P. Forck).
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Figure 7.8: View of one of the two RGMs installed in the SIS-18: technical drawing (left)
and picture (right) of the RGM installed inside the beam pipe. Note in the technical draw-
ing the deuterium lamp on top of the box used for calibration (courtesy of T. Giacomini
and P. Forck).

7.4.1 From RGM data to RMS emittance

A GUI software developed by T. Giacomini displays on-line and prints on file the
ADC signals from the 64 wires of both planes. Data are acquired and stored every
10 ms. From the raw ADC data the HWHMs are inferred and the corresponding
σx,y are computed assuming a Gaussian profile via

σx,y =
HWHMx,y

2ln(2)
(7.11)

This assumption is motivated by the fact that the numerical computation of σx,y
directly from the ADC data are highly sensitive to tails far from the beam core and
to calibration factors.

Transverse RMS emittances are inferred from the beam sizes according to

εx,y =
σ2
x,y − (Dx,yδ)

2

βx,y
(7.12)

where Dx,y and βx,y are the dispersion and the beta functions respectively at the
RGM location and δ is the momentum spread to be measured before. The optical
functions are taken from the SIS-18 lattice model; their value for the triplet lattice
at injection are listed in Tab. 7.2.

The RGM resolution of 2.1 mm corresponds to resolution in the measured emit-
tance of 0.8 mm mrad.
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horizontal RGM vertical RGM

Dx = 1.554 m Dx = 1.77 m

Dy = 0 m Dy = 0 m

βx = 5.481 m βy = 7.767 m

Table 7.2: Optical functions at the location of the RGM for the triplet lattice at injection
energy.

Raw adc data out of the two arrays of 64 wires need to be corrected (namely
divided) by calibration factors. A deuterium lamp (115 ∼ 400 nm spectral distribu-
tion) is placed above the E-field box outside the vacuum chamber (see left picture
of Fig. 7.8) and used to infer the response of each wire to a homogeneous signal.
This setting allows a periodic monitoring of RGM performances without need of dis-
mounting the RGM from the beam line. An example of calibration factors measured
before the measurement campaign of 2005 is shown in Fig. 7.9.
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Figure 7.9: Calibration factors for both the horizontal and the vertical RGM measured at
the beginning of 2005: raw adc data out of each wire must be divided by the corresponding
factor (courtesy of T. Giacomini and P. Forck).

During the measurement campaign of March-May 2005 it was also observed that
RGM data with peak values below 500 (in units of the adc file) were not suitable for
analysis and they were rejected, as the noise level is of about 400. In this case large
fluctuations when averaging over several data files were indeed observed, resulting
in unreliable measurements. A solution to this problem is to increase the gain in
the MCPs, which increases the flux of secondary electrons providing a higher RGM
signal. Unfortunately this is not always possible: during May 2005, measurements
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at low current were carried out parasitically with a physics experiment at high
intensity, whose beam passage was found to overload the MCP after the gain was
optimized for a low current beam.

7.4.2 Measurement setup

Measurement of emittance transfer driven by betatron coupling in the SIS-18 re-
quires a specific machine setup. Standard multi-turn injection makes the beam to
fill the horizontal acceptance, which is larger than the vertical one by a factor four.
The phase space rotation induced by betatron coupling hence induces beam losses
as shown in Fig. 7.12. A beam injected with horizontal emittance much smaller
than the vertical one prevents such losses and enhances the resolution of emittance
transfer against hardware limitations and statistical fluctuations.

The first phase of the measurement carried out during 2005 was therefore the
optimization of the injection. Beside a general optimization of the beam quality
in the UNILAC, the variation of the emittance at injection was measured against
the chopper window, i.e. the number of injection turns, as shown in Fig. 7.10. εy0
remains practically constant, since we are painting the multi-turn injection in the
horizontal phase space only. Injection in a single or few turns fulfills the requested
condition εx < εy.

In all measurements the RF was turned off providing a coasting beam. The
absence of acceleration makes the extraction focusing lattice to remain in the triplet
mode. The tune sweeping for emittance exchange studies is performed selecting
in the SIS-18 control room software SISMODI three pairs of Q-values Qx,y (start,
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Figure 7.10: Measurement beam size (left) and RMS emittance (right) against chopper
window after multi-turn injection for Carbon beam (February 8 2005). Error bars corre-
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intermediate and final). The tune ramp between each pair is linear and the slope
adjustable. The print out of the tune ramp against time Qx,y(t), together with the
measured emittance variation during the machine cycle εx,y(t), makes it possible
to plot and study the emittance exchange against the distance from the resonance,
εx,y(∆), with ∆ the difference between the fractional part of the tunes.

7.5 Measurement of emittance sharing

In May 2005 transverse RMS emittances were measured for different machine cycles
scanning the region around the resonance condition Qx = Qy. Within the cycles
the tunes were kept fixed. The RF cavity was turned off during the entire cycle,
providing a coasting beam in few ms after injection. For a better integration of fast
oscillations, the acquisition time for each beam profile was set to 5 ms, correspond-
ing to N ' 103 turns. The main beam parameters are listed in Tab. 7.3.

Beam: 86Kr34+

injected current: ∼ 0.1 mA

injected # of particles: ∼ 108

energy: 11.3 MeV/u

RF Voltage: 0 kV

# of injection turns: 1

Qx 4.26

Qy [3.29, 3.32]

tune shift at injection: ∆Qx,∆Qy < 10−4

emittances at injection: εx0 ' 4.1 εy0 ' 8.3 mm mrad

Table 7.3: Beam parameters during May 2-3 2005.

The results are shown in Fig. 7.11, where both horizontal and vertical emittances
are plotted against the vertical tune. With Qx = 4.26 fixed, this is equivalent to
a plot against ∆, after subtracting the integer part. The resonance center is found
to be at Qx = 4.26 and Qy = 3.308, instead of the expected Qy = 3.26. Practical
reasons prevented the measurement in parallel of the real Q-values, and a cross-
check of this deviation. An indirect confirmation of the shift in the tunes is anyway
provided by beam loss measurement against a similar tune scan shown in the left
plot of Fig. 7.12. A long multi-turn injection over several turns makes the beam to
fill the full horizontal acceptance, the latter a factor four larger than the vertical
one. Phase space rotation driven by betatron coupling makes the vertical emittance
to exceed the corresponding acceptance, resulting in observable losses. Also in this
case the resonance center (maximum loss), is compatible with the above numbers.

From the fit of the data curves with Eqs. (5.3)-(5.4) the resonance stop band
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width |C| is inferred. The limited resolution indeed does not allow to deduce any
asymmetry in the curve similar to the one shown in the right plot of Fig. 5.5. The
observed coupling is

|C| = (2.5 ± 0.9) · 10−3 (7.13)

Measuring the RMS emittances for about 1 hour at the same working point far from
the resonance has shown a visible spread explaining the large error bars in Fig. 7.11,
most probably related to fluctuations in the beam quality out of the injector.

Fit of data shown in Fig. 7.11 provides εx0 ' 4.1 mm mrad and εy0 ' 8.3. Invert-
ing Eqs. (5.21)-(5.22) from the measured emittances, |f1001| against ∆ is inferred and
shown in the right plot of Fig. 7.12. Note that the definition of ∆ given in Eq. (5.2)
contains the fractional part of the tunes only.
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Figure 7.11: Measurement of emittance sharing in the SIS-18 driven by betatron coupling
approaching the resonance condition ∆ = 0. The red points and curve correspond to
the vertical emittance, the black to the horizontal. The continuous lines are obtained by
fitting the data points with Eqs (5.3)-(5.4). The horizontal tune is fixed to 4.26 (Error bars
correspond to 1σ).

7.6 Measurement of emittance exchange

In March 2005 a measurement campaign aiming at emittance exchange studies was
carried out with a machine setup similar to the one described in Sec. 7.5. The ex-
change was in this case driven by sweeping adiabatically the vertical tune within the
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Figure 7.12: Left: beam loss measurement approaching the resonance condition Qx =
Qy. The curve is obtain fitting the data with a Lorentzian function. The displayed Q-
values (set in the control room software SISMODI) correspond to the inferred resonance
center. Right: |f1001| inferred from emittance measurement against the distance from the
resonance ∆ (Error bars correspond to 1σ).

machine cycle. The combination of measured emittances and tune variation against
time made it possible to study emittance transfer as function of ∆. The main beam
parameters are listed in Tab. 7.4.

Beam: 40Ar10+

injected current: ∼ 50 µA

injected # of particles: ∼ 1.5× 108

energy: 11.3 MeV/u

RF Voltage: 0 kV

# of injection turns: 1

Qx [4.25, 4.29]

Qy [3.29, 3.32]

tune shift at injection: ∆Qx = 2 × 10−4 ∆Qy = 4 × 10−4

emittances at injection: εx0 ' 11.5 εy0 ' 2.7 mm mrad

Table 7.4: Beam parameters during March 17 2005.

In Fig. 7.13 an example of dynamical crossing in about 60 ms (∼ 13×103 turns) is
shown together with the emittance exchange curve. Large fluctuation in the vertical
signal after crossing are due to a poor signal from the beam profile monitor: a weak
gain in the multi-channel plate was set to attenuate the intense signal coming from a
relative small beam size. After the exchange, the same charge extended over a large
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Figure 7.13: Example of emittance exchange and tune ramp against time. The resonance
stop band is crossed in about 60 ms, corresponding approximately to 13×103 turns (Error
bars correspond to 1σ).

region made the signal be lower and the multi-channel plate setting not optimized
anymore. The absence of on-line analysis at that time prevented a better vertical
resolution.

A double resonance crossing was also performed to verify the reversibility of
the process. Both the tune ramp and the emittance exchange curve are shown in
Fig. 7.14. As for the above case, large fluctuations appear in the vertical signal after
the first crossing: small error bars after the second passage confirm that those fluctu-
ations must be attributed to a not optimized reading rather than to a deterioration
of the beam quality.

In both cases the resonance center is not found for equal fractional parts of
the tune set in the control room software SISMODI. The center is found to be
at Qx = 4.27 and Qy = 3.295, to be compared with the one found in Sec. 7.5

(Qx = 4.26, Qy = 3.308).

A repeated dynamical crossing was performed by moving the injection working
point (4.29, 3.29) to (4.25, 3.25), which remains outside the stop band. From there
the vertical tune was swept only crossing the resonance vertically from the bottom.
Measurements were repeated for several final values of Qy as shown in Fig. 7.15:
on the left side the horizontal emittance is plotted against time together with the
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(4.29, 3.29) to (4.25, 3.30) in about 300 ms, to be eventually moved back to the initial
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vertical tune ramp. Data from the vertical RGM were not suitable for analysis due
to gain optimization problems. The resonance center, where εx = (εx0 + εy0)/2, is
found to be at Qx = 4.25 and Qy = 3.289.

Plotting the horizontal emittance against the vertical tune and fitting the curve
with Eq. (6.1) provides the following value for the stop band width (averaged over
the four data sets of Fig. 7.15 )

|C| = (2.9 ± 0.2) · 10−3 , (7.14)

consistent with the value inferred in Sec. 7.5. The main advantage of this method to
measure |C| with respect the one making use of the emittance sharing curve is that
the latter one requires a time consuming scan over several machine cycles, whereas
fitting the emittance exchange curve requires a single measurement. This in turn
implies a better experimental resolution, as the measurement is less dependent on
medium-term fluctuations (∼ 1 hour) in the emittances of the beam out of the in-
jector.
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Figure 7.15: Left: the horizontal emittance exchange curve and tune ramp against time.
Right: horizontal emittance exchange against the set value of Qy (Qx = 4.25 during the
cycle) and superimposed fit of Eq. (6.1) (right). Error bars correspond to 1σ
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Figure 7.16: First evidence of emittance equilibration in the SIS-18 (at injection plateau)
driven by betatron coupling and dynamical crossing of half stop band width (Error bars
correspond to 1σ).

Future SIS-18 operations as booster for the planned SIS-100 requires emittance
equilibration at extraction. Eqs. (6.1)-(6.2) guarantee that crossing adiabatically the
resonance stop band, a working point ∆ ' 0 exists, where |f1001| ' π/8 and the
two transverse emittances are equal. Crossing half of the resonance stop band and
fixing the final working point to the resonance center Qx = 4.25, Qy = 3.289 should
provide in first approximation equal emittances. The first experimental evidence of
this process in the SIS-18 is shown in Fig. 7.16: despite a poor resolution in the
vertical signal, there is clear indication that final emittances get very close to each
other. Further studies are anyway mandatory: besides the poor resolution in the
vertical signal, it is not clear why the equilibration needs almost 1 s, whereas fast
crossing in few tens of ms was observed to be enough to drive a full exchange, as
shown in Fig. 7.13.

During the last block of measurement on May 2005 a dependence of the measured
|C| on the beam intensity was observed. For the same kind of crossing, different
intensities and initial emittances (and hence different space-charge tune shifts) lead
to two different emittance exchange curves. Differently from the measurement of
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case 1 case 2

Beam: 86Kr34+ 86Kr34+

injected current (mA): 0.13± 0.01 0.10± 0.01

energy (MeV/u): 11.28 11.28

RF Voltage (kV): 0 0

Qx 4.25 4.25

Qy 3.25 → 3.32 3.25 → 3.32

tune shift at injection (×10−3): x : 2.2 ± 0.2 y : 1.4± 0.1 x : 3.4± 0.8 y : 1.3 ± 0.1

initial emittances (mm mrad): εx0 ' 4.4 εy0 ' 12.8 εx0 ' 1.8 εy0 ' 14.1

Table 7.5: Beam parameters during May 1 2005.

March and April the injected beam had vertical emittance larger than the horizontal
one. Beam parameters for both cases are listed in Tab. 7.5.

RGM data in the horizontal plane, despite the high reproducibility, did not show
the expected exchange as in Fig. 7.14. It is not clear why εx remains almost un-
changed. In Fig. 7.17 the vertical emittance curves for both cases are shown. Both
the inferred stop band width |C| and the resonance center, where the vertical emit-
tance is half of the sum of the initial and final values, are listed in Tab. 7.6. For a
given vertical space-charge tune shift ∆Qy, the larger the horizontal tune shift ∆Qx,
the broader is the observable stop band width and the further away is Qy from the
resonance condition of the bare tunes. Technical problems and lack of beam time
prevented any further systematic investigation on the dependence of |C| on ∆Qx.
The impossibility of measuring on-line the tunes did not allow to cross-check the
shift of the resonance condition. In Chapter 9 an attempt to explain such a depen-
dence is presented.

case 1 case 2

tune shift : ∆Qx = 0.0022 ∆Qx = 0.0034

resonance center (Qx = 4.25): Qy = 3.277± 0.003 Qy = 3.291± 0.004

|C| (10−3): 2.6 ± 0.1 3.9 ± 0.1

Table 7.6: Inferred resonance center and stop band width |C| for both case 1 and case 2
of Tab. 7.5. |C| is obtained fitting the emittance curve with Eqs. (6.1)-(6.2).
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Figure 7.17: Emittance exchange curves during a dynamical crossing measured for dif-
ferent space-charge tune shift (Error bars correspond to 1σ): vertical emittance versus the
nominal vertical tune (top) and time (bottom).

7.7 Betatron coupling resonance compensation in the SIS-18

In August 2005 for the first time the eight skew quadrupoles installed in the SIS-18
could have been powered. The compensation was carried out parasitically with a
physics experiment at high intensity. For technical reasons it was not possible to
acquire RGM data. The compensation therefore was carried using the injection
efficiency to determine the best corrector setting. The beam was injected with a
multi-turn injection over several turns, filling entirely the horizontal acceptance Ax.
Close to the difference resonance Qx ' Qy + 1 uncompensated betatron coupling
drives a rotation in the x−y plane resulting in beam loss, as the vertical acceptance
is smaller than the horizontal one (at injection energy Ax = 200 and Ay = 50 mm
mrad). Betatron coupling is corrected when beam loss at Qx ' Qy + 1 is no longer
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Qy S01KMQS S02KMQS S06KMQS S07KMQS S08KMQS S12KMQS Np × 1010

3.355 0 0 0 0 0 0 2.0± 0.1

3.17 0 0 0 0 0 0 1.3± 0.1

3.17 0 5 0 0 5 0 1.4± 0.1

3.17 0 10 0 0 10 0 1.7± 0.1

3.17 0 12 0 0 12 0 1.7± 0.1

3.17 0 15 0 0 15 0 2.0± 0.1

3.17 0 10 -5 0 10 -5 0.5± 0.1

3.17 0 10 -2 0 10 -2 1.5± 0.1

3.17 0 10 2 0 10 2 1.6± 0.1

3.17 0 10 5 0 10 5 1.0± 0.1

3.17 2 10 0 2 10 0 1.7± 0.1

3.17 2 15 0 2 15 0 1.8± 0.1

3.17 5 15 0 5 15 0 1.9± 0.1

3.17 -5 15 0 -5 15 0 1.7± 0.1

Table 7.7: Number of particles after the multi-turn injection (4 ms) for different working
point and strengths of the skew quadrupoles, whose units are the one of SISMODI (10−3

m−1). Qx = 4.17 during the measurement. S04KMQS and S10KMQS were not used.

observed.
The machine was setup and optimized for the main experiment with high intensity

14N7+ beam. The injection was found to be optimized at Qx = 4.17 and Qy =
3.355 providing ∼ 1011 particles before the RF capture. For the compensation we
proceeded as follows.

The intensity from UNILAC was reduced of a factor five in order to avoid space
charge effects, obtaining

Qx = 4.17, Qy = 3.355 → Np = 2.0 ± 0.1 × 1010 .

The tune working point was moved close to the linear coupling resonance (see
Fig. 7.18), obtaining a reduction of the injected beam of about 30%: 2

Qx = 4.17, Qy = 3.17 → Np = 1.3 ± 0.1 × 1010 .

Skew quadrupoles were powered on and a heuristic scan of their strengths was per-
formed aiming at minimizing this reduction (the scan is listed in Tab. 7.7). The
entire 30% of losses was completely compensated by the following setting

S02KMQS, S06KMQS = 15 × 10−3m−1 → Np = 2.0 ± 0.1 × 1010 ,

with the other skew quadrupoles were turned off.

2Only the vertical tune was changed in order not to modify the injection scheme.
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Figure 7.18: Picture showing the two working points used in the tune diagram: the upper
spot corresponds to the injection point chosen for the main experiment, the lower one for
linear coupling studies (Courtesy of G. Franchetti).



Chapter 8

Measuring and correcting betatron
coupling

Measurement of |C|, also known in literature as ∆Qmin, is routinely performed in
order to monitor and minimize betatron coupling by means of skew quadrupoles
installed in the ring. For machine with split tunes (i.e. whose tunes are separated
by at least one integer) the knowledge of |C| is not enough to identify a priori the
best corrector setting, and a scan of their strengths over several machine cycles is
therefore necessary until a minimum is reached.

In this Chapter we present a new technique to infer from turn-by-turn multi-
BPM data both the amplitude and phase of C and therefore a fast (single-cycle)
correction scheme.

8.1 Betatron coupling correction

|C| is usually inferred from tune measurement against ∆ (closest-tune approach): the
two eigen-tunes Qh,v get closer to each other approaching ∆ → 0 until a minimum
∆e → ∆Qmin = |C| is reached. Repeated tune measurements are therefore needed
for different working points. In Sec. 7.5 and 7.6 alternative methods using beam
profile monitors were illustrated. Other techniques such as first turn analysis and
beam response after kick are described in [32].

None of the above technique provides any information on the phase of C. In [39]
both amplitude and phase were measured observing the time evolution of the trans-
verse beam profile after exciting the beam with a fast horizontal kick. In [40] the
same measurement was carried out from turn-by-turn BPM data and a fit of the
corresponding Poincaré map.

According to the definition of C given in Eq. (5.1) amplitude and phase are de-
fined as follow

C = |C|eiΘ = − 1

2π

∮

ds j(s)
√

βx(s)βy(s)e
−i(φx(s)−φy(s))+is/R∆ , (8.1)

85
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In machine with unsplit tunes and working point close to the difference resonance
φx(s) − φy(s) ' 0 along the entire ring. This results in Θ ' 0 and a real C as
sketched in Fig. 8.1. One family of corrector skew quadrupoles is therefore enough
since its strength is always in phase with natural coupling. Note that this might
not hold for colliders with unsplit tunes if local phase advances in the interaction
regions differ largely from the phase advances in the arcs.
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Figure 8.1: Sketch of C for a machine with unsplit tunes. On the right the betatron phases
φx (blue) and φy (red) along the ring.

In machine with split tunes and working point close to the difference resonance
φx(s) − φy(s) varies from 0 to 2π along the ring, resulting in Θ 6= 0 (see Fig. 8.2).
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The correction is in this case performed by means of at least two families of skew
quadrupoles, each one them represented by a vector with phase Θsq given by
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Csq = |Csq|eiΘsq =
1

2π
Jsq
∑

w

√

βwx β
w
y e

−i(φw
x −φw

y ) (8.2)

where the sum is over all the skew quadrupoles in the family, Jsq is the integrated
strength (assuming a shared power supply), βwx,y and φwx,y are the Twiss functions
at the skew quadrupole locations. If Θ is unknown a scan of the two families is
necessary to drive an external coupling and minimize C + Csq,1 + Csq,2. Measuring
Θ the same goal is obtained without any scan by decomposing C on the directions
Θsq,1 and Θsq,2 and making the families drive the opposite strengths as shown in
Fig. 8.3.

Im

Re Re

Im

family 1 family 1

family 2family 2

|C| C

Figure 8.3: Left: complex plane with the measured |C| and the directions of the two
corrector families. Right: case with measurement of C, its decomposition along the two
lines and corresponding correction setting.

In the following sections we illustrate a way to infer both |C| and Θ from turn-
by-turn multi-BPM data of a transversely excited beam.

8.2 From f1001 to |C| ( ∆Qmin )

Eq. (5.26) suggests that |C| can be measured with two separate measurements of
both |f1001| (at any location) and Qh,v. A Taylor expansion of |C0| around ∆ = 0
reads

4|f1001∆e| ' |C0| ' |C| + C ′
o∆, for |C| < ∆ << 1 . (8.3)

the latter condition is required for replacing f̄1001 with f1001 in Eq. (5.26) (see
Fig. 5.6). Two measurements of |C0| at two different working points (better if sym-
metric with respect to the resonance) are therefore enough to infer |C| from a linear
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fit. In the left plot of Fig. 8.4 the inferred |C| from two simulated measurements of
|f1001| according to Eq. (8.3) is shown.
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Figure 8.4: In the left plot an example of |C| inferred from two simulated measurements
of |f1001| at one location and ∆e according to Eq. (8.3). In the right plot the measurement
of |f1001| is performed at several locations and for each location Eq. (8.3) is applied. All
the linear fits provide for ∆ = 0 almost the same expected value of |C| = 4.01 × 10−3.
The average of |C0| in each measurement provides already a good estimation of |C|.

Variations of |f1001| along the ring result in different lines having nearly the same
values at ∆ = 0 as shown in the right plot of Fig. 8.4: single-particle simulations
of the SIS-18 with distributed skew quadrupole kicks along the ring are run for two
working points. The picture indicates that a single measurement of |f1001| at different
locations provides already a good estimation of |C|, namely |C| ' ∑N

w |C0|/N and
therefore

|C| ' 4|∆| 1

N

N
∑

w

|fw1001|, for |C| < ∆ << 1 , (8.4)

where ∆ = Qx − Qy is the difference of the bare tunes (fractional part), N is the
number of available BPMs and the latter condition is required for making use of
Eq. (8.3) and for substituting ∆e ' ∆.

In simulations shown in the right plot of Fig. 8.4 the average of |f1001| and Eq. (8.4)
gives |C| = 4.03 × 10−3 for ∆ = −0.05, |C| = 4.00 × 10−3 for ∆ = 0.05, whereas
the real value is |C| = 4.01 × 10−3. The accuracy is about 0.5%. For an effective
measurement the available BPMs should cover as much uniformly as possible the
entire ring: regions with large coupling uncovered by BPMs would prevent the
average from describing the global amount of coupling.
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8.3 From f1001 to phase of C ( Θ )

Eq. (4.2) applied to f1001 reads

ĥw,1001 = f
(w)
1001e

−i(∆φw,w−1
x −∆φw,w−1

y ) − f
(w−1)
1001 , (8.5)

where ∆φw,w−1
q are the phase advances between the (w− 1)−th and the w−th BPMs

and f
(w)
1001 is the RDT measured at the w−th BPM. The l.h.s. of the above equation

is given by

ĥw,1001 =
1

4

∑

τ

Jτ,1

√

βτxβ
τ
y e

i(∆φw−1
τ,x −∆φw−1

τ,y ) . (8.6)

The sum runs over all the multipoles between the (w − 1)−th and the w−th BPMs
and ∆φw−1

τ,q are the phase advances between those multipoles and the (w − 1)−th

BPM. Jτ,1 are the integrated skew quadrupolar strengths. After some algebra, it

can be shown that the global Hamiltonian term h
(w)
1001 at the wth BPM introduced in

Eq. (3.15) is related to the coupling strength |C0|, defined in Eq. (5.24), by

h
(w)
1001 = |h(w)

1001|eih
w
φ = −π

2
C0e

i(φw
x −φw

y ) . (8.7)

hwφ and φwx,y are the Hamiltonian term and the BPM phases respectively. Amplitude
and phases therefore read

|h(w)
1001| =

π

2
|C0| (8.8)

hwφ = ±π + Θ0 + (φwx − φwy ) . (8.9)

The sign in of π can be chosen arbitrarily, since the difference between the two
choices is 2π. From Eq. (3.15) we obtain

|f (w)
1001|eiq

w

=
|h(w)

1001|eih
w
φ

1 − e2πi(Qh−Qv)
' |C0|

4|∆e|
e
i

"

−π+Θ0+(φw
x −φw

y )+sgn(∆e)
π

2

#

(8.10)

⇒ Θ0 = qw − (φwx − φwy ) + π

[

1 − sgn(∆e)
1

2

]

. (8.11)

In absence of any coupling source between two BPMs ĥw,1001 = 0 and, according to
Eq. (8.5), the evolution of f1001 is a pure rotation whose angle is ∆φw,w−1

x −∆φw,w−1
y .

In this case the evolution of phase of f
(w)
1001 reads

qw − qw−1 = ∆φw,w−1
x − ∆φw,w−1

y for ĥw,1001 = 0 , (8.12)

and the following quantity is invariant along regions free of coupling

qw − (φwx − φwy ) = const. for ĥw,1001 = 0 . (8.13)
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From Eq. (8.11) we deduce that also Θ0 is constant in region free of coupling, whereas
exhibits jump in presence of a skew quadrupole kick. Θ0 is observable, with both
q and ∆e measurable as shown in Sec. 5.6. φwx,y are the betatron phase of the w−th

BPM and can be taken from the model.1
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Figure 8.5: MADX tracking simulation of the RHIC Yellow ring at injection energy with
betatron coupling |C| = 0.01: the quantity Θ0 at the BPM locations is plotted for different
working points, together with the location of skew quadrupolar kicks. In regions free of
coupling it remains constant. Jumps become weaker approaching the resonance condition
∆ = 0. The betatron phases φx,y are taken from the MADX lattice model.

In Fig. 8.5 the variation along the RHIC Yellow ring (injection energy) of Θ0

is plotted for a lattice with betatron coupling |C| = 1% and for different working
points (outside, at the edge and inside the stop band |C|). For ∆ > |C| jumps
are visible in correspondence of skew quadrupolar kicks. They become less visible
moving the working points towards the resonance ∆ = 0, where Θ0 = Θ.

A Taylor expansion around ∆ = 0 similar to the one introduced in Eq. (8.3) can
be performed

Θ0 = qw − (φx − φy) + π

[

1 − sgn(∆)
1

2

]

' Θ + Θ′
0∆ , (8.14)

Two measurements taken at different working points in any location along the
ring are therefore enough to infer unambiguously Θ. Note that the substitution
sgn(∆e) = sgn(∆) made here is not an approximation, since the ∆ and ∆e change
simultaneously sign.

1They can be also inferred from the BPM spectra after choosing one BPM as reference. The correction relies anyway on the
Twiss function at the skew quadrupole locations as shown in Eq (8.2) which are taken from the model, not being observable in a
straightforward and reasonably fast way.
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A single measurement of Θ0 along the ring for |C| < ∆ << 1 provides anyway a
good estimation of Θ, resulting as

Θ '< Θ0 >=
1

N

N
∑

w

[qw − (φwx − φwy )] + π

[

1 − sgn(∆)
1

2

]

+ O(∆) , (8.15)

where N is again the number of available BPMs, qw is the phase of f1001 measured at
the w-th BPM and the remainder is proportional to ∆. In Fig. 8.5 Θ = 3.0 rad and
Eq. (8.15) applied to ∆ = ±0.05 provides 2.8 and 3.1 respectively. The deviation
from the correct value is ≈ 5% as expected.

8.4 Measurement and correction of C in RHIC during 2005

Eq. (8.4) is applied to the RHIC BPM data of [14]. The inferred |C| are compared
with the one obtained applying the N-turn map algorithm described in [41]. The
results listed in Tab. 8.1 are compatible. The standard deviation of |f1001| along the
ring is used as error indicator. The use of several BPMs and the average make the
formula robust against failure of few BPMs (isolated large jumps in upper plots of
Fig. 8.6).

date < |f1001| > ∆e |C| Eq. (8.4) |C| [41]

case 1 May 30 0.020± 0.008 0.013 0.0011± 0.0004 0.0016

case 2 May 30 0.049± 0.009 0.048 0.009± 0.001 0.010

case 3 June 8 0.025± 0.009 0.039 0.004± 0.001 0.0031

case 4 June 13 0.030± 0.009 0.041 0.0049± 0.001 0.0044

case 5 June 13 0.040± 0.010 0.030 0.0048± 0.001 0.0044

case 6 June 13 0.025± 0.008 0.045 0.0045± 0.001 0.0044

Table 8.1: |C| of the RHIC “yellow” ring at injection energy from f1001 measurement dur-
ing 2005 using Eq. (8.4) compared with the ones obtained with the N-turn map algorithm
[41] (RHIC BPM data 2005, courtesy of R. Calaga).

During the measurement of May 30 and June 13 2005 BPM data were taken
turning off the three families of corrector skew quadrupoles. The corresponding |C|
and Θ are therefore the amplitude and the phase respectively of the natural coupling
complex vector C. In Fig. 8.6 the variation along the ring of |f1001| is shown. The
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measured coupling strengths are

|C| = (9.6 ± 1.7) × 10−3 May 30 (8.16)

|C| = ( 16 ± 1 ) × 10−3 June 13 (8.17)

The variation along the ring of q − (φx − φy) + π
2

is shown in Fig. 8.7 and the mea-
sured mean values according to Eq. (8.15) are

Θ = (5.56 ± 0.19) rad = (319 ± 16) o May 30 (8.18)

Θ = (5.58 ± 0.17) rad = (320 ± 10) o June 13 (8.19)

The standard deviation of q− (φx−φy) along the ring is used to estimate the error.
Despite the high reproducibility (the plotted data points have fluctuations smaller
than 30%), few spikes appear due to faulty BPMs: their locations are indeed in
correspondence of unrealistic large jumps in Fig. 8.6. Their contribution to the
computation of Θ is anyway negligible thanks to their limited number.

In May 30 a scan using two independent skew quadrupoles (SQ11C2Y and SQ01C2Y)
was performed to minimize |C| (∆Qmin). The measurement of the natural coupling
was performed with trim values of

J1, SQ01C2Y = 2 × 10−4 m−1 trim value (8.20)

J1, SQ11C2Y = 3 × 10−4 m−1 trim value . (8.21)

The scan shown in Fig 8.8 provided the following best setting

J1, SQ01C2Y ' 6 × 10−4 m−1 best strength (scan) (8.22)

J1, SQ11C2Y ' 7 × 10−4 m−1 best strength (scan) . (8.23)

A similar result is obtained without any scan by just decomposing C on the axes
defined by the skew quadrupoles, whose parameters are listed in Tab. 8.2. Their
directions in the complex plane, defined by e−i2π(µx−µy) according to Eq. (8.2), are
plotted in Fig. 8.9 together with C and its decomposition on the two axes. The gra-
dients Jsq are obtained by Csq using the model beta functions and inverting Eq. (8.2).
Adding the trim values that were set while measuring C, the best corrector setting
eventually reads

J1, SQ01C2Y ' (5.2 ± 1.9) × 10−4 m−1 best strength (RDT) (8.24)

J1, SQ11C2Y ' (6.3 ± 1.9) × 10−4 m−1 best strength (RDT) . (8.25)
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Note that during the scan of each skew quadrupole, the other was was set to the trim
value. The above setting therefore was actually never tried during the measurement.
The error is inferred from the decompositions of the upper and lower values of both
|C| and Θ defined by their error bars.
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Figure 8.6: Variation along the “yellow” ring at injection of |f1001| driven by natural
betatron coupling. In both cases the three families of corrector skew quadrupoles were
turned off. (RHIC BPM data May 30 2005, courtesy of R. Calaga)
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Figure 8.7: Measured variation along the “yellow” ring at injection of Θ0 and correspond-
ing averaged value Θ. The averaged is performed over 8 data files taken turning off all the
corrector skew quadrupoles. Data points with fluctuation larger than 30% were rejected
(RHIC BPM data May 30 2005, courtesy of R. Calaga).
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skew quadrupole location βx βy µx µy trim value

[m] [m] [m] [2π] [2π] [×10−4 m−1]

SQ01C2Y 1311.19 92.918 104.361 9.787 10.100 2

SQ11C2Y 1950.63 113.400 84.028 15.099 14.539 3

Table 8.2: Parameters of the two skew quadrupoles used to minimize |C| (∆Qmin).
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Figure 8.8: Scan of the skew quadrupoles SQ01C2Y (left )and SQ11C2Y (right) to mini-
mize |C| (∆Qmin). During the scan of each quadrupole, the other one was set to the trim
value (RHIC BPM data 2005, courtesy of R. Calaga).
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Figure 8.9: Sketch of the measured C decomposed on the axis defined by the two skew
quadrupoles used for correction. The phase of C is measured, whereas the directions
defined by the two skew quadrupoles are obtained using the model phase advances and
Eq. (8.2).
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Chapter 9

Space charge and emittance transfer

In the previous chapters we analyzed the emittance transfer driven by betatron
coupling excited by tilted normal quadrupoles and skew quadrupoles. The emit-
tance transfer is described in terms of the single particle motion, and the collective
behavior is obtained averaging over the particle distribution.

The single particle nature of this effects results in linearly coupled Hill’s equations
and in a rotation of the beam in both the phase space and the configuration space
x-y.

If space-charge effects need to be taken into account, the single particle descrip-
tion is not anymore sufficient because of the intrinsic coupling between forces acting
on each particle and the RMS beam size.

Both in simulations [42, 43] and experiments carried out at the CERN Proton
Synchrotron [44, 45] it was observed that in some cases, close to the difference
resonance, space charge drives a similar emittance transfer, in the static as well
as in the dynamic case, even in the absence of betatron coupling. A theoretical
effort has being recently carried out at GSI by Franchetti and Hofmann aiming at
describing these phenomena in terms of the “Montague octupolar resonance” [42, 47]
and space-charge “self-skew” driven by a not upright beam distribution [43, 46, 48].

While undesirable emittance transfer driven by betatron coupling can be cured
by using external skew quadrupoles to minimize the resonance stop band |C|, similar
recipes for the exchange driven by space charge presently do not exist. A correct
understanding of its mechanism is therefore mandatory to explore possible future
countermeasures.

Despite some similarities between the emittance transfer driven by betatron cou-
pling and space charge, some important differences (partially not yet understood in
the literature) exist. Betatron linear coupling drives an almost symmetric emittance
sharing and exchange independent from both the resonance crossing direction and
the tune separation (integer difference between the betatron tunes). It has been ob-
served that space-charge-driven emittance transfer is highly sensitive to both these
aspects, namely

• PIC simulations show that the emittance exchange driven by space charge is
not always reversible

97
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• in machines with unsplit tunes space charge drives emittance transfer even
without betatron coupling, whereas in machines with split tunes a nonzero,
even if small, betatron coupling is necessary to lead the exchange

• if space charge is not negligible the emittance sharing curve exhibits a strong
asymmetry around the resonance center

• the center of the space-charge resonance is always at ∆ = 0 in case of unsplit
tunes, it is displaced in case of split tunes and the displacement is proportional
to the Laslett tune shift

• if the tunes are unsplit, the dynamical crossing drives a symmetric curve and
a complete exchange only if the crossing is executed in the proper direction;
the emittance curve is asymmetric and the exchange partial if the crossing is
performed in the opposite direction; on the resonance ∆ = 0 the emittance are
always equal; for given RMS beam sizes, the stop band is proportional to the
Laslett tune shift.

• if the tunes are split, the dynamical crossing is highly dependent on the direc-
tion and the ratio between the betatron coupling stop band |C (b)|, defined in
Eq. (5.1), and the tune shift; on the resonance the two emittances might not
be equal

• in the case with unsplit tunes beam rotation, in the phase space as well in the
configuration space x-y is not observed; the emittance transfer is connected with
an exchange of the RMS beam sizes. Normally the sum of the RMS emittance
is found preserved, although in some exceptional cases with transient behavior
such a conservation is violated.

In this chapter space-charge effects on the emittance exchange crossing the dif-
ference resonance are numerically studied in oder to derive heuristic scaling laws for
the stop band. The starting point in the case of machines with unsplit tunes and in
the absence of betatron coupling is the stop band proposed in Ref. [49]

|C(sc)| =
|∆Qy|

1 +
σxo
σyo

∆Qy '
KscR

2

2Qy0σyo(σxo + σyo)
, (9.1)

where ∆Qy is the initial Laslett tune shift, σxo,yo are the initial RMS beam sizes, Qyo

is the bare vertical tune and Ksc = qI/[2πε0m(γβc)3] is the space-charge perveance
(I the current, q, m the charge and mass, β, γ the relativistic factors and ε0 the
dielectric constant). Multi-particle simulations with several initial conditions (beam
current and RMS emittances) have been run in order to establish the range of validity
of Eq. (9.1) and to infer correction factors.

In this chapter it is also shown why in machines with split tunes, in the smooth
approximation, space charge cannot drive any emittance transfer. External nonzero
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betatron coupling is needed to initiate the exchange. Space charge here has the
effect of introducing an emittance dependent detuning, through the Laslett tune
shift: both the asymmetry in the emittance exchange curves and the enlargement
of the observable stop band are described in term of the detuning. A scaling law
for the observable stop band against the tune shift is inferred from multi-particle
simulations.

9.1 Multi-particle PIC simulations

Multi-particle simulations, whose results are presented in this chapter, have been
run using the MICROMAP libraries [50] with a self consistent 2D PIC Poisson
solver described in Ref. [51, 52]. The reference particle is 238U+28 at 1.4 MeV/u and
the beam is generated using a 4D Gaussian random generator. The reference lattice
corresponds to the one of SIS-18 (R = 34.492 m) at the injection plateau and consists
of 12 FDF periods. The nominal bare tunes are split, Qx0 = 4.29 and Qy0 = 3.29.
Simulations with unsplit tunes have been run setting Qx0 = 4.29 and Qy0 = 4.29.
Betatron coupling, when introduced, is driven by random skew quadrupole errors
in the focusing quadrupoles. The beam simulated is coasting and the synchrotron
motion, as well as any longitudinal coupling (chromaticity and dispersion), is not
included.

The Poisson solver is based on a 2D FFT. Dirichlet boundary conditions can
be imposed over a generic domain: in our simulations the boundaries are defined
by a square of 10 cm side. The charge distribution is deposited onto 64 × 64 mesh
points using the nearest grid point (NGP) algorithm. The number of tracked macro-
particles is 5 × 104.

9.2 Case with unsplit tunes

In Ref. [49] it has been proposed that the emittance exchange driven by space charge
while crossing dynamically the difference resonance (1,-1) can be fitted with equa-
tions borrowed from betatron coupling theory and envelope perturbation theory in
presence of space charge,

εx = εx0 +
|C(sc)|2

∆
2
+ |C(sc)|2 ± ∆

√

∆
2
+ |C(sc)|2

εy0 − εx0
2

(9.2)

εy = εy0 −
|C(sc)|2

∆
2
+ |C(sc)|2 ± ∆

√

∆
2
+ |C(sc)|2

εy0 − εx0
2

, (9.3)

where C(sc) and ∆ are defined as follow
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|C(sc)| =
|∆Qy|

1 +
σxo
σyo

, ∆ = 2Qx0 − 2Qy0 . (9.4)

In order to be consistent with the nomenclature used in the previous chapters we
redefine both variables according to

|C(sc)| =
1

2

|∆Qy|
1 +

σxo
σyo

, ∆ = Qx0 −Qy0 . (9.5)

The redefinition leaves the emittance exchange relations unchanged

εx = εx0 +
|C(sc)|2

∆2 + |C(sc)|2 ± ∆
√

∆2 + |C(sc)|2
εy0 − εx0

2
(9.6)

εy = εy0 −
|C(sc)|2

∆2 + |C(sc)|2 ± ∆
√

∆2 + |C(sc)|2
εy0 − εx0

2
(9.7)

The sign in the denominator depends on the crossing direction and the ration of
the initial emittances according the following observations. In Fig. 9.1 two exam-
ples of crossings are shown. Multi-particle simulations have been run with a beam
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Figure 9.1: Multi-particle simulations of a Gaussian beam of initial RMS emittances
εx0 = 6, εy0 = 1.5 mm mrad and current I = 9.2 mA. The resonance is crossed both from
below (left) and from above (right), by fixing Qx0 = 4.29 and varying the bare vertical
tune only.
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Figure 9.2: Ratio between the effective stop band computed numerically by multi-particle
tracking, |C|, and the one defined by Eq. (9.5), |C (sc)|, against the ratio between the two
initial RMS beam sizes σyo/σxo (See Tab. 9.1). A polynomial fit is then superimposed.

of initial RMS emittances εx0 = 6, εy0 = 1.5 mm mrad and current I = 9.2 mA. The
resonance is crossed at Qx0 = Qy0 = 4.29, by fixing Qx0 = 4.29 and varying the bare
vertical tune only. No betatron coupling is introduced in the lattice. In the left plot
the resonance is crossed starting from below, ∆ > 0 , whereas in the right plot the
starting point is ∆ < 0 and the resonance is crossed from above. Eqs. (9.6)-(9.7) can
be applied to the second case only. If the initial emittances are such that εx0 < εy0
the two conditions are inverted. Therefore the sign in the denominator is defined
according to

{− if the crossing starts from ∆ < 0 and εx0 > εy0

+ if the crossing starts from ∆ > 0 and εx0 < εy0
(9.8)

Multi-particle simulations have been run for various initial parameters, crossing
the difference resonance from above (∆ < 0) with initial emittances εx0 > εy0.
For each case the stop band defined in Eq. (9.5) is computed and compared with
the one inferred superimposing Eqs. (9.6)-(9.7) to the emittance exchange curve
obtained via tracking. The results are listed in Tab. 9.1. Eq. (9.5) predicts with
very good agreement the resonance stop band if the initial beam sizes are such that
σxo ' 2σyo. If σxo >> σyo the stop band is slightly underestimated whereas it is
largely overestimated if σxo ' σyo.

In Fig. 9.2 The ratio between the effective stop band computed via multi-particle
tracking, |C|, and the one defined by Eq. (9.5), |C (sc)|, is plotted against σyo/σxo
(See Tab. 9.1). A polynomial fit is proposed to extend the range of applicability of
|C(sc)| over σyo/σxo ∈ [0.1, 0.9]. Data of Tab. 9.1 are found to match Eqs. (9.6)-(9.7)
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sim. I (εx0, εy0) (σx0, σy0) initial tune shift |C(sc)| from |C| from

mA mm mrad mm |∆Qx|, |∆Qy| Eq. (9.5) tracking

1 1.8 (5, 1) (6.34, 2.83) 0.009, 0.019 0.0030 0.0031

2 1.8 (5, 2.5) (6.34, 4.48) 0.007, 0.010 0.0021 0.0015

3 9.2 (5, 1) (6.34, 2.84) 0.043, 0.097 0.0150 0.0152

4 9.2 (5, 2) (6.34, 4.02) 0.039, 0.061 0.0118 0.0089

5 9.2 (5, 3) (6.34, 4.92) 0.035, 0.045 0.0100 0.0054

6 9.2 (5, 4) (6.34, 5.69) 0.033, 0.037 0.0088 0.0037

7 9.2 (5, 4.6) (6.34, 6.10) 0.032, 0.033 0.0082 0.0018

8 18.4 (5, 1) (6.34, 2.81) 0.087, 0.196 0.0300 0.0305

9 18.4 (5, 2.5) (6.34, 4.45) 0.074, 0.105 0.0215 0.0141

10 20.0 (9, 2) (8.51, 3.99) 0.052, 0.110 0.0175 0.0176

11 3.0 (7, 2) (7.50, 4.00) 0.010, 0.018 0.0031 0.0028

12 10.0 (4, 3.75) (5.67, 5.47) 0.043, 0.045 0.0110 0.0019

13 10.0 (4, 3.00) (5.67, 4.89) 0.046, 0.053 0.0122 0.0051

14 15.0 (7, 1.00) (7.50, 2.82) 0.053, 0.141 0.0191 0.0216

15 15.0 (8, 0.50) (8.02, 1.99) 0.051, 0.207 0.0205 0.0242

16 15.0 (8, 0.10) (8.02, 0.89) 0.058, 0.540 0.0250 0.0310

Table 9.1: Comparison between |C (sc)| defined in Eq. (9.5) and the one obtained from
multi-particle simulations of the SIS-18 (FDF linear lattice without betatron coupling)
and by fitting the emittance curves with Eqs. (9.6)-(9.7). The initial distribution is a 4D
Gaussian and the resonance is crossed at Qx0 = Qy0 = 4.29 by keeping Qx0 fixed and
sweeping the vertical tune only.

provided to use the following stop band width definition

|C| ' |C(sc)|

0.8 +
Q

2

(

σyo
σxo

)3 =
1

2

|∆Qy|
1 +

σxo
σyo

1

0.8 +
Q

2

(

σyo
σxo

)3 , (9.9)

where Q = 4.29 is the center of the resonance in the above simulations.
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Figure 9.3: Sharing curve obtained from multi-particle simulation against ∆. For each
working point the emittances are computed averaging over 500 turns the turn-by-turn
values. The initial distribution is a Gaussian beam of initial RMS emittances εx0 = 10,
εy0 = 2.0 mm mrad and current I = 14.4 mA.

In all the simulations, regardless on the crossing direction and the beam intensity
(tune shift), the RMS emittances are found to be equal at ∆ = 0. This holds also
in the static case as shown in Fig. 9.3: despite the asymmetry in the sharing curve,
at Qx0 = Qy0 = 4.29 the averaged emittances are equal.

9.2.1 Suppressing the space charge driven emittance exchange

As shown in Chapter 8, betatron coupling can be corrected minimizing |C (b)| by
means of skew quadrupoles families. A similar recipe does not apply to the space
charge stop band |C(sc)| because of the different nature of the coupling: space charge
deforms the shape of the distribution in the x-y space without driving any rotation
(see Fig. 9.4), whereas skew quadrupoles preserve the elliptical shape and lead to a
rotation (see Fig. 9.5).

Since the beam remains upright while crossing the Montague resonance one can
think of normal quadrupoles to detune the machine and make the beam cross the
resonance with an effective speed such to prevent any exchange and mismatch: a
normal quadrupole (family) not belonging to the ones used for tuning the machine
could be excited and its strength slowly varied to defocus the plane with larger
envelope and focus the other one. The space-charge force acts in the opposite
direction and the superposition of both might preserve the initial values as shown
schematically in Fig. 9.6.
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Figure 9.4: Transverse beam profile at the beginning of the resonance crossing ∆ =
−0.005 (left), on the resonance ∆ = 0 (center), and at the end of the crossing ∆ =
0.005 (right). Multi-particle simulations without betatron coupling using a 4D Gaussian
of initial emittances εx0 = 10, εy0 = 2 mm mrad and I = 2.8 mA, driving a stop band
|C(sc)| = 0.008.
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Figure 9.5: Transverse beam profile at the beginning of the resonance crossing ∆ =
−0.01 (left), on the resonance ∆ = 0 (center), and at the end of the crossing ∆ = 0.01
(right). Multi-particle simulations at zero current with betatron coupling |C (b)| = 0.014
using a 4D Gaussian of initial emittances εx0 = 10, εy0 = 2 mm mrad.

The main concern for using such a technique is that while turning off the normal
quadrupole at the end of the crossing, the resonance is eventually hit. Therefore,
optimized magnet ramps must be applied to avoid a fast emittance exchange and
any induced mismatch due to a fast detuning at the rising and the fall edges of the
ramp. The latter one must be fast and strong enough not to drive the exchange,
but not too fast and strong in order to avoid mismatch and to be compatible with
the performances of the power supplies.

Multi-particle simulations were run to investigate the efficiency of such a scheme.
Dynamical crossings similar to the ones of Sec. 9 were performed while an additional
normal quadrupole is powered and its integrated gradient varied turn by turn (N)
according to
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space charge normal quadrupole
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space charge

normal quadrupole
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Figure 9.6: Sketch of the combined effect of space charge and additional normal
quadrupole. An initial beam distribution (green ellipse) with large horizontal emittance is
squeezed in x and stretched in y by space charge (left). An additional normal quadrupole
defocusing in x and focusing in y has the opposite effect (center). The combination of the
two deformations can preserve the initial envelopes and emittances (right).

K1(N) = K1

[

2Θ(∆) − sign(∆)
N

N

]p

, (9.10)

where K1 is the maximum (or minimum according to the magnet polarity) value
of the gradient reached at resonance center, Θ(∆) is the step function (Θ(∆) = 0
for ∆ ≤ 0, Θ(∆) = 1 for ∆ > 0), N is the total number of turns needed to cross
the resonance, ∆ = Qx − Qy is the distance from the resonance, and p is a free
parameter. For given RMS emittances , |C (sc)| and dynamical crossing ( i.e. N)
both K1 and p can be chosen to prevent or control the emittance exchange, in a
way compatible with the power supplies (maximum deliverable gradient and magnet
ramp).

In Fig. 9.7 simulated crossings in N = 2000 turns with a beam current I = 2.835
mA, driving a stop band |C(sc)| = 0.0085 are shown. In the left plot the normal
quadrupole parameters are K1 = −0.03 m−1 and p = 1/3 leading to emittance
equilibration at the end of the magnet ramp. In the center plot the case with
K1 = −0.04 m−1 and p = 1/3 shows a partial exchange only, whereas in the right
plot K1 = −0.05 m−1 and p = 1/4 prevent practically any emittance transfer.

In all cases the fast ramp does not induce any mismatch as shown in the bottom
graphs of Fig. 9.7: the RMS beam sizes, as well as the RMS emittances, do not
exhibit any growth after crossing the resonance and the magnet ramp; the skew
momentum xyRMS describing the beam titling remains in all cases close to zero.
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Figure 9.7: Multi-particle simulations of dynamical crossing of the space charge reso-
nance (|C(sc)| = 0.0085). Top: RMS emittance with (red curve) and without (black
curve) the additional normal quadrupole. Center: variation of K1 while crossing. Bot-
tom: second order RMS momenta < x2 >, < y2 > and < xy >. Simulations have been
run for different magnet ramps according to Eq. (9.10): K1 = −0.03 m−1 and p = 1/3
(left), K1 = −0.04 m−1 and p = 1/3 (center), K1 = −0.05 m−1 and p = 1/4 (right).

9.3 Case with split tunes

Split betatron tunes prevent space-charge to excite the difference resonance (1,−1).
This can be easily proven in the smooth approximation considering that potentials
exciting the difference resonance are of the kind V ∝ (xy)n for any n. The leading
terms are skew quadrupoles, V ∝ xy, and normal octupoles, V ∝ (xy)2. According
to Sec. 3.4, the corresponding RDT are

{

f1001 skew quadrupole potential V ∝ xy

f2002 normal octupole potential V ∝ (xy)2
. (9.11)

The other two excited RDTs are defined from the previous ones, since f0110 = f ∗
1001

and f0220 = f ∗
2002. According to Eq. (3.15) we can write
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, (9.12)

where Qh,v are the eigen-tunes (the depressed tunes in case of space charge), β and φ
are the Twiss parameters, J1 [m−1] and K3 [m−3] are the integrated skew quadrupole
and normal octupole strengths respectively. As the space-charge forces are smooth
functions along the ring, the above summations can be replaced by integrals:


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
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
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f1001 =
1
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i[φx(s)−φy(s)] ds

f2002 =
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64(1 − e4πi(Qh−Qv))

∮

K3(s)βx(s)βy(s)e
2i[φx(s)−φy(s)] ds

. (9.13)

To simplify the computation of the above integrals, it can be assumed that both the
coupling terms, J1(s) and K3(s), depend on fixed beam parameters only (ignoring
acceleration) such as current, energy and beam size. In the smooth approximation
the beam size can be approximated as constant along the ring, resulting in integrals
dependent on the machine parameters only
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
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
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f1001 ' < J1 > R

4
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ei[φx(s)−φy(s)] ds

f2002 ' < K3 > R2

64Qx0Qy0(1 − e4πi(Qh−Qv))
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e2i[φx(s)−φy(s)] ds

, (9.14)

where < J1 > and< K3 > represent the averaged coupling strengths and we replaced
βx,y(s) → βx,y ' R/Qx0,y0, with R the machine radius and Qx0,y0 the betatron bare
tunes. The latter integrals are nonzero only if the tunes are unsplit, since close
to the difference resonance φx(s) − φy(s) ' 0 along the ring and the integrals are
equal to 2πR. In case of split tunes the phase difference varies along the ring from
0 to 2πM , M be the integer difference between the tunes (see Sec. 8.1 for M = 1).
The integrals are hence equal to zero. In machines with split tunes therefore space
charge alone cannot drive any emittance transfer, and betatron coupling, defined by
the stop band

|C(b)| '
∣

∣

∣

∣

∣
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∣

, (9.15)
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is necessary. Note that betatron coupling, and hence |C (b)|, are independent on the
beam size, and space charge has the only effect (in first approximation) of introduc-
ing the tune shift in the envelope equations [53, 54]
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, (9.16)

where kx,y are the normal quadrupole gradients, Jw,1 is the integrated strength of
the w-th skew quadrupole, εx,y(s) are the RMS emittances and Ksc is the perveance
defined in Eq. (9.1). The above equations hold for an up-right beam distribution
(< xy >= 0) with ellipsoidal symmetry. Betatron coupling however leads to a
beam rotation and a more rigorous description would require the generalized enve-
lope equations derived by Chernin [48]. Envelope equations are more suitable to
investigate space-charge effects with respect to single-particle equations since their
constraints (up-right distribution with ellipsoidal symmetry) are more general, the
Hill’s equation requiring the knowledge of the single-particle forces.

Eqs. (9.16) are similar to the ones derived in case of pure betatron coupling. The
only difference is in the collective nature, and in the presence in the l.h.s of the
space-charge tune shift. The distance from the resonance is therefore represented
by the difference of the depressed tunes

∆d = Qx −Qy (fractional part)
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2

σy(σx + σy)

. (9.17)

9.3.1 Emittance dependent detuning

Space charge couples tunes and RMS emittances through the perveance Ksc and
the RMS beam sizes σx,y. For a KV distribution the tune does not depend on the
particle position, resulting in a pure shift for the entire beam.

For a Gaussian beam a tune spread is also present, due to the dependence of the
space-charge force on the particle position within the beam. Dealing with envelope
equations, the concept of RMS-equivalent beam can be invoked, making possible
to describe the evolution of the beam RMS size (and hence of the emittances) as
function of the coherent tune shift only, provided to multiply the Laslett tune shift
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Figure 9.8: Depressed tune (Gaussian beam) computed for working point Qx0 = 4.29,
Qy0 = 3.44 and beam current I = 9.2 mA (Ksc = 1.8 × 10−8) and different initial
emittances: εx0 = 1, εy0 = 5 mm mrad (left), εx0 = 1, εy0 = 5 mm mrad (right).

by a factor two1.
For given bare tunes Qx0,y0 and space-charge perveance Ksc, different initial emit-

tances result in different beam sizes and tune shifts according to

σx =

√

εxR

Qx0

, σy =

√

εyR

Qy0

, (9.18)

Qx(N, εx, εy, Ksc) =

√

Q2
x0 −

R2Ksc

σx(σx + σy)
(9.19)

Qy(N, εx, εy, Ksc) =

√

Q2
y0 −

R2Ksc

σy(σx + σy)
. (9.20)

In Fig 9.8 two examples are shown: the (Gaussian) depressed tunes are computed
for Qx0 = 4.29, Qy0 = 3.44, I = 9.2 mA (Ksc = 1.8 × 10−8) and different initial
emittances: εx0 = 5, εy0 = 1 mm mrad (left plot) and εx0 = 1, εy0 = 5 mm mrad
(right plot). Any emittance exchange therefore results in different depressed tunes
and, in turn, different distance from the resonance ∆.

9.3.2 Static case

In Chapter 5 it has been shown how for fixed bare tunes Qx0,y0, i.e. fixed ∆, beta-
tron coupling drives turn-by-turn RMS emittance oscillations. Emittance dependent

1The maximum tune shift at the beam center of a Gaussian beam RMS-equivalent to a KV distribution is indeed twice the tune
shift defined in Eq. (9.17).
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detuning makes ∆d oscillate with the same frequency. The analysis performed in
Chapter 5 is therefore not applicable, as ∆d is time-dependent.

In Fig. 9.9 the sharing curves as computed by multi-particle simulations with
betatron coupling |C(b)| = 0.01 are shown for zero current (left) and I = 7.2 mA
(right). The initial Laslett tunes shifts in the second case are ∆Qx ' −0.1, ∆Qx '
−0.3. The sum of the two emittances is preserved along the scan, although space
charge makes the sharing be larger than in the case with betatron coupling only and
leads to an asymmetric curve. The value of ∆ for which the two averaged emittances
are equal is displaced towards left. The displacement is found to be proportional to
the Laslett tune shift.

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

∆
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

R
M

S
 e

m
it

ta
n

ce
   

[m
m

 m
ra

d
]

ε  
ε .

EMITTANCE SHARING ( |C|=0.01   I=0.0 mA )

yo

0

ε

ε

y

xo

x

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

∆
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2
R

M
S

 e
m

it
ta

n
ce

   
[m

m
 m

ra
d

]

ε  
ε .

EMITTANCE SHARING ( |C|=0.01   I=7.2 mA )

yo

0

ε

ε

y

xo

x

Figure 9.9: RMS emittances averaged over 500 turns for different working points scan-
ning the resonance stop band and betatron linear coupling |C (b)| = 0.01 induced by ran-
dom skew quadrupolar errors in the normal quadrupoles. In case of zero current (left) the
curve is rather symmetric and centered in ∆ = 0. The same simulation with a beam of
I = 7.2 mA (∆Qx ' −0.1, ∆Qx ' −0.3) generates a strongly asymmetric curve, whose
transition point is displaced by 0.01.

9.3.3 Dynamic case

The same considerations on the asymmetry outlined in Sec. 9.2, namely the different
behavior according to the crossing direction, apply also for the case with split tunes.
Although the betatron coupling driving term and the resonance stop band, |C (b)|, are
independent on the beam current, it is observed that the emittance exchange curves
strongly depend on the beam current. This is due to the emittance dependent
detuning, ∆d = ∆d(εx, εy, Ksc), which makes the crossing speed to change while
approaching the resonance. The detuning results in an observable stop band |C (o)|,
equal or larger than |C(b)|, dependent on both betatron coupling and the Laslett
tune shift.

Assuming initial emittances such that εx0 > εy0, if the crossing starts from below,
i.e. Qx0 > Qy0 and ∆0 > 0, the depressed tunes approach the resonance after the
bare tunes and the point where the two emittance are equal is displaced towards left
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Figure 9.10: Variation of the tune shift while crossing from below a stop band of |C (b)| =
0.01: the vertical bare tune (upper-right end of the arrow) is varied linearly, whereas the
depressed tunes (bottom-left end of the arrow) cross the resonance faster because of the
emittance dependent detuning. The tune shift is computed from RMS emittances obtained
by multi-particle simulations at 4.6, 9.2 and 13.8 mA.
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Figure 9.11: Distance from the resonance of the depressed tunes ∆d versus ∆ (upper)
and RMS emittance exchange curve (bottom) crossing from below the same stop band of
Fig. 9.10: multi-particle simulations at 4.6, 9.2 and 13.8 mA. The curves are compared
with the case at zero current (black lines).
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Figure 9.12: Variation of the tune shift while crossing from above a stop band of |C (b)| =
0.01: the vertical bare tune (upper-right end of the arrow) is varied linearly, whereas the
depressed tunes (bottom-left end of the arrow) cross the resonance faster because of the
emittance dependent detuning. The tune shift is computed from RMS emittances obtained
by multi-particle simulations at 4.6, 9.2 and 13.8 mA.
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Figure 9.13: Distance from the resonance of the depressed tunes ∆d versus ∆ (upper)
and RMS emittance exchange curve (bottom) crossing from above the same stop band of
Fig. 9.12: multi-particle simulations at 4.6, 9.2 and 13.8 mA. The curves are compared
with the case at zero current (black lines).
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(see bottom plots of Fig. 9.11). The emittance exchange moves the necktie upwards
(see Fig. 9.10). The crossing speed is therefore increased, which is the sum of the
bare tune ramp and the emittance dependent detuning, as shown in the upper plots
of Fig. 9.11. The larger the tune shift with respect to |C (b)| the faster is the crossing.
For severe tune shift and weak betatron coupling, |∆Q| >> |C (b)|, this might lead to
a partial exchange and prevent the equilibration to happen, because the stop band
is effectively crossed too fast.

If the crossing starts from above, i.e. Qx0 < Qy0 and ∆0 < 0, the resonance
is effectively approached by the depressed tunes before the bare tunes. As in the
previous case the necktie moves upwards. The crossing speed is therefore reduced,
the bare tune ramp and the emittance dependent detuning moving in opposite di-
rections, as shown in Fig. 9.12 and in the upper plots of Fig. 9.13. The point where
the two emittance are equal is therefore almost independent on the tune shift (see
bottom plots of Fig. 9.13), since the depressed tunes need equal emittances to aban-
don the stop band . The larger the tune shift with respect to |C (b)| the slower is the
effective crossing. This is the equivalent of the “snowplow” effect introduced in [43].

In the first case the adiabatic condition used to derive Eq. (6.1)-(6.2) cannot be
invoked because of the large tune shift, although the sum of the two emittance is
preserved. In the second case the same equations are still applicable under the con-
dition that the bare tunes are replaced by the depressed ones. As the latter ones
are dependent on the emittance themselves, coupled equations need to be solved
self-consistently, namely
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, (9.22)

where the sign in the denominators of Eq. (9.21) is defined according to Eq. (9.8).
Initial emittances, current (Ksc) and machine parameters (R and Qx0,y0) are used
to compute the depressed tunes Qx,y via Eq. (9.22). The corresponding ∆d is then
inserted in Eq. (9.21) to compute the new emittances. These are used together with
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Figure 9.14: RMS emittance exchange curve crossing from above the same stop band of
Fig. 9.12: the red lines are the results of multi-particle simulations at 4.6, 9.2 and 13.8
mA; the green triangles are the ones obtained solving the system (9.21)-(9.22) with the
same initial conditions; both curves are compared with the case at zero current (black
lines).

the new bare tunes to compute the updated ∆d and the procedure repeated until the
dynamical crossing (done as function of Qx0,y0 or equivalently of ∆) is completed.

In Fig. 9.14 the results of the above system are compared with multi-particle
simulations with betatron coupling |C(b)| = 0.01, for different values of the current.
The agreement is excellent before the equilibration, even for a case with a severe tune
shift of ∆Qx = −0.07, ∆Qy = −0.27. After the equilibration the emittances appear
not to exchange completely. The distance from the initial values is proportional
to the beam current. Such limited exchange is not foreseen by Eqs. (9.21)-(9.22)
and occurs even for very slow crossing over ∼ 105 turns. It is not clear whether the
reason of the partial exchange is physical (space charge self-skewing and mixing while
crossing the resonance due to the beam rotation, high order effects) or numerical
(discretization errors, loss of memory when using PIC solvers) or a combination of
both. A cross-check with other codes implementing different algorithms, such as
particle-particle solvers, has been not undertaken. A similar behavior was observed
in simulations with initial KV distributions.

From the experimental point of view, system (9.21)-(9.22) is not suitable to in-
fer |C(b)| because of the intrinsic dependence of ∆d on the RMS emittances. For
practical purpose it is more convenient to rewrite Eqs. (9.21)-(9.22) in terms of the
distance from the resonance of the bare tunes ∆ = Qx0−Qy0 (fractional part), which
is an independent quantity defined by the tune ramp only, and an observable stop
band |C(o)|, dependent on both betatron coupling and the space-charge tune shift.



9.3. CASE WITH SPLIT TUNES 115

0 0.05 0.1 0.15 0.2 0.25

∆Q   - ∆Q

0

0.01

0.02

0.03

0.04

|C
|  

  -
 |C

|  

linear fit

yx

(o
)

(b
)

Figure 9.15: Difference between the observable stop band computed numerically by
multi-particle tracking |C(o)| and the betatron coupling stop band |C (b)| against the differ-
ence between the initial tune Laslett tune shifts ∆Qx − ∆Qy (See Tab. 9.2). A linear fit
is superimposed.
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Due to the intrinsic coupling, the analytical derivation of the relation between
|C(b)| and |C(o)| might be a difficult task. Multi-particle simulations have been run
with several initial beam parameters and various coupling strengths in order to infer
a heuristic scaling law. For each simulation, the RMS emittances are plotted against
∆ and Eqs. (9.23) are then superimposed to infer |C (o)|. From the results listed in
Tab. 9.2 and plotted in Fig. 9.15 it is found that |C (o)| increases linearly with the
difference between the initial Laslett tune shifts ∆Qx − ∆Qy.

2 |C(b)| is represented
by the offset, whereas the slope is inferred from the fit and does not appear to be
dependent on neither |C(b)| nor the initial emittances

|C(o)| ' |C(b)| ∓ A(∆Qx − ∆Qy) with |C(b)| 6= 0 , (9.24)

The sign must be consistent with the choice made in Eq. (9.23). From multi-particle
2The tune shifts are not constant while crossing the resonance because of the emittance dependent detuning. In order to derive a

scaling law involving initial beam parameters only, this additional time dependence is ignored.
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sim. current (εx0, εy0) |C(b)| initial tune shift |C(o)| from

[mA] [mm mrad] |∆Qx|, |∆Qy| tracking

1 0 (2.5, 0.52) 0.010 0.0, 0.0 0.010

2 4.8 (2.5, 0.52) 0.010 0.043, 0.108 0.017

3 9.6 (2.5, 0.52) 0.010 0.087, 0.220 0.028

4 13.8 (2.5, 0.52) 0.010 0.125, 0.321 0.034

5 5.0 (2, 0.75) 0.015 0.051, 0.094 0.020

6 30.0 (2, 0.8) 0.03 0.309, 0.579 0.067

7 14.0 (2.75, 1.05) 0.015 0.103, 0.191 0.028

8 6.5 (1.3, 0.5) 0.02 0.101, 0.187 0.030

9 4.8 (2.5, 0.51) 0.04 0.043, 0.109 0.048

10 20.0 (5.0, 1.2) 0.01 0.088, 0.210 0.027

11 25.0 (4.5, 0.8) 0.03 0.130, 0.360 0.058

12 10.0 (1.4, 1.8) 0.01 0.107, 0.108 0.011

13 15.0 (0.5, 5.0) 0.005 0.235, 0.081 0.024

Table 9.2: Comparison between the observable stop band |C (o)| predicted by Eq. (9.24)
and the one inferred from multi-particle simulations plotting the emittance curves against
∆.

simulations crossing the resonance at Qx0 = 1 + Qy0 = 4.29, the slope is found to
be A ' 0.13.

Note that |C(b)| is automatically inferred from the emittance exchange curve in
two cases only, namely the case with zero current and the case with equal initial
horizontal and vertical tune shifts, regardless of the beam current. This is confirmed
by simulations 1 and 12 of Tab. 9.2: the first one corresponding to the zero current
case, the second to I = 10 mA, εx0 = 1.4 mm mrad and εx0 = 1.8 mmrad, generating
almost the same tune shifts ∆Qx = −0.107, ∆Qx = −0.108. In the same table,
simulations 1-11 were run crossing the resonance from ∆ < 0, with εx0 > εy0; in
simulations 12 and 13 the crossing is performed from ∆ > 0.

9.3.4 How to avoid overcompensation of betatron coupling

In Sec. 7.6 it has been reported how |C (b)| was measured in the SIS-18 by cross-
ing dynamically the difference resonance and by measuring the emittance exchange
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curve. Fitting the latter one with Eq. (9.23) provides a direct measurement of |C (b)|.
Nevertheless, the above discussion shows that this measurement is affected by

space charge if the difference between the two initial Laslett tune shifts is comparable
with the resonance stop band, |∆Qx−∆Qy| ' |C(b)|. Repeated measurements of the
observable stop band |C(o)| for at least two different beam intensities can be used
to disentangle the two contributes, via Eq. (9.24). The tune shifts are computed
from the measured beam size via Eqs. (9.17), knowing the beam parameters, i.e.
Ksc. |C(b)| is inferred by plotting the observable stop band against ∆Qx−∆Qy and
performing a linear fit.

This procedure is necessary in order not to overestimate (and hence overcompen-
sate) of of betatron coupling, since external skew quadrupoles compensating |C (o)|
instead of |C(b)| would leave a residual coupling ∝ |∆Qx − ∆Qy|.
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Chapter 10

Conclusions

In this thesis a beam-based method has been developed to measure the strength
and the polarity of corrector magnets (skew quadrupoles and sextupoles) in circular
accelerators. The algorithm is based on the harmonic analysis (via FFT) of beam
position monitor (BPM) data taken turn by turn from an accelerator in operation.
It has been shown that, from the differences of the spectral line amplitudes between
two consecutive BPMs, both the strength and the polarity of non-linear elements
placed in between can be measured. The method has been successfully tested us-
ing existing BPM data from the SPS of CERN, since presently the SIS-18 is not
equipped with the necessary hardware. The magnet strength of seven SPS extrac-
tion sextupoles was measured with a precision of about 10%. The polarities have
been unambiguously measured. This method can be used to detect polarity errors
and wrong power supply connections during machine commissioning, as well as for
a continuous monitoring of the “nonlinearity budget” in superconducting machines.

A second beam-based method has been studied for a fast measurement and cor-
rection of betatron coupling driven by skew quadrupole field errors and tilted fo-
cusing quadrupoles. Traditional methods usually require a time-consuming scan of
the corrector magnets in order to minimize the coupling stop band |C|. In this
thesis it has been shown how the same correction can be performed in a single
machine cycle from the harmonic analysis of multi-BPM data. The method has
been successfully applied to RHIC. It has been shown that the stop band |C| (also
known in the American literature as ∆Qmin) measured in a single machine cycle with
the new algorithm is compatible with the value obtained by traditional methods.
The measurement of the resonance phase Θ defines automatically the best corrector
setting, which was found in agreement with the one obtained with a traditional scan.

A third theoretical achievement is a new description of the betatron motion close
to the difference resonance in presence of linear coupling. Compared to the matrix
formalism the motion is parametrized as a function of the resonance driving term
f1001 only (which is proven to be an observable), whereas making use of the matrix
approach four parameters need to be measured. Formulae describing the exchange
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of RMS emittances when approaching the resonances have been already derived in
the 70s in the smooth approximation. New formulae have been derived here making
use of Lie algebra providing a better description of the emittance behavior. The
emittance exchange curves are predicted by new formulae with excellent agreement
with multi-particle simulations and the counter-intuitive emittance variation along
the ring of the emittance is proven to be related to the variation of f1001. A new
way to decouple the equations of motion and explicit expressions for the individual
single particle invariants have been found.

For the first time emittance exchange studies have been carried out in the SIS-
18 of GSI. Transverse RMS emittances have been measured during 2005 from rest
gas monitor (RGM) data. Crossing the linear coupling resonance, the transverse
emittances exchange completely. It has been observed that this effect is reversible.
Applications of this manipulation are: emittance equilibration under consideration
for future operations of the SIS-18 as booster for the SIS-100; emittance transfer
during multi-turn injection to improve the efficiency and to protect the injection
septum in high intensity operations, by shifting part of the horizontal emittance
into the vertical plane. The emittance exchange curves obtained experimentally
have been compared with analytic formulae providing a fast measurement (in few
machine cycles only) of the linear coupling stop band |C|. Technical problems pre-
vented the use of the eight skew quadrupoles installed in the SIS-18 to compensate
the linear coupling resonance. It has been observed that the emittance exchange
curve is highly sensitive to the beam intensity. Multi-particle simulations with 2D
PIC space-charge solver have been run to infer heuristic scaling laws able to quantify
the observable stop band, to be used for the resonance compensation.

The analysis of BPM and RGM data has been performed making use of new soft-
ware applications developed for this purpose. The bpm2rdt code for the harmonic
analysis of BPM data has been written and tested with real data. The software
reads the BPM turn-by-turn data and the Twiss parameters. Then it performs the
FFT of these data, finds the peaks of the Fourier spectra and infers the RDT fjklm,

the strengths ĥjklm and the local terms χjklm. All these observables are printed out
together with the corresponding values of the model, computed from the nominal
values of strengths and the Twiss parameters. From the FFT of dual-plane BPM
data the linear optics (β functions and phase advances ∆φ) at the corresponding
location is also inferred. From the measurement of f1000, the linear coupling coeffi-
cient C (amplitude and phase) is also computed. The code has been tested by using
existing SPS data and new RHIC data. For the on-line analysis of RGM data the
rgm2emitt code has been written. The application reads in input the raw data files
from the RGM and the beam loss monitor (BLM) respectively, the latter created
by the RGM on-line software itself. From the RGM data the transverse beam sizes
and emittances are inferred and used together with the BLM data to compute the
tune shift during the machine cycle.
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Zusammenfassung

Im Rahmen dieser Arbeit wurden drei Hauptaspekte untersucht, die die Strahlphysik
von hadronischen Kreisbeschleunigern betreffen:

- Entwicklung einer neuen strahlbezogenen Methode für die Messung der Nicht-
linearitäten und der Kopplung zwischen den Betatron-Schwingungen;

- Untersuchung des von der Betatron-Kopplung und Raumladung getriebenen
Austauschs der transversalen Emittanzen

- Entwicklung einer schellen Technik für die Korrektur der Betatron-Kopplung
und für die Kontrolle des transversalen Emittanz-Austauschs.

Messung der Nichtlinearitäten durch Strahllagemonitor vom SPS

Die hadronischen Kreisbeschleuniger SIS-100/SIS-300 des zukünftigen FAIR Pro-
jekts der GSI sind supraleitende Maschinen und werden Hochintensitätsstrahlen
beschleunigen. Supraleitende Magneten sind dadurch bekannt, dass sie nichtlineare
Felder bis zu einer höheren Größenordnung als normalleitende Magneten führen.
Diese Tatsache liegt an der beschränkten Genauigkeit während der Verkabelung der
Windungen und an dem nach jeder Energierampe verbleibenden Strom. Teilchen
mit großen Schwingungsamplituden werden durch unkontrollierte nichtlineare Kräfte
so beinflußt, dass keine stabilen Bahnen über beiliebig viele Umläufe mehr möglich
sind (chaotische Dynamik). Solche Teilchen werden daher verloren. Die nichtlin-
eare Teilchendynamik begrenzt den effektiven für die Teilchenbewegung nutzbaren
Phasenraum, den man als dynamische Apertur bezeichnet. In Proton-hochenergiebe-
schleunigern sind sowhol das Strahlrohr als auch die dynamische Apertur größerer als
die Strahlgröße. Das ist nicht der Fall deim SIS-100, wo Strahlgröße und Strahlrohr
vergleichbar sind. Eine regelmäßige Kontrolle des “nonlinearity budget” ist daher
notig, nicht nur um die erwartete Strahlqualität zu beschaffen, sondern auch um
Strahlungsschäden und Quenchen der von dem Strahlverlust getriebene supraleiten-
den Magneten zu vermeiden.

Die Inbetriebnahme eines großen Beschleunigers kann im Falle von falschen mag-
netischen Polaritäten oder Netzgeräteanschlüssen eine langwierige Aufgabe werden.
Seit Jahrzehnten wurden strahlbezogene Methoden für die Entdeckung von falschen
Dipol- un Quadrupolstärken (Korrektur der Gleichgewichtsbahn und Messung der
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linearen Optik) entwickelt. Die modernste Messmethoden für Skew-Quadrupol- und
Sextupolmagnete sind entweder zeitaufwendig oder beschränkt auf die Messung von
allgemeinen Maschinenparametern (Amplitude abhängig Verstimmung, nichtlineare
Chromatizität, Messung und Reduzierung des Kopplungskoeffizienten).

Thema des ersten Teils dieser Arbeit ist die Entwicklung einer schnellen strahlbe-
zogenen Methode für die Kontrolle der Nichtlinearitäten des Kreisbeschleunigers
entlang und für die Messung der Korrekturmagnetestärken.

Sobald der umlaufende Strahl mittels eines schnellen Dipolmagnetes schräg ver-
schoben wird, regt er eine kohärente Betatron-Oszillation an, die nach jeder Um-
drehung (“turn-by-turn”) von einem Strahllagemonitor (BPM) gespeichert werden
kann. Das Spektrum dieser Oszillation kann durch eine schnelle Fourier-Transforma-
tion (FFT) abgeleitet werden.

Im Falle einer ideal linearen Maschine mit nur Dipol- und Quadrupolfeldern
besteht das Frequenzspecktrum nur aus der Spektrallinie entsprechend der Beta-
tronfrequenz. In Anwesenheit von Nichtlinearfeldern enthält das Spektrum andere
Sekundärlinien.

In den neunzigern Jahren wurde bewiesen, dass die Amplitude dieser Sekundärli-
nien direkt proportional zu der Summe von all den entlang dem Kreisbeschleuniger
verteilten Nichtlinearkräften ist [15]. Vor kurzem wurde bewiesen, dass sich die
Amplitude entlang des Kreisbeschleunigers ändert, und dass diese Änderung für die
Lokalisierung der Nichtlinearitäten benutzt werden kann [1].

Im Rahmen dieser Arbeit wurde diese Methode aufgebessert, um die Stärken
und die Polaritäten von nichtlinearen Korrekturmagneten durch die Benutzung von
mehreren BPMs zu messen. Die Kräfte der Magnete zwischen zwei BPMs werden
durch die Messung der Sekundärlinien und durch ihre Differenz abgeleitet.

Ein neues Computerprogramm für die Auswertung von BPM Daten durch diesen
neuen Algorithmus wurde entwickelt und Daten des SPS des CERN angewendet.
Stärken und Polaritäten von sieben Extraktionssextupolen wurden mit einer Auflö-
sung von circa 10% gemessen. Das SIS-18 ist zur Zeit noch nicht mit der erforder-
lichen Hardware ausgerüstet.

Dieses Thema wurde in Zusammenarbeit mit Dr. Rogelio Tomás (CERN) herge-
stellt.

Beschreibung der linearen Kopplung durch die Resonanz-treibenden
Terme

Supraleitende Quadrupolmagneten mit höhen Feldstärken leiten eine lineare Kop-
plung zwischen den beiden transversalen Ebenen ein, wegen Ungenauigkeiten in der
Justierung der Magneten (Drehung) und wegen zusätzlicher Skew-Quadrupolfelder.

Die Kopplung wird gewöhnlich durch die Kopplungsmatrix [31] oder die Hamil-
tonsche Störungstheorie beschrieben. Letztere ist oft als weniger genau betrachtet,
obwohl sie einen klareren physicalischen Einblick ermöglicht.
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In dem zweiten Teil dieser Arbeit wurde die lineare Kopplung durch die Resonanz-
treibenden Terme (RDT) f1001 und f1010 beschrieben. Diese sind komplexe Zahlen,
die mit den von Skew-Quadrupolfeld erregten Sekundärlinien verwandt (und da-
her messbar) sind. f1010 treibt die Summeresonanz Qx + Qy = N , wobei f1001

die Differenzresonanz Qx − Qy = N verursacht. Da der Arbeitspunkt eines Kreis-
beschleunigers oft in der Nähe der Differenzresonanz liegt, wurde hier f1001 besser
erforscht.

Messung und Korrektur der Kopplung sowie der transversale Emittanz-austausch
wurden vermittels der f1001 beschrieben. Dieses Thema wurde in Zusammenarbeit
mit Dr. Rogelio Tomás (CERN), Dr. Rama Calaga (BNL) und Dr. Giuliano
Franchetti (GSI) hergestellt.

Betatron-Kopplung getriebene Übertragung der transversalen Emit-
tanzen

Die lineare Kopplung verändert die Emittanzverteilung zwischen beiden transver-
salen Ebenen und verursacht eine Drehung des Strahlprofils. In Hochstrom Schwer-
ionen-Synchrotronen belegt der Strahl horizontal fast das ganze elliptische Strahlrohr
bei niedrige oder mittlere Energie. Jede Drehung des Strahlprofils würde daher zu
Strahlverlust führen. Andererseits steht es zur Debatte, das SIS-18 während des
Boosterbetriebs für das SIS-100 mit gleichen transversalen Emittanzen zum flat top
zu betreiben. Bei der Multi-turn-injektion während Hochstrombetrieb des SIS-18
ist auch eine teilweise Emittanzverteilung von der horizontalen Ebene zur der ver-
tikalen vorgesehen, um das Injektionsseptum vor Strahlverlust zu schützen. Beide
Bedienungen sind erhältlich durch eine kontrollierte Kopplung, die mit zusätzlichen
Skew-Quadrupolen künstlich angetrieben werden kann.

Emittanzaustausch zwischen den transversalen Ebenen in Rahmen der Betatron-
Kopplung wurde schon in den Siebzigern und Ende Neunziger Jahren im CERN
untersucht [8, 28, 29, 30], und erfolgreich angewandt: Im PS booster wurde der
Strahlverlust während der Multi-turn-injektion durch die Emittanzverteilung re-
duziert, wobei im SPS ein kompletter Emittanzaustausch ausgeführt wurde, um
die Horizontale Emittanz in der vertikalen Ebene, die nicht von der Dispersion
betroffen ist, mit höherer Auflösung zu messen. Gleichungen beschreibend die
Verteilung und den Austausch der Emittanzen wurden von gekoppelten Einteilchen-
bewegungsgleichungen abgeleitet, dessen Lösung nur in der Glatt-Näherung, im En-
glischen “smooth approximation” genannt, mit gleichförmigen Skew-Quadrupolfeld
gefunden werden kann. Die Emittanzübertragung wurde hauptsächlich in zwei
verschiedenen Verfahren untersucht, nämlich die statische Ann äherung an die Reso-
nanz [8, 28], die die Emittanzverteilung einführt, und die neu entwickelte dynamische
Kreuzung der Resonanz [29, 30], die einen kompletten Emittanzaustausch einführt.

Die statische Annäherung an die Resonanz bezieht sich auf die Erforschung der
Resonanz-Bandbreite in mehreren Maschinenzyklen. Nach jedem Maschinenzyklus
wird der Arbeitspunkt verändert, und die Bandbreite in mehreren Zyklen gekreuzt.
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Der Verteilungsbetrag hängt von der Resonanzstärke, mit |C| bezeichnet, und der
Distanz von der Resonanz, ∆ = Qx−Qy−N ab, wobei N eine ganze Zahl und Qx,y

die transversale Q-Werte, im Englischen “Tunes” genannt, sind. Auf der Resonanz
(∆ = 0) sind die zwei Emittanzen gleich. Die dynamische Kreuzung der Reso-
nanz bezieht sich auf die Erkundung der Resonanz-Bandbreite in einem einzigen
Maschinenzyklus, die Tunes langsam aufsteigend. Am Ende der Kreuzung werden
die Emittanzen ausgetauscht.

In dieser Arbeit wurde der Formalismus der Resonanz-treibenden Terme (RDT)
zusammen mit der Lie Algebra benutzt, um die die Emittanzübertragung beschrei-
benden Gleichungen aus den RDT f1001 zu folgern. Neue Formeln wurden abgeleitet,
die die Verteilung und den Austausch, nach jeder Umdrehung (“turn-by-turn”) sowie
zeit-durchschnittlich, besser als die vorhandene Formeln beschreiben. Der Vorteil
des neuen Formalismus liegt daran, dass keine Differentialgleichungen gelöst werden
müssen, und keine Näherung über die Glättung des Magnetfeldes erforderlich ist.
Die Benutzung des RDT Formalismus ermöglicht, nicht eingängige Phänomene zu
erklären, die die vorhandene Formeln nicht vorehersagen: Wenn der Arbeitspunkt
so ist, dass ∆ << 1, können sich die Emittanzen des Kreisbeschleunigers entlang
ändern, und die Verteilungskurve nicht immer symmetrich bezüglich des Resonanz-
Mittelpunktes ∆ = 0 ist.

Messung von Emittanzübertragung im SIS-18

Im Rahmen dieser Arbeit wurden zum ersten Mal experimentelle Untersuchun-
gen von Emittanzübertragung im Schwerionen-Synchrotron SIS-18 durchgeführt.
Transversale Emittanzen wurden 2005 durch Restgasmonitor Daten gemessen. Ein
kompletter Emittanzaustausch wurde nach eiener dynamischen Kreuzung der Res-
onanz eingeführt. Es wurde auch geprüft, dass der Austausch umkehrbar ist. Nach
einer unvollständigen Kreuzung wurden gleiche Emittanzen erhalten. Von der Verteil-
gungskurve, die nach einer statischen Annäherung an die Resonanz erzielt wurde,
wurden die Amplitude der RDT f1001 gegen ∆ und die Resonanz-stärke |C| gemessen.
Zum ersten Mal |C| wurde auch durch die Austauschkurve gefolgert, die eine höhere
Auflösung und eine schnellere Messung ermöglicht. Es wurde auch beobachtet, dass
die Austauschkurve abhängig von der Strahlintensität ist.

Messung der Tunes und Chromatizität im SIS-18

Angaben über die allgemeine Nichtlinearität eines Kreisbeschleunigers können von
Messungen der Tunes und Nichtlinear-Chromatizität abgeleitet werden. Teilchen
mit Impulsabweichungen δ = (p− ps)/(ps), wobei ps der Sollimpuls bezeichnet, er-
leben veränderte Quadrupolestärken und daher verschobene Betatron-Frequenzen
(Tunes). In einer ideal linearen Struktur ist die Tune-Verschiebung eine Linearfunk-
tion der δ, Q = Qo + Q′δ, wobei Q′ die “natürliche” oder “lineare” Chromatizität
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ist. Jede Abhängigkeit von höheren Potenzen der δ ist auf die allgemeine Nichtlin-
earität zu beziehen. Sextupol- und Dekapolfelder innerhalb der Dipolmagnete und
Oktupolfeldern innerhalb der Quadrupolmagnete treiben entsprechend eine lineare,
kubische und quadratische Abhängigkeit an. Die Messung der Chromatizität außer-
halb des Linearbereichs ermöglicht, nach der Anpassung eines kubischpolynomes ein
allgemeines nichtlineares Modell der Struktur abzuleiten.

Die transversale Tunes wurden mit einer Auflösung von 10−4 gemessen, wobei
der longitudinale Tune nur mit einer niedrigeren Auflösung von circa 30% gemessen
wurde. Beide Messungen erfolgten mittels eines bei GSI von Peter Moritz aufge-
bauten experimentellen Erfassungssystem.

Das Abtasten der Impulsabweichung durch die Änderung des Sollbahnradius oder
des Elektronenkühlerstroms ermöglicht die Messung der Chromatizität außerhalb
des Linearbereichs. Im SIS-18 wurde die erste Methode benutzt. Der beschränkte
verstellbare Bereich des Sollbahnradius verhinderte, ein zuverlässiges nichtlineares
Modell des SIS-18 zu definieren.

Schnelle Messung und Korrektur der Kopplung im RHIC

Messungen der Amplitude des Kopplungskoeffizienten |C| sind für seine Korrektur
durch Skew-Quadrupolmagneten routinemäßig ausgeführt. Bei Kreisbeschleunigern
mit transversalen Tunes, die von einer ganzen Zahl getrennt sind, wie z.B. beim
PS und SPS am CERN, genügt es , nur die Amplitude |C| zu messen, um die
beste Einstellung der einzigen Familie von Skew-Quadrupolen zu bestimmen. Bei
Kreisbeschleunigern mit Tunes, die von einer ganzen Zahl nicht getrennt sind, wie
z.B. deim SIS-18 und RHIC, genügt die Amplitude |C| nicht mehr und es sind
mindestens zwei Familien von Skew-Quadrupolen nötig. Ohne die Kenntnis der
Kopplungsphase ist eine zeitraubende Abtastung der zwei Skew-Quadrupolfelder
für die Korrektur erforderlich.

In dieser Arbeit wurde eine neue Methode für die Messung sowohl der Ampli-
tude |C| als auch der Phase Θ des Kopplungskoeffizienten entwickelt, die nur einen
einzigen Maschinenzyklus und keine Abtastung benötigt. Sowohl |C| als auch Θ
sind mit dem RDT f1001 verwandt, der in einem einzigen Maschinenzyklus durch
Strahllagemonitoren-Daten messbar ist.

Die neue Techink wurde auf Strahllagemonitoren-Daten von RHIC von 2005 ange-
wandt. Die durch die neuen Formeln abgeleiteten |C| wurden mit denjenigen, die
durch anderen Methoden [41] gemessen wurden, verglichen. Die Übereinstimmung
zwischen den zwei Ergebnissen ist befriedigend. Am 30. Mai wurde eine übliche Ab-
tastung mittels zwei unhabhängigen Skew-Quadrupolen für die Korrektur der Kop-
plung ausgeführt. Die beste Einstellung ist vergleichbar mit derjenigen, die durch
die neuen Formeln nach einem einzigen Maschinenzyklus vorausgesehen wurde.
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Raumladung getriebene Emittanzübertragung

In dem ersten Teil dieser Arbeit wurde die Emittanzübertragung in Rahmen der
von Skew-Quadrupolfeldern getriebenen linearen Kopplung untersucht. Diese Art
von Kopplung, die auch Betatron-Kopplung gennant ist, beeinflusst die Einteilchen-
Dynamik. Die kollektiven Eigenschaften (Emittanzen) wurden von den Integralen
über die Teilchen-Verteilung bestimmt. Die Einteilchennatur dieser Kopplung führt
zu gekoppelten Hill’schen Differentialgleichungen und zu einer Drehung der Teilchen-
Verteilung sowohl in den Phasenräumen als auch in der x− y Ebene.

Wenn Raumladungskräfte berücksichtigt werden, genügt die Einteilchenbeschrei-
bung nicht mehr, weil die Kräfte von den Strahlbreiten abhängig sind.

Sowohl in numerischen Berechnungen [42, 43] als auch in den beim PS am CERN
ausgefürten Experimenten [44, 45] wurde beobachtet, dass Raumladung in einigen
Fällen nahe an der Differenzen-Resonanz ∆ = Qx − Qy − N << 1 eine ähnliche
Emittanzübertragung treibt. Das gilt für die statische Annäherung sowie für die
dynamische Kreuzung, obwohl die Struktur exakt linear ist und keine Kopplung
treibt.

Eine theoretische Anstrengung wurde bei der GSI von G. Franchetti und I. Hof-
mann durchgeführt, um die Emittanzübertragung von der Raumladung-Oktupol-
Resonanz, die als Montague-Resonanz bekannt ist [42, 47], und die von Raumladung
getriebenen “self-skew” [43, 46, 48] zu beschreiben.

Eine Unerwünschte Emittanzübertragung, die durch Betatron-Kopplung verur-
sacht ist, kann mittels zusätzlichen Skew-Quadrupolen kontrolliert und kompensiert
werden. Ähnliche Rezepte für die von der Raumladung getriebenen Übertragung
existieren zurzeit nicht. Das inhaltsreiche Verständnis dieses Effekts ist erforderlich,
um neue mögliche Gegenmaßnahmen zu untersuchen.

Obwohl einige Ähnlichkeiten zwischen den von Betatron-Kopplung und den von
Raumladung getriebenen Emittanzübertragung bestehen, dauern manche wichtige
Unterschiede fort, die in der Literatur noch nicht wohlverstanden sind. Betatron-
Kopplung leitet symmetrische Verteilungs- und Austauchkurven ein, unabhängig
von der Kreuzungsrichtung und der Abspaltung der Tunes. Es wurde beobachtet,
dass die von der Raumladung getriebene Emittanzübertragung hoch empfindlich in
beiden Hinsichten ist:

• Particle-In-Cell numerische Berechnungen zeigen, dass der von der Raumladung
getriebenen Emittanzaustausch nicht immer umkehrbar ist.

• In Maschinen mit nicht getrennten Tunes leitet die Raumladung die Emit-
tanzübertragung auch ohne Betatron-Kopplung ein, wobei in Maschinen mit
getrennten Tunes eine nicht Null Betatron-Kopplung erforderlich ist, um den
Austausch zu führen.

• Wenn die Raumladung nicht vernachlässigbar ist, stellt die Verteilungskurve
eine stark Asymmetrie um ∆ = 0 dar.
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• Das Zentrum der Raumladungresonanz liegt immer bei ∆ = 0 in Maschinen
mit nicht getrennten Tunes, wobei es im Falle der getrennten Tunes verschoben
wird und die Änderung proportional zu dem Laslett Tuneshift ∆Qx,y ist.

• Im Falle der nicht getrennten Tunes leitet die dynamische Kreuzung der Res-
onanz eine symmetrische Emittanzkurve mit einem kompletten Austausch ein,
nur wenn die Kreuzung in die richtige Richtung geführt ist. Die Kurve ist asym-
metrisch und der Austausch unvollständig, wenn die Kreuzung in die andere
Richtung geführt ist. Die Resonanz-Bandbreite ist linear proportional zu dem
Laslett Tuneshift und von den Strahlbreiten abhängig.

• Im Falle der getrennten Tunes leitet die dynamische Kreuzung der Resonanz
eine Kurve ein, die von der Betatron-Kopplung |C| und dem Laslett Tuneshift
abhängig ist. Bei ∆ = 0 können die Emittanzen nicht gleich sein.

• Im Falle der nicht getrennten Tunes ist keine Drehung der Teilchenverteilung
sowohl in den Phasenräume als auch in der x− y Ebene beobachtet worden.

In dem letzten Teil dieser Arbeit wurden die Raumladungseffekten auf die Emit-
tanzübertragung mittels numerischen Berechnungen untersucht. Particle-In-Cell
Computersimulationen wurden durchgeführt, um neue heuristische Skalierungsge-
setzen für die Resonanz-Bandbreite anzuleiten.

Das erste Skalierungsgesetz gilt für Maschinen mit nicht getrennten Tunes in
Abwesenheit von Betatron-Kopplung. Nahe an der Differenz-Resonanz treibt die
Raumladung die folgende Bandbreite

|C| ' 1

2

|∆Qy|
1 +

σxo
σyo

1

0.8 +
Qx0

2

(

σyo
σxo

)3 ,

wobei ∆Qy der anfänglich Laslett Tuneshift, σxo,yo die anfängliche Strahlbreiten,
und Qx0 = 4.29 der horizontale Betatron-Tune sind.

Es wurde auch geprüft, dass Raumaldungskräfte in der “smooth approximation”
keine Emittanzübertragung treiben dürfen. Eine zusätzliche Betatron-Kopplung ist
nötig, um die Übertragung einzuleiten. Die Raumladung bringt hierbei eine emittan-
zabhängige Verstimmung durch den Laslett Tuneshift ein: Sowohl die Asymmetrie
der Verteilungs- und Austauchkurve als auch die Vergrößerung der Resonanzband-
breite werden mittels der Verstimmung beschrieben. Das zweite Skalierungsgesetz
gilt für Maschinen mit getrennten Tunes in Anwesenheit von Betatron-Kopplung
und Raumladung. Es beschreibt die Vergrößerung der Bandbreite und lautet

|C(o)| ' |C(b)| + A|∆Qx − ∆Qy| with |C(b)| 6= 0 ,

wobei |C(o)| die messbare vergrösste Bandbreite, |C (b)| die Bandbreite der Betatron-
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Kopplung darstellen, ∆Qx,y die anfänglich Laslett Tuneshifts sind, und A ein kon-
stanter Parameter ist, der durch eine lineare Anpassung zu stimmen ist.

Am Ende der Arbeit wurde eine Maßnahme untersucht und numerisch getestet,
die Normal-Quadrupolmagnete annimmt, um den von der Raumladung getriebenen
Emittanzaustausch in Maschinen mit nicht getrennten Tunes zu unterdrücken.
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Appendix A

From magnet strength to Hamiltonian
coefficients

In this appendix we derive Eq. (3.11), starting from the Hamiltonian describing a
multipole of order n

H(n) = −<
{(Kn−1 + iJn−1)

n !
(x + iy)n

}

. (A.1)

According to the binomial theorem the Hamiltonian can be expanded in series as

H(n) = −<
{

n
∑

p=0

(Kn−1 + iJn−1)

(n− p) ! p !
xp(iy)n−p

}

. (A.2)

Defining p = j + k and n − p = l + m (note that n = j + k + l + m), the above
equation reads

H(n) = −<
{

n
∑

j + k = 0

l + m = n − j − k

(Kn−1 + iJn−1)

(l +m) ! (j + k) !
xj+k(iy)l+m

}

. (A.3)

Introducing the complex Courant-Snyder coordinates q =

√
βq

2
(hq,− + hq,+), where

hq,± =
√

2Jqe
∓i(φq+φq,0), we obtain

H(n) = −<
{

n
∑

j + k

l + m

(Kn−1 + iJn−1)

(l +m) ! (j + k) !
β

j+k

2
x β

l+m
2

y
il+m

2j+k+l+m
×

(hx,− + hx,+)j+k(hy,− + hy,+)l+m
}

. (A.4)

The binomial theorem can be invoked again to expand (hq,− + hq,+)

H(n) = −<
{

n
∑

j + k

l + m

(Kn−1 + iJn−1)

(l +m) ! (j + k) !
β

j+k

2
x β

l+m
2

y
il+m

2j+k+l+m
× (A.5)

j+k
∑

s=0

l+m
∑

t=0

(j + k) ! (l +m) !

(j + k − s) ! (l +m− t) ! s ! t !
hsx,−h

j+k−s
x,+ hty,−h

l+m−t
y,+

}

.
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Renaming the mute the index s → j and t → l and simplifying the factorials the
Hamiltonian reads

H(n) = −<
{

n=j+k+l+m
∑

j,k,l,m=0

(Kn−1 + iJn−1)

j ! k ! l ! m ! 2j+k+l+m
β

j+k

2
x β

l+m
2

y il+mhjx,−h
k
x,+h

l
y,−h

m
y,+

}

.

(A.6)

It can be easily shown that the real part of the sum selects the normal terms Kn−1

if the power of y (i.e. l+m) is even, whereas the skew terms Jn−1 are selected when
l +m is odd. This selection can be expressed introducing a function Ω such as

Ω(i) =
{

1 if i is even
0 if i is odd (A.7)

which can be included in the Hamiltonian according to

H(n) =

n=j+k+l+m
∑

j,k,l,m=0

− [Kn−1Ω(l +m) + iJn−1Ω(l +m+ 1)]

j ! k ! l ! m ! 2j+k+l+m
β

j+k

2
x β

l+m
2

y il+m ×

hjx,−h
k
x,+h

l
y,−h

m
y,+ . (A.8)

From the above relation, Eq. (3.11) is derived.



Appendix B

Hamiltonian coefficients from RDT
variation

In this appendix we provide an illustrative proof of Eq. (4.2). First we consider the
case with only one magnet between two consecutive BPMs as sketched in Fig. B.1.
At the end of this section the more general case with several magnets between two
BPM’s is outlined.

H 1

H
W

H
2

W−1
H

b=1

b=2

b=W−1

b=W

start [Q]

Figure B.1: Schematic view of a ring taking into account the distribution of BPMs and
multipoles.
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For sake of notation it is convenient to define some quantities as follow

Bb = i[(j − k)φBPMb,x + (l −m)φBPMb,y ] , (B.1)

Ww = i[(j − k)φMw,x + (l −m)φMw,y] , (B.2)

Q = 2πi[(j − k)Qx + (l −m)Qy] , (B.3)

h
(b)
jklm =

∑

w≤b

hw,jklme
Bb−Ww +

∑

w>b

hw,jklme
Bb−Ww+Q . (B.4)

φMw and φBPMb,q are the betatron phases of the w-th magnet and the b-th BPM respec-
tively, both calculated with respect to a starting point. Each time b < w a factor
Q must be added to take into account the crossing of this point. With the above
nomenclature, Eq. (3.15) reads

f
(b)
jklm =

h
(b)
jklm

1 − eQ
, (B.5)

hw,jklm are inferred inverting the linear system (B.5). For sake of clarity, we show
a case with W = 3 (the generalization to any number is straightforward) and omit
the subscript jklm,

h(1) = eB1−W1h1 + eB1−W2+Qh2 + eB1−W3+Qh3

h(2) = eB2−W1h1 + eB2−W2 h2 + eB2−W3+Qh3

h(3) = eB3−W1h1 + eB3−W2 h2 + eB3−W3 h3 .

In the matrix notation the system reads ~H = A~h,
(

h(1)

h(2)

h(3)

)

=

(

eB1−W1 eB1−W2+Q eB1−W3+Q

eB2−W1 eB2−W2 eB2−W3+Q

eB3−W1 eB3−W2 eB3−W3

)

(

h1
h2
h3

)

.

A can be factorized as A = A1A2,

A =

(

eB1 0 0
0 eB2 0
0 0 eB3

)(

e−W1 e−W2+Q e−W3+Q

e−W1 e−W2 e−W3+Q

e−W1 e−W2 e−W3

)

.

A2 is inverted according to A2 = (A3A4)
−1,

A2=





(

eW1 0 −eW1+Q

−eW2 eW2 0
0 −eW3 eW3

)





1
1−eQ

0 0
0 1

1−eQ
0

0 0 1
1−eQ









−1

.

The linear system and its inverse eventually read

~H = A1(A3A4)
−1~h → ~h = A3A4A

−1

1
~H ,

providing the solution

(

h1
h2
h3

)

=
1

1 − eQ





eW1(h(1)e−B1 − h(3)eQ−B3)
eW2(h(2)e−B2 − h(1)e−B1)
eW3(h(3)e−B3 − h(2)e−B2)



 .
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From Eq. (B.5) we obtain

(

h1
h2
h3

)

=





eW1(f (1)e−B1 − f (3)eQ−B3)
eW2(f (2)e−B2 − f (1)e−B1)
eW3(f (3)e−B3 − f (2)e−B2)



 .

The general expression for the above equations reads

hw = eWw

(

f (w)e−Bw − f (w−1)e−Bw−1

)

, for 2 ≤ w ≤ W

h1 = eW1

(

f (1)e−B1 − f (W )eQ−BW

)

. (B.6)

Reinserting the index jklm and making explicit Ww, Bw and Q we obtain

hw,jklme
−i[(j−k)∆φwb

x +(l−m)∆φwb
y ] = f

(w)
jklme

−i[(j−k)∆φw,w−1
x +(l−m)∆φw,w−1

y ] − f (w−1),

(B.7)

where ∆φwbq are the phase advances between the w-th magnet and the w−1-th BPM
and ∆φw,w−1

q the phase advances between the two consecutive BPMs.
The most general case with T sources between two consecutive BPMs introduces
a modification in the l.s.h. of the above equation, namely the replacement of the
single Hamiltonian coefficient with a sum of all the contributes

hw,jklme
−i[(j−k)∆φwb

x +(l−m)∆φwb
y ] → ĥw,jklm (B.8)

where

ĥw,jklm =
T
∑

τ=1

hτ,jklme
i[(j−k)∆φw−1

τ,x +(l−m)∆φw−1
τ,y ] . (B.9)

The sum is over all the T multipoles between the (w − 1)-th and the w-th BPMs
and ∆φw−1

τ,q are the phase advances between those multipoles and the w−1-th BPM
(see Fig. B.2).

1

2
3

T

BPM w−1 BPM w

Figure B.2: Schematic view of a section of the ring when several multipoles are placed
between two BPMs.
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B.1 The shadow effect

Eq. (B.7) shows how the amplitudes of the RDT at two BPMs change only if there
are multipoles in between. From the difference between the two RDT the total
strength of the multipoles in between ĥw,jklm can be therefore inferred.

Nevertheless even if the amplitudes of the RDT change only in presence of non-
linear magnet in between, it is not true that the latter ones make always the RDT
change. Indeed exist particular lattice configurations which can make the method
fail. We consider for example the case with two nonlinear magnets. The numerator
in the r.s.h. of Eq. (B.5) reads

h(1) = eB1−W1h1 + eB1−W2+Qh2

h(2) = eB2−W1h1 + eB2−W2 h2 .

The amplitudes of both equations are

|h(1)| = |h1 + eW1−W2+Qh2| = |h2||
h1

h2
+ eW1−W2+Q|

|h(2)| = |h1 + eW1−W2 h2| = |h2||
h1

h2
+ eW1−W2 | .

According to Eq. (B.5)

|f (1)

|f (2)| =
|h(1)|
|h(2)| =

|h1

h2
+ eW1−W2+Q|

|h1

h2
+ eW1−W2 |

. (B.10)

We recall that the ratio h1

h2
is real. If W1 − W2 + Q = ±(W1 − W2) the RDT at

location 1 and 2 have the same amplitudes (for any values of the strengths) and
the formula (B.6) cannot be applied, since it is not possible anymore to localize the
magnets, being the jumps not anymore observable. The above condition is satisfied
whether either Q = 0 (integer resonance condition) or

Q = − 2(W1 − W2) (B.11)

(j − k)(φM1,x − φM2,x + πQx) = (m− l)(φM1,y − φM2,y + πQy)

This is a condition between the betatron phases of the magnets and the tunes. Two
pairs of skew quadrupoles, one of skew sextupoles and three of normal sextupoles
installed in the GSI SIS-18 satisfy such a relation.

B.2 RDT close to a resonance

In proximity of a resonance Q = 2πi[(j − k)Qx + (l −m)Qy] → 0, the RDT’s de-
fined in Eqs. (3.15) and (B.5) diverge. Nevertheless it is possible to manipulate the
denominator constructing a quasiresonant normal form that allows this limit and
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reproduce the nonresonant case outside the stop-band [16]. In any case, the denom-
inator remains invariant along the ring. The second sum in Eq. (B.4)

h
(b)
jklm =

∑

w≤b

hw,jklme
Bb−Ww +

∑

w>b

hw,jklme
Bb−Ww+Q (B.12)

drives the variation along the ring of |h(b)
jklm| and therefore of |fjklm|. Close to a

resonance Q → 0 and the above expression reads

h
(b)
jklm =

∑

w

hw,jklme
Bb−Ww +O(Q) (B.13)

where now the sum is over all multipoles along the ring and the reminder propor-

tional to Q. The variation of h
(b)
jklm and therefore of fjklm becomes a pure rotation

making the amplitudes be invariant.

B.3 beta functions at the multipoles

If one relies on the nominal strengths of either skew quadrupoles or sextupoles, the
computation of |hjklm| from the measured fjklm provides a direct way to infer the
beta function at their location if only one magnet is placed between two consecutive
BPMs. In this case indeed Eq. (4.4) can be applied yielding

βw,x =
(

48
∣

∣

∣

hw,3000
Kw,2

∣

∣

∣

)2/3

for normal sextupoles (B.14)

βw,y =
(

16
∣

∣

∣

hw,1020
Kw,2

∣

∣

∣

)

√

βw,x for normal sextupoles (B.15)

√

βw,xβw,y =
(

4
∣

∣

∣

hw,1001
Jw,1

∣

∣

∣

)2

for skew quadrupoles (B.16)

Therefore the beta functions at the sextupoles can be unambigously inferred mea-
suring |hjklm| for several values of the sextupole strengths K2 and fitting Eqs. (B.14)
and (B.15). Ss far as the skew quadurpoles are concerned only an indirect check on
their product can be performed.
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Appendix C

Lie series and RDT close to the (1,-1)
resonance

From Eqs. (3.18) and (3.19) the turn-by-turn normalized particle positions and mo-
menta at a location s of a coupled lattice are described as follows,

x̂− ip̂x =
√

2Ixe
iψx − 2if1001

√

2Iye
iψy (C.1)

−2if1010

√

2Iye
−iψy ,

ŷ − ip̂y =
√

2Iye
iψy − 2if ∗

1001

√

2Ixe
iψx (C.2)

−2if1010

√

2Ixe
−iψx ,

where Ix,y are the horizontal and the vertical invariants, ψx,y are the phases of the
oscillations which can be expressed as function of the tunes Qx,y, the turn number
N and the initial phases φx0,y0 as ψx,y = 2πQx,yN + φx0,y0.

Eqs. (C.1)-(C.2) provide a truncated expansion of hq,− for a lattice in presence
betatron coupling driving the sum (1,1) and difference (1,-1) resonance. The normal
form tranformation introduced in Sec.3.3 is nonresonant. Tune working point is here
assumed to be close enough to the difference resonance, i.e. ∆ << 1, to neglect the
sum RDT f1010.

Under these assumptions it is anyway possible to construct a quasiresonant nor-
mal form transformation [16] and a closed Lie expansion of the complex Courant-
Snyder coordinates hx = x̂− ip̂x [15]

hx = e:F :ζ−x =
∞
∑

n=0

Dn
F ζ

−
x

n!
= ζ−x + [F, ζ−x ] +

1

2!
[F, [F, ζ−x ]] + . . . , (C.3)

where ζ− =
√

2Ieψ are the normal form coordinates; DF ζ
−
x = [F, ζ−] denotes the

Poisson brackets ; F = f1001ζ
+
x ζ

−
y + f ∗

1001ζ
−
x ζ

+
y is the generating function for the

normal form transformation and f1001 is now a quasiresonant RDT. An expression
of f1001, approximated up to the first order, reads
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f̄
(b)
1001 =

∑

w

Jw,1
√

βwx β
w
y e

i(∆φb
w,x−∆φb

w,y)

4(1 − e2πi(Qh−Qv))
. (C.4)

The difference between the above definition and the one given in Eq. (3.15) is in
that here the eigen tunes Qh, Qv appear instead of the bare tunes Qx, Qy. The
substitution makes the quasiresonant f1001 not to diverge for ∆ → 0. Outside the
resonance stop-band the two expression are equivalent.

The Possion brackets can be explicited with a recursive relation (note that [ζ+
q , ζ

−
q ] =

−2i, all other combinations provide zero):

D1
F ζ

−
x = [F, ζ−x ] = [f1001ζ

+
x ζ

−
y , ζ

−
x ] = −2if1001ζ

−
y

D2
F ζ

−
x = [F, [F, ζ−x ]] = [F,D1

F ζ
−
x ] = (−2if1001)(−2if ∗

1001)ζ
−
x

D3
F ζ

−
x = [F, [F, [F, ζ−x ]]] = [F,D2

F ζ
−
x ] = (−2if1001)

2(−2if ∗
1001)ζ

−
y

...

D2n
F ζ

−
x = (−1)n|2f1001|2nζ−x (C.5)

D2n+1
F ζ−x = (−1)n+1|2f1001|2n2if1001ζ

−
y (C.6)

Manipulating the r.s.h. in the latter relation yields

|f1001|2nf1001 = |f1001|2n+1 |f1001|
f1001

∗ .

It is convenient to make explicit the abosulte value and the phase of f1001 as follow

f1001 = feiq . (C.7)

Some algebra in Eqs. (C.5)-(C.6) yields

D2n
F ζ

−
x = (−1)n(2f)2nζ−x

D2n+1
F ζ−x = −ieiq(−1)n(2f)2n+1ζ−y .

The Lie series (C.3) therefore reads

hx =

∞
∑

n=0

(−1)n
(2f)2n

2n!
ζ−x − ieiq(−1)n

(2f)2n+1

(2n+ 1)!
ζ−y .

The summations in the above r.s.h. are the Taylor expansions of cos 2f and sin 2f
respectively, providing

hx = cos 2fζ−x − ieiq sin 2fζ−y (C.8)

hy = cos 2fζ−y − ie−iq sin 2fζ−x , (C.9)
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where the expression for hy has been obtained with a similar derivation. Making
explicit ζ, the following turn-by-turn relations are obtained

hx(N) = cos 2f
√

2Ixe
i(2πNQh+ψx0) − ieiq sin 2f

√

2Iye
i(2πNQv+ψy0) (C.10)

hy(N) = cos 2f
√

2Iye
i(2πNQv+ψy0) − ie−iq sin 2f

√

2Ixe
i(2πNQh+ψx0) , (C.11)

where N is the turn number, ψx0,y0 are the initial particle phases in normal form.



146



Appendix D

Betatron coupling: equivalence of RDT
and matrix approaches

Betatron coupling is usually analyzed using either the matrix formalism or the
Hamiltonian perturbation theory. The latter is regarded as being less exact but pro-
viding better physical insight. In this chapter direct relations are derived between
the two formalisms. This makes possible the interpretation of the matrix approach
in terms of resonances, as well as use results of both formalisms indistinctly. An
approach to measure the coupling matrix and its determinant from turn-by-turn
data is presented together with results from measurement at the Relativisti Heavy
Ion Collider (RHIC) of BNL.

D.1 Resonance driving term formalism

From Eqs. (3.18) and (3.19) the turn-by-turn normalized particle positions and mo-
menta at a location s of a weakly coupled lattice are described as follows,

x̂− ip̂x =
√

2Ixe
iψx − 2if1001

√

2Iye
iψy (D.1)

−2if1010

√

2Iye
−iψy ,

ŷ − ip̂y =
√

2Iye
iψy − 2if ∗

1001

√

2Ixe
iψx (D.2)

−2if1010

√

2Ixe
−iψx ,

where Ix,y are the horizontal and the vertical invariants, ψx,y are the phases of the
oscillations which can be expressed as function of the tunes Qx,y, the turn number
N and the initial phases φx0,y0 as ψx,y = 2πQx,yN +φx0,y0. The RDT f1001 and f1010

are proportional to the Hamiltonian terms and drive the difference and the sum res-
onances respectively. These terms are functions of the uncoupled lattice parameters
at the location of both the coupling elements and the observation point b given by
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f
(b)
1001
1010

=

∑

w

Jw,1
√

βwx β
w
y e

i(∆φb
w,x∓∆φb

w,y)

4(1 − e2πi(Qx∓Qy))
(D.3)

where Jl,1 is the wth integrated skew quadrupole strength, βwx,y are the Twiss func-

tions at the location of the wth skew quadrupole, ∆φbw are the phase advances
between the observation point b and the wth skew quadrupole and Qx,y are the
horizontal and vertical tunes.

D.2 Matrix formalism

In the matrix approach, the coupled motion [31] is parametrized by factoring the
one turn matrix into block diagonal normal mode form by means of the similarity
transformation given by the symplectic 4×4 matrix V, of the form

V =
(

γI C
−C+ γI

)

, (D.4)

where I is the 2×2 identity matrix, and C is the 2×2 coupling matrix requiring
|C| + γ2 = 1. By means of another similarity transformation the β dependence is
normalized out of C,

C = GaCG−1

b
(D.5)

where Ga,b =





1√
βa,b

0
αa,b√
βa,b

√

βa,b



 are the normalization matrices for the a and b

modes defined in [55]. Note that |C| = |C|.
The normalized motion in the horizontal and vertical planes is given by [55]





x̂
p̂x
x̂
p̂y



 =







γ 0 C11 C12

0 γ C21 C22

−C22 C12 γ 0
C21 −C11 0 γ











Ax cosψx
Ax sinψx
Ay cosψy
Ay sinψy



 (D.6)

Using the above expressions for normalized positions and momenta, the complex
Courant-Snyder variables are given by

x̂− ip̂x = γAxe
iψx +

Ay
2

(

(C11 − iC12 − iC21 − C22)e
−iψy (D.7)

+(C11 + iC12 − iC21 + C22)e
iψy

)

,

ŷ − ip̂y = γAye
iψy +

Ax
2

(

(C11 − iC12 − iC21 − C22)e
−iψx (D.8)

+(−C11 + iC12 − iC21 − C22)e
iψx

)

.

Note that the convention for momenta used in Hamiltonian theory described in [15]
is the negative of that used in matrix formalism described in [56].
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D.3 Relating the C matrix and the RDT’s

The relation to the Hamiltonian formalism can now be established by directly com-
paring Eqs. (D.1) and (D.2) to Eqs. (D.7) and (D.8), obtaining

f1001 =
1

4γ
(C12 − C21 + iC11 + iC22) , (D.9)

f1010 =
1

4γ
(C12 + C21 + iC11 − iC22) , (D.10)

or, equivalently expressing C as function of the generating terms,

1

2γ
C12

21
= <{f1010 ± f1001} , (D.11)

1

2γ
C11

22
= ={f1001 ± f1010} , (D.12)

where < and = stand for real and imaginary parts respectively. The determinant of
C can also be related to the resonance terms as

|C|
4γ2

= |f1001|2 − |f1010|2 , (D.13)

and using |C| + γ2 = 1 yields,

|C| = 1 − 1

1 + 4(|f1001|2 − |f1010|2)
, (D.14)

γ2 =
1

1 + 4(|f1001|2 − |f1010|2)
(D.15)

These expressions have a direct interpretation: if |C| is positive the difference
resonance (f1001) dominates, and if it is negative the sum resonance (f1010) domi-
nates. From these expressions it is also observed that a null |C| does not imply null
coupling, but |f1001| = |f1010|. If |f1010|2 > 1

4
+ |f1001|, then γ2 < 0 and the particle

motion is unstable (see discussion in [55] after Eq. (12)).
As shown in [1] and reported in Sec. B.2 the relative longitudinal variations of

the generating terms become smaller as the tunes approach the resonance. On the
resonance, the amplitude of the generating term becomes invariant around the ring.
Thus, by virtue of Eq. (D.13), the determinant of C also tends to be invariant around
the ring as the tunes approach the resonance.

To better understand the behavior of the above quantities in presence of local-
ized coupling source, single particle simulations were run using the RHIC yellow
lattice. In Fig. D.1 the elements of C are plotted together with the location of skew
quadrupole kicks and |C|/γ2 . In regions free of coupling the firsts show a slow
modulation, whereas |C|/γ2 remain constant in a way similar to the RDT’s. In
presence of coupling they both exibit large jumps.



150

-0.4

-0.2

0

0.2

0.4

C

-0.4

-0.2

0

0.2

0.4

C

-0.4

-0.2

0

0.2

0.4

C

-0.4

-0.2

0

0.2

0.4

C

0 1 2 3 4
Loingitudinal Position [km]

-1

-0.5

0

0.5

1

J  
   

   
   

  .

0 1 2 3 4
Loingitudinal Position [km]

0.15

0.2

0.25

0.3

|C
| /

11 12
2221

1
x 1

0 
   

[1
/m

]

2 γ-3

Figure D.1: Single particle simulations of the RHIC “yellow” lattice: the elements of
C are plotted (upper four windows) together with the location of skew quadrupole kicks
(bottom left) and |C|/γ2 (bottom right).

D.4 C matrix and skew quadrupole strengths

Eq. (4.2) was derived to obtain multi-polar strengths from the RDT. Skew quadrupo-
lar strengths can now be equivalently obtained from the measurement of the C
matrix by use of the above relations.

We assume that only one skew quadrupole of integrated strength Jw,1 exists
between the two BPMs where the C matrices have been measured. Under this as-
sumption we can make use of Eq. (4.2)

Jw,1 =
4ei(φ

skew w
x +φskew w

y )

√

βwx β
w
y

(

f
(w)
1001e

i(φw
x +φw

y ) − f
(w−1)
1001 ei(φ

w−1
x +φw−1

y )
)

, (D.16)

where βwx,y and φskew w
x,y are the Twiss functions at the location of the skew quadrupole,

φwx,y and φw−1
x,y are the betatron phases at the wth and (w − 1)th BPMs respectively

and f
(w)
1001 and f

(w−1)
1001 are the corresponding RDT. These terms are given by Eq. (D.9)

as a function of the measured C matrix. f1010 can also be used leading to a similar
equation. It is also possible to relate the change of the determinant of C to the
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strength of the skew quadrupole. By manipulating the above expressions,

Jw,1 =

(

|C(w)|
γ(w)2

− |C(w−1)|
γ(w−1)2

)

1

χw
√

βwx β
w
y

, (D.17)

where χ is given by

χw =
1

γ(w)

(

cos δφx cos δφyC
(w)

21 − sin δφx sin δφyC
(w)

12

+ sin δφx cos δφyC
(w)

22 − cos δφx sin δφyC
(w)

11

)

, (D.18)

where δφx,y = φskew w
x,y − φwx,y are the phase advances between the skew quadrupole

and the second location of observation.

D.5 Measurement of |C|/γ2 in RHIC during 2005

As shown in Eq. (D.17) the variation of |C|/γ2 is directly related to the coupling
sources placed between two observation point. Moreover its measurement requires
the knoledge of |f1001| and |f1010| only, whereas the computation fo the matrix ele-
ment requires the additional measurement of their phases.

Beam experiments were performed during the 2005 polarized proton run of RHIC
at BNL to measure the coupling RDT f1001 [14]. Turn-by-turn BPM data where
acquired at injection energy for both rings, yellow and blue. Global coupling was
initially corrected using the skew quadrupole families to minimize the tune split
∆Qmin. Coherent betatron oscillations in both transverse planes were driven using
two ac dipoles: the normal form procedure under such a periodic beam excitation
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Figure D.2: Measured variation along the ring of C|/γ2 in the yellow ring (left) as well as
in the blue ring (right). Vertical dashed lines denote the interaction regions (IR’s) (RHIC
BPM data 2005, courtesy of R. Calaga).
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is described in [57]. The BPM data analysis is in first approximation, for a driving
oscillation close to the betatron tune, the same as for a transversely kicked beam.

Although globally decoupled, |C|/γ2 in the yellow ring shows significant relative
variations in the ring indicating uncorrected local skew quadrupole sources in the
arc regions. The blue ring looks relatively flat and therefore globally well decoupled
(jumps are visible in the interaction reagion only).



Appendix E

Software for the analysis of
turn-by-turn BPM data

bpm2rdt reads BPM files containing the turn-by-turn (TBT) data of a transversely
excited beam. From the betatron oscillations, the resonance driving terms (RDT)
excited by linear coupling (skew quadrupoles) and first order nonlinearities (normal
sextupoles) are inferred. The code needs also an external file containing the optics
at the BPM’s (a MAD-X Twiss table). If in the same file also the Twiss parameter
of skew quadrupoles and normal sextupoles are written, the codes tries to compute
both their strengths and polarities, under the assumption the these elements are the
sources of coupling/nonlinearities.

Editing the Input File

An example of bpm2rdt input file bpm2rdt_input is:

! ******** bpm2rdt INPUT FILE: 11 DECEMBER 2004 ********
!
! WARNING: DO NOT CHANGE THE ORDER OF THE INPUT PARAMETERS
! WARNING: UP TO 1000 COMMENTED LINES ARE ALLOWED. THE LINE
! IS COMMENTED WHEN STARTS WITH a !. DO NOT PUT
! OTHER CHARACTERS, BECAUSE NO FURTHER CHECK IS
! PERFORMED
! *********************************************************

! # of turns (power of 2) =================================
1024

! TBT BPM DATA FILE (in ./EXPERIMENTAL_FILES) ============
top-05.data.rama

! twiss MADX file (in ./EXPERIMENTAL_FILES) ==========
! Twiss functions at the BPMs and the multipoles ==========
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top-02.twiss

! BPM twiss values from on-line/SVD file ============
! (in ./EXPERIMENTAL_FILES) if you type NONE, ============
! it means that the optics at the BPMs is ============
! taken from the previous MADX file ============
top-05.twiss.rama
!none

! estimated X and Y tunes to be found from FFT ===========
28.246
29.217

! .true. use only dual BPM, .false. use all BPMs ==========
.true.

! expected spectrum peaks to search =======================
20

ITEMS DESCRIPTION

• item # 1: # of turns recorded in the BPM TBT file

• item # 2: BPM TBT file name, to be placed in the ./EXPERIMENTAL_FILES
directory

• item # 3: twiss MAD-X file containing the Twiss functions at both the BPM’s
and the multipoles, and the magnet strengths of the latter ones from the model,
to be located in ./EXPERIMENTAL_FILES directory. To generate it add in
your MAD-X input file the following lines:

select, flag=twiss, clear;
select, flag=twiss, class=HMONITOR ,column=name, s, betx, mux, bety, muy, k2l, k1sl;
select, flag=twiss, class=VMONITOR ,column=name, s, betx, mux, bety, muy, k2l, k1sl;
select, flag=twiss, class=SEXTUPOLE ,column=name, s, betx, mux, bety, muy, k2l, k1sl;
select, flag=twiss, pattern="B2M05C3Y" ,column=name, s, betx, mux, bety, muy, k2l, k1sl;
select, flag=twiss, pattern="ˆSQ*" ,column=name, s, betx, mux, bety, muy, k2l, k1sl;
select, flag=twiss, class=MULTIPOLE ,column=name, s, betx, mux, bety, muy, k2l, k1sl;
twiss,table=twiss,file=top-02.twiss;
twiss,save;

• item # 4: if this item is different from NONE or none , it is considered as an
on-line model file containing the Twiss functions at the BPM, to be located in
./EXPERIMENTAL_FILES directory. The format is the following (each line
corresponds to one BPM)

– name

– location [m]
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– βx [m]

– βx [m]

– φx [units of 2π]

– φy [units of 2π]

An example:

g6-bx 8.326374 34.83935797 31.833034695 0.22395109 0.21069863
yi6-b1 25.023783 306.23090546 271.211432935 0.24979144 0.23944553
yi6-b3 36.899612 620.13844556 199.177101845 0.25501097 0.24499780
. . .

• items # 5: estimated tunes Qh, Qv (in case of linear coupling) or νx, νy (in case of
nonlinear detuning driven by sextupoles). These numbers drive the peak search
routine to detect the tune and the secondary lines in the BPM spectra. The
correctness of these numbers can be checked in the output file fft.dat , where
for each BPM, the detected spectral lines are listed (first column) together with
their amplitude (second col.) and phase (third col.). The detected tune lines
should be the one with largest amplitudes. Notice that a wrong guess might
drive wrong RDT computations, specially if the two tunes are exchanged. An
example of fft.dat:

******* SPECTRUM AT THE BPM # 1 ***********
x harmonic (# 1) = 0.246004 0.134455E-03 -0.44683
x harmonic (# 2) = 0.217005 0.478461E-05 1.14855
x harmonic (# 3) = 0.754004 0.359196E-04 -1.04088
. . .
y harmonic (# 1) = 0.216997 0.621436E-04 1.41147
y harmonic (# 2) = 0.246025 0.646516E-05 1.76046
y harmonic (# 3) = 0.782996 0.150994E-04 2.91047
. . .

• item # 7: Logic flag to select the kind of BPM to be used for the analysis:
.true. selects dual-plane BPM’s only, .false. makes all BPMs be used.

• item # 6: # of peaks/harmonics to search in the BPM spectra: for clean BPM
data, ten harmonics should be in principle enough, but the more noisy are the
data the higher number of harmonics to be searched you need.

Output Files

The output files can be divided in three groups

1. measured and model RDT files

2. measured and model strengths files

3. “diagnostic” files
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Measured and Model RDT Files

To this group belong:

• fJKLMm.dat: it contains the absolute value of RDT fjklm from the model
(Twiss file) against longitudinal position and BPM number (to the first order
approximation, i.e. for large values it might not correspond to the real value).
Format: BPM position [m], |fjklm| [depends on jklm], BPM number

0 0.0518917888 0
25 0.0518917888 1
25 0.0304226093 1
73 0.0304226093 2
73 0.0486926585 2
. . .

The file has a “step-wise” format, i.e. the value of |fjklm| at the i-th BPM is
repeated at the next BPM to show vertical jumps.

• fJKLMe.dat: it contains the measured absolute value of RDT fjklm. Format
and structure as for the above model file.

• zfJKLM.dat: it contains the measured RDT fjklm against longitudinal posi-
tion. Format (for f1001 from zf1001.dat):

# s[m] Re{f1001} Im{f1001} |f1001| phi{f1001}
25.0238 -0.100217E-1 0.287245E-1 0.30422E-1 1.906483
73.1987 -0.151963E-1 -0.462606E-1 0.48692E-1 -1.888185
. . .

• cgam_matrix.dat: it contains the measured coupling matrix C̄ and γ against
longitudinal position. They are computed from the measured f1001 and f1010.
Format:

# s[m] barC11 barC12 barC21 barC22 gamma |C|/gamma2
25.023 0.01664 -0.00437 0.03567 0.09815 0.999 0.0017930
73.198 -0.01350 -0.09459 -0.03377 -0.17160 1.000 -0.0087734
. . .

• cgamma.dat: it contains the measured determinant of the coupling ma-
trix |C̄|/γ2 against longitudinal position in a “step-wise” format similar to
fJKLMe.dat.

Measured and Model Strength Files

To this group belong:

• strengths-f1001.dat and strengths-Cmatrix.dat: they contain the
reconstructed skew quadrupole strengths according to the measured RDT f1001,



157

f1010 and |C̄|/γ2 and the MAD-X Twiss file that provides the optical param-
eters at the skew quadrupoles. Only values corresponding to individual skew
quadrupoles between two consecutive BPM’s (according to the MAD-X file)
are displayed. If several skew quadrupoles are instead present, the complex
Hamiltonian coefficients contained in the hamiltonian_fft.dat file must
be considered. If the momentum reconstruction is suspected of error (due to the
presence of nonlinearities between two BPM’s) an exclamation mark is printed
out. Format:

#==================================================
# If from the twiss file, several skew quads are
# between two BPMs, the correspondig ’strength’ is
# not displayed here: see file hamiltonian_fft.dat
#
#
# BPM location gradient gradient gradient
# [m] f1001 f1010 MADX
3 113. 0.1271E-1 0.1324E-8 -0.6690E-03 !
8 752. 0.9875E-2 0.8654E-2 0.3530E-03
13 1205. 0.3588E-2 0.1179E-1 0.2800E-03 !
16 1391. 0.5358E-8 0.2535E-1 0.2800E-03 !

. . .

• strengths-f3000.dat: contains the sextupolar strength inferred from the
RDT f3000 and f1200. The above remarks hold for this file.

• hamiltonian_model.dat and hamiltonian_fft.dat: they contain the
Hamiltonian coefficients ĥjklm and the corresponding RDT fjklm along the ring,
from the model and measurement respectively. Format:

***** j k l m = 1 0 0 1 ******* FROM MODEL/REC. FORMULA
BPM# BPM-pos |h_jklm| phase_h_jklm |f_jklm| phase_f_jklm
1 25 0.04731 -0.24822 0.37635 1.9964
2 73 0.0000 0.0000 0.37635 -1.6234

. . .
***** j k l m = 1 2 0 0 ******* FROM MODEL/REC. FORMULA
BPM# BPM-pos |h_jklm| phase_h_jklm |f_jklm| phase_f_jklm
1 25 18.443 -1.5046 11.686 1.4312
2 73 0.314 -3.1306 11.636 -1.3395

. . .

• chi_from_model.dat and chi_from_fft.dat: they contain the observ-
able χjklm along the ring, from the model and measurement respectively. For-
mat:

***** ROGELIO’s CHI ***** FROM MODEL/FFT (HORIZONTAL!)



158

BPM# BPM-pos |chi_1010| phase_chi_1010 |chi_1020| . . .
1 25 0.0000 0.0000 0.0000 . . .

. . .

“Diagnostic” Files

• Model MAD-X optics: optics_bpm_model.dat, optics_nsext_model.dat,
optics_skewq_model.dat: they contain the optical functions of BPM’s,
normal sextupoles and skew quadrupoles respectively as read from the MADX
Twiss file (ignore αx,y).

• Optics from FFT: optics_bpm_fft.dat: if only dual plane BPM’s are
used, the codes computes the optical functions from the BPM TBT data and
they are printed in this file.

• BPM measured spectra:

– fft.dat contains all the detected lines (both vertical and horizontal ac-
cording to the corresponding BPM).

– lines.dat shows the correspondence between the detected secondary
and their physical name (H(0,1), V(1,-2) . . . )

– lines_chi.dat shows the correspondence between the detected spectral
lines of the observable χjklm and their physical name.

– spectrum_ampli.dat lists the amplitudes of all detected spectral lines
at each BPM.

– spectrum_phase.dat lists the phases of all detected spectral lines at
each BPM.

– spectrum_ampli_chi.datlists the amplitudes of the detected lines
corresponding to the observable χjklm.

• Various:

– exspec_jump.dat lists the positions of the expected jumps according
to the MADX Twiss file.

– topology_bpm.dat lists all the used BPM’s: name, location and plane
(ignore last column).

– skew_quad.dat and norm_sext.dat group the measured RDT ex-
cited by skew quadrupoles and normal sextupoles respectively (old format).

– to be ignored: peaks_o.dat and skew_sext.dat.

Code Structure

The main directory (bpm2rdt-x10) contains:
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• bpm2rdt.f: the main source code in FORTRAN77 (the author loves FOR-
TRAN). Under Linux it is compiled running

g77 -O2 bpm2rdt.f -o bpm2rdt

• bpm2rdt_input: input file described above.

• clean: script to remove all previous *.dat files (DANGEROUS)

• INCLUDE: this directory contains all the include files linked in the main source
code (a detailed description would take some time and is postponed to the
future)

• EXPERIMENTAL_FILES: this directory contains the BPM TBT, the MADX
and on-line model files

• TEST: this directory contains other directories whose files where used to bench-
mark the code (against the code used i n [1])

• MANUAL: is the directory with the .tex source of this documentation and a draft
note (a candidate paper maybe) where the algorithm implemented is explained
and results from SPS data analysis are shown
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