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Abstract

To unravel the short-term climate variability during Marine Isotope Stage (MIS) 11,
which represents a close analogue to the Holocene with regard to orbital boundary con-
ditions, we performed microfacies and time series analyses on a ∼3200-yr-long record
of annually laminated Holsteinian lake sediments from Dethlingen, northern Germany.5

These biogenic varves comprise two sub-layers: A light layer, which is controlled by
spring/summer diatom blooms, and a dark layer consisting mainly of amorphous or-
ganic matter and fragmented diatom frustules deposited during autumn/winter. Time
series analyses were performed on the thickness of the light and dark layers. Signals
exceeding the 95 % and 99 % confidence levels occur at periods that are near-identical10

to those known from modern instrumental data and Holocene palaeoclimatic records.
Spectral peaks at periods of 90, 25, and 10.5 yr are likely associated with the 88-, 22-
and 11-yr solar cycles, respectively. This variability is mainly expressed in the light
layer spectra, suggesting solar influence on the palaeoproductivity of the lake. Signif-
icant signals at periods between 3 and 5 yr and at ∼6 yr are strongest expressed in15

the dark layer spectra and may reflect an influence of the El Niño-Southern Oscillation
(ENSO) and the North Atlantic Oscillation (NAO) during autumn/winter. Our results
suggest that solar forcing and ENSO/NAO-like variability influenced central European
climate during MIS 11 similar to the present interglacial, thus demonstrating the com-
parability of the two interglacial periods at sub-decadal to decadal timescales.20

1 Introduction

An understanding of the mechanisms and effects of natural short-term (i.e., decadal- to
sub-decadal-scale) climate variability is essential for providing projections of possible
climate change for the near future. Short-term climate changes are linked to shifts in
the modes of variability of the climate system (e.g., the southern and northern annular25

modes; Stenseth et al., 2003); therefore, a better representation of such climate-mode

1395

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/1393/2011/cpd-7-1393-2011-print.pdf
http://www.clim-past-discuss.net/7/1393/2011/cpd-7-1393-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
7, 1393–1425, 2011

Sub-decadal- to
decadal-scale climate

cyclicity during the
Holsteinian (MIS 11)

A. Koutsodendris et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

shifts in climate models may improve simulations of abrupt climate changes (Alley et
al., 2003). Although the instrumental record is becoming more valuable as it is length-
ened, it is still insufficient to cover the full range of climatic behavior. Specifically,
instrumental datasets do not reach beyond the past ∼300 yr (Jones and Mann, 2004),
which precludes deeper insights into the underlying physical processes and the evo-5

lution of decadal- to sub-decadal-scale climate variability on longer (e.g. interglacial)
timescales. In this context, high-resolution palaeoclimate records, particularly from
past interglacials that unlike the Holocene were unaffected by human interference, can
make an important contribution towards elucidating natural short-term climate variabil-
ity and its future evolution during the present interglacial (e.g. Alley et al., 2003; Brauer10

et al., 2007; Müller and Pross, 2007; Tzedakis et al., 2009).
Marine Isotope Stage (MIS) 11 is considered one of the best analogues for present

and future climate based on long-term similarities with regard to orbital climate forcing,
i.e., low eccentricity and dampened influence of precession (e.g. Berger and Loutre,
2002; Loutre and Berger, 2003; Ruddiman, 2005). A number of proxy datasets have15

provided insights into the long-term comparability between MIS 11 and the present
interglacial (e.g. McManus et al., 2003; de Abreu et al., 2005; Helmke et al., 2008;
Rohling et al., 2010; Tzedakis, 2010), but owing to a lack of data with sufficiently high
temporal resolution the short-term comparability between the two interglacials has re-
mained ambiguous.20

In contrast to most marine records from MIS 11, which typically exhibit relatively
low sedimentation rates, varved sequences from lake sediments yield the potential to
test whether MIS 11 and MIS 1 exhibit comparable decadal to sub-decadal climate
variability. The terrestrial analogue to MIS 11 in Central Europe has long been a matter
of heated debate (e.g. de Beaulieu et al., 2001; Geyh and Müller, 2005; see also25

Koutsodendris et al., 2010, for a discussion); however, based on evidence from long
terrestrial and marine vegetation records from the Massif Central (France; Reille et al.,
2000) and off Iberia (Desprat et al., 2005), there is now a substantial body of research
that indicates a land-sea correlation of MIS 11c with the Holsteinian interglacial (e.g.
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de Beaulieu et al., 2001; Kukla, 2003; Nitychoruk et al., 2005, 2006; Müller and Pross,
2007; Preece et al., 2007).

The variations in the composition and thickness of varves reflect sedimentation pro-
cesses that are controlled by various climatic and environmental factors at different
times of the year (e.g. O’Sullivan, 1983; Lotter, 1989; Anderson, 1992; Lotter and Birks,5

1997; Brauer et al., 1999a; Brauer, 2004). Deeper insights into these processes have
been gained through the time series analysis of varve thickness datasets; such efforts
have successfully linked cyclical patterns in lake sediments with short-term natural peri-
odic climate forcing (e.g. Anderson and Koopmans, 1963; Anderson, 1992; Zolitschka,
1992; Vos et al., 1997; Rittenour et al., 2000; Livingstone and Hajdas, 2001). To date,10

although several well-preserved Holsteinian varved archives are known (e.g. Turner,
1970; Müller, 1974; Krupiński, 1995; Nitychoruk et al., 2005), the potential of using
varves to better understand the decadal- to sub-decadal-scale climate variability dur-
ing MIS 11 has been poorly explored (Mangili et al., 2005, 2007; Brauer et al., 2008).

In light of the above, we here analyze a ∼3200-yr-long Holsteinian varve succession15

from the Dethlingen palaeolake in northern Germany. In particular, we have performed
(i) a detailed microfacies analysis to understand the season-dependent sedimento-
logical processes controlling varve deposition, and (ii) time series analyses on the
varve sub-layers thickness in order to investigate the short-term climate cyclicity dur-
ing MIS 11 and to compare it with instrumental data and palaeoclimatic records of the20

Holocene.

2 Material and methods

The Dethlingen palaeolake is located in the Lüneburger Heide region within the low-
lands of northern Germany (Fig. 1). After the disintegration of the Elsterian (MIS
12) ice sheet, several deep lakes formed in the vicinity of Dethlingen that were sub-25

ject to the deposition of diatomaceous, partially annually laminated sediments during
the following Holsteinian interglacial (e.g. Benda and Brandes, 1974; Ehlers et al.,
1984; Koutsodendris et al., 2010). Based on the spatial extent and thickness of the
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Holsteinian diatomite, the size of the Dethlingen palaeolake is estimated to ∼800 m
in length and 300–500 m in width (Benda et al., 1984). The deposits cored at Deth-
lingen (10◦08.367′ E, 52◦57.780′ N, 65 m a.s.l.) that has yielded the material for this
study comprises organic-rich, predominantly regularly and finely laminated lake sedi-
ments (Koutsodendris et al., 2010). Here we focus on the interval between 27.93 and5

33.68 m below surface (mbs) that comprises annual laminations spanning the meso-
cratic forest phase of the Holsteinian interglacial in Central Europe (∼411–408 ka BP),
including a prominent centennial-scale climate perturbation, the so-called “Older Hol-
steinian Oscillation” (OHO; Koutsodendris et al., 2010, 2011).

Varve counting and layer-thickness measurements were carried out at 100x magni-10

fication on thin sections (size: 120×35 mm) using a petrographic microscope. Thin-
section preparation followed standard techniques comprising freeze-drying, impregna-
tion with Araldite 2020 epoxy resin under vacuum, sawing, and grinding of the sediment
(Brauer et al., 1999b; Lotter and Lemcke, 1999). To warrant continuity of observation
successive thin sections with an overlap of 2 cm were analyzed.15

Geochemical measurements were undertaken with a micro-X-ray fluorescence (µ-
XRF) spectrometer EAGLE III XL at different resolutions (step sizes: 50, 100, 200,
500 µm) for Al, Ca, Cl, Fe, K, Mg, Mn, P, S, Si, Sr, and Ti (60 s count time, 0 kV X-ray
voltage and 400 µA X-ray current). Measurements were carried out on sediment blocks
that had been impregnated with Araldite 2020 epoxy resin.20

Time series analyses were carried out on the thickness measurements of the light
and dark layers. Multi-taper spectral analysis (MTM) was used for spectral estima-
tion (bandwidth parameter p= 5, and 9 tapers) (e.g. Vautard et al., 1992). The MTM
represents an optimal method for producing spectral estimates with high frequency
resolution for given degrees of freedom, low bias, and a distribution amenable to the25

location of confidence levels (Mann and Lees, 1996). In addition, wavelet analysis was
applied to identify occurrence intervals and related amplitudes of periodic components
of the non-stationary sub-layer thickness time series (Torrence and Compo, 1998).
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3 Results and discussion

3.1 Structure of varves and depositional processes

The finely laminated sediments from Dethlingen comprise biogenic varves consisting
of two discrete layers, a light and a dark one. The transition from the light layers to
the overlaying dark layers is diffuse, whereas the boundary between the dark and the5

following light layer is sharp (Fig. 2a–c).
The composition and thickness of the light layers are predominantly controlled

by the annual cycle of diatom blooms, which is dominated by taxa of the genera
Stephanodiscus, Ulnaria, and Aulacoseira. In most cases, the light layers are dom-
inated by one of these genera, resulting in an almost monospecific diatomaceous10

layer. However, a successive deposition of two sub-layers of different genera during
the growing season can be also observed. The light layers often contain organic matter
that increases in abundance towards the boundary with the dark layers. Small-sized
(<10 µm) pyrite framboids are often present (Fig. 2d) and occasionally few angular-
shaped grains, ranging in size from coarse silt to fine sand, are scattered within the15

light layers (Fig. 2f).
The dark layers are composed predominantly of amorphous organic matter with frag-

ments of diatom frustules. Reworked periphytic diatoms, plant remains, freshwater
sponge spicules from the littoral zone, and chrysophycean cysts are common (Figs. 2e,
3a–b). The dark layers often contain low concentrations of clay particles, in contrast to20

the light layers where fine-grained minerogenic particles are almost absent.
The succession and characteristics of the individual varve layers as described above

suggest that the diatomaceous light layers were deposited during spring and summer,
whereas the organic-detrital dark layers were formed during autumn and winter (e.g.
O’Sullivan, 1983; Lotter, 1989; Brauer, 2004). In particular, water circulation and high25

nutrient availability in spring and summer promote diatom blooms that lead to the de-
position of diatoms frustules at the lake bottom, forming the light layers. Stratification
of the water column in summer leads to anoxic bottom lake conditions facilitating the
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preservation of varves (e.g. O’Sullivan, 1983; Brauer, 2004). The deposition of diatom
frustules, organic matter and other material from the littoral zone of the lake suggests
the re-establishment of the lake circulation during the deposition of the dark layers.
The mixing of the water column can be attributed predominantly to an enhancement of
wind and wave activity during autumn and early winter; in addition, the low content of5

clay particles in the dark layers points to minor runoff from the catchment area into the
lake during that time. The sharp boundary between the dark and succeeding light layer
suggests a transient break in sediment accumulation, which may be attributed to an ice-
cover of the lake during winter; during that time, single wind-transported coarse silt and
sand grains were trapped in the ice, being deposited within the lake sediments after ice10

melting in spring. These dropstone-like sand grains additionally confirm the seasonal
interpretation of the sub-layers. The above-mentioned characteristics suggest that the
Dethlingen palaeolake was dimictic, being ice-covered and stratified during parts of the
year, and experiencing periods of mixing between these two states (e.g. Lewis, 1983).

3.2 Varve counting and thickness measurements15

In total, 2864 varves were counted between 27.93 and 33.68 mbs. For small-scale
core intervals where varve preservation was poor or sediment had been disturbed
during coring or laboratory processing, interpolations were performed based on the
average thickness of 20 varves deposited directly below and above the respective in-
terval. Based on these procedures, the floating chronology for the laminated diatomite20

at Dethlingen was calculated to comprise 3255 varve yr (Koutsodendris et al., 2011).
The average varve thickness is 1.74 mm (Fig. 4). The thickness of the light layers

varies between 0.05 and 5 mm (average: 0.68 mm), whereas the thickness of the dark
layers varies between 0.08 and 5 mm (average: 1.06 mm) (Fig. 4). A qualitative dis-
tribution of different types of light layers in the examined core interval was established25

based on the dominant diatom genera observed in the thin sections; Type-A is domi-
nated by diatoms of the genera Stephanodiscus with a size >10 µm (Figs. 3c, d), type-B
is dominated by elongated diatoms of the genus Ulnaria (Figs. 3e, f), and type-C mainly
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comprises small-sized diatoms (<10 µm) of the genera Aulacoseira and Stephanodis-
cus (Figs. 3g, h). In general, representatives of type-A are thicker (average: 0.87 mm)
than those of type-C (0.54 mm) and type-B (0.52 mm) (Fig. 4). The distribution of these
light layer types within the studied core interval documents a clear succession in di-
atom assemblages (Fig. 4). The light layers from the lower interval of the laminated5

diatomite (33.68–31.22 mbs) are dominated by large Stephanodiscus species (type-A)
succeeded by Ulnaria species (type-B) in the middle part (31.22–30.20 mbs), whereas
the upper laminated interval (30.20–27.93 mbs) is characterised by a prevalence of
small Stephanodiscus and Aulacoseira species (type-C).

3.3 Time series analyses10

The power spectra of the datasets for the light and dark layers exhibit several peaks
that exceed the 95 % and 99 % confidence levels (Fig. 5). Significant peaks occur at
decadal-scale periods of 90, 25, 15, and 10.5 yr, but also at sub-decadal-scale periods
of 5.8–6.1, 3–5, and 2–3 yr. In addition, the wavelet spectra show a prominent cycle at
∼512 yr for both the light and dark layers (Fig. 6). In the following, we compare these15

signals with solar cycles and spatio-temporal modes of global climate variability, such
as the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and
the Quasi-Biennial Oscillation (QBO), which are well known from analyses of modern
instrumental climate data and the Holocene palaeoclimatic record (e.g. Stuiver and
Braziunas, 1993; Mann and Park, 1996; Hoyt and Schatten, 1997; Wanner et al.,20

2001).

3.3.1 Solar-cyclicity-like variability

Four peaks from the Dethlingen varve time series spectra can be correlated to known
solar cycles (Fig. 5; Table 1). The most prominent, at 90 yr, can be attributed to the
88-yr Gleissberg solar cycle (e.g. Gleissberg, 1944; Stuiver and Braziunas, 1993; Hoyt25

and Schatten, 1997) that has previously been recorded in several glacial (Anderson
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and Koopmans, 1963; Vos et al., 1997; Prasad et al., 2004) and interglacial varve time
series (Anderson and Koopmans, 1963; Vos et al., 1997; Dean et al., 2002; Brauer
et al., 2008). The 25- and 10.5-yr peaks from Dethlingen may correlate to the 22-
yr Hale and 11-yr Schwabe solar cycles, respectively (e.g. Hoyt and Schatten, 1997)
that have also been widely found in Quaternary varve time series of glacial (Anderson,5

1961; Anderson and Koopmans, 1963; Vos et al., 1997; Rittenour et al., 2000) and
interglacial origin (Anderson, 1961, 1992; Anderson and Koopmans, 1963; Zolitschka,
1992; Vos et al., 1997; Livingstone and Hajdas, 2001; Dean et al., 2002; Theissen
et al., 2008). The statistically significant expression of all three prominent decadal-
scale solar cycles makes the Dethlingen varve record unique because most known10

varve records only contain evidence for one or two of these cycles, probably because
of insufficient sensitivity of each individual lake’s sedimentological properties to record
the solar magnetic modulation (e.g. Solanki, 2004; Muscheler et al., 2005) over certain
time periods (e.g. Anderson, 1992).

In addition to these cycles, our record provides evidence for a centennial-scale cycle15

at ∼512 yr, which has been rarely detected in varve time series (Prasad et al., 2004;
Brauer et al., 2008). To date, its origin remains unclear; it is considered to be related
to either solar forcing (Stuiver et al., 1995; Sarnthein et al., 2003) or changes in the
North Atlantic thermohaline circulation (Stuiver and Braziunas, 1993; Chapman and
Shackleton, 2000; Damon and Peristykh, 2000; Risebrobakken et al., 2003).20

Because the solar-like cycles are evidenced in both light and dark layer spectra, we
argue that solar forcing has influenced the lake sedimentation throughout the year. The
light layers at Dethlingen, which represent the primary lake productivity (see Sect. 3.1),
are characterized by peaks of all three decadal-scale solar cycles (i.e., Gleissberg,
Hale, and Schwabe cycles) at the 99 % confidence level (Fig. 5). This suggests a sig-25

nificant solar influence on the biological productivity of the lake, most likely by affecting
water mixing intensity, temperature, and light and UV radiation that exert a strong con-
trol on algal productivity (e.g. Bothwell et al., 1994; Beer et al., 2000; Graham and
Wilcox, 2000). The occurrence of solar-like cyclicity in the dark layers, particularly the
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Gleissberg cycle (Fig. 5), points to solar influence on lake circulation during autumn and
winter, most likely through atmospheric circulation changes that modulated wind and
wave activity (see Sect. 3.1). Possible links between solar irradiance and atmospheric
circulation have been attributed to the solar influence on stratospheric temperature that
may modify zonal winds and storm tracks (e.g. Haigh, 1996; Carslaw et al., 2002).5

Summarizing the above, the time series analysis of the Dethlingen varve record sug-
gests a strong impact of solar cyclicity on the processes responsible for the seasonal
sedimentation by influencing the lake’s primary productivity and the atmospheric circu-
lation over the study area.

3.3.2 Variability within the ENSO/NAO band10

The Dethlingen varve record reveals significant variability at sub-decadal time scales,
with signals exceeding the 95 % or 99 % confidence levels grouped into three distinct
bands, i.e., 2–2.7 yr, 3–5 yr, and 5.8–6.1 yr (Fig. 5; Table 1). Most of the significant
peaks are recorded in the range of 3 to 5 yr within the conventional ENSO bandwidth
(Mann and Park, 1994; D’ Arrigo et al., 2005). Variability within the ENSO bandwidth15

has been reported in lateglacial to recent varve sequences from North and South Amer-
ica (Rittenour et al., 2000; Nederbragt and Thurow, 2005; Fagel et al., 2008), but to
date has not been clearly witnessed in varves from Europe. The ENSO is a natural
mode of oscillation that results from unstable interactions between the tropical Pacific
Ocean and the atmosphere, affecting weather and climate worldwide (e.g. Fedorov20

and Philander, 2000). A teleconnection between the Pacific region and Europe via the
stratosphere allows ENSO to influence European climate in late winter and spring (e.g.
Brönnimann, 2007; Brönnimann et al., 2007; Ineson and Scaife, 2009). The signal in
European climate comprises two modes: during El Niño conditions, when a reduction
of coastal upwelling and an increase in sea-surface temperature along the western25

coast of tropical South America is observed in the equatorial Pacific, the European
continent witnesses very low temperatures in NE Europe, increased precipitation in
the northern Mediterranean region, and decreased precipitation in Norway. Reversed
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conditions are observed in Europe during La Niña conditions, which comprise the op-
posite mode of El Niño in the equatorial Pacific (e.g. Brönnimann, 2007). The cyclicity
observed at Dethlingen is in agreement with modern weather observations from Eu-
rope that suggest an ENSO influence on climate every 3.5 yr (Rodó et al., 1997). The
ENSO-like variability is stronger expressed in the spectrum of the dark layers, pointing5

to a pronounced ENSO impact on winter atmospheric circulation during the Holsteinian
interglacial (Fig. 5).

The Dethlingen varve time series further shows significant variability at the margins
of the ENSO bandwidth between 5.8 and 6.1 and between 2.4 and 2.6 yr (Fig. 5). Al-
though this variability may again represent an ENSO impact on varve formation, mod-10

ern observational data suggest that these signals are better attributed to the NAO. The
NAO, which represents a hemispheric meridional oscillation in atmospheric masses
centered near Iceland and the subtropical Atlantic Ocean, affects European climate
particularly in boreal winter from December through March (e.g. Hurrell, 1995; Visbeck
et al., 2001; Wanner et al., 2001). The NAO is characterized by a positive mode related15

to warmer and wetter than average conditions in north Europe and colder and drier con-
ditions in the Mediterranean region, and a negative mode with reversed characteristics.
The NAO variability occurs at bandwidths of 2.5–3 and 6–10 yr (e.g. Appenzeller et al.,
1998; Hurrell and van Loon, 1997; Pozo-Vásquez et al., 2000). Varve time series from
central and western Europe have also reported significant peaks at 6.1–6.2 yr during20

the Holocene (Livingstone and Hajdas, 2001; O’Sullivan et al., 2002), whereas a sim-
ilar period at 6.6 yr has been recorded on oxygen isotope variations of calcite varves
from the southern Alps during MIS 11 (Mangili et al., 2010). It therefore seems that the
∼6 yr signal documented in European varve sequences represents NAO-like variability
rather than ENSO-like variability because the latter is generally more pronounced in25

the 3–5 yr bandwidth (Mann and Park, 1994). Further evidence for a NAO-like variabil-
ity in the Holsteinian record from Dethlingen is provided by the fact that the ∼6 yr signal
is only evident in the spectrum from the dark layers. It therefore reflects sedimentation
processes during autumn/winter, which is in good agreement with the seasonal impact
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of the NAO on European climate as known from the Recent (e.g. Hurrell, 1995; Vis-
beck et al., 2001; Wanner et al., 2001). The variability between 2 and 2.7 yr may be
attributed to either the NAO or the QBO (Mann and Park, 1996). The QBO is one of the
most commonly recorded circulation patterns in modern data, comprising a variability
of the equatorial stratosphere expressed by an alternation in the downward propaga-5

tion of easterly and westerly wind regimes (e.g. Baldwin et al., 2001). Although such
periodicities commonly occur in varved sequences, these signals should be interpreted
with caution because of their proximity to the 2-yr Nyquist frequency of annual sampling
(e.g. Weedon, 2003).

Finally, the spectrum for the dark layers exhibits a periodicity of 15 yr exceeding10

the 95 % confidence level (Fig. 5). Such a periodicity has been previously noticed in
Central Europe during the Holocene and MIS 11, although its forcing has remained
unclear (Livingstone and Hajdas, 2001; Mangili et al., 2010). We suggest that this 15-
yr cycle may be related to the interdecadal ENSO variability at 15–18 yr (Mann and
Park, 1994). This interpretation is further corroborated by modern observations from15

Iberia that demonstrate the existence of an amplified ENSO signal at 14.2 yr, i.e., after
every four ENSO events (Rodó et al., 1997).

To summarize, the Dethlingen varve time series indicates significant sub-decadal cli-
mate variability in European climate during MIS 11, which may be attributed to ENSO-
and NAO-like climate modes. The pronounced signals in the spectrum of the dark20

layers point to a strong influence of the ENSO/NAO-like variability especially on win-
ter climate, possibly through changes in atmospheric circulation that influenced lake
mixing and the duration of ice cover.

3.4 Variability of varve thickness through time

The sub-decadal- and decadal-scale cyclicity as described in Sects. 3.3.1 and 3.3.2 is25

evidenced in most parts of the Dethlingen record (Fig. 6). However, a close inspection
of the wavelet spectra for the light and dark layers reveals distinct intervals where this
cyclicity appears only in one of the two spectra or is discontinuous in both spectra.
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An example for the first case is a 430-yr-long interval between 1320 and 1750 varve
yr (Fig. 6). This interval, hereafter named low-variability interval (LVI), is marked by a
strong sub-decadal and decadal cyclicity in the dark layer spectrum and a very weak
cyclicity in the light layer spectrum. We therefore hypothesize that although the spec-
trum for the dark layers points to an external cyclical forcing influencing the Dethlingen5

palaeolake system, changes in the boundary conditions (e.g., nutrients, water level)
during spring and summer precluded the recording of this forcing in the light layer
spectrum. To test this hypothesis, we take a closer look at the varve microfacies during
the LVI. The onset of the LVI coincides with a major change in the spring-blooming
diatom assemblages accompanied by a thinning of the light layers (Fig. 4). In particu-10

lar, the diatoms dominating the light layers change from Stephanodiscus (>10 µm) to
Ulnaria species, the latter requiring a higher Si:P ratio and higher temperatures (e.g.
Kilham et al., 1986; Cox, 1993). Therefore it appears likely that the compositional
change in diatom assemblages during this interval is triggered by modifications in at-
mospheric circulation patterns. Specifically, atmospheric changes may have caused15

a weakening of the spring circulation, thereby decreasing the phosphorus transport
from the hypolimnion to the photic zone to the benefit of diatoms that require high
Si:P ratio to grow and increasing surface-water temperature. As a result, the boundary
conditions of the Dethlingen palaeolake were seasonally modified, precluding the light
layers to record external forcing. The sedimentation processes became susceptible to20

the recording of external forcing again when the lake system returned to conditions that
supported a stronger blooming of Stephanodiscus species (Fig. 4).

A good example of the second case, i.e., when the spectra of both the light and
dark layers do not show variability, is the interval between 2564 and 2782 varve yr
(29.15 to 28.73 mbs; Fig. 7) that coincides with the prominent OHO event (e.g. Müller,25

1974; Kukla, 2003; Koutsodendris et al., 2010). Across the OHO, the wavelet spectra
of both the light and dark layers do not show any statistically significant indication for
the 11-yr Schwabe cycle; moreover, there is a strong weakening of the 22- and 88-yr
solar cycles (Fig. 7). In addition, the ENSO/NAO-like sub-decadal variability almost
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ceases with the onset of the OHO and only recovers again after the end of the event
(Fig. 7). Following a similar concept as for the LVI, the absence of short-term variability
during the OHO may be explained by seasonal changes in the boundary conditions of
the Dethlingen palaeolake. In particular, the composition of the light layers shifts from
Ulnaria-dominated to Stephanodiscus-dominated layers with the onset of the OHO,5

suggesting changes in lake productivity (Fig. 4). However, the observations from thin
sections do not support a scenario of seasonal changes in the dark layers. On top of
that, µ-XRF data for the onset of the OHO (29.16 to 29.05 mbs) do not yield evidence
for modifications in the geochemical signal to support changes in the sedimentation
processes during autumn/winter (Fig. 8). In particular, the intensities of minerogenic-10

detrital indicator elements (such as Al, Ca, K, Ti) and the Si/Al ratio remain rather
constant, suggesting no significant change in terrestrial input. In addition, the constant
Fe/Mn ratio does not support any oxygenation changes at the bottom of the lake. We
therefore suggest that the absence of cyclical signals in the varves during the OHO
points to a weakening of the external forcing. If correct, this implies that both the15

solar activity and ENSO/NAO-like variability were strongly weakened during this period.
It has been suggested that the triggering mechanism of the OHO may be similar to
the 8.2 ka BP event, with a cooling caused by a transient slowdown in North Atlantic
circulation leading to a turnover in central European vegetation (Koutsodendris et al.,
2010, 2011). Based on the Dethlingen time series analysis, it also appears possible20

that this climate oscillation is further related to lower solar irradiation. This may also
have modified sub-decadal climate variability, as it has been suggested for prominent
climate oscillations of the present interglacial, i.e., the 8.2 ka event (e.g. Muscheler et
al., 2004; Rohling and Pälike, 2005) and the Little Ice Age (e.g. Shindell et al., 2001).

The two cases of discontinuous short-term climate variability in certain intervals as25

evidenced in the Dethlingen varve record highlight the need to apply time series analy-
sis to the seasonal layers thickness measurements. When indications of short-term
cyclicities are absent in certain intervals of one of the seasonal layer spectra, but
present in the same intervals of the other seasonal spectra, the processes involved
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in varve formation were obviously susceptible to record agents of external forcing only
under specific boundary conditions. In contrast, when the cyclic signals are absent
from all seasonal spectra, the external climate forcing controlling varve formation was
altogether weakened and/or ceased completely.

4 Conclusions5

Microfacies and time series analyses from an annually laminated sedimentary archive
of the Holsteinian interglacial (MIS 11) yields a strong signal of natural cyclicity at
decadal and sub-decadal time scales. The decadal-scale cyclicity is attributed to
solar forcing that may have influenced the sedimentation of the light varve layers
(spring/summer) by driving changes in the productivity of the palaeolake. The sub-10

decadal-scale cyclicity is attributed to ENSO and NAO climate modes, predominantly
influencing the dark layer formation (autumn/winter) through changes in atmospheric
circulation that affected lake mixing. Our analyses clearly demonstrate that in order to
interpret the signals of varve time series analysis and to correlate them with temporal
modifications of the external climate forcing, it is essential to (a) understand the sed-15

imentological processes controlling varve formation and to (b) compare the results of
individually analyzed seasonal layer-thickness datasets.

The solar- and ENSO/NAO-like natural cyclicity during MIS 11 as recorded in the
∼3200-yr-long varve time series from Dethlingen is closely comparable with the central
European climate variability of the present interglacial. This suggests that the short-20

term climate cyclicity during the two interglacials is controlled by similar forcing. Taking
this observation a step further, we suggest that MIS 11, besides the well-established
long-term astronomical analogy, may be regarded as a good analogue for the Holocene
with regard to short-term (sub-decadal- to decadal-) timescales. As a result, under-
standing the short-term climate variability during MIS 11 may potentially contribute to25

simulate future climate evolution of the present interglacial.
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Table 1. Summary of significant spectral peaks of light and dark layer time series of the Deth-
lingen varves and their possible forcing mechanisms.

Period (yr) Light layers Dark layers Forcing
spectra spectra

512 95 % 95 % Solar or ocean circulation
90 99 % 99 % Solar (88-yr Gleissberg cycle)
25 99 % 95 % Solar (22-yr Hale cycle)
15 – 95 % ENSO
10.5 99 % – Solar (11-yr Schwabe cycle)
5.8–6.1 – 99 % NAO
3–5 mainly 95 % mainly 99 % ENSO
2–2.7 99 % mainly 95 % NAO/(QBO)
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Dethlingen

Fig. 1. Map indicating the location of the Dethlingen palaeolake.
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Fig. 2. Thin-section and scanning electron microscope photographs of varves from the Dethlin-
gen core: Light and dark layers (A) under parallel-polarized light and (B) under cross-polarized
light; (C) diffuse and sharp boundaries between successive dark and light layers; (D) pyrite
framboids; (E) sponge spicule; (F) wind-transported fine sand grain.
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Fig. 3. Thin-section and scanning electron microscope photographs of different varve layers
from Dethlingen: (A, B) dark layer; (C, D) light layer type A; (E, F) light layer type B; (G, H) light
layer type C.
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Fig. 4. Varve thickness measurements of dark layers and different types of light layers. Po-
sitions of the Older Holsteinian Oscillation (OHO) and the Low Variability Interval (LVI) are
indicated.
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Fig. 5. Power spectra of the light and dark layer thickness measurements. The red line indicates
the median red noise; the dashed and solid black lines indicate the 95 % and 99 % confidence
levels, respectively. El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and
Quasi-Biennial Oscillation (QBO) bandwidths are after Mann and Park (1996).
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Fig. 6. Wavelet power spectra of the light and dark layer thickness measurements. Wavelet
amplitudes are colour coded from red (high power) to blue (low power). Contoured areas ex-
ceed the 95 % confidence levels for a red noise background spectrum. Hatched areas indicate
the cone of influence where wavelet analysis is affected by edge effects. Dashed lines mark the
solar-like periodicities. White cones indicate intervals with no varve-thickness data. Positions
of the Older Holsteinian Oscillation (OHO) and the Low Variability Interval (LVI) are indicated
(see Sect. 3.4).
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Fig. 8. Geochemical results of µ-XRF (step size: 50 µm) spanning the onset of the OHO in the
Dethlingen core.
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