
On Continuous Time Trading of a

Small Investor in a Limit Order Market

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich 12, Informatik und Mathematik

der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von

Maximilian Stroh

geboren in Gießen

Frankfurt 2011

(D30)



vom Fachbereich 12, Informatik und Mathematik der

Johann Wolfgang Goethe-Universität als Dissertation angenommen.

Dekan:

Prof. Dr. Tobias Weth

Gutachter:

Prof. Dr. Christoph Kühn

Johann Wolfgang Goethe-Universität Frankfurt

Prof. Dr. Johannes Muhle-Karbe

Eidgenössische Technische Hochschule Zürich

Prof. Dr. Götz Kersting

Johann Wolfgang Goethe-Universität Frankfurt

Datum der Disputation:

17.02.2012



to my lovely parents





Abstract

We provide a mathematical framework to model continuous time trading in limit order markets

of a small investor whose transactions have no impact on order book dynamics. The investor

can continuously place market and limit orders. A market order is executed immediately at the

best currently available price, whereas a limit order is stored until it is executed at its limit price

or canceled. The limit orders can be chosen from a continuum of limit prices.

In this framework we show how elementary strategies (hold limit orders with only finitely

many different limit prices and rebalance at most finitely often) can be extended in a suitable

way to general continuous time strategies containing orders with infinitely many different limit

prices. The general limit buy order strategies are predictable processes with values in the set of

nonincreasing demand functions (not necessarily left- or right-continuous in the price variable).

It turns out that this family of strategies is closed and any element can be approximated by a

sequence of elementary strategies.

Furthermore, we study Merton’s portfolio optimization problem in a specific instance of

this framework. Assuming that the risky asset evolves according to a geometric Brownian

motion, a proportional bid-ask spread, and Poisson execution times for the limit orders of the

small investor, we show that the optimal strategy consists in using market orders to keep the

proportion of wealth invested in the risky asset within certain boundaries, similar to the result

for proportional transaction costs, while within these boundaries limit orders are used to profit

from the bid-ask spread.
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Chapter 1

Introduction

The main objective of this thesis is to introduce a mathematical framework of trading in a limit

order market, when the investor is small. In a limit order market an investor can use e.g. a

market buy order to immediately buy the desired amount of shares at the best-ask price (or at

an average price higher than the best-ask price if the order is large enough to eat into the order

book). Alternatively, he can use a limit buy order to specify the limit price which he is willing

to pay per share and wait until another market participant matches his order. The trading of

a small investor does not change the dynamics of the order book, i.e. his trading opportunities

are exogenously given.

This assumption of a small investor is prevalent in many models in mathematical finance,

the most prominent example being the model of Black and Scholes [BS73], where the trading

opportunities of the investor in risky assets are modeled by a geometric Brownian motion,

which is not influenced by whatever amounts the investor buys or sells. Furthermore, the well-

established mathematical theory of trading in a market with proportional transaction costs (see

e.g. Kabanov [Kab99], Kabanov, Rásonyi, and Stricker [KRS02], and Schachermayer [Sch04] for

earlier works or Kabanov and Safarian [KS09a] for a comprehensive account) also assumes that

the best-bid and the best-ask price processes are exogenously given.

In the research on limit order markets this is not necessarily the case. On the contrary, one

reason to study limit order markets in the first place is as a means to understand the price

impact of a large trader whose orders eat into the book. This is done for example in Obizhaeva

and Wang [OW05], Alfonsi and Schied [AS10], Alfonsi, Fruth, and Schied [AFS10] and Predoiu,

Shaikhet, and Shreve [PSS11] to name a few recent articles. This line of research goes into the

direction of large trader models such as Bank and Baum [BB04].
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Introduction

Other stochastic models of order book dynamics are not focused on larger traders per se, still

the dynamics of the whole order book is typically considered (such as Luckock [Luc03], Cont,

Stoikov, and Talreja [CST10], or Höschler [Hös11]). Of course to model the whole dynamics in a

completely general way, without restrictions to make the model tractable, would be a gargantuan

task. Therefore, more or less concrete assumptions about the underlying order flow have to be

made.

If we now come back to our intention to develop a framework for the trading in a limit

order book of a small investor, a first important assumption along the lines of the Black-Scholes

model or the proportional transaction costs theory is that the orders of the small investor will

never eat into the order book or even change the state of the order book in any other way.

The intricate details of the order book are only relevant to the small investor inasmuch as they

translate into the dynamics of the best-bid and the best-ask price processes and insofar as they

trigger any executions of his limit orders. There are articles about a small investor trading in

a limit order market, e.g. Guilbaud and Pham [PG11], but they do not focus on developing a

general framework but rather start with a more specific model and then solve an optimization

problem for example.

Another observation, already made by Šmid [Šmi07], is that under certain circumstances

a limit order can be replaced by a market order. If a small investor e.g. places a limit buy

order with limit price pB lower than the current best-ask price and afterwards the best-ask price

process S hits [0,pB] at some stopping time TS , then of course the limit buy order should be

executed. But unless this happens due to a jump of S below pB, the investor can just use a

market order to buy at the same price immediately after TS as long as the best-bid and best-ask

price processes are assumed to be right-continuous.

In Chapter 2 we use the ideas described in the previous two paragraphs to construct a

mathematical framework to model continuous time trading in limit order markets of a small

investor. The exogenously given trading opportunities are described by a quadruple consisting

of the best-bid and best-ask price processes S and S as well as two integer-valued random

measures µ and ν which describe which limit orders are executed at what time. To lead to a

sensible model, the integer-valued random measures will have to satisfy certain properties to be

in line with the best-bid and the best-ask price processes but cannot be derived from them.

The investor can continuously place market and limit orders. A market order is executed

immediately at the best currently available price, whereas a limit order is stored until it is

2



executed at its limit price or canceled. The limit orders can be chosen from a continuum of limit

prices.

We show how elementary strategies (“hold limit orders with only finitely many different

limit prices and rebalance at most finitely often”) can be extended in a suitable way to general

continuous time strategies containing orders with infinitely many different limit prices. The

general limit buy order strategies are predictable processes with values in the set of nonincreasing

demand functions (not necessarily left- or right-continuous in the price variable). It turns out

that the family of strategies is closed and any element can be approximated by a sequence of

elementary strategies.

In Chapter 3 we deal with a specific instance of the framework introduced in Chapter 2 to

study a portfolio optimization problem in a limit order market. We assume that the best-bid

price follows a geometric Brownian motion and that the bid-ask spread is proportional to the

size of the best-bid price. Furthermore, we assume that the times at which limit buy orders and

limit sell orders of the small investor are executed can be described by two independent Poisson

processes with constant rates.

Merton [Mer69, Mer71] solved a portfolio problem for a continuous time frictionless market

consisting of one risky asset and one riskless asset. For the proportional transaction costs model,

the problem was first studied by Magill and Constantinides [MC76]. They were able to gain

important insights into the structure of the solution using stochastic control theory, but had

to rely on heuristic arguments to some extend. Later on, Davis and Norman [DN90] were able

to solve the problem in a rigorous way. Shreve and Soner [SS94] further extended the results

of Davis and Norman by applying the theory of viscosity solutions to Hamilton-Jacobi-Bellman

equations to the problem.

While the aforementioned articles all rely on stochastic control theory, recently Kallsen and

Muhle-Karbe [KMK10] have successfully applied martingale methods to solve this portfolio

problem under proportional transaction costs. This approach has been introduced in a seminal

article of Jouini and Kallal [JK95]. They were able to show that the question whether a market

with proportional transaction costs is arbitrage free or not can be answered by determining

whether a related fictitious frictionless market is arbitrage free. The price process in this fictitious

frictionless market is called a shadow price and evolves within the bid-ask spread of the original

market with proportional transaction costs.

Building on the ideas developed in [KMK10] we show that the optimal strategy in the limit
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order market described above consists in using market orders only to keep the proportion of

wealth invested in the risky asset within certain boundaries, similar to the result for proportional

transaction costs, while within these boundaries limit orders are used to profit from the bid-

ask spread. Although the given best-bid and best-ask price processes are geometric Brownian

motions, the resulting shadow price process possesses jumps.

In Chapter 4 we discuss the extension of the elementary stochastic Itô-integral w.r.t. an

optional semimartingale. The paths of an optional semimartingale possess limits from the left

and from the right, but may have double jumps. We find a mathematically tractable domain of

general integrands. The simple integrands are embedded into this domain. Then, we characterize

the integral as the unique continuous and linear extension of the elementary integral and show

closedness of the set of integrals. Thus, our integral possesses desirable properties to model

dynamic trading gains in mathematical finance when security price processes follow optional

semimartingales.

A brief overview

Let us recapitulate the contents of this thesis.

Chapter 2 is basically a more detailed version of the preprint Kühn and Stroh [KS11]. We

introduce a mathematical framework to model continuous time trading in a limit order market

of a small investor. The framework can be seen as an extension to the well-known proportional

transaction costs model. We show that the family of general strategies is closed and any element

can be approximated by a sequence of elementary strategies.

Chapter 3 is based on the article Kühn and Stroh [KS10]. We study Merton’s portfolio

optimization problem in a specific instance of the framework introduced in Chapter 2. By

means of a shadow price approach, we show that the optimal strategy consists in using market

orders to keep the proportion of wealth invested in the risky asset within certain boundaries,

while within these boundaries limit orders are used to profit from the bid-ask spread.

Chapter 4 stems from the note Kühn and Stroh [KS09b]. We discuss the extension of the

elementary stochastic Itô-integral w.r.t. an optional semimartingale and find a mathematically

tractable domain of general integrands. The integral is characterized as the unique continuous

and linear extension of the elementary integral. Furthermore closedness of the set of integrals

is shown.

The reader is advised that as a general rule any item introduced in a chapter is only valid
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in the particular chapter it is introduced in.

5





Chapter 2

Continuous time trading of a small

investor in a limit order market

2.1 Introduction

In today’s electronic markets the predominant market structure is the limit order market (or

continuous double auction) where traders can continuously place market and limit orders. By

the enormous increase of trading speed and a reduction of immediate order execution costs, there

is a huge demand for sophisticated mathematical models of high-frequency trading that take the

precise price formation mechanism into account and allow for the computation of optimal trading

strategies. This chapter provides a mathematical background to model self-financing continuous

time portfolio processes for a “small” trader in a limit oder market with a continuum of limit

prices. Under the assumption that the order sizes of the investor are small compared to the

orders in the book, trading solely with market orders corresponds to models with proportional

transaction costs. These models and their arbitrage theory are very well developed and we can

apply some of these results. However, the modeling of limit order execution is more complex.

The trader can submit limit orders at different prices and orders may be stored in the order

book waiting for execution.

The aim of this chapter is not to explain the evolution of the order book or the transaction

price as e.g. in the models by Cont, Stoikov, and Talreja [CST10], Cvitanić and Kirilenko [CK10],

Osterrieder [Ost07], Luckock [Luc03], and Roşu [Roş09]. We rather model the trading opportu-

nities of one investor given the order book dynamics. In contrast to Alfonsi and Schied [AS10]

and Predoiu, Shaikhet, and Shreve [PSS11] among others who consider the price impact of
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Continuous time trading of a small investor in a limit order market

market orders and the order book resilience, we assume that the trader under consideration is

small. Models with both market and limit orders have already been considered in Guilbaud

and Pham [PG11] and Kühn and Stroh [KS10] among others. But, in these models only spe-

cial limit order prices are permitted, especially the current best-bid price or one tick above it

(for buy orders) and the best-ask price or one tick below it (for sell orders). As the best-bid

and the best-ask may move continuously in time, [PG11] and [KS10] call for a verification in a

more general framework that these strategies can be approximated by strategies with piecewise

constant limit prices (see Example 2.38).

More importantly, in our model orders with arbitrary limit prices can be placed in the book.

Thus, the model can e.g. be used to analyze the trade-off between the risks and the rewards

connected with the placement of limit orders with different limit prices. In a time interval

during which the fundamental value exhibits only minor fluctuations, it is quite profitable to

place limit orders with limit prices close to the best-bid and the best-ask price to profit from

the trades of liquidity driven investors. But should a sudden change of the fundamental value of

the financial instrument occur, this would lead to quite unfavorable trades. By placing a limit

buy order for example, the trader takes a similar risk as the issuer of a short-term put option

on the fundamental value. To see this, assume that the small trader placed a limit buy order

with a limit price slightly below the current best-bid price and a new information about the

fundamental value appears suddenly. If the information is positive, the price goes up and the

limit buy order is not executed. If the information is negative, the limit buy order is executed

at its limit price and the new bid-ask-spread may be far below this price. Depending on the

stochastic model, both limit prices near and far below the best-bid price may be a good choice.

Market makers are faced with the same risk. To avoid this risk there are so-called immediate-

or-cancel orders. They must be executed completely or partially once they come onto the market.

Those portions which cannot be executed are deleted immediately. Similarly, a good-for-day

order is automatically canceled at the end of the day if it is not yet executed. In a recent paper

Cvitanić and Kirilenko [CK10] show that a high frequency “machine trader” makes positive

expected profits by using immediate-or-cancel orders for “sniping” out human orders.

In addition, we allow for the placement of limit orders in the inner of the spread which are

executed with a higher probability.

The chapter is organized as follows. In Subsection 2.1.1 we provide a motivation of the order

execution mechanism behind our model. For the convenience of the reader we briefly introduce
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random measures in Section 2.2. They are needed to introduce the model formally, which is done

in Section 2.3. The main results, Theorem 2.17 and Theorem 2.22, are presented in Section 2.4.

Their proofs can be found in Section 2.5 and Section 2.6. In Section 2.7 some examples are

given. In particular, we show how a sequence of limit orders can turn into a market order when

passing to the limit. The chapter ends with a conclusion in Section 2.8 and an appendix in

Section 2.9.

Note that this chapter corresponds to the preprint [KS11].

2.1.1 A motivation of the execution mechanism

The basic assumption is that the investor is small. Only trades of other market participants,

called exogenous orders in what follows, change the state of the order book, whereas the impact

of the orders of the small investor is neglected. Being small also implies that there are no partial

executions of his limit orders. A single limit order of the small investor with limit price L is

either completely executed or not.

One building block of the model are the exogenous best-bid and best-ask price processes (not

including the orders placed by the small trader). They are modeled by the càdlàg stochastic

processes S and S with S < S. Market buy orders are immediately executed at S and market

sell orders at S. Let t be the point in time at which the exogenous order arrives. Since S and

S are càdlàg, St and St are interpreted as the prices immediately after the order execution (or

cancelation) at time t and St− and St− are the prices immediately before this event. Let us

discuss some typical “events” driven by the actions of the other (exogenous) market participants

to get an idea of what our model should cover.

(i) Market buy order arrives: The best-bid price is certainly unchanged, but the best-ask

price may or may not jump upwards, depending on whether the market buy order eats

into the book or not, i.e. St = St− and St ≥ St−. In addition, all limit sell orders of the

small investor with limit price smaller (or equal) some x with x ∈ [St,St] are executed.

(ii) Market sell order arrives: The best-ask price is certainly unchanged, but the best-bid price

may or may not jump downwards, depending on whether the market sell order eats into

the book or not, i.e. St = St− and St ≤ St−. In addition, all limit buy orders of the small

investor with limit price higher (or equal) some x with x ∈ [St,St] are executed.

(iii) Limit buy order with limit price L arrives:

9



Continuous time trading of a small investor in a limit order market

(a) L≤ St−. Nothing changes, i.e. St = St− and St = St−.

(b) St− < L < St−. The best-bid price increases to L, while the best-ask price does not

change, i.e. St = L and St = St−. In addition, all limit sell orders of the small trader

with limit price smaller or equal L are executed. Note that S is the best-ask price

without the small trader’s orders.

(c) L≥ St−. The same impact as in (i).

(iv) Limit sell order with limit price L arrives:

(a) L≥ St−. Nothing changes, i.e. St = St− and St = St−.

(b) St− < L < St−. The best-ask price decreases to L, while the best-bid price does not

change, i.e. St =L and St = St−. In addition, all limit buy orders of the small trader

with limit price higher or equal L are executed.

(c) L≤ St−. The same impact as in (ii).

(v) Limit buy order is canceled: The best-ask price does not change, but depending on whether

the canceled limit order is the only one at the best-bid price, the best-bid price may move

downwards, i.e. St = St− and St ≤ St−.

(vi) Limit sell order is canceled: The best-bid price does not change, but depending on whether

the canceled limit order is the only one at the best-ask price, the best-ask price may move

upwards, i.e. St = St− and St ≥ St−.

It is important to note that the execution mechanism is not determined solely from the

best-bid price and the best-ask price processes. Namely, a downward jump of the best-bid price

from St− to St may or may not execute a limit buy order of the small investor with limit price

St < L < St−. This depends whether the downward jump is triggered by a large exogenous

market sell order eating into the book (as in (ii)) or by a cancelation of a limit buy order in the

book (as in (v)). Therefore, we introduce two integer-valued random measures that model the

execution of the limit orders of the small investor explicitly. They have to be in line with the

processes S and S, but they cannot be derived from them. This is in contrast to the model of

Smid [Šmi07], where limit buy (sell) orders are only executed when the best-ask (bid) process

hits the limit price. In the model considered in Osterrieder [Ost07] the execution of limit orders

is triggered by an exogenous transaction price process.
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Notation

2.2 Notation

Let (Ω,F ,(Ft)t∈[0,T ],P ) be a filtered probability space satisfying the usual conditions. Denote

by O (resp. by P) the optional σ-algebra (resp. the predictable σ-algebra) on Ω× [0,T ] and

remember that P ⊂O ⊂F ⊗B([0,T ]).

Most of the following definitions are from Chapter XI in [HWY92]. As they are the building

blocks for our model, we quote them here rather completely for the convenience of the reader.

In the following let R+ = [0,∞), R+ = [0,∞], and R = [−∞,∞].

Definition 2.1. Define

(Ω̃, F̃) := (Ω× [0,T ]×R+,F ⊗B([0,T ])⊗B(R+)) ,

Õ := O⊗B(R+), P̃ := P⊗B(R+).

We call Õ the optional σ-field in Ω̃ and P̃ the predictable σ-field in Ω̃.

Note that P̃ ⊂ Õ ⊂ F̃ follows from P ⊂O ⊂F ⊗B([0,T ]).

Definition 2.2. An extended real function µ : Ω×B([0,T ])⊗B(R+)→ R+ is called a random

measure if

(i) µ(ω, ·) is a σ-finite measure on B([0,T ])⊗B(R+) for all ω ∈ Ω and

(ii) µ(·, B̂) is a random variable on (Ω,F) for all B̂ ∈ B([0,T ])⊗B(R+).

Definition 2.3. For any B̃ ∈ F̃ define

Mµ(B̃) := E

[∫
[0,T ]×R+

1
B̃

(t,x)µ(dt,dx)
]

=
∫

Ω

∫
[0,T ]×R+

1
B̃

(ω,t,x)µ(ω,dt,dx)P (dω).

Note that Mµ is a measure on F̃ . It is called the measure generated by µ. µ is said to be

integrable ifMµ is a finite measure, i.e. Mµ(Ω̃)<∞. µ is said to be optionally (resp. predictably)

σ-integrable, if the restriction of Mµ on Õ (resp. P̃) is a σ-finite measure.

Definition 2.4. For every F̃/B(R)-measurable function H denote by M the set of ω such that

∫
[0,T ]×R+

|H(ω,s,x)|µ(ω,ds,dx)<∞.

11



Continuous time trading of a small investor in a limit order market

We define the integral

∫
[0,t]×R+

H(ω,s,x)µ(ω,ds,dx) :=


∫

[0,t]×R+
H(ω,s,x)µ(ω,ds,dx) ω ∈M,

∞ ω ∈M c,

∀(ω,t) ∈ Ω× [0,T ],

and call such an H µ-integrable if P (M) = 1.

A random measure µ is said to be optional (resp. predictable), if for any Õ-measurable, µ-

integrable function H (resp. P̃-measurable, µ-integrable function H),
∫

[0,·]×R+
Hdµ is an optional

(resp. predictable) process.

Definition 2.5. A random measure µ is called an integer-valued random measure if

(i) µ takes only values in N0∪{∞},

(ii) µ(ω,{t}×R+)≤ 1 for all ω ∈ Ω, t≥ 0,

(iii) µ is optional and optionally σ-integrable.

Definition and Proposition 2.6. Let (X,G) be a measurable space and let f : X → R be a

G/B(R)-measurable function. Then the following subsets of X×R are G⊗B(R)-measurable:

supergraph(f) := {(x,y) ∈X×R : f(x)< y},

subgraph(f) := {(x,y) ∈X×R : f(x)> y},

graph(f) := {(x,y) ∈X×R : f(x) = y}.

Proof. This is well known and easy to prove. For example

{(x,y) ∈X×R : f(x)< y}=
⋃

q∈Q∪{−∞}∪{∞}
{x ∈X : f(x)≤ q}× (q,∞].

The result holds essentially because Q is dense in R, compare Theorem 4.45 in [AB06].

2.3 Model of a small investor trading in a limit order market

Let S and S be two adapted càdlàg processes with values in R+ s.t. 0< infs∈[0,T ]Ss(ω)≤St(ω)<

St(ω) for all (ω,t) ∈Ω× [0,T ]. One may interpret S as the best-bid price and S as the best-ask

price without the orders of the small investor. The condition that 0 < infs∈[0,T ]Ss(ω) has to

hold tells us that there is always at least one exogenous limit buy order in the order book (by

12
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the càdlàg assumption we also have sups∈[0,T ]Ss(ω)<∞, i.e. there is also always one exogenous

limit sell order in the order book).

Let µ,ν be two integer-valued random measures. The random measure µ models when and

up to which price the limit buy orders of the small trader are executed. The random measure

ν models when and up to which price the limit sell orders of the small trader are executed. Let

the following assumption hold for the rest of this chapter.

Assumption 2.7. (i) For all (ω,t,x) ∈ Ω̃ it holds that

µ
(
ω,{t}×{x}

)
= 1 ⇒ St(ω)≤ x≤ St(ω),

ν
(
ω,{t}×{x}

)
= 1 ⇒ St(ω)≤ x≤ St(ω).

(ii) For all (ω,t) ∈ Ω× [0,T ] it holds that

∆St(ω)< 0 ⇒ ∃x ∈ [St(ω),St(ω)] with µ
(
ω,{t}×{x}

)
= 1,

∆St(ω)> 0 ⇒ ∃x ∈ [St(ω),St(ω)] with ν
(
ω,{t}×{x}

)
= 1.

(iii) For all ω ∈ Ω we have that

µ
(
ω,{(t,x) ∈ [0,T ]×R+ : x < St(ω)}

)
< ∞,

ν
(
ω,{(t,x) ∈ [0,T ]×R+ : x > St(ω)}

)
< ∞.

(iv) For all ω ∈ Ω we have that

µ
(
ω,{t}×{St(ω)}

)
= 1 ⇒ ∆St(ω)< 0,

ν
(
ω,{t}×{St(ω)}

)
= 1 ⇒ ∆St(ω)> 0.

(v) There does not exist a pair (ω,t) ∈ Ω× [0,T ] with

µ
(
ω,{t}× [0,St(ω))

)
= 1 and ν

(
ω,{t}× (St(ω),∞]

)
= 1.

(vi) For all ω ∈ Ω we have that

µ(ω,{0}×R+) = ν(ω,{0}×R+) = 0.

Remark 2.8. For any càdlàg processes S and S with S < S there exist random measures µ and

ν satisfying Assumption 2.7.

13
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Let us discuss Assumption 2.7. (i) and (ii) are justified by the considerations in Subsec-

tion 2.1.1. As St stands for the highest remaining exogenous limit buy order in the book, clearly

no limit buy order of the small investor with a limit price strictly below St can be executed at

time t. Similarly, it would not make sense that a limit buy order of the small investor with a limit

price strictly higher than St persists, because St denotes the lowest limit price of outstanding

exogenous limit sell orders. The first part of Assumption 2.7 (ii) means that a downward jump

of the best-ask entails that at least all limit buy orders of the small investor with limit prices

larger or equal the best-ask after the jump are executed.

Assumption 2.7 (iii) says that there are only finitely many executions of limit orders of the

small investor up to time T leading to a better trade than using market orders. This assumption

is made as in reasonable models with continual execution of limit orders (at favorable prices)

the small investor could make risk-less gains by placing simultaneously a limit buy order near to

S and a limit sell order near to S. Note however that there can be countably many executions

of limit buy orders by (small) downward jumps of S (this is the reason why we do not restrict

to finite random measures). These executions do not lead to arbitrage as the buyer has to pay

at least the new best-ask price which is the price he has to pay when using a market order (cf.

also (iv)). Condition (v) is needed to exclude simultaneous limit buy and sell order executions

at similar prices which could cancel each other out and thus they would possibly not enter in the

portfolio process. Assumption 2.7 (vi) is made w.l.o.g. and only to keep the notation simpler.

In this regard it is similar to Assumption 2.2. in [CS06] and could be discarded by starting the

model at time −1 and demanding that on [−1,0) the filtration as well as the best-bid and the

best-ask price are constant (compare Remark 4.2 in [CS06]).

Now we define the set of general continuous time strategies and the self-financing condition

for the small trader. Later on, we embed real-world trading strategies into this strategy set

which can be implemented by finitely many operations.

Definition 2.9. Denote by LB the family of P̃/B(R+)-measurable functions LB : Ω̃→R+, which

satisfy

(i) x 7→ LB(ω,t,x) is monotonically decreasing, for all (ω,t) ∈ Ω× [0,T ],

(ii) LB(ω,t,x) = 0 for all (ω,t) ∈ Ω× [0,T ] and x≥ St−(ω),

(iii) LB is µ-integrable.

Similarly, let LS be the family of P̃/B(R+)-measurable functions LS : Ω̃→R+, which satisfy

14
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(iv) x 7→ LS(ω,t,x) is monotonically increasing, for all (ω,t) ∈ Ω× [0,T ],

(v) LS(ω,t,x) = 0 for all (ω,t) ∈ Ω× [0,T ] and x≤ St−(ω),

(vi) LS is ν-integrable.

LB(ω,t,x) is the sum of outstanding limit buy orders of the small investor with limit price

x or higher, which could possibly be executed at time t. The orders are placed (resp. updated)

with the information Ft−, i.e. in general without the knowledge of the order flow at time t. This

reflects the fact that a limit order has to be in the book in advance before it can be executed by

a market order. Condition (i) is self-explanatory. A limit buy order of the small trader placed

at S− or above would be executed immediately at S, hence such an order would in effect be a

market order. Thus, condition (ii) separates limit from market orders and is no restriction, see

Subsection 2.4.1 for the relation to real-world trading strategies.

Definition 2.10. LetMB,MS be real-valued predictable increasing processes withMB
0 =MS

0 = 0

and let LB ∈LB and let LS ∈LS. We call a quadruple S= (MB,MS ,LB,LS) a trading strategy.

At several places in this chapter we have to define integrals w.r.t. processes of finite variation

which are neither left- nor right-continuous. Let X be a process of finite variation. It follows

that X is làglàd, i.e. it possesses left and right limits, but it can have double jumps. Let ∆Xt :=

Xt−Xt− denote the jump at time t and let ∆+Xt := Xt+−Xt denote the jump immediately

after time t. For a càdlàg integrand Y we define the integral (Y−,Y ) •X by

(Y−,Y ) •Xt := (Y− •Xr)t+
∑

0≤s<t
Ys∆+Xs, t≥ 0, (2.1)

where Xr
t :=Xt−

∑
0≤s<t∆+Xs. The first term on the right-hand side of (2.1) is just a standard

Lebesgue-Stieltjes integral. As the notation indicates, the left jumps of X are weighted with

Y− and the right jumps with Y . If Y is continuous we use the shorter notation Y •X for the

integral defined in (2.1). Note that the notations are consistent with the common integral w.r.t.

càdlàg integrators.

Definition 2.11. For a given initial endowment (η0,η1) ∈ R2 we define the (self-financing)

portfolio process
(
ϕ0(S),ϕ1(S)

)
associated with the trading strategy S by

ϕ0
t (S) := η0−

∫ t

0
(Ss−,Ss)dMB

s +
∫ t

0
(Ss−,Ss)dMS

s

+
∫

[0,t)×R+

∫ ∞
x

yLB(s,dy)µ(ds,dx) +
∫

[0,t)×R+

∫ x

0
yLS(s,dy)ν(ds,dx),

ϕ1
t (S) := η1 +MB

t −MS
t +

∫
[0,t)×R+

LB(s,x)µ(ds,dx)−
∫

[0,t)×R+
LS(s,x)ν(ds,dx).
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For L ∈ {LB,LS}, the integral
∫
yL(s,dy) is defined by

∫ b

a
yL(s,dy) :=

∫
(a,b)

yLc(s,dy) +
∑

a<y≤b
y∆−L(s,y) +

∑
a≤y<b

y∆+L(s,y),

where Lc denotes the continuous part and ∆−L(s,y) resp. ∆+L(s,y) the jumps of the func-

tion y 7→ L(s,y).

Definition 2.12. For any constant a> 0 a trading strategy S is called admissible with threshold

a if its associated portfolio process
(
ϕ0(S),ϕ1(S)

)
satisfies

ϕ0(S) +a+S
(
ϕ1(S) +a

)
1{ϕ1(S)+a≥0}+S

(
ϕ1(S) +a

)
1{ϕ1(S)+a<0} ≥ 0. (2.2)

This can be interpreted that given strategy S, if at all times we have a additional units of

cash and a additional shares in our portfolio, then we are always able to close our position in

the stock using market orders without going into debt. Note that if a strategy is admissible with

threshold a as defined above, then its portfolio process is also admissible with threshold a in the

sense of Campi and Schachermayer [CS06]. We will make use of this later on, when we prove

the closedness result. Note however, that a portfolio process in our model does not have to be

self-financing in the sense of [CS06], because the changes in the portfolio process generated by

limit order executions clearly do not have to be self-financing in a proportional transaction costs

model.

Before we present the main results, let us mention the following representations for the

integer-valued random measures µ and ν, which we will use repeatedly.

Remark 2.13. The integer-valued random measures µ and ν can be written as

µ(dt,dx) =
∞∑
i=1

δ(τi,Yi)(dt,dx),

where δx denotes the Dirac measure on x, (τi)i∈N is a sequence of stopping times with disjoint

graphs, and Yi are Fτi-measurable random variables, and

ν(dt,dx) =
∞∑
i=1

δ(σi,Zi)(dt,dx),

where (σi)i∈N is a sequence of stopping times with disjoint graphs and Zi are Fσi-measurable

random variables (this is a consequence of Theorem 11.13 in [HWY92]).
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2.4 Main results

In this section we are going to present the main results of this chapter, Theorem 2.17 and

Theorem 2.22, which in a way justify the model described in the previous section. We start by

looking at what happens when the small investor places a single limit buy order.

2.4.1 Approximation of general strategies

Elementary or real-world trading strategies are trading strategies that can be implemented by

finitely many operations. Executed real-world limit orders are not automatically renewed and

in addition, the best-ask (bid) price can pass continuously through the limit price of a buy (sell)

order placed by the small trader. This entails an execution as no buy (sell) order with limit price

higher (smaller) than the best-ask (bid) can persist in the book. This “continuous execution”

cannot be triggered by the σ-finite random measures µ and ν and has to be modeled separately.

Suppose at a stopping time TB1 we place a limit buy order L̂B := (θB,pB,TB1 ,TB2 ) of size

θB ∈ L0
+(FTB1 ) and limit price pB ∈ L0

+(FTB1 ) with pB <STB1
and if the order is not executed up

to stopping time TB2 ≥ TB1 we cancel it. Define the stopping times

TS := inf{t ∈ (TB1 ,TB2 ] : St ≤ pB},

Tµ := inf{τi ∈ (τj)j∈N : TB1 < τi ≤ TB2 ,Yi ≤ pB},

T ∗ := TS ∧Tµ.

T ∗ models the time at which the limit buy order is executed. If at all, the trade takes place at

price pB. The portfolio process of the limit buy order L̂B is defined as

ϕ0
t (L̂B) := −θBpB1]]T ∗,T ]](t), (2.3)

ϕ1
t (L̂B) := θB1]]T ∗,T ]](t).

In the following, we show that any real-world trading strategy can be replicated by a general

strategy S = (MB,ML,LB,LS) satisfying LB = 0 on [S−,∞) and LS = 0 on (−∞,S−]. Thus,

on the level of general strategies the limit buy (sell) order is taken out before the best-ask (bid)

passes and a “continuous execution” does not appear.

Assumption 2.14. For all (ω,t) ∈ Ω× [0,T ] we have that

µ(ω,{t}×{St−(ω)}) = 1 =⇒ ∆St(ω)≤ 0,

ν(ω,{t}×{St−(ω)}) = 1 =⇒ ∆St(ω)≥ 0.

17
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Proposition 2.15. The quadruple S = (MB,0,LB,0) with

MB
t (ω) := θB(ω)1]]T ∗,T ]](ω,t)1{TS<Tµ}(ω), (2.4)

LB(ω,t,x) := θB(ω)1]]TB1 ,T ∗∧TB2 ]](ω,t)
(
1{x≤pB(ω),St−(ω)>pB(ω)}+ 1{x<pB(ω),St−(ω)=pB(ω)}

)
is a trading strategy in the sense of Definition 2.10. Under Assumption 2.14 it leads to the

portfolio process given in (2.3).

Proof. The result follows from plugging the elements of trading strategy given in (2.4) into

the equations of the portfolio process, given in Definition 2.11, and comparing the result with

(2.3). As this is elementary, but somewhat tedious due to the various indicator functions in the

definition, we leave it to the reader to go through each possible case.

The intuition behind the embedding (2.4) is to separate the execution of the limit buy order

triggered by S hitting the limit price pB at no jump time (i.e. TS < Tµ) from all other possible

executions of the limit buy order (including the case that S jumps into [0,pB]) and treat this

“continuous execution” by market buy orders at the same price instead of limit orders, whereas

all the other executions of limit buy orders are modeled by LB and µ. A limit buy order

which is triggered by S hitting pB at no jump time is superfluous. The asset can be purchased

instead by a market order placed at the hitting time paying also the best-ask price. Note

that Assumption 2.7 (ii) also plays an important role in this argument, as it implies that all

“noncontinuous executions” of the limit buy order due to the best-ask price S are covered

by µ. By these considerations, we gain much in tractability as we do not have to deal with

the “continuous executions” of the limit orders. The analysis of real-world limit sell orders is

completely analog and thus omitted.

Due to the observation made in Proposition 2.15, the real-world limit buy order L̂B can be

identified with the trading strategy S from (2.4). This leads to the following definition.

Definition 2.16 (Real-world strategies). A trading strategy S is called a real-world buying

strategy, if it can be written as a finite conical combination of trading strategies of the form

(MB,1,0,LB,0), where the pair (MB,1,LB) is defined in (2.4), and trading strategies of the form

(MB,2,0,0,0), where MB,2 = θ11]]T1,T2]] + θ21[[T3]], where T1,T2 are [0,T ]-valued stopping times,

T3 is a [0,T ]-valued predictable stopping time, and θ1 ∈ L0
+(FT1), θ2 ∈ L0

+(FT3). A real-world

selling strategy is defined correspondingly. A trading strategy S is called a real-world trading

strategy if it can be written as the sum of a real-world buying strategy and a real-world selling

strategy.
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For F ⊗B([0,T ])-measurable real-valued processes X and Y let

dup(X,Y ) := E
(
1∧ supt∈[0,T ] |Xt−Yt|

)
.

dup metricizes the convergence “uniformly in probability”, cf. e.g. Section II.4 in [Pro04].

Theorem 2.17 (Approximation by real-world trading strategies). For any ε> 0 and any trading

strategy S there exists a real-world trading strategy Sε s.t.

dup
(
ϕ0(Sε),ϕ0(S)

)
< ε and dup

(
ϕ1(Sε),ϕ1(S)

)
< ε.

In other words, the portfolio processes that can be generated by real-world trading strategies are

dense w.r.t. the convergence „uniformly in probability” in the set of all portfolio processes.

Theorem 2.17 has two different aspects. It shows that we can approximate the portfolio pro-

cess resulting from strategies with possibly infinitely many limit prices and continuously varying

order sizes by placing only finitely many orders. This is of the same flavor as the fact that (under

certain assumptions) the stochastic integral of a predictable process can be approximated by the

stochastic integrals of simple predictable processes. But furthermore Theorem 2.17 also vindi-

cates the slightly counterintuitive limit order execution mechanism of our model, which somehow

“ignores continuous execution” of limit orders, because it implies that if Assumption 2.14 holds

then any portfolio process of a trading strategy in our model can be approximated arbitrarily

close by the completely intuitive portfolio process given in (2.3), which does include “continuous

execution”.

2.4.2 Closedness of the strategy set

The possibility of approximating the portfolio processes in our model with real-world trading

strategies alone would not make the model particularly useful, if the set of trading strategies

would not be closed in some sense. To proceed towards the closedness result, let us first recall

the concept of a strictly consistent price process.

Definition 2.18. An adapted (0,∞)-valued process S̃ = (S̃t)t∈[0,T ] is called a strictly consistent

price process for the risky asset if there exists a probability measure P̃ ∼ P s.t. S̃ is a càdlàg

P̃ -martingale with

S̃t ∈ (St,St), ∀t ∈ [0,T ] and S̃t− ∈ (St−,St−), ∀t ∈ (0,T ], P -a.s..
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It is important to note that the existence of such an S̃ as given in Definition 2.18 is equivalent

to the existence of a strictly consistent price process in the sense of Definition 2.3 in Campi

and Schachermayer [CS06], since we are going to use a result from this article in the proof of

Theorem 2.22 (see the proof of Lemma 2.31).

We have made the assumption that µ is an integer-valued random measure, hence Mµ is a

σ-finite measure on Õ. Consequently, there exists a pairwise disjoint sequence (An)n∈N ⊂O s.t.

0<Mµ(An)<∞ and
⋃
n∈NAn = Ω̃, which can be used to construct a probability measure M̌µ

equivalent to Mµ. For any A ∈ F let

M̌µ(A) :=
∑
n∈N

Mµ(A∩An)
2nMµ(An) .

Let M̌ν be defined similarly.

Definition 2.19. Define the measures M̂µ and M̂ν on F ⊗B([0,T ]) by

M̂µ(A) := M̌µ(A×R+), A ∈ F ⊗B([0,T ]),

M̂ν(A) := M̌ν(A×R+), A ∈ F ⊗B([0,T ]).

Definition 2.20. Define the following sets of stochastic processes

P1 := {X is a [0,∞]-valued predictable process with P (Xτi ≤ Yi) = 1 ∀i ∈ N} ,

P2 := {X is a [0,∞]-valued predictable process with P (Xσi ≥ Zi) = 1 ∀i ∈ N} ,

where (τi,Yi)i∈N and (σi,Zi)i∈N are the representations of µ resp. ν from Remark 2.13. Let

X be the essential supremum of the functions in P1 taken w.r.t. the predictable σ-algebra on

Ω× [0,T ] and the measure M̂µ from Definition 2.19. Accordingly, let X be the essential infimum

of the functions in P2 taken w.r.t. the predictable σ-algebra and the measure M̂ν defined as in

Definition 2.19.

Assumption 2.21.

P (Xτi = Yi) = 0 and P (Xσi = Zi) = 0 ∀i ∈ N.

X resp. X can be interpreted as the highest (resp. smallest) predictable limit price below

(above) which a limit buy (resp. sell) order is not executed for sure. Assumption 2.21 says that

at these boundary limit prices execution is also not possible.
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Theorem 2.22 (Closedness of the strategy set). Let Assumption 2.21 be satisfied and suppose

that there exists a strictly consistent price process for the risky asset in the sense of Defini-

tion 2.18. In addition, assume that S and S are semimartingales. Let (Sn)n∈N be an admis-

sible sequence of trading strategies with the same threshold level a and the same initial endow-

ment (η0,η1) for all n. If the sequence of associated portfolio processes
((
ϕ0(Sn),ϕ1(Sn)

))
n∈N

is a Cauchy sequence w.r.t. the convergence “uniformly in probability”, then there exists

an admissible trading strategy S with threshold level a and initial endowment (η0,η1) s.t.((
ϕ0(Sn),ϕ1(Sn)

))
n∈N

converges uniformly in probability to the associated portfolio process(
ϕ0(S),ϕ1(S)

)
of S.

Before we begin to prove Theorem 2.17 and Theorem 2.22, let us first discuss why Assump-

tion 2.21 is made.

Example 2.23. Let S ≡ 100 and S ≡ 101, i.e. the best-bid price and the best-ask price

are constant. Furthermore, let X be a random variable with values in R+ with distribution

0.5δ100 + 0.5λ[100,101], where δ100 denotes a Dirac measure and λ denotes the uniform distri-

bution. Consider the usual augmentation of the filtration generated by the stochastic process

X1[t0,T ], with t0 ∈ (0,T ). Define µ := δ(t0,X) and let ν be without any mass, i.e. at time t0
limit buy orders with a limit price of X or higher are executed, whereas no limit sell orders are

executed at all. The initial endowment is supposed to be one unit of cash and no shares, i.e.

(η0,n,η1,n) = (1,0). Now consider the sequence of strategies (LB,n,LS,n,MB,n,MS,n)n∈N with

LS,n ≡ 0 and MB,n ≡ 0 for all n and define (the deterministic)

LB,n(ω,t,x) :=


n if x≤ 100 +e−n,

− ln(x−100) if 100 +e−n < x < 101,

0 if x≥ 101,

∀(ω,t) ∈ Ω× [0,T ],n ∈ N.

Basically, for LB,n we restrict the function − ln(x− 100) at level n. In Figure 2.1 the part

of the graph of LB,n at which this restriction is effective is colored, whereas the graph is black

where LB,n is equal to − ln(x−100). We abbreviate LB,n(ω,t,x) to LB,n(x), in what follows. Let

MS,n
t := n1{X=100}1(t0,T ], which is clearly predictable. Thus, the n-th strategy consists in buying

LB,n(X) shares via limit order and selling the same amount via market order iff X = 100. Let

us have a look at what happens to (ϕ0,n
t ,ϕ1,n

t ) as n goes to infinity. The only time of interest is
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Figure 2.1: Illustration of the limit buy orders LB,n in Example 2.23.

of course the instant from t0 to t0+. We can write the change in the cash position as follows

∆+ϕ0,n
t0 =

∫ 101

X
xLB,n(dx) + 100n1{X=100}

=
∫ 101

X∨(100+e−n)

−x
x−100dx+ 100n1{X=100}

= [−x−100ln(x−100)]101
X∨(100+e−n) + 100n1{X=100}

= −101 +X ∨ (100 +e−n) + 100ln(X ∨ (100 +e−n)−100) + 100n1{X=100}.

It is straightforward to check that each trading strategy (ϕ0,n,ϕ1,n) is admissible with threshold

0. Furthermore, uniformly in probability

lim
n→∞

(ϕ0,n,ϕ1,n)

= (1,0)1[0,t0] +
((
X−101 + 100ln(X−100),− ln(X−100)

)
1{X>100}+ (0,0)1{X=100}

)
1(t0,T ]

=: (ψ0,ψ1).

(ψ0,ψ1) even satisfies inequality (2.2), i.e. it would be admissible with threshold 0, if it were a

portfolio process. The problem here is to find a limit trading strategy S s.t.
(
ϕ0(S),ϕ1(S)

)
=

(ψ0,ψ1). On the one hand to buy the correct amount of shares at the right prices on {X > 100},

LB(t0, ·) would have to be of the form − ln(x−100)1{100<x≤101} on the event {X > 100}, which

implies LB(t0,100) =∞ by the monotonicity requirement (i) in Definition 2.9. On the other hand
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LB has to be µ-integrable, i.e. on the event {X > 100}c it must not be the case that LB(t0,100) =

∞. This is impossible to achieve with a predictable LB. Indeed, for any P̃-measurable LB the

stochastic process LB(·, ·,100) is predictable and thus LB(t0,100) has to be an Ft0−-measurable

random variable. But in our example we have by construction only Ft0− = σ(N ), where N

denotes all P -null sets. So clearly the value of LB(t0,100) cannot depend on {X > 100}, as this

is not a null set.

2.5 Proof of Theorem 2.17: Approximation of general strategies

Step 1: Let S = (MB,MS ,LB,LS). By linearity of the portfolio process
(
ϕ0(S),ϕ1(S)

)
in S,

it is sufficient to approximate (MB,0,0,0),(0,MS ,0,0),(0,0,LB,0), and (0,0,0,LS) separately.

The assertion for (MB,0,0,0) and (0,MS ,0,0) holds by Theorem A.10 in Denis, Guasoni, and

Rásonyi [DGR11]. Note that for denseness w.r.t. dup it is not necessary that S and S are

locally bounded as any càdlàg process is prelocally bounded. It remains to prove the assertion

for (0,0,LB,0). The proof for (0,0,0,LS) is analog.

Step 2: S = (0,0,L,0). Note that to keep the notation shorter, in the rest of this section we

write L instead of LB. The only exception pertains to Lemma 2.29, which is also used outside

of this section.

Definition 2.24. Denote by (xk)k∈N a sequence running through Q+. We define the finite

measures M̃µ and M̃ν on F̃ . For any A ∈ F̃ let

M̃µ(A) := 1
2M̌µ(Ω̃)

(
M̌µ(A) +M̂µ⊗

∞∑
k=1

2−kδxk (A∩ supergraph(X))
)
,

M̃ν(A) := 1
2M̌ν(Ω̃)

(
M̌ν(A) +M̂ν⊗

∞∑
k=1

2−kδxk
(
A∩ subgraph(X)

))
.

Note that by construction it holds that M̌µ � M̃µ and because of Mµ ∼ M̌µ we also have

Mµ� M̃µ. The previous definition will be used repeatedly throughout the rest of this chapter.

A key property of M̃µ is that when a sequence of functions (LB,n)n∈N ⊂LB converges M̃µ-a.e. to

a function LB ∈ LB the integrals containing LB,n found in the cash component of the portfolio

process converge as well. The exact formulation of this property is given in Lemma 2.29.

In the following for any δ > 0 denote by Sδ the canonical simple predictable process con-

structed on page 57 in [Pro04] that satisfies

P ( sup
t∈[0,T ]

|Sδt −St−|> δ)< δ.
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In addition, denote by τ δ the first time that Sδ departs farther than δ from S−, i.e.

τ δ := inf{t > 0 : |Sδt −St−|> δ},

and note that at time τ δ the processes are still not more than δ apart as they are both left-

continuous.

Definition 2.25 (δ-cut off). For any δ > 0 and L in LB let us denote by Lδ the function defined

by

Lδ(ω,t,x) := L(ω,t,x)1{x≤Sδt (ω)−3δ}1[[0,τδ∧T ]](ω,t).

Lemma 2.26. For any δ > 0, we have that Lδ ∈ LB. Furthermore, there exists a se-

quence (δi)i∈N ⊂ R+ \{0} with δi→ 0 for i→∞ s.t. (Lδi)i∈N converges M̃µ-a.e. to L.

Proof. As Sδ and 1[[0,τδ]] are predictable, Lδ is P̃-measurable. Integrability follows immediately

from Lδ ≤ L and the other requirements for Lδ being in LB are also obviously satisfied.

Put δi := 2−i. By the lemma of Borel-Cantelli the events {supt∈[0,T ] |S
2−i
t −St−|> 2−i}, i=

1,2, . . . occur only finitely often on a set N c with P (N c) = 1. Thus, for any ω ∈ N c there

exists an i0(ω) s.t. |S2−i
t (ω)−St−(ω)| ≤ 2−i for all i≥ i0(ω), t ∈ [0,T ] and hence τ2−i(ω) =∞.

Consequently, for all ω ∈N c, t ∈ [0,T ], and x < St−(ω) we have that

1
{x≤S2−i

t (ω)−3·2−i}
1[[0,τ2−i∧T ]](ω,t) = 1 and thus L2−i(ω,t,x) = L(ω,t,x)

for i ≥ i0(ω)∨
(
1− log2(1/4)− log2(St−(ω)−x)

)
. For ω ∈ N c, t ∈ [0,T ], and x ≥ St−(ω) we

obtain

1
{x≤S2−i

t (ω)−3·2−i}
= 0 for i≥ i0(ω).

By assumption L ∈ LB and thus L(ω,t,x) = 0 if x ≥ St−(ω). Therefore, L2−i converges to L

pointwise on N c× [0,T ]×R+ and thus M̃µ-a.e.

We proceed by discretizing Lδ in the price variable. Fix any m ∈ N and divide (0,m]

into dyadic intervals ((l − 1)2−m, l2−m] for l = 1, . . . ,m2m. Now we want to approximate

x 7→ Lδ(ω,t,x) by a left-continuous step function Lδ,m, which is constant between two points

of the dyadic grid. For each interval we check if there exists a point x in this interval s.t.

Lδ(ω,t,x−)>Lδ(ω,t,x+). If this is the case, we fix the price x∗l,m(ω,t) for which this “jump” is

the largest and let our function take the value of Lδ(ω,t,x∗l,m(ω,t)) for the whole interval. When

the largest jump is attained at different prices (which can only be finitely many), we take the
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smallest of these prices. If there is no “jump”, we just set x∗l,m(ω,t) = (l− 1)2−m, i.e. for the

interval we take the value of Lδ at the left boundary. It is advisable to have a look at Figure 2.2

to grasp the basic idea of the definitions below which are complicated by technical problems. In

particular, the formal definition has to ensure that Lδ,m(ω,t,x) is only infinite if Lδ(ω,t,x) is

infinite. For any δ > 0, m ∈ N, and l ∈ {1, . . . ,m2m} we define

Amount

Price

general strategy

price discretization

Figure 2.2: Illustration how Lδ is approximated by Lδ,m.

x∗l,m(ω,t) :=



min
{
argmaxx∈((l−1)2−m,l2−m]

(
Lδ(ω,t,x−)−Lδ(ω,t,x+)

)}
if Lδ(ω,t,(l−1)2−m)<∞ and supx

(
Lδ(ω,t,x−)−Lδ(ω,t,x+)

)
> 0,

(l−1)2−m

if Lδ(ω,t,(l−1)2−m)<∞ and supx
(
Lδ(ω,t,x−)−Lδ(ω,t,x+)

)
= 0,

inf{x ∈ R+ : Lδ(ω,t,x)<∞}

if Lδ(ω,t,(l−1)2−m) =∞ and Lδ(ω,t, l2−m)<∞,

(l−1)2−m

if Lδ(ω,t,(l−1)2−m) =∞ and Lδ(ω,t, l2−m) =∞.
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Definition 2.27 (1/m-price discretization). Let δ > 0 and m ∈N. For any l ∈ {1, . . . ,m2m} we

define

Lδ,m(ω,t,x) :=
m2m∑
l=1

θδ,l,mt (ω)1{(l−1)2−m<x≤l2−m}+Lδ(ω,t,0)1{x=0},

where

θδ,l,mt (ω) :=


Lδ(ω,t,x∗l,m(ω,t)), if Lδ(ω,t,x∗l,m(ω,t))<∞,

Lδ(ω,t, l2−m), otherwise.

Lemma 2.28. For any δ > 0 and m≥ [− log2(δ)] + 1 =:m0, we have that Lδ,m ∈ LB. Further-

more, supm∈{m0,m0+1,...}L
δ,m is µ-integrable and (Lδ,m)m∈{m0,m0+1,...} converges to Lδ M̃µ-a.e..

Note that [x] denotes the largest natural number smaller or equal to x, i.e. [x] := max{k ∈

N0 : k ≤ x}.

Proof. Step 1: By Lemma 2.26, Lδ is P⊗B(R+)-measurable. In addition, we observe that for all

l= 1, . . . ,m2m the process (ω,t) 7→ x∗l,m(ω,t) is predictable. This is the case because the location

of the largest jump Lδ(ω,t,x−)−Lδ(ω,t,x+) for x∈ ((l−1)2m, l2m] can be expressed by suprema

and pointwise limits of distances between elements of {(ω,t) 7→Lδ(ω,t,q) : q ∈Q+} (the detailed

proof which makes use of the monotonicity of x 7→ Lδ(ω,t,x) is straightforward but somewhat

tedious and left to the reader). Consequently, (ω,t) 7→ Lδ(ω,t,x∗l,m(ω,t)) is a composition of

the P/(P ⊗B(R+))-measurable function (ω,t) 7→ (ω,t,x∗l,m(ω,t)) and the (P ⊗B(R+))/B(R+)-

measurable function (ω,t,x) 7→ Lδ(ω,t,x) and thus P/B(R+)-measurable, i.e. predictable.

The monotonicity of Lδ,m follows immediately from the monotonicity of x 7→ Lδ(ω,t,x).

Moreover, by construction of Lδ,m, the largest x for which Lδ,m(ω,t,x) > 0 holds, can only

exceed the largest x for which Lδ(ω,t,x)> 0 holds by at most 2−m. Thus, we have that

Lδ,m = 0 on {(ω,t,x) ∈ Ω̃ : x > St−(ω)− δ} ∀m≥m0. (2.5)

Consequently, part (ii) of Definition 2.9 is satisfied.

Step 2: Let us now show that supm∈{m0,m0+1,...}L
δ,m is µ-integrable. Let (ω,t,x) ∈ Ω̃ such

that Lδ(ω,t,x)<∞.

Case 1: Lδ(x,t,x−) <∞, i.e. there exists ε > 0 s.t. Lδ(x,t,x− ε) <∞. We have that

x∗lm,m(ω,t)≥ x−ε for all m up to finitely many (where lm satisfy (lm−1)2−m < x≤ lm2−m). In

addition, we have that Lδ,m(ω,t,x)<∞ for any m ∈ N.

Case 2: Lδ(x,t,x−) =∞. Then, x∗lm,m(ω,t) = x for all m ∈ N.
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Thus, in both cases we arrive at

sup
m∈{m0,m0+1,...}

Lδ,m(ω,t,x)<∞. (2.6)

Together this implies that (2.6) holds Mµ-a.e. as {Lδ =∞} is a Mµ-null set. In addition, we

have that µ(ω, [0,T ]× (St−(ω)−δ,∞))<∞ (Assumption 2.7(iii) combined with the fact that S

is càdlàg). Due to (2.5), this already implies that supm∈{m0,m0+1,...}L
δ,m <∞ is µ-integrable.

Step 3: Let us now deal with the convergence part of the Lemma. Fix a (ω,t,x) with

Lδ(ω,t,x)<∞.

Case 1: Lδ(ω,t,x−) = Lδ(ω,t,x+)<∞.

For any ε > 0 there exists a constant cε(ω,t,x) > 0 s.t. for all y ∈ (x− cε,x+ cε) it holds

that |Lδ(ω,t,y)−Lδ(ω,t,x)| < ε. Thus, for all m large enough s.t. ((lm− 1)2−m, lm2−m] ⊂

(x− cε,x+ cε) we have that |Lδ,m(ω,t,x)−Lδ(ω,t,x)|< ε.

Case 2: Lδ(ω,t,x−)> Lδ(ω,t,x+).

Clearly, this implies x∗lm,m(ω,t) = x for all m large enough, thus Lδ(ω,t,x) = Lδ,m(ω,t,x)

holds for all m large enough.

The case differentiation above yields the convergence for all (ω,t,x) s.t. Lδ(ω,t,x) <∞. It

remains to show that {(ω,t,x) ∈ Ω× [0,T ]×R+ : Lδ(ω,t,x) =∞} is a M̃µ-null set. It is clear

that the set is a Mµ-null set as Lδ is µ-integrable. However, we still have to verify that for all

q ∈Q+ (
M̂µ⊗ δq

)(
{Lδ =∞}∩ supergraph(X)

)
= 0,

i.e. M̂µ(Aq) = 0, where Aq := {(ω,t) ∈ Ω× [0,T ] :X(ω,t)< q and Lδ(ω,t,q) =∞}.

Assume that M̂µ(Aq)> 0. Then the predictable process X̃t(ω) := q1Aq(ω,t)+Xt(ω)1Acq(ω,t)

is not another version (besides X) of the essential supremum introduced in Definition 2.20.

Consequently, there exists an i ∈ N with

P
(
{ω ∈ Ω : Yi(ω)< q and (ω,τi(ω)) ∈Aq}

)
= P

(
Yi < X̃τi

)
> 0,

which would imply by the monotonicity of y 7→ Lδ(ω,t,y) that P
(
{ω ∈ Ω : Lδ(ω,τi(ω),Yi(ω)

)
=

∞})> 0. But this is a contradiction to the µ-integrability of Lδ.

Let us recapitulate what we have achieved so far. In the previous two definitions and ap-

pendant lemmas, we have first approximated L by Lδ and then Lδ by Lδ,m. In each case, we

have shown that for δ→ 0 resp. m→∞ these approximations “work M̃µ-a.e.”. By the following
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lemma as well as Proposition 2.42 this implies that if we choose δ small enough and then m large

enough, we can approximate the portfolio process of S = (0,0,L,0) by the portfolio process of

Sδ,m = (0,0,Lδ,m,0) arbitrarily well w.r.t. to dup.

Lemma 2.29. Let (LB,n)n∈N ⊂ LB and LB ∈ LB. Furthermore, assume that (LB,n)n∈N con-

verges M̃µ-a.e. towards LB and that supn∈NLB,n is µ-integrable. Then for n→∞∫
[0,·)×R+

∫ ∞
x

yLB,n(s,dy)µ(ds,dx)→
∫

[0,·)×R+

∫ ∞
x

yLB(s,dy)µ(ds,dx),

uniformly in probability.

Similarly, let (LS,n)n∈N ⊂ LS and LS ∈ LS. Furthermore, assume that (LS,n)n∈N converges

M̃ν-a.e. towards LS and that supn∈NLS,n is ν-integrable. Then for n→∞∫
[0,·)×R+

∫ x

0
yLS,n(s,dy)ν(ds,dx)→

∫
[0,·)×R+

∫ x

0
yLS(s,dy)ν(ds,dx),

uniformly in probability.

Note that the convergence has to hold M̃µ-a.e.. It is not sufficient to assume convergence

only Mµ-a.e..

Proof. We only prove the first part of the lemma, because the proof of the second part is

completely analog. Let Ñ be a M̃µ-null set s.t. (LB,n)n∈N converges pointwise towards LB on

Ñ c.

Step 1: Let us show that

Hn(ω,t,x) :=
∫ ∞
x

yLB,n(ω,t,dy) =
∫ St−(ω)

x
yLB,n(ω,t,dy)

converges pointwise to

H(ω,t,x) :=
∫ ∞
x

yLB(ω,t,dy) =
∫ St−(ω)

x
yLB(ω,t,dy)

for all (ω,t,x) ∈N c, where

N := Ñ ∪ subgraph(X)∪
⋃
q∈Q+

{(ω,t,x) ∈ Ω̃ : (ω,t,q) ∈ Ñ ∩ supergraph(X)}

∪{LB =∞}.

Fix any (ω,t,x) ∈ N c. For any ε > 0 choose K ∈ N and y1 < .. . < yK in Q+ s.t. x =: y0 < y1,

yK ≥ St−(ω) and yi− yi−1 < ε for all i ∈ {1, . . . ,K}. As (ω,t,x) 6∈ subgraph(X), and yi > x for
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i ≥ 1, we have that (ω,t,yi) ∈ supergraph(X) for i ≥ 1. Thus, for all i ∈ {0,1, . . . ,K} we get

LB,n(ω,t,yi)→ LB(ω,t,yi) as n→∞. For any L̃B ∈ LB we have that
K∑
i=1

yi−1
(
L̃B(ω,t,yi)− L̃B(ω,t,yi−1)

)
≥

∫ St−(ω)

x
yL̃B(ω,t,dy)

=
∫ yK

y0
yL̃B(ω,t,dy)

≥
K∑
i=1

yi
(
L̃B(ω,t,yi)− L̃B(ω,t,yi−1)

)
(Note that y 7→ L̃B(ω,t,y) is decreasing). By LB,n(ω,t,yi)→ LB(ω,t,yi) for all i = 0, . . . ,K as

n→∞ this implies

liminf
n→∞

∫ St−(ω)

x
yLB,n(ω,t,dy)

≥
K∑
i=1

yi
(
LB(ω,t,yi)−LB(ω,t,yi−1)

)

≥
K∑
i=1

(yi−1 +ε)
(
LB(ω,t,yi)−LB(ω,t,yi−1)

)

≥ −εLB(ω,t,y0) +
K∑
i=1

yi−1
(
LB(ω,t,yi)−LB(ω,t,yi−1)

)

≥ −εLB(ω,t,y0) +
K∑
i=1

∫ yi

yi−1
yLB(ω,t,dy)

= −εLB(ω,t,x) +
∫ St−(ω)

x
yLB(ω,t,dy).

Since ε can be chosen arbitrarily small and LB(ω,t,x)<∞ by construction of N this yields

liminf
n→∞

Hn(ω,t,x)≥H(ω,t,x).

Analogously, we obtain that limsupn→∞Hn(ω,t,x)≤H(ω,t,x) and thus

Hn(ω,t,x)→H(ω,t,x) ∀(ω,t,x) ∈N c.

Step 2: Let us show that Mµ(N) = 0. By M̃µ(Ñ) = 0, we have that Mµ(Ñ) = 0 and

M̂µ({(ω,t) ∈ Ω× [0,T ] : ∃q ∈ Q+ s.t. (ω,t,q) ∈ (Ñ ∩ supergraph(X)) = 0. In addition, we use

Mµ(subgraph(X)) = 0, Mµ

(
{supn∈NLB,n =∞}

)
= 0, and Mµ

(
{LB =∞}

)
= 0 to arrive at

Mµ(N) ≤ Mµ(Ñ) +Mµ(subgraph(X))

+Mµ({(ω,t,x) ∈ Ω̃ : ∃q ∈Q+ s.t. (ω,t,q) ∈ Ñ ∩ supergraph(X)})

+Mµ

(
{LB =∞}

)
= 0 + 0 + 0 + 0 = 0.
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Now note that Mµ-a.e. we have

0≥Hn(ω,t,x) =
∫ St−(ω)

x
yLB,n(ω,t,dy)≥− sup

t∈[0,T ]
St−(ω)sup

n∈N
LB,n(ω,t,x)>−∞,

i.e. (Hn)n∈N is dominated by supt∈[0,T ]St− supn∈NLB,n, which is clearly µ-integrable since

supn∈NLB,n is µ-integrable by assumption. Thus, an application of Proposition 2.42 completes

the proof.

So far, we have already shown that Lδ,m is a good approximation of L w.r.t. the portfolio

processes. The problem with Lδ,m is, that while it is already discrete in the price variable, this

is not the case for the time variable. Hence, it is not clear how to approximate the portfolio

process of the trading strategy (0,0,Lδ,m,0) with the portfolio process of a real-world trading

strategy. The following theorem tackles this problem. It tells us that we can approximate Lδ,m,

and thus also L, by a function L̂ which is discrete not only in the price variable, but also in the

time variable. Furthermore, it is still equal to zero “to the right of S−−δ” and thus “continuous

execution” is not a problem when we want to approximate L̂ with real-world trading strategies.

Theorem 2.30. For any ε> 0 and any L∈LB there exist Aε ∈F , δ > 0, m∈N, and nonnegative

simple predictable processes ξ̂0, ξ̂1, . . . , ξ̂m2m s.t. P (Aε)≥ 1−ε and

ξ̂l = 0, on {(ω,t) ∈ Ω× [0,T ] : St−(ω)− δ ≤ l2−m}∪Ω×{0}.

Furthermore, for

L̂(ω,t,x) :=
m2m∑
l=0

ξ̂lt(ω)1{x≤l2−m}

we have that L̂ ∈ LB and for every ω ∈Aε

sup
t∈[0,T ]

∣∣∣∣∣
∫

[0,t)×R+
L(ω,s,x)µ(ω,ds,dx)−

∫
[0,t)×R+

L̂(ω,s,x)µ(ω,ds,dx)
∣∣∣∣∣< ε

and

sup
t∈[0,T ]

∣∣∣∣∣
∫

[0,t)×R+

∫ ∞
x

yL(ω,s,dy)µ(ω,ds,dx)−
∫

[0,t)×R+

∫ ∞
x

yL̂(ω,s,dy)µ(ω,ds,dx)
∣∣∣∣∣< ε.

Proof. Step 1: Let ε > 0. By Lemma 2.26, Lemma 2.28, Proposition 2.42, Lemma 2.29, and the

fact that the up-convergence is metrizable, it is possible to choose at first a δ > 0 small enough
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and afterwards an m ∈ N large enough s.t. there exists a set U ∈ F s.t. P (U) ≥ 1− ε
3 and for

all ω ∈ U

sup
t∈[0,T ]

∣∣∣∣∣
∫

[0,t)×R+
L(ω,s,x)µ(ω,ds,dx)−

∫
[0,t)×R+

Lδ,m(ω,s,x)µ(ω,ds,dx)
∣∣∣∣∣< ε

2 and (2.7)

sup
t∈[0,T ]

∣∣∣∣∣
∫

[0,t)×R+

∫ ∞
x

yL(ω,s,dy)µ(ω,ds,dx)−
∫

[0,t)×R+

∫ ∞
x

yLδ,m(ω,s,dy)µ(ω,ds,dx)
∣∣∣∣∣ <

ε

2

holds. Furthermore, if we choose δ at least as small as ε
3 by the definition of Sδ there exists a

set V ∈ F s.t. P (V )≥ 1− ε
3 and for all ω ∈ V

sup
t∈[0,T ]

|Sδt (ω)−St−(ω)| ≤ δ and τ δ(ω) =∞. (2.8)

Finally, m can be chosen large enough s.t. m>− log2(δ).

Step 2: For any δ > 0 we decompose µ into the executions triggered by the jumps of S with

sizes lying in [−δ,0) and the rest. More precisely, let

µ= µ1,δ +µ2,δ (2.9)

with µ1,δ⊥µ2,δ and µ1,δ({t}×{x}) = 1 iff x = St and ∆St ∈ [−δ,0). Note that by (i), (iii), and

(iv) of Assumption 2.7 and as S is càdlàg, µ2,δ is a finite random measure. By contrast, µ1,δ is

in general infinite. Orders with limit prices below S−− δ cannot be executed by µ1,δ.

Define ξlt(ω) := θδ,l,mt (ω)−θδ,l+1,m
t (ω) for all l= 1, . . . ,m2m−1, ξm2m

t (ω) := θδ,m2m,m
t (ω), and

ξ0
t (ω) := Lδ,m(ω,t,0)− θδ,1,mt (ω), where θδ,l,m, l = 1, . . . ,m2m are introduced in Definition 2.27.

In addition define

Alt(ω) := µ2,δ(ω, [0, t]× [0, l2−m])

for l = 0, . . . ,m2m. Observe that we can use these processes to specify a representation of the

shares bought and the cash payments resulting from strategy Lδ,m by∫
[0,t)×R+

Lδ,m(s,x)µ(ds,dx) =
∫

[0,t)×R+
Lδ,m(s,x)µ2,δ(ds,dx)

=
m2m∑
l=0

ξl •Alt− and

−
∫

[0,t)×R+

∫ ∞
x

yLδ,m(s,dy)µ(ds,dx) = −
∫

[0,t)×R+

∫ ∞
x

yLδ,m(s,dy)µ2,δ(ds,dx)

=
m2m∑
l=0

l2−mξl •Alt−.
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By Assumption 2.7 (vi), we have that Al0 = 0. Thus, different conventions for the integral w.r.t.

A at 0 do not matter. Note that we can replace µ by µ2,δ as by construction we have that Lδ,m = 0

on [S−− δ,∞). Since Lδ,m is µ-integrable, the integrability of any ξl w.r.t. Al is satisfied. As

µ2,δ(ω, ·) is a finite measure for any ω ∈ Ω, there exists a probability measure Q∼ P s.t.

EQ
[
AlT−

]
<∞ and EQ

[∫ T−

0
ξl dAl

]
<∞.

Then it is well-known (and provable by the monotone class theorem, compare Theorem IV.2

and Theorem IV.14 in [Pro04]) that the predictable process ξl can be approximated by a simple

predictable process ξ̃l in the sense that

EQ

[∫ T−

0
|ξl− ξ̃l|dAl

]
(2.10)

gets arbitrarily small. As ξl is nonnegative, ξ̃l can be chosen to be nonnegative as well. Since

L1(Q)-convergence implies convergence in Q- resp. P -probability, ξ̃l can be chosen s.t. on a set

U l ∈ F with P (U l)≥ 1− ε
3(m2m+1) it holds that

∫ T−

0
|ξl− ξ̃l|dAl < ε

2m(m2m+ 1) . (2.11)

Define the process

ξ̂l := ξ̃l1{Sδ−2δ>l2−m}1]]0,τδ]]

which is simple predictable as Sδ and ξ̃l are simple predictable. By construction of Lδ,m, we also

have for ξl that ξl = 0 on {Sδ−2δ ≤ l2−m} ∪ ]]τ δ,T ]]. Furthermore, by Assumption 2.7 (vi) we

know that Al0 = 0, i.e. whether ξl0 = 0 as well or not does not matter. Thus, (2.11) implies∫ T−

0
|ξl− ξ̂l|dAl < ε

2m(m2m+ 1) (2.12)

on U l. In addition, we have

ξ̂l = 0 on {(ω,t) ∈ Ω× [0,T ] : St−(ω)− δ ≤ l2−m}∪Ω×{0}. (2.13)

Now (2.12) clearly implies that on U l it holds that

sup
t∈[0,T ]

|ξl •Alt−− ξ̂l •Alt−|<
ε

2m(m2m+ 1) ,

and because l2−m ≤m we also have

sup
t∈[0,T ]

|l2−mξl •Alt−− l2−mξ̂l •Alt−|<
ε

2(m2m+ 1)
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on U l. Hence on
⋂m2m
l=0 U l we arrive at

sup
t∈[0,T ]

∣∣∣∣∣
∫

[0,t)×R+
Lδ,m(s,x)µ(ds,dx)−

∫
[0,t)×R+

L̂(s,x)µ(ds,dx)
∣∣∣∣∣< ε

2m and (2.14)

sup
t∈[0,T ]

∣∣∣∣∣
∫

[0,t)×R+

∫ ∞
x

yLδ,m(s,dy)µ(ds,dx)−
∫

[0,t)×R+

∫ ∞
x

yL̂(s,dy)µ(ds,dx)
∣∣∣∣∣ <

ε

2 .

Now we only have to make certain that (2.7), (2.8), (2.13), and (2.14) all hold on the same

set Aε, which is easily achieved by setting

Aε := U ∩V ∩
(
m2m⋂
l=0

U l
)
.

To finish this section let us show how Theorem 2.17 follows from Theorem 2.30. In Theo-

rem 2.30 the processes ξ̂0, ξ̂1, . . . , ξ̂m2m were introduced. As any such simple predictable process

ξ̂l starts with value 0, it can be written as a finite sum of terms of the form ξ̂l,i1]]T l,i1 ,T l,i2 ]], where

T l,i1 ,T l,i2 are stopping times with T l,i1 < T l,i2 and ξ̂l,i is F
T l,i1

-measurable. In addition, any finite

conical combination of real-world trading strategies is again a real-world trading strategy and of

course the mapping S 7→ ϕ(S) is linear. Consequently, to finish the proof of Theorem 2.17, it is

sufficient to show that we can approximate the trading strategy (0,0, ξ̂l,i1]]T l,i1 ,T l,i2 ]]1{x≤l2−m},0)

arbitrarily well with a real-world trading strategy (w.r.t. their respective portfolio processes and

dup).

We define the sequence of stopping times

τ0 := T l,i1 ,

τ j := inf
{
t > τ j−1 : µ2,δ ({t}× [0, l2−m]

)
> 0

}
,

where µ2,δ refers to the finite measure defined in the proof of Theorem 2.30. Thus, we get

P (τ j ≥ T l,i2 ) ↑ 1 as j→∞. Furthermore, note that for a limit buy order given by (ξ̂l,i, l2−m, τ j−1∧

T l,i2 ,T l,i2 ), the appendant stopping time T ∗ describing the execution time of the order, as defined

in Section 2.4.1, satisfies T ∗ = τ j on {ξ̂l,i > 0, τ j ≤ T l,i2 }, since ξ̂l,i1]]T l,i1 ,T l,i2 ]] = 0 on {(ω,t) ∈

Ω× [0,T ] : St−(ω)− δ ≤ l2−m}. If we let

MK := {ω ∈ Ω : τK(ω)≥ T l,i2 }

33



Continuous time trading of a small investor in a limit order market

for any K ∈ N then on MK × [0,T ]×R+ we get

ξ̂l,i1]]T l,i1 ,T l,i2 ]]1{x≤l2−m} =
K∑
j=1

ξ̂l,i1]]τ j−1∧T l,i2 ,τ j∧T l,i2 ]]1{x≤l2−m} (2.15)

=
K∑
j=1

ξ̂l,i1]]τ j−1∧T l,i2 ,τ j∧T l,i2 ]]

(
1{x≤l2−m,St−>l2−m}+ 1{x<l2−m,St−=l2−m}

)
,

where we have again used ξ̂l,i1]]T l,i1 ,T l,i2 ]] = 0 on {(ω,t) ∈ Ω× [0,T ] : St−(ω)− δ ≤ l2−m} for the

second equality. Therefore, for all ω ∈MK the path of the portfolio process associated with a

trading strategy consisting only of the term on the lhs of (2.15) is identical to the path of the

portfolio process associated with a trading strategy consisting only of the term on the lower rhs

of (2.15). Hence, for any ε > 0 if we choose Kε ∈N large enough s.t. P (MKε)≥ 1−ε this clearly

implies that

dup

(
ϕ0
((

0,0, ξ̂l,i1]]T l,i1 ,T l,i2 ]]1{x≤l2−m},0
))
,

ϕ0
((

0,0,
Kε∑
j=1

ξ̂l,i1]]τ j−1∧T l,i2 ,τ j∧T l,i2 ]]

(
1{x≤l2−m,St−>l2−m}+ 1{x<l2−m,St−=l2−m}

)
,0
)))

< ε

and

dup

(
ϕ1
((

0,0, ξ̂l,i1]]T l,i1 ,T l,i2 ]]1{x≤l2−m},0
))
,

ϕ1
((

0,0,
Kε∑
j=1

ξ̂l,i1]]τ j−1∧T l,i2 ,τ j∧T l,i2 ]]

(
1{x≤l2−m,St−>l2−m}+ 1{x<l2−m,St−=l2−m}

)
,0
)))

< ε

Thus, Theorem 2.17 is proven.

2.6 Proof of Theorem 2.22: Closedness of the strategy set

In the whole section let the assumptions of Theorem 2.22 hold and let (ϕ0,n,ϕ1,n)n∈N with

ϕ0,n := ϕ0(Sn) and ϕ1,n = ϕ1(Sn) be an up-Cauchy sequence where (Sn)n∈N is an a-admissible

sequence of trading strategies.

Since the space of làdlàg functions (also called regulated functions) mapping from [0,T ]

to R is complete w.r.t. the supremum norm, there exist predictable làdlàg processes ψ0 and

ψ1 s.t. (ϕ0,n)n∈N converges uniformly in probability to ψ0 and (ϕ1,n)n∈N converges uniformly

in probability to ψ1. By going to a subsequence of (Sn)n∈N we can assume w.l.o.g. that(
ϕ0,n,ϕ1,n)

n∈N even converges (component wise) P -a.s. uniformly on [0,T ] to (ψ0,ψ1).
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Lemma 2.31. Let τ̂0 := 0 and for k,n ∈ N define the stopping times

τ̂k,n := inf{t > 0 : |ϕ0,n
t |> k}∧ inf{t > 0 : |ϕ1,n

t |> k}

∧ inf{t > 0 :
∫

[0,t]×R+
1[Ss,Ss)

(x)µ(ds,dx) +
∫

[0,t]×R+
1(Ss,Ss]

(x)ν(ds,dx)> k},

τ̂k := inf
n∈N

τ̂k,n∧T.

There exists a probability measure Q equivalent to P s.t. for all k ∈ N there exists a constant

Kk > 0 s.t.

EQ
[
var(ϕ0,n)τ̂k + var(ϕ1,n)τ̂k

]
≤Kk, ∀n ∈ N.

Furthermore, (τ̂k)k∈N is an increasing sequence of stopping times with P (τ̂k = T )→ 1 for k→∞,

i.e. it is localizing.

Proof. Fix any k ∈ N. Note that (τ̂k)k∈N is indeed a sequence of stopping times, as(
ϕ0,n)

n∈N ,
(
ϕ1,n)

n∈N ,S,S,µ and ν are optional. Let σ̂0 := 0 and for i= 1,2, . . . let

σ̂i := inf
{
t > σ̂i−1 :

∫
[0,t]×R+

1[Ss,Ss)
(x)µ(ds,dx) +

∫
[0,t]×R+

1(Ss,Ss]
(x)ν(ds,dx)≥ i

}
,

which are also stopping times by the reasons given for τ̂k. Note that for i > k it follows that

σ̂i(ω)≥ τ̂k(ω). Furthermore, from the definition of τ̂k we see that |∆+(ϕ0,n
·∧τ̂k)t|, |∆+(ϕ1,n

·∧τ̂k)t| ≤ 2k

for all t∈ [0,T ] since |ϕ0,n
·∧τ̂k |, |ϕ

1,n
·∧τ̂k | ≤ k on [[0, τ̂k[[ and ϕ0,n

·∧τ̂k ,ϕ
1,n
·∧τ̂k are constant on [[τ̂k,T ]]. Thus,

∞∑
i=0

(
∆+var

(
ϕ0,n
·∧τ̂k

)
σ̂i

+ ∆+var
(
ϕ1,n
·∧τ̂k

)
σ̂i

)
≤ 4k(k+ 1). (2.16)

For any (ϕ0,n,ϕ1,n) and each i= 1,2, . . . ,k+1 we define a self-financing, admissible portfolio

process in the sense of Campi and Schachermayer (see [CS06] for details) with initial endowment

ϕ0,n,i
0 = k, ϕ1,n,i

0 = k and threshold level a by

ϕ0,n,i := k1[[0,σ̂i−1∧τ̂k]] +ϕ0,n1]]σ̂i−1∧τ̂k,σ̂i∧τ̂k]]−a1]]σ̂i∧τ̂k,T ]]

ϕ1,n,i := k1[[0,σ̂i−1∧τ̂k]] +ϕ1,n1]]σ̂i−1∧τ̂k,σ̂i∧τ̂k]]−a1]]σ̂i∧τ̂k,T ]].

By construction (ϕ0,n,i,ϕ1,n,i) = (ϕ0,n
·∧τ̂k ,ϕ

1,n
·∧τ̂k) on ]]σ̂i−1 ∧ τ̂k, σ̂i ∧ τ̂k]]. Thus, (ϕ0,n,i,ϕ1,n,i)

is certainly a-admissible. If σ̂i−1 < τ̂k than the change of the portfolio from (k,k) to

(ϕ0,n
σ̂i−1∧τ̂k ,ϕ

1,n
σ̂i−1∧τ̂k) is self-financing due to the first row in the definition of τ̂k,n. If σ̂i−1≥ τ̂k then

]]σ̂i−1∧ τ̂k, σ̂i∧ τ̂k]] is empty and the change to (−a,−a) is clearly self-financing. Furthermore,

on ]]σ̂i−1∧ τ̂k, σ̂i∧ τ̂k]] no favorable executions of limit orders can influence the portfolio process

(remember that a limit order executed at stopping time σ̂i only shows up in the portfolio process
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immediately after σ̂i). While there may be executions of limit orders on ]]σ̂i−1∧ τ̂k, σ̂i∧ τ̂k]], the

prices paid by the small investor are at most as favorable as in the model with proportional

transaction costs. If e.g. a limit buy order of size θB(ω) with limit price pB(ω) is executed

at time T ∗(ω) with σ̂i−1(ω) < T ∗(ω) < σ̂i(ω) we know by construction that ST ∗(ω) ≤ pB(ω).

Hence, the investor would be at least as well of just buying amount θB(ω) at time T ∗(ω) with

a market order at price ST ∗(ω). Thus, (ϕ0,n,i,ϕ1,n,i) is indeed a self-financing portfolio process

in the sense of [CS06] (in which it is allowed to “throw away” assets). More precisely, if we

translate {S,S} into the càdlàg bid-ask process

Π :=

1 S

1
S 1


used in [CS06], then V̂ n,i := (ϕ0,n,i,ϕ1,n,i) is a self-financing, admissible portfolio process with

threshold a in the sense of Definition 2.7 in [CS06].

Right from the definition of (ϕ0,n,i,ϕ1,n,i) it follows that for all n ∈ N and i= 1,2, . . . ,k+ 1

var(ϕ0,n
·∧τ̂k)σ̂i−var(ϕ0,n

·∧τ̂k)σ̂i−1+ = var(ϕ0,n,i)σ̂i−var(ϕ0,n,i)σ̂i−1+,

var(ϕ1,n
·∧τ̂k)σ̂i−var(ϕ1,n

·∧τ̂k)σ̂i−1+ = var(ϕ1,n,i)σ̂i−var(ϕ1,n,i)σ̂i−1+.

Remember that by P̃ we denote the measure, which makes the strictly consistent price process

a martingale. By Lemma 3.2 in [CS06] there exist a probability measure Q∼ P and a constant

C > 0 such that for all k,n ∈ N and all i= 1, . . . ,k+ 1

EQ[var(ϕ0,n
·∧τ̂k)σ̂i−var(ϕ0,n

·∧τ̂k)σ̂i−1+] ≤ EQ[var(ϕ0,n,i)T ]≤ C(k+a),

EQ[var(ϕ1,n
·∧τ̂k)σ̂i−var(ϕ1,n

·∧τ̂k)σ̂i−1+] ≤ EQ[var(ϕ1,n,i)T ]≤ C(k+a).

Therefore, we have that

EQ

[ ∞∑
i=1

(
var(ϕ0,n

·∧τ̂k)σ̂i−var(ϕ0,n
·∧τ̂k)σ̂i−1+

)
+
∞∑
i=1

(
var(ϕ1,n

·∧τ̂k)σ̂i−var(ϕ1,n
·∧τ̂k)σ̂i−1+

)]
≤ (k+ 1)2C(k+a). (2.17)

By combining (2.16) and (2.17) the first part of the lemma is proven.

Concerning the localizing sequence we immediately see that (τ̂k)k∈N is increasing from its

definition. As discussed at the beginning of the section, there exists a set N ∈ F s.t. P (N) = 0

and s.t.
(
ϕ0,n(ω)

)
n∈N converges towards ψ0(ω) uniformly on [0,T ] for all ω ∈ NC . Fix any
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ω ∈ NC . Remember that any làdlàg function is bounded on a compact interval. Thus, there

exists a n0(ω) such that for all n ∈ N we have

sup
t∈[0,T ]

|ϕ0,n
t (ω)| ≤

n0(ω)∨
j=1

sup
t∈[0,T ]

|ϕ0,j
t (ω)|

∨( sup
t∈[0,T ]

|ψ0
t (ω)|+ 1

)
<∞.

Hence,

P

(
sup
t∈[0,T ]

|ϕ0,n
t | ≤ k,∀n ∈ N

)
↑ P (NC) = 1 as k→∞.

Similar arguments yield P
(
supt∈[0,T ] |ϕ

1,n
t | ≤ k,∀n ∈ N

)
↑ 1. By Assumption 2.7 (iii) we also

have

P

(∫
[0,t]×R+

1[Ss,Ss)
(x)µ(ds,dx) +

∫
[0,t]×R+

1(Ss,Ss]
(x)ν(ds,dx)≤ k

)
↑ 1 as k→∞.

Therefore, we arrive at P (τ̂k = T )→ 1 as k→∞.

For proportional transaction costs the statement above holds for arbitrary families of portfolio

processes, even without stopping. The basic idea is that any trade costs a little bit of wealth and

by the martingale in between the best-bid and the best-ask price in expectation no money can

be made from directional trades. Hence, the amount of trading has to be limited in expectation.

This does not apply directly to the case with limit orders, because the execution of a limit order

at a better price than what is available via market orders may increase wealth, thus supplying

the trader with additional wealth to spend on market orders. We deal with this problem in the

lemma above by using stopping times in such a way that the gains by limit orders up to the

stopping time are limited. By Assumption 2.7 there are only finitely many instances at which

a trade at a more favorable price than what is available via market orders can be made. The

assumption that (ϕ0,n,ϕ1,n)n∈N converges towards (ψ0,ψ1) bounds the other terms found in the

definition of the stopping times, hence together they yield that (τ̂k)k∈N is localizing.

Lemma 2.32. We have

Mµ

(
{(ω,t,x) ∈ Ω̃ : sup

n∈N
LB,n(ω,t,x) =∞}

)
= 0,

Mν

(
{(ω,t,x) ∈ Ω̃ : sup

n∈N
LS,n(ω,t,x) =∞}

)
= 0,

i.e. (LB,n)n∈N is Mµ-a.e. bounded and (LS,n)n∈N is Mν-a.e. bounded.
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Proof. We only deal with (LB,n)n∈N as the assertion regarding (LS,n)n∈N can be proved similarly.

Each LB,n is µ-integrable and hence it holds that LB,n <∞ Mµ-almost everywhere. Thus, we

can ignore the beginning of the sequence. Define the set A by

A := {(ω,t,x) ∈ Ω̃ : limsup
n→∞

LB,n(ω,t,x) =∞}.

A is P̃-measurable, because the limsup of measurable functions is measurable. Furthermore, for

any ε > 0 let

Bε := supergraph(X+ε)

= {(ω,t,x) ∈ Ω̃ :X(ω,t) +ε < x}.

By Lemma 2.6 Bε is P̃-measurable as well. This implies that for any q ∈ Q+ the q-section

(A∩Bε)q of the set A∩Bε is P-measurable. Note that by the monotonicity of the functions

LB,n(ω,t, ·) it holds that (ω,t,x) ∈A implies (ω,t,y) ∈A for all y < x, i.e. the nonempty (ω,t)-

sections of A are either of the form [0,a(ω,t)) ⊂ R+ or of the form [0,a(ω,t)] ⊂ R+. A similar

property holds for Bε. Directly from its definition, it follows that the (ω,t)-sections of Bε are

always of the form (X(ω,t)+ε,∞)⊂R+. Hence the equality in the second row of the following

holds

N̂ε := {(ω,t) ∈ Ω× [0,T ] : ∃x ∈ R+ : (ω,t,x) ∈A∩Bε}

= {(ω,t) ∈ Ω× [0,T ] : ∃x ∈Q+ : (ω,t,x) ∈A∩Bε}

=
⋃
q∈Q+

{(ω,t) ∈ Ω× [0,T ] : (ω,t,q) ∈A∩Bε}=
⋃
q∈Q+

(A∩Bε)q,

and thus N̂ε is P-measurable.

Suppose there exists an ε > 0 s.t. M̂µ(N̂ε)> 0. For now keep this ε fixed. Define

Nε := {(ω,t,x) ∈ Ω̃ : (ω,t) ∈ N̂ε,X(ω,t)≤ x≤X(ω,t) + ε

2}.

By

N c
ε = N̂ c

ε ×R+∪{(ω,t,x) ∈ Ω̃ : x <X(ω,t)}∪{(ω,t,x) :X(ω,t) + ε

2 < x}

and Lemma 2.6 we get Nε ∈ P̃. Now if Mµ(Nε) = 0 would hold, we could define a predictable

process Z :=X1
N̂c
ε

+(X+ ε
2)1

N̂ε
withMµ(subgraph(Z)) = 0 but Z ≥X with Z >X on a set with

positive weight M̂µ(N̂ε)> 0, which is a contradiction to the definition of X. Hence if M̂µ(N̂ε)> 0

then also Mµ(Nε)> 0.
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Referring to the discussion at the beginning of this section we have P -a.s.

lim
n→∞

sup
t∈[0,T )

|∆+ϕ0,n
t (ω)−∆+ψ0

t (ω)| = 0, (2.18)

lim
n→∞

sup
t∈[0,T )

|∆+ϕ1,n
t (ω)−∆+ψ1

t (ω)| = 0. (2.19)

Now (2.19) implies for all (τi,Yi) (introduced in Remark 2.13) P -a.s.

lim
n→∞

∆+MB,n
τi∧T −∆+MS,n

τi∧T +LB,n(τi,Yi)1{τi≤T}−
∞∑
j=1

LS,n(σj ,Zj)1{τi=σj≤T}

= ∆+ψ1
τi∧T .

Thus for all (τi,Yi) it holds that the event{
ω ∈ Ω : lim

n→∞

(
∆+MB,n

τi∧T (ω)−∆+MS,n
τi∧T (ω) +LB,n(τi,Yi)(ω)1{τi≤T}(ω)

−
∞∑
j=1

LS,n(σj ,Zj)1{τi=σj≤T}(ω)

= ∆+ψ1
τi∧T (ω)


c

has probability zero and by Proposition 2.41 this yields that Mµ-a.e. for n→∞ we have

∆+MB,n
t (ω)−∆+MS,n

t (ω) +LB,n(ω,t,x)−
∫
{t}×R+

LS,n(ω,s,z)ν(ω,ds,dz)→∆+ψ1
t (ω). (2.20)

By Assumption 2.7 (i) we have St(ω)≤ x≤ St(ω) for Mµ-a.a. (ω,t,x) ∈ Ω̃. Combining this

with Assumption 2.7 (v) implies that limit sell orders canMµ-a.e. only be executed if x= St(ω).

By Assumption 2.7 (i) for ν, in the latter case no limit sell order with limit price above x is

executed. Thus, we have Mµ-a.e.

∆+ϕ0,n
t (ω)

= −St(ω)∆+MB,n
t (ω) +St(ω)∆+MS,n

t (ω) +
∫ ∞
x

yLB,n(ω,t,dy)

+
∫
{t}×R+

∫ z

0
yLS,n(ω,s,dy)ν(ω,ds,dz)

= −St(ω)∆+MB,n
t (ω) +St(ω)∆+MS,n

t (ω) +
∫ x+ε/2

x
yLB,n(ω,t,dy)

+
∫ ∞
x+ε/2

yLB,n(ω,t,dy) +
∫
{t}×R+

∫ z

0
yLS,n(ω,s,dy)ν(ω,ds,dz)

≤ −x∆+MB,n
t (ω) +x∆+MS,n

t (ω)−x
(
LB,n(ω,t,x)−LB,n(ω,t,x+ ε

2)
)

−
(
x+ ε

2

)
LB,n(ω,t,x+ ε

2) +x

∫
{t}×R+

LS,n(ω,s,z)ν(ω,ds,dz)

= x

(
−∆+MB,n

t (ω) + ∆+MS,n
t (ω)−LB,n(ω,t,x) +

∫
{t}×R+

LS,n(ω,s,z)ν(ω,ds,dz)
)

− ε2L
B,n(ω,t,x+ ε

2).
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Now (2.20) implies that forMµ-a.a. (ω,t,x)∈Nε the first term converges to−x∆+ψ1
t (ω) whereas

for the second term we get

liminf
n→∞

(
−ε2L

B,n(ω,t,x+ ε

2)
)

=−∞

because for (ω,t,x) ∈ Nε it always holds that (ω,t,x+ ε/2) ∈ A. Hence, Mµ-a.e. on Nε (a set

with measure Mµ(Nε)> 0) this yields

liminf
n→∞

∆+ϕ0,n
t (ω) =−∞ 6= ∆+ψ0

t (ω),

which is a contradiction to (2.18) (using Proposition 2.41 as above). Thus for all ε > 0 it has to

hold that M̂µ(N̂ε) = 0.

Therefore

Mµ(A∩Bε)≤Mµ(N̂ε×R+) = M̂µ(N̂ε) = 0.

Note that for r→∞ we get supergraph(X+ 1
r ) ↑ supergraph(X) and thus A∩ supergraph(X+

1
r ) ↑A∩ supergraph(X), which yields

Mµ(A∩ supergraph(X)) = lim
r→∞

Mµ(A∩B 1
r
) = 0,

and hence

Mµ(A) = Mµ(A∩ supergraph(X))

+ Mµ(A∩ subgraph(X))

+ Mµ(A∩graph(X))

= 0,

where the second term on the right hand side of the equation is equal to 0 by Proposition 2.40

and the last term is equal to 0 by Assumption 2.21.

Using the two previous lemmas we are now able to show that the total number of pur-

chased shares and the total number of sold shares (up to the stopping time τ̂k) are bounded in

expectation under a probability measure Q̃ equivalent to P .

Lemma 2.33. There exists a probability measure Q̃ equivalent to P s.t. for any stopping time

τ̂k as defined in Lemma 2.31 there exists a constant K̃k s.t. for all n ∈ N

E
Q̃

[
MB,n

τ̂k
+
∫

[0,τ̂k)×R+
LB,n(s,x)µ(ds,dx)

]
< K̃k,

E
Q̃

[
MS,n

τ̂k
+
∫

[0,τ̂k)×R+
LS,n(s,x)ν(ds,dx)

]
< K̃k.
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Proof. For any A∈B([0,T ])⊗B(R+) define µ̃(A) :=µ(A∩{(t,x)∈ [0,T ]×R+ : x<St}), µS(A) =

µ(A∩{(t,x) ∈ [0,T ]×R+ : x= St}). Clearly µS ⊥ µ̃ and by Assumption 2.7 (i) we furthermore

know that µ= µ̃+µS . Let ν̃ and νS be defined similarly. Note that by Assumption 2.7 (iii) we

get that µ̃ and ν̃ are P -a.s. finite measures.

An important observation regarding µS and νS is that the limit order executions that are

triggered by these measures are at most as favorable to the investor as trading by market orders.

This yields∫
{t}×R+

LB,n(s,x)µS(ds,dx) (2.21)

≤ −St
St−St

∫
{t}×R+

LB,n(s,x)µS(ds,dx)− 1
St−St

∫
{t}×R+

∫ ∞
x

yLB,n(s,dy)µS(ds,dx)

and

−St
St−St

∫
{t}×R+

LS,n(s,x)νS(ds,dx) + 1
St−St

∫
{t}×R+

∫ x

0
yLS,n(s,dy)νS(ds,dx)≤ 0. (2.22)

By rearranging the equations of the portfolio process to eliminate ∆+MS,n
t we get(

St−St
)

∆+MB,n
t −St

∫
{t}×R+

LB,n(s,x)µS(ds,dx)−
∫
{t}×R+

∫ ∞
x

yLB,n(s,dy)µS(ds,dx)

= −∆+ϕ0,n
t −St∆+ϕ1,n

t +St

∫
{t}×R+

LB,n(s,x)µ̃(ds,dx)−St
∫
{t}×R+

LS,n(s,x)ν̃(ds,dx)

+
∫
{t}×R+

∫ ∞
x

yLB,n(s,dy)µ̃(ds,dx) +
∫
{t}×R+

∫ x

0
yLS,n(s,dy)ν̃(ds,dx)

−St
∫
{t}×R+

LS,n(s,x)νS(ds,dx) +
∫
{t}×R+

∫ x

0
yLS,n(s,dy)νS(ds,dx).

The lhs of this equation is an upper bound to the lhs of (2.23) by (2.21). The rhs of this equation

is a lower bound to the rhs of (2.23) due to (2.22). Hence, the following inequality holds

∆+MB,n
t +

∫
{t}×R+

LB,n(s,x)µS(ds,dx) (2.23)

≤
∆+var(ϕ0,n)t+St

(
∆+var(ϕ1,n)t+

∫
{t}×R+

LB,n(s,x)µ̃(ds,dx)
)

St−St

+
∫
{t}×R+

∫ x
0 yL

S,n(s,dy)ν̃(ds,dx)
St−St

.

By a similar rearrangement of (the càdlàg part of) the portfolio process to get rid of (the càdlàg

part of) MS,n as above (and by the associativity of the stochastic integral) we get the following

inequality for the càdlàg part of MB,n

MB,n

τ̂k
−
∑
t<τ̂k

∆+MB,n
t ≤

var(ϕ0,n)τ̂k + supt∈[0,T ]Stvar(ϕ1,n)τ̂k
inft∈[0,T ](St−St)

.
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Combining the càdlàg part with the right jumps, for all n ∈ N we get

MB,n

τ̂k
+
∫

[0,τ̂k)×R+
LB,n(s,x)µ(ds,dx)

≤
2var(ϕ0,n)τ̂k + 2supt∈[0,T ]Stvar(ϕ1,n)τ̂k + supt∈[0,T ]St

∫
[0,T )×R+

supn∈NLB,n(s,x)µ̃(ds,dx)
inft∈[0,T ](St−St)

+
supt∈[0,T ]St

∫
[0,T )×R+

supn∈NLS,n(s,x)ν̃(ds,dx)
inft∈[0,T ](St−St)

+
∫

[0,T )×R+
sup
n∈N

LB,n(s,x)µ̃(ds,dx).

By Lemma 2.32 we know that supn∈NLB,n is Mµ-a.e. finite and that supn∈NLS,n is Mν-a.e.

finite. Hence, because µ̃ and ν̃ have a.s. only finite mass, we conclude there exist a.s. finite,

nonnegative random variables A,B and C s.t. for all n ∈ N

MB,n

τ̂k
+
∫

[0,τ̂k)×R+
LB,n(s,x)µ(ds,dx) ≤ Avar(ϕ0,n)τ̂k +Bvar(ϕ1,n)τ̂k +C

≤ (A+B+C)
(
var(ϕ0,n)τ̂k + var(ϕ1,n)τ̂k + 1

)
.

Similarly, we can show that there exist a.s. finite, nonnegative random variables D,E and F s.t.

for all n ∈ N

MS,n

τ̂k
+
∫

[0,τ̂k)×R+
LS,n(s,x)ν(ds,dx) ≤ Dvar(ϕ0,n)τ̂k +Evar(ϕ1,n)τ̂k +F

≤ (D+E+F )
(
var(ϕ0,n)τ̂k + var(ϕ1,n)τ̂k + 1

)
.

By Lemma 2.31 we know that there exists a measure Q∼P (independent of k) and a constant

Kk > 0 s.t. for all n ∈ N

EQ
[
var(ϕ0,n)τ̂k + var(ϕ0,n)τ̂k + 1

]
≤ Kk + 1.

Because Z := (A+B+C+D+E+F ) is a.s. finite we can change the measure with density

dQ̃

dQ
= EQ

[
(Z ∨1)−1

]−1
(Z ∨1)−1,

which satisfies dQ̃
dQZ ≤ EQ

[
(Z ∨1)−1]−1 =:K ′. This yields for all n ∈ N

E
Q̃

[(
MB,n

τ̂k
+
∫

[0,τ̂k)×R+
LB,n(s,x)µ(ds,dx)

)
∨
(
MS,n

τ̂k
+
∫

[0,τ̂k)×R+
LS,n(s,x)ν(ds,dx)

)]

≤ E
Q̃

[
Z
(
var(ϕ0,n)τ̂k + var(ϕ1,n)τ̂k + 1

)]
= EQ

[
dQ̃

dQ
Z
(
var(ϕ0,n)τ̂k + var(ϕ1,n)τ̂k + 1

)]

≤ K ′(Kk + 1) =: K̃k.
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Given the sequence of limit buy orders (LB,n)n∈N, later on we will use a Komlós-like result

to gain a limit (of convex combinations) LB. The following lemma will then be used to assure

that the limit function provided by the Komlós-like result can be replaced by a proper limit buy

order, i.e. by an element of LB.

Lemma 2.34. If there exists a P̃-measurable function LB : Ω̃→ R+ s.t. (LB,n)n∈N converges

M̃µ-a.e. towards LB then there exists a L̂B ∈ LB s.t. LB = L̂B holds M̃µ-a.e..

Similarly, if there exists a P̃-measurable function LS : Ω̃→ R+ s.t. (LS,n)n∈N converges

M̃ν-a.e. towards LS then there exists a L̂S ∈ LS s.t. LS = L̂S holds M̃ν-a.e..

Proof. In the following we only deal with LB, as the second part of the lemma can be shown

analogously.

We start by constructing a P̃-measurable L̂B which is M̃µ-a.e. equal to LB and monotonically

decreasing in x for all (ω,t) ∈ Ω× [0,T ]. Because (LB,n)n∈N is a sequence in LB, for all n ∈ N

and (ω,t) ∈ Ω× [0,T ] we know that x 7→ LB,n(ω,t,x) is monotonically decreasing. Denote by

Ñ a M̃µ-null set such that (LB,n)n∈N converges pointwise to LB on Ñ c, by (xk)k∈N a sequence

running through Q+, and by
(
Ñ ∩ supergraph(X)

)
xk

the xk-section of Ñ ∩ supergraph(X), i.e.

the set
{

(ω,t) ∈ Ω× [0,T ] : (ω,t,xk) ∈ Ñ ∩ supergraph(X)
}
∈ P. Define

N :=
∞⋃
k=1

(
Ñ ∩ supergraph(X)

)
xk

and note that from
(
Ñ ∩ supergraph(X)

)
xk
×{xk} ⊂ Ñ ∩ supergraph(X) and

((
Ñ ∩ supergraph(X)

)
xk
×{xk}

)
∩ supergraph(X) =

(
Ñ ∩ supergraph(X)

)
xk
×{xk}

it follows that M̂µ

((
Ñ ∩ supergraph(X)

)
xk

)
= 0 and thus also M̂µ(N) = 0, i.e. M̌µ(N ×R+) =

0. Hence, we arrive at M̃µ(N ×R+) = 0. By definition of N , for all (ω,t,x) ∈
(
N ×R+

)c
∩

supergraph(X)∩ (Ω× [0,T ]×Q+) we know that
(
LB,n(ω,t,x)

)
n∈N

converges to LB(ω,t,x). We

proceed by defining the function L̂B by

L̂B(ω,t,x) := ∞1{x≤Xt(ω)}1Nc(ω,t)

+ median
{
LB(ω,t,x), sup

x<xk
LB(ω,t,xk), inf

xk<x
LB(ω,t,xk)

}
1{x>Xt(ω)}1Nc(ω,t),
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which is obviously P̃-measurable (remember Definition and Proposition 2.6). Given two points

(ω,t,x) and (ω,t,y) with x < y for which both LB,n(ω,t,x)→ LB(ω,t,x) and LB,n(ω,t,y)→

LB(ω,t,y) hold for n→∞ we get

LB(ω,t,x) = lim
n→∞

LB,n(ω,t,x)≥ lim
n→∞

LB,n(ω,t,y) = LB(ω,t,y). (2.24)

Hence, for (ω,t,x) ∈ Ñ c∩ (N ×R+)c∩ supergraph(X) it holds that

sup
x<xk

LB(ω,t,xk)≤ LB(ω,t,x)≤ inf
xk<x

LB(ω,t,xk),

and thus L̂B = LB on Ñ c∩ (N ×R+)c∩ supergraph(X). By Assumption 2.21, Proposition 2.40

and the construction of M̃µ we already know that subgraph(X)∪ graph(X) is a M̃µ-null set.

Hence, the set of points on which we set L̂B to the value ∞ is in any case not relevant for the

question whether LB = L̂B M̃µ-a.e. or not (though it does play a role to assure monotonicity of

course, which is supposed to hold for all (ω,t) ∈ Ω× [0,T ]). Furthermore, we have seen above

that M̃µ(N ×R+) = 0 and consequently LB = L̂B holds M̃µ-almost everywhere.

Let us verify that x 7→ L̂B(ω,t,x) is indeed monotonically decreasing for all (ω,t)∈Ω× [0,T ],

which is part (i) of Definition 2.9. By definition of L̂B via median and since supx<xk L
B(ω,t,xk)≤

infxk<xLB(ω,t,xk) on
(
N ×R+

)c
∩ supergraph(X) by (2.24) we get

sup
x<xk

LB(ω,t,xk)≤ L̂B(ω,t,x)≤ inf
xk<x

LB(ω,t,xk).

This yields for all (ω,t,x),(ω,t,y) ∈
(
N ×R+

)c
∩ supergraph(X) with x < y that

L̂B(ω,t,x)≥ sup
x<xk

LB(ω,t,xk)≥ inf
xk<y

LB(ω,t,xk)≥ L̂B(ω,t,y).

Moreover, for all (ω,t) ∈ N c we have that L̂B(ω,t,x) =∞ for all x ≤ Xt(ω). Therefore, the

monotonicity of x 7→ L̂B(ω,t,x) on R+ is established for all (ω,t) ∈N c. For (ω,t) ∈N we have

L̂B(ω,t, ·)≡ 0 and the monotonicity is trivially satisfied.

We proceed by checking that part (iii) of Definition 2.9 holds, i.e. that L̂B is µ-integrable.

By the M̃µ-a.e. convergence of (LB,n)n∈N to L̂B, Fatou’s lemma, and Lemma 2.33 there exist a

measure Q̃∼ P s.t. for all k ∈ N there exists a constant K̃k > 0 s.t.

E
Q̃

[∫
[0,τ̂k)×R+

L̂B(t,x)µ(dt,dx)
]

≤ liminf
n→∞

E
Q̃

[∫
[0,τ̂k)×R+

LB,n(t,x)µ(dt,dx)
]

< K̃k,
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where τ̂k refers to the stopping time defined in Lemma 2.31. Hence, for all k ∈ N

∫
[0,τ̂k)×R+

L̂B(t,x)µ(dt,dx)<∞, P -a.s..

Because (τ̂k)k∈N is a localizing sequence, for almost all ω there exists a finite k0(ω) s.t. τ̂k0(ω) =

T . Therefore, ∫
[0,T )×R+

L̂B(t,x)µ(dt,dx)<∞, P -a.s.

and the µ-integrability of L̂B is verified.

Regarding Definition 2.9 (ii), i.e. if L̂B(ω,t,x) = 0 for all (ω,t) ∈ Ω× [0,T ] and x≥ St−(ω),

note that we may assume that LB satisfies this property without loss of generality, be-

cause for all n ∈ N we have LB,n(ω,t,x)1{x<St−(ω)} = LB,n(ω,t,x). As (LB,n)n∈N converges

M̃µ-a.e. to LB it follows that (LB,n)n∈N also converges M̃µ-a.e. to LB(ω,t,x)1{x<St−(ω)}.

Now, if L̂B as defined above does not satisfy this property as well, we just replace it by

L̂B(ω,t,x)1{x<St−(ω)}, which is still M̃µ-a.e. equal to LB by the assumption just made, i.e.

that LB(ω,t,x) = LB(ω,t,x)1{x<St−(ω)}. Note that if Definition 2.9 (i) and (iii) hold for L̂B

this is still true for L̂B(ω,t,x)1{x<St−(ω)}, so we do not invalidate any of the facts established

above.

We have already seen in Lemma 2.33 that the total number of purchased shares is locally

bounded in expectation under a probability measure Q̃ equivalent to P . Hence, the total number

of purchased shares up to time T is stochastically bounded. The following lemma uses this fact

to show that the stochastic processes describing the total number of purchased shares are a

Cauchy sequence.

Lemma 2.35. Both the total number of purchased shares
(
MB,n+

∫
[0,·)×R+

LB,n(s,x)µ(ds,dx)
)
n∈N

and the total number of sold shares
(
MS,n+

∫
[0,·)×R+

LS,n(s,x)ν(ds,dx)
)
n∈N

are Cauchy se-

quences w.r.t. the convergence “uniformly in probability” (up).

Proof. Of course it is sufficient to prove only the first part of the assertion as the second one is

completely analog. Assume that (ϕ0,n,ϕ1,n)n∈N is an up-Cauchy sequence.

Step 1: Let us consider the corresponding discounted wealth processes if stock positions are

evaluated at the best-bid price S and the numeraire is the spread S−S, i.e.

V̂ n := ϕ0,n

S−S
+ ϕ1,nS

S−S
.
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The stock evaluation and the choice of the numeraire simplify the calculations. Namely, sales

by market orders do not change the wealth process and the purchase of one share by a market

order reduces the discounted wealth by one unit. Note that (V̂ n)n∈N is again up-Cauchy and

the processes 1
S−S and S

S−S are again semimartingales by P
(
inf{St−St | t ∈ [0,T ]}> 0

)
= 1

and Itô’s formula. By Definition 2.11 and Lemma 8.2 in [MK09] we obtain

V̂ n = V̂ n
0 +ϕ0,n •

( 1
S−S

)
+ϕ1,n •

(
S

S−S

)
−MB,n

+
∫

[0,·)×R+

∫
[x,Ss−)

y−Ss
Ss−Ss

LB,n(s,dy)µ(ds,dx) +
∫

[0,·)×R+

∫
(Ss−,x]

y−Ss
Ss−Ss

LS,n(s,dy)ν(ds,dx).

Note that LB,n(s,x) = 0 for x ≥ Ss− and LS,n(s,x) = 0 for x ≤ Ss−. Let µ = µ1,δ +µ2,δ be the

decomposition from (2.9). In the following, executed limit buy orders with limit price near to

the best-ask are charged at the best-ask. The process Aδ,n is the corresponding error term and

formally defined by∫
[0,t)×R+

∫
[x,Ss−)

y−Ss
Ss−Ss

LB,n(s,dy)µ(ds,dx)

=
∫

[0,t)×R+

∫
[Ss−−δ,Ss−)

y−Ss
Ss−Ss

LB,n(s,dy)µ1,δ(ds,dx)

+
∫

[0,t)×R+

∫
[x,Ss−)

y−Ss
Ss−Ss

LB,n(s,dy)µ2,δ(ds,dx)

=−
∫

[0,t)×R+
LB,n(s,x)µ1,δ(ds,dx) +

∫
[0,t)×R+

∫
[x,Ss−)

y−Ss
Ss−Ss

LB,n(s,dy)µ2,δ(ds,dx) +Aδ,nt .

Aδ,n is nonincreasing and

|Aδ,nT | ≤
δ
∫
[0,T )×R+

LB,n(s,x)µ(ds,dx)
inf{St−St | t ∈ [0,T ]}

. (2.25)

Analogously, we define ν1,δ,ν2,δ by ν = ν1,δ + ν2,δ, ν1,δ⊥ν2,δ, and ν1,δ({t}×{x}) = 1 iff x = St

and ∆St ∈ (0, δ]. Again, ν2,δ is a finite random measure. The process Bδ,n is the error term

when limit sell orders with limit price near to the best-bid are charged at the best-bid. Formally,

it is defined by ∫
[0,t)×R+

∫
(Ss−,x]

y−Ss
Ss−Ss

LS,n(s,dy)ν(ds,dx)

=
∫

[0,t)×R+

∫
(Ss−,x]

y−Ss
Ss−Ss

LS,n(s,dy)ν2,δ(ds,dx) +Bδ,n
t .

Bδ,n is nonincreasing and

|Bδ,n
T | ≤

δ
∫

[0,T )×R+
LS,n(s,x)ν(ds,dx)

inf{St−St | t ∈ [0,T ]}
. (2.26)
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We arrive at

V̂ n = V̂ n
0 +ϕ0,n •

( 1
S−S

)
+ϕ1,n •

(
S

S−S

)
−MB,n−

∫
[0,·)×R+

LB,n(s,x)µ1,δ(ds,dx)

+
∫

[0,·)×R+

∫
[x,Ss−)

y−Ss
Ss−Ss

LB,n(s,dy)µ2,δ(ds,dx)

+
∫

[0,·)×R+

∫
(Ss−,x]

y−Ss
Ss−Ss

LS,n(s,dy)ν2,δ(ds,dx) +Aδ,n+Bδ,n

and thus

MB,n+
∫

[0,·)×R+
LB,n(s,x)µ(ds,dx)

=−V̂ n+ V̂ n
0 +ϕ0,n •

( 1
S−S

)
+ϕ1,n •

(
S

S−S

)
+
∫

[0,·)×R+
LB,n(s,x)µ2,δ(ds,dx)

+
∫

[0,·)×R+

∫
[x,Ss−)

y−Ss
Ss−Ss

LB,n(s,dy)µ2,δ(ds,dx)

+
∫

[0,·)×R+

∫
(Ss−,x]

y−Ss
Ss−Ss

LS,n(s,dy)ν2,δ(ds,dx) +Aδ,n+Bδ,n. (2.27)

Step 2: Now let ε> 0. As V̂ n, V̂ n
0 , ϕ0,n •

(
1

S−S

)
, and ϕ1,n •

(
S

S−S

)
are up-Cauchy sequences,

there exists a n1 ∈ N s.t.

P

(∣∣∣∣∣−(V̂ n
t − V̂ m

t ) + (V̂ n
0 − V̂ m

0 ) + (ϕ0,n−ϕ0,m) •
( 1
S−S

)
t

+ (ϕ1,n−ϕ1,m) •
(

S

S−S

)
t

∣∣∣∣∣
≤ ε

4 , ∀t ∈ [0,T ]
)
≥ 1− ε4 , ∀n,m≥ n1. (2.28)

By Lemma 2.33 the sequences
(∫

[0,T ]×R+
LB,n(s,x)µ(ds,dx)

)
n∈N

and(∫
[0,T ]×R+

LS,n(s,x)ν(ds,dx)
)
n∈N

are stochastically bounded. Thus, by (2.25) and (2.26),

there exists a δ > 0 s.t.

P

(
|Aδ,nT +Bδ,n

T | ≤
ε

4

)
≥ 1− ε4 , ∀n ∈ N. (2.29)

We fix this δ. As µ2,δ and ν2,δ are finite random measures the remaining terms on the rhs of

(2.27) are up-Cauchy sequences by Lemma 2.32 and Lemma 2.29. Thus there exists a n2 ∈ N

s.t.

P

(∣∣∣∣∣
∫

[0,t)×R+

(
LB,n(s,x)−LB,m(s,x)

)
µ2,δ(ds,dx)

+
∫

[0,t)×R+

∫
[x,Ss−)

y−Ss
Ss−Ss

(LB,n−LB,m)(s,dy)µ2,δ(ds,dx)

+
∫

[0,t)×R+

∫
(Ss−,x]

y−Ss
Ss−Ss

(LS,n−LS,m)(s,dy)ν2,δ(ds,dx)
∣∣∣∣∣≤ ε

4 , ∀t ∈ [0,T ]
)

≥ 1− ε4 ,
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for all n,m≥ n2. Combining this with (2.28), (2.29), and (2.27), we arrive at

P

(∣∣∣∣∣MB,n
t +

∫
[0,t)×R+

LB,n(s,x)µ(ds,dx)−MB,m
t

−
∫

[0,t)×R+
LB,m(s,x)µ(ds,dx)

∣∣∣∣∣≤ ε, ∀t ∈ [0,T ]
)
≥ 1−ε

for all n,m ≥ n1 ∨ n2. Thus (MB,n +
∫

[0,·)×R+
LB,ns dµs)n∈N is a Cauchy sequence w.r.t. the

convergence “uniformly in probability”.

Proof of Theorem 2.22. Our goal is to find a limit strategy S = (MB,MS ,LB,LS) which

satisfies
(
ϕ0(S),ϕ1(S)

)
=
(
ψ0,ψ1), where (ψ0,ψ1) is the predictable làdlàg limit process of

(ϕ0,n,ϕ1,n) introduced at the beginning of this section. Let us deal with the limit orders

first. We apply Lemma 9.8.1 (which is a Komlós-like theorem) and Remark 9.8.2 in Del-

baen and Schachermayer [DS06] twice (first w.r.t. the limit buy orders and measure M̃µ,

then w.r.t. the limit sell orders and measure M̃ν , where we build convex combinations of

the convex combinations chosen for the limit buy orders), which yields that there exist P̃-

measurable R+-valued functions LB and LS and a sequence of (finite) convex combinations

Ŝn ∈ conv(Sn,Sn+1, . . .) such that (L̂B,n)n∈N converges M̃µ-a.e. to LB and (L̂S,n)n∈N converges

M̃ν-a.e. to LS . Note that by a convex combination of strategies Sn we mean a quadruple

(M̂B,n,M̂S,n, L̂B,n, L̂S,n) where M̂B,n ∈ conv{MB,n,MB,n+1, . . .} and so forth, where we use the

same weights for M̂B,n,M̂S,n, L̂B,n, and L̂S,n. The associated portfolio process of a finite con-

vex combination of trading strategies is just the convex combination of the respective associated

portfolio processes. This is due to the linearity of the various integrals in Definition 2.11. Hence,

a convex combination of a-admissible trading strategies is again a-admissible. Since the convex

combinations were taken of trading strategies for which
(
ϕ0(Sn),ϕ1(Sn)

)
n∈N converges P -a.s.

uniformly on [0,T ] to (ψ0,ψ1) this also holds for (Ŝn)n∈N. Thus, we can assume that w.l.o.g.

already the original sequence (Sn)n∈N satisfies

LB,n→ LB, M̃µ-a.e. and LS,n→ LB, M̃ν-a.e.,

as n→∞. Then, we may apply Lemma 2.34 and obtain that w.l.o.g. LB ∈ LB and LS ∈ LS .

Given LB and LS we are now in the position to present the market order part of our guess for

a limit strategy. By Lemma 2.35 there exist predictable increasing processes Y and Z s.t.

Y = lim
n→∞

(
MB,n+

∫
[0,·)×R+

LB,n(s,x)µ(ds,dx)
)
, (2.30)

Z = lim
n→∞

(
MS,n+

∫
[0,·)×R+

LS,n(s,x)ν(ds,dx)
)
,
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w.r.t. the convergence “uniformly in probability”. This suggests the following definition

MB
t := Yt−

∫
[0,t)×R+

LB(s,x)µ(ds,dx),

MS
t := Zt−

∫
[0,t)×R+

LS(s,x)ν(ds,dx).

So now we have found a candidate S := (MB,MS ,LB,LS) for our limit strategy. To make sure

that S satisfies Definition 2.10 we need to verify that MB and MS are predictable increasing

processes. Because Y and Z are predictable, the predictability is immediate from the fact that

for any t we integrate only up to t− in the definition above.

We do need to check though, that MB and MS are increasing. To avoid repeating ourselves,

we only examine MB. Remember that (LB,n)n∈N converges M̃µ-a.e. to LB. Thus, P -a.e.(
LB,n(ω)

)
n∈N

converges µω-a.e. to LB(ω). In addition, the convergence in (2.30) holds P -a.s.

uniformly on [0,T ] for a subsequence. Let A ∈ F be the combined exceptional null set and

ω ∈Ac. Now let 0≤ t1 ≤ t2 ≤ T and an application of Fatou’s lemma yields that

MB
t2 (ω)−MB

t1 (ω) ≥ liminf
n→∞

(
MB,n
t2 (ω)−MB,n

t1 (ω) +
∫

[t1,t2)×R+
LB,n(ω,s,x)µ(ω,ds,dx)

)

−
∫

[t1,t2)×R+
LB(ω,s,x)µ(ω,ds,dx)

≥ liminf
n→∞

(∫
[t1,t2)×R+

LB,n(ω,s,x)µ(ω,ds,dx)
)

−
∫

[t1,t2)×R+
LB(ω,s,x)µ(ω,ds,dx)

≥ 0.

Therefore, the candidate S = (MB,MS ,LB,LS) for our limit strategy is a valid trading strategy

in the sense of Definition 2.10.

All that is left is to check whether it yields the right portfolio process, i.e.
(
ϕ0(S),ϕ1(S)

)
=

(ψ0,ψ1), and that S is a-admissible. We defer the question of admissibility for the moment,

because it follows easily when we can be sure that the trading strategy S has the associated

portfolio process we are looking for. Right from the definition of Y and Z and Lemma 2.35 we

get that ψ1 = η1 +Y +Z = ϕ1(S), so we only have to verify that ϕ0(S) = ψ0.

Main step: Let us show that ϕ0,n→ ϕ0 uniformly in probability where ϕ0 := ϕ(S). If we are

able to show the convergence for the buy and the sell order terms separately, we are done. The

idea is to account executed limit buy orders with limit prices close to the best-ask as market

orders (in the limit they can indeed turn into market orders as Example 2.36 shows, by contrast,
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Continuous time trading of a small investor in a limit order market

executed limit orders “away” from the best-ask price remain limit orders in the limit strategy as

there are only finitely many execution times). For δ > 0 let µ= µ1,δ +µ2,δ be the decomposition

from (2.9). We have∣∣∣∣∣
∫

[0,·)×R+

∫ Ss−

x
yLB,n(s,dy)µ1,δ(ds,dx)−

∫
[0,·)×R+

Ss−L
B,n(s,x)µ1,δ(ds,dx)

∣∣∣∣∣
≤ δ

∫
[0,T )×R+

LB,n(s,x)µ1,δ(ds,dx), ∀n ∈ N. (2.31)

Let ε > 0. It follows from Lemma 2.33 that
(∫

[0,T )×R+
LB,n(s,x)µ1,δ(ds,dx)

)
n∈N

is P -

stochastically bounded. Together with P (
∫

[0,T )×R+
LB(s,x)µ1,δ(ds,dx)<∞) = 1, we derive the

existence of a δ > 0 s.t.

dup

(∫
[0,·)×R+

∫ Ss−

x
yLB,n(s,dy)µ1,δ(ds,dx),(S−,S) •

∫
[0,·)×R+

LB,n(s,x)µ1,δ(ds,dx)
)
≤ ε

4

for all n ∈ N and

dup

(∫
[0,·)×R+

∫ Ss−

x
yLB(s,dy)µ1,δ(ds,dx),(S−,S) •

∫
[0,·)×R+

LB(s,x)µ1,δ(ds,dx)
)
≤ ε

4 .

We fix this δ. By Lemma 2.32 and Lemma 2.29 applied to µ2,δ, there exists a n1 ∈ N with

dup

(∫
[0,·)×R+

∫ Ss−

x
yLB,n(s,dy)µ2,δ(ds,dx),

∫
[0,·)×R+

∫ Ss−

x
yLB(s,dy)µ2,δ(ds,dx)

)
≤ ε

4 , ∀n≥ n1.

By Lemma 2.32 and Proposition 2.42 applied to µ2,δ, we know that(∫
[0,·)×R+

LB,n(s,x)µ2,δ(ds,dx)
)
n∈N

converges to
∫

[0,·)×R+
LB(s,x)µ2,δ(ds,dx) uniformly in

probability. This implies by definition of MB that
(
MB,n+

∫
[0,·)×R+

LB,n(s,x)µ1,δ(ds,dx)
)
n∈N

converges to MB +
∫

[0,·)×R+
LB(s,x)µ1,δ(ds,dx) uniformly in probability. From Lemma 2.33 and

Proposition 2.43 it follows the existence of a n2 s.t.

dup

(
(S−,S) •

(
MB,n+

∫
[0,·)×R+

LB,n(s,x)µ1,δ(ds,dx)
)
,

(S−,S) •
(
MB +

∫
[0,·)×R+

LB(s,x)µ1,δ(ds,dx)
))
≤ ε

4 .

Finally, we obtain by the triangle inequality

dup

(
(S−,S) •MB,n+

∫
[0,·)×R+

∫ Ss−

x
yLB,n(s,dy)µ(ds,dx),

(S−,S) •MB +
∫

[0,·)×R+

∫ Ss−

x
yLB(s,dy)µ(ds,dx)

)
≤ ε.

As the corresponding result holds for the sell orders we obtain that ϕ0,n → ϕ0 uniformly in

probability.
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To conclude the proof, we only have to verify that S is an a-admissible trading strategy, i.e.

that its portfolio process satisfies the inequality in Definition 2.2. This follows from the fact that

ψ is the limit (P -a.s. uniformly on [0,T ]) of the sequence of a-admissible portfolio processes

(ϕ(Sn))n∈N. To see this, note that while for any sequence (an)n ⊂ R that converges towards

a ∈R we cannot be sure that (1{an≥0})n∈N converges towards (1{a≥0})n∈N we nevertheless know

that for any α,β ∈ R

αan1{an≥0}+βan1{an<0}→ αa1{a≥0}+βa1{a<0}, as n→∞,

which is all we need.

2.7 Examples

We give an example of a sequence of limit buy order strategies whose portfolio processes con-

verge to the portfolio process of a market buy order strategy. An inspection of the proof of

Theorem 2.17 reveals that this phenomenon cannot occur if the execution measures µ and ν are

finite.

Example 2.36. Assume that X is a Lévy process with infinitely many downward jumps, i.e.

limn→∞µ
(
(−∞,−1/n]

)
= µ

(
(−∞,0)

)
=∞, where µ is the Lévy measure of X. Now let us

suppose that the best-ask price S is modeled as exponential-Lévy, i.e. St = S0 exp(Xt). Consider

the limit buy order strategies satisfying

LB,n(t,x) = (t−ϕ1,n
t )1{x≤St−− 1

n
St−} where ϕ1,n

0 = ϕ0,n
0 = 0,

i.e. limit prices are slightly below the best-ask price and directly after a successful execution at

time t the total number of bought assets is t (that is ϕ1,n
t = t). LB,n and ϕ1,n are obviously well-

defined with 0≤ ϕ1,n
t ≤ t as for every n and every path there are only finitely many executions.

Let us show that the associated portfolio processes (ϕ0,n,ϕ1,n)n∈N converge to ϕ0
t :=−

∫ t
0 Ss ds

and ϕ1
t := t uniformly in probability. (ϕ0,ϕ1) is generated by the market buy order strategy

MB
t = t. Let Z1, . . . ,Zm be i.i.d. exponential random variables with parameter 1. A well-known

limit result for maxima tells us that

P (Zk ≤ ln(m) +x, k = 1, . . . ,m) → exp(−exp(−x)), m→∞, ∀x ∈ R. (2.32)
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Continuous time trading of a small investor in a limit order market

The interarrival times of jumps ∆X ≤ ln(1− 1/n) are i.i.d. exponentially distributed random

variables with parameter µ
((
−∞, ln(1−1/n)

])
and thus we have for any ε > 0

P (“time between two successive executions of LB,n is always smaller than ε”)

≥ P

(
Zk < εµ

((
−∞, ln(1−1/n)

])
, k = 1, . . . ,

[
2Tµ

((
−∞, ln(1−1/n)

])])
(2.33)

−P

[2Tµ((−∞,ln(1−1/n)])]∑
k=1

Zk < Tµ
((
−∞, ln(1−1/n)

]) ,
where [x] := max{k ∈ N0 : k ≤ x}. Put m :=

[
2Tµ

((
−∞, ln(1−1/n)

])]
. By (2.33), (2.32), the

law of large numbers, and the fact that
(
µ
((
−∞, ln(1−1/n)

]))
n∈N

converges faster to infinity

than
(

ln
(

2Tµ
((
−∞, ln(1−1/n)

])))
n∈N

, it follows that for any ε > 0 there exists an n0 s.t.

for all n≥ n0

P
(
|ϕ1,n
t −ϕ1

t | ≤ ε, ∀t ∈ [0,T ]
)

(2.34)

≥ P (“time between two successive executions of LB,n is always smaller than ε”)≥ 1−ε.

It remains to show that (ϕ0,n)n∈N converges to ϕ0. We have that var(ϕ1,n)T ≤ T for all n ∈ N.

Consequently, we can apply Proposition 2.43 and conclude that
(
(S−,S) • ϕ1,n)

n∈N converges to

(S−,S) • ϕ1 =−ϕ0 uniformly in probability.

Let ε > 0. Due to the up-convergence there exists an n0 ∈ N s.t.

P
(
|(S−,S) • ϕ1,n

t +ϕ0
t | ≤ ε/3, ∀t ∈ [0,T ]

)
≥ 1−ε/3, ∀n≥ n0. (2.35)

For any δ > 0 and t ∈ [0,T ] we have that

∣∣∣ϕ0,n
t + (S−,S) • ϕ1,n

t

∣∣∣ =
∣∣∣∣∣
∫

[0,t)×R+

∫ ∞
x

(y−Ss)LB,n(s,dy)µ(ds,dx)
∣∣∣∣∣

≤
(
δ∨ 1

n

)∫
[0,T ]×R+

∫ ∞
x

LB,n(s,dy)µ(ds,dx)

+ sup
s∈[0,T ]

|Ss| sup
s∈[0,T ]

|ϕ1,n
s −ϕ1

s|µ2,δ([0,T ]×R+) =: I(n) + II(n),

where µ2,δ is defined after equation (2.9). As
∫

[0,T ]×R+

∫
[x,∞)L

B,n(s,dy)µ(ds,dx) ≤ T for all

n ∈ N, we choose δ := ε/(3T ) to obtain P (I(n)≤ ε/3) = 1 for all n≥ (3T )/ε=: n1. We fix this

δ and observe that P (µ2,δ([0,T ]×R+) <∞) = 1. Thus, by (2.34) applied to some appropriate

ε̃ > 0, there exists an n2 ∈ N s.t. P (II(n) ≤ ε/3) ≥ 1− (2ε)/3 for all n ≥ n2. Combining this
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with (2.35) we arrive at

P (|ϕ0,n
t −ϕ0

t | ≤ ε, ∀t ∈ [0,T ]) ≥ 1−ε, ∀n≥ n0∨n1∨n2.

Example 2.37. A somehow artificial but instructive example for a sequence of market order

strategies is

MB,n
t :=

∫ t

0

2n−2∑
k=1

1((2k−1)2−nT,2k2−nT ](s)ds,

MS,n
t :=

∫ t

0

2n−2∑
k=1

1(2k2−nT,(2k+1)2−nT ](s)ds,

i.e. the investor buys and resells faster and faster, but the accumulated number of trades is

constant in n. Both MB,n
t and MS,n

t converge to t/2 uniformly in time, but not in the variation

norm. To obtain the right limit it is obviously important to consider the sequences (MB,n)n∈N
and (MS,n)n∈N separately. The difference MB,n−MS,n would converge to 0 and the transaction

costs would asymptotically disappear.

Example 2.38. In Chapter 3 a model with continuous best-bid and best-ask price processes is

considered in which limit buy orders can only be placed at the current best-bid St and limit sell

orders only at the current best-ask-price St. As S and S move continuously in time, it calls for a

verification that the strategies can be approximated by real-world trading strategies with piecewise

constant limit prices (and order sizes).

To do this, let us embed the model from Chapter 3 into the more general framework of the

current chapter. The best-bid S and the best-ask S are certainly càdlàg processes satisfying the

conditions at the beginning of Section 2.3. Denote by τi the i-th jump time of the Poisson process

N1. Then Sτi is clearly Fτi-measurable and we define the random measures µ by

µ(dt,dx) :=
∞∑
i=1

δ(τi,Sτi )
(dt,dx).

If we define ν similarly using N2 it is easy to see that Assumption 2.7 is satisfied (formally we

have to exclude the null set in Ω on which there exists a point in time s.t. the two independent

processes ∆N1
t > 0 and ∆N2

t > 0 for (v) to hold).

Restricting to limit buy orders this yields strategies of the form

LB(ω,t,x) := L̃Bt (ω)1[0,St(ω)](x),

where the nonnegative predictable process specifying the size of the limit buy order at the best-bid

from Chapter 3 is now denoted by L̃B. Now Theorem 2.17 assures that the trading strategies

considered in Chapter 3 can indeed be approximated by real-world trading strategies.
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2.8 Conclusion

We provide a mathematical framework to model continuous time trading in limit order markets

of a small investor. The model possesses the desirable properties that it is closed under the

up-convergence of the portfolio process and any strategy can be approximated by elementary

strategies. An interesting observation is that if the best-bid or the best-ask price process pos-

sesses infinitely many jumps on compact time intervals, then a sequence of limit order strategies

can turn into a market order strategy when tending to the limit.

2.9 Appendix

Remark 2.39. Note that for P1 and P2 from Definition 2.20 we have

P1 = {X is a [0,∞]-valued predictable process with Mµ(subgraph(X)) = 0} ,

P2 = {X is a [0,∞]-valued predictable process with Mν(supergraph(X)) = 0} ,

and that Assumption 2.21 is the same as assuming Mµ(graph(X)) = 0 and Mν(graph(X)) = 0.

Proposition 2.40. Mµ(subgraph(X)) = 0 and Mν(supergraph(X)) = 0.

Proof. We only consider the first part of the statement, as the second part can be shown anal-

ogously. Clearly for X1,X2 ∈ P1 we have

subgraph(X1∨X2) = subgraph(X1)∪ subgraph(X2)

and thus Mµ(subgraph(X1 ∨X2)) = 0, i.e. P1 is closed under pairwise maximization. By

Theorem A.3 in [KS98] there exists an increasing sequence (Xn)n∈N of elements of P1 s.t.

X = limn→∞Xn Mµ-a.e. and thus by

{(ω,t,x) ∈ Ω̃ : lim
n→∞

Xn(ω,t)> x}= {(ω,t,x) ∈ Ω̃ : ∃n ∈ Ns.t.Xn(ω,t)> x}=
∞⋃
n=1

subgraph(Xn)

we arrive at

Mµ

(
subgraph(X)∆

∞⋃
n=1

subgraph(Xn)
)

= 0.

Because (Xn)n∈N is an increasing sequence we also have subgraph(Xi)⊂ subgraph(Xj) for i≤ j

and therefore

Mµ(subgraph(X)) = Mµ

( ∞⋃
n=1

subgraph(Xn)
)

= lim
n→∞

Mµ(subgraph(Xn)) = 0.
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The following two propositions are rather straightforward. Still, we did not find them in the

literature in the right formulation for us to apply. Hence, we give short proofs for the convenience

of the reader, but do not make any claim of originality.

Proposition 2.41. Let µ be an integer-valued random measure and let A∈ F̃ . Then Mµ(A) = 0

if and only if

P ({ω ∈ Ω : (τi(ω),Yi(ω)) ∈Aω}) = 0, ∀i ∈ N.

Proof. By monotone convergence

Mµ(A) = E

[∫
[0,T ]×R+

1A(t,x)µ(dt,dx)
]

= E

[∫
[0,T ]×R+

1A(t,x)
∞∑
i=1

δ(τi,Yi)(dt,dx)
]

= E

[ ∞∑
i=1

1A (τi,Yi)
]

=
∞∑
i=1

P ({ω ∈ Ω : (τi(ω),Yi(ω)) ∈Aω}) .

Proposition 2.42. Let (Hn)n∈N be a sequence of R-valued and F̃-measurable functions that

converges Mµ-a.e. to an R-valued and F̃-measurable function H. Suppose there exists an R-

valued and F̃-measurable function K, which is µ-integrable and dominates (Hn)n∈N, i.e. |Hn| ≤

K Mµ-a.e. for all n ∈ N. Then (Hn)n∈N and H are µ-integrable and (
∫

[0,·)×R+
Hndµ)n∈N

converges to
∫

[0,·)×R+
Hdµ uniformly in probability.

Proof. Let N ∈ F̃ with Mµ(N) = 0 and Hn→H, |Hn| ≤K on Ω̃\N . By Fubini’s theorem for

transition kernels we obtain that µ(ω,Nω) = 0 for P -a.a. ω ∈ Ω. By dominated convergence we

obtain that ∫
[0,T ]×R+

|Hn(ω,s,x)−H(ω,s,x)|µ(ω,ds,dx) → 0 , n→∞,

for all ω ∈ Ω with µ(ω,Nω) = 0 and
∫
Kdµ(ω, ·) <∞. As K is assumed to be µ-integrable, we

have that P (
∫
Kdµ<∞) = 1 and thus (

∫
[0,·)×R+

Hndµ)n∈N converges to
∫

[0,·)×R+
Hdµ uniformly

in probability.

The following proposition is a variant of Theorem A.9 iii) in [DGR11]. We start the proof

similarly, but later have to deviate to account for the different assumptions.
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Proposition 2.43. Let S be an adapted real-valued càdlàg process and let (An)n∈N be a sequence

of predictable real-valued processes of finite variation for which there exists a measure Q ∼ P

and a constant K > 0 s.t.

EQ [var(An)T ] ≤ K, ∀n ∈ N,

and let A be a predictable real-valued process of finite variation s.t.

sup
t∈[0,T ]

|Ant −At| → 0, in probability,

as n goes to infinity. Then

sup
t∈[0,T ]

|((S−,S) •An)t− ((S−,S) •A)t| → 0, in probability,

as n goes to infinity.

Proof. The well-known equivalence between convergence in probability of a sequence of random

variables to zero and that any subsequence of this sequence contains a subsubsequence converging

almost surely to zero implies implies that we may assume w.l.o.g. that for n→∞

sup
t∈[0,T ]

|Ant −A| → 0, P -a.s..

By the assumption that the limit A is itself of finite variation, it follows from Proposition

A.1 ii) in [DGR11] and Fatou’s lemma that EQ[var(A)T ] ≤ K holds. Thus, it is sufficient to

prove the result for A ≡ 0. Furthermore, by a stopping argument, we may suppose that there

exist constants C1 > 0 and C2 > 0 s.t. supt∈[0,T ] |Ant | ≤ C1 for all n ∈ N and supt∈[0,T ] |St| ≤ C2.

By Theorem A.9 ii) in [DGR11] it holds for all t ∈ [0,T ] and n ∈ N that

sup
t∈[0,T ]

|((S−,S) •An)t| ≤ var(An)T sup
t∈[0,T ]

|St|. (2.36)

For any m ∈ N define the sequence of stopping times Tm0 ,Tm1 , . . . by

Tm0 := 0 and Tmi+1 := inf
{
t > Tmi : |St−STmi |>

1
m

}
,

and let

Sm :=
∞∑
i=0

STmi 1[[Tmi ,Tmi+1[[.

For every m by construction of Sm it is possible to find a constant αm ∈ N and a set Bm ∈ F

such that Sm consist only of αm steps or less on Bm and it holds that Q(Bc
m)≤ 2−m. Now (2.36)
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and the linearity of the integral w.r.t. the integrand yield for any m0 ∈ N and any m≥m0

EQ

[
sup
t∈[0,T ]

|((S−,S) •An)t|1⋂
m≥m0

Bm

]

≤ EQ

[
sup
t∈[0,T ]

|((S−−Sm− ,S−Sm) •An)t+ ((Sm− ,Sm) •An)t|1⋂
m≥m0

Bm

]

≤ 1
m
EQ [var(An)T ] +EQ

[
sup
t∈[0,T ]

|((Sm− ,Sm) •An)t|1⋂
m≥m0

Bm

]
.

By assumption of the Lemma, by construction of Sm, αm, and Bm, as well as by the assumptions

at the beginning of the proof this implies for all m≥m0 that

EQ

[
sup
t∈[0,T ]

|((S−,S) •An)t|1⋂
m≥m0

Bm

]
≤ 1

m
K+ 2C2αmEQ

[
sup
t∈[0,T ]

|Ant |1⋂
m≥m0

Bm

]
.

For any fixed m the second term on the right-hand side of the equation goes to zero as n goes

to infinity, by dominated convergence. Therefore, for any ε > 0 and any m0 ∈ N there exists a

n0(ε,m0) ∈ N such that for all n≥ n0(ε,m0) it holds that

EQ

[
sup
t∈[0,T ]

|((S−,S) •An)t|1⋂
m≥m0

Bm

]
≤ ε.

Hence for any m0 ∈ N we have that

sup
t∈[0,T ]

|((S−,S) •An)t|1⋂
m≥m0

Bm
→ 0, in probability

as n goes to infinity. Note that by a Borel-Cantelli argument we have that Q(limsupmBc
m) = 0,

which implies that (
⋂
m≥m0Bm)m0∈N is an increasing sequence with P (liminfmBm) = 1. Thus,

it also holds that

sup
t∈[0,T ]

|((S−,S) •An)t| → 0, in probability

as n goes to infinity.
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Chapter 3

Optimal portfolios of a small

investor in a limit order market

3.1 Introduction

A portfolio problem in mathematical finance is the optimization problem of an investor possessing

a given initial endowment of assets who has to decide how many shares of each asset to hold at

each time instant in order to maximize his expected utility from consumption (see [Kor97]). To

change the asset allocation of his portfolio or finance consumption, the investor can buy or sell

assets at the market. Merton [Mer69, Mer71] solved the portfolio problem for a continuous time

frictionless market consisting of one risky asset and one riskless asset. When the price process

of the risky asset is modeled as a geometric Brownian motion (GBM), Merton was able to show

that the investor’s optimal strategy consists of keeping the fraction of wealth invested in the

risky asset constant. Due to the fluctuations of the GBM this leads to incessant trading.

The assumption that investors can purchase and sell arbitrary amounts of the risky asset at

a fixed price per share is quite unrealistic in a less liquid market which possesses a significant

bid-ask spread. In today’s electronic markets the predominant market structure is the limit

order market, where traders can continuously place market and limit orders, and change or

delete them as long as they are not executed. When a trader wants to buy shares for example,

he has a basic choice to make. He can either place a market buy order or he can submit a limit

buy order, with the limit specifying the maximum price he would be willing to pay per share. If

he uses a market order his order is executed immediately, but he is paying at least the best-ask

price (the lowest limit of all unexecuted limit sell orders), and an even higher average price if
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the order size is large. By using a limit buy order with a limit lower than the current best-ask

price he pays less, but he cannot be sure if and when the order is executed by an incoming sell

order matching his limit.

We introduce a new model for continuous-time trading using both market and limit orders.

This allows us to analyze e.g. the trade-off between rebalancing the portfolio quickly and trading

at favorable prices. To obtain a mathematically tractable model we keep some idealized assump-

tions of the frictionless market model resp. the model with proportional transaction costs. E.g.

we assume that the investor under consideration is small, i.e. the size of his orders is sufficiently

small to be absorbed by the orders in the order book. The best-ask and the best-bid price

processes solely result from the behavior of the other market participants and can thus be given

exogenously. Furthermore, we assume that the investor’s limit orders are small enough to be

executed against any arising market order whose arrival times are also exogenously given and

modeled as Poisson times. We also assume that limit orders can be submitted and taken out of

the order book for free.

The model tries to close a gap between the market microstructure literature which lacks ana-

lytical tractability when it comes to dynamic trading and the literature on portfolio optimization

under idealized assumptions with powerful closed-form and duality results.

In the economic literature on limit order markets (see e.g. the survey by Parlour and Seppi

[PS08] for an overview) the incentive to trade quickly (and therefore submit market orders) is

usually modeled exogenously by a preference for immediacy. This is e.g. the case in the multi-

period equilibrium models of Foucault, Kadan, and Kandel [FKK05] and Roşu [Roş09], which

model the limit order market as a stochastic sequential game. Even in research concerning the

optimal behavior of a single agent, this exogenous motivation to trade is common. Consider

e.g. Harris [Har98], which deals with optimal order submission strategies for certain stylized

trading problems, e.g. for a risk-neutral trader who has to sell one share before some deadline.

By contrast, in our model the trading decision is directly derived from the maximization of

expected utility from a consumption stream (thus from “first principles”), i.e. the incentive to

trade quickly is explained. Furthermore, in Harris [Har98] the order size is discarded and the

focus is on the selection of the right limit price at each point in time. In our work the limit

prices used by the small investor are effectively reduced to selling at the best-ask and buying

at the best-bid, but in view of the agent’s underlying portfolio problem, the size of these limit

orders is a key question. There is a trade-off between placing large limit orders to profit from the
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spread and taking too much risk by the resulting large positions (usually called inventory risk in

the literature on market making).

In Section 3.2 we introduce the market model on a quite general level. In Section 3.3 we

specify stochastic processes for which we study the problem of maximizing expected logarithmic

utility from consumption over an infinite horizon. Namely, we let the best-bid and best-ask

price processes be geometric Brownian motions and the spread be proportional to them. Market

orders of the other traders arise according to two independent Poisson processes with constant

rates. In Section 3.3 we also provide some intuition on how we obtain a promising candidate

for an optimal strategy and connect it to the solution of a suitable free boundary problem. In

Section 3.4 we prove the existence of a solution of this free boundary problem. The verification

that the constructed solution is indeed optimal is done in Section 3.5.

The optimal strategy consists in placing the minimal amount of market orders which is

necessary to keep the proportion of wealth invested in the risky asset within certain boundaries

– similar to the result of Davis and Norman [DN90] for transaction costs – while within these

boundaries limit orders are used to hit one of the boundaries when at a Poisson time trading is

possible at a favorable price (i.e. the investor adjusts the sizes of his limit orders continuously

in such a way that the proportion invested in the risky asset jumps to one of the boundaries

whenever a limit order is executed by an incoming exogenous market order). By the latter the

investor profits from the bid-ask spread. Thus, although the structure of the solution looks

at first glance quite similar to the case with proportional transaction costs, a key incentive of

the investor is now to capitalize on the spread by placing limit orders. Whereas the investor

generally tries to avoid using market orders, he is always willing to trade using limit orders. In

a sense, trading with limit orders corresponds to negative proportional transactions costs.

We derive the optimal trading strategy by showing the existence of a shadow price process

of the asset – similar to the work of Kallsen and Muhle-Karbe [KMK10] with proportional

transaction costs. A shadow price process S̃ for the risky asset has to satisfy the following two

properties. Firstly, in a fictitious frictionless market without spread and with price process S̃

any transaction feasible in the original market can be implemented at better or equal prices.

Secondly, there is an optimal trading strategy in the fictitious market which can also be realized

in the original market leading to the same trading gains.

The main difference of the shadow price process in our model compared to [KMK10] is that

it possesses jumps – namely at the Poisson arrival times of the exogenous market orders.
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Note that the contents of this chapter have already been published in [KS10].

3.2 The model

3.2.1 Trading of a small investor in a limit order market

Let (Ω,F ,P,(Ft)t≥0) be a filtered probability space satisfying the usual conditions. Regarding

conventions and notation we mostly follow Jacod and Shiryaev [JS02]. For a process X with

left and right limits (also called làglàd) let ∆Xt := Xt−Xt− denote the jump at time t and

let ∆+Xt := Xt+−Xt denote the jump immediately after time t. If we write X = Y for two

stochastic processes X and Y , we mean equality up to indistinguishability.

We model the best-bid price S and the best-ask price S as two continuous, adapted, exoge-

nously given stochastic processes such that S ≤ S. The continuity of S and S will play a key

role in the reduction of the dimension of the strategy set. The arrivals of market sell orders and

market buy orders by the other traders are modeled exogenously by counting processes N1 and

N2 (as defined e.g. in [Pro04], Section 1.3).

In our model (formally introduced in Definition 3.2) the investor may submit market buy and

sell orders which are immediately executed at price S and S, resp. In addition, he may submit

limit buy and sell orders. The limit buy price is restricted to S and these orders are executed at

the jump times of N1 at price S. Accordingly, the limit sell price is restricted to S and the limit

sell orders are executed at the jump times of N2 at the price S.

This restriction is an immense reduction of the dimensionality of the problem, as we do not

consider limit orders at arbitrary limit prices. It can be justified by the following considerations.

A superior limit order strategy of the small investor is to place a limit buy order at a “marginally”

higher price than the current best-bid price S (of course this necessitates to update the limit price

according to the movements of the best-bid price, which could in practice be approximately

realized as long as the submission and deletion of orders is for free). Then, the limit buy order

is executed as soon as the next limit sell order by the other traders arrives (i.e. at the next

jump time of N1). As S is continuous there is no reason to submit a limit buy order at a limit

price strictly lower than the current best-bid price. Namely, such an order could not be executed

before S hits the lower limit buy price of the order. As this appears at a predictable stopping

time it is sufficient to place the order at this stopping time and take the current best-bid price

as the limit price. On the other hand, a limit buy order with limit price in (S,S) is executed at
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the same time as a buy order with limit price S (resp. “marginally” higher than S), but at a

higher price than S (assuming that market sell orders of the other traders still arise according

to N1).

Thus, in our model it is implicitly assumed that the small investor does not influence the

best-ask price or the best-bid price and his orders are small enough to be executed against any

market order arising at ∆N1 = 1 and ∆N2 = 1. Furthermore, the market orders arising at

∆N1 = 1, ∆N2 = 1 (although being large in comparison to the size of the orders of the small

investor) are sufficiently small to be absorbed by the orders in the book, i.e. a jump of N1 or

N2 does not cause a movement of S and S.

With the considerations above we are in the quite fortunate situation that the quadru-

ple (S,S,N1,N2) is sufficient to model the trading opportunities of the small investor. Thus,

our mathematical model can be build on these processes alone (rather than on the dynamics of

the whole order book).

A possible economic interpretation is that S and S move as nonaggressive traders update

their limit prices with varying fundamentals whereas N1 and N2 model immediate supply and

demand for the asset.

Remark 3.1. Note that the investor in our model does not play the role of a market maker

who, however, also wants to profit from the spread. The market maker can influence the spread

and he is forced to trade with arising market orders.

Definition 3.2. Let MB, MS, LB and LS be predictable processes. Furthermore, let MB and

MS be non-decreasing with MB
0 = MS

0 = 0 and LB and LS non-negative. Let c be an optional

process. A quintuple S = (MB,MS ,LB,LS , c) is called a strategy. For η0,η1 ∈ R we define the

portfolio process (ϕ0,ϕ1)(S,η0,η1) associated with strategy S and initial endowment (η0,η1)

to be

ϕ0
t := η0−

∫ t

0
csds−

∫ t

0
Ss dM

B
s +

∫ t

0
Ss dM

S
s (3.1)

−
∫ t−

0
LBs Ss dN

1
s +

∫ t−

0
LSs Ss dN

2
s

ϕ1
t := η1 +MB

t −MS
t +

∫ t−

0
LBs dN

1
s −

∫ t−

0
LSs dN

2
s .

ϕ0 is the number of risk-free assets and ϕ1 the number of risky assets. For simplicity, we

assume there is a risk-free interest rate, which is equal to zero. The interpretation is that

aggregated market buy or sell orders up to time t are modeled with MB
t and MS

t , whereas LBt
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(resp. LSt ) specifies the size of a limit buy order with limit price S (resp. the size of a limit

sell order with limit price S), i.e. the amount that is bought or sold favorably if an exogenous

market sell or buy order arrives at time t. LB and LS can be arbitrary predictable processes

which is justified under the condition that submission and deletion of orders which are not yet

executed is for free. Finally, ct is interpreted as the rate of consumption at time t.

Note that integrating w.r.t. the processes MB and MS which are of finite variation and

therefore have left and right limits is a trivial case of integrating w.r.t. optional semimartingales

(as discussed e.g. in [Gal85] and [KS09b]). For a càdlàg process Y we define the integral∫
(Y−,Y )dMB by

∫ t

0
(Ys−,Ys)dMB

s :=
∫ t

0
Ys−d(MB

s )r +
∑

0≤s<t
Ys∆+MB

s , t≥ 0, (3.2)

where (MB)rt := MB
t −

∑
0≤s<t∆+MB

s . The first term on the right-hand side of (3.2) is just

a standard Lebesgue-Stieltjes integral. For a continuous integrand Y , as e.g. in (3.1), we set∫
Y dMB :=

∫
(Y,Y )dMB (which is consistent with the integral w.r.t. càdlàg integrators).

In (3.1) the integrals w.r.t. N1 and N2 are only up to time t−, a limit order triggered by

∆N i
t = 1 is not yet included in ϕt. The integrals w.r.t. MB and MS are up to time t, but

note that by (3.2) just the orders ∆MB
t and ∆MS

t (corresponding to trades at time t−) are

already included in ϕt at time t, whereas the orders ∆+MB
t and ∆+MS

t (corresponding to trades

at time t) are only included in ϕt right after time t. Hence, (3.1) goes conform to the usual

interpretation of ϕt as the holdings at time t− (and the amount invested in the jump at time

t) and for S = S it coincides with the self-financing condition in frictionless markets (up to the

restriction to finite variation strategies).

3.2.2 The Merton problem in a limit order market

Given initial endowment (η0,η1) a strategy S is called admissible if its associated portfolio

process (ϕ0,ϕ1)(S,η0,η1) satisfies

ϕ0
t + 1{ϕ1

t≥0}Stϕ
1
t + 1{ϕ1

t<0}Stϕ
1
t ≥ 0, ∀t≥ 0. (3.3)

Thus, a strategy is considered admissible if at any time a market order can be used to liquidate

the position in the risky asset resulting in a non-negative amount held in the risk-free asset. Let

A(η0,η1) denote the set of admissible strategies for initial endowment (η0,η1).
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Now the value function V for the optimization problem of an investor with initial endowment

η0 in the risk-free asset and η1 in the risky asset and logarithmic utility function who wants to

maximize expected utility from consumption can be written as

V (η0,η1) := sup
S∈A(η0,η1)

J (S) := sup
S∈A(η0,η1)

E

(∫ ∞
0

e−δt log(ct)dt
)
, (3.4)

where δ > 0 models the time preference. Note that due to the spread the optimization problem

is not myopic.

3.2.3 Fictitious markets and shadow prices

To solve (3.4) we consider – similar to [KMK10] – a fictitious frictionless market comprising of

the same two assets as above. In this frictionless market the discounted price process of the

risky asset is modeled as a real-valued semimartingale S̃. Any amount of the risky asset can be

bought or sold instantly at price S̃.

Let (ψ0,ψ1) be a two-dimensional predictable process, integrable w.r.t. to the two-

dimensional semimartingale (1, S̃), i.e. (ψ0,ψ1) ∈ L((1, S̃)) in the notation of [JS02]. Suppose c

is an optional process. We call S̃ = (ψ0,ψ1, c) a self-financing strategy with initial endowment

(η0,η1) if it satisfies

ψ0
t +ψ1

t S̃t = η0 +η1S̃0 +
∫ t

0
ψ1
sdS̃s−

∫ t

0
csds.

A self-financing strategy S̃ is called admissible if

ψ0
t +ψ1

t S̃t ≥ 0, ∀t≥ 0.

Denote by Ã(η0,η1) the set of all admissible strategies given initial endowment (η0,η1). Again,

we introduce a value function Ṽ by

Ṽ (η0,η1) := sup
S̃∈Ã(η0,η1)

J̃ (S̃) := sup
S̃∈Ã(η0,η1)

E

(∫ ∞
0

e−δt log(ct)dt
)
.

Note that because the spread is zero, for another initial endowment (ζ0, ζ1) we have V (η0,η1) =

V (ζ0, ζ1) if η0 +η1S̃0 = ζ0 + ζ1S̃0. Nonetheless, to keep the notation for the frictionless market

close to the notation for the limit order market we write Ṽ (η0,η1).

Definition 3.3. We call the real-valued semimartingale S̃ a shadow price process of the risky

asset if it satisfies for all t≥ 0:

St ≤ S̃t ≤ St, S̃t =


St if ∆N1

t = 1

St if ∆N2
t = 1

(3.5)
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and if there exists a strategy S = (MB,MS ,LB,LS , c) ∈ A(η0,η1) in the limit order market

such that for the associated portfolio process (ϕ0,ϕ1) we have S̃ = (ϕ0,ϕ1, c) ∈ Ã(η0,η1) and

J̃ (S̃) = Ṽ (η0,η1) in the frictionless market with S̃ as the discounted price process of the risky

asset, i.e. the associated portfolio process of S paired with the consumption rate c of S has to

be an optimal strategy in the frictionless market.

The concept of a shadow price process consists of two parts. Firstly, trading in the frictionless

market at prices given by the shadow price process should be at least as favorable as in the market

with frictions. The investor can use a market order at any time to buy the risky asset at price S.

Hence, we have to require S̃t ≤ St for all t≥ 0 to make sure that he never has to pay more than

in the market with frictions. Analogously, to take care of the market sell orders, we demand

S ≤ S̃t for all t ≥ 0. In a market with proportional transaction costs this would be sufficient,

but in our limit order market the investor can also buy at S whenever an exogenous market sell

order arrives. Thus, we have to require S̃t ≤ St whenever ∆N1
t = 1. Accordingly, to cover the

opportunities to sell at S using limit sell orders, we need to demand S̃t ≥ St whenever ∆N2
t = 1.

Combining these four requirements, we arrive at condition (3.5). Secondly, the maximal utility

which can be achieved by trading at the shadow price must not be higher than by trading in

the market with frictions. This is ensured by the second part of the definition. Note that for a

shadow price to exist, N1 and N2 must not jump simultaneously at any time at which S < S

holds, otherwise (3.5) cannot be satisfied.

The following lemma is a reformulation of Lemma 2.2 in [KMK10]. We quote it for conve-

nience of the reader.

Lemma 3.4. (Kallsen and Muhle-Karbe [KMK10]) Let S be a real-valued semimartingale and

let ϕ ∈ L(S) be a finite variation process (not necessarily right-continuous). Then their product

ϕS can be written as

ϕtSt = ϕ0S0 +
∫ t

0
ϕsdSs+

∫ t

0
(Ss−,Ss)dϕs

= ϕ0S0 +
∫ t

0
ϕsdSs+

∫ t

0
Ss−dϕ

r
s +

∑
0≤s<t

Ss∆+ϕs.

Proposition 3.5. If S̃ is a shadow price process and S is a strategy in the limit order market

corresponding to an optimal strategy S̃ in the frictionless market as in Definition 3.3, then S

is an optimal strategy in the limit order market, i.e. J (S) = V (η0,η1).
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Proof. Step 1. We begin by showing V (η0,η1)≤ Ṽ (η0,η1). Let S∈A(η0,η1) with corresponding

portfolio process (ϕ0,ϕ1). Define

ψ0
t := η0−

∫ t

0
csds−

∫ t

0
(S̃s−, S̃s)dMB

s +
∫ t

0
(S̃s−, S̃s)dMS

s

−
∫ t−

0
LBs S̃sdN

1
s +

∫ t−

0
LSs S̃sdN

2
s

and ψ1 := ϕ1. Applying Lemma 3.4 we get

ψ1
t S̃t = η1S̃0 +

∫ t

0
ψ1
sdS̃s+

∫ t

0
(S̃s−, S̃s)dψ1

s .

This equation is equivalent to

ψ0
t +ψ1

t S̃t−η0−η1S̃0−
∫ t

0
ψ1
sdS̃s+

∫ t

0
csds= ψ0

t +
∫ t

0
(S̃s−, S̃s)dψ1

s −η0 +
∫ t

0
csds. (3.6)

By definition of ψ0 and ψ1 and associativity of the integral the term on the right side is equal

to 0. Hence (3.6) implies that (ψ0,ψ1, c) is a self-financing strategy in the frictionless market.

Furthermore, by (3.5) and (3.3) we get

ψ0
t +ψ1

t S̃t ≥ ϕ0
t +ϕ1

t S̃t ≥ ϕ0
t + 1{ϕ1

t≥0}ϕ
1
tSt+ 1{ϕ1

t<0}ϕ
1
tSt ≥ 0.

Thus for every S ∈A(η0,η1) we have an admissible strategy S̃ = (ψ0,ψ1, c) ∈ Ã(η0,η1) with the

same consumption rate.

Step 2. By the definition of a shadow price there is a strategy S = (MB,MS ,LB,LS , c) in

the limit order market with associated portfolio process (ϕ0,ϕ1) such that S̃ = (ϕ0,ϕ1, c) is an

optimal strategy in the frictionless market, i.e.

J (S) = J̃ (S̃) = Ṽ (η0,η1).

By Step 1 this implies J (S) = V (η0,η1), hence S is optimal.

3.3 Heuristic derivation of a candidate for a shadow price pro-

cess

The model of a small investor trading in a limit order market makes sense in the generality

introduced above. Still, to get enough tractability to be able to construct a shadow price

process we reduce the complexity by restricting ourselves to a more concrete case. From now
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on we model the spread as proportional to the best-bid price, which is modeled as a standard

geometric Brownian motion with starting value s, i.e.

dSt = St(µdt+σdWt), S0 = s, (3.1)

with µ,σ ∈ R+ \ {0}. The size of the spread is modeled with a constant λ > 0. Similarly to

[KMK10] define

C := log(1 +λ) and S := SeC = S(1 +λ).

Let α1,α2 ∈ R+. The arrival of exogenous market orders is modeled as two independent time-

homogenous Poisson processes N1 and N2 with rates α1 and α2. These memoryless and sta-

tionary arrival times, the time-independent coefficients in the dynamics of the best bid price,

the proportional spread, and the infinite horizon of the optimization problem (3.4) will lead to

a time-homogenous structure of the solution.

For α1 = α2 = 0 the model reduces to the model with proportional transaction costs as e.g.

in [DN90], [KMK10] or [SS94]. For λ= 0 and by allowing to trade only at the jump times of the

Poisson process we would arrive at an illiquidity model introduced by Rogers and Zane [RZ02]

which is widely investigated in the literature, see e.g. Matsumoto [Mat06] who studies optimal

portfolios w.r.t. terminal wealth in this model. Pham and Tankov [PT08] recently introduced a

related illiquidity model under which the price of the risky asset cannot even be observed apart

from the Poisson times at which trading is possible.

We will show (under certain restrictions to the parameters µ,σ,λ,α1,α2, see Proposition 3.6)

that it is optimal to control the portfolio as follows. There exist πmin,πmax ∈R+ with 0<πmin <

πmax such that the proportion of wealth invested in the risky asset (measured in terms of the

best bid price) is kept in the interval [πmin,πmax] by using market orders, i.e.

πmin ≤
ϕ1
tSt

ϕ0
t +ϕ1

tSt
≤ πmax, ∀t > 0 (3.2)

(Note that, as S and S only differ in a constant factor, the structure of the solution would

remain unaffected if wealth was measured in terms of the best-ask price instead of the best-bid

price – only the numbers πmin and πmax would change). To keep the proportion within this

interval, as is the case with proportional transaction costs, MB and MS will have local time at

the boundary. In the inner they are constant. Furthermore, at all times two limit orders are

kept in the order book such that

ϕ1
tSt

ϕ0
t +ϕ1

tSt
= πmax, after limit buy order is executed with limit St (3.3)
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ϕ1
tSt

ϕ0
t +ϕ1

tSt
= πmin, after limit sell order is executed with limit St. (3.4)

To follow this strategy both limit prices and limit order sizes have to be permanently adjusted.

The former to stay at S and S, resp. The latter as after a successful execution of a limit

order the proportion of wealth invested in the risky asset and not the number of risk assets is

time-homogenous. Finally, optimal consumption is proportional to wealth measured w.r.t. the

shadow price.

In this section we provide some intuition on how to use the guessed properties of the optimal

strategy described in (3.2), (3.3), and (3.4) to find a promising candidate for a shadow price

process by combining some properties a shadow price process should satisfy. Later, in Section

3.5, we construct a semimartingale that satisfies these properties by using solutions of a suitable

free boundary problem and a related Skorohod problem. This semimartingale is then verified

to be indeed a shadow price process of the risky asset.

The definition of a shadow price process suggests that if for example market order sales

become worthwhile, S̃ approaches S as in [KMK10]. Moreover, by (3.5) if an exogenous market

buy order arises (i.e. the asset can be sold expensively), the shadow price has to jump to S.

Consider a [0,C]-valued Markov process which satisfies

dCt = µ̃(Ct−)dt+ σ̃(Ct−)dWt−Ct−dN1
t + (C−Ct−)dN2

t ,

where the real functions µ̃ and σ̃ are not yet specified, but are assumed to be sufficiently nice for

a solution C of the stochastic differential equation to exist. As an ansatz for the shadow price S̃

we use S̃ := S exp(C). C is similar to the process in [KMK10] apart from its jumps. From Itô’s

formula we get

dS̃t = S̃t−

[(
µ+ σ̃(Ct−)2

2 +σσ̃(Ct−) + µ̃(Ct−)
)
dt+ (σ+ σ̃(Ct−))dWt

+
(
e−Ct−∆N1

t +(C−Ct−)∆N2
t −1

)]
.

For S̃ to be a shadow price process, we have to be able to find a strategy which is optimal

in the frictionless market with price process S̃, but can also be carried out in the limit order

market at the same prices. Fortunately, optimal behavior in the frictionless market is well

understood for logarithmic utility. The plan is to choose the dynamics of S̃ in such a way, that

the portfolio process of the suspected optimal strategy described in (3.2), (3.3), and (3.4) is an
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optimal strategy in the frictionless market. To do this, we can use a theorem by Goll and Kallsen

[GK00] (Theorem 3.1) which gives a sufficient condition for a strategy in a frictionless markets

to be optimal. It says that if the triple (b̃, c̃, F̃ ) is the differential semimartingale characteristics

of the special semimartingale S̃ (w.r.t. to the predictable increasing process I(ω,t) := t and

“truncation function” h(x) = x, see e.g. [JS02] (Proposition II.2.9)) and if the equation

b̃t− c̃tHt+
∫ (

x

1 +Htx
−x

)
F̃t(dx) = 0

was fulfilled (P ⊗I)-a.e on Ω× [0,∞) by H := ϕ1/Ṽ−, then H would be optimal. Using that N1

and N2 are independent and thus

∆N1∆N2 = 0 and e−C−∆N1+(C−C−)∆N2−1 = e−C−∆N1−1 +e(C−C−)∆N2−1

up to evanescence, the characteristic triple of S̃ becomes

b̃t = S̃t−

(
µ+ σ̃(Ct−)2

2 +σσ̃(Ct−) + µ̃(Ct−)
)

+
∫
xF̃t(dx)

c̃t =
(
S̃t−(σ+ σ̃(Ct−))

)2

F̃t(ω,dx) = α1δx1(ω,t)(dx) +α2δx2(ω,t)(dx),

with

x1(ω,t) := S̃t−(ω)(e−Ct−(ω)−1), x2(ω,t) := S̃t−(ω)(eC−Ct−(ω)−1).

Denote by π̃t :=HtS̃t− the optimal fraction invested in the risky asset, measured in terms of the

shadow price. Even though we cannot write down π̃t explicitly, we know that a π̃ is optimal, if

it satisfies

F (Ct−, π̃t) := µ+ σ̃(Ct−)2

2 +σσ̃(Ct−) + µ̃(Ct−)− π̃t(σ+ σ̃(Ct−))2 (3.5)

+ α1(e−Ct−−1)
( 1

1 + π̃t(e−Ct−−1)

)
+ α2(eC−Ct−−1)

(
1

1 + π̃t(eC−Ct−−1)

)
= 0.

Consider the stopping time

τ := inf
{
t > 0 : Ct ∈ {0,C}

}
.
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As long as S < S̃ < S, it should be optimal in the frictionless market to keep the number of

shares in the risky asset constant, i.e. there is no trading. Thus, on ]]0, τ [[ we should have that

d log(ϕ0
t ) = −ct

ϕ0
t

dt= −δṼt
Ṽt− π̃tṼt

dt= −δ
1− π̃t

dt,

where (ϕ0,ϕ1) are the optimal amounts of securities. The second equality holds as optimal

consumption is given by c = δṼ (again by Theorem 3.1 in [GK00]). Using the same approach

to simplify the calculations as in [KMK10] we introduce

β := log
(

π̃

1− π̃

)
= log

(
ϕ1S̃

ϕ0

)
.

On ]]0, τ [[ we have C = C−, hence the dynamics of βt on ]]0, τ [[ can be written as

dβt = d log(ϕ1
t ) +d log(S̃t)−d log(ϕ0

t )

=
(
µ− σ

2

2 + µ̃(Ct) + δ

1− π̃(Ct)

)
dt+ (σ+ σ̃(Ct))dWt. (3.6)

Furthermore, π̃ is a function of C− implicitly given by optimality equation (3.5). On ]]0, τ [[ we

can even write β = f(C) for some function f which, however, depends on the functions µ̃ and σ̃

that are not yet specified. Assume that f ∈ C2. By Itô’s formula we get

dβt =
(
f ′(Ct)µ̃(Ct) +f ′′(Ct)

σ̃(Ct)2

2

)
dt+f ′(Ct)σ̃(Ct)dWt. (3.7)

By comparing the factors of (3.6) and (3.7) we can write down µ̃ and σ̃ as functions of f,µ and

σ:

σ̃ = σ

f ′−1

µ̃ =
(
µ− σ

2

2 + δ(1 +e−f )
e−f

− σ
2

2
f ′′

(f ′−1)2

)
1

f ′−1 .

Note that to get rid of π̃t we have used that from f(C) = β = log
(

π̃
1−π̃

)
follows π̃ = 1

1+e−f(C) .

Now that we have expressions for µ̃ and σ̃ we can insert them into the optimality equation

(3.5) to get an ODE similar to the one in [KMK10]. The ODE in our case is

µ+ 1
2

(
σ

f ′(x)−1

)2
+ σ2

f ′(x)−1 (3.8)

+
(
µ− σ

2

2 + δ(1 +e−f(x))
e−f(x) − σ

2

2
f ′′(x)

(f ′(x)−1)2

)
1

f ′(x)−1

−
(σ+ σ

f ′(x)−1)2

1 +e−f(x) +α1(e−x−1)

 1
1 + e−x−1

1+e−f(x)

+α2(eC−x−1)

 1
1 + eC−x−1

1+e−f(x)


= 0.
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Remember that apart from a possible bulk trade at time 0 in our suspected optimal strategy

the aggregated market buy and sell orders are local times. This implies that the fraction invested

in the risky asset also has a local time component, and hence the same is true for β. Thus a

smooth function f with β = f(C) has to possess an exploding first derivative as in C no local

time appears (the ansatz that C resp. S̃ has no local time makes sense, as it is well known that a

local time component in the discounted price process would imply arbitrage, see e.g. Appendix

B in [KS98] or [JP05] for an introduction to the problematics). To avoid an explosion, we turn

the problem around by considering C as a function of β, i.e. C = g(β) := f−1(β). Defining

B(y,z) := α1(e−z−1)
(

1
1 + e−z−1

1+e−y

)
+α2(eC−z−1)

 1
1 + eC−z−1

1+e−y

 , (3.9)

we can invert ODE (3.8) and get

g′′(y) = − 2
σ2B(y,g(y))− 2µ

σ2 + 2
1 +e−y

(3.10)

+
( 6
σ2B(y,g(y)) + 4µ

σ2 −
2

1 +e−y
−1− 2δ

σ2 (1 +ey)
)
g′(y)

+
(
− 6
σ2B(y,g(y))− 2µ

σ2 + 1 + 4δ
σ2 (1 +ey)

)
(g′(y))2

+
( 2
σ2B(y,g(y))− 2δ

σ2 (1 +ey)
)

(g′(y))3.

Note that this equation without the term B is the same ODE as in [KMK10]. We need to take

care that the local time in β does not show up in C but since local time only occurs at β and β

by choosing the right boundary conditions for g′ this can be avoided easily. Namely, g′ has to

vanish at the boundaries. Similar to [KMK10] we arrive at the boundary conditions

g(β) = C, g(β) = 0, g′(β) = g′(β) = 0, (3.11)

where β and β have to be chosen. Indeed, an application of Itô’s formula shows that these

boundary conditions for g′ imply that C does not have a local time component.

3.4 Existence of a solution to the free boundary problem

Proposition 3.6. Let α1 < µ1+λ
λ , α2 < (σ2−µ)1+λ

λ , and δ > α2λ. Then the free boundary

problem (3.10)/(3.11) admits a solution (g,β,β) such that g : [β,β]→ [0,C] and g is strictly

decreasing.
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The first two parameter restrictions can be interpreted economically quite well, whereas the

last restriction is a technical condition, which is sufficient for the existence of a shadow price.

As α1,α2 ≥ 0 the first two parameter restrictions imply that

0< µ < σ2. (3.1)

In the case with proportional transaction costs, (3.1) guarantees that 0 < πmin < πmax < 1, i.e.

the optimal strategy entails neither leveraging nor shorting of the risky asset. This is not the case

when the opportunity to trade at more favorable prices using limit orders exists. Namely, short

selling the stock by a limit order and liquidating this position again after the successful execution

of a limit buy order leads to some additional expected return whose rate is for small λ roughly

α1λ (note that α1 is the rate of the arrival times which allow to buy the stock cheaply back,

the expected return is earned as long as the investor holds a short position). Thus α1 < µ1+λ
λ

guarantees that short selling is not worthwhile. Analogously long positions that are build up

with limit buy orders yield an additional expected return with approximative rate α2λ. Thus

α2 < (σ2−µ)1+λ
λ becomes necessary to exclude leveraging. Summing up, the first two conditions

are necessary to avoid leveraging and short selling.

Proof. Define for y,z ∈ R

B̃(y,z) :=



B(y,z) if z ∈ [0,C],

α2
(
eC −1

)(
1 + eC−1

1+e−y

)−1
if z < 0,

α1
(
e−C −1

)(
1 + e−C−1

1+e−y

)−1
if z > C.

Note that B̃(y,z) is decreasing in y and z. Furthermore, for all y,z ∈ R we have

− α1λ

1 +λ
< B̃(y,z)< α2λ.

Instead of dealing with the original free boundary problem (3.10)/(3.11), we now replace (3.10)

with

g′′(y) = − 2
σ2 B̃(y,g(y))− 2µ

σ2 + 2
1 +e−y

(3.2)

+
( 6
σ2 B̃(y,g(y)) + 4µ

σ2 −
2

1 +e−y
−1− 2δ

σ2 (1 +ey)
)
g′(y)

+
(
− 6
σ2 B̃(y,g(y))− 2µ

σ2 + 1 + 4δ
σ2 (1 +ey)

)
(g′(y))2

+
( 2
σ2 B̃(y,g(y))− 2δ

σ2 (1 +ey)
)

(g′(y))3,
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whereas the boundary condition (3.11) stays the same. We will see that the change from B

to B̃ guarantees that functions satisfying the ODE do not explode, because the impact of g(y)

on g′′(y) remains bounded, even when g(y) leaves [0,C]. Note that if we show the existence

of a solution g : [β,β]→ [0,C] to this modified free boundary problem, we have also shown the

existence of a solution to the original free boundary problem, since B(y,z) = B̃(y,z) on R× [0,C].

Denote by y0 the unique root of the function

H(y) := −α1
σ2

(
e−C −1

)(
1 + e−C −1

1 +e−y

)−1

− µ

σ2 + 1
1 +e−y

.

Such an y0 exists. Indeed, we have assumed α1 < µ1+λ
λ , which implies α1λ−µ−µλ

σ2+σ2λ < 0. Thus, as

C = log(1 +λ), it follows limy→−∞H(y) < 0. e−C − 1 < 0 and µ < σ2 imply limy→∞H(y) > 0.

Since H is continuous, the intermediate value theorem implies the existence of a y0, which is

unique since H is strictly increasing.

For any ∆ > 0 let β∆ := y0−∆. For any choice of ∆ > 0 the initial value problem given

by (3.2) with initial conditions g(β∆) = C and g′(β∆) = 0 admits a unique local solution g∆.

Because δ−α2λ > 0, we can define a real number M < 0 by

M := min

− 3

√
3(α2λ+µ)
δ−α2λ

,−

√
3(3α2λ+ 2µ)
δ−α2λ

,−3α2λ+µ

δ−α2λ

 .
For g′∆(y)<M we have g′′∆(y)> 0. Similarly, define a real number M > 0 by

M := max

 3

√√√√3
(
α1λ
1+λ +σ2

)
δ−α2λ

,

√
3(3α2λ+ 2µ)
δ−α2λ

,
3
(

6α1λ
1+λ +σ2 + 4δ

)
2(δ−α2λ)

 .
For g′∆(y) > M we have g′′∆(y) < 0. Hence, g′∆(y) ∈ [M,M ] for all y ≥ β∆ and the maximal

interval of existence for g∆ is R. Note that M,M do not depend on the choice of ∆.

By α2 < (σ2−µ)1+λ
λ , there exist y? ∈ R and ε > 0 such that

− 2
σ2 B̃(y,z)− 2µ

σ2 + 2
1 +e−y

> ε

for all y ≥ y?,z ∈R (this can be proved analogously to the existence of y0). Combining this with

(3.2) shows that there even exists an y∆ such that g′′∆(y) > ε for g′∆(y) ≤ 0 and y ≥ y∆. Thus,

g′∆ has at least another root larger than β∆, i.e.

β∆ := min{y > β∆ : g′∆(y) = 0}<∞.

Hence, by definition g∆ is decreasing on [β∆,β∆]. The remainder of the proof consists in showing

that g∆(β∆)→ C for ∆→ 0, g∆(β∆)→−∞ for ∆→∞ and that ∆ 7→ g∆(β∆) is a continuous
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mapping. Then, by the intermediate value theorem, there exists a ∆ such that g∆ is a solution

to the free boundary problem (3.2)/(3.11).

Step 1. We prove that g∆(β∆)→C for ∆→ 0. The boundedness of (∆,y) 7→ g′∆(y) together

with (3.2) implies that |g′′∆(y)| is bounded by a constant M ′′ on [y0−1,y0 + 1]. For ∆ < 1 and

y ∈ [y0−1,y0 + 1] we get |g′∆(y)| ≤ (y−y0 + ∆)M ′′. Hence, by (3.2), g∆(y)→ C for ∆→ 0 and

y→ y0, the continuity of B̃, and the definition of y0 we have that

sup
y∈[y0−∆,y0+∆̃]

|g′′∆(y)| → 0 for ∆,∆̃ ↓ 0. (3.3)

Firstly, by (3.3) the last three summands in (3.2) are of order o(y−y0 +∆) for (∆,y)→ (0,y0).

Let us rewrite the first summand of (3.2) as

− 2
σ2 B̃(y,g∆(y))− 2µ

σ2 + 2
1 +e−y

=
(
− 2
σ2 B̃(y,g∆(y)) + 2

σ2 B̃(y,C)
)

+
(
− 2
σ2 B̃(y,C)− 2µ

σ2 + 2
1 +e−y

)
. (3.4)

Secondly, because of g′∆(y0−∆) = 0, a first order Taylor expansion of the first summand in

(3.4) at y0−∆ shows that

− 2
σ2 B̃(y,g∆(y)) + 2

σ2 B̃(y,C)

= 1
2
(
g′′∆(ξ∆)∂2B̃(y,g∆(ξ∆)) + (g′∆(ξ∆))2∂22B̃(y,g∆(ξ∆))

)
(y−y0 + ∆)2,

for ξ∆ ∈ [y0−∆,y], i.e. this term is also of order o(y−y0 + ∆) for (∆,y)→ (0,y0).

Thirdly, a first order Taylor expansion of the second summand in (3.4) at y0 shows that

the term can be written as a(y− y0) + o(y− y0), where a := − 2
σ2∂1B̃(y0,C)) + 2e−y0

(1+e−y0 )2 > 0.

Combining the three points above it follows that

g′′∆(y) = a(y−y0) +o(y−y0) +o(y−y0 + ∆), for (∆,y)→ (0,y0).

Thus, for any constant K > 0 we can choose ∆ small enough that g′′∆(y) > a
2∆ on y ∈ [y0 +

∆,y0 + (K+ 1)∆]. Hence,

β∆−β∆ < 2∆ +
4∆supy∈[y0−∆,y0+∆] |g′′∆(y)|

a∆ → 0, for ∆→ 0.

Since (y,∆) 7→ g′∆ is bounded it follows that g∆(β∆)→ C for ∆→ 0.

Step 2. We prove that g∆(β∆)→−∞ for ∆→∞. Remember that the definition of y0 and
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the strict monotonicity of H imply H(y?)< 0 for any y? < y0. Let

M̃(y?) := max
{ 1

3H(y?)
6
σ2

α1λ
1+λ + 3 + 2δ

σ2 (1 +ey?)
,

−

√√√√ −1
3H(y?)

6
σ2

α1λ
1+λ + 1 + 4δ

σ2 (1 +ey?)
,− 3

√√√√ −1
3H(y?)

2
σ2

α1λ
1+λ + 2δ

σ2 (1 +ey?)

< 0.

For y ≤ y? and 0 ≥ g′∆(y) > M̃(y?) we have that g′′∆(y) < H(y?) < 0. By g′′∆(β∆) < 0, this

yields g′∆(y) < 0 for y ≤ y? and also g′∆(y) ≤ M̃(y?) for y ∈ [y0−∆ + M̃(y?)
H(y?) ,y

?]. Therefore,

g∆(β∆)→−∞ as ∆→∞.

Step 3. We prove that ∆ 7→ g∆(β∆) is continuous. By Theorem 2.1 in [Har64] and because

for every choice of ∆ ∈ (0,∞) the maximal interval of existence of g∆ is R, it follows that the

general solution (g,g′)(∆,y) := (g∆(y),g′∆(y)) : (0,∞)×R→ R2 is continuous. Thus, (g∆,g
′
∆)

converges to
(
g∆0 ,g

′
∆0

)
uniformly on compacts as ∆→∆0.

Therefore, it is sufficient to show that ∆→ ∆0 implies β∆ → β∆0 . Fix ∆0 ∈ (0,∞). To

verify that liminf∆→∆0 β∆ ≥ β∆0 note that by Step 2 we have g′∆(y) < 0 for all ∆ > 0, y <

y0 (as y? was chosen arbitrary). In addition, given an ε > 0, g′∆0
is strictly separated from

[0,∞) on [y0,β∆0 − ε]. By the uniform convergence on compacts of g′∆ to g′∆0
, it follows that

liminf∆→∆0 β∆ ≥ β∆0 .

By the continuity of g′′∆0
we have g′′∆0

(β∆0)≥ 0. In the case that g′′∆0
(β∆0)> 0, a first order

Taylor expansion of g′∆0
at β∆0 shows that g′∆0

(y)> 0 immediately after β∆0 . Otherwise, i.e. if

g′′∆0
(β∆0) = 0, the same fact follows from a second order Taylor expansion of g′∆0

at β∆0 , because

for g′∆0
(β∆0) = g′′∆0

(β∆0) = 0 we have g′′′∆0
(β∆0) =− 2

σ2∂1B̃(β∆0 ,g∆0(β∆0)) + 2exp(−β∆0 )
(1+exp(−β∆0 ))2 > 0.

Here the definition of B̃ requires us to assume g∆0(β∆0) 6= 0 to ensure the differentiability of

g′′∆0
at β∆0 , but this is not problematic, because otherwise (g∆0 ,β∆0

,β∆0) would already be a

solution to the free boundary problem. Thus, there exists an ε0 > 0 such that g′∆0
(β∆0 +ε)> 0

for any ε ∈ (0,ε0). This implies that limsup∆→∆0 β∆ ≤ β∆0 and altogether continuity.

3.5 Proof of the existence of a shadow price

Throughout the section we assume that the assumptions of Proposition 3.6 are satisfied so that

the free boundary problem specified in (3.10) and (3.11) has a solution (g,β,β) with g : [β,β]→

[0,C] strictly decreasing.
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Lemma 3.7. Let β0 ∈ [β,β] and

a(y) :=
(
µ− σ

2

2 + δ(1 +ey) + σ2g′′(y)
2(1−g′(y))2

)
1

1−g′(y) , b(y) := σ

1−g′(y)

for y ∈ [β,β]. Then there exists a unique solution (β,Ψ) to the following stochastic variational

inequality

(i) β is càdlàg and takes values in [β,β]. Ψ is continuous and of finite variation with starting

value Ψ0 = 0,

(ii)

βt = β0 +
∫ t

0
a(βs−)ds+

∫ t

0
b(βs−)dWs (3.1)

+
∑
s≤t

(
(β−βs−)∆N1

s + (β−βs−)∆N2
s

)
+ Ψt,

(iii) for every progressively measurable process z which has càdlàg paths and takes values in

[β,β], we have ∫ t

0
(βs−zs)dΨs ≤ 0, ∀t≤ 0. (3.2)

Proof. We want to apply Theorem 1 in [MR85], which guarantees existence and uniqueness of

reflected diffusion processes with jumps in convex domains under certain conditions. Thus we

only need to verify that the conditions of the theorem are fulfilled in our setting.

Firstly, (β,β) is trivially bounded and convex. Secondly, the jump term in (3.1) ensures that

all jumps from [β,β] are inside [β,β]. All that is left is to check a Lipschitz-type condition. Note

that if g is a solution to ODE (3.10) on [β,β] the functions g, g′ and g′′ are continuous and

therefore bounded on the compact set [β,β]. Furthermore, as we know that g′ ≤ 0 on [β,β], the

derivative b′ of b is bounded on [β,β]. In addition, this also implies that B defined in (3.9) is

bounded on [β,β] as well, and the same is true for ∂1B and ∂2B. Thus also g′′′ is bounded on

[β,β] (using that the solution g of the free boundary problem (3.10)/(3.11) can be extended to

some neighborhood of β and β, resp.) This implies that even the derivative a′ of a is bounded

on [β,β].

Remark 3.8. Since Ψ is of finite variation there exist two non-decreasing processes Ψ and Ψ

such that Ψ = Ψ−Ψ and Var(Ψ) = Ψ+Ψ. Furthermore, (3.2) implies that Ψ increases only on

{β = β} (resp. on {β− = β})and Ψ increases only on {β = β} (resp. on {β− = β}).
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Lemma 3.9. For β0 ∈ [β,β] let a(·), b(·) and the process β be from Lemma 3.7. Then C := g(β)

is a [0,C]-valued semimartingale with

dCt =
(
g′(βt−)a(βt−) + 1

2g
′′(βt−)b(βt−)2

)
dt+g′(βt−)b(βt−)dWt

− g(βt−)dN1
t + (C−g(βt−))dN2

t

and S̃ := SeC satisfies

dS̃t = S̃t−

(
g′(βt−)a(βt−) + 1

2g
′′(βt−)b(βt−)2 + 1

2
(
g′(βt−)b(βt−)

)2 +µ+σg′(βt−)b(βt−)
)
dt

+ S̃t−
(
g′(βt−)b(βt−) +σ

)
dWt

+ S̃t−
(
exp{−g(βt−)∆N1

t + (C−g(βt−))∆N2
t }−1

)
.

Proof. Since g′(β) = g′(β) = 0 the result follows by Itô’s lemma, the integration by parts formula

and Remark 3.8.

Lemma 3.10. S̃ is a special semimartingale. The differential semimartingale characteristics of

S̃ w.r.t I and “truncation function” h(x) = x are

b̃t = S̃t−

(
−B(βt−,g(βt−)) + 1

1 +e−βt−

(
σ

1−g′(βt−)

)2
)

+
∫
xF̃t(dx)

c̃t = S̃2
t−

(
σ

1−g′(βt−)

)2

F̃t(ω,dx) = α1δx1(ω,t)(dx) +α2δx2(ω,t)(dx),

with

x1(ω,t) := S̃t−(ω)(e−Ct−(ω)−1), x2(ω,t) := S̃t−(ω)(eC−Ct−(ω)−1).

Proof. With the definition of a(·) and b(·) in Lemma 3.7 and ODE (3.10) we get

g′(βt−)a(βt−) = − σ2

2
g′(βt−)

(1−g′(βt−))2 +g′(βt−)δ(1 +eβt−)−g′(βt−)B(βt−,g(βt−))

+ σ2

1 +e−βt−
g′(βt−)

(1−g′(βt−))2 ,

1
2g
′′(βt−)b(βt−)2 = − B(βt−,g(βt−))(1−g′(βt−))−µ+ σ2

1 +e−βt−
1

1−g′(βt−)

− σ2

2
g′(βt−)

1−g′(βt−) −g
′(βt−)δ(1 +eβt−),

1
2
(
g′(βt−)b(βt−)

)2 = σ2

2

(
g′(βt−)

1−g′(βt−)

)2
,

σg′(βt−)b(βt−)) = σ2 g′(βt−)
1−g′(βt−) .

The result now follows from Lemma 3.9.
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Proposition 3.11. Given initial endowment (η0,η1), let β0 be defined by

β0 :=


β if η1s

η0+η1s <
1

1+e−β
, (s := S0)

β if η1s
η0+η1s >

1
1+e−β

,

or else, let β0 be the solution of

η1eg(y)s

η0 +η1eg(y)s
= 1

1 +e−y
.

Given the reflected jump-diffusion β starting in β0 as is Lemma 3.7 and the resulting S̃ of Lemma

3.9 let

Ṽt := (η0 +η1S̃0)E
(∫ ·

0

1
(1 +e−βs−)S̃s−

dS̃s−
∫ ·

0
δds

)
t

, t≥ 0,

ct := δṼt, t≥ 0,

ϕ1
t := 1

(1 +e−βt−)S̃t−
Ṽt−, ϕ0

t := Ṽt−−ϕ1
t S̃t−, t > 0,

and let ϕ0
0 := η0 and ϕ1

0 := η1. Then Ṽt = η0 + η1S̃0 +
∫ t
0 ϕ

1
sdS̃s−

∫ t
0 csds and (ϕ0,ϕ1, c) is an

optimal strategy for initial endowment (η0,η1) in the frictionless market with price process S̃.

Proof. Given the semimartingale characteristics in Lemma 3.10 we need to check that Ht :=
1

(1+e−βt− )S̃t−
solves the optimality equation of Goll and Kallsen ([GK00], Theorem 3.1), i.e. that

(P ⊗ I)-a.e.

b̃t− c̃tHt+
∫ (

x

1 +Htx
−x

)
F̃t(dx) = 0

holds. Of course the choice of H0 is irrelevant for optimality.

Moreover, note that for t > 0 the term −S̃t−B(βt−,g(βt−))+
∫
xF̃t(dx) in b̃t and the integral

term in the optimality equation cancel each other. The key to seeing this is∫ (
x

1 +Htx

)
F̃t(dx) =

∫ (
x

1 +Htx

)
α1δx1(dx) +

∫ (
x

1 +Htx

)
α2δx2(dx)

=
α1S̃t−

(
e−g(βt−)−1

)
1 + S̃t−(e−g(βt−)−1)

(1+e−βt−)S̃t−

+
α2S̃t−

(
eC−g(βt−)−1

)
1 +

S̃t−

(
eC−g(βt−)−1

)
(1+e−βt−)S̃t−

= α1S̃t−
(
e−g(βt−)−1

) 1

1 + (e−g(βt−)−1)
1+e−βt−



+ α2S̃t−
(
eC−g(βt−)−1

) 1

1 +

(
eC−g(βt−)−1

)
1+e−βt−


= S̃t−B(βt−,g(βt−)),
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where the second equality follows from the definition of x1 and x2 (in Lemma 3.10) and the

definition of H. Thus the specified strategy is optimal in the frictionless market.

Lemma 3.12. There exist two deterministic functions F 1 : [β,β]→ [0,∞) and F 2 : [β,β]→

(−∞,0] such that for t > 0

ϕ1
t −ϕ1

0 =
∫ t

0

ϕ1
se
−βs−

1 +e−βs−
dΨs+

∑
0<s<t

ϕ1
s(eF

1(β−)−1)∆N1
s +

∑
0<s<t

ϕ1
s(eF

2(β−)−1)∆N2
s . (3.3)

Remark 3.13. As we will see in the proof of Theorem 3.14, Lemma 3.12 can be interpreted in

the following way. The first summand on the right-hand side of (3.3) tells us that market orders

are only used when the proportion invested in the risky asset is at the boundary. The last two

summands imply that the sizes of the limit orders divided by the current holdings in the stock

are deterministic functions of the current fraction of wealth invested in the stock (in terms of

the shadow price).

Proof. By Proposition 3.11 ϕ1 is càglàd. Therefore, it is sufficient to show that (3.3) holds for

the right-continuous versions of the processes on both sides of the equation.

After taking the logarithm of ϕ1
+ we can write its dynamics as

d logϕ1
t+ = d log Ṽt−d log S̃t−d log(1 +e−βt).

By Itô’s formula and Proposition 3.11 we have that

d log Ṽt = 1
(1 +e−βt−)S̃t−

dS̃t− δdt−
1
2

(
1

(1 +e−βt−)S̃t−

)2

d[S̃, S̃]ct

+ log
(

1 + 1
(1 +e−βt−)S̃t−

∆S̃t

)
− 1

(1 +e−βt−)S̃t−
∆S̃t

=
[ 1

1 +e−βt−

(
g′(βt−)a(βt−) + 1

2g
′′(βt−)b(βt−)2 + 1

2(g′(βt−)b(βt−))2

+ µ+σg′(βt−)b(βt−)
)
− δ− 1

2
(g′(βt−)b(βt−) +σ)2

(1 +e−βt−)2

]
dt

+ g′(βt−)b(βt−) +σ

1 +e−βt−
dWt

+ log
(

1 + exp{−g(βt−)∆N1
t + (C−g(βt−))∆N2

t }−1
1 +e−βt−

)
. (3.4)
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Because S̃ is defined as S exp(C) we get

−d log S̃t =
(
σ2

2 −µ
)
dt−σdWt−dCt

=
(
σ2

2 −µ−g
′(βt−)a(βt−)− 1

2g
′′(βt−)b(βt−)2

)
dt

−
(
g′(βt−)b(βt−) +σ

)
dWt

+ g(βt−)∆N1
t −

(
C−g(βt−)

)
∆N2

t .

Using the properties of β from Lemma 3.7, another application of Itô’s formula yields

−d log(1 +e−βt) = e−βt−

1 +e−βt−
dβt−

1
2

e−βt−

(1 +e−βt−)2d[β,β]Ct

−
(
log(1 +e−βt)− log(1 +e−βt−)

)
− e−βt−

1 +e−βt−
∆βt

= e−βt−

1 +e−βt−

(
a(βt−)− 1

2
e−βt−

(1 +e−βt−)2 b(βt−)2
)
dt

+ e−βt−

1 +e−βt−
b(βt−)dWt

+ e−βt−

1 +e−βt−

(
dΨt−dΨt

)
−

(
log(1 +e−β)− log(1 +e−βt−)

)
∆N1

t

−
(
log(1 +e−β)− log(1 +e−βt−)

)
∆N2

t .

Plugging in ODE (3.10) for g′′ and summing up we see that all dt-terms and all dW -terms

of the process logϕ1
+ cancel out. Define

F 1(x) := log
(

1 + exp{−g(x)}−1
1 +e−x

)
+g(x)− log

(
1 +e−β

1 +e−x

)
,

F 2(x) := log
(

1 + exp{(C−g(x))}−1
1 +e−x

)
−
(
C−g(x)

)
− log

(
1 +e−β

1 +e−x

)
. (3.5)

Itô’s formula applied to the semimartingale log(ϕ1
+) and the C2-function x 7→ exp(x) shows that

(3.3) holds for the right-continuous versions. To finish the proof note that F 1(x) ≥ 0 for all

x ∈ [β,β] follows from g ≥ 0. F 2(x)≤ 0 for all x ∈ [β,β] follows analogously, now making use of

C−g ≥ 0.

Theorem 3.14. S̃ is a shadow price process. An optimal strategy S in the limit order market
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is given by

MB
t = 1{t>0}

 η0 +η1s(1 +λ)(
1 + exp(−β)

)
s(1 +λ)

−η1

+

+
∫ t

0
1{β−=β}

ϕ1e−β

1 +e−β
dΨ,

MS
t = 1{t>0}

 η0 +η1s(
1 + exp(−β)

)
s
−η1

−−∫ t

0
1{β−=β}

ϕ1e−β

1 +e−β
dΨ,

LBt = ϕ1
t (eF

1(βt−)−1), LSt =−ϕ1
t (eF

2(βt−)−1),

and ct = δṼt, where F 1, F 2 are defined in (3.5) and s = S0. The strategy yields finite expected

utility.

Remark 3.15. Theorem 3.14 can be interpreted as follows. MB is the minimal amount of risky

assets the investor has to buy by market orders to prevent that the fraction of wealth invested in

the risky asset leaves the acceptable interval at the lower boundary (the first summand of MB

puts the fraction on the lower boundary if it starts below the interval at time zero). Analogously,

MS is the minimal amount of risky assets the investor has to sell by market orders to prevent

that the fraction of wealth invested in the risky asset leaves the interval at the upper boundary.

Mathematically these minimal trades correspond to the local time of the two dimensional wealth

process at the boundaries of the cone illustrated in Fig. 3.4.

The choice of LB (resp. LS) ensures that after a successful execution of the limit buy order

(resp. the limit sell order) the fraction of wealth invested in the risky asset jumps on the upper

boundary (resp. the lower boundary) of the interval. As LB > 0 and LS > 0 apart from the time

at which the wealth process is at the boundary (which has Lebesgue measure zero) the investor is

always willing to trade both with limit buy and with limit sell orders. However, the order sizes

depend on how far away the wealth process is from the boundaries and they have to be adjusted

continuously with the movements of the process (βt)t≥0.

Remark 3.16. An important detail in model (3.1) is that a limit order has to be in the book

already at ∆N i = 1 to be executed against the arising market order. This market mechanism is

reflected in the condition that the limit order sizes LB and LS have to be predictable. By contrast,

in the frictionless market with price process S̃ the buying decision at a time τ at which S̃τ = Sτ ,

may depend on all new information available at time τ (Note that by the standard convention in

frictionless market models a simple purchase at time τ only affects the simple trading strategy on

(τ,∞), i.e. the value of the strategy at τ itself is not affected. Thus the latter is no contradiction
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to the fact that the strategy in the frictionless market with price process S̃ is predictable as well.

See also the discussion after Definition 3.2). However, as the jumps of S̃ always land on one of

the two continuous processes S or S, and limit orders are submitted contingent that they can be

executed, it turns out that this subtle distinction does not matter.

of Theorem 3.14. By construction of S̃ (3.5) is clearly satisfied. All we have to do is to construct

an admissible strategy S = (MB,MS ,LB,LS , c) in the limit order market such that the associ-

ated portfolio process of S as defined in (3.1) is equal to the optimal strategy in the frictionless

market (ϕ0,ϕ1, c) from Proposition 3.11.

By Lemma 3.12 ϕ1 is of finite variation, hence we can write it as the difference of two

increasing càglàd processes Z1 and Z2, i.e. ϕ1 = η1 +Z1−Z2. Since the sum
∑
s<t∆+Zis clearly

converges, we can define the continuous component (Zi)ct :=Zit−
∑
s<t∆+Zis of Zi for i ∈ {1,2}.

Note that (Zi)c indeed has continuous paths since Zi has càglàd paths.

Now let MB
t := ∆+Z1

01{t>0}+ (Z1)ct and MS
t := ∆+Z2

01{t>0}+ (Z2)ct . Clearly, MB and MS

are non-decreasing predictable processes. Again by Lemma 3.12 and by Remark 3.8 we have∫ ·
0

1{S̃ 6=S}dM
B =

∫ ·
0

1{S̃ 6=S}dM
S = 0. (3.6)

Thus, we have
∫ ·

0SdM
B =

∫ ·
0 S̃dM

B and
∫ ·

0SdM
S =

∫ ·
0 S̃dM

S . Furthermore, let LBt :=

ϕ1
t (eF

1(βt−)−1) and LSt :=−ϕ1
t (eF

2(βt−)−1). LB and LS are predictable and by Lemma 3.12 we

have ∆+Z1
t =LBt ∆N1

t and ∆+Z2
t =LSt ∆N2

t for t > 0. Therefore, this construction of S satisfies

ϕ1
t = η1 +MB

t −MS
t +

∫ t−

0
LBdN1−

∫ t−

0
LSdN2, ∀t≥ 0.

Define

ψ0
t := η0−

∫ t

0
csds−

∫ t

0
SsdM

B
s +

∫ t

0
SsdM

S
s

−
∫ t−

0
LBs SsdN

1
s +

∫ t−

0
LSs SsdN

2
s ,

where c is from Proposition 3.11. By (3.6), S = S̃ on ∆N1 = 1 resp. S = S̃ on ∆N2 = 1 and

Lemma 3.4, we have that (ψ0,ϕ1, c) is self-financing in the frictionless market. Thus, ψ0 = ϕ0

implying that (ϕ0,ϕ1) is indeed the associated portfolio process of S. From their definitions in

Proposition 3.11 it can be seen that ϕ1 > 0 and ϕ0 > 0. Thus (ϕ0,ϕ1, c) is clearly admissible.

The last term in (3.4) consists of dt-, dWt-, dN1
t -, and dN2

t -integrals with bounded integrands.

Together with the Poisson-distribution of N1
t and N2

t , the fact that ct is proportional to Ṽt, and

δ > 0, this yields that the discounted logarithmic utility from consumption is integrable.
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In Theorem 3.14 the optimal strategy in the limit order market is expressed in terms of

the shadow price process resp. the wealth process based on the shadow price. In the following

proposition we want to the characterize MB,MS ,LB, and LS by the fraction of wealth invested

in the risky asset based on the best-bid price S. This verifies our guess (3.2)-(3.4). The optimal

consumption rate is still expressed in terms of the wealth process based on the shadow price.

We consider a reflected SDE – similar to that in Lemma 3.7.

Proposition 3.17. Let β′ := log
(
(ϕ1

+S)/ϕ0
+
)
, where (ϕ0,ϕ1) is the optimal strategy from Propo-

sition 3.11. Define β′min := β− log(1 +λ) and β′max := β. Assume that β′0 ∈ [β′min,β
′
max]. Let

c(y) := µ− σ
2

2 + δ(1 + exp(h(y))), y ∈ [β′min,β
′
max], (3.7)

where h : [β′min,β
′
max]→ [β,β] is the inverse of Id− g (the inverse exists as g′ ≤ 0). Let Ψ be

the local time from Lemma 3.7. Then, given β′0, (β′,Ψ) is the unique solution to the following

stochastic variational inequality

(i) β′ is càdlàg and takes values in [β′min,β
′
max]. Ψ is continuous and of finite variation with

starting value Ψ0 = 0,

(ii)

β′t = β′0 +
∫ t

0
c(β′s−)ds+σWt+

∑
s≤t

(
(β′max−β′s−)∆N1

s + (β′min−β′s−)∆N2
s

)
+ Ψt,

(iii) for every progressively measurable process z which has càdlàg paths and takes values in

[β′min,β
′
max], we have ∫ t

0

(
β′s−zs

)
dΨs ≤ 0, ∀t≥ 0.

Remark 3.18. The function h in (3.7) converts the process β′ which is based on the valuation

of portfolio positions by (1,S) into the process β which is based on (1, S̃). This conversion is

needed as the optimal consumption rate is proportional to the wealth based on the shadow price.

of Proposition 3.17. At first note that by construction of the shadow price process{
β− = β

}
=
{
β′− = β′min

}
and

{
β− = β

}
=
{
β′− = β′max

}
.

Thus, (P ⊗ I)
(
β′− ∈ {β′min,β

′
max}

)
= 0 (i.e. dt-terms and dWt-terms acting solely on this set

vanish). In addition, (P ⊗N i)
(
β′− ∈ {β′min,β

′
max}

)
= (P ⊗ I)

(
β′− ∈ {β′min,β

′
max}

)
= 0 for i= 1,2.

By β′ = log(ϕ1) + log(S)− log(ϕ0), this implies that∫ t

0
1{β′−∈{β′min,β

′
max}} dβ

′ =
∫ t

0
1{β′−∈{β′min,β

′
max}} dβ =

∫ t

0
1{β′−∈{β′min,β

′
max}} dΨ,
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where the latter equation follows by Lemma 3.7. As we have β = β, S = S̃ on ∆N1 = 1 and

β = β, S = S̃
1+λ on ∆N2 = 1, it follows from the definition of β′, β′min, and β′max that

β′ = β′max on ∆N1 = 1 and β′ = β′min on ∆N2 = 1. (3.8)

By (3.8) and Itô’s formula we obtain∫ t

0
1{β′min<β

′
−<β

′
max} dβ

′ =
∫ t

0
1{β′min<β

′
−<β

′
max}a(β′−)dI+σ

∫ t

0
1{β′min<β

′
−<β

′
max} dW

+
∑
s≤t

(
(β′max−β′s−)∆N1

s + (β′min−β′s−)∆N2
s

)
.

As β′ stays by construction in [β′min,β
′
max] we have that (β′,Ψ) is the solution of (i)-(iii).

3.6 An illustration of the optimal strategy

Let us fix parameters for the model such that the assumptions of Proposition 3.6 are satisfied:

µ= 0.05, σ = 0.4, λ= 0.01, α1 = 1, α2 = 1, δ = 0.1.

With these parameters specified, the free boundary problem consisting of (3.2) and (3.11) can be

solved numerically. The approach used is based on the idea behind the proof of Proposition 3.6.

It can be roughly described as follows. First a value x for β is assumed, then a computer program

for numerical calculations is used to solve the initial value problem consisting of (3.2) and the

initial conditions g(x) = log(1 +λ) and g′(x) = 0. Then the smallest y > x with g′(y) = 0 is

determined. Now if g(y)< 0 we choose a larger x in the next iteration, if g(y)> 0 we choose a

smaller x, and if g(x) = 0 the algorithm stops and we have found our boundary {β,β}= {x,y}.

When the boundary {β,β} is now known, we can calculate the boundary for the fraction of

wealth invested in the risky asset (here measured in the shadow price) by

πmin =
exp(β)

1 + exp(β) , πmax = exp(β)
1 + exp(β)

.

For our example this yields πmin = 0.206 and πmax = 0.412. In addition, in Table 3.1 we have

calculated πmin and πmax for various values of α to illustrate the effects of a change in the arrival

rate of exogenous market orders. We see that πmin and πmax are close to the boundaries in the

proportional transaction costs model, when α is small.
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Figure 3.1: The function C = g(β) and its derivative g′(β)

α πmin πmax

0 0.231 0.368

0.01 0.231 0.368

0.1 0.229 0.371

0.5 0.221 0.388

1 0.206 0.412

2 0.163 0.467

3 0.112 0.525

4 0.058 0.583

Table 3.1: Optimal boundaries for different α

The numerical solution to the free boundary problem can furthermore be used to simulate

paths of various quantities. Fig. 3.2, Fig. 3.3, and Fig. 3.4 are the result of this procedure for

the parameters given above and illustrate the structure of the solution.
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Figure 3.2: Optimal fraction π̃ invested in stock (with local time at the boundaries)

Figure 3.3: Shadow factor exp(C) (without local time)

Figure 3.4: Wealth in bond ϕ0, liquidation wealth in stock ϕ1S
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3.7 Conclusion

We introduced a simple, analytically tractable model for continuous-time trading in limit order

markets. Although our mathematical results heavily rely on the quite idealized assumptions of

the model, especially on the assumption that the considered investor is “small”, i.e. his trades

do not affect the dynamics of the order book, we think that in more complex situations the

structure of the optimal strategy is still economically meaningful.

The investor tries to profit from the bid-ask spread by permanently holding both limit buy

and limit sell orders in the book. After a successful execution of the limit buy order at the lower

bid-price he holds a large stock position in his portfolio which is quite speculative. But, ideally

he is able to liquidate the position quite shortly afterwards by the execution of the limit sell

order at the higher ask-price. To limit the inventory risk he takes by this strategy the fraction

of wealth he invests in the risky stock is always kept in a bounded interval (using market orders

whenever the fraction is at the boundary of the interval). Thus the model carries the flavor of

a market model with negative transaction costs, but which is arbitrage-free as favorable trades

can only be realized at Poisson times.

Consider for example the case that the investor’s limit orders are not small compared to the

incoming market orders from other traders. Then, his wealth process does not always jump on

the boundary of the cone (cf. Fig. 3.4), as incoming market orders may not be large enough to

cover the full order size of his limit orders. But, still it seems to be worthwhile for the investor to

place, say, limit buy orders as long as the fraction of wealth invested in stocks does not surpass a

certain threshold. Under this scenario the threshold might be approached by several successive

partial executions of these limit buy orders.

Furthermore, if the investor’s market orders were not small enough to be filled by the orders

placed at the best-bid resp. the best-ask price, such a large market order would eat into the

book and would therefore be executed against various limit orders with different limit prices at

a single point in time. Hence, a shadow price could obviously not exist.

In this spirit we see this chapter also as an impetus to solve more complicated portfolio

optimization problems in continuous-time limit order markets (most probably in less explicit

form).
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Chapter 4

Stochastic integration w.r.t. optional

semimartingales

4.1 Introduction

In this chapter we discuss the extension of the elementary stochastic Itô-integral in a general

framework where the integrator is an optional semimartingale. The paths of an optional semi-

martingale possess limits from the left and from the right, but may have double jumps. Such

processes have been studied extensively by Lenglart [Len80] and Galtchouk [Gal77, Gal81, Gal82,

Gal85].

It turns out that the extension of the elementary integral to all predictable integrands is

too small. Namely, the set of integrals for (suitably integrable) predictable integrands is still

not closed (even w.r.t. the uniform convergence). This is of course in contrast to the standard

framework with a càdlàg integrator, cf. [DM82].

Galtchouk [Gal81] has introduced a stochastic integral w.r.t. an optional martingale with a

larger domain. But the integral of [Gal81] is not the unique (continuous and linear) extension of

the elementary integral. There are stochastic integrals that can in no way be approximated by

elementary integrals. This is an undesirable feature in some applications, e.g. if one wants to

model trading gains from dynamic strategies by the integral. As real-world investment strategies

are of course piecewise constant, it would not make sense to optimize over a set of integrals

including some elements that cannot be approximated by elementary integrals.

In this chapter we introduce a mathematically tractable domain of integrands which is some-

how between the small set of predictable integrands and the large domain in [Gal81]. The latter
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is a two-dimensional product space of predictable and optional processes.

The simple strategies are embedded into our domain. Then, in the usual manner, we char-

acterize the integral defined on this domain as the unique continuous and linear extension of the

elementary integral and show its closedness. In mathematical finance closedness of the set of

achievable trading gains guarantees that the supremum in a portfolio optimization problem is

attained and in “complete markets” derivatives can be replicated and not only be approximated

by gains from dynamic trading in the underlying securities.

In addition, this chapter may also provide another abstract view to the extension of the

elementary integral and the identification of 1]]τ1,τ2]] •Xt with Xt∧τ2−Xt∧τ1 in the usual situation

of a càdlàg integrator X.

Note that the contents of this chapter have already been published in [KS09b].

4.2 Notation

Let (Ω,F ,(Ft)t∈[0,T ],P ) be a complete filtered probability space, where the family (Ft)t∈[0,T ] is

not necessarily right-continuous. P and O denote the predictable resp. the optional σ-algebra

on Ω× [0,T ], i.e. P is generated by all left-continuous adapted processes and O is generated

by all càdlàg adapted processes (considered as mappings on Ω× [0,T ]). If X and Y are two

optional processes and we write X = Y , we mean equality up to indistinguishability.

The following definitions are from [Gal85]. Adjusted to our finite time horizon setting, we

repeat them here for convenience of the reader. We add a localization procedure based on

stopping which preserves the martingale property of a process. The results of Galtchouk that

we use still hold when localization is done in the way chosen here.

Definition 4.1. A stochastic process X = (Xt)t∈[0,T ] is called an optional martingale (resp.

square integrable optional martingale), and we write X ∈M (resp. X ∈M 2), if X is an

optional process and there exists an FT -measurable random variable X̃ with E[|X̃|] <∞ (resp.

E[X̃2]<∞) such that Xτ = E[X̃|Fτ ] a.s. for every [0,T ]-valued stopping time τ .

Galtchouk has shown in [Gal77] that for any FT -measurable integrable random variable Z

there exists an optional martingale (Xt)t∈[0,T ] with terminal value XT = Z. Almost all paths of

X possess limits from the left and the right (see e.g. Theorem 4 in Appendix I of [DM82]). Thus

if one considers general filtrations, optional martingales emerge quite naturally. For a làglàd

process X we denote ∆−Xt :=Xt−Xt− and ∆+Xt :=Xt+−Xt.
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Definition 4.2. Denote by T (resp. T+) the set of all [0,T ]∪{+∞}-valued (Ft)t∈[0,T ]-stopping

times (resp. (Ft+)t∈[0,T ]-stopping times). Let C be a class of stochastic processes. A stochastic

process X with right-hand limits is in the localized class of C , and we write X ∈ Cloc if there

exists an increasing sequence (τn,σn)n∈N ⊂ T ×T+ such that limn→∞P (τn∧σn = T ) = 1 and the

stopped processes X(τn,σn) defined by

X
(τn,σn)
t :=Xt1{t≤τn∧σn}+Xτn1{t>τn, τn≤σn}+Xσn+1{t>σn, τn>σn}

are in C for all n.

Definition 4.3. Let V denote the set of adapted finite variation processes (that is P -a.a.

paths are of finite variation) with A0 = 0. We say that A ∈ V is in A if E[
∑

0≤s<T |∆+As|+∫
[0,T ] |dArs|]<∞.

Galtchouk has shown that it is possible to uniquely decompose a local martingale M into a

càdlàg part M r and an orthogonal part Mg, i.e. MgM̃ is a local martingale for any càdlàg mar-

tingale M̃ . Mg possesses càglàd paths (see Theorem 4.10 in [Gal81] for details). Furthermore,

any A ∈ V can obviously be decomposed uniquely into a càglàd part Ag :=
∑

0≤s<t∆+As and

a càdlàg part Ar := A−Ag. Note however that for processes which are both local martingales

and of finite variation the decompositions usually differ.

Definition 4.4. A stochastic process X is called strongly predictable if its trajectories have

right limits, (Xt)t∈[0,T ] is P-measurable, and (Xt+)t∈[0,T ] is O-measurable.

Definition 4.5. A stochastic process X is called an optional semimartingale if it can be written

as

X =X0 +M +A, M ∈Mloc, A ∈ V , M0 = 0. (4.1)

A semimartingale X is called special if there exists a representation (4.1) with a strongly pre-

dictable process A ∈Aloc.

Note that any optional semimartingale has limits from the left and the right, i.e. almost all

paths are làglàd (again by [DM82] this assertion holds for the local martingale component; for

the finite variation component the assertion is trivial).

4.3 Results

Suppose X is the (for simplicity deterministic) evolution of a stock price given by Xt := t−

1[t0](t)+1]t0,T ](t), where t0 ∈ (0,T ) is the time of a double jump. ]t0,T ] denotes an interval on R
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whereas for τ1, τ2 stopping times ]]τ1, τ2]] := {(ω,t) ∈Ω× [0,T ] | τ1(ω)< t≤ τ2(ω)} is a stochastic

interval. Now consider the strategies An where we buy one unit of the stock at time t0− 1/n

and sell it at time t0. The (negative) trading gain would be 1/n−1, and as n→∞ the trading

loss would go to 1 and occur exactly at time t0. Other possible strategies Bn would be to buy

one unit of the stock at time t0 and sell it at time t0 +1/n. The trading gain would be 2+1/n,

which would converge to a trading gain of 2 also occurring at time t0. If we wanted the set of

trading strategies to be closed, for the two sequences of trading strategies there should be limit

trading strategies Ã and B̃ reproducing the limit trading gain such that it occurred exactly at

time t0. If we wanted to use one-dimensional processes to specify our trading strategy, we would

run into a dilemma because something like 1[t0] would have to represent both Ã and B̃, but this

is clearly impossible since the trading gains from Ã and B̃ are completely different.

Put differently, since the process has double jumps, there might be a left jump ∆−Xt and

a right jump ∆+Xt at the same time. Using a one-dimensional integrand, an investor cannot

differentiate between what should be invested in the left jump and what should be invested in

the right jump, because at each point in time he only has a single value of the integrand at his

disposal. For example, in the considerations above, the limit strategy Ã would have to invest 1

in ∆−Xt0 but 0 in ∆+Xt0 .

This explains why Galtchouk [Gal81] introduced two-dimensional integrands (H,G) where

H is a P-measurable process and G is an O-measurable process. Unfortunately, this expansion

of the set of integrands to two dimensions leads to a new problem. The integrals of these

two-dimensional integrands can in general no longer be approximated by integrals of simple

predictable integrands as the following example shows.

Example 4.6. Consider the process M =M r+Mg, where M r is a compensated Poisson process

with jump rate 1 and jump size 1 (so it is càdlàg), and Mg is the left-continuous modification

of a compensated Poisson process with jump rate 1 and jump size −1, i.e. M r
t = Nt− t and

Mg
t =−Ñt−+ t where N and Ñ are Poisson processes. Assume that N and Ñ are independent

of each other and let (Ft)t∈[0,T ] be the (not right-continuous) natural filtration of (M r,Mg). If

we consider the integrand (H,G)t ≡ (2,1), the integral Y := (H,G) •M =H •M r+G •Mg is an

optional martingale linearly decreasing with rate −1 (if no jump occurs), ∆−Y jumps of size 2

and ∆+Y jumps of size −1. Clearly Y cannot be approximated by any sequence Zn •M , where

(Zn) is a sequence of simple predictable integrands because Zn •M1 = 0 if no jump occurs up to

time 1. Furthermore, it is impossible to approximate the left jumps of Y (which are of size 2)
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and the right jumps of Y (with size −1) by the same process Zn •M . This is because the jumps

of M cannot be anticipated.

For two sets A,B we define A∆B := (A\B)∪(B \A). Let Ω̃ := Ω× [0,T ]. Define a collection

A of subsets of {1,2}× Ω̃ by

A :=
{

({1}×A)∪ ({2}×B) : (A,B) ∈ P ×O with

A∆B =
⋃
n∈N

[[τn]] for some (τn)n∈N ⊂ T
}
, (4.2)

i.e. the symmetric difference A∆B has to be a thin set. Note that τ is [0,T ]∪{+∞}-valued,

but [[τ ]] = {(ω,t) ∈ Ω× [0,T ] | τ(ω) = t}. Our general integrands will be A/B(R)-measurable

functions.

Proposition 4.7. A is a σ-field.

Proof. Obvious as P and O are σ-fields and countable unions of thin sets are thin sets.

An immediate observation is that if H is A/B(R)-measurable, then H1 := H(1, ·, ·) is a

predictable process and H2 := H(2, ·, ·) is an optional process. Furthermore, H1 and H2 differ

only at countably many (Ft)t∈[0,T ]-stopping times (as H can be approximated pointwise by

simple functions).

Proposition 4.8. Define the set

C := {{1}× Ã×{0} : Ã ∈ F0}∪{{1}×]]τ1, τ2]]∪{2}× [[τ1, τ2[[: τ1, τ2 ∈ T , τ1 ≤ τ2}.

Then σ(C) =A.

Proof. σ(C)⊂A holds by C ⊂ A. Since
⋂∞
i=1({1}×]]τ,τ + 1

n ]]∪{2}× [[τ,τ + 1
n [[) ∈ σ(C), we have

that {1}×∅∪{2}× [[τ ]]∈ σ(C) for any τ ∈T . Therefore also {1}×]]τ1, τ2]]∪{2}×]]τ1, τ2]]∈ σ(C) for

all τ1, τ2 ∈ T . Because P is generated by the family of sets {Ã×{0} : Ã ∈F0}∪{]]τ1, τ2]] : τ1, τ2 ∈

T } and since Ã×{0} is the graph of a stopping time, we have {1}×A∪{2}×A ∈ σ(C) for any

A∈P. Now let F ∈A, i.e. F = {1}×A∪{2}×B, where A∈P, B ∈O. A\B and B \A are both

thin sets by Theorem 3.19 in [HWY92], thus there exist two sequences of stopping times (τi)i∈N
and (νj)j∈N such that B = (A\

⋃
[[τi]])∪ (

⋃
[[νj ]]). Therefore F ∈ σ(C) as required.

Consider simple integrands of the form

H = Z01{1}×Ã×{0}∪{2}×Ã×{0}+
n∑
i=1

Zi1{1}×]]τi,τi+1]]∪{2}×[[τi,τi+1[[, (4.3)
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where τi ∈ T , τ1 ≤ τ2 . . .≤ τn+1, Z0 is F0-measurable, and each Zi is a Fτi-measurable random

variable. Let E denote the class of simple integrands. Note that the simple integrands are indeed

A-measurable, and that there is a one-to-one correspondence between the simple integrands

defined in (4.3) and the usual one-dimensional simple predictable integrands. By Proposition

4.8 E generates the σ-field A on {1,2}× Ω̃. We call simple integrands simple A-measurable.

We now define for H ∈ E the elementary stochastic integral in the usual way by

(H •X)t :=
n∑
i=1

Zi(Xτi+1∧t−Xτi∧t), t ∈ [0,T ].

Remark 4.9. The second summand in (4.3) can be motivated as follows: To obtain Zi(Xτi+1−

Xτi) one weights the right jump of X at τi already with Zi whereas the left jumps are weighted

with Zi only immediately after τi.

The next theorem shows that the elementary integral possesses a unique continuous and

linear extension to general integrands defined as A/B(R)-measurable functions.

Theorem 4.10. Suppose X is an optional semimartingale. The mapping H 7→ H • X on E

has a unique extension (also denoted H 7→H •X) to all locally bounded A-measurable processes

H : {1,2}× Ω̃→ R such that

(i) H 7→H •X is linear;

(ii) if an A-measurable sequence (Hn)n∈N converges pointwise to H and |Hn| ≤K, where K

is a locally bounded A-measurable process, then sups∈[0,T ] |(Hn •X)s− (H •X)s| converges

in probability to 0.

Proof. Step 1 (uniqueness). Let H • X and H ◦ X be two extensions satisfying (i) and (ii).

Then (i) and (ii) imply that G := {F ∈ A : 1F •X = 1F ◦X} is a Dynkin system. Since C ⊂ G

and C is a ∩-stable generator of A, by a Dynkin argument we have A = G. A locally bounded

A-measurable process H can be approximated pointwise by the sequence (Hn)n∈N, where

Hn :=
n2∑

k=−n2

k

n
1{ k−1

n
<H≤ k

n
}.

Because of the linearity requirement (i) we know that Hn •X = Hn ◦X for all n. In addition

it is true that |Hn| ≤ |H|+ 1. Thus from (ii) follows H •X = H ◦X and the uniqueness of the

extension is established.
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Step 2 (existence). Let X = X0 +M +A with M ∈Mloc and A ∈ V be any decomposition

of X. Consider the integral (once again denoted by H 7→H •X)

H •X :=H1 •M r +H1 •Ar +H2 •Mg +H2 •Ag, (4.4)

which is by Galtchouk defined for any locally bounded H1 ∈ P and H2 ∈ O, thus in particular

when H is locally bounded and A-measurable. Note that (4.4) generally depends on the decom-

position of the optional semimartingale into a local martingale and a process of finite variation

(Thus in Galtchouk H1 •M r +H2 •Mg and H1 • Ar +H2 • Ag are seen as separate integrals.

But, later on by the uniqueness of the extension it will turn out that for A/B(R)-measurable

integrands the choice of the decomposition is not relevant).

If H is a simple integrand this integral is equal to our definition of the simple integral, i.e.

it is an extension. From the standard theory (see e.g. [DM82], chapter VIII) we know that the

first half of the right-hand side of (4.4) fulfils properties (i) and (ii). For the left-continuous

parts H2 •Mg and H2 •Ag the same line of argument holds true: Mg can be decomposed into a

locally square integrable martingale and a local martingale of finite variation (by considering the

process
∑

0≤s≤·∆+Ms1{|∆+Ms|>1} ∈Aloc and using the existence of strongly predictable càglàd

compensators, see Lemma 1.10 in [Gal85]). Because a version of Doob’s inequality still holds

for optional square-integrable martingales (see Appendix I in [DM82] on how to prove such

inequalities using the optional section-theorem, which still holds under nonusual conditions),

the usual arguments for the càdlàg case can be reproduced for the locally square integrable

part. The martingale part of finite variation is treated like (H2 •Ag)t =
∫

[0,t[H
2
sdA

g
s+ which is a

Lebesgue-Stieltjes integral. Thus it is known that it is linear and has the continuity property.

Remark 4.11. We have shown that it is possible to extend the integral in a unique way from

all simple A-measurable integrands (which are in a one-to-one correspondence with the (one-

dimensional) simple predictable integrands) to all locally bounded A-measurable integrands. Note

that the elementary integral does not depend on the decomposition in (4.4). In Galtchouk’s

framework [Gal85] the integral is extended uniquely from all two-dimensional simple P ⊗O-

measurable integrands to all locally bounded P⊗O-measurable integrands. What cannot be done

is to extend the integral uniquely from one-dimensional simple predictable integrands to all locally

bounded P ⊗O-measurable integrands. To see this note that besides H • X := H1 •M r +H1 •

Ar+H2 •Mg+H2 •Ag the mapping H ◦X :=H •X+H1 • I−H2 • I, where It(ω) := t, is also a

continuous and linear extension of the elementary integral. But generally for P⊗O-measurable
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integrands H •X and H ◦X are different. Confer this with Example 4.6.

Any special semimartingale Y for which the canonical decomposition Y0 +N +B satisfies

N ∈M 2 and B ∈ A , can be considered an element of the Banach space M 2⊕A , where the

norm is given by E[N2
T ]1/2 +E[Var(B)T ]. Now we show a closedness property for the set of

integrands for which the integrals are in M 2⊕A . At first we define analogously to the standard

theory the set of general integrands (cf. definition III.6.17 in [JS02]).

Definition 4.12. We say that a A-measurable process H = (H1,H2) is integrable w.r.t. an

optional semimartingale X if there exists a decomposition X =X0 +M +A with M ∈M 2
loc and

A ∈ V such that

(H1)2 • [M r,M r] ∈Aloc, (H2)2 • [Mg,Mg] ∈Aloc

and the Lebesgue-Stieltjes integrals |H1| • Var(Ar), |H2| • Var(Ag) are finite-valued. We denote

by L(X) the set of these processes.

Let H ∈ L(X). By Theorem 4.10 the integral
(
H1{|H|≤n}

)
• X =

(
H11{|H|≤n}

)
• M r +(

H11{|H|≤n}
)
• Ar +

(
H21{|H|≤n}

)
• Mg +

(
H21{|H|≤n}

)
• Ag is well-defined (i.e. it does not

depend on the decomposition X = X0 +M +A). By Theorem I.4.40 and Lemma III.6.15 in

[JS02] and Theorem 7.3 in [Gal81] all four integrals converge uniformly in probability against

the corresponding integrals without truncation. Thus H •X is also well-defined.

Theorem 4.13. Let X be a special semimartingale. If (Hn)n∈N ⊂ L(X) such that (Hn •X)n∈N
is a Cauchy sequence in M 2⊕A , then there exists a H ∈ L(X) such that Hn •X →H •X in

M 2⊕A .

Proof. Step 1. We start by showing that for all n the canonical decomposition of Hn •X can

be written as Hn •M +Hn • A, where X = X0 +M +A is the canonical decomposition of X.

The reasoning is similar to the proof of Lemma III.3 in [M8́0], but we present it here for the

convenience of the reader. Some facts about (strongly predictable) compensators are used; they

can be found in the appendix. Let n be fixed. There exists a decomposition X =N+B such that

(Hn •N)∈M 2
loc and (Hn •B)∈V . SinceHn •X is in M 2⊕A , we have by Lemma 4.2 in [Gal85]

that Hn • B ∈ Aloc. As X is special, we have with the same argument that B ∈ Aloc. Again

by Lemma 4.2 in [Gal85], Hn • X is special and hence it possesses a canonical decomposition

L+D. By Proposition 4.18 the unique compensators of B and Hn • B are given by A and D.
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But since B and Hn • B are both in Aloc, by Proposition 4.20 (Hn • B)p = Hn • Bp = Hn • A,

i.e. the compensator of Hn •B is Hn •A. Thus D =Hn •A, which in turn implies L=Hn •M .

Step 2. For any local martingale M , we define a nonnegative measure m on ({1,2}× Ω̃,A)

by

m(F ) := E[1B • [M r,M r]T + 1C • [Mg,Mg]T ], ∀F = {1}×B∪{2}×C ∈ A.

Similarly, for A ∈Aloc let

n(F ) := E[1B •Var(Ar)T + 1C •Var(Ag)T ].

By the decomposition of M (resp. A) into a right- and a left-continuous part we ensure that m

(resp. n) is a measure. Note that m and n are in general not σ-finite. Let H •M ∈M 2; then

we have that

E[(H •M)2
T ] = E[(H1 •M r +H2 •Mg)2

T ]

= E[(H1 •M r)2
T + (H2 •Mg)2

T + 2(H1 •M r)T (H2 •Mg)T ]

= E[(H1 •M r)2
T + (H2 •Mg)2

T ]

= E[(H1)2 • [M r,M r]T + (H2)2 • [Mg,Mg]T ]

=
∫ T

0
(H)2dm. (4.5)

The crucial third equality follows because H1 •M r and H2 •Mg are orthogonal optional mar-

tingales, which is due to fact that

[H1 •M r,H2 •Mg] =H2 • [(H1 •M r)g,Mg] = [0,Mg] = 0

(see [Gal81], Theorem 7.11). The fourth equality is valid since there are Itô isometries for both

the standard stochastic integral and the optional stochastic integral w.r.t. to a càglàd optional

martingale (see [Gal81], Section 7).

Let us verify an isometry property for the integrable variation part. Note that for the finite

variation part A, the process Ag is just the sum of the jumps ∆+A. The total variation can

thus be split into two parts by

Var(A)t =
∫ t

0
|dArs|+

∑
s<t

|∆+As|= Var(Ar) + Var(Ag),
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and the following isometry holds for any A ∈A

E[Var(H •A)T ] = E[Var(H1 •Ar +H2 •Ag)T ]

= E[Var(H1 •Ar)T + Var(H2 •Ag)T ]

= E[|H1| •Var(Ar)T + |H2| •Var(Ag)T ]

=
∫ T

0
|H|dn. (4.6)

By (4.5) and (4.6),
(
L2({1,2}× Ω̃,A,m)∩L1({1,2}× Ω̃,A,n)

)
⊂ L(X) and H 7→ H • X is an

isometry mapping from L2({1,2}×Ω̃,A,m)∩L1({1,2}×Ω̃,A,n) to M 2⊕A (surjective onto the

subspace of M 2⊕A whose elements can be represented by stochastic integrals). As L2({1,2}×

Ω̃,A,m)∩L1({1,2}× Ω̃,A,n) is a complete vector space this implies the assertion.

Remark 4.14. Suppose for any (Ft)t∈[0,T ]-stopping time τ we have P (∆+Xτ 6= 0, τ < T ) = 0 (we

call such a process quasi-right-continuous). Then for any locally bounded A-measurable process

H the stochastic integrals H •X =H1 •Xr+H2 •Xg and H1 •Xr+H1 •Xg are indistinguishable.

To see this, note that we only have to check that (H1−H2) •Xg = 0. Now H1−H2 is equal to 0

on the complement of a thin set and according to the condition above there are a.s. no jumps of

Xg on this thin set. Thus if X is quasi-right-continuous, the set of locally bounded predictable

integrands is adequate, as in the usual right-continuous setting.

Remark 4.15. In mathematical finance a similar problem arises in the standard model with

càdlàg-price processes when portfolio adjustments cause transaction costs. At time t the value

of a portfolio may change due to a jump of the asset prices between t− and t. In addition,

any portfolio adjustments (which may be seen as taking place at time t−) reduce the wealth of

the investor (in contrast to the model without transaction costs). Thus, the wealth process may

have double jumps. However, the portfolio holdings in each asset can still be represented by a

one-dimensional process, cf. [CS06].

4.4 Appendix

Lemma 4.16. Suppose A ∈ V . Then A is strongly predictable if and only if (Art )t∈[0,T ] is

predictable and (Agt+)t∈[0,T ] is optional.

Proof. Obvious, as At =Art +Agt =Art +Agt− and At+ =Art+ +Agt+ =Art +Agt+.
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Lemma 4.17. Let A∈ V be strongly predictable and H = (H1,H2) be an A-measurable function

s.t. H1 •Ar and H2 •Ag exist. Then H •A is strongly predictable.

Proof. By Lemma 4.16 and H • A = H1 • Ar +H2 • Ag we only have to check that (H1 • Art ) is

predictable and (H2 • Agt+) is optional. Since H1 is predictable and again by Lemma 4.16 (Art )

is also predictable, Proposition I.3.5 in [JS02] ensures that H1 • Ar is predictable, too. Once

more by Lemma 4.16 (Agt+)t∈[0,T ] is optional, thus ∆+As is Ft measurable for all s ≤ t. As

H21Ω×[0,t] is Ft⊗B([0, t])-measurable, by Fubini’s theorem for transition measures this implies

that (H2 •Ag)t+ =
∑

0≤s≤tH
2
s∆+As is Ft-measurable and therefore optional.

Proposition 4.18. Let A ∈ Aloc. There exists a process, called the compensator of A and

denoted by Ap, which is unique up to indistinguishability, and which is characterized by being a

strongly predictable process of Aloc such that A−Ap is a local martingale.

Proof. A ∈Aloc implies Ar,Ag ∈Aloc. By Theorem I.3.18 in [JS02], there exists a unique pre-

dictable càdlàg process (Ar)p such that Ar− (Ar)p ∈Mloc (formally we apply the theorem to

Ar under the right-continuous filtration (Ft+)t∈[0,T ] and use that the (Ft+)t∈[0,T ]-predictable

processes coincide with the (Ft)t∈[0,T ]-predictable processes). By Lemma 1.10 in [Gal85], there

exists a unique strongly predictable càglàd process (Ag)p such that Ag− (Ag)p ∈Mloc. The pro-

cess Ap := (Ar)p+ (Ag)p is strongly predictable and A−Ap ∈Mloc. If two strongly predictable

processes B and C are compensators of A, B−C is in Mloc∩Aloc, i.e. B−C = 0 (since as in

the standard model, using Theorem 3.5 in [Gal82] it can be shown that if X ∈Mloc∩Aloc, then

X = 0.)

Proposition 4.19. Let A ∈ A +
loc. The compensator Ap can then be characterized as being a

strongly predictable process in A +
loc meeting any of the two following equivalent statements

(i) E[Apτ ] = E[Aτ ] for all τ ∈ T ;

(ii) E[(H •Ap)T ] = E[(H •A)T ] for all nonnegative A-measurable processes H.

Proof. The proof is similar to the proof of Theorem I.3.17 in [JS02]. Just note that (ii) implies

(i) because H := 1{1,2}×[[0,τ ]] is A-measurable. (i) implies for all τ ∈ T that

E[(1{1}×[[0,τ ]]∪{2}×[[0,τ [[ •A
p)T ] = E[(Ap)rτ + (Ap)gτ ]

= E[Arτ +Agτ ]

= E[(1{1}×[[0,τ ]]∪{2}×[[0,τ [[ •A)T ].

99



Stochastic integration w.r.t. optional semimartingales

Since A is also generated by {{1}× Ã×{0} : Ã ∈ F0}∪{{1}× [[0, τ ]]∪{2}× [[0, τ [[: τ ∈ T } and

because A0 =Ap0 = 0, we have (ii) by monotone convergence and a monotone class argument.

Proposition 4.20. Let A ∈ Aloc. For each A-measurable process H such that H • A ∈ Aloc,

we have that H • Ap ∈ Aloc and H • Ap = (H • A)p, and in particular H • A−H • Ap is a local

martingale.

Proof. The proof of the second half of Theorem I.3.18 in [JS02] can be reproduced without any

major changes (using Proposition 4.19 and Lemma 4.17). Note that the associativity of the

integral used in the proof holds because

H • (G •A) = H1 • (G •A)r +H2 • (G •A)g

= H1 • (G1 •Ar +G2 •Ag)r +H2 • (G1 •Ar +G2 •Ag)g

= H1 • (G1 •Ar) +H2 • (G2 •Ag)

= (H1G1) •Ar + (H2G2) •Ag

= (HG)1 •Ar + (HG)2 •Ag = (HG) •A,

where the crucial third equality is true because for any A∈ V we obviously have (Ar)g = (Ag)r =

0. The fourth equality follows from the associativity of the one-dimensional Lebesgue-Stieltjes

integral.
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Deutsche Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Modellierung der Handelsmöglichkeiten eines

kleinen Investors in einem Limitordermarkt. In einem Limitordermarkt kann bei jeder Order zu-

sätzlich zur Anzahl ein Limitpreis angegeben werden. Wird ein Limitpreis spezifiziert, so spricht

man von einer Limitorder, ansonsten von einer Marketorder. Die Angabe eines Limitpreises führt

dazu, dass eine Order im Normalfall nicht sofort ausgeführt werden kann. Diese unausgeführten

Limitorders werden in einer elektronischen Datenbank der Börse gespeichert, dem sogenannten

Orderbuch.

Möchte ein Investor nun in einem Limitordermarkt etwa Wertpapiere erwerben, so kann er

dies entweder sofort durch eine Market-Kauforder, oder indem er eine Limit-Kauforder nutzt.

Im Fall der Market-Kauforder spezifiziert der Investor lediglich, welche Anzahl an Wertpapieren

er zu kaufen beabsichtigt. Der Preis, den der Investor pro Aktie zahlt, entspricht dem Best-

Ask-Preis, d.h. dem Limitpreis der niedrigsten im Orderbuch enthaltenen Limit-Verkaufsorders

(sollte es sich um eine große Order handeln, kann es auch passieren, dass die Order zu einem

Durchschnittspreis oberhalb des Best-Ask-Preises ausgeführt wird). Sofern die sofortige Aus-

führung der Order nicht zwingend erforderlich ist, kann der Investor eine Limit-Kauforder mit

einem Limit-Preis unterhalb des aktuellen Best-Ask-Preises nutzen. Diese Limit-Kauforder wird

dann solange im Orderbuch gespeichert, bis sie gegen eine Verkaufsorder eines anderen Investors

ausgeführt werden kann, oder bis der Investor die Limit-Kauforder storniert.

Unter der Annahme eines kleinen Investors versteht man die idealisierte Hypothese, dass

die Anzahl der vom Investor gekauften und verkauften Wertpapiere gering genug ist, sodass

sie die Dynamik des Orderbuchs nicht beeinflusst, d.h. die Handelsmöglichkeiten des Investors

können als exogen gegeben modelliert werden, ohne dass etwa spieltheoretische Erwägungen in

Betracht gezogen werden müssen. Das bekannteste Beispiel für die Modellierung eines Marktes

mit kleinem Investor ist das Black-Scholes-Modell, in dem der Preis einer Aktie als exogen vor-
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gegebene geometrische Brownsche Bewegung modelliert wird. Unabhängig davon, welche Käufe

und Verkäufe der Investor tätigt, bleibt die Dynamik der Aktie stets dieselbe.

Handel eines kleinen Investors in Limitordermärkten

In Kapitel 2 wird ein mathematischer Rahmen vorgestellt, um die Handelsgewinne eines kleinen

Investors in einem Limitordermarkt zu modellieren.

Es seien S und S zwei adaptierte càdlàg-Prozesse mit 0< infs∈[0,T ]Ss(ω)≤ St(ω)<St(ω) für

alle (ω,t)∈Ω× [0,T ]. Im Folgenden kann man S als den Best-Bid- und S als den Best-Ask-Preis

ansehen. Der kleine Investor kann jederzeit mit Marketorders zum Preis S kaufen und zum Preis

S verkaufen. Zusätzlich seien die beiden ganzzahligen Zufallsmaße µ und ν gegeben. Mit diesen

beiden Zufallsmaßen werden die Ausführungen der Limit-Kauf- bzw. Limit-Verkaufsorders des

kleinen Investors modelliert. Die beiden Maße müssen zusätzliche Annahmen erfüllen, damit

diese Modellierung sinnvoll ist. Die Details finden sich in Annahme 2.7.

Nun zur Modellierung der Handelsstrategien. Es werden zunächst die allgemeinen Limitor-

derstrategien und dann die Handelsstrategien insgesamt eingeführt.

Definition 1. Mit LB sei die Familie von P̃/B(R+)-messbaren Funktionen LB : Ω× [0,T ]×

R+→ R+ bezeichnet, für die gilt

(i) x 7→ LB(ω,t,x) ist monoton fallend, für alle (ω,t) ∈ Ω× [0,T ],

(ii) LB(ω,t,x) = 0 für alle (ω,t) ∈ Ω× [0,T ] und x≥ St−(ω),

(iii) LB ist µ-integrierbar.

Hierbei bezeichnet P̃ =P⊗B(R+) die Produkt-σ-Algebra aus der vorhersehbaren σ-Algebra

und der Borel-σ-Algebra B(R+). LB(ω,t,x) kann als die Summe der unausgeführten Limit-

Kauforders des kleinen Investors mit Limitpreis x oder höher interpretiert werden. LS als Familie

der Limit-Verkaufsorders ist analog definiert.

Definition 2. Es seien MB,MS vorhersehbare, nicht-fallende Prozesse mit MB
0 =MS

0 = 0 und

es gelte des Weiteren LB ∈LB und LS ∈LS. Wir bezeichen das Quadrupel S= (MB,MS ,LB,LS)

als Handelsstrategie.

Hierbei können MB
t und MS

t als die aggregierten Marketorderkäufe und -verkäufe bis inklu-

sive Zeitpunkt t angesehen werden. Da die Strategien nun vollständig eingeführt sind, kann der

Ausführungsmechanismus des Modells dargestellt werden.
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Definition 3. Gegeben eine Handelsstrategie S definieren wir den zugehörigen (selbstfinanzie-

renden) Vermögensprozess (ϕ0,ϕ1) bei Anfangsvermögen (η0,η1) ∈ R2 durch

ϕ0
t (S) := η0−

∫ t

0
(Ss−,Ss)dMB

s +
∫ t

0
(Ss−,Ss)dMS

s

+
∫

[0,t)×R+

∫ ∞
x

yLB(s,dy)µ(ds,dx) +
∫

[0,t)×R+

∫ x

0
yLS(s,dy)ν(ds,dx),

ϕ1
t (S) := η1 +MB

t −MS
t +

∫
[0,t)×R+

LB(s,x)µ(ds,dx)−
∫

[0,t)×R+
LS(s,x)ν(ds,dx).

Dabei gibt ϕ0 das Geldvermögen und ϕ1 die Zahl der gehaltenen Aktien an. Die Definition

des Vermögensprozesses lässt sich direkt nutzen, um ein Zulässigkeitskriterium zu formulieren,

das Verdoppelungsstrategien ausschließt.

Definition 4. Für a > 0 bezeichnen wir eine Handelsstrategie S als zulässig mit Schranke a

sofern der zugehörige Vermögensprozess
(
ϕ0(S),ϕ1(S)

)
die Ungleichung

ϕ0(S) +a+S
(
ϕ1(S) +a

)
1{ϕ1(S)+a≥0}+S

(
ϕ1(S) +a

)
1{ϕ1(S)+a<0} ≥ 0

erfüllt.

Damit sind die Grundzüge des Modells beschrieben. Nun zu den beiden Hauptresultaten des

Kapitels. Bevor das erste Resultat präsentiert werden kann, bedarf es noch einer Erklärung, was

unter einer realistischen Strategie zu verstehen ist. Angenommen der kleine Investor platziert

zu einer Stoppzeit TB1 eine einzelne Limit-Kauforder L̂B := (θB,pB,TB1 ,TB2 ) von Größe θB ∈

L0
+(FTB1 ) und Preis pB ∈L0

+(FTB1 ) mit pB <STB1 . Wenn die Order bis zu der Stoppzeit TB2 ≥ TB1
nicht ausgeführt ist, lässt er sie streichen. Man betrachte die Stoppzeiten

TS := inf
{
t ∈ (TB1 ,TB2 ] : St ≤ pB

}
,

Tµ := inf
{
t ∈ (TB1 ,TB2 ] : µ

(
(TB1 , t]× [0,pB]

)
> 0

}
,

T ∗ := TS ∧Tµ.

T ∗ beschreibt den Zeitpunkt, an dem die Limit-Kauforder ausgeführt wird. Falls der Kauf statt-

findet, so stets zum Preis pB. Für solch eine elementare, einzelne Limit-Kauforder ist anschaulich

klar, dass der zugehörige Vermögensprozess folgendermaßen aussehen muss:

ϕ0
t (L̂B) := −θBpB1]]T ∗,T ]](t), (A)

ϕ1
t (L̂B) := θB1]]T ∗,T ]](t).
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Für eine einzelne Limit-Verkaufsorder ergibt sich analog ein ähnlicher Vermögensprozess. Unter

einer realistischen Strategie versteht man nun eine endliche konische Kombination aus solch ein-

zelnen Limit-Kauf- und Limit-Verkaufsorders sowie aus endlich vielen Market-Kauf- und Market-

Verkaufsorders (d.h. MB und MS sind im Wesentlichen elementar vorhersehbare Prozesse). Für

eine vollständige formale Definition einer realistischen Strategie siehe Abschnitt 2.4.1. Dort wird

auch erklärt, wie sich unter der moderaten zusätzlichen Annahme 2.14 der durch (A) beschrie-

bene Vermögensprozess stets durch eine allgemeine Handelsstrategie aus Definition 2 replizieren

lässt. Umgekehrt ist dies natürlich erst einmal nicht der Fall. Eine allgemeine Handelsstrategie

mit unendlich vielen möglichen Limitpreisen und zeitstetigen Veränderungen der Ordermengen

kann nicht eins zu eins durch eine realistische Strategie dargestellt werden. Wie der folgende Satz

zeigt, lässt sie sich aber beliebig gut approximieren. Für zwei F⊗B([0,T ])-messbare, reellwertige

stochastische Prozesse X und Y sei

dup(X,Y ) := E
(
1∧ supt∈[0,T ] |Xt−Yt|

)
,

d.h. dup metrisiert die Konvergenz „gleichmäßig in Wahrscheinlichkeit“.

Satz 5 (Approximation durch realistische Strategien). Annahme 2.14 sei erfüllt. Für ε > 0 und

eine beliebige Handelsstrategie S existiert stets eine realistische Strategie Sε, sodass

dup
(
ϕ0(Sε),ϕ0(S)

)
< ε and dup

(
ϕ1(Sε),ϕ1(S)

)
< ε.

Dieses Ergebnis rechtfertigt in gewissem Sinne auch die gewählte, eher abstrake Konstruk-

tion des Modells, für die vielleicht nicht unbedingt auf den ersten Blick klar ist, dass sie mit

dem intuitiven Verständnis, wie ein Limitordermarkt funktioniert, harmoniert. Die zweite wich-

tige Eigenschaft des Modells besteht darin, dass die Familie der allgemeinen Handelsstrategien

abgeschlossen ist. Ähnlich wie im Fall proportionaler Transaktionskosten (siehe [CS06]) bedarf

es dafür eines Prozesses im Bid-Ask-Spread, der sicherstellt, dass die Variation einer Folge von

Handelsstrategien nicht explodiert. Man beachte, dass im englischen Original des obigen Theo-

rems in der Arbeit Annahme 2.14 nicht gefordert wird. Dies hängt damit zusammen, dass dort

realistische Strategien direkt im Rahmen der allgemeinen Handelsstrategien formuliert sind.

Definition 6. Ein adaptierter (0,∞)-wertiger stochastischer Prozess S̃ = (S̃t)t∈[0,T ] wird als

strictly consistent price process (SCPP) für die Aktie bezeichnet, sofern ein W-Maß P̃ ∼ P

existiert s.d. S̃ ein càdlàg P̃ -Martingal ist für das gilt

S̃t ∈ (St,St), ∀t ∈ [0,T ] and S̃t− ∈ (St−,St−), ∀t ∈ (0,T ].
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Neben der Existenz eines SCPP wird für das folgende Resultat noch die technische Annah-

me 2.21 zu den Ausführungsmaßen µ und ν benötigt (siehe Abschnitt 2.4.2).

Satz 7 (Abgeschlossenheit der Familie der Strategien). Es sei Annahme 2.21 erfüllt und es

existiere ein SCPP für die Aktie. Außerdem seien S und S Semimartingale. Sei (Sn)n∈N eine

Folge von zulässigen Handelsstrategien jeweils mit Schranke a und Anfangsvermögen (η0,η1).

Wenn die Folge der zugehörigen Vermögensprozesse
(
(ϕ0(Sn),ϕ1(Sn))

)
n∈N eine Cauchy-Folge

bzgl. dup ist, dann existiert eine zulässige Handelsstrategie S mit Schranke a und Anfangskapital

(η0,η1), sodass
(
(ϕ0(Sn),ϕ1(Sn))

)
n∈N gleichmäßig in Wahrscheinlichkeit gegen (ϕ0(S),ϕ1(S))

konvergiert.

Optimale Portfolios eines kleinen Investors in Limitordermärkten

Im Rahmen des in Kapitel 2 eingeführten Modells wird in Kapitel 3 ein Portfolio-

Optimierungsproblem für einen kleinen Investor in einem Limitordermarkt analysiert. Der In-

vestor hat ein bestimmtes Anfangsvermögen gegeben und kann im Limitordermarkt handeln,

um die Aufteilung seines Vermögens zwischen Bankkonto und Aktie zu verändern. Sein Ziel ist

es dabei, den Erwartungswert seines Nutzens aus zukünftigem Konsum zu maximieren.

Um das Optimierungsproblem lösen zu können, wird eine Reihe von Annahmen getroffen,

die aus dem abstrakten Modellrahmen aus Kapitel 2 ein handhabbares Modell machen. Der

Zeithorizont ist von nun an unendlich und der Best-Bid S folgt einer geometrischen Brown-

schen Bewegung. Der Spread ist proportional zum Wert von S. Dies wird durch S := S(1 +λ)

erreicht, wobei λ > 0 eine Konstante ist. Da Best-Bid und Best-Ask in diesem Modell stetige

Pfade besitzen, ist es für den kleinen Investor niemals sinnvoll, eine Limit-Kauforder mit Limit-

preis unterhalb des Best-Bid S zu setzen und ebenso wird er niemals eine Limit-Verkaufsorder

mit Limitpreis größer als der Best-Ask S setzen. Als weitere Vereinfachung wird angenommen,

dass jegliche Limitorder-Ausführung des kleinen Investors auf eine exogene Marketorder zurück-

zuführen ist. Daher ist es für den kleinen Investor auch nie angebracht, eine Limit-Kauforder mit

einem Limitpreis größer als S zu platzieren, da jede seiner Limit-Kauforders mit einem Limit-

preis größer oder gleich S ohnehin durch eine exogene Market-Verkaufsorder ausgeführt wird.

Das Eintreffen der exogenen Marketorders wird durch zwei unabhängige Poisson-Prozesse N1

und N2 mit konstanten Raten α1 und α2 beschrieben. Unter zusätzlicher Berücksichtigung einer
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Konsumrate, modelliert durch einen adaptierten Prozess c, ergibt sich für den Vermögensprozess

ϕ0
t = η0−

∫ t

0
csds−

∫ t

0
Ss dM

B
s +

∫ t

0
Ss dM

S
s −

∫ t−

0
LBs Ss dN

1
s +

∫ t−

0
LSs Ss dN

2
s

ϕ1
t = η1 +MB

t −MS
t +

∫ t−

0
LBs dN

1
s −

∫ t−

0
LSs dN

2
s ,

hierbei bezeichen LB und LS nur noch reellwertige, vorhersehbare Prozesse, welche die Order-

größen der Limit-Kauforder mit Limitpreis S und der Limit-Verkaufsorder mit Limitpreis S

darstellen.

Es bezeichne A(η0,η1) die Familie der zulässigen Strategien mit Schranke 0 und Anfangs-

vermögen (η0,η1). Die Wertfunktion V für das Optimierungsproblem des kleinen Investors mit

Anfangsvermögen (η0,η1) und logarithmischer Nutzenfunktion lässt sich nun schreiben als

V (η0,η1) := sup
S∈A(η0,η1)

J (S) := sup
S∈A(η0,η1)

E

(∫ ∞
0

e−δt log(ct)dt
)
, (B)

wobei der Parameter δ > 0 als Zeitpräferenz interpretiert werden kann.

Um das Problem (B) zu lösen, betrachten wir – analog zu [KMK10] – einen fiktiven frik-

tionslosen Markt, in dem der Kurs der Aktie als ein Semimartingal S̃ modelliert ist. D.h. je-

de beliebige Anzahl an Aktien kann in diesem friktionslosen Markt zum Preis S̃ gekauft und

verkauft werden. In Abschnitt 3.2.3 ist der friktionslose Markt genauer beschrieben, insb. die

Selbstfinanzierungsbedingung und ein Zulässigkeitskriterium.

Nun bezeichne Ã(η0,η1) die Familie der zulässigen Strategien mit Schranke 0 und Anfangs-

vermögen (η0,η1) im friktionslosen Markt. Die Wertfunktion im friktionslosen Markt Ṽ ist dann

gegeben durch

Ṽ (η0,η1) := sup
S̃∈Ã(η0,η1)

J̃ (S̃) := sup
S̃∈Ã(η0,η1)

E

(∫ ∞
0

e−δt log(ct)dt
)
.

Es folgt die zentrale Definition des Kapitels.

Definition 8. Ein reellwertiges Semimartingal S̃ wird als Schattenpreis für die Aktie bezeichnet

sofern für alle t≥ 0 gilt

St ≤ S̃t ≤ St, S̃t =


St if ∆N1

t = 1

St if ∆N2
t = 1

und sofern eine Handelsstrategie S = (MB,MS ,LB,LS , c) ∈ A(η0,η1) im Limitordermarkt-

Modell existiert, sodass im friktionslosen Modell gilt S̃ = (ϕ0,ϕ1, c) ∈ Ã(η0,η1) und J̃ (S̃) =
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Ṽ (η0,η1), wobei S̃ den Preis der Aktie modelliert. D.h. der Vermögensprozess
(
ϕ0(S),ϕ1(S)

)
von Strategie S kombiniert mit der Konsumrate c aus S muss eine optimale Strategie im frik-

tionslosen Markt sein.

Das Konzept des Schattenpreises besteht somit aus zwei Teilen. Einerseits kann im friktions-

losen Markt jede Transaktion aus dem Limitordermarkt zum gleichen oder sogar besseren Preis

getätigt werden. Andererseits ist die optimale Strategie im friktionslosen Markt auch eine zuläs-

sige Handelsstrategie im Limitordermarkt. Es lässt sich leicht zeigen (siehe Proposition 3.5), dass

aus der Definition des Schattenpreises direkt folgt, dass die in der Definition erwähnte Strategie

S eine optimale Strategie im Limitordermarkt sein muss. Die Lösung des Optimierungsproblems

ist damit eine direkte Konsequenz des folgenden Satzes:

Satz 9. Es existiert ein Schattenpreis S̃.

Um die Existenz eines Schattenpreises zu zeigen, bedarf es nach Definition 8 auch einer

(optimalen) Handelsstrategie. Es erweist sich, dass das durch diese Strategie beschriebene nut-

zenmaximierende Verhalten des kleinen Investors im Limitordermarkt wie folgt aussieht. Es

existieren zwei Konstanten πmin,πmax ∈ R+ mit 0 < πmin < πmax, sodass der Anteil des Vermö-

gens, der in die Aktie investiert ist, durch den Einsatz von Marketorders im Intervall [πmin,πmax]

gehalten wird, d.h.

πmin ≤
ϕ1
tSt

ϕ0
t +ϕ1

tSt
≤ πmax, ∀t > 0.

Solange sich der Anteil im Inneren dieses Intervalls befindet, werden keinerlei Marketorder-Käufe

oder -Verkäufe getätigt. Darüber hinaus platziert der kleine Investor zu jedem Zeitpunkt zwei

Limitorders, sodass

ϕ1
tSt

ϕ0
t +ϕ1

tSt
= πmax, nach Ausführung der Limit-Kauforder mit Limitpreis St

ϕ1
tSt

ϕ0
t +ϕ1

tSt
= πmin, nach Ausführung der Limit-Verkaufsorder mit Limitpreis St.

Die Größe der Limitorders LB and LS wird folglich permanent so angepasst, dass eine Aus-

führung zu einem Sprung des Anteils an Vermögen in der Aktie auf πmin oder πmax führt. Der

optimale Konsum erweist sich als proportional zum Vermögen, wobei hier jedoch die Aktie mit

dem Schattenpreis anstelle des Best-Bid zu bewerten ist.
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Stochastische Integration bzgl. optionaler Semimartingale

In Kapitel 4 wird die Erweiterung des elementaren stochastischen Itô-Integrals für den Fall dis-

kutiert, dass die Integratoren optionale Semimartingale sind. Eine genaue Bestimmung eines

optionalen Semimartingals findet sich in Definition 4.1. Der wesentliche Unterschied zu einem

herkömmlichen càdlàg-Semimartingal besteht darin, dass die Pfade eines optionalen Semimar-

tingals Doppelsprünge aufweisen können, d.h. es handelt sich um làdlàg-Pfade.

Es stellt sich heraus, dass in diesem Fall die Erweiterung der Elementarintegrale auf alle

vorhersehbaren Integranden zu klein ist. Im Gegensatz zum Standardfall mit càdlàg-Integratoren

ist die entstehende Familie von Integralen nicht abgeschlossen.

Galtchouk [Gal81] hat bereits ein stochastisches Integral für optionale Martingale als Inte-

gratoren eingeführt (siehe 4.1 für die genaue Definition; wieder handelt es sich im Wesentlichen

um ein Martingal, was aber auch Doppelsprünge aufweisen kann). Hier tritt in gewisser Weise

jedoch das gegensätzliche Problem auf. Die Klasse der in [Gal81] gewählten Integranden ist zu

groß. Es handelt sich nicht mehr um eine eindeutige stetige und lineare Fortsetzung des In-

tegrationsoperators von elementar vorhersehbaren Prozessen. Manche stochastischen Integrale

können nicht mehr durch Elementarintegrale approximiert werden.

Blendet man den ökonomischen Gehalt der Modellierung in Kapitel 2 einmal aus, geht es

in Kapitel 4 mathematisch gesehen um ganz ähnliche Fragen. In Kapitel 2 war der wesentliche

Punkt, eine Familie von Strategien (hier Integranden) zu finden, sodass die entstehenden Vermö-

gensprozesse (hier Integrale) einerseits abgeschlossen sind und andererseits dennoch durch die

Vermögensprozesse von realistischen Strategien (hier Elementarintegrale) approximiert werden

können.

In Kapitel 4 wird eine Klasse von Integranden eingeführt, die in gewissem Sinne zwischen der

zu kleinen Familie der vorhersehbaren Integranden und der zu großen Familie von Integranden

aus [Gal81] anzusiedeln ist. Die Familie der Integranden wird charakterisiert durch Messbarkeit

bzgl. einer σ-Algebra A auf {1,2} ×Ω× [0,T ]. Die Familie E der elementar vorhersehbaren

Prozesse lässt sich in diese Familie einbetten.

Das stochastische Integral für allgemeine Integranden kann nun als die eindeutige, stetige

und lineare Fortsetzung des Elementarintegrals charakterisiert werden.

Satz 10. Sei X ein optionales Semimartingal. Die Abbildung H 7→ H • X lässt sich von E

eindeutig fortsetzen (die Fortsetzung wird ebenfalls mit H 7→ H • X bezeichnet) auf alle lokal
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beschränkten A-messbaren Prozesse H : {1,2}×Ω× [0,T ]→ R, sodass

(i) H 7→H •X linear ist;

(ii) wenn eine A-messbare Folge (Hn)n∈N punktweise gegen H konvergiert und für alle n ∈ N

gilt |Hn| ≤K, wobei K ein lokal beschränkter A-messbarer Prozess ist, dann konvergiert

sups∈[0,T ] |(Hn •X)s− (H •X)s| in Wahrscheinlichkeit gegen 0.

Wie im càdlàg-Fall ist das Integral noch etwas über die lokal beschränkten Prozesse hin-

aus erweiterbar. Im Folgenden bezeichnet L(X) diese Familie der zulässigen Integranden (siehe

Proposition 4.12). Angenommen ein optionales Semimartingal lässt sich als Summe eines qua-

dratintegrierbaren optionalen Martingals N ∈M2 und eines Prozesses B ∈A von integrierbarer

Variation schreiben. Mit der Norm gegeben durch E[N2
T ]1/2 +E[Var(B)T ] kann es dann als Ele-

ment des Banachraums M2⊕A angesehen werden. Mit den oben eingeführten Begriffen ist es

nun möglich, das Abgeschlossenheitsresultat aus Kapitel 4 darzustellen.

Satz 11. Sei X ein optionales Spezialsemimartingal. Wenn für (Hn)n∈N ⊂ L(X) die Folge der

zugehörigen Integrale (Hn • X)n∈N eine Cauchy-Folge in M 2⊕A ist, dann existiert ein Inte-

grand H ∈ L(X), sodass Hn •X →H •X in M 2⊕A .
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