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The theory of nucleon transfer in heavy ion reactions is formulated on the basis of the molecular particle- 
core model for a system consisting of two cores and one extracore nucleon. The extracore nucleon is 
described by the molecular wave fiinctions of the asymmetric two-center shell model. The cores, which are 
assumed to be collectively excitable, are treated with vibrator-rotator models. Potentials for shape 
polarization are contained in the asymmetric two-center shell model and the interaction between the cores. 
The excitation and transfer of the extracore nucleon is induced by the radial and rotational couplings. The 
coupled channel equations, which include the recoil effects in first approximation, are derived in a form 
suitable for numerical calculations of Cross sections. 

REACTIONS Heavy ion scattering, theory of nucleon transfer, 
wave functions, two-center shell model, collective and single- 

particle excitation. I 
I. INTRODUCTION 

Although collective molecular resonances have 
been observed in various heavy ion sys tems ,  such 
a s  ''C +12C, molecular single-particle effects a r e  
not well established (for a revieiv s e e  Ref. 1). In 
this paper we study molecular single-particle ef- 
fects  in the scat ter ing of nuclei which can be  de- 
composed into a c o r e  and a loosely bound nucleon. 
F o r  simplicity, we r e s t r i c t  our investigations to 
sys tems  with one ex t racore  nucleon. Examples 
of such sys tems  a r e  ''C +13C f o r  identical cores  
aqd 13C +160 for  different cores .  The main pur-  
pose of our  paper  i s  t o  der ive  the elements  fo r  
the molecular description of the excitation and 
t rans fe r  of the ex t racore  nucleon. 

The  theory of nuclear molecular single-particle 
effects was f i r s t  initiated with the symmetr ic  and 
asymmetr ic  two-center shel l  models2 (STCSM, 
ATCSM) which a r e  mostly applied t o  calculate 
r e a l  nucleus-nucieus  potential^.^ Dynarnic t rea t -  
ments of molecular single-particle motion in 
nucleus-nucleus collisions w e r e  studied by P a r k  
e t  al.? von Oertzen and N ö ~ - e n b e r g , ~  Becker  et al.," 
Matveenko and L ~ v a s , ~  and Ter leck i  et ~ 1 . ~  Also, 
molecular wave functions w e r e  used to descr ibe  
polarization effects in proton t rans fe r  r e a c t i o n ~ . ~  

One major  differente between our theory and the 
work in Refs. 6 and 7 l i es  in the different definition 
of the rotating coordinate sys tems .  In Refs. 6 

and 7, one defines the z' axis of the rotating sys -  
t e m  by the direction of the core-core distance. 
This  definition is commonly used in atomic phys- 
ics  where the rotating sys tem i s  fixed by the po- 
sition of the nuclear centers .  However, in nu- 
c lea r  pliysics the m a s s  ra t io  between the extra-  
c o r e  nucleon and the c o r e s  does not allow u s  to  
equate the core -core  distance with the relat ive 
coordinate. Therefore,  in Refs. 4 and 8 we have 
defined the Position of the intr insic  coordinate 
sys tem with the t r u e  relat ive coordinate, and 
consequently avoided a l l  the complications a r i s -  
ing in the asymptotic behavior of the wave func- 
tions a s  discussed in Refs. 6 and 7 where the  
core -core  distance has been used. 

Fur ther ,  we assume that the center  dis tance in 
the TCSM should b e  taken a s  the relat ive coordi- 
nate instead of the core -core  distance. This  
assumption becomes most  obvious fo r  a n  increas-  
inp number of ex t racore  nucleons. The  TCSM 
potential i s  generated a s  the mean field of a l l  the 
nucleons and not just the c o r e  nucleons only. 
Therefore,  the center  distance has to  be  related 
to the relat ive coordinate of a l l  the nucleons. 

This  work is a generalization of the paper  by 
Ter leck i  et ~ 1 . ~  on the 13C-13C reaction in that the 
extracore nucleons can b e  t rans fe r red  and that 
the c o r e s  can b e  collectively excited. Both ef- 
fects ,  which we have not yet studied, play a ro le  
in the 13C-13C reaction. In Order t o  avoid the 
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complexity in the theory due to the ant isymmetr i-  
zation of the  ex t racore  nucleons, we have r e -  
s t r i c ted  our  formulation to the c a s e  of one ex t ra -  
c o r e  nucleon only. However, this  assumption 
is not very  res t r i c t ive  and can be  removed 
straighfforwardly. 

In Sec. I1 we formulate  the coordinates and the 
Hamiltonian describing the two c o r e s  and the 
loosely bound nucleon. The  dynamics of the c o r e s  
is t rea ted  by collective sur face  coordinates which 
have to be  properly defined a s  the nuclei overlap. 
Hence, the low-energy s p e c t r a  of the c o r e s  a r e  
explained in the f ramework  of vibrator  o r  rota-  
tor-vibrator  models. Analogously t o  the s t rong  
coupling model (Nilsson model) we a s s u m e  in 
addition tha t  the  ATCSM potential depends on the 
collective sur face  coordinates. Therefore,  the 
model contains two types of polarization of the 
nuclear  shapes. The  f i r s t  type a r i s e s  due t o  the 
overlap of the nuclei and depends on the relat ive 
distance of the  nuclei, whereas the second type 
is caused by collective t ransi t ions in the c o r e s  
via the dynamics of the scat ter ing process .  Since 
the relat ive coordinate between the nuclei changes 
a f te r  the  t rans fe r  of the ex t racore  nucleon, the 
Hamiltonian has  different f o r m s  f o r  the d i rec t  
and t r a n s f e r  channels. 

Section I11 presen ts  the wave functions, their  
asymptotic behavior and symmetr ies  f o r  identical 
cores .  In Sec. IV we construct  the coupled chan- 
nel  equations f o r  the relat ive wave functions. The  
coupled equations a r e  wri t ten very  explicitly s o  
that pract ical  numerical  calculations can b e  
s tar ted.  F o r  this  purpose we  expand the recoi l  
t e r m s  up t o  the  f i r s t  Order in the differente be- 
tween the relat ive coordinates of the two f rag-  
mentations. It  is shown that  the radial  and ro-  
tational couplings a r e  important  mechanisms 
for  the excitation and t rans fe r  of the ex t racore  
nucleon. 

11. THE MODEL 

nucleons and one ex t racore  nucleon. T h e  extra-  
c o r e  nucleon can b e  t r a n s f e r r e d  between the  ' 

cores .  Such s y s t e m s  a r e ,  f o r  example, 13C+12C, 
'=C +l60 ,  and 12C +170. F o r  simplicity we r e -  
s t r i c t  the theory to  s y s t e m s  with one ex t racore  
nucleon. T h e  extension t o  s y s t e m s  with m o r e  
ex t racore  nucleons is straightforward,  though 
one needs t o  ant isymmetr ize the wave functions 
of the ex t racore  nucleons. The  following reac-  
tion channels a r e  possible: 

s = 1 (C, + 1)  + C„ 

The channels with s = 1 and s = 2 consis t  of nu- 
c le i  in the fragmentations Al =Cl + 1, A2 =C2 and 
Al =Cl, A2 =C2 + 1, respectively. In the excited 
s t a t e s  of the  nuclei both the c o r e s  and the ex t ra -  
coke nucleon may b e  excited. The  excited s t a t e s  
of the c o r e s  a r e  assumed t o  b e  describable by 
collective models such  as rotation o r  vibration 
models.I0 The  s ta tes  of the ex t racore  nucleon 
a r e  obtained f r o m  the asymmetr ic  two-center 
shel l  model sui table  f o r  the fragmentations with 
Al and A, nucleons." 

A. Coordinates 

We denote the lab_oratory+coordinates of the 
c o r e  cen te rs  with Rcl and Rc2 and the laboratory 
coordinate of the ex t racore  nucleon by  F,. A s  
shown in Fig. 1, we introduce the center-of-mass 
coordinate of the sys tem with A (=Cl +C, + 1) 
nucleons, 

the coordinate of the ex t racore  nucleon measured  
with respec t  t o  the cen te r  of m a s s  

We consider  the scat ter ing of a sys tem of two 
nuclei consisting of two c o r e s  with C, and C, 

and the relat ive coordinates between the nuclear 
cen te rs  in the channels with s = 1 and s = 2, 

FIG. 1. Definition of the various coordinates of the 
particle-core model. Between the coordinates defined in Eqs. (4) and 
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(5), the following relat ions hold: 

R -R 1 - 
+ (C, + I)C, [(C1 - c2)R2 +Arc,,, I ,  ( 6 4  

F o r  equal c o r e s  C, =C, = C these formulas reduce 
to  a single expression: 

In the calculation of the mat r ix  elements  the 
volume element has to  be inser ted a s  

T h e  dynamics of the cores  i s  descr ibed by mul- 
tipole coordiriates and a(xP which define the 
shape of the c o r e s  1 and 2 with respec t  to  the 
laboratory axes.1° In mos t  applications the 
quadrupole deformation of the nuclear  shapes i s  
the important one which can b e  t rea ted  in the 
framework of the vibrator  o r  rotator  models. 
Restr ic t ing the fur ther  considerations t o  quadru- 
pole shapes only, we define the niiclear sur faces  
asymptotically by 

Here,  ROi denotes the nuclear  radii.  In the overlap 
region the nuclear sur face  has to  b e  defined in 
accordance with the corresponding equipotential 
sur face  of the asymmetr ic  two-center she l l  
model. The  deformation of this  equipotential 
sur face  can  b e  related to  the Coordinates 4:) a s  
shown for  the symmetr ic  two-center shel l  model 
by Fink et ~ 1 . ' ~  

B.  Kinetic energy 

The  kinetic energy is given in the center-of- 
m a s s  sys tem by 

The  kinetic energies  a r e  those of the cen te rs  of 
the cores ,  of the ex t racore  nucleon, and of the 
collective degrees of f reedom of the  cores .  We 
t rans form the Hamiltonian f o r  each fragmenta-  
tion s to  a different rotating coordinate sys tem 
with the z' axis  in the direction of R,. The  ro-  
tating coordinate sys tems  a r e  fixed with respect  
to  the laboratory sys tem by the Eule r  angles q„ 
8, (spherical polar angles of g,), and $,. The 
angle $J, around the z' axis  has no physical s ig-  
nificance and does not affect the resul ts .  After 
the t ransformation to the rotating coordinate 

s y s t e m s  the kinetic energy, given in (10), may b e  
writteil fo r  the fragmentation s a s  

where 

-. -. * 
Here,  I ,  J„ and J,II a r e ,  respectively, the 

operators  of the total angular momentum including 
the nucleon spins,  the angular momentum of the 
ex t racore  nucleon measured with respec t  t o  the 
nuclear cen te rs ,  and the total angular momentum 
of the quadrupole degrees of freedom. The  
angular momenta and the l inear  momenta Cl, 
and a r e  wri t ten with respec t  to  the rotating 
coordinate sys tem.  The  reduced m a s s e s  fo r  the 
fragmentation s a r e  abbreviated by ,U, with M a s  
the nucleon mass .  T h e  detai ls  of the t ransforma- 
tion to  the rotating coordinate sys tem a r e  given in 
Refs. 8 and 10. 

C .  Hamiltonian 

The  Hamiltonian for  the fragmentation s is 
assumed to be  a s  follows: 

H=T,+V„, ( C Y $ ~ ; ) ) + U ( ~ ~ ~  -&, 4;') 
+ i w ( ~ „ i ~ ,  E) +V,(?:,,, ,P:, , Z f ,  4;', R,). 

(12) 

The  potential Vwii is the asymptotic potential 
energy of the quadrupole degrees of f reedom 
(R,-m). The  potential U represen ts  the inter-  
action between the c o r e s  and depends only on the 
cope-core separat ion dis tance and the deforma- 
tion parameters  of the nuclear surface.  The  ab- 
sorpt ive potential W is due t o  a l l  the channels 
which a r e  not explicitly t reated and is assumed 
t o  b e  a function of the relat ive coordinate, the 
total angular momentum and energy. The  fifth 
t e r m  b, is the potential of the asymmetr ic  two- 
center  shel l  model (ATCSM) in the fragmenta-  
tion s. 

For the core -core  potential we make a multi- 
pole expansion up to f i r s t  o r d e r  of the deforma- 





192 J A E  Y .  P A R K ,  W E R N E R  S C H E I D ,  A N D  W A L T E R  G R E I N E R  - 20 

Analogously, u7e have W„„(s = 2 ) .  Mainly the 
operators  4, and W„„ couple the various degrees 
of freedom. We note that the Ha~nil tonian ( 1 8 )  de- 
pends on the special  fragmentation s .  

111. WAVE FUNCTIOYS 

The wave functions fo r  solving the scat ter ing 
problem H+ = E4 a r e  given in the laboratory s y s -  
t e m  by the ansatz  (Park  et ccL.*) 

Here  RmIJ I (RS )  represen ts  the wave function de- 
scr ibing the relat ive motion of the colliding nuclei, 
and s = 1 , 2  denotes the fragmentaiion and ;r a s e t  
of intr insic  quantum numbers. Fur ther ,  I, 1, and 
J a r e  the quantum numbers  of tfie total angular 
momentum, the orbital angular momentum, and 
the channel spin, respectively, The  intritisic wave 
function @„„ describes the collective degrees 
of f reedom and the motioti of thc ex t ra  pari ic le .  
The  t ransformation of the intr insic  wave funi:tioii 
+„, to the rotating coordinate sys tem is defined 
by the relation 

The parentheses around the quantuni number J of the 
channel spin iridicate that has  a good quantum num- 
b e r  J f o r  l a rge  separat ions of the n ~ i c l e i  only. When 
the nuclei overlap, the ex t racore  nucleon moves 
in a rotating deformed potential well and, there -  
fore,  has  no good angular momentunl with respec t  
to  any center .  We u s e  Eq. ( 2 4 )  a s  the definition 
of the intr insic  wave function f o r  a r b i t r a r y  inter-  
nuclear distances. Inserting Eq. ( 2 4 )  into Eq. ( 2 3 )  
we obtain 

The last  equation has  been fur ther  divided by 
1/v% in o rder  t o  include the integration over the 
i r relevant  Euler  angle Ss in a l l  matr ix elements .  
Asymptotically ( R s -  W) the radial  wave functions 
approach the usual l inear  superposition of the 
Coulomb functions G I  and F, multiplied by the S 
matr ix:  

In the following, we r e o r d e r  the wave functions 
used in Eq. ( 2 5 )  into another s e t  of functions 
which a r e  more  convenient for  the rotating co- 
ordinate sycterrt: 

-: R K I  ( R S ) $ K I M  . (27) 
K 

B e r e  the orthonormalized channel functions a r e  
defined zs 

T h e  index K denotes a new s e t  of quantum num- 
b e r s ,  completely defining the wave functions 
+„, which we will specify in the next sections. 
The t ransformation matr ix between the two rep-  
resentations is  assumed to b e  independent of the 
relat ive coordinate: 

The S matr ix in the L representat ion,  which i s  
needed in the calculation of the Cross sect ions,  
can b e  obtained f r o m  the relat ive wave functions 
RKI in the K representat ion by two methods: 

(a) One defines the asymptotic behavior of 
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RKI by that  of RLI given in Eq. (26): 

(b) One defines the asymptotic behavior of RKI 
differently by general ized Coulomb functions and 
the S matrix,  both written in  the K representation: 

with 

T h e  functions J:,, and 0'„, become diagonal in 
K for  R - W, f o r  exampie, J'„,(R + W )  = ~ " J ~ G ~ ~ ,  . 
T h e  mat r ix  in the  L representat ion is finally cal-  
culated by the  t ransformation 

=  AI)^^;?^'+^ ' . (32) 
KK' 

T h e  representat ion f o r  the wave functions in (27) 
should b e  chosen a s  the  s e t  of s ta tes  classif ied by 
K which a r e  selectively excited via  the coupling 
potentials (22). F o r  example, the main coupling 
potential f o r  the quadrupole vibrations i s  propor-  
tional to  ai(,i) and, therefore,  exci tes  only vibra- 
tions with M = O  with respec t  to  the intr insic  z' 
axis. Therefore,  it i s  useful to  classify the chan- 
nel wave functions according t o  the quantum num- 
b e r  of z' component of angular momentum. 

A. Intrinsic wave function for different wres 

In the c a s e  of C, + C, we  do not have t o  sym-  
met r ize  the wave function f o r  the exchange of the 
cores .  The ant isymmetr izat ion of the ex t racore  
nucleon with the c o r e s  is current ly neglected. 
T h e  intr insic  wave function 6„(,), can b e  ex- 
p ressed  a s  a product of the eigenfunctions of 
H„„ ,, and ~ A T C S M .  These  eigenfunctions a r e  de- 
fined by the eigenvalue equations: 

H c o i l , t ~ ~ L M ( i ) = E ~ L S ~ L M ( ~ ) s  2 = 1 , 2  (33) 

~ A T C C M  (Fc'm , S , R , ) < P ~ * ( , ) ~ ( ~ ~  , Rs) 
= E s . u I )  i m ~ ( ~ s ) V s ~ j ) m ( ~ C m  ,Rs) .  (34) 

The  wave functions SB „, classif ied by the 
quantum number /3 and angular momentum L ,  de- 
s c r i b e  the collective s t a t e s  of the  c o r e  nuclei. 
T h e  mat r ix  elernents of the opera tors  4:) be-  
tween these  s t a t e s  can b e  reduced to the E2- 
t ransi t ion probabilities.13 T h e s e  t ransi t ion proba- 
bi l i t ies  may b e  obtained f r o m  measurement  o r  
direct ly  calculated with rea l i s t i c  nuclear  models 

chosen f o r  H„„ (for collective nuclear  models s e e  
Refs. 10 and 14). 

T h e  wave functions qsx(,), of the ATCSM de- 
pend on the fragmentation s and f o r m  an ortho- 
normal  s e t  f o r  each value of s .  T h e  p a r a m e t e r s  
of ~ . A . ~ C S M  have to b e  s o  adjusted that the calcu- 
lated asymptotic s ingle-part ic le  levels a g r e e  
with the experimental levels of the nucleus with 
As =C, + 1 nucleons. The  difference in the m a s s  
asymrnetr ies  between the two fragmentations is 
given by 

ql - q, =(CI - C, + 1)/A - (C, - C, - 1)/A 

= 2/A. (35) 

Since this difference is smal l ,  we  may inser t  a n  
averaged m a s s  asymmetry  5 j  = (C, - C,)/A into the 
ATCSM. Then the Hamiltonian of the ATCSM 
and their  eigenfunctions and eigenvalues would b e  
independent of the fragmentation s. T h i s  ap-  
proximation can b e  applied in a l l  c a s e s  where  the 
asymptotic s p e c t r a  of the nuclei with A, =C, + 1 
nucleons a r e  sufficiently well reproduced by a 
single s e t  of parameters  of the ATCSM. In the 
following, however, we formulate  the theory 
without such a n  approximation. 

With the wave functions defined in Eqs ,  (33) and 
(34) we construct  the following intr insic  wave 
functions 6 :  

F o r  la rge  separat ions the intr insic  wave func- 
tions (36) descr ibe  the s t a t e s  of the individual 
nuclei with sp ins  I, and I,. T h e  coupled equations 
a r e  conveniently obtained with the following ortho- 
normalized b a s i s  functions: 

K =(s ,  M'; ß,L„ &L,, A ; s h j m ) .  (37) 

They a r e  eigenfunctions of the Hamiltonian: 

(I(I + 1)  - Mr2 + A ( h  + 1)-(M1 - m)"). +- 
2PsRs 

(38b) 
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The  transformation needed for  the computation of the S matr ix  and defined in Eq. (28) is given 
with the wave functions (37) a s  a s u m  over  Clebsch-Gordan coefficients, which can easily 
b e  summed up: 

I 

A,;, = (-1)L2-"(2~, + l ) l i ~  L~ L~ i J  j I,/ 

A,;, =(-l)L1+Lze". J(21, + 1)1/2 L2 L1 A 

[ J  1,l 

B.  Intrinsic wave functioii for ide~itical cores out by von Oertzen et u L . , ~  who have analyzed 
the i r  data  in t e r m s  of a l inear  combination of 
nuclear orbi tals  (LCNO). 

An interesting special  type of t rans fe r  reac-  F o r  C, =C, = C  we symmetr ize  the wave func- 
tions, namely the elast ic  t rans fe r ,  occurs  f o r  tion for  the exchange of the cores .  The  total 
identical cores .  Experimental work on e las t i c  wave function [ see  Eq, (25)] consis ts  of two par t s ,  
t r ans fe r  react ions has been extensively c a r r i e d  the d i rec t  and core-exchange term: 

Here  we denoJe the relat ive coordinate af ter  c o r e  
exchange by R,. It is given according to Eq. (5) 
by 

F o r  equal cores  the m a s s  asymmetr ies  of the 
ATCSM have the values U, = -q ,  = 1/A, A s  f i r s t  
approximation one may u s e  the symmetr ic  TCSM. 
Between the wave functions of the ATCSM the 
following phase relation holds8: 

* 
=(-~)J'2m<p~(j)-,(r~~n.RZ). (42) 

Using Eqs.  (41) and (42) we obtain fo r  the wave 
function (40) 

(43) 

with the abbreviations 

S = I  for  s = 2 ;  S = 2  for  s =1 

l a = ( ß l L „ i j , l , ;  ß2L2),  

15 = (ß2Lz, i j ,12 ;  PIL1), 
(44) 

2a!= (@,L,; @,L„ V , I , ) ,  

= (P&,; ßlL„ h j , I , ) .  

After  reordering the summation in Eq. (43) we 
finally obtain the following expression: 

with the radial. functions 

F o r  the special  case,  when both c o r e s  a r e  in the 
ground s t a t e  (L, = L 2  =O), o r  m o r e  generally 
when s a = s 6, the radial  wave functions fo r  
s = 1 and 2 a r e  related by 

J I  = (-1)'- J t l l + L  ~fi„„I . (47) 

Next we symmetr ize  the wave function in the 
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representation defined in Eq. (37) for  core  ex- Similarly to Eq. (47) we find for  the case  when 
change. The result  i s  the cores occupy equal s tates,  ß,L, =&L,: 

where 

1 Since the difference between the two relative 
RK(S)I = (RK(s)I(Rs) coordinates E, and 5, is smal l  for  equal cores,  

we may approximate the expression (48) by in- 
+ (-1)I+t+L1+L2-2M' 

R?(s)r (R,)) , sert ing E, =gz =E  and using the solutions of the 

K ( s ) = ( s ,  M'; ßlLl, &IJ2,A;sXjrn), (49) 
symmetric TCSM which a r e  independent of s, 
namely ySA(dm- <pA[ i ) m .  The eigenfunctions of the 

R ( s )  =(s, - M 1 ;  &L„ ß,L,, A;S.Aj-m). ~ ~ m m e t r i c ~ ~ ~ ~  have a good parity a = i l :  

Here 1 i s  the orbital angular momentum of the 
asymptotic STCSM wave functions with respect  I ~ ~ ~ ~ l ~ ~ c m ~ ~ l ~ ~ l , ~ c n ~  )$dgl ,FCnl MT, 
to their  centers.' The structure and symmetry 
of this wave function a r e  the same a s  those used = [ J ~ ~ ~ ~ 2 , ~ c m ~ s z ~ ~ 2 , ~ c m ~ ~ n ~ ~ z , ~ c m ~ ~ ~ , ]  * .  
in the strong-coupling model (Nilsson model) de- 
scribing the motion of a nucleon coupled to the (55) 
rotation and vibrations of a deformed core.1° The operators S, can b e  written in the form of 

exponential operators, where we have applied 
W .  COUPLED CHANNEL EQUATIONS Eq. (6): 

In this section we derive coupled channel equa- 
tions for  the radial wave functions. Using the 
representation defined in Eq. (37) we divide the 

1 " ' exp { -  (C, + l ) ~ ,  [(C, - C,)i(, +Aicnl .]  grad,) , 

wave function with respect  to the fragmentation: 
S, = exp [(C, - C,)R2 + A r c m  ] grad, 

SIM = C R K ( ~ ) I ( R ~ ) Q K ( ~ ) I M ( E ~ , F : ~  , 4F)) 
K(1) 

1 
(56) 

+ E R K ( z ) I ( R ~ ) ~ K ( ~ ) I M ( ~ ~ , ~ c ~ ,  ag)). (52) In principle, the integrals (55) can be  calcu- 
K(Z)  lated numerically. But in the following, we pre-  

A. Overlap integrals and shift operators 

Overlap integrals between the two parts  of 
the wave function (52) a r e ,  in general, difficult 
to evaluate, a s  is  known from the exact t reat-  
ment of recoil effects. The general type of over- 
lap integral is  given by 

WJen the coordinates of integration a r e  chosen 
a s  Rs and F,,,., the volume element has to be  taken 
a s  dr ,  [see Eq. (8)]. The operators S ,  and S„ 
which shift both se ts  of coordinates, a r e  defined 
by 

f e r  an approximation whi.ch takes a Taylor ex- 
pansion of (56) up to f i r s t  order in the exponents. 
If we use the f i r s t  order t e rms  a s  they result  
from the Taylor expansion of (56), Eq. (55) would 
only be  fulfilled approximately to the Same order. 
Since Eq. (55) i s  important for  the proof of the 
Hermiticity of the coupled equations, we approx- 
imate Eq. (56) by the following shift operators 
which a r e  modified in the constsnts y, and y, s o  
that they satisfy Eq. (55) exactly: 

s , ( ~ , , ? ~ . ~  ) = 1 +y,[(C, - c,)R, +AT.cm ] grad, , 
(57) 

where 

These Operators fulfill the equation a = (Cl + l)C2 ; ß = C1(C2 + 1 ) .  
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The  gradients  operate  on the relat ive coordinates 3, and E,. After  the transformation to the rotating 
coordiriate sys tem we get the following equation: 

where  
+ * 
J =T$,,,. X$;.,, + S I .  

Hamiltonian (18). Also, when we inser t  the ap- 

(59) 
proximative expressions (57) fo r  the shift  opera-  
t o r s  in Eq. (60), this  equation cannot b e  exactly 

In the following we u s e  the approximations (57) satisfied. Because Eq. (60) is important f o r  the 
instead of the exact expressions (56). proof of the Hermiticity of the coupled equations, 

we replace these opera tors  by their  average:  
B.  Coupled equations 

The Hamiltonian H, a s  given in Eq. (18), de- 
pends on the fragmentation s ,  If N w e r e  the ex- 
a c t  microscopic Hamiltotiian, both representat ions 
would fulfill the identity relation with the shift  
operator  (56): where HS i s  defined by (s = 1 , 2 )  

=H(I, R1,i.c, OLZfi)~l(gl,Fcm ) .  (''1 + H @ ,  gs,. . . )Ss(R„ + + r C m ) l a  
F o r  the rea l i s t i c  Ilamiltonians (s = 1, 2), de-  

fined in Eq. (18), Eq. (60) is  sat isf ied f o r  the (62) 

kinetic energy exactly. However, the potential The averaged Operators HS(s) have the s a m e  
energies  fulfili Eq. (60) only approximately, Hermit ian property such a s  the shift  operators  
s ince they a r e  represented by models in the in Eq. (55): 

where Sn and $, a r e  wave functions describing different fragmentations. We note that the Hamiltonians 
a r e  r e a l  except the imaginary potentials which have been introduced in Eq: (12). With the approximation 
(62) we obtain tlie following sys tem of coupled channel equations f o r  the radial  functions: 

T h e  f i r s t  s u m  in these equations descr ibes  elast ic  scat ter ing and inelastic excitation, and the second 
s u m  descr ibes  the t rans fe r  react ions.  T h e  differential operators  a r e  calculated by integrating over the 
Eule r  zngles, the single-particle and collective coordinates, but not over the radial  coordinate R,: 

where  H(s )  is defined in Eq. (18), HS(s) in Eq. (62), and S ,  in Eq. (57). The  s a m e  equations resu l t  f o r  
the symrnetr ized wave functions (48) in  the c a s e  of identical c o r e s .  

C. Evaluation of the differential operators 

T h e  differential operators ,  defined in Eq. (65), a r e  most  easily obtained if we a r e  reminded that the 
wave functions S i K I M  a r e  eigensolutions of the Hamiltonian H , ( s )  [see Eq. (38)j: 
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Therefore, we divide the total Hamiltonian (18) into the following parts: 

where W„, i s  defined by 

1 
[+(J', J: +J: J',) -[',(J: +J:„, ) -I Q (J', +J'„, ) +J', J;, +J; J'„,, ] . W„, ( s )  = - 

2PsRs 

I .  Matrix elemeizts DK(s,, K,,s, 

These matrix elements a r e  given by, according to Eqs. (65a) and (67), 

The matrix elements with the operator a / a ~ ,  +D, a r e  typical for  molecular wave functions and cause the 
radial coupling. They can be  reduced to matrix elements between the ATCShl wave functions and vanish 
for  R,-W: 

n = l , 2 .  
The matrix elements of W„, a r e  caused by the rotation of the intrinsic coordinate System. They a r e  

straightforwardly reduced to the following form: 

( 6 ~ ~ ~ ~  6mm'(qsk( j ) r n i  $(J: J; + J,J ',)I(~~A'(j')rn) 

- 6A(j),i,(j,)6md~2{6M,,,~,+l[(I+M1+l)(I- fiIf)(A +M1-m+l ) (A  -lW1 +m)]'12 

+ 6 M ~ , , M , _ , [ ( I - M r + 1 ) ( I + M r ) ( i \ , - M 1 + m + 1 ) ( h  +&Ir - r n ) ~ " ~ )  

+ 6 r n ~ , m ~ 1 ~ { 6 1 ~ ~ , W ~ [ ( ~  +M' - m + l)(A - Mr t ~ f i ) ] " ~  - €iM,, ,h f . - I[ ( I  - M' + l)(I +M1)] 'I2} 

X (c~sA(~)rnl J',/<psA'(~o)m-~) 

+ 6rnt,m+1E{61~~,.[(~ - M' + m + l)(A +M' - rn)] 'I2 - 6,,,,,,„[(I +Mr  t 1)(1- M')] l"} 

Only asymptotically (Rs- W), when j becomes a good quantum number, the matrix elements of the opera- 
tors  J, reduce to the usual simple expressions 

2. Matrix e1ernent.i. DKls,, K . , ~  

These matrix elements, defined in Eq. (65b), contain the recoil effects in the transfer  reactions. For  
convenience, we separate the recoil contributions out of the transfer  matrices: 
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If al l  recoil effects a r e  neglected, the second t e rm in Eq. (73) has to be disregarded. For  the f i r s t  
te rm we find the expression 

The matrix elemerits of W„, can be calculated in complete analogy to Eq. (71). The overlap matrix 
elements (p,lq,-) a r e  different from Zero in the reaction Zone where we use different ATCSM for the two 
fragmentations. It would be  a real is t ic  approximation to use the s ame  ATCSM for both fragmentations 
with an average mass asymmetry T j  =(C, - C,)/A [see Eq. (35)], independent of s. In that case, the overlap 
matrix elements (q,lqos) a r e  identically Zero cince the solutions of the Same ATCSM a r e  orthonormal. 
This approximation needs a redefinition of the operators D, and J ,  in order to ensure that special matrix 
elements, such a s  Eq. (70), vanish asymptotically. A forthcoming paper will discuss this approach in 
detail.15 

For  the second t e rm in (73) we f i r s t  consider the matrix elements of the shift operator (57) which we 
express in spherical tensor operators: 

With this expression we obtain - -. 
(ss - l)K(s) , K y s )  =(4K(s)~.wISs(~s7 rc.m 1 - 11 +KYS)IM) 

The operator (S, - I)„, vanishes asymptotically (R,- -). If j were a good quantum number, the matrix 
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elements  would have had the selection ru le  j t = j ,  j *  1. With the resu l t  ( 7 6 )  we may wr i te  the mat r ix  ele- 
ments  of the second p a r t  in  Eq. ( 7 3 ) :  

Here  the r e s t  t e r m  contains the opera tors  Wmt 
and W„, and the remainder  of the radial  kinetic 
energy. In Order to  obtain c r o s s  sect ions fo r  
e last ic ,  inelastic,  and t rans fe r  p rocesses ,  com- 
putational work t o  solve the coupled equations 
(64) is required.  A s  a f i r s t  s t ep  we  have fur ther  
simplified the equations (64) using the s a m e  
ATCSM for  both fragmentations. This  approach 
will  b e  published in Ref. 15. 

V. CONCLUDiNG REMARKS 

In this  paper  we have developed a practicable 
method to u s e  molecular s ingle-part ic le  wave 
functions a l s o  f o r  t rans fe r  react ions.  The  single- 
par t i c le  s t a t e s  depend on the fragmentations which 
a r e  different in the d i rec t  and t rans fe r  channels. 
F o r  f i r s t  numerical  calculations i t  would b e  
sufficient to  apply the s a m e  ATCSM in a l l  f rag-  
mentations. This  approximation has the unique 
advantage that  a l l  s ingle-part ic le  s ta tes  become 
orthogonal independently of the fragmentation. 
Thereby,  the t rans fe r  opera tors  a r e  great ly 
simplified, 

T h e r e  exis t  mainly two possibilities in choosing 
the intririsic bas i s  functions. In Refs, 4 and 8 we 
have taken M-weighted s u m s  over the ATCSM 
s ta tes  a s  b a s i s  s t a t e s  fo r  the coupled equations 
s o  that  these  equations a r e  asymptotically decou- 
pled. T h i s  b a s i s  has  the disadvantage that  the 
s t a t e s  a r e  no longer eigenstates of the  ATCSM. 
In this  paper  we have used the individual eigen- 
functions of the ATCSM a s  bas i s  s ta tes .  How- 
ever ,  the resulting equations a r e  s t i l l  coupled 
asymptotically by the Coriol is  potential. Both 
choices of b a s e s  a r e  completely equivalent a s  
long a s  the Same s e t s  of ATCSM s ta tes  a r e  
taken into account. The method of this paper  has 
the advantage that the channels fo r  excitation and 
t rans fe r  can b e  classified by the individual levels 
of the ATCSM. Therefore ,  i t  is most  t ransparent  
how t o  se lec t  out the ATCSM levels f o r  the cou- 
pled channel equations, The  disadvantage of this 
b a s i s  l i es  in i ts  asymptotic coupling and, a s  
discussed, can b e  easily overcome by a s imple  
matr ix multiplication in the calculation of the 
S matrix.  

The  presen t  theory can b e  straightforwardly 
extended t o  the c a s e  of m o r e  than one ex t racore  

nucleon. As an example fo r  application we  men- 
tion the 13C - 13C scat ter ing.  Ter leck i  et a1.' have 
calculated the elast ic  scat ter ing and inelastic ex- 
citation of the neutrons within the f ramework  of 
the molecular theory. The next s teps  which need 
t o b e  c a r r i e d  out a r e  the calculation of the neutron 
t rans fe r  c r o s s  sect ions 13C +13C- 12C +14C, and 
the inelastic excitation of the ''C cores .  The  
formal i sm of the ant isymmetr izat ion of the extra-  
c o r e  neutrons leads t o  additional relat ive co- 
ordinates  f o r  each partition of the ex t racore  
nucleons. Since the  ant isymmetr izat ion represen ts  
an exchange of nucleons, it generates  s i m i l a r  
effects in the coupled channel equations a s  the 
physical t rans fe r  processes .  

It  is worthwhile t o  develop a theory of par t ic le-  
hole excitations in the molecular  fo rmal i sm (see 
a l s o  Ref. 5). In such a theory the inelast ic  s c a t -  
ter ing of even-even nuclei can b e  described with- 
out violating the Paul i  pr inciple  in con t ras t  t o  the 
part ic le-core model where  the ant isymmetr iza-  
tion between the c o r e  and ex t racore  nucleons is 
completely neglected. The  res idua l  nucleon-nu- 
cleon interaction could b e  part ly  taken into ac -  
count by using Hartree-Fock solutions16 for  the 
single-particle s ta tes  instead of the ATCSM 
s ta tes .  

The  c r o s s  sectioris fo r  the  excitation and t r a n s -  
f e r  of nucleons in react ions,  such a s  13C +160 
-''C +170, should exhibit cer tain enhancements 
a s  function of the heavy ion energies  which a r i s e  
due to  avoided level c ross ings  in the two-center 
level diagrams." Similar  effects have been ob- 
se rved  in atomic physics and a r e  known a s  pro- 
motion processes  according t o  Fano and Lichten.'' 
I t  would b e  a unique s ignature f o r  the formation of 
nuclear  molecular  orbi ts  if the  promotion process  
fo r  nucleons could be  detected in the t rans fe r  and 
excitation c r o s s  s e ~ t i o n s , ' ~  Up until  now, no ex- 
perimental  investigations in that  direct ion have 
been known to us ,  which can give an answer to  the  
important problem of the existence of molecular 
orbi ts  in nuclear  heavy ion collisions, 
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