organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Bromo-3-methyl-2-phenyl-3*H*-imidazo-[4,5-*b*]pyridine

Younes Ouzidan,^a* El Mokhtar Essassi,^b Santiago V. Luis,^c Michael Bolte^d and Lahcen El Ammari^e

^aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, ^bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, ^cDepartamento de Quimica Inorganica y Organica, ESTCE, Universitat Jaume I, E-12080 Castellon, Spain, ^dInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and ^eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: ouzidan@yahoo.fr

Received 6 June 2011; accepted 8 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.090; data-to-parameter ratio = 15.3.

The two fused five- and six-membered rings building the molecule of the title compound, $C_{13}H_{10}BrN_3$, are approximately planar, the largest deviation from the mean plane being 0.004 (2) Å. The dihedral angle between the imidazo[4,5-*b*]pyridine mean plane and that of the phenyl ring is 41.84 (11)°. The structure is held together by slipped π - π stacking between symmetry-related molecules, with an interplanar distance of 3.583 (1) Å and a centroid–centroid vector of 3.670 (2) Å.

Related literature

For background regarding biological activity of imidazo[4,5b]pyridines, see: Cristalli *et al.* (1995); Bukowski & Kaliszan (1991); Aridoss *et al.* (2006); Bavetsias *et al.* (2007). For background to their pharmacological activity, see: Chen & Dost (1992); Weier *et al.* (1993).

Experimental

Crystal data

 $C_{13}H_{10}BrN_3$ $V = 2329.68 (12) Å^3$
 $M_r = 288.15$ Z = 8

 Orthorhombic, *Pbca* Mo K α radiation

 a = 13.7138 (4) Å $\mu = 3.51 \text{ mm}^{-1}$

 b = 6.7088 (2) Å T = 298 K

 c = 25.3217 (7) Å 0.60 × 0.30 × 0.06 mm

Data collection

Bruker SMART CCD three-circle diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\rm min} = 0.227, T_{\rm max} = 0.825$

Refinement

R

w

S

23

$[F^2 > 2\sigma(F^2)] = 0.033$	155 parameters
$R(F^2) = 0.090$	H-atom parameters constrained
= 1.04	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
378 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

13535 measured reflections

 $R_{\rm int} = 0.047$

2378 independent reflections

1804 reflections with $I > 2\sigma(I)$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2697).

References

- Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 268–275.
- Bavetsias, V., Sun, C., Bouloc, N., Reynisson, J., Workman, P., Linardopoulos, S. & McDonald, E. (2007). Bioorg. Med. Chem. Lett. 17, 6567–6571.
- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bukowski, L. & Kaliszan, R. (1991). Arch. Pharm. 324, 121-127.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Chen, S. T. & Dost, G. (1992). US Patent 5 132 216.
- Cristalli, G., Vittori, S., Eleuteri, A., Volpini, R., Camaioni, E., Lupidi, G., Mahmood, N., Bevilacqua, F. & Palu, G. (1995). *J. Med. Chem.* **38**, 4019–4025.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Weier, R. M., Khanna, I. K., Stealey, M. A. & Julien, J. (1993). US Patent 5 262 426.

supplementary materials

Acta Cryst. (2011). E67, o1684 [doi:10.1107/S1600536811022318]

6-Bromo-3-methyl-2-phenyl-3*H*-imidazo[4,5-*b*]pyridine

Y. Ouzidan, E. M. Essassi, S. V. Luis, M. Bolte and L. El Ammari

Comment

Heterocyclic ring systems having imidazo[4,5-*b*]pyridine nucleus can be considered as structural analogues of purines and have shown a diverse biological activity depending on the substituents of the heterocyclic ring. Their activity includes antiviral (Cristalli *et al.*, 1995), anticancer (Bavetsias *et al.*, 2007), tituberculostatic (Bukowski & Kaliszan, 1991) and antimitotic (Aridoss *et al.*, 2006) actions. They have also been evaluated as antagonists of various biological receptors including angiotensin-II (Chen & Dost, 1992) and platelet activating factor (PAF) (Weier *et al.*, 1993). Hence, the synthesis of imidazo[4,5-*b*]pyridine derivatives represents nowadays an important topic in organic synthesis.

The two fused five and six-membered rings are nearly planar with the maximum deviation of 0.004 (2) Å from N1. The dihedral angle between the imidazo[4,5-*b*]pyridine system and the phenyl ring is 41.84 (11)° (Fig. 1). The structure is held together by slipped π - π stacking between symmetry related molecules with interplanar distance of 3.583 (1) Å and centroid to centroid vector of 3.670 (2) Å resulting in a slippage of 0.79 Å.

Experimental

To a solution of the 6-bromo-2-phenyl-1*H*-imidazo[4,5-*b*]pyridine (0.3 g, 1.09 mmol), potassium carbonate (0.2 g, 1.42 mmol) and tetra-n-butylammonium bromide (0.04 g, 0.1 mmol) in DMF (15 ml) was added methyl iodide (0.08 ml, 1.31 mmol). Stirring was continued at room temperature for 12 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from ethanol.

Refinement

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å, and 0.96 Å for aromatic and methyl respectively and with $U_{iso}(H) = 1.2 U_{eq}$ (aromatic) and $U_{iso}(H) = 1.5 U_{eq}$ (methyl).

Figures

Fig. 1. : Molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radii.

6-Bromo-3-methyl-2-phenyl-3*H*-imidazo[4,5-*b*]pyridine

Crystal data

 $C_{13}H_{10}BrN_3$

F(000) = 1152

$M_r = 288.15$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
<i>a</i> = 13.7138 (4) Å
<i>b</i> = 6.7088 (2) Å
<i>c</i> = 25.3217 (7) Å
$V = 2329.68 (12) \text{ Å}^3$
Z = 8

Data collection

$D_{\rm x} = 1.643 {\rm ~Mg~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5157 reflections
$\theta = 3.0-29.6^{\circ}$
$\mu = 3.51 \text{ mm}^{-1}$
T = 298 K
Platelet, colourless
$0.60\times0.30\times0.06~mm$

Bruker CCD three-circle diffractometer	2378 independent reflections
Radiation source: fine-focus sealed tube	1804 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.047$
ω scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = 0 \rightarrow 17$
$T_{\min} = 0.227, \ T_{\max} = 0.825$	$k = 0 \rightarrow 8$
13535 measured reflections	$l = 0 \rightarrow 31$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0361P)^{2} + 1.2509P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.40 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.65259 (2)	1.16657 (6)	0.626463 (10)	0.06788 (15)
N1	0.60483 (17)	0.7251 (3)	0.51723 (8)	0.0509 (6)
N2	0.60942 (14)	0.7570 (3)	0.42245 (7)	0.0396 (4)
N3	0.64274 (15)	1.0833 (3)	0.41558 (8)	0.0425 (5)
C1	0.6160 (2)	0.8347 (4)	0.56091 (10)	0.0528 (7)
H1	0.6093	0.7719	0.5934	0.063*
C2	0.63682 (17)	1.0361 (4)	0.56042 (9)	0.0477 (6)
C3	0.64811 (18)	1.1434 (4)	0.51422 (10)	0.0464 (6)
Н3	0.6620	1.2790	0.5138	0.056*
C4	0.63692 (16)	1.0313 (4)	0.46819 (9)	0.0385 (5)
C5	0.61634 (17)	0.8291 (3)	0.47310 (9)	0.0386 (5)
C6	0.62568 (16)	0.9162 (4)	0.38966 (9)	0.0369 (5)
C7	0.62409 (16)	0.9055 (4)	0.33165 (9)	0.0378 (5)
C8	0.58108 (18)	1.0590 (4)	0.30370 (9)	0.0463 (6)
H8	0.5525	1.1644	0.3218	0.056*
С9	0.5801 (2)	1.0574 (5)	0.24902 (10)	0.0561 (7)
Н9	0.5506	1.1610	0.2306	0.067*
C10	0.6226 (2)	0.9037 (5)	0.22203 (11)	0.0590 (8)
H10	0.6217	0.9025	0.1853	0.071*
C11	0.6665 (2)	0.7515 (6)	0.24919 (12)	0.0641 (8)
H11	0.6957	0.6476	0.2307	0.077*
C12	0.66776 (19)	0.7512 (5)	0.30402 (11)	0.0531 (7)
H12	0.6978	0.6475	0.3222	0.064*
C13	0.5829 (2)	0.5528 (4)	0.40922 (12)	0.0607 (8)
H13A	0.5461	0.5518	0.3770	0.091*
H13B	0.5441	0.4973	0.4372	0.091*
H13C	0.6409	0.4746	0.4048	0.091*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0669 (2)	0.0970 (3)	0.03975 (18)	-0.00449 (16)	-0.00264 (12)	-0.01196 (14)
N1	0.0583 (14)	0.0484 (13)	0.0460 (12)	-0.0094 (11)	-0.0071 (10)	0.0159 (10)
N2	0.0467 (11)	0.0275 (10)	0.0445 (11)	-0.0009 (9)	-0.0056 (9)	0.0035 (9)
N3	0.0584 (13)	0.0312 (10)	0.0379 (10)	-0.0030 (9)	0.0000 (9)	0.0023 (9)
C1	0.0529 (15)	0.0641 (19)	0.0414 (14)	-0.0091 (14)	-0.0064 (11)	0.0176 (13)
C2	0.0411 (13)	0.0662 (19)	0.0358 (12)	-0.0012 (12)	-0.0042 (10)	0.0006 (12)
C3	0.0526 (15)	0.0436 (15)	0.0430 (13)	-0.0035 (11)	-0.0023 (11)	-0.0017 (11)
C4	0.0427 (13)	0.0344 (13)	0.0385 (12)	-0.0008 (10)	-0.0019 (9)	0.0043 (10)
C5	0.0385 (12)	0.0347 (12)	0.0426 (12)	-0.0022 (10)	-0.0061 (10)	0.0066 (10)
C6	0.0381 (12)	0.0316 (12)	0.0410 (12)	0.0030 (10)	-0.0028 (10)	0.0016 (10)
C7	0.0362 (11)	0.0391 (13)	0.0380 (12)	-0.0019 (10)	0.0003 (9)	-0.0014 (10)
C8	0.0522 (14)	0.0459 (15)	0.0408 (13)	0.0073 (12)	0.0051 (11)	0.0026 (11)
C9	0.0575 (16)	0.071 (2)	0.0402 (14)	0.0032 (14)	0.0022 (12)	0.0109 (13)

supplementary materials

C10 C11 C12	0.0541 (15) 0.0615 (19) 0.0514 (16)	0.084 (2) 0.071 (2) 0.0528 (16)	0.0389 (14) 0.0594 (18) 0.0551 (16)	-0.0069 (16) 0.0084 (16) 0.0114 (13)	0.0070 (12) 0.0145 (14) 0.0018 (12)	-0.0068 (14) -0.0249 (17) -0.0064 (14)
C13	0.087 (2)	0.0329 (14)	0.0622 (17)	-0.0136 (14)	-0.0098 (15)	-0.0003 (13)
Geometric param	neters (Å, °)					
Br1—C2		1.900 (3)	С7—С8		1.382	(3)
N1—C5		1.327 (3)	C7—C1	2	1.386 (4)	
N1-C1		1.337 (3)	C8—C9		1.385 (3)	
N2—C6		1.371 (3)	C8—H8		0.9300	
N2—C5		1.374 (3)	C9—C1	0	1.367 (4)	
N2—C13		1.456 (3)	С9—Н9		0.9300	
N3—C6		1.320 (3)	C10—C	11	1.371 (5)	
N3—C4		1.380 (3)	С10—Н	10	0.9300	
C1—C2		1.381 (4)	C11—C	12	1.388 (4)	
C1—H1		0.9300	С11—Н	11	0.9300	
С2—С3		1.382 (4)	С12—Н	12	0.9300	
C3—C4		1.395 (3)	C13—H13A		0.9600	
С3—Н3		0.9300	С13—Н	13B	0.9600	
C4—C5		1.391 (3)	С13—Н	13C	0.9600	
C6—C7		1.471 (3)				
C5—N1—C1		113.2 (2)	C8—C7-	—C6	118.8 (2)	
C6—N2—C5		106.23 (19)	C12—C	7—С6	122.3 (2)	
C6—N2—C13		129.4 (2)	С7—С8-	—С9	120.7 (3)	
C5—N2—C13		124.3 (2)	С7—С8-	—H8	119.7	
C6—N3—C4		104.8 (2)	C9—C8	—H8	119.7	
N1—C1—C2		123.7 (2)	C10—C	9—C8	120.1 (3)	
N1—C1—H1		118.2	С10—С9—Н9		119.9	
C2-C1-H1		118.2	С8—С9—Н9		119.9	
C1—C2—C3		122.7 (2)	C9—C10—C11		119.9 (3)	
C1-C2-Br1		117.80 (19)	C9—C10—H10		120.1	
C3—C2—Br1		119.5 (2)	C11—C10—H10		120.1	
C2—C3—C4		114.5 (2)	C10—C11—C12		120.6 (3)	
С2—С3—Н3		122.8	C10—C11—H11		119.7	
С4—С3—Н3		122.8	С12—С	11—H11	119.7	
N3—C4—C5		110.2 (2)	C7—C12—C11		119.9 (3)	
N3—C4—C3		131.6 (2)	C7—C12—H12		C7—C12—H12 120.1	
C5—C4—C3		118.2 (2)	C11—C	C11—C12—H12 120.1		
N1-C5-N2		126.4 (2)	N2—C1	3—H13A	109.5	
N1—C5—C4		127.7 (2)	N2—C1	N2—C13—H13B 109.5		
N2—C5—C4		105.9 (2)	H13A—	H13A—C13—H13B 109.5		
N3—C6—N2		112.9 (2)	N2—C1	N2—C13—H13C 109.5		
N3—C6—C7		122.7 (2)	H13A—	С13—Н13С	109.5	
N2—C6—C7		124.3 (2)	H13B—	C13—H13C	109.5	
C8—C7—C12		118.9 (2)				

Fig. 1