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Abstract

In the classical Dirac equation with strong potentials, called overcritical, a bound state
reaches the negative continuum. In QED the presence of a static overcritical external
electric field leads to a charged vacuum and indicates spontaneous particle creation when
the overcritical field is switched on. The goal of this work is to clarify whether this
effect exists, i.e. if it can be uniquely defined and proved, in time-dependent physical
processes. Starting from a fundamental level of the theory we check all mathematical and
interpretational steps from the algebra of fields to the very effect.

In the first, theoretical part of this thesis we introduce the mathematical formulation of
the classical and quantized Dirac theory with their most important results. Using this lan-
guage we define rigorously the notion of spontaneous particle creation in overcritical fields.
First, we give a rigorous definition of resonances as poles of the resolvent or the Green’s
function and show how eigenvalues become resonances under Hamiltonian perturbations.
In particular, we consider essential for overcritical potentials perturbation of eigenvalues at
the edge of the continuous spectrum. Next, we gather various adiabatic theorems and dis-
cuss well-posedness of the scattering in the adiabatic limit. Then, we construct Fock space
representations of the field algebra, study their equivalence and give a unitary implementer
of all Bogoliubov transformations induced by unitary transformations of the one-particle
Hilbert space as well as by the projector (or vacuum vector) changes as long as they lead
to unitarily equivalent Fock representations. We implement in Fock space self-adjoint and
unitary operators from the one-particle space, discussing the charge, energy, evolution
and scattering operators. Then we introduce the notion of particles and several particle
interpretations for time-dependent processes with a different Fock space at every instant
of time. We study how the charge, energy and number of particles change in consequence
of a change of representation or in implemented evolution or scattering processes, what is
especially interesting in presence of overcritical potentials. Using this language we define
rigorously the notion of spontaneous particle creation. Then we look for physical processes
which show the effect of vacuum decay and spontaneous particle creation exclusively due
to the overcriticality of the potential. We consider several processes with static as well
as suddenly switched on (and off) static overcritical potentials and conclude that they
are unsatisfactory for observation of the spontaneous particle creation. Next, we consider
properties of general time-dependent scattering processes with continuous switch on (and
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off) of an overcritical potential and show that they also fail to produce stable signatures
of the particle creation due to overcriticality. Further, we study and successfully define
the spontaneous particle creation in adiabatic processes, where the spontaneous antipar-
ticle is created as a result of a resonance (wave packet) decay in the negative continuum.
Unfortunately, they lead to physically questionable pair production as the adiabatic limit
is approached. Finally, we consider extension of these ideas to non-adiabatic processes in-
volving overcritical potentials and argue that they are the best candidate for showing the
spontaneous pair creation in physical processes. Demanding creation of the spontaneous
antiparticle in the state corresponding to the overcritical resonance rather quick than slow
processes should be considered, with a possibly long frozen overcritical period.

In the second part of this thesis we concentrate on a class of spherically symmetric
square well potentials with a time-dependent depth. First, we solve the Dirac equation
and analyze the structure and behaviour of bound states and appearance of overcritical-
ity. Then, by analytic continuation we find and discuss the behaviour of resonances in
overcritical potentials. Next, we derive and solve numerically (introducing a non-uniform
continuum discretization for a consistent treatment of narrow peaks) a system of differen-
tial equations (coupled channel equations) to calculate particle and antiparticle produc-
tion spectra for various time-dependent processes including sudden, quick, slow switch on
and off of a sub- and overcritical potentials. We discuss in detail how and under which
conditions an overcritical resonance decays during the evolution giving rise to the spon-
taneous production of an antiparticle. We compare the antiparticle production spectrum
with the shape of the resonance in the overcritical potential. We study processes, where
the overcritical potentials are switched on at different speed and are possibly frozen in
the overcritical phase. We prove, in agreement with conclusions of the theoretical part,
that the peak (wave packet) in the negative continuum representing a dived bound state
partially follows the moving resonance and partially decays at every stage of its evolu-
tion. This continuous decay is more intensive in slow processes, while in quick processes
the wave packet more precisely follows the resonance. In the adiabatic limit, the whole
decay occurs already at the edge of the continuum, resulting in production of antipar-
ticles with vanishing momentum. In contrast, in quick switch on processes with delay
in the overcritical phase, the spectrum of the created antiparticles agrees best with the
shape of the resonance. Finally, we address the question how much information about the
time-dependent potential can be reconstructed from the scattering data, represented by
the particle production spectrum. We propose a simple approximation method (master
equation) basing on an exponential, decoherent decay of time-dependent resonances for
prediction of particle creation spectra and obtain a good agreement with the results of full
numerical calculations.

Additionally, we discuss various sources of errors introduced by the numerical dis-
cretization, find estimations for them and prove convergence of the numerical schemes.



Summary and Preface

“Everything should be made as simple as possible, but not simpler.”
A. Einstein

The goal of this work is to clarify whether the effect of spontaneous particle creation
exists in physical processes. More precisely, if it can be uniquely defined and proved.
Since the considerations are made on the fundamental level, it is necessary to check all
mathematical as well as interpretational steps in the construction of the theory from the
algebra of fields to the very effect. We have observed in the literature that most of the
discrepancies in opinions are due to the different frameworks chosen (e.g. Greiner, Scharf),
like definition and measure of the effect, particle interpretation, and choice of the algebra
representation (projectors).

In construction of the theory of a quantum Dirac field, describing electrons and
positrons in an external electromagnetic field, one encounters the following questions and
difficulties. Which of all possible representations of the canonical anticommutation rela-
tions (CAR) are physically plausible and which of them are unitarily equivalent? Rep-
resentations via operators in a Hilbert space seem quite natural and the addition of a
reference state (vacuum) makes them irreducible what is physically plausible. Despite
these restrictions, there remains a freedom in the choice of a projector defining the dis-
tinction between particles and antiparticles. Although it can be chosen freely in the theory,
not all choices lead to the same physics. Some choices keep the physical results untouched
(unitarily equivalent representations) and some not (nonequivalent representations). It
is the point – unfortunately very rarely discussed in the textbooks – where physical ar-
guments must be used in order to guarantee the uniqueness of the constructed theory,
e.g. that vacuum is chosen as an energetic ground state in Fock space. This definition
is unique if the Hamiltonian, and thus the electromagnetic field, is static. If it is not,
then there is no unique vacuum state and hence no unique particle interpretation. They
can be restored asymptotically if the Hamiltonian is asymptotically (far past or future)
static. Although the particle definition can then be extended to the whole time axis, it is
a purely formal step and cannot serve as a real particle interpretation – this is possible
only asymptotically (“in” and “out” interpretations).

Overcriticality in Fock space is a complex problem. Hamiltonians with potentials of
different strength lead to different projectors and different vacua being always a ground
state of the actual Hamiltonian. As long as potentials are weak, these vacua are similar.
However, at some value of the strength of the potential, called critical, the corresponding
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vacuum becomes charged with respect to the free vacuum. Consequently, the free vacuum
becomes a one-antiparticle state with respect to the overcritical one. We call this phe-
nomenon weak overcriticality since it appears as the lowest bound state of the potential
crosses the line E = 0 and the corresponding eigenfunction changes subspace from particle
to antiparticle. There appears a question, if this phenomenon corresponds to any physical
(evolution, scattering) process, because, as described above, it concerns a purely static
situation. Therefore, a description of time-dependent processes in Fock space is needed.

Time-evolution in Fock space is defined by implementation of the classical evolution
operator as a unitary operator in Fock space. This is not a trivial operation and not
always possible. It describes dynamical particle creation and annihilation processes, and
problems occur when the production rate becomes too big. This happens for infinitely
long lasting processes (e.g. scattering) in presence of potentials, which are supposed to
produce particles continuously (Klein’s paradox, Schwinger’s effect). In such cases the
external field approximation of QED breaks down and one has to use the full QED in
order to include the backreaction effects on the quantum electromagnetic field. If the
evolution or scattering process is implementable, the implementer (unitary operator in
Fock space) carries the whole information about creation and annihilation of particles in
this process. Its structure has two main parts. The first describes creation and annihilation
of particle-antiparticle pairs and hence does not change the total charge of a state. The
second describes creation and annihilation of single particles (as in the changeover from
the free to the overcritical vacuum), called in this work special. It may change the total
charge, when measured with respect to the final vacuum. Hence, a change from the initial
to the final vacuum is necessary to see this effect, what is the case only when the initial and
final potentials are different. Processes with equal initial and final value of the potential
(e.g. asymptotic vanishing in scattering processes) cannot change the total charge, but
still may create special particles and antiparticles in pairs. Therefore, creation of special
(anti-)particles (in short: special creation) seems to be a candidate for the mathematical
definition of overcritical or spontaneous particle creation. However, first, it turns out that
special creation may occur independently of overcriticality of the potential, although in
such cases it is very unstable under small variations of the potential (actually, an arbitrarily
small change of the potential destroys such special creation). Second, even in presence of
the overcritical potentials the special creation is unstable in the same way, independently of
whether the potential is switched on and off or only on during the scattering process. The
meaning of special creation can be rescued by considering adiabatic processes, which turn
out to be free from the above instabilities. Moreover, in adiabatic scattering no special
creation occurs until the energy of the lowest bound state reaches and dissolves in the
negative continuum, what we call strong overcriticality. In the adiabatic situation special
creation is equivalent to and can be used as a definition of the spontaneous particle creation.
The special antiparticle is created as a result of a resonance (wave packet) decay in the
negative continuum. Unfortunately, due to the slowness of the adiabatic processes, the
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wave packet, which describes the dissolved bound state, decays fully already at the edge of
the continuum, giving rise to production of antiparticles with vanishing momentum. This
result is not quite satisfactory physically, but the adiabatic limit itself is not a physical
situation, either. Therefore, there is a need to extend the definition of spontaneous particle
creation beyond the adiabatic limit. It is not a simple task, because the key property,
namely the special creation, usually gets lost. Yet, by continuity, slow processes do not
differ much from the adiabatic limit and corresponding particles are still produced with
big probabilities. Alternatively, one can try to specify the spontaneous particle creation
by demanding creation of an antiparticle in the state corresponding to the resonance being
a remnant of the dissolved bound state. Then, rather quick than slow processes should be
considered, with a possibly long delayed overcritical period in the evolution.

We study numerically all these questions in the case of a time-dependent spherically
symmetric square well potential with varying depth. On the one hand, it is the mathe-
matically simplest potential for which the Dirac equation can be solved analytically. On
the other hand, it shows overcriticality for depths beyond some threshold where bound
states become resonances. We show existence of the resonances by analysis of the complex
poles of the resolvent and the Green’s function as well as by observation of peaks in the
negative continuum giving rise to wave packets representing the dived bound states. In
overcritical potentials the vacuum becomes charged with respect to the free vacuum, what
we show both by calculating the expectation value of the charge operator and by study of
the vacuum polarization charge density.

We implement scattering in several time-dependent processes in the Fock space and
calculate numerically particle and antiparticle production spectra by solving the coupled
channel equations. We compare the situations of subcritical, weakly and strongly over-
critical potentials in sudden, quick, slow and adiabatic evolutions. In subcritical processes
only dynamical particle production occurs, which vanishes in the adiabatic limit. In pro-
cesses where a weakly overcritical potential is switched on, depending on the definition of
the vacuum and particle interpretation, the vacuum may spontaneously get charged and
there may appear a spontaneously created bound antiparticle, which together with the
vacuum forms an electrically neutral state. After switching off the antiparticle disappears
and the vacuum becomes neutral again. In contrary, after switching on a strongly over-
critical potential the spontaneously charged vacuum gets accompanied by a spontaneously
created antiparticle in a scattering state. If the overcritical phase persists for some time
the antiparticle departs from the source (support of the potential) leaving the charged vac-
uum behind. Final switching off creates an additional particle, mostly in a bound state,
thus giving rise to a spontaneous pair creation.

In very slow processes we observe the movement of the resonance peak in the negative
continuum during the evolution. It partially decays at every stage. Approaching the
adiabatic limit, the peak decays fully already near the continuum’s edge. Observation of
this effect presents a numerical challenge, because the peaks near the edge are extremely
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narrow. In contrast, in quick processes the resonance peak moves in the continuum without
much loss due to the own decay, but some part of its amplitude gets lost to the rest
of the continuum causing dynamical creation of pairs. Comparing the two scenarios,
our numerical evidence shows that quick switch on and off processes with a prolonged
overcritical phase are more favorable for producing antiparticles with an energy spectrum
corresponding to the resonance position in the prolonged (mostly deepest) potential.

Modeling in some approximation the process of decay of a resonance peak during the
evolution we provide a method for inverse scattering, i.e. the time-dependence of the po-
tential can be, via the time-dependence of the resonance position and width, read off from
the antiparticle production spectrum. A simple model of an exponential, decoherent decay
of peaks gives surprisingly good estimations for the antiparticle production spectrum.
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Zusammenfassung

Das Ziel dieser Arbeit ist es zu klären, ob der Effekt der spontanen Teilchenerzeugung
in physikalischen Prozessen existiert. Genauer, ob er eindeutig definiert und bewiesen
werden kann. Da die Überlegungen auf einem fundamentalen Niveau gemacht werden,
ist es notwendig, alle sowohl mathematischen als auch interpretationellen Schritte in der
Konstruktion der Theorie zu prüfen, von der Algebra der Felder bis zu dem studierten
Effekt selbst. Wir haben beobachtet, dass die meisten Meinungsverschiedenheiten in der
Literatur (z.B. Greiner, Scharf) auf unterschiedlich gewählten Ansätzen beruhen, wie die
Definition und das Maß des Effektes, Teilcheninterpretation und die Wahl der Darstellung
der Algebra (Projektoren).

In der Konstruktion der Theorie des Dirac-Quantenfeldes, die Elektronen und Positro-
nen in einem externen elektromagnetischen Potential beschreibt, stößt man auf folgende
Fragen und Schwierigkeiten. Welche von allen möglichen Darstellungen der kanonis-
chen Antikommutations-Relationen sind physikalisch plausibel und welche davon sind
unitär äquivalent? Darstellungen durch Operatoren in einem Hilbert Raum scheinen ganz
natürlich zu sein und die Einführung eines Bezugszustands (Vakuum) macht sie irreduzi-
bel, was physikalisch plausibel ist. Trotz dieser Beschränkungen bleibt eine Freiheit in der
Wahl des Projektors, der die Unterscheidung zwischen Teilchen und Antiteilchen definiert.
Obwohl er in der Theorie frei gewählt werden kann, führen nicht alle Wahlen zu der gleichen
Physik. Einige Wahlen lassen die physikalischen Ergebnisse unberührt (unitär äquivalente
Darstellungen) und einige andere nicht (nicht äquivalente Darstellungen). Dies ist der
Punkt – leider sehr selten diskutiert in den Lehrbüchern – wo physikalische Argumente
müssen benutzt werden, um die Eindeutigkeit der konstruierten Theorie zu garantieren,
z.B. dass das Vakuum als der energetische Grundzustand im Fock Raum gewählt wird.
Diese Definition ist eindeutig wenn der Hamiltonian, und somit das elektromagnetische
Feld, statisch ist. Wenn nicht, dann es gibt keinen eindeutigen Vakuumzustand und deswe-
gen keine eindeutige Teilcheninterpretation. Diese können asymptotisch wiederhergestellt
werden, wenn der Hamiltonian asymptotisch (weite Vergangenheit oder Zukunft) statisch
ist. Obwohl die Teilcheninterpretation auf die ganze Zeitachse erweitert werden kann, ist
es nur ein rein formaler Schritt und kann nicht als wirkliche Teilcheninterpretation dienen
– das ist nur asymptotisch möglich (“in” und “out” Interpretationen).

Überkritikalität im Fock Raum ist ein komplexes Problem. Hamiltonians mit Poten-

ix



x

tialen von verschiedenen Stärken führen zu verschiedenen Projektoren und verschiede-
nen Vakua, die immer Grundzustände der aktuellen Hamiltonians sind. Solange wie die
Potentiale schwach sind, sind diese Vakua ähnlich. Bei einem, so genannten kritischen,
Wert der Stärke des Potentials, wird das entsprechende Vakuum jedoch geladen gegenüber
dem freien Vakuum. Entsprechend, wird das freie Vakuum ein Ein-Antiteilchen Zustand
gegenüber dem überkritischen. Wir nennen dieses Phänomen die schwache Überkritikalität,
denn es tritt auf, wenn der tiefstliegende gebundene Zustand in dem Potential die Linie
E = 0 kreuzt und die entsprechende Eigenfunktion den Unterraum zwischen Teilchen und
Antiteilchen wechselt. Es stellt sich die Frage, ob dieses Phänomen einem physikalischen
Prozess entspricht (Evolution, Streuung), denn, wie es oben beschrieben ist, betrifft es nur
eine rein statische Situation. Deswegen ist eine Beschreibung der zeitabhängigen Prozesse
im Fock-Raum benötigt.

Die Zeit-Evolution im Fock Raum ist definiert durch Implementation des klassischen
Evolutions-Operators als ein unitärer Operator im Fock-Raum. Das ist keine triviale Oper-
ation und sie ist nicht immer möglich. Sie beschreibt dynamische Teilchenerzeugungs- und
Vernichtungs-Prozesse und Probleme treten auf, wenn die Produktionsrate zu gross wird.
Das passiert für unendlich lang dauernde Prozesse (z.B. Streuung) bei Anwesenheit von
Potentialen, die vermutlich Teilchen stetig produzieren (Klein’s Paradoxon, Schwinger’s
Effekt). In solchen Fällen bricht die Näherung der QED in externen Feldern zusam-
men und es muss die volle QED benutzt werden, um die Rückkopplung-Effekte auf das
Quanten-elektromagnetische Feld zu berücksichtigen. Wenn der Evolutions- oder Streu-
prozess implementierbar ist, trägt der Implementer (ein unitärer Operator im Fock Raum)
die ganze Information über Erzeugung und Vernichtung von Teilchen in diesem Prozess.
Seine Struktur hat zwei Hauptteile. Der erste beschreibt die Erzeugung und Vernichtung
von Teilchen-Antiteilchen Paaren und ändert deshalb die Gesamtladung des Zustandes
nicht. Der zweite beschreibt die Erzeugung und Vernichtung von einzelnen Teilchen (wie
beim Übergang vom freien zum überkritischen Vakuum), die in dieser Arbeit speziell
genannt werden. Er kann die Gesamtladung ändern, wenn gemessen bezüglich des End-
Vakuums. Deshalb ein Übergang vom Anfangs- zum End-Vakuum notwendig ist, um
diesen Effekt zu sehen, was nur dann der Fall ist, wenn die Anfang- und End-Potentiale un-
terschiedlich sind. Prozesse mit dem gleichen Anfangs- und End-Wert des Potentials (z.B.
asymptotisches Verschwinden in Streuprozessen) können die Gesamtladung nicht ändern,
können aber immerhin spezielle Teilchen und Antiteilchen in Paaren erzeugen. Deswe-
gen scheint die Erzeugung von speziellen (Anti-)Teilchen (kurz: spezielle Erzeugung) ein
Kandidat für eine mathematische Definition der überkritischen oder spontanen Teilchen-
erzeugung zu sein. Jedoch, es ergibt sich, erstens, dass die spezielle Erzeugung unabhängig
von der Überkritikalität des Potentials auftreten kann, obwohl sie in solchen Fällen sehr
instabil gegen kleine Variationen des Potentials ist (eine beliebig kleine Änderung des Po-
tentials zerstört eine solche spezielle Erzeugung). Zweitens, sogar bei der Anwesenheit von
überkritischen Potentialen ist die spezielle Erzeugung auf die gleiche Weise instabil, un-
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abhängig davon, ob das Potential während des Streuprozesses ein- und ausgeschaltet oder
nur eingeschaltet ist. Die Bedeutung der speziellen Erzeugung kann durch Betrachtung
der adiabatischen Prozesse gerettet werden, die frei von den obigen Instabilitäten zu sein
scheinen. Außerdem, kommt in adiabatischen Prozessen keine spezielle Erzeugung vor,
bis die Energie des niedrigsten gebundenen Zustandes das negative Kontinuum erreicht
und dort verschwindet, was wir als starke Überkritikalität bezeichnen. In der adiabatis-
chen Situation ist die spezielle Erzeugung äquivalent zur spontanen Teilchenerzeugung und
kann als Definition gebraucht werden. Das spezielle Antiteilchen wird erzeugt als Folge
eines Resonanz-Zerfalls (Wellenpaket) im negativen Kontinuum. Wegen der Langsamkeit
des adiabatischen Prozesses, zerfällt das Wellenpaket, das einen aufgelösten gebundenen
Zustand beschreibt, schon am Rande des Kontinuums völlig, was zu Produktion von
Antiteilchen mit verschwindendem Impuls führt. Dieses Ergebnis ist physikalisch nicht
zufrieden stellend, aber der adiabatische Limes selbst ist auch keine physikalische Situa-
tion. Deswegen gibt es einen Bedarf, die Definition der spontanen Teilchenerzeugung über
den adiabatischen Limes auszuweiten. Es ist keine einfache Aufgabe, denn die Schlüssel-
Eigenschaft, nämlich die spezielle Erzeugung, geht meistens verloren. Durch Kontinuität,
unterscheiden sich langsame Prozesse jedoch nicht viel vom adiabatischen Limes und die
entsprechenden Teilchen werden immer noch mit großen Wahrscheinlichkeiten erzeugt.
Alternativ kann man versuchen, die spontane Teilchenerzeugung zu bestimmen indem
man die Erzeugung eines Antiteilchens in dem Zustand fordert, der einer Resonanz nach
einem aufgelösten gebundenen Zustand entspricht. Dann sollen eher schnelle als langsame
Prozesse berücksichtigt werden, mit einer möglichst langen verzögerten überkritischen
Phase in der Evolution.

Wir studieren numerisch alle diesen Fragen im Falle eines zeitabhängigen sphärisch
symmetrischen Potentialtopf mit sich ändernder Tiefe. Einerseits ist es mathematisch das
einfachste Potential, für das die Dirac Gleichung analytisch gelöst werden kann. Anderseits
zeigt es Überkritikalität wenn die Potentialtiefe einen Grenzwert überschreitet wo gebun-
dene Zustände in Resonanzen übergehen. Wir zeigen die Existenz der Resonanzen durch
eine Analyse der komplexen Pole der Resolvente und der Greenschen Funktion, ebenso
auch durch Beobachtung von Peaks im negativen Kontinuum, die den durch Wellenpakete
dargestellten aufgelösten gebundenen Zuständen entsprechen. In überkritischen Poten-
tialen wird das Vakuum gegenüber dem freien Vakuum geladen sein, was wir sowohl durch
eine Berechnung des Erwartungswertes des Ladung-Operators zeigen als auch durch das
Studieren der Ladungsdichte der Vakuumspolarisation.

Wir implementieren die Streuung in verschiedenen zeitabhängigen Prozessen im Fock
Raum und berechnen numerisch die Teilchen und Antiteilchen Produktionsspektren durch
Lösung der gekoppelten Kanal-Gleichungen. Wir vergleichen die Situationen von unterkri-
tischen, schwach und stark überkritischen Potentialen in plötzlichen, schnellen, langsamen
und adiabatischen Evolutionsprozessen. In unterkritischen Prozessen kommt nur dynamis-
che Teilchenproduktion vor, die im adiabatischen Limes verschwindet. In Prozessen, wo
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ein schwach überkritisches Potential eingeschaltet wird, kann das Vakuum, abhängig von
der Definition des Vakuums und der Teilcheninterpretation, spontan geladen werden und
es kann ein spontan erzeugtes Antiteilchen erscheinen, das zusammen mit dem Vakuum
einen elektrisch neutralen Zustand bildet. Nach dem Ausschalten verschwindet das An-
titeilchen und das Vakuum wird wieder neutral. Dagegen wird nach Einschalten eines stark
überkritischen Potentials das spontan geladenes Vakuum von einem spontan erzeugten
Antiteilchen in einem Streuzustand begleitet. Wenn die überkritische Phase einige Zeit
dauert, entfernt sich das Antiteilchen von der “Quelle” (Träger der Potentials) und lässt
das geladene Vakuum hinter sich. Endgültiges Ausschalten des Potentials erzeugt ein
zusätzliches Teilchen, meistens in einem gebundenen Zustand, was zu einer spontanen
Paarerzeugung führt.

In sehr langsamen Prozessen beobachten wir die Bewegung des Resonanz-Peaks im
negativen Kontinuum während der Evolution. Er zerfällt teilweise in jeder Phase. Beim
Erreichen des adiabatischen Limes zerfällt der Peak schon am Rande des Kontinuums
vollständig. Die Beobachtung dieses Effektes stellt eine numerische Herausforderung dar,
weil die Peaks in der Nähe des Randes extrem schmal sind. Dagegen bewegt sich in
schnellen Prozessen der Resonanz-Peak im Kontinuum ohne viel Verlust wegen des eigenen
Zerfalls, geht aber ein Teil seiner Amplitude in den Rest des Kontinuums verloren, was
zu einer dynamischen Paarerzeugung beiträgt. Im Vergleich der beiden Situationen zeigt
unseres numerische Beweismaterial, dass schnelle Ein- und Ausschalt-Prozesse mit einer
verzögerten überkritischen Phase günstiger für die Produktion der Antiteilchen mit einem
der Position des Resonanzen im verzögerten Potential entsprechenden Energiespektrum
sind.

Durch das Modellieren einer Näherung des Zerfallsprozesses eines Resonanz-Peaks
während der Evolution wird eine Methode für die inverse Streuung entwickelt, d.h. die
Zeitabhängigkeit des Potentials kann durch die Zeitabhängigkeit der Resonanz-Position
und -Breite, vom Antiteilchen-Produktionsspektrum abgelesen werden. Das einfache Model
eines exponentiellen, dekohärenten Zerfalls des Peaks gibt überraschend gute Abschätzungen
für das Antiteilchen-Produktionsspektrum.
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Overview of chapters

I Theory

In the first, theoretical part of this thesis we introduce the mathematical formulation of
the classical and quantized Dirac theory with their most important results. Using this
language we define rigorously the notion of spontaneous particle creation in overcritical
fields.

1 Introduction

In this chapter we give a short introduction to the problem of spontaneous particle cre-
ation. We introduce the notion of overcritical potentials on the level of classical Dirac
equation, show how bound states become resonances and discuss briefly the expectation
regarding a spontaneous creation of particles and antiparticles in such situations. Since
the classical Dirac theory is unable to offer a precise picture of particle production phe-
nomena and a quantized theory is needed, we briefly mention the QED and its external
field approximation. We introduce the notion of overcritical fields and spontaneous par-
ticle creation. Then we briefly describe the main discrepancies in approaches present in
the literature and explain how we will clarify them. Finally, we comment on the existence
and observability of spontaneous particle creation in various processes.

2 Fock space representation of CAR – particle interpretation

In this chapter we construct the theory of a quantized Dirac field, the so-called QED
in external fields. We start from the construction of the representation of the canonical
anticommutation relations (CAR), the Fock space consisting of the vacuum and many-
particle states. Then we discuss its uniqueness as well as equivalence of representations
based on different projectors. Next, we show how unitary transformations of the classical
one-particle Hilbert space cause a rearrangement of the particle and antiparticle creation
and annihilation operators, i.e. the Bogoliubov transformations. Analogously, we show
how the change of representation, projectors and the definition of vacuum, when leading to
a unitarily equivalent theory, implies a Bogoliubov transformation, for which we provide a
unitary implementer in Fock space. Subsequently we give a prescription for implementing
operators from the one-particle Hilbert space to many particle Fock space introducing the

xvii



xviii

notion of normal ordering. We discuss the physical meaning of the vacuum state being
the ground state of the implemented Hamiltonian and simultaneously a no-particle state
with respect to the particle number operator. Then we define the charge operator in
Fock space and vacuum polarization charge density. Next, we define a time evolution in
Fock space generalizing that of a one-particle Hilbert space. We calculate the change of
the particle number and charge during the evolution. Further, we introduce the notion
of particles and construct several particle interpretations for time-dependent processes.
Then we define scattering processes in Fock space leading to particle production and we
consider conditions under which QED in external fields provides consistent results.

3 Evolution and scattering in the classical Dirac equation

In this chapter we give the most important results from the theory of the classical Dirac
equation. We start with the question about the self-adjointness of the Dirac Hamiltonian
with a given potential and state an important fact that the strength of the potential itself
does not play any role as long as the potential is locally regular (more than the Coulomb
potential). Then, we study the spectrum of the Dirac Hamiltonian and cite the stability
condition for its continuous part as well as the fact that there are no eigenvalues embed-
ded in the continuum. We define critical and overcritical potentials in terms of spectral
properties of the Hamiltonian. Next, we cite the spectral theorem introducing spectral
measures, which will be essential in the transition to the discrete (numerical) approxima-
tion. Further, we give a rigorous definition of resonances as poles of the resolvent, Green’s
function or the scattering operator and discuss how eigenvalues become resonances under
Hamiltonian perturbations. In particular, we consider a rarely discussed in the literature,
but essential for overcritical potentials perturbation of eigenvalues at the edge of the con-
tinuous spectrum. As next, we state the most important results concerning existence of a
unitary evolution, wave operators and the scattering operator in the case of static as well
as time-dependent Hamiltonians. We cite various versions of the adiabatic theorem and
discuss well-posedness of the scattering in the adiabatic limit.

4 Overcritical fields and spontaneous particle creation

In this chapter we define within the quantized Dirac theory the evolution and scatter-
ing processes in presence of overcritical potentials. We look for physical processes which
show the effect of vacuum decay and spontaneous particle creation exclusively due to over-
criticality of the potential. First, we analyze how the structure of the ground (vacuum)
state changes from neutral to charged in presence of an overcritical potential. Then, we
consider several processes with static as well as suddenly switched on (and off) static
overcritical potentials and conclude that they are unsatisfactory for observation of the
spontaneous particle creation. Next, we consider properties of general time-dependent
scattering processes with continuous switch on (and off) of an overcritical potential and
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show that they also fail to produce stable signatures of the particle creation due to over-
criticality. Further, we study and successfully define the spontaneous particle creation in
adiabatic processes, yet they lead to physically questionable pair production as the adia-
batic limit is approached. Finally, we consider extension of these ideas to non-adiabatic
processes involving overcritical potentials, speculate about the dynamical behaviour of
time-dependent resonances (to be confirmed later numerically) and argue that they are
the best candidate for showing the spontaneous pair creation in physical processes.

II Examples and numerical study

In the second part of this thesis we concentrate on an a class of spherically symmetric
square well potentials with a time-dependent depth. First, we analyze in more details
overcriticality and appearance of resonances. Then, we calculate numerically particle and
antiparticle production spectra for various sub- and overcritical time-dependent processes.
We show precisely how and under which conditions an overcritical resonance decays during
the evolution giving rise to the spontaneous production of an antiparticle.

5 Dirac equation with a spherically symmetric square well potential

In this chapter we construct solutions to the Dirac equation in presence of a spherically
symmetric potential well, which will be used in the next chapter, where we are going to
study (numerically) the particle production in time-dependent overcritical potentials. We
choose a two-parameter class of spherically symmetric square potential wells, which is
sufficient to cover all cases of our interest. First, we give an introduction to the Dirac
equation in presence of spherically symmetric potentials and construct the partial wave
decomposition based on algebraic properties of the Dirac operator. Then we solve the Dirac
equation with the spherically symmetric potential well, giving orthogonal and normalized
complete set of wave functions, which we later use as a basis in the Hilbert space. Further,
we analyze the structure and behaviour of bound states and appearance of overcriticality.
Finally, by analytic continuation we find and discuss the behaviour of resonances in the
overcritical potentials.

6 Particle production in a time-dependent overcritical potential

In this chapter we want to study these details of the spontaneous particle creation, dis-
cussed in part I, which could not be decided analytically on a purely theoretical level.
Here, we construct a series of examples of time-dependent processes (sudden, quick, slow
switch on and off of a sub- and overcritical potentials) by using always the same spatial
potential and considering only various time-dependent amplitudes, what is sufficient to
cover all cases of our interest. We derive a system of differential equations (coupled chan-
nel equations) to be implemented numerically for calculation of the scattering operator,



xx

introduce non-uniform continuum discretization for consistent treatment of narrow peaks,
discuss various sources of errors introduced by the numerical discretization and try to find
estimations for them.

First, we consider sudden switch on and next switch on and off of an overcritical
potential and calculate the spectrum of produced particles and antiparticles. We observe
that for sufficiently long overcritical periods a peak forms in the antiparticle spectrum and
we compare it with the shape of the resonance in the overcritical potential. Later, we
consider continuous switch on and off processes, explaining how difficult the treatment of
extremely narrow resonance peaks at the edge of the negative continuum is. We consider
subcritical potentials in order to show an adiabatic limit in which no particles are created.
Then we compare processes, where the overcritical potentials are switched on at different
speed and are possibly frozen in the overcritical phase.

We prove, in agreement with the conclusions of the theoretical part, that the peak
(wave packet) in the negative continuum representing a dived bound state partially follows
the moving resonance and partially decays at every stage of its evolution. This continuous
decay is more intensive in slow processes, while in quick processes the wave packet more
precisely follows the resonance. In the adiabatic limit, the whole decay occurs already at
the edge of continuum, resulting in production of antiparticles with vanishing momentum.
In contrast, in quick switch on processes with delay in the overcritical phase, the spectrum
of the created antiparticles agrees best with the shape of the resonance.

7 The inverse problem

In this chapter we want to ask the question how much information about the time-
dependent potential can be reconstructed from the scattering data, represented by the
scattering operator or the particle production spectrum. Being aware that such procedure
is far from being unique, we consider several simplified cases, where only few degrees of
freedom of the potential are to be guessed. Using results from the previous chapter we
give some answers to what extent information about the potential’s strength can be suc-
cessfully obtained. Finally, we propose a simple approximation method (master equation)
basing on exponential, decoherent decay of time-dependent resonances for prediction of
particle creation spectra. Despite its simplicity we obtain relatively good agreement with
the results of full numerical calculations from the previous chapter. This method can be
relatively easily applied to the inverse problem.
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Chapter 1

Introduction

1.1 The classical Dirac theory

Classical Dirac equation

Dirac [Dir28a, Dir28b] introduced the relativistic wave equation in order to improve the
quantum mechanical description of an electron in a given electromagnetic field. It was a
generalization of the Schrödinger equation, where the C-number wave function became a
spinor valued wave function ψα(t,x). In the explicitly relativistic form the Dirac equation
with an external electromagnetic potential Aµ(x) reads

γµ
(
i~ ∂µ −

e

c
Aµ(x)

)
Ψ(x)−mc Ψ(x) = 0, (1.1.1)

where x stands for 4-coordinates in Minkowski space and x = (x0, x1, x2, x3) ≡ (t,x). It
can be rewritten to the evolution (Hamiltonian) form

i~
∂

∂t
Ψ(t,x) = H(t)Ψ(t,x) (1.1.2)

with the full Hamiltonian
H(t) ≡ H0 + V (t), (1.1.3)

the free Hamiltonian

H0 = cαipi +mc2β = −i~cαi ∂
∂xi

+mc2β, (1.1.4)

and the time-dependent external potential

V (t) = eA0 + eαiAi. (1.1.5)

If V is time-independent then there exists a set of stationary solutions

ψn(t,x) = e−iEntφn(x) with Hφn(x) = Enφn(x), (1.1.6)

with φn(x) being eigenvectors or generalized eigenvectors of H. All φn(x) form a complete
and orthonormal set in Hilbert space H of square integrable functions, i.e. H = L2(R3)4

(4, because of four components of the bispinors). They will describe particle states with
given energy.

3



4 1. Introduction

The Spectrum

Spectrum of H consists of two separate continuous parts (−∞,−mc2] ∪ [mc2,∞) and a
possible discrete (finite or countable) part

{
En ∈ (−mc2,mc2)

}
. The generalized eigen-

vectors ψn(t,x), called wave functions, describe: electron scattering states for E > mc2,
bound states for −mc2 < E < mc2 and positron scattering states for E < mc2. It is
assumed that all states in the negative continuum are occupied by electrons (Dirac sea).

E

2
+mc

2
-mc

0

positive
continuum

negative
continuum

bound
states

Figure 1.1: Typical spectrum of the Dirac Hamiltonian.

Overcriticality on the classical level

Consider purely electric potentials (no magnetic field present), i.e. Ai = 0. If one param-
eterizes the potential’s strength with λ: Vλ(~x) ≡ λV (~x) then energies En(λ) of the bound
states depend continuously on λ. Assume V (~x) is negative. Then the bigger λ is (deeper
negative potential) the lower (towards −mc2) lie the bound states En(λ). Let’s enumerate
the bound states: E0(λ) < E1(λ) < E2(λ) < ... There are potentials V (~x) for which E0(λ)
reaches the boundary of the negative continuum at −mc2 for a finite value of λ = λcr,
called critical. For λ > λcr the state E0 disappears from the spectrum. Such potentials
Vλ are called overcritical. Further, the next bound states E1, E2, etc. disappear as λ
grows (see figure 1.2). The effect of diving of the discrete energy levels into the negative
continuum in strong potentials is called overcriticality.

Resonances as complex poles of the Green’s function

Bound states of Hλ = H0 + λV are poles of the resolvent (Hλ − E)−1 at E = E(λ) with
−mc2 ≤ E(λ) ≤ mc2. They move continuously to the left as λ grows (and V ≤ 0). At
λ = λcr the pole E(λ) reaches −mc2. As λ increases further, E(λ) becomes a complex pole
with ER(λ) ≡ ReE(λ) < −mc2 and Γ(λ) ≡ −ImE(λ) > 0 (on the second Riemann sheet
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E0
E1

E2

l

E

lcr

Figure 1.2: Dependence of the bound state energy levels on the potential’s strength.

of the analytic continuation of the resolvent). It is called resonance and is (usually) equal
to a pole of the Laplace- (or Fourier-) transformed Green’s function. The wave function
of the bound state turns into a wave packet localized spectrally in the negative continuum
around E = ER(λ) and having width Γ(λ). During evolution it decays exponentially like
e−Γ(λ)t.

Re E

Im E

2+mc2-mc

bound
states

resonance

negative
continuum

positive
continuum

Figure 1.3: Resonances as poles of the resolvent or the Green’s function.



6 1. Introduction

By the technique of the Laplace (or Fourier) transform and the Green’s function one
can solve the evolution of a wave function in a static potential Vλ. The solution can be
written as a sum over residua at poles Ek of the Laplace-transformed Green’s function,
which represent bound states (real) or resonances (complex) plus two integrals along the
branch cuts, which represent the continua

Ψ(t,x) =
∑
k

e−iEkt φk(x) +

(∫ −mc2

−∞
+
∫ ∞

mc2

)
e−iEt φE(x) dE. (1.1.7)

So the bound state and continuum wave functions oscillate in time (E ∈ R) while reso-
nances decay like e−Γ(λ)t, because E = ER − iΓ.

What can be expected by overcriticality ? (Intuitive answers.)

In static potentials V particles occupy stationary states. In time-dependent potentials
V (t) stationary states don’t exist and particles “jump” between states (i.e. instantaneous
eigenstates of the Hamiltonian H(t)). However, if V (t) changes adiabatically, states change
slowly and particles “follow” the states. If V (t) can be slowly changed between the sub- and
overcritical regimes, particles may be “transported” to or from the negative continuum.
Dived electron states become resonances and decay in time. In the opposite direction,
electrons may be ”pulled” adiabatically from the Dirac sea and kept in a bound state,
while the remaining holes correspond to the scattered positrons.

E

t

continuum

2-mc

- 
(e ) -

e

+
e

bounded electron

scattered positron

0

Figure 1.4: Electron bound state diving into the negative continuum.

The classical Dirac equation describes single electrons (fermions) and does not han-
dle particle or antiparticle creation and annihilation processes. For that the Quantum
Electrodynamics (QED), a many-particle quantum theory of electrons and positrons is
needed.
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1.2 The quantized Dirac theory

“Second quantization”

The negative energy problem forced Dirac later to modify the meaning of the equation.
This resulted in the “hole theory” [Dir30], very successful as a theory, but at the same
time highly intuitive and difficult to formulate in a precise mathematical way. Later, the
idea of “second quantization” has been developed, in which the wave function became
an operator-field acting in a many-particle space of particles and anti-particles, the Fock-
Hilbert space. All known operators acting in one-particle space had to be implemented in
the many-particle space, what caused several difficulties.

QED

The full Quantum Electrodynamics (QED) is a theory of quantized Dirac and quantized
electromagnetic field, i.e. describes electrons, positrons, photons and their interaction. It
is very difficult to solve in particular situations, so one has to use approximations.

External field approximation

The external field approximation of QED treats the Dirac field as quantized while the elec-
tromagnetic field as classical. Therefore it describes electrons and positrons interacting
with an external, classical electromagnetic field. Electrons and positrons don’t interact
with each other and do not influence the electromagnetic field. Therefore, the approx-
imation is good when the number of electrons and positrons is small and the classical
field is strong and dominates over quantum corrections. The approximation breaks down
when the backreaction of the electrons and positrons on the electromagnetic field becomes
important, what can lead to non-implementability of the evolution or scattering operator
in Fock space since it produces too many particles. This unlimited particle creation would
be suppressed in the full QED, since a big number of charged particles would modify the
electromagnetic field and influence (prohibit) further particle production.

We choose the external field approximation of QED because we deal with strong electric
fields and a small number of particles. The corrections of full QED are expected to be
negligible, e.g. the self-energy correction for an electron in a nearly critical (Coulomb)
potential almost cancels with the vacuum polarization effect and is negligible [SSMG82].

Overcritical fields in QED (of external fields)

There is an old observation [MRG72] that the vacuum structure changes from neutral to
charged and an accompanying spontaneous particle creation occurs when a static exter-
nal field exceeds some critical strength [RMG74]. This statement is unambiguous in the
static situation because there exists a unique particle interpretation, the Furry picture
[Fur51]. Unfortunately, this phenomenon does not happen in QED with external fields,
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since scattering processes in static external fields either do not produce particles when the
external field is regular [Bon70] or cannot be described within the external field approxi-
mation at all when the field is not regular and the notion of particles cannot be defined
successfully. Therefore, it seems natural to look for this effect in time-dependent strong
fields. Then, however, the meaning of a vacuum state and of particles becomes unclear.
Fierz and Scharf [FS79] analyze the problem of particle interpretation in time-dependent
external fields rigorously and conclude that the only consistent pictures are the in- and
out-representations, so the particles can have only an asymptotic meaning1.

Vacuum decay and spontaneous particle creation

There is a long debate in the literature between Greiner et al. [MRG72, RMG74, RG77]
and Scharf et al. [KS77b, SS82], whether overcriticality causing the vacuum decay and
spontaneous particle creation should be defined by the property of the classical Dirac
Hamiltonian having an eigenvalue “dived” in the negative continuum (Greiner) or by
change in the structure of the scattering operator implemented in Fock space (Scharf).
While the first definition leads to overcriticality when a bound state reaches energy
E ≤ −mc2, which we call strong overcriticality, the second one leads to overcriticality
already for E ≤ 0, which we call weak overcriticality. We show (chapter 2) that mathe-
matically the difference is in the choice of the projector defining the Fock representation of
the field algebra (CAR). It leads to different vacuum and particle definitions. Yet, because
these representations are unitarily equivalent, all their physical results must be equivalent.
We solve this puzzle (chapter 4) by showing that by weak overcriticality the corresponding
choice of vacuum and particles leads to a charged vacuum and a spontaneous antiparti-
cle creation, but this antiparticle is in a bound state and is localized spatially exactly
there where the vacuum charge density is. Therefore the composite antiparticle-charged-
vacuum is neutral and probably cannot be observed physically. At the same time in the
Greiner-representation there are no particles and the vacuum stays neutral. So both pic-
tures seem to be equivalent. First by the strong overcriticality the Greiner-representation
predicts a vacuum decay to a charged state and an antiparticle creation, while in the
Scharf-representation an important change happens, namely the spontaneously created
antiparticle goes from a bound state to a scattering state and escapes to spatial infinity
in evolution leaving a charged vacuum behind. This agrees with the spirit of Nenciu’s
conjecture [Nen80a, Nen87] formulated in the adiabatic limit and proved recently by Pickl
[Pic05].

Concluding, we in principle agree with Scharf that the definition of the effect should be
formulated in Fock space as well as that the information on particle creation is contained
in the structure of the implemented scattering operator. Hence, we treat it as a part of
the definition and a necessary condition, but we are aware that the change in the structure

1We want to mention that in 1 + 1 dimensions the model can be solved analytically [FG88, CW91] and

can serve as an illustrative example.
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does not have to lead to observable effects. On the other hand, it is the Greiner’s condition
of a bound state diving into the continuum which decides about the existence of physically
observable spontaneous particle creation. Hence we treat it as a (necessary and sufficient)
criterion.

Spontaneous particle creation in time-dependent processes

Unfortunately it is not easy to find a time-dependent process during which an overcrit-
ical external field is switched on (or on and off) to observe purely and uniquely the
effect of spontaneous particle creation. In quick processes there are many dynamical
particle-antiparticle pairs produced from vacuum what can make the spontaneously cre-
ated antiparticle difficult to distinguish. In slow (adiabatic) processes the production of
dynamical pairs is suppressed but the spontaneous antiparticle is created with vanishing
momentum, what can lead to serious difficulties of experimental nature. We study several
time-dependent scenarios (chapter 6) from sudden discontinuous changes in the strength
of the external field to very slow ones near the adiabatic limit and compare the observable
effects in form of antiparticle production spectra with other fundamental predictions. For
simplicity we choose the potential to be a time-dependent spherically symmetric square
well. A similar calculation has been performed in [MDI93], but only in 1 + 1 dimen-
sions with a time-periodic potential. In [GG96] and [SSW93] potentials depending only
on time are considered, but they have no bound states and hence no overcriticality. The
richest bibliography concerns the experimentally motivated situation of atomic collisions
[MRG72, RMGS79, Rei79, RMG81, RMMG81, MdRR+88], etc. Pair production in strong
laser fields has been calculated in [Mül03, MVG03].

We show that the spontaneous particle creation exists only in the weaker sense (defined
in section 4.5), i.e. overcritical fields lead to a vacuum decay and spontaneous particle
creation, but there are no processes in which one can observe exclusively the spontaneous
antiparticle with the energy corresponding to the resonance position in the overcritical
field. Either there are other particles confusing the picture (dynamical pairs in quick
processes) or the spontaneous antiparticle has a vanishing momentum and kinetic en-
ergy, independent on the strength of the overcritical field and position of the resonance
(adiabatic limit).

The inverse problem

It is an interesting question, whether the scattering information, i.e. the particle and
antiparticle production spectra, is sufficient to reproduce the time-dependent potential.
Although the answer is generally negative, restricting the set of all considered potentials
to a small class, parameterized with a few parameters, can lead to a positive answer. We
propose a simple approximative model of the influence of a decaying resonance on the
final particle production spectrum, which can be inverted without much numerical effort,
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i.e. the position of complex resonance during the evolution can be estimated from the
scattering data. This, under restriction of the time-dependent potentials to a one time-
dependent parameter (e.g. constant spatial shape with varying amplitude or two Coulomb
centers with varying distance), gives a unique solution, i.e. a time-dependent potential
leading to a required particle production spectrum.



Chapter 2

Fock space representation of CAR

– projector choice, particle

interpretation

2.1 The CAR algebra and its representations

2.1.1 “Smeared” field operators

An abstract C∗-algebra of the fields Ψ̂(f), Ψ̂∗(f) “smeared” by the test functions f is
defined by the so called canonical anticommutation relations (CAR)

{Ψ̂(f), Ψ̂∗(g)}+ = (f, g) (2.1.1)

{Ψ̂(f), Ψ̂(g)}+ = {Ψ̂∗(f), Ψ̂∗(g)}+ = 0 (2.1.2)

where f, g are complex-valued bi-spinor functions belonging to a Hilbert space H equipped
with a scalar product

(f, g) =
∫ 4∑

s=1

f(x, s) g(x, s) d3x. (2.1.3)

with f(·, s) being C-number functions, components of the bi-spinors. We want to find a
representation of this algebra in order to construct a physical interpretation and be able
to perform more explicit calculations than those on the level of an abstract algebra. The
situation is analogous to the search of representations of a well known algebra [si, sj ] =
iεijksk. It may be represented by spin operators (2x2 Pauli matrices) on a Hilbert space,
e.g. [L2(Rn)]2, as well as by generators of rotations in 3 dimensions (3x3 matrices) acting
on R3.

Among possible realizations of the CAR algebra there are anti-linear mappings f →
Ψ̂(f) from H into the bounded operators acting in a Hilbert space F . Special realizations
are realizations with a vacuum vector Ω ∈ F (reference state). Their construction bases
on the introduction of two elements: a projector P+ (and P− ≡ 1− P+), which splits the

11
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Hilbert space into two orthogonal subspaces

P+ : H → H+, P− : H → H−, H = H+ ⊕H−, (2.1.4)

and a reference state, a vector Ω ∈ F , called vacuum, so that the following holds

Ψ̂(P+f) Ω = 0, Ψ̂∗(P−f) Ω = 0 ∀f ∈ H. (2.1.5)

It is convenient to define a pair of operators

b̂(f) ≡ Ψ̂(P+f), d̂(g) ≡ Ψ̂∗(P−g), (2.1.6)

which are called particle and antiparticle annihilation operators, respectively. Then the
field Ψ̂(f) becomes an operator in F and can be expressed as

Ψ̂(f) = b̂(P+f) + d̂∗(P−f), Ψ̂∗(f) = b̂∗(P+f) + d̂(P−f). (2.1.7)

Creation and annihilation operators satisfy corresponding anticommutation relations

{b̂(f), b̂∗(g)}+ = (P+f, P+g) (2.1.8)

{b̂(f), b̂(g)}+ = {b̂∗(f), b̂∗(g)}+ = 0 (2.1.9)

{d̂∗(f), d̂(g)}+ = (P−f, P−g) (2.1.10)

{d̂(f), d̂(g)}+ = {d̂∗(f), d̂∗(g)}+ = 0 (2.1.11)

for every f, g ∈ H.
A special representation with a vacuum vector, having the property of being irreducible,

is the Fock representation introduced below according to the so-called GNS–construction
(due to Gelfand, Naimark, and Segal). The idea of GNS is that the products of the creation
operators b̂∗(f), d̂∗(g) applied to the reference vector Ω may be used for construction of
the basis of F , by which the whole Fock space F can be spanned.

2.1.2 Distributional (“singular”) field operators

Beside the smeared operators Ψ̂(f) there exist in the literature “singular” bispinor field
operators Ψ(x), being operator valued distributions, which depend on the space-point x
and fulfill the corresponding canonical anticommutation relations (CAR)

{Ψ̂α(x), Ψ̂∗
β(y)}+ = δ(x− y) δαβ (2.1.12)

{Ψ̂α(x), Ψ̂β(y)}+ = {Ψ̂∗
α(x), Ψ̂∗

β(y)}+ = 0. (2.1.13)

Both kinds of the field operators are connected by the relations

Ψ̂(f) =
4∑

α=1

∫
f(x, α) Ψ̂α(x) d3x (2.1.14)
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and
Ψ̂α(x) =

∑
k

fk(x, α) Ψ̂(fk), (2.1.15)

where fk(x, α) is an orthonormal basis in H. In the following, we always assume that H is
separable and therefore there always exists a countable set of orthonormal vectors forming
a basis in H. We rather choose this general kind of representation of vectors than a Fourier
transform, which would be only of advantage in the free case where no x-dependent fields
are present.

With these relations the CAR (2.1.12)-(2.1.13) are equivalent to (2.1.1)-(2.1.2).

2.2 Fock construction and implementation of operators

2.2.1 Fock space

Problem of negative energies

The spectrum of the classical Hamiltonian H is unbounded from below. It leads to in-
finitely many states with negative energy. Dirac recognized the problem as an energetic
instability, because in such system there exists no ground state, and proposed the Dirac
sea interpretation in which all states with negative energy are occupied. Mathemati-
cally, the operation is equivalent to an exchange of the roles of the antiparticle creation
and annihilation operators: d̂(g), d̂∗(g) relative to the particle operators b̂(f), b̂∗(f) in the
decomposition of the field operator

Ψ̂(f) = b̂(P+f) + d̂∗(P−f), Ψ̂∗(f) = b̂∗(P+f) + d̂(P−f) (2.2.1)

together with the definition of the vacuum

b̂(P+f) Ω = 0, d̂(P−f) Ω = 0 ∀f ∈ H. (2.2.2)

In consequence all particle as well as antiparticle energies can be made positive, what will
become transparent in the following. We adopt the notation from [Tha92] and refer the
reader to it for more details concerning the definitions.

Many-particle subspaces

Let H(e) be the Hamiltonian defined in (1.1.3)-(1.1.5) which depends explicitly on e via
V . Assume, we have chosen the projectors P± so that H(e) restricted to H+ = P+H is
bounded from below and restricted to H− = P−H is bounded from above. Assume, there
exists an antiunitary map C called charge conjugation such that

CH(e)C−1 = −H(−e). (2.2.3)

It converts eigenstates of H(e) with negative energy and negative charge ψ− (electrons)
to eigenstates of H(−e) with positive energy and positive charge Cψ− (positrons). Of



14 2. Fock space representation of CAR – particle interpretation

course, the overall sign of all charges is a convention, only the fact that electron and
positron charges are opposite has physical consequences.

Define one-particle subspaces as

F (1)
+ = H+, F (1)

− = CH−. (2.2.4)

The n-particle-subspaces F (n)
± are defined as an antisymmetrized tensor product of n copies

of F (1)
± with the (orthonormal) basis vectors 1√
n!

∑
permutations σ

sign(σ) fσ(j1) ⊗ fσ(j2) ⊗ ...⊗ fσ(jn)

 (x1, s1;x2, s2; ...;xn, sn)

≡ 1√
n!

∑
permutations σ

sign(σ) fσ(j1)(x1, s1) fσ(j2)(x2, s2) ... fσ(jn)(xn, sn),

(2.2.5)

where fj(x, s) are (orthonormal) basis vectors in H±. Therefore any ψ
(n)
± ∈ F (n)

± is anti-
symmetric in all its arguments. The scalar product in F (n)

± has the form(
ψ

(n)
± , χ

(n)
±

)
n

=
4∑

s1,...,sn=1

∫
R3n

d3x1...d
3xn ψ

(n)
± (x1, s1; ...;xn, sn) χ(n)

± (x1, s1; ...;xn, sn).

(2.2.6)

Fock space

In every many-particle subspace the number of particles is given. To be able to describe
any number of particles as well as creation and annihilation processes define the Fock
space as a direct sum of all subspaces constructed above

F ≡
∞⊕

n,m=0

F (n,m), F (n,m) ≡ F (n)
+ ⊗F (m)

− , (2.2.7)

where F (0)
± = C. It consists of vectors Ψ ∈ F having components

Ψ ≡ (ψ(n,m))n,m=0,1,2,..., (2.2.8)

where ψ(n,m) ∈ F (n,m). The scalar product in F is then a sum

(Ψ,Φ)F ≡
∞∑

n,m=0

(
ψ(n,m), φ(n,m)

)
(n,m)

(2.2.9)

with(
ψ(n,m), φ(n,m)

)
(n,m)

=

4∑
s1,...,sn,
z1,...,zm=1

∫
R3(n+m)

d3x1...d
3xn d

3y1...d
3ym ψ(n,m)(x1, s1; ...;xn, sn; y1, z1; ...; ym, zm)

· χ(n)(x1, s1; ...;xn, sn; y1, z1; ...; ym, zm). (2.2.10)
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Accordingly, the norm is defined by

||Ψ||2F ≡
∞∑

n,m=0

||ψ(n,m)||2(n,m) =
∞∑

n,m=0

(
ψ(n,m), ψ(n,m)

)
(n,m)

. (2.2.11)

2.2.2 Creation and annihilation operators

In this construction creation b̂∗(f), d̂∗(g) and annihilation b̂(f), d̂(g) operators map sub-
spaces with given number of particles into the ”neighbouring” ones with one (anti)particle
more or less, respectively.

• Particle annihilation: b̂(f) : F (n+1,m) → F (n,m) for f ∈ H+(
b̂(f)ψ

)(n,m)
(x1, s1; ...;xn, sn; y1, z1; ...; ym, zm) =

√
n+ 1

4∑
s=1

∫
R3

d3x f(x, s) ψ(n+1,m)(x, s;x1, s1; ...;xn, sn; y1, z1; ...; ym, zm). (2.2.12)

• Particle creation: b̂∗(f) : F (n,m) → F (n+1,m) for f ∈ H+(
b̂∗(f)ψ

)(n,m)
(x1, s1; ...;xn, sn; y1, z1; ...; ym, zm) =

1√
n

n∑
j=1

(−1)j+1f(xj , sj) ψ(n−1,m)(x1, s1; ...;xj/ , sj/ ; ...;xn, sn; y1, z1; ...; ym, zm).

(2.2.13)

• Antiparticle annihilation: d̂(g) : F (n,m+1) → F (n,m) for g ∈ H−(
d̂(g)ψ

)(n,m)
(x1, s1; ...;xn, sn; y1, z1; ...; ym, zm) =

(−1)n
√
m+ 1

4∑
z=1

∫
R3

d3y Cg(y, z) ψ(n,m+1)(x1, s1; ...;xn, sn; y, z; y1, z1; ...; ym, zm).

(2.2.14)

• Antiparticle creation: d̂∗(g) : F (n,m) → F (n,m+1) for g ∈ H−(
d̂∗(g)ψ

)(n,m)
(x1, s1; ...;xn, sn; y1, z1; ...; ym, zm) =

(−1)n√
m

m∑
j=1

(−1)j+1Cg(yj , zj) ψ(n,m−1)(x1, s1; ...;xn, sn; y1, z1; ...; yj/ , zj/ ; ...; ym, zm).

(2.2.15)

The creation and annihilation operators defined above satisfy the anticommutation rela-
tions (2.1.8)-(2.1.11) and annihilate the vacuum vector

Ω ≡ (eiλ, 0, 0, ...) ∈ F , λ ∈ R (2.2.16)

according to (2.2.2).
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2.2.3 Implementation of operators

Operators in H induce operators in F .

Self-adjoint operators

A self-adjoint operator A : H → H induces a self-adjoint operator Â : F → F , which is
defined by its action on the basis vectors

Â

 1√
n!

∑
permutations σ

sign(σ) fσ(j1) ⊗ fσ(j2) ⊗ ...⊗ fσ(jn)


=

1√
n!

∑
permutations σ

sign(σ)
[
Afσ(j1)

]
⊗ fσ(j2) ⊗ ...⊗ fσ(jn)

+
1√
n!

∑
permutations σ

sign(σ) fσ(j1) ⊗
[
Afσ(j2)

]
⊗ ...⊗ fσ(jn) + ...

+
1√
n!

∑
permutations σ

sign(σ) fσ(j1) ⊗ fσ(j2) ⊗ ...⊗
[
Afσ(jn)

]
(2.2.17)

and
ÂΩ = 0. (2.2.18)

Unitary operators

A unitary operator U : H → H induces a unitary operator Û : F → F , which is defined
by its action on the basis vectors

Û

 1√
n!

∑
permutations σ

sign(σ) fσ(j1) ⊗ fσ(j2) ⊗ ...⊗ fσ(jn)


=

1√
n!

∑
permutations σ

sign(σ)
[
Ufσ(j1)

]
⊗
[
Ufσ(j2)

]
⊗ ...⊗

[
Ufσ(jn)

] (2.2.19)

and
ÛΩ = Ω. (2.2.20)

2.3 Choice of the projector

2.3.1 Fock representation

Irreducibility

Now, we give reasons why the Fock space is important and distinguished among all rep-
resentations. First, the Fock representation F , as constructed above, is an irreducible
realization of CAR, i.e. there is no proper subspace of F invariant under all Ψ̂(f) and
Ψ̂∗(f) [Tha92, Th. 10.2]. Second, any irreducible representation Φ̂(f) of CAR on G with
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a vacuum vector is unitarily equivalent to the Fock representation Ψ̂(f) on F , i.e. there
exists a unitary operator (isomorphism) Û : F → G such that Φ̂(f) = ÛΨ̂(f)Û∗ [Tha92,
Th. 10.3]. In this sense we can treat the Fock representation as unique (up to a unitary
equivalence).

Projector uniquely defines representation

The above is true as long as the projector P+ remains unchanged. While a given projector
leads to a unique Fock representation, different choices of projectors may lead to different
and nonequivalent representations. Therefore the choice of projectors is essential in the
construction of a physical theory.

We want to note that the operator P+ does not necessarily have to be a projector. It
may be a more general self-adjoint bounded operator satisfying 0 ≤ P+ ≤ 11 and further
conditions [Ara71]. Although we restrict ourselves here only to projectors, we cite a more
general theorem [Ara71, Th. 1] which states that the choice of P+ on H uniquely defines
the (Fock) representation F .

There appears a natural question: Which choices of the projector P+ lead to the
same physical interpretation (equivalent representations) and which not? Which choice or
choices are then the correct ones from the physical point of view? The answer regarding
equivalence is given by the theorem [KS77a, Ara71] cited in section 2.3.3. The answer
concerning the physical interpretation bases on the notion of energy of the vacuum state,
which will be discussed in section 2.4. First, we define some basic transformations in the
Fock space.

2.3.2 Bogoliubov transformations

General definition

Introduce a basis {φ±n } in H± (it is countable since we always assume H is separable, what
is true e.g. for H = L2(R3)4). Define

b̂n ≡ b̂(φ+
n ) and d̂n = d̂(φ−n ). (2.3.1)

Then b̂n, b̂∗n annihilate and create particle in the state φ+
n and d̂n, d̂∗n annihilate and create

antiparticle in the state φ−n . In the following we will skip the sign ± in φ±n in order not to
complicate the notation and assuming that the numbering of the basis vectors φn by n is
unique.

Define Bogoliubov transformation as any transformation relating one set of such oper-

1where the positivity A ≥ 0 is defined by (Af, f) ≥ 0 ∀f ∈ H and A ≥ B ⇔ A−B ≥ 0.
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ators to some other one via linear combinations

b̂n
′ =

∑
k

W++
nk b̂k +

∑
k

W+−
nk d̂∗k (2.3.2)

d̂∗n
′ =

∑
k

W−+
nk b̂k +

∑
k

W−−
nk d̂∗k (2.3.3)

where W±±
nk ≡ (φn,W φk) are matrix elements of a unitary operator W in H

W =

(
W++ W+−

W−+ W−−

)
(2.3.4)

split so that W±±′ : H± → H±′ (note the corresponding pairs of signs ± and ±′).
b̂′ and d̂′ can be new annihilation operators in F representing the same CAR if and

only if there exists a corresponding vacuum vector Ω′ ∈ F such that

b̂′(P+f) Ω′ = 0 and d̂′(P−f) Ω′ = 0 ∀f ∈ H. (2.3.5)

If this is the case, the representation is unitarily equivalent to the original one and there
exists a unitary operator Û : F → F such that

Ψ̂′(f) = ÛΨ(f)Û∗ and Ω′ = ÛΩ. (2.3.6)

Then the Bogoliubov transformation is called unitarily implementable. A criterion for this
is formulated in the Shale-Stinespring theorem [Tha92, Th. 10.7]

Theorem 1 The unitary transformation U in H is unitarily implementable in F if and
only if U+− and U−+ are Hilbert-Schmidt operators.

The Hilbert-Schmidt norm is defined as

||W+−||2HS ≡ Tr
[
(W+−)∗ W+−] =

∑
n

||W+−φn||2 =
∑
n,k

|(φk,W+−φn)|2 (2.3.7)

and it must be finite for the operator W+− to be Hilbert-Schmidt. In some sense

||W+−||2HS =
∑
n,k

|(φk,W+−φn)|2 =
∑
n,k

|(P+φk,WP−φn)|2 (2.3.8)

measures the “number” of vectors mapped from H− to H+ by W and ||W−+||2HS measures
the “number” of vectors mapped from H+ to H−. These “numbers” must be finite to allow
and guarantee implementability of the transformation in Fock space. Otherwise no new
vacuum vector Ω′ satisfying (2.3.5) exists in F .

The explicit form of the implemented transformation Û will be given in section 2.3.4
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Unitary transformation

The simplest situation where such transformations appear is a unitary transformation
U : H → H, which induces a transformation of the field operators

Ψ̂(f) → Ψ̂′(f) = Ψ̂(Uf). (2.3.9)

It is easy to show that Ψ̂′(f) also satisfies the CAR algebra (2.1.1)-(2.1.2). Rewriting it
by means of the creation and annihilation operators we find

b̂′(P+f) + d̂∗′(P−f) = b̂(P+Uf) + d̂∗(P−Uf). (2.3.10)

Choosing once f ∈ H+ and once f ∈ H− we find two relations

b̂′(P+f) = b̂(P+UP+f) + d̂∗(P−UP+f) (2.3.11)

d̂∗′(P−f) = b̂(P+UP−f) + d̂∗(P−UP−f), (2.3.12)

which represent a Bogoliubov transformation in a basis-independent formulation. Express-
ing them in a basis of H and introducing U±±

′

kn = (φk, P±UP±′φn) we obtain

b̂n
′ = b̂

(
P+
∑

k U
++
kn φk

)
+ d̂∗

(
P−
∑

k U
−+
kn φk

)
(2.3.13)

d̂∗n
′ = b̂

(
P+
∑

k U
+−
kn φk

)
+ d̂∗

(
P−
∑

k U
−−
kn φk

)
(2.3.14)

Using the antilinearity of b̂ and d̂∗

b̂n
′ =

∑
k U

++
kn b̂ (P+φk) +

∑
k U

−+
kn d̂∗ (P−φk) (2.3.15)

d̂∗n
′ =

∑
k U

+−
kn b̂ (P+φk) +

∑
k U

−−
kn d̂∗ (P−φk) (2.3.16)

A short calculation shows

UABkn = (UAB)∗nk = (PAUPB)∗nk = (PBU∗PA)nk

= (U∗)BAnk = (W )BAnk ,
(2.3.17)

where A,B = ± and W ≡ U∗ is unitary in H, too. Finally

b̂n
′ =

∑
kW

++
nk b̂k +

∑
kW

−+
nk d̂∗k (2.3.18)

d̂∗n
′ =

∑
kW

+−
nk b̂k +

∑
kW

−−
nk d̂∗k (2.3.19)

what is a Bogoliubov transformation. It is implementable (theorem 1) if and only if U+−

and U−+ are Hilbert-Schmidt operators. This is equivalent to the same condition on W±∓,
because

Lemma 1 For W = U∗

||U+−||HS = ||W−+||HS and ||U−+||HS = ||W+−||HS . (2.3.20)
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Proof:

||U+−||2HS =
∑
n,k

|(φn, U+−φk)|2 =
∑
n,k

|(φn, P+UP−φk)|2 =
∑
n,k

|(P−U∗P+φn, φk)|2

=
∑
n,k

|((U∗)−+φn, φk)|2 =
∑
n,k

|(φk,W−+φn)|2 = ||W−+||2HS . � (2.3.21)

The unitary transformation in (2.3.9) may also be understood as a one inducing a
change of projectors, namely if we introduce

P ′± ≡ U P± U
∗ (2.3.22)

and substitute f → U∗f in (2.3.10) then we obtain

b̂′(U∗ P ′+f) + d̂∗′(U∗ P ′−f) = b̂(P+f) + d̂∗(P−f). (2.3.23)

The operators on the left-hand side can be renamed

b̂′(U∗ P ′+f) ≡ b̂′′(P ′+f), d̂′(U∗ P ′−f) ≡ d̂′′(P ′−f), (2.3.24)

so that the new b̂′′, d̂′′ are connected with the new projectors P ′±. Finally, introducing

Ψ̂′′(f) ≡ b̂′′(P ′+f) + d̂∗′′(P ′−f) (2.3.25)

we find the relation

Ψ̂′′(f) = Ψ̂(f), (2.3.26)

which is not trivial, because both operators decompose into creation and annihilation
operators defined by different projectors. In such case implementability is decided by
theorem 2 (see section 2.3.3).

Change of a basis

Another situation where Bogoliubov transformations appear is the change of the basis.
Consider a unitary transformation W : H → H, which maps Wφn = φ′n and W : H± →
H′
±. Since the new subspacesH′

± are, in general, different from the original, new projectors
are induced

P ′± = WP±W
∗. (2.3.27)

New creation and annihilation operators can be obtained starting from the relation

Ψ̂′(f) = Ψ̂(f), (2.3.28)

which can be expressed as

b̂′(P ′+f) + d̂∗′(P ′−f) = b̂(P+f) + d̂∗(P−f). (2.3.29)
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Choose first f = P ′+φ
′
n ∈ H′

+ so that P ′−f = 0. Then

b̂n
′ ≡ b̂′(P ′+φ

′
n) = b̂(P+P

′
+φ

′
n) + d̂∗(P−P ′+φ

′
n)

= b̂(P+P
′
+Wφn) + d̂∗(P−P ′+Wφn)

= b̂(P+WP+φn) + d̂∗(P−WP+φn).

(2.3.30)

Now, introduce the matrix elements Wkn ≡ (φk,Wφn) = (φk, φ′n) for W and analogously
W±±′
kn for P±WP±′ . Then (using the antilinearity of b̂ and d̂∗)

b̂n
′ = b̂

(
P+

∑
k

W++
kn φk

)
+ d̂∗

(
P−
∑
k

W−+
kn φk

)
=
∑
k

W++
kn b̂(P+φk) +

∑
k

W−+
kn d̂∗(P−φk)

=
∑
k

W++
kn b̂k +

∑
k

W−+
kn d̂∗k.

(2.3.31)

The complex conjugated matrix elements W±±′
kn can be expressed as (for instance for

W−+
kn )

W−+
kn = (W−+)∗nk = (P−WP+)∗nk = (P+W

∗P−)nk

= (W ∗)+−nk = (V )+−nk ,
(2.3.32)

where we have introduced V ≡ W ∗, also unitary on H, satisfying V φ′n = φn. Finally, the
transformation of the annihilation operators takes the form

b̂n
′ =

∑
k

V ++
nk b̂k +

∑
k

V +−
nk d̂∗k, (2.3.33)

which is a Bogoliubov transformation. The relations for d̂∗n
′ can be found analogously.

According to theorem 1, the transformation is implementable if and only if W+− and
W−+ (or V −+ and V +−) are Hilbert-Schmidt operators.

The same condition can be found by considering the transformation as a change of the
projector P± → P ′± = WP±W

∗ and by applying theorem 2 (see next section). It gives

∞ > ||P+P
′
−||HS = ||P+WP−W

∗||HS = ||W+−||HS (2.3.34)

∞ > ||P ′+P−||HS = ||P−P ′+||HS = ||P−WP+W
∗||HS = ||W−+||HS . (2.3.35)

2.3.3 Change of projectors – equivalence of representations

A change of projectors from P± to P ′± defines automatically a different representation
Ψ̂′(f) of CAR in a different Fock space F ′ which contains its vacuum vector Ω′ such that

Ψ̂′(f) = b̂′(f) + d̂∗′(f) ∀f ∈ H, (2.3.36)

b̂′(P+f) Ω′ = 0 and d̂′(P−f) Ω′ = 0 ∀f ∈ H. (2.3.37)
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The two representations are unitarily equivalent if there exists a unitary mapping Û :
F ′ → F such that

Ψ̂(f) = Û Ψ̂′(f) Û∗ ∀f ∈ H, (2.3.38)

that is

b̂(P+f) + d̂∗(P−f) = Û b̂′(P ′+f) Û∗ + Û d̂∗′(P ′−f) Û∗ ∀f ∈ H. (2.3.39)

Choosing once f ∈ H′
+ ≡ P ′+H and once f ∈ H′

− ≡ P ′−H we obtain two relations

b̂(P+P
′
+f) + d̂∗(P−P ′+f) = Û b̂′(P ′+f) Û∗ ≡ b̂′′(P ′+f) (2.3.40)

b̂(P+P
′
−f) + d̂∗(P−P ′−f) = Û d̂∗′(P ′−f) Û∗ ≡ d̂∗′′(P ′+f), (2.3.41)

with b̂′′(f), d̂′′(f) annihilation operators in F , unitarily equivalent to b̂′(f), d̂′(f) in F ′. The
equations present a Bogoliubov transformation for the operators b̂(f), d̂(f) and b̂′′(f), d̂′′(f).
This transformation is implementable if there exists a vacuum vector Ω′′ ∈ F such that

b̂′′(P ′+f) Ω′′ = 0 and d̂′′(P ′−f) Ω′′ = 0 ∀f ∈ H. (2.3.42)

Then there exists the unitary transformation Û connecting F with F ′ via Ω′′ = ÛΩ′.
Analogously as in the Shale-Stinespring theorem, essential for implementation is the

“number” of vectors appearing in the “mixing” terms d̂∗(P−P ′+f) in (2.3.40) and b̂(P+P
′
−f)

in (2.3.41) which is measured by the Hilbert-Schmidt norm. The corresponding general
theorem [KS77a, Ara71] states

Theorem 2 The choice of two different projectors P+ and P ′+ leads to unitarily equivalent
representations if and only if

||P+P
′
−||H.S. <∞ and ||P ′+P−||H.S. <∞. (2.3.43)

or, what is equivalent,

||P+ − P ′+||H.S. <∞ (2.3.44)

The equivalence of both criteria can be shown by a direct calculation

||P+P
′
−||2H.S. + ||P ′+P−||2H.S. = ||P+ − P ′+||2H.S.. (2.3.45)

2.3.4 Explicit form of the implemented Bogoliubov transformation

Consider the Bogoliubov transformation

b̂n
′ =

∑
k U

++
nk b̂k +

∑
k U

+−
nk d̂∗k (2.3.46)

d̂∗n
′ =

∑
k U

−+
nk b̂k +

∑
k U

−−
nk d̂∗k, (2.3.47)

induced in one of the two ways:



2.3. Choice of the projector 23

A) by a unitary transformation S : H → H

Ψ̂′
P (f) = Ψ̂P (S∗f) ∀f ∈ H, (2.3.48)

B) or by a change of projectors P± → P ′±

Ψ̂′
P ′(f) = Ψ̂P (f) ∀f ∈ H. (2.3.49)

The cases A and B were studied in the literature separately by [Rui77, Sei82] (case A) and
[KS77a] (case B). Below we cite and extend both results2 to a generalized form including
both transformations simultaneously.

Here we have indicated explicitly to which projector the field operator corresponds

Ψ̂P (f) = b̂(P+f) + d̂∗(P−f) and Ψ̂P ′(f) = b̂(P ′+f) + d̂∗(P ′−f). (2.3.50)

The particle and antiparticle operators are defined with respect to the bases φ±n ∈ H± ≡
P±H and χ±n ∈ H′

± ≡ P ′±H as follows

b̂n ≡ b̂(φ+
n ), d̂n ≡ d̂(φ−n ), (2.3.51)

b̂n
′ ≡ b̂′(χ+

n ), d̂n
′ ≡ d̂′(χ−n ), (2.3.52)

where in case A we assume χ±n = φ±n . Case B contains also the situation where the
projectors remain unchanged, i.e. P ′± = P±, but the basis which defines particle states
changes from φ±n to χ±n .

In both cases, we look for the unitary implementer Û : F → F such that

Û∗ b̂n Û = b̂n
′, Û∗ d̂n Û = d̂n

′, (2.3.53)

what corresponds to

Û∗ Ψ̂(f) Û =

Ψ(S∗f) in case A,

Ψ(V ∗f) in case B,
(2.3.54)

where the unitary operator V is defined by the property that it maps the two bases onto
each other (cf. (2.3.33))

V ∗φ±n = χ±n , (2.3.55)

Vpq ≡ (φp, V φr) = (V ∗φp, φr) = (χp, φr). (2.3.56)

Such V maps the two projectors onto each other

V ∗P± = P ′±V
∗, P ′± = V ∗P±V. (2.3.57)

2correcting several misprints in [KS77a]



24 2. Fock space representation of CAR – particle interpretation

Since in case A we have V = 1 and in case B we can assume S = 1, both cases can be
generalized now to a universal form containing both of them

Û∗ Ψ̂(f) Û = Ψ(S∗V ∗f) ≡ Ψ(U∗f), (2.3.58)

with U = V S and

Upq ≡ (φp, Uφq) = (φp, V Sφq) =
∑
r

(φp, V φr)(φr, Sφq) ≡
∑
r

VprSrq

=
∑
r

(χp, φr)(φr, Sφq) = (χp, Sφq) ≡ S̃pq,
(2.3.59)

Now both cases follow from the general form

χ±n = φ±n ⇒ V = 1 ⇒ U∗ = S∗ (case A) (2.3.60)

S = 1 ⇒ U∗ = V ∗ (case B) (2.3.61)

(Because

(V−+)pq = (φ−p , P−V P+φ
+
q ) = (V ∗φ−p , φ

+
q ) = (χ−p , φ

+
q )

= (χ−p , P
′
−P+φ

+
q ) ≡ (χ−p ,Wφ+

q ) ≡ (W̃−+)pq (2.3.62)

with P ′±′P± ≡W±′±, in [KS77a] actually implementation of W has been studied, but it is
fully equivalent to our case B.)

If Û exists it maps the vacuum vector Ω for b̂n and d̂n

b̂nΩ = d̂nΩ = 0 (2.3.63)

onto the vacuum vector Ω′ for b̂n
′ and d̂n

′

b̂n
′Ω′ = d̂n

′Ω′ = 0, (2.3.64)

which is given by
Ω′ = Û∗ Ω. (2.3.65)

Before we construct Û we need some definitions. Define subspaces

R+ ≡ ker(U++), n+ ≡ dimR+ (2.3.66)

R− ≡ ker(U−−), n− ≡ dimR−. (2.3.67)

R± are finite dimensional, what follows from the finiteness of the Hilbert-Schmidt norms
of U±∓. It holds

ker(U++) = ker((U++)∗U++) = ker(1− (U−+)∗U−+) (2.3.68)

and it follows

f ∈ R+ ⇔ f ∈ ker(1− (U−+)∗U−+) ⇔ (U−+)∗U−+f = f, (2.3.69)
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i.e. f is an eigenvector to the eigenvalue 1 of (U−+)∗U−+ = P+U
∗P−UP+ and f ∈ H+.

Since ||(U−+)∗|| = ||U−+|| = 1, there exists g ∈ H− such that

U−+f = g, (U−+)∗g = f. (2.3.70)

That means b̂∗(f) = d̂′(g). In case B, in a suitable basis (defined below in the theorem) it
means that there exists n for which

φ+
n = χ−n

(
= V ∗φ−n = P+V

∗P−φ
−
n = (P−V P+)∗φ−n = (V−+)∗φ−n

)
. (2.3.71)

The analogous holds for f ∈ R−. Operators U with n+ + n− > 0 will be called strong3,
otherwise (n+ = n− = 0) weak.

Now, we state the theorem constructing Û∗, which maps Ω on Ω′. It is straightforward
to obtain Û by taking the adjoint. The proof is almost identical to the proofs published in
[Sei82] and [KS77a], but out notation is more general and includes both cases, what does
not influence the way of the proof.

Theorem 3 Define operators

A ≡ −U−1
++ U+−, B ≡ ±U−1

++ (2.3.72)

C ≡ ±(U−1
−−) D ≡ ±(U−+ U−1

++)T , (2.3.73)

where the upper sign is to be chosen if (n+ + n−) is even and the lower if (n+ + n−)
is odd (here and in the following). The inverse operators are defined on the orthogonal
complements R′

± (such that R± ⊕R′
± = H). Introduce a suitable basis

ϕ+
1 , ..., ϕ

+
n+

∈ R+ (2.3.74)

ϕ+
n++1, ..., ϕ

+
∞ ∈ R′

+ (2.3.75)

ϕ−1 , ..., ϕ
−
n− ∈ R− (2.3.76)

ϕ−n−+1, ..., ϕ
−
∞ ∈ R′

−. (2.3.77)

Define operators

b̂k ≡ b̂(ϕ+
k ), d̂k ≡ d̂(ϕ−k ) for k = 1, ...,∞ (2.3.78)

and

Akl ≡ (ϕ+
k , A ϕ−l ), Bkl ≡ (ϕ+

k , B ϕ+
l ), (2.3.79)

Ckl ≡ (ϕ−k , C ϕ−l ), Dkl ≡ (ϕ+
k , D ϕ−l ) (2.3.80)

for k = n+ + 1, ...,∞; l = n− + 1, ...,∞ (2.3.81)

Then
Û∗ = C0 : Û∗0 Ũ∗ : (2.3.82)

3In [Sei82] they are called singular, but we want to avoid confusion with the notion of a singular operator

or a singular potential.
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with
C0 ≡ [det(1 +A∗A)]−1/2, (2.3.83)

Ũ∗ =: exp

∑
k,l

Aklb̂
∗
kd̂
∗
l

 exp

∑
k,l

(Bkl − δkl)b̂∗k b̂l


exp

∑
k,l

(Ckl − δkl)d̂∗kd̂l

 exp

∑
k,l

Dklb̂kd̂l

 :

k = n+ + 1, ...,∞; l = n− + 1, ...,∞

(2.3.84)

Û∗0 ≡ :
(
b̂∗(ϕ+

1 )∓ d̂(Uϕ+
1 )
)
...
(
b̂∗(ϕ+

n+
)∓ d̂(Uϕ+

n+
)
)

(
d̂∗(ϕ−1 )∓ b̂(Uϕ−1 )

)
...
(
d̂∗(ϕ−n−)∓ b̂(Uϕ+

n+
)
)

:

= :

(
b̂∗1 ∓

n+∑
k=1

(U−+)k1d̂k

)
...

(
b̂∗n+ ∓

n+∑
k=1

(U−+)kn+ d̂k

)
(
d̂∗1 ∓

n−∑
k=1

(U+−)k1b̂k

)
...

(
d̂∗n− ∓

n−∑
k=1

(U+−)kn− b̂k

)
:

(2.3.85)

The ”: ... :” means normal ordering and is defined in section 2.4.2.

The existence of Û allows for calculation of any expectation value of any operator Â
(build of Ψ̂, Ψ̂∗) in both representations

(Φ′
1, Â

′Φ′
2) = (Û∗Φ1, Û

∗ÂÛ Û∗Φ2) = (Φ1, ÂΦ2) (2.3.86)

or switching between the Heisenberg and Schrödinger pictures

(Φ1, Â
′Φ2) = (Φ1, Û

∗ÂÛ Φ2) = (ÛΦ1, Â ÛΦ2) = (Φ′′
1, ÂΦ′′

2). (2.3.87)

Consequences of Theorem 3

The Bogoliubov transformation considered in the above theorem has the form

b̂′j = d̂∗j for j = 1, ..., n− (2.3.88)

b̂′j =
∞∑

k=n++1

(U++)jk b̂k +
∞∑

k=n−+1

(U+−)jkd̂∗k for j = n− + 1, ...,∞ (2.3.89)

d̂′∗j = b̂j for j = 1, ..., n+ (2.3.90)

d̂′∗j =
∞∑

k=n++1

(U−+)jk b̂k +
∞∑

k=n−+1

(U−−)jkd̂∗k for j = n+ + 1, ...,∞ (2.3.91)

and is assumed to be implementable (U+− and U−+ are Hilbert-Schmidt).
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The full operator Û∗, when transforming the vacua, can be simplified to

Ω′ = Û∗Ω = C0 Û
∗
0 exp

 ∞∑
k=n++1
l=n−+1

Aklb̂
∗
kd̂
∗
l

Ω. (2.3.92)

Ω′ exists if it has finite norm. Here, the normalization is fixed by multiplication by C0,
which must be non-zero, that is, the (Fredholm) determinant

det(1 +A∗A) ≡ 1 +
∑
n

∑
k1<...<kn

det(A∗A)kikj
(2.3.93)

must be finite, what is the case when A∗A is trace-class (
∑

n(fn, A∗Afn) < ∞). This
can be traced back to the fact that U+−, U−+ must be Hilbert-Schmidt, what has been
assumed.

Moreover, Û∗ transforms any basis vector from F into a “basis vector” defined by
means of the new vacuum Ω′ and new creation operators b̂∗′n, d̂

∗′
n

Û∗
(
b̂∗i1 . . . b̂

∗
in d̂

∗
j1 . . . d̂

∗
jmΩ

)
= b̂′∗i1 . . . b̂

′∗
in d̂

′∗
j1 . . . d̂

′∗
jmΩ′. (2.3.94)

It can be interpreted as a transformation of the creation operators writing

Û∗
(
b̂∗i1 . . . b̂

∗
in d̂

∗
j1 . . . d̂

∗
jmΩ

)
=
(
Û∗b̂∗i1Û

)
. . .
(
Û∗b̂∗inÛ

)(
Û∗d̂∗j1Û

)
. . .
(
Û∗d̂∗jmÛ

)
Û∗Ω

= b̂′∗i1 . . . b̂
′∗
in d̂

′∗
j1 . . . d̂

′∗
jmΩ′,

(2.3.95)

what gives the following relations

Û∗b̂∗i Û = b̂′∗i and Û∗d̂∗j Û = d̂′∗j . (2.3.96)

The operators b̂∗i with i = 1, ..., n+ and d̂∗j with j = 1, ..., n− correspond to the states φ+
i ,

which are mapped from H+ = P+H to H′
− = P ′−H and to φ−j , which are mapped from

H− = P−H to H′
+ = P ′+H. They play a special role in the Û∗0 part of the operator Û∗

and create particles and antiparticles from vacuum

Ω′ = Û∗Ω = C0 d̂
∗
n− . . . d̂

∗
1b̂
∗
n+
. . . b̂∗1 exp

∑
k,l

Aklb̂
∗
kd̂
∗
l

Ω, (2.3.97)

what presents a charged vacuum in case n+ 6= n−. Operators b̂(Uϕ−s ) and d̂(Uϕ+
s ) in

(2.3.85) annihilate particles and antiparticles in states that are also mapped between H+

and H−. The role of the terms b̂∗(ϕ+
s )∓ d̂(Uϕ+

s ) in (2.3.85) is to either create a particle
in state ϕ+

s if there was no antiparticle in state Uϕ+
s , or to annihilate the antiparticle

ϕ+
s if it was present. In the first case b̂∗(ϕ+

s ) ∓ d̂(Uϕ+
s ) acts on vector Φ which does not

contain d̂∗(Uϕ+
s ) and the result is b̂∗(ϕ+

s )Φ (because d̂(Uϕ+
s )Φ = 0). In the second case
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Φ = d̂∗(Uϕ+
s )Φ̃ and the second term gives d̂(Uϕ+

s )Φ = Φ̃, while the first must give zero.
It is possible because in between the operator Ũ∗ (2.3.84) there comes into play (which
always stands to the left of d̂(Uϕ+

s ) due to normal ordering, but to the right of b̂∗(ϕ+
s ))

and one gets b̂∗(ϕ+
s )Ũ∗d̂∗(Uϕ+

s )Φ̃ which turns out to be zero. To understand this we first
must observe that the exponents in Ũ∗ can be written as

: exp
(

(B − 1)b̂∗b̂
)

: ≡ : exp

(∑
p,q

(Bpq − δpq)b̂∗pb̂q

)
:

= : exp

(∑
p,q

Bpq b̂
∗
pb̂q −

∑
q

b̂∗q b̂q

)
:

= : exp

(∑
p,q

Bpq b̂
∗
pb̂q

)
exp

(
−
∑
q

b̂∗q b̂q

)
:

= :
∏
p,q

exp
(
Bpq b̂

∗
pb̂q

) ∏
q

exp
(
−b̂∗q b̂q

)
:

= :
∏
p,q

(
1 +Bpq b̂

∗
pb̂q

) ∏
q

(
1− b̂∗q b̂q

)
:

= :
∏
q

(
1 +

∑
p

Bpq b̂
∗
pb̂q

) ∏
q

(
1− b̂∗q b̂q

)
:

= :
∏
q

[(
1 +

∑
p

Bpq b̂
∗
pb̂q

) (
1− b̂∗q b̂q

)]
:

= :
∏
q

[(
1 +

∑
p

Bpq b̂
∗
pb̂q − b̂∗q b̂q

)]
:

(2.3.98)

and analogously

: exp
(

(C − 1)d̂∗d̂
)

:= :
∏
q

[(
1 +

∑
p

Cpqd̂
∗
pd̂q − d̂∗q d̂q

)]
: . (2.3.99)

Then it is simple to calculate the commutations

: exp
(

(B − 1)b̂∗b̂
)

: b̂∗s =

(
1 +

∑
p

Bpsb̂
∗
pb̂s − b̂∗s b̂s

)
b̂∗s : exp

(
(B − 1)b̂∗b̂

)
:

=

(
b̂∗s +

∑
p

Bpsb̂
∗
p − b̂∗s

)
: exp

(
(B − 1)b̂∗b̂

)
:=

(∑
p

Bpsb̂
∗
p

)
: exp

(
(B − 1)b̂∗b̂

)
:

(2.3.100)

and analogously

: exp
(

(C − 1)d̂∗d̂
)

: d̂∗s =

(∑
p

Cpsd̂
∗
p

)
: exp

(
(C − 1)d̂∗d̂

)
: . (2.3.101)
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Or, using

∑
p

Bpsb̂
∗
p =

∑
p

(ϕp, Bϕs)b̂∗(ϕp) = b̂∗

(∑
p

(ϕp, Bϕs)ϕp

)
= b̂∗(Bϕs) (2.3.102)

we can write in short

: exp
(

(B − 1)b̂∗b̂
)

: b̂∗(f) = b̂∗(Bf) : exp
(

(B − 1)b̂∗b̂
)

: (2.3.103)

and
: exp

(
(C − 1)d̂∗d̂

)
: d̂∗(f) = d̂∗(Cf) : exp

(
(C − 1)d̂∗d̂

)
: . (2.3.104)

Now, we observe that for s ≤ n−, with ϕ−s ∈ R− and Uϕ−s ∈ H+, it holds

: exp
(

(B − 1)b̂∗b̂
)

: b̂∗(Uϕ−s ) = b̂∗(BUϕ−s ) : exp
(

(B − 1)b̂∗b̂
)

:= 0, (2.3.105)

because
BUϕ−s = (U−1)++Uϕ

−
s = P+U

∗P+Uϕ
−
s = P+ϕ

−
s = 0. (2.3.106)

For the last step see (2.3.69) and (2.3.70) or observe that ϕ−s ∈ ker(U−−) ⇒ Uϕ−s ∈
ker(U∗++), i.e. U∗++(Uϕ−s ) = 0. Analogously for s ≤ n+ and ϕ+

s ∈ R+ with Uϕ+
s ∈ H−

: exp
(

(C − 1)d̂∗d̂
)

: d̂∗(Uϕ+
s ) = d̂∗(CUϕ+

s ) : exp
(

(C − 1)d̂∗d̂
)

:= 0, (2.3.107)

because
CUϕ+

s = (U−1)−−Uϕ+
s = P−U

∗P−Uϕ
+
s = 0 (2.3.108)

since ϕ+
s ∈ ker(U++) ⇒ Uϕ+

s ∈ ker(U∗−−), i.e. U∗−−(Uϕ+
s ) = 0.

Relations (2.3.105) and (2.3.107) show that

Ũ∗d̂∗(Uϕ+
s ) = 0, and Ũ∗b̂∗(Uϕ−s ) = 0. (2.3.109)

Finally, we can see how Û∗ acts on particles and antiparticles in the special states, for
instance

Û∗ d̂∗(Uϕ+
r ) b̂∗(Uϕ−s ) Ω = C0 d̂

∗
n− . . . d̂

∗
r/ . . . d̂∗1 b̂

∗
n+
. . . b̂∗r/ . . . b̂∗1 exp

∑
k,l

Aklb̂
∗
kd̂
∗
l

Ω.

(2.3.110)

Example

Consider a very simple, but illustrative example, which will be a basis for the analysis of
overcritical fields studied in the next chapter. Let R+ be one-dimensional, i.e. n+ = 1,
and n− = dimR− = 0. Let the Bogoliubov transformation be of the form

d̂′∗1 = b̂1 (2.3.111)

b̂′j = b̂j+1 for j = 1, ...,∞ (2.3.112)

d̂′∗j+1 = d̂∗j for j = 1, ...,∞. (2.3.113)
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It is implementable because ||U−+||HS = 1 and ||U+−||HS = 0. The explicit form of U is

(U++)ik = δi+1,k (U−−)ik = δi,k+1 (2.3.114)

(U−+)ik = δi,1 · δk,1 (U+−)ik = 0 for i, k = 1, ...,∞ (2.3.115)

and the auxiliary operators are

Bik = −δi,k+1 Cik = −δi+1,k (2.3.116)

Aik = 0 Dik = 0. (2.3.117)

The role of B and C is to shift the indices of b̂j and d̂j according to (2.3.112)-(2.3.113)
and guarantee the appearance of additional minus signs in the following commutations,
which will cancel in commutation with Û∗0 ,

: exp
(

(B − 1)b̂∗b̂
)

: b̂∗n = −b̂∗n+1 : exp
(

(B − 1)b̂∗b̂
)

: for n ≥ 1 (2.3.118)

: exp
(

(C − 1)d̂∗d̂
)

: d̂∗n =

−d̂∗n−1 : exp
(

(C − 1)d̂∗d̂
)

: for n ≥ 2

0 for n = 1.
(2.3.119)

The Bogoliubov transformation is implemented by the unitary operator

Û∗ = C0 Û
∗
0 exp

(
Ab̂∗d̂∗

)
: exp

(
(B − 1)b̂∗b̂

)
:: exp

(
(C − 1)d̂∗d̂

)
: exp

(
Db̂d̂

)
(2.3.120)

where A = 0, D = 0, C0 = 1, and

Û∗0 = b̂∗1 + d̂1. (2.3.121)

Therefore it reduces to

Û∗ =:
(
b̂∗1 + d̂1

)
exp

(
(B − 1)b̂∗b̂

)
exp

(
(C − 1)d̂∗d̂

)
: (2.3.122)

Û∗0 anti-commutes with all b̂∗n and d̂∗n except b̂∗1 with which it commutes

Û∗0 b̂
∗
n Û0 = −b̂∗n for n ≥ 2 and Û∗0 d̂

∗
n Û0 = −d̂∗n for n ≥ 1, (2.3.123)

Û∗0 b̂
∗
1 Û0 = b̂∗1. (2.3.124)

These additional minus signs cancel with those produced in (2.3.118) and (2.3.119). Fi-
nally, we obtain the required transformations

Û∗ b̂∗n Û = b̂′∗n = b̂∗n+1 (2.3.125)

Û∗ d̂∗n Û = d̂′∗n =

d̂∗n−1 for n ≥ 2

b̂1 for n = 1.
(2.3.126)
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The vacuum vector Ω with respect to the operators b̂n and d̂n transforms to the vacuum
vector Ω′ with respect to b̂′n and d̂′n and equals

Ω′ = Û∗ Ω =
(
b̂∗1 + d̂1

)
Ω = b̂∗1 Ω. (2.3.127)

The inverse operator Û is given by

Û =:
(
d̂∗1 + b̂1

)
exp

(
(B∗ − 1)b̂∗b̂

)
exp

(
(C∗ − 1)d̂∗d̂

)
: (2.3.128)

It connects the two vacua in the opposite way

Û Ω′ = :
(
d̂∗1 + b̂1

)
exp

(
(B∗ − 1)b̂∗b̂

)
: Ω′ =

=
(
d̂∗1 : exp

(
(B∗ − 1)b̂∗b̂

)
: + : exp

(
(B∗ − 1)b̂∗b̂

)
: b̂1
)
b̂∗1Ω =

= 0 + : exp
(

(B∗ − 1)b̂∗b̂
)

: Ω = Ω,

(2.3.129)

where : exp
(

(B∗ − 1)b̂∗b̂
)

: b̂∗1 = 0 has been used, what is an analogue of (2.3.118)-
(2.3.119) with B∗ instead of B. On the other hand, we can calculate

d̂1
′∗Ω′ = (Û∗d̂1Û)(Û∗Ω) = Û∗d̂1Ω

= :
(
b̂∗1 + d̂1

)
exp

(
(B − 1)b̂∗b̂

)
exp

(
(C − 1)d̂∗d̂

)
: d̂1Ω

=
(
b̂∗1 : exp

(
(C − 1)d̂∗d̂

)
: + : exp

(
(C − 1)d̂∗d̂

)
: d̂1

)
d̂1Ω

= 0 + : exp
(

(C − 1)d̂∗d̂
)

: Ω = Ω,

(2.3.130)

where we have used (2.3.119) in the last line.
Therefore for both reference systems the own vacuum is always a no particle state and

the other vacuum seems to be a one particle (2.3.127), respectively a one anti-particle
state (2.3.130).

We will come back to the results of this example in chapter 4, where overcritical
potentials will be discussed.

2.4 Vacuum state and energy in Fock space

2.4.1 Energy operator

The notion of energy in Fock space is based on the second quantized Dirac operator Ĥ :
F → F which is an implemented version of the classical Hamilton operator H : H → H.
The prescription in section 2.2.3 is sufficient and unique, but practically rather compli-
cated. It is of advantage to express the action of the implemented operator in terms of
the field operator or of the creation and annihilation operators. It can be shown that

Ĥ =
∑
k

[
b̂∗(Hfk) b̂(fk)− d̂∗(Hgk) d̂(gk)

]
. (2.4.1)
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It can be checked in every subspace of F separately. Choose for example Φ(1,1) ∈ F (1,1).
According to the definitions introduced in sections 2.2.1 and 2.2.2 it has the form

Φ(1,1) = f ⊗ Cg = b̂∗(f)d̂∗(g)Ω, (2.4.2)

where f ∈ H+ and g ∈ H−. Directly from the definition formula for implementation of
the self-adjoined operators (2.2.17) we get

ĤΦ(1,1) =Hf ⊗ Cg + f ⊗H(Cg) = Hf ⊗ Cg + f ⊗ (−CHg)

=b̂∗(Hf) d̂∗(g) Ω− b̂∗(f) d̂∗(Hg) Ω

=b̂∗
(∑

k

(fk,Hf)fk

)
d̂∗(g) Ω− b̂∗(f) d̂∗

(∑
k

(gk,Hg)gk

)
Ω

=
∑
k

b̂∗(fk) (fk,Hf) d̂∗(g) Ω−
∑
k

b̂∗(f) d̂∗(gk) (Hg, gk) Ω

=
∑
k

b̂∗(fk) (Hfk, f) d̂∗(g) Ω−
∑
k

b̂∗(f) d̂∗(gk) (g,Hgk) Ω

=
∑
k

b̂∗(fk)
[
b̂(Hfk) b̂∗(f) + b̂∗(f) b̂(Hfk)

]
d̂∗(g) Ω

−
∑
k

b̂∗(f) d̂∗(gk)
[
d̂∗(g) d̂(Hgk) + d̂(Hgk) d̂∗(g)

]
Ω

=
∑
k

b̂∗(fk) b̂(Hfk) b̂∗(f) d̂∗(g) Ω−
∑
k

d̂∗(gk) d̂(Hgk) b̂∗(f) d̂∗(g) Ω

=
∑
k

[
b̂∗(fk) b̂(Hfk)− d̂∗(gk) d̂(Hgk)

]
b̂∗(f) d̂∗(g) Ω

=
∑
k

[
b̂∗(fk) b̂(Hfk)− d̂∗(gk) d̂(Hgk)

]
Φ(1,1).

(2.4.3)

The last step is to show∑
k

b̂∗(fk) b̂(Hfk) =
∑
k,l

b̂∗(fk) b̂ ((fl,Hfk) fl) =
∑
k,l

b̂∗(fk) (Hfk, fl) b̂(fl)

=
∑
k,l

b̂∗(fk) (fk,Hfl) b̂(fl) =
∑
k,l

b̂∗ ((fk,Hfl) fk) b̂(fl)

=
∑
l

b̂∗(Hfl) b̂(fl)

(2.4.4)

and analogously ∑
k

d̂∗(gk) d̂(Hgk) =
∑
l

d̂∗(Hgl) d̂(gl). (2.4.5)

Formula (2.4.1) can be rewritten as

Ĥ =
∑
k,l

[
(fk,Hfl) b̂∗(fk) b̂(fl)− (gl,Hgk) d̂∗(gk) d̂(gl)

]
(2.4.6)

and shows clearly that the energy is always positive if fi belong to the positive and gi to
the negative spectral subspace of H. It can be made even more explicit by choosing a
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spectral representation (defined in section 3.2.2) of H using generalized eigenfunctions fE

Ĥ =
∫ ∞

0
E b̂∗(fE) b̂(fE) dµ(E)−

∫ 0

−∞
E d̂∗(fE) d̂(fE) dµ(E)

=
∫ ∞

0
|E| b̂∗E b̂E dµ(E) +

∫ 0

−∞
|E| d̂∗E d̂E dµ(E) ≥ 0

(2.4.7)

and hence
(Φ, ĤΦ) ≥ 0 ∀ Φ ∈ F . (2.4.8)

With other words, it holds if the projectors P± are chosen to project onto the positive and
negative spectral subspaces of H4

P± =
1± sgn(H)

2
. (2.4.9)

2.4.2 Normal ordering

It would be of advantage to have a general formula for the implementation of self-adjoint
operators expressed via the field operators Ψ̂(f), Ψ̂∗(f), similar to (2.4.1). First use the
anticommutation relation for d̂ and d̂∗ (the reason for this operation will become clear
later)

Ĥ =
∑
k

[
b̂∗(Hfk) b̂(fk) + d̂(gk) d̂∗(Hgk)− (P−Hgk, P−gk)

]
. (2.4.10)

Then substitute b̂(f) = Ψ̂(P+f) and d̂(g) = Ψ̂∗(g)

Ĥ =
∑
k

[
Ψ̂∗(P+Hfk) Ψ̂(P+fk) + Ψ̂∗(P−gk) Ψ̂(P−Hgk)− (P−Hgk, P−gk)

]
. (2.4.11)

The same trick as in (2.4.4) allows us to rewrite it as

Ĥ =
∑
k

[
Ψ̂∗(P+Hfk) Ψ̂(P+fk) + Ψ̂∗(P−Hgk) Ψ̂(P−gk)− (P−Hgk, P−gk)

]
. (2.4.12)

Since P± commute with H (P± are spectral projections of H) the first two terms can be
combined together to give

Ĥ =
∑
k

[
Ψ̂∗(Hfk) Ψ̂(fk)− (P−Hgk, P−gk)

]
. (2.4.13)

The first term turns out to be universal (what can be observed by studying further exam-
ples). The second term appears due to the anticommutation of d̂ and d̂∗ while bringing
them to the order d̂∗d̂ which has this significance that it guarantees finiteness of the ex-
pectation value of the infinite sum

∑
k d̂

∗(Hgk) d̂(gk) on any vector in the Fock space.
This is a general feature of the sums of products of b̂, b̂∗, d̂, d̂∗ ordered so that the creation

4sgn(H) is well-defined by H/|H| if 0 does not lie in the spectrum of H.
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operators b̂∗, d̂∗ are placed to the left of the annihilation operators b̂, d̂. Their expectation
values on all vectors in the Fock space are finite. The reason is that the creation operators
on the left, like for instance in(

Φ,
∑
k

b̂∗(fk) d̂∗(gk) b̂(fk) d̂(gk) Φ

)
, fk ∈ H+, gk ∈ H−, (2.4.14)

can be transformed into annihilation operators acting on the vector Φ on the left(
d̂(gk) b̂(fk) Φ,

∑
k

b̂(fk) d̂(gk) Φ

)
. (2.4.15)

Since Φ can be expressed as a sum over a finite number of creation operators acting on
the vacuum

Φ =
∞∑

n,m=0

∑
i1...in
j1...jm

ai1...inj1...jm b̂
∗(fi1)...b̂∗(fin)d̂∗(gj1)...d̂∗(gjm)Ω, with ai1...inj1...jm ∈ C

(2.4.16)
only a finite number of terms remains after carrying out all anticommutations of the
annihilation operators to move them from left to right to act directly on Ω and annihilate
it. The only nonzero terms come from anticommutation of b̂(fk) with b̂∗(fip) for k = ip.
The number of such terms is finite.

The special ordering of products of operators – creation on the left and annihilation on
the right – has some significance and is called normal ordering. The price for carrying out
the anticommutations to reach the normal ordered form is that there appear C-number
terms in form of scalar products of functions from H−. In order to simplify the notation
and be able to deliver a simple formula for implementation of self-adjoint operators in F by
means of the field operators, we introduce a new notation for the procedure transforming
an expression to the normal ordered form with skipping all C-number terms which appear.
It is denoted by a pair of colons (like quotation marks), for example

: b̂b̂∗ + d̂∗d̂ := −b̂∗b̂ + d̂∗d̂ (2.4.17)

and

: Ψ̂∗Ψ̂ :=: (b̂∗ + d̂)(b̂ + d̂∗) :=: b̂∗b̂ + b̂∗d̂∗ + d̂b̂ + d̂d̂∗ := b̂∗b̂ + b̂∗d̂∗ + d̂b̂ − d̂∗d̂. (2.4.18)

Now, the implementation of H can be expressed as

Ĥ =
∑
k

: Ψ̂∗(Hfk) Ψ̂(fk) : . (2.4.19)

After expanding it like in (2.4.18) and carrying out the necessary anticommutations it
becomes identical to (2.4.13).
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2.4.3 Number of particles operator

Define the number-of-particles operator as an implementation of the operator N ≡ P+−P−
(if P± = 1

2 [1 ± sgn(H)] then N = sgn(H)). Analogously to the formula (2.4.19) we can
write

N̂ ≡
∑
k

: Ψ̂∗(Nfk)Ψ̂(fk) :=
∑
k

: Ψ̂∗((P+ − P−)fk)Ψ̂(fk) : . (2.4.20)

It can be rewritten in terms of the creation and annihilation operators

N̂ =
∑
k

:
[
b̂∗(P+(P+ − P−)fk) + d̂(P−(P+ − P−)fk)

] [
b̂(P+fk) + d̂∗(P−fk)

]
:

=
∑
k

:
[
b̂∗(P+fk)− d̂(P−fk)

] [
b̂(P+fk) + d̂∗(P−fk)

]
:

=
∑
k

: b̂∗(P+fk) b̂(P+fk)− d̂(P−fk) d̂∗(P−fk) :

=
∑
k

b̂∗(P+fk) b̂(P+fk) + d̂∗(P−fk) d̂(P−fk)

(2.4.21)

Its eigenvalues are all natural numbers including zero and its eigenvectors are all states in
F with a definite number of particles M , i.e. they consist of a sum of vectors from the
subspaces F (n,m) such that n+m = M .

2.4.4 Implementation of self-adjoint operators

Extending the analogy to the formulas (2.4.19) and (2.4.20) we can define a general imple-
mentation procedure for self-adjoint operators in H, which bases on the normal ordering.
For every bounded and self-adjoint operator A : H → H with A±∓ being Hilbert-Schmidt,
the operator

Ã ≡
∑
i,k

: (fi, Afk)Ψ̂∗(fi)Ψ̂(fk) : =
∑
k

: Ψ̂∗(Afk)Ψ̂(fk) :

=
∑
k

[
Ψ̂∗(Afk)Ψ̂(fk)− (P−Afk, P−fk)

] (2.4.22)

is essentially self-adjoint on the domain D(N̂) of the particle number operator and hence
there exists its unique self-adjoint extension Â to the whole F [Tha92, Th. 10.9].

2.4.5 Vacuum as a ground state

Among all choices of the vacuum vector Ω in F , the one defined as the lowest energy state
seems to be the most obvious from a physical point of view. The choice of Ω is equivalent
to the choice of P± or H±, which is easier to characterize. As long as the Hamiltonian
has no bound-states, its spectrum consists of two continuous parts separated by the gap
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(−1, 1) (in units mc2 = 1). Then the choice5 H+ = P[1,∞)(H)H and H− = P[−∞,−1)(H)H
specifies a vacuum vector Ω having the least energy equal to zero.

If bound-states are present the situation becomes more complicated. Still, splitting into
two spectral subspaces of the Hamiltonian is physically plausible. A simple requirement
that every particle state should have higher energy (with respect to the classical Hamil-
tonian) than any antiparticle, implies that the spectrum must be cut into two intervals

H+ = P[E0,∞)(H)H and H− = P[−∞,E0)(H)H. (2.4.23)

The only remaining freedom is the choice of E0. Different choices can be found in the
literature, what is briefly but sufficiently discussed by Scharf and Seipp in [SS82]. One
frequent choice, especially in the literature concerning overcritical fields, is E0 = −1 (−mc2

in dimensional units). It defines all bound-states in the gap (−1, 1) as particles. It has
the advantage that it avoids complications appearing when during the time evolution a
particle bound state crosses the level E0 and suddenly turns into an antiparticle bound-
state or vice versa. Then the number of particles as well as the total charge undergo a
discontinuous change. The disadvantage is that the choice is not symmetric with respect
to the exchange of particles and antiparticles. The same arguments which lead to the
choice E0 = −mc2, studying positive potentials which bind electrons, can be applied to
negative potentials (e.g. anti-nuclei) which bind positrons and would imply E0 = +mc2.
Only the choice E0 = 0 is symmetric and equal for both kinds of particles. In this case
the charge conjugation symmetry is manifested by

Ĉ Ĥ Ĉ−1 = Ĥ, (2.4.24)

where Ĉ is an implemented unitary charge conjugation operator

Ĉ Ψ̂(f) Ĉ−1 = Ψ̂∗(Cf) (2.4.25)

and C is the antiunitary classical charge conjugation operator from section 2.2.1.

Equivalence of the projector choices

Considering various choices of the projectors there appears a problem of equivalence of the
induced representations. Different choices of the vacuum vector (in the same Fock space
F) give rise to unitarily equivalent representations of CAR and correspond to different
projectors P±. On the other hand, not all choices of projectors P± give unitarily equivalent
representations. In our context, we can use an immediate consequence of the theorem 2,
that two projectors which differ only by a finite number of states (i.e. the subspaces
P+P

′
−H and P ′+P−H are finite dimensional) lead to unitarily equivalent representations.

5Notation PA(H) means a spectral projection with respect to the operator H on its spectral subspace

A.
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This is the case when we define two pairs of projectors

P+ = P[E0,∞)(H), P− = P(−∞,E0](H), E0 ∈ [−1, 1], (2.4.26)

P ′+ = P[E′0,∞)(H), P ′− = P(−∞,E′0](H), E′
0 ∈ [−1, 1] (2.4.27)

and the number of eigenstates of the Hamiltonian H in the spectral gap between E0 and
E′

0 is finite, i.e. dimP[E0,E′0](H)H < ∞, where we have assumed E0 ≤ E′
0 for simplicity,

but without restriction of generality. The only way how this condition can be violated
is that the point spectrum of H contains infinitely many states, and hence possesses an
accumulation point in the interval [E0, E

′
0]. For the Dirac Hamiltonians H accumulation

points appear only at E = ±1 [ST04], so if E0, E
′
0 are chosen within the interval (−1, 1)

the two projectors may differ only by a finite number of states. A serious problem appears
when one of the cuts E0, E

′
0 is chosen at the accumulation point. As an example, consider

a Dirac Hamiltonian with a Coulomb field of a positive charge Z (like nucleus). Its point
spectrum is known to be

σp(H) =

En,κ ≡
√

1 +
Z2α2

(n+
√
κ2 − Z2α2)2

−1

;n = 1, 2, 3, ...;κ = ±1,±2, ...

 (2.4.28)

(assume |Zα| < 1) and has an accumulation point at +1. Choose E′
0 = +1 and E0 in

[−1, 1) so that E0 < E′
0. Then for every κ there exists a smallest n0(κ) such that

E′
0 > En,κ > E0 ∀ n ≥ n0(κ) (2.4.29)

and
lim
n→∞

En,κ = E′
0 = 1. (2.4.30)

The projectors are defined by (2.4.26) and (2.4.27) and give rise to different representa-
tions. We can now check the conditions of the theorem 2 for their unitary equivalence

||P+P
′
−||2H.S. =

∑
i

||P[E0,∞)(H) P[−∞,E′0)(H)fi||2 =
∑
i

||P(−∞,E′0]∩[E0,∞)(H)fi||2

=
∑
i

||P[E0,E′0](H)fi||2 =
∞∑

κ=−∞
κ 6=0

∞∑
n=n0(κ)

||ψn,κ||2 =
∞∑

κ=−∞
κ 6=0

∞∑
n=n0(κ)

1 = ∞,

(2.4.31)

where fi is an orthonormal basis in H and ψn,κ denote the bound-state wave functions.
The second condition is fulfilled

||P ′+P−||2H.S. =
∑
k

||P[E′0,∞)(H) P[−∞,E0)(H)fk||2 =
∑
k

||P(−∞,E0]∩[E′0,∞)(H)fk||2

=
∑
k

||P∅(H)fk||2 = 0,

(2.4.32)

but the first is not, so we conclude
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Corollary 1 When two representations of CAR are constructed from projectors P± and
P ′± which differ by a spectral subspace of H (which can be any self-adjoint operator) cor-
responding to an interval I (open or closed, or a sum of intervals) in the point spectrum
σp(H), i.e. has the form PI(H), and such that the interval I contains an accumulation
point of σp(H), then they are unitarily non-equivalent.

On the contrary, if I contains only a finite number of states, i.e. dimPI(H)H < ∞,
then the two representations are unitarily equivalent.

After it has been clarified which changes in the projectors (of those of interest) are
allowed, the next point is to analyze their influence on the total number of particles and
the total energy of a given state. Keeping the state unchanged during this procedure is
justified because all considered induced representations (unitarily equivalent) are defined
in the same Fock space. On the other hand, creation and annihilation operators change
and so does the vacuum vector, with respect to which the number of particles in a given
state is calculated.

Lowest energy condition

Another argument leading to the splitting at E0 = 0 is a natural requirement of the
vacuum being a state of the lowest energy, i.e. a ground state. Creation of any number of
particles or antiparticles should increase and not decrease the total energy. The form of
Ĥ in (2.4.6) makes clear that fn ∈ P+H must be contained in the positive and gn ∈ P−H
in the negative spectral subspace of H. Only then the energy of Ω is minimal, namely
ĤΩ = 0, and any creation process makes the total energy strictly positive.

So assume the vacuum Ω is defined in the Fock space F by means of P± which is
chosen to be

P± =
1± sgn(H)

2
(2.4.33)

or, in other words, with a spectral cut in σ(H) at E0 = 0. Obviously, (Ω, N̂Ω) = 0
and (Ω, ĤΩ) = 0. Then choose another projector like in (2.4.27) with E′

0 6= E0, say
E′

0 < E0 = 0, without loss of generality. Assume, the representation based on P ′± is
unitarily equivalent to F , so there exists in F a new vacuum vector Ω′ for creation and
annihilation operators b̂′, b̂∗′, d̂′, d̂∗′ defined with respect to P ′±. The two projectors may
differ only by a finite dimensional subspace: dimP ′+P−H = dimP[E′0,E0](H)H <∞ (while
P+P

′
−H = ∅ because P+ ≤ P ′+ and P− ≥ P ′− for E0 > E′

0). Therefore the corresponding
Bogoliubov transformation takes a special “triangular” form

b̂′(P ′+f) = b̂(P+P
′
+f) + d̂∗(P−P ′+f) ∀f ∈ H (2.4.34)

d̂∗′(P ′+f) = d̂∗(P−P ′−f) (2.4.35)

which gets especially simple in the basis fn diagonalizing H with b̂n ≡ b̂(P+fn) and
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d̂n ≡ d̂(P−fn)

b̂n
′ = b̂n for fn ∈ P+P

′
+H - define n ∈ I++ (2.4.36)

b̂n
′ = d̂∗n for fn ∈ P−P ′+H - define n ∈ I−+ (2.4.37)

d̂∗n
′ = d̂∗n for fn ∈ P−P ′−H - define n ∈ I−−. (2.4.38)

Then #I++ = #I−− = ∞ and #I−+ < ∞. The new particle number operator N̂ ′,
counting particles with respect to Ω′, is

N̂ ′ =
∑
k

b̂∗′(P ′+fk) b̂
′(P ′+fk) + d̂∗′(P ′−fk) d̂

′(P ′−fk)

=
∑
k

b̂∗k
′ b̂k

′ + d̂∗k
′ d̂k

′
(2.4.39)

and it satisfies (Ω′, N̂ ′ Ω′) = 0. Analogously, the new Hamiltonian has the form

Ĥ ′ =
∑
k

Ek b̂
∗′(P ′+fk) b̂

′(P ′+fk)− Ek d̂
∗′(P ′−fk) d̂

′(P ′−fk)

=
∑
k

Ek b̂k
′∗ b̂k

′ − Ek d̂k
′∗ d̂k

′.
(2.4.40)

Now, we are ready to check, which consequences the change of projectors has. First,
consider the total energy. Obviously

(Ω, ĤΩ) = 0 and (Ω′, Ĥ ′Ω′) = 0, (2.4.41)

but

(Ω, Ĥ ′Ω) =

Ω,

 ∑
k∈I++∪I−+

Ek b̂
∗
k
′ b̂k

′ −
∑
k∈I−−

Ek d̂
∗
k
′ d̂k

′

Ω


=

Ω,

 ∑
k∈I++

Ek b̂
∗
k b̂k +

∑
k∈I−+

Ek d̂k d̂
∗
k −

∑
k∈I−−

Ek d̂
∗
k d̂k

Ω


=
∑
k∈I−+

Ek (Ω, d̂k d̂∗k Ω)︸ ︷︷ ︸
=1

=
∑
k∈I−+

Ek < 0

(2.4.42)

what shows that in the new representation based on P ′± the vacuum Ω′ is not a ground
state, because there exists another vector (Ω) which has a lower energy! Moreover, Ω has
the lowest possible energy with respect to Ĥ ′ and hence remains a ground state. On the
contrary

(Ω′, ĤΩ′) =

Ω′,

 ∑
k∈I++

Ek b̂
∗
k b̂k −

∑
k∈I−+∪I−−

Ek d̂
∗
k d̂k

Ω′


=

Ω′,

 ∑
k∈I++

Ek b̂
∗
k
′ b̂k

′ −
∑
k∈I−+

Ek b̂k
′ b̂∗k

′ −
∑
k∈I−−

Ek d̂
∗
k
′ d̂k

′

Ω′


= −

∑
k∈I−+

Ek (Ω′, d̂k
′ d̂∗k

′ Ω′)︸ ︷︷ ︸
=1

= −
∑
k∈I−+

Ek > 0

(2.4.43)
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shows that in the representation based on P± the vector Ω′ has higher energy than the
ground state Ω. Therefore, this representation is distinguished by the condition of the
vacuum being the ground state. For completeness, we observe how the number of particles
changes. We have trivially

(Ω, N̂Ω) = 0 and (Ω′, N̂ ′Ω′) = 0, (2.4.44)

but

(Ω, N̂ ′Ω) =

Ω,

 ∑
k∈I++∪I−+

b̂∗k
′ b̂k

′ +
∑
k∈I−−

d̂∗k
′ d̂k

′

Ω


=

Ω,

 ∑
k∈I++

b̂∗k b̂k +
∑
k∈I−+

d̂k d̂
∗
k +

∑
k∈I−−

d̂∗k d̂k

Ω


=
∑
k∈I−+

(Ω, d̂k d̂∗k Ω)︸ ︷︷ ︸
=1

=
∑
k∈I−+

1 = #I−+ > 0

(2.4.45)

and

(Ω′, N̂Ω′) =

Ω′,

 ∑
k∈I++

b̂∗k b̂k +
∑

k∈I−+∪I−−
d̂∗k d̂k

Ω′


=

Ω′,

 ∑
k∈I++

b̂∗k
′ b̂k

′ +
∑
k∈I−+

b̂k
′ b̂∗k

′ +
∑
k∈I−−

d̂∗k
′ d̂k

′

Ω′


=
∑
k∈I−+

(Ω′, d̂k
′ d̂∗k

′ Ω′)︸ ︷︷ ︸
=1

=
∑
k∈I−+

1 > #I−+ > 0.

(2.4.46)

The number of particles in the vacuum state in both representations is zero and in the
“other vacuum” positive, equal to the number of states by which the two projectors dif-
fer. So the number-of-particles operator does not and cannot be used to distinguish any
representation.

We conclude that the notion of the ground state is independent of the pro-
jector (as long as the representations are unitarily equivalent), i.e. a ground
state with respect to one projector remains ground state with respect to all
other projectors. However, in only one representation (unique choice of P±) it
is identical with the vacuum state. Therefore, the physically plausible condi-
tion of a vacuum state to be a ground state leads to a mathematically unique
representation of CAR.

2.5 Charge in Fock space

Define the charge operator in Fock space F as an implementation of Q ≡ 1 on H

Q̂ ≡
∑
k

: Ψ̂∗(Qfk)Ψ̂(fk) :=
∑
k

: Ψ̂∗(fk)Ψ̂(fk) : . (2.5.1)
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It can be rewritten in terms of the creation and annihilation operators

Q̂ =
∑
k

:
[
b̂∗(P+fk) + d̂(P−fk)

] [
b̂(P+fk) + d̂∗(P−fk)

]
:

=
∑
k

: b̂∗(P+fk) b̂(P+fk) + d̂(P−fk) d̂∗(P−fk) :

=
∑
k

b̂∗(P+fk) b̂(P+fk)− d̂∗(P−fk) d̂(P−fk).

(2.5.2)

Its eigenvalues are all integer numbers and its eigenvectors are all states in F with a
definite charge q, i.e. consist of a sum of vectors from the subspaces F (n,m) such that
n−m = q. Obviously

(Ω, Q̂ Ω) = 0. (2.5.3)

2.5.1 Consequence of the projector change

Similarly to the previous section, let us consider the consequence of the change of projectors
and hence the vacuum vector on the expectation value of the charge in both vacua. Assume
there are two pairs of projectors P± and P ′± whose differences are Hilbert-Schmidt so that
both induced representations of CAR are unitarily equivalent and can be realized in the
same Fock space F (cf. theorem 2). They give rise to the corresponding vacuum vectors
Ω,Ω′ ∈ F . While it is trivial that

(Ω, Q̂ Ω) = 0 and (Ω′, Q̂′ Ω′) = 0, (2.5.4)

we are interested in the charges of both vacua with respect to the other representations,
i.e. (Ω, Q̂′ Ω) and (Ω′, Q̂′ Ω′). With {fn} building an orthonormal basis in H we have

Q̂ ≡
∑
n

: Ψ̂∗(fn)Ψ̂(fn) :P−=
∑
n

[
Ψ̂∗(fn)Ψ̂(fn)− (fn, P−fn)

]
, (2.5.5)

Q̂′ ≡
∑
n

: Ψ̂∗(fn)Ψ̂(fn) :P ′−=
∑
n

[
Ψ̂∗(fn)Ψ̂(fn)− (fn, P ′−fn)

]
, (2.5.6)

where the notation : (...) :P− reflects the dependence of the normal ordering procedure on
the projector P−, i.e.

: Ψ̂∗(f)Ψ̂(g) :P−≡ Ψ̂∗(f)Ψ̂(g)− (g, P−f). (2.5.7)

Observe that the definitions of both charge operators differ only by the subtraction terms
including different projectors. Therefore

Q̂− Q̂′ = −
∑
n

[
(fn, P−fn)− (fn, P ′−fn)

]
= −Tr(P− − P ′−) (2.5.8)

or, using −(P− − P ′−) = −[(1− P+)− (1− P ′+)] = P+ − P ′+,

Q̂− Q̂′ = Tr(P+ − P ′+) . (2.5.9)



42 2. Fock space representation of CAR – particle interpretation

The trace is to be calculated in H, what means that the operator on the right-hand side is
a C-number times 1 in F . This trace is well-defined and finite for this pair of projectors,
because according to theorem 4 the trace of P+−P ′+ is a difference of two Hilbert-Schmidt
norms, which are finite. Finally, we can calculate the charges of the vacua

(Ω, Q̂′ Ω) = (Ω, (Q̂′ − Q̂) Ω) + (Ω, Q̂ Ω)︸ ︷︷ ︸
0

= Tr(P ′+ − P+), (2.5.10)

(Ω′, Q̂ Ω′) = (Ω′, (Q̂− Q̂′) Ω′) + (Ω′, Q̂′ Ω′)︸ ︷︷ ︸
0

= Tr(P+ − P ′+). (2.5.11)

2.5.2 Vacuum polarization

After defining the charge operator describing the total charge in a given state, one wants to
find an expression for the charge density ρ(x), or more generally, a charge density operator
ρ̂(x) such that its expectation value in a given state will give ρ(x). The classical property∫

ρ(x) d3x = Q (2.5.12)

is by correspondence required also in the operator version∫
ρ̂(x) d3x = Q̂. (2.5.13)

Consider two Hamiltonians H0 and H = H0 + V and corresponding projectors P 0
±, P±.

Assume that they give equivalent representations with charge operators Q̂0 and Q̂, respec-
tively. Let Ω be the vacuum vector with respect to P±. Then the charge of the (new)
vacuum with respect to the free representation based on H0 and P 0

± is (2.5.9)

Qvac = (Ω, Q̂0 Ω) = −Tr(P+ − P 0
+). (2.5.14)

This trace is well-defined and finite for regular potentials (in the sense of theorem 6),
because according to theorem 4 it is a difference of two Hilbert-Schmidt norms, which are
finite6 Since the total charge appears to be a trace of an operator in H we can construct
the charge density ρ(x) starting from a smeared density (with test functions f, g ∈ H)

ρ(f, g) ≡ −(f, (P+ − P 0
+)g). (2.5.15)

This expression can be viewed as a bilinear functional for which there exists a tempered
kernel distribution ρ(x,y)[KS77b, sec. 2] such that

ρ(f, g) ≡
∫
d3x d3y f(x) ρ(x,y) g(y). (2.5.16)

Then we can define the charge density as

ρ(x) = lim
y→x

ρ(x,y). (2.5.17)

6For not regular potentials it requires renormalization [Hai04].
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Finally, we must check if the required relation (2.5.12) holds.

Qvac = −
∑
n

(fn, (P+ − P 0
+)fn) =

∑
n

ρ(fn, fn)

=
∑
n

∫
d3x d3y fn(x) ρ(x,y) fn(y)

=
∫
d3x d3y ρ(x,y)

∑
n

fn(x) fn(y)︸ ︷︷ ︸
δ(x−y)

=
∫
d3x d3y ρ(x,y) δ(x− y)

=
∫
d3x ρ(x).

(2.5.18)

In this way we have defined the expectation value of the charge density ρ(x). Now, we
should find the operator ρ̂(x) giving this expectation value. Unfortunately, it is not such
an easy task, as it might be expected and there still exist differences in the literature
concerning its form. The problem is the following. The usually defined smeared charge
density operator [KS77b, sec. 2]

ρ̂(f, g) ≡ −1
2

[
Ψ̂(f)Ψ̂∗(g)− Ψ̂∗(g)Ψ̂(f)

]
(2.5.19)

gives

(Ω, ρ̂(f, g) Ω) = −1
2

(f, (P+ − P−)g), (2.5.20)

where we have used

1
2

(f, (P+ − P−)g) = : Ψ̂∗(g)Ψ̂(f) :P− +
1
2

[
Ψ̂(f)Ψ̂∗(g)− Ψ̂∗(g)Ψ̂(f)

]
. (2.5.21)

Connecting the smeared density ρ̂(f, g) with the total charge Q̂0 we obtain

Qvac = (Ω, Q̂0 Ω) =

(
Ω,
∑
n

ρ̂(fn, fn) Ω

)
= −

∑
n

1
2

(fn, (P+ − P−)fn), (2.5.22)

what is wrong because it disagrees with (2.5.14) and is, in general, divergent (P+ − P− is
not trace-class). The obtained −1

2Tr(P+−P−) differs from the required −Tr(P+−P 0
+) by

1
2Tr(P 0

+ − P 0
−). Some authors [Hai04, rem. 2], [GR95, eq. 7.25] argue that it is formally

zero and so both results agree, but this trace is ill-defined because P 0
+ − P 0

−, in general,
does not belong to the trace-class. Trying to define an operator valued charge density
from such ρ̂(f, g) one rewrites it as

ρ̂(f, g) = −
∫
d3x d3y f(x) g(x)

1
2

[
Ψ̂(x)Ψ̂∗(y)− Ψ̂∗(y)Ψ̂(x)

]
(2.5.23)

(where we have skipped the bispinorial indices for simplicity) and can conclude that

ρ̂(x,y) = −1
2

[
Ψ̂(x)Ψ̂∗(y)− Ψ̂∗(y)Ψ̂(x)

]
. (2.5.24)
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Unfortunately, it is impossible to calculate the limit

ρ̂(x) = lim
y→x

ρ̂(x,y), (2.5.25)

because it is singular and some renormalization procedure (in form of subtractions) must
be carried out in order to obtain a well-defined expression [KS77b, sec. 2]. In our opinion
the expression

ρ̂(f, g) ≡ : Ψ̂∗(f)Ψ̂(g) :P 0
−

= Ψ̂∗(f)Ψ̂(g)− (g, P 0
−f) (2.5.26)

is the correct smeared operator-valued charge density. The normal ordering, the so-called
Wick product, with the subtraction term (g, P 0

−f) guarantees well-posedness of this ob-
ject7. This definition allows for an obvious connection to the definition of the total charge

Q̂0 =
∑
n

ρ̂(fn, fn) =
∑
n

: Ψ̂∗(fn)Ψ̂(fn) :P 0
−
. (2.5.27)

The expectation value in the (new) vacuum is

(Ω, ρ̂(f, g) Ω) = (Ω, [Ψ̂∗(f)Ψ̂(g)− (g, P 0
−f)] Ω)

= (Ω, [ : Ψ̂∗(f)Ψ̂(g) :P− +(g, P−f)− (g, P 0
−f)] Ω)

= (g, P−f)− (g, P 0
−f) = (g, (P− − P 0

−)f) = −(g, (P+ − P 0
+)f),

(2.5.28)

what, in contrary to the previous definition, agrees with (2.5.15). Finally, the correspond-
ing charge distribution is given by [Mar03, sec. VI.7]

ρ̂(x) ≡ lim
y→x

ρ̂(x,y) with ρ̂(x,y) ≡: Ψ̂∗(x)Ψ̂(y) :P 0
−

(2.5.29)

and
ρ̂(f, g) ≡

∫
d3x d3y f(x) ρ̂(x,y) g(y). (2.5.30)

2.6 Time evolution in Fock space

In order to be able to describe time-dependent processes in Fock space we choose a “Heisen-
berg” picture in which the field operator evolves and the states remain constant in time.
Assume, there exists a classical evolution operator U(t2, t1) in H solving the classical Dirac
equation

i
d

dt
ψ(t) = Hψ(t) with ψ(t) = U(t, t0) ψ(t0). (2.6.1)

(Here and in the rest of this chapter we set ~ = 1.) It has the following properties

• U(t1, t2) is unitary in H,

• U(t2, t1) = U∗(t1, t2) and U(t, t) = 1,
7We refer to [Mar03, sec. VI.2] for more information on the Wick products and discussion of problems

arising by multiplication of operator valued distributions.
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• U(t1, t2)U(t2, t3) = U(t1, t3).

Then the time evolution in F is induced by

Ψ̂t(f) ≡ Ψ̂(U∗t f), where Ut ≡ U(t, 0). (2.6.2)

If Ut is implementable (i.e. P±UtP∓ ∈ H.S.) then there exists unitary Ût : F → F such
that

Ψ̂t(f) = Ψ̂(U∗t f) = Ût Ψ̂(f) Û∗t . (2.6.3)

If the Hamiltonian H is time-independent, then there exists a self-adjoint Ĥ : F → F and
Ut = exp(−iHt) is implemented by Ût = exp(−iĤt) [Bon70]. The field operator Ψ̂t(f)
satisfies a Heisenberg evolution equation

i
∂

∂t
Ψ̂t(f) = [Ψ̂t(f), Ĥ]. (2.6.4)

All operators with the same time dependence will get an index t, like Ât. It can be
easily shown that the Heisenberg picture is equivalent to the Schrödinger picture

(Φ, Ât Φ) = (Φ, Û∗t Â Ût Φ) = (Ût Φ, Â Ût Φ), (2.6.5)

where the state evolves Φ → Ût Φ and the operator Â remains constant.
It follows the evolution of the particle and antiparticle creation and annihilation oper-

ators
Ψ̂t(f) ≡ b̂t(P+f) + d̂∗t (P−f) = b̂(P+U

∗
t f) + d̂∗(P−U∗t f) (2.6.6)

and
b̂t(P+f) = Ût b̂(P+f) Û∗t , d̂∗t (P−f) = Ût d̂

∗(P−f) Û∗t (2.6.7)

if U is implementable in F . Relation (2.6.6) defines a Bogoliubov transformation of the
form

b̂t(P+f) = b̂(P+U
∗P+f) + d̂∗(P−U∗P+f) (2.6.8)

d̂∗t (P−f) = b̂(P+U
∗P−f) + d̂∗(P−U∗P−f), (2.6.9)

which is implementable if and only if U∗+− and U∗−+ are Hilbert-Schmidt operators.

2.6.1 Evolution of charge

Now, we can calculate how operators change under the time evolution implemented in F
by Û . First, let us concentrate on the charge operator. Its expectation value in the state
Φ is

Q̂t = Û∗t Q̂Ût = Û∗t
∑
n

: Ψ̂∗(fn) Ψ̂(fn) : Ût

= Û∗t
∑
n

[
Ψ̂∗(fn) Ψ̂(fn)− (P−fn, P−fn)

]
Ût

=
∑
n

[
Û∗t Ψ̂∗(fn) Ût Û∗t Ψ̂(fn) Ût − Û∗t (P−fn, P−fn) Ût

]
=
∑
n

[
Ψ̂∗(U∗t fn) Ψ̂(U∗t fn)− (P−fn, P−fn)

]
.

(2.6.10)
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Since the sum goes over all vectors in H, the orthonormal basis can be chosen freely for
convenience. Let us change it by fn → f ′n = Utfn, which gives also an orthonormal basis.
Both terms under the sum must be kept and summed together and cannot be divided
into two sums, because they separately are divergent. Therefore, the change of the basis
cannot be performed separately on each term and influences both of them simultaneously

Q̂t =
∑
n

[
Ψ̂∗(fn) Ψ̂(fn)− (P−Utfn, P−Utfn)

]
=
∑
n

[
Ψ̂∗(fn) Ψ̂(fn)− (P−fn, P−fn) + (P−fn, P−fn)− (P−Utfn, P−Utfn)

]
.

(2.6.11)

Here, the first two and the last two terms can be separated into independent sums, because
both these sums are finite. To see it, we transform

(P−fn, P−fn)− (P−Utfn, P−Utfn) = (UtP−fn, UtP−fn)− (P−Utfn, P−Utfn)

= ((P+ + P−)UtP−fn, (P+ + P−)UtP−fn)− (P−Ut(P+ + P−)fn, P−Ut(P+ + P−)fn)

= (P+UtP−fn, P+UtP−fn) + (P−UtP−fn, P−UtP−fn)

− (P−UtP+fn, P−UtP+fn)− (P−UtP−fn, P−UtP−fn)

= ||P+UtP−fn||2 − ||P−UtP+fn||2.
(2.6.12)

Then the sum takes the form

Q̂t =
∑
n

[
: Ψ̂∗(fn) Ψ̂(fn) : +||P+UtP−fn||2 − ||P−UtP+fn||2

]
= Q̂+ ||(Ut)+−||2HS − ||(Ut)−+||2HS ,

(2.6.13)

where the last two terms are finite for every implementable unitary transformation U .
This is a very important result. It shows that the total charge changes in time exactly by
the number of states which moved between the particle and antiparticle subspaces H±,
namely it increases by one when a state moves from H+ to H− and decreases by one when
a state moves from H− to H+. It is independent of the fact whether these states are
occupied or not(!), and therefore can be written as

∆Q ≡ Q̂t − Q̂ = ||(Ut)+−||2HS − ||(Ut)−+||2HS (2.6.14)

In the case when the evolution reduces to a simple change of projectors from P± to
P t± and (Ut)±′± = P t±P± one can easily find

∆Q ≡ Q̂t − Q̂ = ||(Ut)+−||2HS − ||(Ut)−+||2HS = Tr(P t+ − P+), (2.6.15)

what agrees with (2.5.9). It is a consequence of a more general very useful relation

Theorem 4 For a unitary U and two pairs of projectors P±, P ′± it holds

||P ′+UP−||2HS − ||P ′−UP+||2HS = Tr(U∗P ′+U − P+) (2.6.16)

whenever this expression is finite.
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Proof:

||P ′+UP−||2HS − ||P ′−UP+||2HS = Tr(P−U∗P ′+UP−)− Tr(P+U
∗P ′−UP+)

= Tr(U∗P ′+UP−)− Tr(U∗P ′−UP+) + Tr(U∗P ′+UP+ − U∗P ′+UP+︸ ︷︷ ︸
=0

)

= Tr(U∗P ′+U(P− + P+)− U∗(P ′− + P ′+)UP+)

= Tr(U∗P ′+U − P+). 2

(2.6.17)

Charge creation as an index

Formula (2.6.13) has an algebraic background. The difference ∆Q ≡ Q̂t − Q̂, which is a
C-number, is equal to the Fredholm index of a part of the classical evolution operator Ut,
as states the following (cf. [Tha92, Th. 10.9])

Theorem 5 If U is an implementable unitary evolution operator in H then its imple-
menter Û , unitary in F , maps each charge sector Fk onto Fk−∆Q, where

∆Q = −ind [U++] = ind [U−−] . (2.6.18)

Proof:
With the definition of the Fredholm index

ind [W ] ≡ dim kerW − dim kerW ∗, (2.6.19)

assuming that U±± is restricted to mapping H± onto H±, we find by direct calculation

−∆Q = ||U−+||2HS − ||U+−||2HS
(Lem.1)

= ||U−+||2HS − ||U∗−+||2HS
= ||U−+||2HS − ||(U+−)∗||2HS =

∑
fn∈H+

||U−+fn||2 −
∑

gn∈H+

||(U+−)∗gn||2.
(2.6.20)

H+ can be decomposed as (kerU++)⊕Range(U++)∗ and an orthonormal basis {fn} can be
introduced such that every fn belongs either to kerU++ or to Range(U++)∗. Analogous,
H+ can be decomposed as (ker(U++)∗)⊕ RangeU++ with a respective basis {gn}. Then

−∆Q =
∑

fn∈kerU++

||P−UP+fn||︸ ︷︷ ︸
=1

2 +
∑

fn∈Range(U++)∗

||P−UP+fn||2

−
∑

gn∈ker(U++)∗

||P−U∗P+gn||︸ ︷︷ ︸
=1

2 −
∑

gn∈RangeU++

||P−U∗P+gn||2

= dim kerU++ − dim kerU∗++

+ Tr
RangeU∗++

[(U−+)∗U−+]− Tr
RangeU++

[U+−(U+−)∗].

(2.6.21)

The first line in the last expression is the required ind [U++]. It remains to show that the
second line is zero. Indeed, both traces are equal and cancel, what can be shown by the
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following identity

U++(U−+)∗U−+ = U++P+U
∗ P−︸︷︷︸

1−P+

UP+ = U++(P+ U
∗U︸︷︷︸

=1

P+ − P+U
∗P+UP+)

= P+UP+(P+ − (U++)∗U++) = (P+ − U++(U++)∗)U++

= (P+ UU
∗︸︷︷︸

=1

P+ − P+UP+U
∗P+)U++ = (P+U (1− P+)︸ ︷︷ ︸

P−

U∗P+)U++

= U+−(U+−)∗U++.

(2.6.22)

Since U++ : (kerU++)⊥ → RangeU++ and (kerU++)⊥ = RangeU∗++ it is invertible on
RangeU++ with the inverse (U++)−1 : RangeU++ → RangeU∗++. Hence, on RangeU++ it
holds

U++[(U−+)∗U−+](U++)−1 = U+−(U+−)∗. (2.6.23)

Using this relation we can transform the last trace term in the previous expression

Tr
RangeU++

[U+−(U+−)∗] = Tr
RangeU++

[U++[(U−+)∗U−+](U++)−1] = Tr
RangeU∗++

[(U−+)∗U−+]

(2.6.24)
so that both traces cancel. Finally,

−∆Q = ||U−+||2HS − ||U+−||2HS = dim kerU++ − dim kerU∗++ = ind [U++] . � (2.6.25)

Corollary 2 For a unitary U and two pairs of projectors P±, P ′± it holds

−ind (P ′+UP+) = Tr(U∗P ′+U − P+) (2.6.26)

whenever this expression is finite.

Proof: Theorem 5 can be easily generalized to the case of different projectors

−ind (P ′+UP+) = ||P ′+UP−||2HS − ||P ′−UP+||2HS . (2.6.27)

On the other hand, from theorem 4 we have

||P ′+UP−||2HS − ||P ′−UP+||2HS = Tr(U∗P ′+U − P+). 2 (2.6.28)
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2.6.2 Evolution of the particle number

To find out how the occupation of the states changes, we must study the evolution of the
particle number operator

N̂t = Û∗t N̂ Ût = Û∗t
∑
n

[
Ψ̂∗(P+fn) Ψ̂(P+fn) + Ψ̂(P−fn) Ψ̂∗(P−fn)

]
Ût

=
∑
n

[
Ψ̂∗(U∗t P+fn) Ψ̂(U∗t P+fn) + Ψ̂(U∗t P−fn) Ψ̂∗(U∗t P−fn)

]

=
∑
n


[
b̂∗(P+U

∗
t P+fn) + d̂(P−U∗t P+fn)

] [
b̂(P+U

∗
t P+fn) + d̂∗(P−U∗t P+fn)

]
+
[
b̂(P+U

∗
t P−fn) + d̂∗(P−U∗t P−fn)

] [
b̂∗(P+U

∗
t P−fn) + d̂(P−U∗t P−fn)

]
 .

(2.6.29)

Unfortunately, this operator has a much more complicated structure than the charge
operator has. Therefore, in the following we restrict ourselves to the analysis of the
expectation values of N̂t in states Φ which have a simple form

Φ = b̂∗(P+fi1)...b̂∗(P+fin)d̂∗(P−fj1)...d̂∗(P−fjm)Ω, (2.6.30)

i.e. contain no superpositions. Then the terms containing b̂∗d̂∗, b̂d̂, d̂∗b̂∗ and d̂b̂ vanish.

(Φ, N̂tΦ) =

=

(
Φ,
∑
n

[
b̂∗(P+U

∗
t P+fn) b̂(P+U

∗
t P+fn) + d̂(P−U∗t P+fn) d̂∗(P−U∗t P+fn)

+b̂(P+U
∗
t P−fn) b̂∗(P+U

∗
t P−fn) + d̂∗(P−U∗t P−fn) d̂(P−U∗t P−fn)

]
Φ

)

=

Φ,
∑
n


b̂∗(P+U

∗
t P+fn) b̂(P+U

∗
t P+fn)− b̂∗(P+U

∗
t P−fn) b̂(P+U

∗
t P−fn)

+d̂∗(P−U∗t P−fn) d̂(P−U∗t P−fn)− d̂∗(P−U∗t P+fn) d̂(P−U∗t P+fn)

+(P+U
∗
t P−fn, P+U

∗
t P−fn) + (P−U∗t P+fn, P−U

∗
t P+fn)

Φ



=

Φ,
∑
n


b̂∗(P+U

∗
t P+fn) b̂(P+U

∗
t P+fn) + b̂∗(P+U

∗
t P−fn) b̂(P+U

∗
t P−fn)

+d̂∗(P−U∗t P−fn) d̂(P−U∗t P−fn) + d̂∗(P−U∗t P+fn) d̂(P−U∗t P+fn)

−2b̂∗(P+U
∗
t P−fn) b̂(P+U

∗
t P−fn)− 2d̂∗(P−U∗t P+fn) d̂(P−U∗t P+fn)

+(P+U
∗
t P−fn, P+U

∗
t P−fn) + (P−U∗t P+fn, P−U

∗
t P+fn)

Φ



=

Φ,
∑
n


b̂∗(P+U

∗
t fn) b̂(P+U

∗
t fn) + d̂∗(P−U∗t fn) d̂(P−U∗t fn)

−2 b̂∗(P+U
∗
t P−fn) b̂(P+U

∗
t P−fn)− 2 d̂∗(P−U∗t P+fn) d̂(P−U∗t P+fn)

+(P+U
∗
t P−fn, P+U

∗
t P−fn) + (P−U∗t P+fn, P−U

∗
t P+fn)

Φ

 .

(2.6.31)
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This sum can be split into four sums, every of which is finite

(Φ, N̂tΦ) =

=

(
Φ,
∑
n

[
b̂∗(P+U

∗
t fn) b̂(P+U

∗
t fn) + d̂∗(P−U∗t fn) d̂(P−U∗t fn)

]
Φ

)

− 2

(
Φ,
∑
n

b̂∗(P+U
∗
t P−fn) b̂(P+U

∗
t P−fn)Φ

)

− 2

(
Φ,
∑
n

d̂∗(P−U∗t P+fn) d̂(P−U∗t P+fn)Φ

)

+

(
Φ,
∑
n

[(P+U
∗
t P−fn, P+U

∗
t P−fn) + (P−U∗t P+fn, P−U

∗
t P+fn)] Φ

)
=
(

Φ, N̂Φ
)
− 2

(
Φ, N̂+−Φ

)
− 2

(
Φ, N̂−+Φ

)
+ ||U∗+−||2HS + ||U∗−+||2HS

=
(

Φ, N̂ − 2N̂+− − 2N̂−+Φ
)

+ ||U−+||2HS + ||U+−||2HS ,

(2.6.32)

where we have introduced new operators

N̂+− ≡
∑
n

b̂∗(P+U
∗
t P−fn) b̂(P+U

∗
t P−fn) (2.6.33)

N̂−+ ≡
∑
n

d̂∗(P−U∗t P+fn) d̂(P−U∗t P+fn), (2.6.34)

counting the number of occupied states which moved from H− to H+ and from H+ to
H−, respectively. On the contrary, the expressions ||U−+||2HS , ||U+−||2HS make the same,
but independently of the occupation.

If one empty state moves from the particle to the antiparticle subspace then the number
of particles increases due to the term ||U−+||2HS = 1, but if the state was initially occupied,
then the number of particles changes by(

Φ,
[
||U−+||2HS − 2N̂−+

]
Φ
)

= 1− 2 = −1, (2.6.35)

i.e. decreases by one! The same happens in the opposite direction: from the antiparticle
to the particle subspace. We conclude that crossing the border between particle
and antiparticle subspaces, an empty state becomes occupied and an occupied
becomes empty.

For the initial vacuum state, Φ = Ω, the result reduces to

∆N ≡ (Ω, (N̂t − N̂) Ω) = ||U−+||2HS + ||U+−||2HS (2.6.36)

2.6.3 Examples – single processes

Now, we are ready to summarize the consequences of the fact that under evolution (or any
implementable unitary transformation) some states move between particle and antiparticle
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t t t t

Figure 2.1: a) particle → vacuum, b) vacuum → antiparticle, c) antiparticle →
vacuum, d) vacuum → particle.

subspaces, i.e. for some states H± 3 ψ → Uψ ∈ H∓. The most interesting four cases
are sketched on the figures 2.1. Consider the following setting: in the Schrödinger picture
we start with an initial state Φ with charge Q0 and particle number N0 which goes over
into Φt = Ût Φ. The final charge Qt and particle number Nt are measured as expectation
values of Q̂ and N̂ , respectively. It is equivalent to Qt = (Φ, Q̂tΦ) and Nt = (Φ, N̂tΦ) in
the Heisenberg picture. Consider a single particle state fp ∈ H+ and a single antiparticle
state fa ∈ H− which are transformed one into the other under evolution Ut in H.

a) An occupied particle state goes over into an empty antiparticle state:

Ufp = fa, ||U−+||2HS = 1, ||U+−||2HS = 0, (2.6.37)

Φ = b̂∗(P+fp) Ω, Q0 = 1, N0 = 1, (2.6.38)

Qt = Q0 + ||U+−||2HS − ||U−+||2HS = 1 + 0− 1 = 0, (2.6.39)

Nt = N0 + ||U−+||2HS − 2 (Φ, N̂−+Φ) + ||U+−||2HS − 2 (Φ, N̂+−Φ)

= 1 + 1− 2 + 0− 0 = 0, (2.6.40)

Φt = Ω. (2.6.41)

b) An empty particle state goes over into an occupied antiparticle state:

Ufp = fa, ||U−+||2HS = 1, ||U+−||2HS = 0, (2.6.42)

Φ = Ω, Q0 = 0, N0 = 0, (2.6.43)

Qt = Q0 + ||U+−||2HS − ||U−+||2HS = 0 + 0− 1 = −1, (2.6.44)

Nt = N0 + ||U−+||2HS − 2 (Φ, N̂−+Φ) + ||U+−||2HS − 2 (Φ, N̂+−Φ)

= 0 + 1− 0 + 0− 0 = 1, (2.6.45)

Φt = d̂∗(P−fa) Ω. (2.6.46)



52 2. Fock space representation of CAR – particle interpretation

c) An occupied antiparticle state goes over into an empty particle state:

Ufa = ff , ||U−+||2HS = 0, ||U+−||2HS = 1, (2.6.47)

Φ = d̂∗(P−fa) Ω, Q0 = −1, N0 = 1, (2.6.48)

Qt = Q0 + ||U+−||2HS − ||U−+||2HS = −1 + 1− 0 = 0, (2.6.49)

Nt = N0 + ||U−+||2HS − 2 (Φ, N̂−+Φ) + ||U+−||2HS − 2 (Φ, N̂+−Φ)

= 1 + 0− 0 + 1− 2 = 0, (2.6.50)

Φt = Ω. (2.6.51)

d) An empty antiparticle state goes over into an occupied particle state:

Ufa = ff , ||U−+||2HS = 0, ||U+−||2HS = 1, (2.6.52)

Φ = Ω, Q0 = 0, N0 = 0, (2.6.53)

Qt = Q0 + ||U+−||2HS − ||U−+||2HS = 0 + 1− 0 = 1, (2.6.54)

Nt = N0 + ||U−+||2HS − 2 (Φ, N̂−+Φ) + ||U+−||2HS − 2 (Φ, N̂+−Φ)

= 0 + 0− 0 + 1− 0 = 1, (2.6.55)

Φt = b̂∗(P+fp) Ω. (2.6.56)

These are consequences of the processes where states move between particle H+ and
antiparticle H− subspaces. Since the choice of these subspaces corresponds to the choice
of the projectors P±, in these examples it can be seen which meaning the choice of the
projector on the observables has. To be allowed to form statements about the creation of
particles and charge from vacuum in physical processes we need “physical” definitions of
particles.

2.7 Particle interpretation

Particles and antiparticles are defined by the corresponding creation operators

b̂∗n ≡ b̂∗(P+ϕn) and d̂∗n ≡ d̂∗(P−ϕn), (2.7.1)

where ϕn is an orthonormal basis in H and describes their single-particle wave functions.
In the theory, the choice of the basis ϕn is arbitrary, but there appears a question which
states describe physical particles. These can be characterized by additional conditions
regarding their time evolution, namely particles should be states which remain essentially
unchanged and evolve freely when there is no interaction. Therefore consider first the case
of a
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2.7.1 Free Hamiltonian

The unitary evolution operator U0(t2, t1) corresponding to the evolution generator, the
free Dirac Hamiltonian H0 is defined by

U0(t2, t1) = e−iH0(t2−t1) (2.7.2)

and the projectors are for all times t

P 0
+ ≡ P[1,∞)(H0), P 0

− ≡ P(−∞,−1](H0) (2.7.3)

having obviously the property P+ + P− = 1. Then, the field operator is defined at every
time t as

Ψ̂t(f) = b̂t(P 0
+f) + d̂∗t (P

0
−f) (2.7.4)

and evolves according to

Ψ̂t(f) = Ψ̂t0(U∗0 (t, t0)f). (2.7.5)

The particle’s identity is independent of time when b̂∗n(t) = b̂∗n(t0) for all t, t0, that is

b̂∗n(t) ≡ b̂∗t (P
0
+ϕn(t)) = b̂∗t0(P 0

+ϕn(t0)) ≡ b̂∗n(t0). (2.7.6)

The corresponding wave functions ϕn(t) must be found, which satisfy this relation. There-
fore we transform

b̂∗t (P
0
+ϕn(t)) = Ψ̂∗

t (P
0
+ϕn(t)) = Ψ̂∗

t0(U∗0 (t, t0)P 0
+ϕn(t))

= Ψ̂∗
t0(P 0

+U
∗
0 (t, t0)ϕn(t)) = b̂∗t0(P 0

+U
∗
0 (t, t0)ϕn(t)) != b̂∗t0(P 0

+ϕn(t0)),
(2.7.7)

where in the step between the first and second line we have used the fact that P 0
± and

U0(t2, t1) commute, because P 0
± are spectral projections of the evolution generator H0.

The last equation can be only fulfilled if

ϕn(t) = U0(t, t0)ϕn(t0), (2.7.8)

that is if the single-particle wave functions satisfy the single-particle evolution equation,
which is the Dirac equation. If we add a further condition that particles must have
definite energy, i.e. be generalized eigenvectors8 of the Hamiltonian satisfying H0 ϕn(t) =
En ϕn(t), then they get the form

ϕn(t) ≡ e−iEntφn with H0 φn = En φn. (2.7.9)

As we see, the notion of particles evolving due to the free Hamiltonian is relatively simple.
So let’s proceed with general

8eigenvectors or continuum wave functions
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2.7.2 Static Hamiltonians

Here, the situation is similar to the previous, except that the evolution operator is now
denoted as

U(t2, t1) = e−iH(t2−t1) (2.7.10)

and the projectors are defined with respect to the spectrum of H, which is, in general,
richer than that of H0, and usually possesses a discrete part contained in the interval
(−1, 1). Different choices of projectors in such a case and their consequences have been
discussed in section 2.4.5. Here, we assume the projectors P± are given and have the form

P+ ≡ P[E0,∞)(H), P 0
− ≡ P(−∞,E0)(H). (2.7.11)

The field operator is defined as

Ψ̂t(f) = b̂t(P+f) + d̂∗t (P−f) (2.7.12)

and evolves
Ψ̂t(f) = Ψ̂t0(U∗(t, t0)f). (2.7.13)

The particles
b̂∗n(t) ≡ b̂∗t (P+ϕn(t)) (2.7.14)

are well defined, analogously like in the previous section, when the single-particle wave
functions fulfill

ϕn(t) = U0(t, t0)ϕn(t0). (2.7.15)

If they are to have definite energy, they must take the form

ϕn(t) ≡ e−iEntφn with Hφn = Enφn. (2.7.16)

This representation, where the particle states are defined with respect to the full Hamilto-
nian, is called Furry picture [Fur51]. There are situations where we have to compare this
(F) with the free representation F0, for example when the Hamiltonian changes in time
from an initially free to a finally different one with a static external field present. Then
there appears a question about the equivalence of both representations, since F and F0

are essentially different and unrelated. In the conventional formulation of the theory it is
usually overlooked and one forces implicitly both representations in one Fock space. This
problem is discussed in detail by Bongaarts [Bon70] and by Klaus and Scharf in [KS77a].
The results interesting for our context can be formulated in the following theorem.

Theorem 6 Let the projectors P 0
± and P± be defined like in (2.7.3) and (2.7.11), re-

spectively, and give rise to the free and Furry representations Ψ̂0 in F0 and Ψ̂ in F ,
respectively. Both representations are unitarily equivalent and therefore realizable in the
same Fock space F0 if and only if9

P+P
0
− ∈ H.S. and P 0

+P− ∈ H.S. (2.7.17)
9H.S. denotes the Hilbert-Schmidt class, i.e. operators with finite H.S. norm.
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6A Furthermore (Klaus-Scharf), then there exists a self-adjoint Hamiltonian Ĥ in F0

which generates the evolution

Ψ̂t(f) = Ψ̂(eiHtf) = eiĤtΨ̂(f)e−iĤt (2.7.18)

and its construction is given explicitly by implementing the Bogoliubov transformation
generated by the change of projectors for the creation and annihilation operators.
6B The evolution generator Ĥ exists in F0 (Bongaarts) if and only if

P 0
+e

−iHtP 0
− ∈ H.S. ∀t, (2.7.19)

but for this case no explicit construction of Ĥ is given.

The condition (2.7.17) implies (2.7.19), what is shown below. Whether (2.7.19) is more
general or they are equivalent is not known, though there exist some arguments for their
equivalence.

Lemma 2 If P+ − P 0
+ ∈ H.S. and H self-adjoint on H then P 0

+e
−iHtP 0

− ∈ H.S. for all t.

Proof:
e−iHt is unitary, so

(P+ − P 0
+)e−iHt = P+e

−iHt − P 0
+e

−iHt ∈ H.S. (2.7.20)

⇒ P+e
−iHtP 0

− − P 0
+e

−iHtP 0
− ∈ H.S. (2.7.21)

P+ commutes with e−iHt, so

P+P
0
−e

−iHt − P 0
+e

−iHtP 0
− ∈ H.S. (2.7.22)

P+P
0
− ∈ H.S. (see theorem 2), hence P+P

0
−e

−iHt ∈ H.S.. Therefore

P 0
+e

−iHtP 0
− ∈ H.S. � (2.7.23)

A comment on the interaction picture is in place here. One may ask if V = H −H0

can be implemented to generate a unitary evolution in F0 in an analogous way to (2.7.18),
i.e. if there exists a self-adjoint V̂ in F0 such that

Ψ̂(eiV tf) = eiV̂ tΨ̂(f)e−iV̂ t. (2.7.24)

The answer is, in general, negative, what follows from a theorem by Boongarts [Bon70,
Th. 5] stating that for any V being a C∞0 function there exists no V̂ satisfying (2.7.24)
(while Ĥ0 and Ĥ exist!).
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Regular potentials

For the purpose of establishing a particle interpretation we are interested in the condition
(2.7.17), guaranteeing equivalence of both representations. It is an implicit constraint
on the external potential, which influences the properties of H. Potentials V for which
H = H0 + V satisfy the condition (2.7.17) are called regular. Unfortunately, the question
about the most general condition implying (2.7.17) is open. Only restricted sufficient
conditions on V guaranteeing its regularity are known. We cite the most important of
them.

Nenciu and Scharf [NS78] show that the necessary condition for regularity is∫
|p|2

1 + |p|1+ε
|V̂ (p)|2 d3p <

C

ε
(2.7.25)

for any ε > 0 and C independent of ε. V̂ (p) denotes Fourier transform of V (x). It implies
that static magnetic fields are never regular! Only electric potentials (A = 0, V 6= 0) can
be considered as candidates.

On the other hand, ∫
|p|2

1 + |p|1−ε
|V̂ (p)|2 d3p <∞ (2.7.26)

for some ε > 0 is a sufficient condition for the potential V being regular. A conjecture of
Nenciu and Scharf is that a necessary and sufficient condition for a potential being regular
is ∫

|p|2

1 + |p|
|V̂ (p)|2 d3p <∞. (2.7.27)

That was an open problem, but we give a counterexample in theorem 19 (section 6.2.1).

The square well potential

A square-well potential defined as

V (x) =

V0 if |x| ≤ a,

0 if |x| > a,
(2.7.28)

whose Fourier transform is

V̂ (p) = V0

(
4πa
|p|

)3/2

J3/2(|p|a) ∼

1 as |p| ≈ 0

|p|−2 as |p| → ∞,
(2.7.29)

does not satisfy the conjectured condition (2.7.27) due to the behaviour of V̂ (p) at infinity,
which is related to the discontinuity in V (x). It satisfies the necessary condition (2.7.25),
but it does not satisfy the sufficient condition (2.7.26). Therefore regularity of the square
well potential remains here open. We will come back to the problem in section 6.2.1.

If the square well is smoothed out at |x| = a then the Fourier transform falls off fast
enough that the sufficient condition (2.7.26) holds. We show that it is enough to make
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the potential only continuous by modifying it in the neighbourhood of r = a in order to
make it regular. Consider a slightly modified square well potential

V (r) =


−V0, r < a− δ

−V0
2 + V0

2
(r−a)
δ , |r − a| ≤ δ

0, r > a+ δ

(2.7.30)

with some small δ > 0. Now an essential integral

4π
∫ ∞

0
|V ′(r)|2 r2 dr = O(δ−1) (2.7.31)

is finite for every δ > 0. On the other hand we have

4π
∫ ∞

0
|V ′(r)|2 r2 dr =

∫
R3

|∇V (x)|2 d3x = ||∇V ||22. (2.7.32)

Using the property of Fourier transforms ||f ||2 = ||f̂ ||2 [RS75, IX.4] we obtain

4π
∫ ∞

0
|V ′(r)|2 r2 dr = ||pV̂ ||22 =

∫
R3

|pV̂ (p)|2 d3p

=
∫

R3

|p|2|V̂ (p)|2 d3p >

∫
R3

|p|2

1 + |p|1−ε
|V̂ (p)|2 d3p

(2.7.33)

for every 0 < ε ≤ 1. Finally, we have shown∫
R3

|p|2

1 + |p|1−ε
|V̂ (p)|2 d3p = O(δ−1) <∞ (2.7.34)

for every δ > 0 and 0 < ε ≤ 1 what is the sufficient condition (2.7.26) for regularity of V .

The Coulomb potential

Coulomb potential V (x) = A/|x| has a Fourier transform V̂ (p) = −4πA/|p|2 and anal-
ogously to the square well satisfies the necessary condition (2.7.25), but does not satisfy
the sufficient condition (2.7.26) as well as the conjecture (2.7.27) because of a slow fall-off
at infinity in V̂ . If the Coulomb potential is regularized at x = 0, e.g. smoothed out and
kept bounded, such that the integral (2.7.31) is finite, then in an analogous way it fulfills
the sufficient condition (2.7.26) and is regular.

2.7.3 Time-dependent Hamiltonians

If the Hamiltonian depends on time then so does its spectrum. If the particle and antipar-
ticle subspaces are to be defined by spectral projectors then they will also depend on time.
It will generate a different Fock representation at every instant of time t. A pair of such
two Fock representations is only then equivalent if the unitary evolution operator U(t2, t1)
is implementable in any of the Fock spaces. According to the literature [Bon70, FS79] it
is rarely the case. The situation looks much better if the time-dependent Hamiltonian is
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either asymptotically static (as t→ ±∞) or static in the initial (in) and final (out) period
of the evolution (i.e. for |t| > T ). Assume limt→±∞H(t) = H0, i.e. the external field is
asymptotically switched off. Then, instead of the evolution operator U(t2, t1), the wave
operators W±(t) defined as a strong limit

W±(t) ≡ s-lim
t0→±∞

U(t, t0) U0(t0, t) (2.7.35)

can be used and they have better properties regarding implementation. It follows from
the fact that their existence, i.e. existence of the strong limit in (2.7.35), already imposes
restrictions on the external potential in H. This will be discussed in section 3.5.

In the following we define a few most natural particle interpretations and study their
equivalence (we use the nomenclature of [FS79]).

The in-representation

It bases on the projectors P 0
± corresponding to the spectral subspaces of H0. The field

operator evolves according to the free evolution operator

Ψ̂in
t (f) = Ψ̂in

t0 (U∗0 (t, t0) f) (2.7.36)

and is decomposed at every time into the particle and antiparticle operators by

Ψ̂in
t (f) = b̂int (P 0

+ f) + d̂int
∗
(P 0

− f). (2.7.37)

Then the particles in the in-regime are well defined, as was discussed in section 2.7.1.
Next, we can establish a connection with the so-called interpolating field, which evolves
according to the full evolution operator

Ψ̂t(f) = Ψ̂t0(U∗(t, t0) f). (2.7.38)

Both can be identified in the far past, i.e. by the condition

lim
t→−∞

[Ψ̂t(f)− Ψ̂in
t (f)] = 0. (2.7.39)

It has the following consequence for arbitrary time t

Ψ̂t(f) = lim
t0→−∞

Ψ̂t0(U∗(t, t0) f) = lim
t0→−∞

Ψ̂in
t0 (U∗(t, t0) f)

= lim
t0→−∞

Ψ̂in
t (U∗0 (t0, t) U∗(t, t0) f) = Ψ̂in

t (W ∗
−(t) f).

(2.7.40)

The interpolating in-representation

We have not specified completely the interpolated representation yet, because we have not
defined its projectors. Define the particle and antiparticle subspaces as evolved from those
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defined by the in-representation. Therefore we split both fields in the relation (2.7.40)
using the corresponding projectors

b̂t(P+(t) f) = b̂int (P 0
+ W ∗

−(t) f) (2.7.41)

d̂t(P−(t) f) = d̂int (P 0
− W

∗
−(t) f). (2.7.42)

These relations define the projectors P±(t) which are time-dependent. To find their values
explicitly, we transform

Ψ̂t(P±(t) f) = Ψ̂in
t (P 0

± W
∗
−(t) f) = Ψ̂t(W−(t) P 0

± W
∗
−(t) f). (2.7.43)

Since this relation holds for all f ∈ H, it follows

P±(t) = W−(t) P 0
± W

∗
−(t) (2.7.44)

or

P±(t) = s-lim
t0→−∞

U(t, t0) U0(t0, t) P 0
± U0(t, t0) U(t0, t)

= s-lim
t0→−∞

U(t, t0) P 0
± U(t0, t),

(2.7.45)

because U0 commutes with P 0
±. It means that to decide whether a state corresponding to

a wave function f at time t is interpreted as a particle or an antiparticle, it is evolved to
the far past, there projected on the subspace of free particles or antiparticles and finally
evolved back to time t.

The out-representation

Analogously to in, we can define the out-representation by

Ψ̂out
t (f) = Ψ̂out

t0 (U∗0 (t, t0) f) (2.7.46)

and

Ψ̂out
t (f) = b̂outt (P 0

+f) + d̂outt

∗
(P 0

−f). (2.7.47)

Then the connection with the interpolating field is defined by

lim
t→∞

[Ψ̂t(f)− Ψ̂out
t (f)] = 0 (2.7.48)

and leads to

Ψ̂t(f) = Ψ̂out
t (W ∗

+(t) f). (2.7.49)
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The interpolating out-representation

The interpolating out-representation is analogous to the interpolating in and is defined
by the correspondence of the particle and antiparticle subspaces with those which evolved
from those defined in the out-representation, i.e. by

b̂t(P+(t) f) = b̂outt (P 0
+ W ∗

+(t) f) (2.7.50)

d̂t(P−(t) f) = d̂outt (P 0
− W

∗
+(t) f). (2.7.51)

The projectors P±(t) are again time-dependent and can be found by

Ψ̂t(P±(t) f) = Ψ̂out
t (P 0

± W
∗
+(t) f) = Ψ̂t(W+(t) P 0

± W
∗
+(t) f), (2.7.52)

which holds for all f ∈ H, therefore

P±(t) = W+(t) P 0
± W

∗
+(t) = s-lim

t0→∞
U(t, t0) P 0

± U(t0, t). (2.7.53)

The Furry (static) representation

This representation is based on a time-dependent projector which is defined at every time
t separately by projection on the spectral subspaces of the instantaneous H(t), as if the
Hamiltonian and the external field were frozen at that time

P̃+(t) ≡ P[E0,∞)(H(t)), P̃ 0
−(t) ≡ P(−∞,E0)(H(t)). (2.7.54)

Equivalence of the particle interpretations

The in and interpolating-in representations are unitarily equivalent, since the Bogoliubov
transformation between them defined in (2.7.41), (2.7.42) is trivial and does not contain
any off-diagonal terms mixing particles with antiparticles. Hence, they can be realized in
the same Fock space F in. Analogously, the out and the interpolating-out representations
are unitarily equivalent due to (2.7.50), (2.7.51) and can be both realized in Fout. So
there remain three classes of representations, in, out and Furry, which equivalence is not
evident and requires more detailed analysis.

Furry representation is equivalent to the in-representation if the corresponding projec-
tors satisfy

P̃+(t) P−(t) ∈ H.S. and P̃−(t) P+(t) ∈ H.S., (2.7.55)

what is equivalent to

P̃+(t) W−(t) P 0
− ∈ H.S. and P̃−(t) W−(t) P 0

+ ∈ H.S.. (2.7.56)

Fierz and Scharf [FS79] prove that it is the case if the time-dependent potential V (t,x),
understood as a 4x4 matrix acting on Dirac bispinors, satisfies the following criteria.

Theorem 7 When
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(a) ∃T0 such that V (t,x) = 0 for all t < T0,

(b) V (t, ·) is continuous and twice piecewise continuously differentiable with respect to t,

(c) the Fourier transformed V̂ (α)(t,k) ∈ L2(R3)16 ∩ L1(R3)16, α = 0, 1, 2, ∀T0 ≤ t ≤ T ,

(d) E = E0 is not in the spectrum of H(T ) (if it is, it must be decided to which spectral
subspace P̃−(T ) or P̃+(T ) the eigensubspace of E0 belongs),

(e) H(T ) has an eigenfunction expansion (what implies additional restrictions on V ,
e.g. V (T,x) ∈ L1(R3)16 is a sufficient condition),

then the Furry and in-representations are unitarily equivalent at any time t ∈ [T0, T ].

These are quite general conditions under which both representations are equivalent. They
get destroyed e.g. when the potential varies in a discontinuous way. An example of a
time-dependent square well potential is considered further, in section 2.8.2, where similar
conditions on V (t) are studied.

Analogously, the equivalence between the Furry and out-representation can be shown.
If both pairs are equivalent, then, of course, the in and out-representations are equivalent.

Covariant particle interpretation

Fierz and Scharf [FS79] analyze the consequences of Lorentz transformations, which lead to
the change of representations via unitary operators representing Lorentz transformations in
H. While the in and out-representations behave covariantly, the Furry representation does
not. The transformed Furry representation is no more Furry representation in presence
of time-dependent potentials. It means that the transformed vacuum becomes a many-
particle state. While for static potentials one reference frame is distinguished and the Furry
representation can be based on it, for time-dependent potentials no special reference frame
and hence no special Furry representation can be chosen. Therefore, the only covariant
particle interpretations in presence of time-dependent potentials are the (interpolating) in
and out-representations, what confirms that the notion of particles has only asymptotic
meaning.

2.8 Scattering in Fock space

Unitary equivalence of the in- and out-representations can be considered independently
of their equivalence with the Furry representation, as we have proceeded in the previous
section. The two can be formally identified by the interpolating field using (2.7.40), (2.7.49)

Ψ̂t(f) = Ψ̂in
t (W ∗

−(t) f) and Ψ̂t(f) = Ψ̂out
t (W ∗

+(t) f), (2.8.1)
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what gives

Ψ̂out
t (f) = Ψ̂t(W+(t) f) = Ψ̂in

t (W ∗
−(t) W+(t) f) = Ψ̂in

t (S∗(t) f), (2.8.2)

where we have introduced the classical (single-particle) scattering operator (3.5.18)

S(t) ≡W ∗
+(t) W−(t) = s-lim

t1→−∞
t2→+∞

U0(t, t2) U(t2, t1) U0(t1, t). (2.8.3)

Its existence, i.e. existence of the strong limits, follows from the existence of the wave
operators W±(t) and presents restrictions on the time-dependent potential, what will be
discussed later, in section 3.5. For the case of a static external field, and hence static H,
it is easy to show that S(t) is in fact independent of t

S(t) = U0(t, 0) S(0) U0(0, t) = e−iH0tS(0)eiH0t = S(0), (2.8.4)

because H0, and hence exp(±iH0t), commute with S(0) (for proof see [Tha92, Th. 8.3]
or [RS79, XI.3]). For time-dependent H(t) we must keep the time-dependence of S(t)
explicitly in the notation or choose a distinguished time t0 to which we refer. Usually it
is t = 0.

Particles in the in and out-representations are defined in a time-independent way like
in section 2.7.1

b̂inn ≡ b̂inn (t) = b̂int (P 0
+ ϕinn (t)) (2.8.5)

d̂inn ≡ d̂inn (t) = d̂int (P 0
− ϕ

in
n (t)) (2.8.6)

b̂outn ≡ b̂outn (t) = b̂outt (P 0
+ ϕoutn (t)) (2.8.7)

d̂outn ≡ d̂outn (t) = d̂outt (P 0
− ϕ

out
n (t)) (2.8.8)

and the corresponding wave functions satisfy

ϕinn (t) = U0(t, t0) ϕinn (t0) ≡ U0(t, 0) φinn (2.8.9)

ϕoutn (t) = U0(t, t0) ϕoutn (t0) ≡ U0(t, 0) φoutn . (2.8.10)

Then the Bogoliubov transformation between them induced by (2.8.2) can be found in the
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following way

b̂outn = b̂outn (t) = b̂outt (P 0
+ ϕoutn (t))

= Ψ̂out
t (P 0

+ ϕoutn (t)) = Ψ̂in
t (S∗(t) P 0

+ ϕoutn (t))

= b̂int (P 0
+ S∗(t) P 0

+ ϕoutn (t)) + d̂int
∗
(P 0

− S
∗(t) P 0

+ ϕoutn (t))

= b̂int

(∑
k

(
ϕink (t), P 0

+ S∗(t) P 0
+ ϕoutn (t)

)
ϕink (t)

)

+ d̂int
∗
(∑

k

(
ϕink (t), P 0

− S
∗(t) P 0

+ ϕoutn (t)
)
ϕink (t)

)
=
∑
k

(
P 0

+ S∗(t) P 0
+ ϕoutn (t), ϕink (t)

)
· b̂int (P 0

+ ϕink (t))

+
∑
k

(
P 0
− S

∗(t) P 0
+ ϕoutn (t), ϕink (t)

)
· d̂int

∗
(P 0

− ϕ
in
k (t))

=
∑
k

(
ϕoutn (t), P 0

+ S(t) P 0
+ ϕink (t)

)︸ ︷︷ ︸
≡[S(t)++]nk

·b̂ink +
∑
k

(
ϕoutn (t), P 0

+ S(t) P 0
− ϕ

in
k (t)

)︸ ︷︷ ︸
≡[S(t)+−]nk

·d̂ink
∗
.

(2.8.11)

The matrix elements [S(t)±±]nk can be simplified, e.g.

[S(t)+−]nk =
(
ϕoutn (t), P 0

+ S(t) P 0
− ϕ

in
k (t)

)
= lim

t1→−∞
t2→+∞

(
U0(t, 0) φoutn , P 0

+ U0(t, t2) U(t2, t1) U0(t1, t) P 0
− U0(t, 0) φink

)
= lim

t1→−∞
t2→+∞

(
φoutn , P 0

+ U0(0, t2) U(t2, t1) U0(t1, 0) P 0
− φ

in
k

)
=
(
φoutn , P 0

+ S(0) P 0
− φ

in
k

)
= [S(0)+−]nk ≡ (S+−)nk.

(2.8.12)

Then, the Bogoliubov transformation takes finally the form

b̂outn =
∑
k

(S++)nk b̂ink +
∑
k

(S+−)nk d̂ink
∗

(2.8.13)

d̂outn

∗
=

∑
k

(S−+)nk b̂ink +
∑
k

(S−−)nk d̂ink
∗
. (2.8.14)

It is implementable, and thus the in and out-representations are unitarily equivalent, if
and only if (cf. theorem 1)

S+− ∈ H.S. and S−+ ∈ H.S.. (2.8.15)

Then there exists a unitary operator Ŝ in F in which implements S:

Ψ̂in(S∗f) = Ŝ∗Ψ̂in(f)Ŝ. (2.8.16)
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2.8.1 Particle production

For practical calculations of scattering processes it is important that the whole information
about the scattering in Fock space is encoded in the one-particle scattering operator S,
which alone defines the Bogoliubov transformation. To see it we calculate as an example
the expectation value of the number of particles created from an initial vacuum state
Ω ≡ Ωin in an implemented scattering process. Define “the number of particles in state
φoutn operator” as

N̂out
n ≡ b̂outn

∗
b̂outn + d̂outn

∗
d̂outn

= b̂outt=0

∗
(P 0

+ φn) b̂outt=0(P 0
+ φn) + d̂outt=0

∗
(P 0

− φn) d̂outt=0(P 0
− φn)

(2.8.17)

or split to particle and antiparticle number operators

N̂out
(+)n ≡ b̂outn

∗
b̂outn for φoutn ∈ H+ (2.8.18)

N̂out
(−)n ≡ d̂outn

∗
d̂outn for φoutn ∈ H−. (2.8.19)

Here we have assumed for simplicity of the notation that the bases {φinn } and {φoutn } are
identical, what can be relaxed at any time. Then its expectation value in the state evolved
from vacuum Ωin which is ŜΩin in the Schrödinger picture can be calculated as follows

Nout
(+)n ≡

(
Ŝ Ω, N̂out

(+)n Ŝ Ω
)

=
(
Ŝ Ω, b̂outn

∗
b̂outn Ŝ Ω

)
=
(
Ŝ Ω, b̂out0

∗
(P 0

+ φn) b̂out0 (P 0
+ φn) Ŝ Ω

)
=
(

Ω, Ŝ∗ Ψ̂out
0

∗
(P 0

+ φn) Ŝ Ŝ∗ Ψ̂out
0 (P 0

+ φn) Ŝ Ω
)

=
(

Ω, Ψ̂out
0

∗
(S∗ P 0

+ φn) Ψ̂out
0 (S∗ P 0

+ φn) Ω
)

=
(

Ω,
[
b̂out0

∗
(P 0

+ S∗ P 0
+ φn) + d̂out0 (P 0

− S
∗ P 0

+ φn)
]

[
b̂out0 (P 0

+ S∗ P 0
+ φn) + d̂out0

∗
(P 0

− S
∗ P 0

+ φn)
]

Ω
)

=
(

Ω, d̂out0 (P 0
− S

∗ P 0
+ φn) d̂out0

∗
(P 0

− S
∗ P 0

+ φn)Ω
)

=

(
Ω, d̂out0

(∑
k

(φk, P 0
− S

∗ P 0
+ φn) φk

)
d̂out0

∗
(∑

l

(φl, P 0
− S

∗ P 0
+ φn) φl

)
Ω

)
=
∑
k,l

(φk, P 0
− S

∗ P 0
+ φn) (P 0

− S
∗ P 0

+ φn, φl)
(

Ω, d̂out0

(
P 0
− φk

)
d̂out0

∗ (
P 0
− φl

)
Ω
)

=
∑
k,l

(P 0
− S

∗ P 0
+ φn, φl) (φk, P 0

− S
∗ P 0

+ φn) δkl

= (P 0
− S

∗ P 0
+ φn, P

0
− S

∗ P 0
+ φn)

= ||P 0
− S

∗ P 0
+ φn||2.

(2.8.20)

It measures the norm of the vector φn ∈ H+ scattered “back in time” to the far past and
projected onto the antiparticle subspace H−. Analogously, we can find the expectation
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value of the number of antiparticles in state φn created from vacuum in a scattering process

Nout
(−)n = ||P 0

+ S∗ P 0
− φn||2, (2.8.21)

which expresses the norm of a vector φn ∈ H− scattered “back in time” and projected on
the particle subspace H+.

Interesting is to calculate the total number of particles and antiparticles created from
vacuum in a scattering process given by S

Nout
(+) ≡

∑
n

Nout
(+)n =

∑
n

||P 0
− S

∗ P 0
+ φn||2 = ||(S∗)−+||2HS = ||S+−||2HS (2.8.22)

Nout
(−) ≡

∑
n

Nout
(−)n =

∑
n

||P 0
+ S∗ P 0

− φn||2 = ||(S∗)+−||2HS = ||S−+||2HS . (2.8.23)

It turns out that these numbers are just the same as those appearing in the conditions
(2.8.15) for implementability of S, which now can be rewritten as

Nout
(+) <∞ and Nout

(−) <∞. (2.8.24)

It means that a classical scattering process S in H is implementable by a
unitary operator Ŝ in Fock space F if and only if the total number of particles
and antiparticles created from vacuum are finite.

2.8.2 Implementability of S

The condition of implementability of S as a unitary operator in Fock space (2.8.15) is
an implicit restriction on the time-dependent Hamiltonian H(t) and consequently on the
potential V (t). We quote a theorem of Seipp [Sei82, Th. 7], [Tha92, Th. 8.25] giving
sufficient conditions on V (t)

Theorem 8 Consider the external field V as a 4x4 matrix acting on the Dirac bispinors.
Let V (t) be strongly continuous and two times piecewise strongly differentiable in t such
that d2V (t)/dt2 is piecewise strongly continuous. Denote

W (n)(t) ≡ dnV (t)
dtn

, n = 0, 1, 2. (2.8.25)

If W̃ (n)(t, ·) ∈ L1(R3)16 ∩ L2(R3)16 (i.e. each component of the Fourier transforms
W̃ (n)(t,p) is integrable and square integrable with respect to p) and∫ +∞

−∞
||W̃ (n)(t, ·)||k dt <∞ for n = 0, 1, 2, k = 1, 2, (2.8.26)

then S−+ and S+− are Hilbert-Schmidt.
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Example – Time-dependent square well potential

Consider an example of a time-dependent square well potential

V (t,x) ≡ U(t) · v(x) with v(x) ≡ Θ(a− |x|). (2.8.27)

The conditions of the above theorem translate into∫ +∞

−∞

∣∣∣∣dnU(t)
dtn

∣∣∣∣ dt < ∞ with n = 0, 1, 2, (2.8.28)∫
R3

|ṽ(p)|k d3p < ∞ with k = 1, 2. (2.8.29)

Both (k = 1, 2) conditions (2.8.29), which in short can be written as ṽ ∈ L1(R3)∩L2(R3),
are satisfied by the Fourier transformed square well

ṽ(p) = 4π
[

sin(a|p|)
|p|3

− a cos(a|p|)
|p|2

]
. (2.8.30)

Conditions (2.8.28) can be in short rewritten as10 U ∈ W 2,1(R) and imply among other
things that

• U(t), dU(t)/dt, d2U(t)/dt2 → 0 as t→ ±∞,

• U(t) and dU(t)/dt are piecewise continuous.

10W p,k denote Sobolev spaces



Chapter 3

Evolution and scattering in the

classical Dirac equation

In order to implement evolution and scattering processes within the quantized Dirac field
theory introduced in the previous chapter, evolution and scattering operators for the clas-
sical Dirac equation are needed. Physical intuition suggests that spontaneous particle
creation happens when the ground state of the classical Hamiltonian reaches the nega-
tive continuum. In this chapter we will study the spectrum of the classical Hamiltonian
and check if self-adjointness and unitary evolution are guaranteed also for overcritical
potentials.

3.1 Self-adjointness of the Dirac-operator

The free Hamiltonian is defined as in (1.1.4) and the full Hamiltonian as in (1.1.3). The
potential is defined in (1.1.5) and is treated as a multiplication 4x4 matrix operator with
the components Vkl, k, l = 1, ..., 4. In this section either assume V as time-independent or
consider every V (t) separately treating t as a parameter.

The free Dirac Hamiltonian H0 is essentially self-adjoint on the domain of smooth
bispinorial functions on R3 with compact support [Tha92, Th. 1.1]

D(H0) = C∞0 (R3)4. (3.1.1)

This domain is dense in the first Sobolev space

H1(R3)4 =
{
f ∈ L2(R3)4

∣∣∣∣ ∂f∂xi ∈ L2(R3)4
}
, (3.1.2)

i.e. in the space of all square integrable bispinorial functions on R3 with square integrable
distributional first derivatives. Hence, there exists a unique self-adjoint extension of H0,
call it H̃0, into the domain H1(R3)4. It is not essential to give the explicit form of H̃0. As
it is unique, it is practically enough to think of its formal definition H0, which describes

67
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properly the action on the square integrable and differentiable functions, which we usually
consider. From now on, for the sake of simplicity of the notation, we skip the tilde and
write H0 thinking of it as a self-adjoint operator on H1(R3)4.

The full Hamiltonian H ≡ H0 + V keeps some of the properties of H0, because for
small V it can be considered as a perturbation of H0. Yet, we are interested not only in
small V , i.e. weak potentials, but rather on the contrary, in strong potentials. Therefore,
it is important to formulate criteria describing qualitative changes in the properties of H
depending on the strength of V .

Regarding self-adjointness it is the question of a measure of V , which decides whether
the perturbation is small or big. A general criterion is given by the fundamental Kato-
Rellich theorem [RS75, Th. X.12]

Theorem 9 Let H0 be self-adjoint, V symmetric and V be H0-bounded with relative bound
a < 1, i.e. for some a, b ∈ R and a < 1

||V f || ≤ a ||H0 f ||+ b ||f || ∀f ∈ H. (3.1.3)

Then H = H0 + V is self-adjoint on D(H0).

It follows a theorem giving a more explicit condition on V [Tha92, Th. 4.2]

Theorem 10 Let

|Vik(x)| ≤ a

2|x|
+ b ∀ x ∈ R3 \ {0}, i, k = 1, ..., 4, (3.1.4)

for some b > 0 and a < 1. Then H = H0 + V is essentially self-adjoint on C∞0 (R3 \ {0})4

and self-adjoint on D(H0).

On the other hand, if no singularities are present, it holds [Tha92, Th. 4.3]

Theorem 11 Let
Vik ∈ C∞(R3), i, k = 1, ..., 4. (3.1.5)

Then H = H0 + V is essentially self-adjoint on C∞(R3)4.

From the above two theorems it becomes clear that not the strength of the potential
itself is essential for the self-adjointness of H, as in theorem 11 arbitrary smooth potentials
are allowed, but it is the strength of the singularity in V . The condition in theorem 10
is optimal if all components Vik are considered together (i.e. there exist potentials with
|Vik(x)| ≤ (1/2 + ε)/|x| with arbitrary small ε such that H is no longer self-adjoint), but
it is not optimal if V is a pure electric potential, i.e. V = eA01 and Ai = 0. Then there
is a more general theorem [Sch72b]

Theorem 12 Let V can be expressed as V = V1 + V2, where V1 ∈ C0(R3 \ {0}) and
V2 ∈ L∞(R3) (i.e. bounded) with

|V1(x)| ≤ a

|x|
, ∀x ∈ R3 (3.1.6)
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and a ∈ (0,
√

3/2). Then H = H0 + V is essentially self-adjoint on C∞0 (R3 \ {0})4 and
self-adjoint on D(H0).

Condition on V2 can be replaced by V2 ∈ Lploc(R
3) with p > 3 [Wei03, Th. 20.4]. Even

weaker conditions may be considered if the potential oscillates at infinity. For a more
general theorem in such case see [Sch72b].

3.1.1 Coulomb potential from a point-like charge

Essential self-adjointness of H0 + V depends only on the local behaviour of V [Che77].
It turns out that the borderline case is represented by potentials having a Coulomb-like
singularity1 [Nar74]. Theorem 12 covers Coulomb potentials

V (x) = −Zα
|x|

(3.1.7)

up to Zα <
√

3/2, that is Z ≤ 118. Higher values of Z lead to the following problem.
Solving the radial Dirac equation, boundary conditions at r = 0 and at r = ∞ must be
considered. Since r = ∞ is always a limit-point case of the differential equation, r = 0
is limit-point only for 0 ≤ Zα ≤

√
3/2 but limit-circle for Zα >

√
3/2, i.e. for Z ≥ 119.

In general a limit-circle case does not pick a unique boundary condition and this must be
introduced additionally, leading thereby to a chosen self-adjoint extension. Nevertheless,
for

√
3/2 < Zα < 1 (119 ≤ Z ≤ 137) the limit-circle case is “weak” and one of the solutions

diverges faster is than the other. Eliminating the faster divergent one gives rise to a kind
of a distinguished boundary condition and a distinguished self-adjoint extension of H
[Sch72a]. Alternatively, considering the limit R → 0 in a cut-off procedure regularizing
the Coulomb potential for r < R one can also construct a self-adjoint extension of H
[Wüs75]. Both imply finiteness of the potential energy in all states of D(H0) and turn out
to be equivalent. Another distinguished self-adjoint extension based on the finiteness of
the kinetic energy has been constructed in [Nen76] and shown to be unique. In [KW79] it
has been shown that all these procedures lead to the same self-adjoint extension.

For Z > 137 the above constructions do not work and other kinds of self-adjoint
extensions must be considered. In principle, this procedure is arbitrary and there is a one-
parameter family (θ ∈ [0, 2π)) of possible self-adjoint extensions. Several examples can be
found in the literature, where authors introduced a special distinguishing condition: or-
thogonality of eigenvectors [Cas50], special behaviour at the singularity [Nar74], continuity
of the eigenvalues [BBZ81], limit procedure for a regularized singularity [Wüs75, Gär79]
or other [Sch72a]. For a more detailed review cf. [Tha92, notes to sec. 4.3].

1We do not consider here more singular potentials at all, where the corresponding Hamiltonians are

never self-adjoint, mainly due to lack of physical motivation. For more details, we refer to [Cas50].
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r

V
Coulomb

regularized

Figure 3.1: Point-like Coulomb vs. regularized potential of a homogeneously charged ball.

3.1.2 Potential of many Coulomb centers

The construction of the self-adjoint extension and its uniqueness for potentials consisting
of a sum of Coulomb centers with Zi < 137 has been proved by Nenciu in [Nen77] us-
ing a finite kinetic energy condition and by Klaus [Kla80a] using a (regularizing) cut-off
procedure.

3.1.3 Potential of an extended charge

All problems with the need of self-adjoint extensions disappear when the Coulomb po-
tential is smoothed out at r = 0. Theorem 11 covers that situation: the Hamiltonian
is always self-adjoined (for any strength of the potential!). Physically, it corresponds to
an extended charge what is always the case for charged nuclei. Replacing the point-like
charge Z with a homogeneously charged ball of radius R gives a nonsingular potential

V(Z,R)(r) =

{
Zα
r for r > R,
Zα
2R

(
3− r2

R2

)
for r < R.

(3.1.8)

3.1.4 Particle with an anomalous magnetic moment

The anomalous magnetic moment is an effect of QED corrections to the Dirac equation.
It can, however, be modelled in the classical Dirac equation as interaction between the
anomalous magnetic moment µa and the electromagnetic field by introduction of a pertur-
bation term in the Hamiltonian. In presence of the spherically symmetric electric potential
the Hamiltonian (reduced to a single-spinor operator form “2x2”) has the form

H = H0 + V (r)1− µa

(
0 V ′(r)

V ′(r) 0

)
. (3.1.9)

In case of a Coulomb potential V (r) the V ′(r) terms behave like r−2 and are highly
singular. Nevertheless, they act in a regularizing way so that the total Hamiltonian H
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stays self-adjoint for any Coulomb (as well as r−n) potentials of arbitrary strength [Tha92,
sec. 5.3.2]. This holds true also for many Coulomb centers [Beh85]. Since electron does
have a small but nonzero anomalous magnetic moment it has to be considered seriously,
because it changes qualitatively some mathematical properties of the Hamiltonian.

3.1.5 Self-adjointness of an overcritical potential

Finally, we can draw the conclusion that self-adjointness of H = H0 +V is not endan-
gered by strong potentials. The only source of problems are potentials with strong
point-like singularities, which physically are regularized by a finite size of the charge dis-
tribution (nuclei). Moreover, taking into account a small anomalous magnetic moment of
the Dirac particle (electron) dismisses any problems with the self-adjointness.

3.2 Spectrum

The spectrum σ(H) of the self-adjoint operator H can be split into the point spectrum
σp(H) containing all eigenvalues and the continuous spectrum σcont(H) so that σ(H) =
σp(H) ∪ σcont(H) ⊂ R (self-adjoint operators have an empty residual spectrum [RS72,
Th. VI.8]). It is convenient to introduce also an alternative splitting, namely into the
essential spectrum σess containing the continuous spectrum σcont, all limit points of σp
and eigenvalues of infinite multiplicity. Its complement is the discrete spectrum σdisc so
that σ(H) = σess(H) ∪ σdisc(H) (see [RS72, VII.2-3] or [Ric78, 8.1, 11.4-5] for definitions
and discussion or [GP90, App. C] for a short review of the operator theory).

The essential spectrum of the free Dirac Hamiltonian H0 is σess(H0) = (−∞,−1] ∪
[1,∞). It is very stable under perturbations of the operator, what means that the essential
spectrum of the full Hamiltonian σess(H) ≡ σess(H0 + V ) = σess(H0) for a wide class of
potentials V . A sufficient condition is that V (x) → 0 as |x| → 0, but there exist also
weaker conditions allowing even singularities in V (x) at big distances which do not change
the essential spectrum [Tha92, 4.3.4].

On the other hand, [Tho76, BG87] proved under fairly general conditions on V (x) that
there are no eigenvalues embedded in the continuous spectrum σcont(H) = (−∞,−1] ∪
[1,∞), what implies that the point spectrum σpp(H) ⊂ (−1, 1) with possible concentration
points at ±1 (what is the case for Coulomb potentials).

Moreover, considering Hamiltonians Hλ ≡ H0 + λV with V (x) ≤ 0 (V (x) ≥ 0 is
analogous) Klaus [Kla80b] proved that there are infinitely many eigenvalues which enter
the interval (−1, 1) from above (E = +1), infinitely many which leave it at the bottom
(E = −1) and all move monotonically from +1 to -1 as λ→∞. For spherically symmetric
potentials V (x) none of the eigenvalues can remain within (−1,+1) as λ→∞.
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3.2.1 Overcriticality

From the last three paragraphs it follows that the eigenvalues of Hλ ≡ H0 +Vλ ≡ H0 +λV ,
which can be only in (−1,+1), leave the interval as λ increases. They disappear from the
spectrum, because they cannot be embedded in the continuous spectrum. A Hamiltonian
Hλ and a potential Vλ for which at least one eigenvalue has disappeared, but was present
for some λ′ < λ, we call overcritical. The limiting case corresponding to the value
λ = λcr at which the eigenvalue tends to −1 when λ→ λcr will be referred to as critical.
So the potential Vλ becomes overcritical as the first, lowest lying eigenvalue disappears at
−1 (for λ = λcr) and remains overcritical for all λ > λcr.

In fact, a disappeared eigenvalue leaves its mark in the analytic structure of the re-
solvent, giving rise to a resonance which we will discuss below. Moreover, it modifies the
continuum wave functions, especially in the spectral neighbourhood of its disappearance
point −1, so that despite of a lack of one eigenvector the set of all generalized eigenvectors
of H remains complete and still can represent any vector in H.

3.2.2 Spectral decomposition

Indeed, if the operator H is self-adjoint then there exists a projector valued spectral
measure [Ric78, Ch. 9]

Eλ = P(−∞,λ](H) (3.2.1)

which provides a resolution of the identity

1 =
∫ +∞

−∞
dEλ (3.2.2)

and according to the spectral theorem [RS72, Th. VII.7-8]

H =
∫ +∞

−∞
λ dEλ as well as f(H) =

∫ +∞

−∞
f(λ) dEλ. (3.2.3)

The measure Eλ can be uniquely decomposed into the following parts [Ric78, Ch. 9.9]

Eλ is discontinuous at λ ⇔ λ ∈ σpp(H) (3.2.4)

Eλ is strongly continuous but not in norm at λ ⇔ λ ∈ σcont(H) (3.2.5)

Eλ is continuous in norm at λ ⇔ λ ∈ R \ σ(H) (3.2.6)

what gives E = Epp + Econt. Accordingly, there exists a unique decomposition of the
Hilbert space H = Hpp

⊕
Hcont [RS72, Th. VII.4] and a countable set of orthogonal

projectors Qn : H → Hpp on the eigenvalue subspaces such that HQn = λnQn. Then

1 =
∑

λn∈σpp(H)

Qn +
∫
σcont(H)

dEλ (3.2.7)
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and
H =

∑
λn∈σpp(H)

λnQn +
∫
σcont(H)

λ dEλ. (3.2.8)

Assuming that there exists a basis |φλ〉, λ ∈ σ(H) of generalized eigenfunctions of H such
that

H|φλ〉 = λ|φλ〉 (3.2.9)

(but not necessary |φλ〉 ∈ H) one can express the measure [Ric78, 10.12]

Eλ|χ〉 =
∫ λ

−∞
|φλ〉〈φλ|χ〉 dµ(λ) ∀χ ∈ H, (3.2.10)

where µ is some measure on R. This justifies the Dirac notation, where the formal identity

dEλ = |φλ〉〈φλ| dµ(λ) (3.2.11)

leads to

1 =
∫ +∞

−∞
|φλ〉〈φλ| dµ(λ) =

∑
λn∈σpp(H)

|φλn〉〈φλn | ∆µn +
∫
σcont(H)

|φλ〉〈φλ| dµ(λ),

(3.2.12)

H =
∫ +∞

−∞
λ|φλ〉〈φλ| dµ(λ) =

∑
λn∈σpp(H)

λn|φλn〉〈φλn | ∆µn +
∫
σcont(H)

λ|φλ〉〈φλ| dµ(λ).

(3.2.13)

For λ ∈ σpp the states |φλ〉 ∈ Hpp are eigenvectors of H, called bound state wave functions.
For λ ∈ σcont the states |φλ〉 are so-called continuum wave functions and do not belong to
H, because 〈φλ|φλ〉 is not finite. First the wave packets belong to H∫

σcont

a(λ) |φλ〉 dµ(λ) ∈ Hcont ⇔
∫
σcont

|a(λ)|2 dµ(λ) <∞. (3.2.14)

Then∫
σ(H)

dµ(λ) |φλ〉〈φλ| =
∑

λn∈σpp(H)

µ(λn) |φλn〉〈φλn |+
∫
σcont(H)

dµ(λ) |φλ〉〈φλ|. (3.2.15)

The spectral measure µ is, in general, not unique up to multiplication by a function of
λ, but this freedom is removed by imposing the normalization conditions for the wave
functions

µ(λn) |φλn〉〈φλn |φλm〉 = δnm |φλm〉 for λn, λm ∈ σpp, (3.2.16)

µ(λ) |φλ〉〈φλ|φλ′〉 = δ(λ− λ′) |φλ′〉 for λ, λ′ ∈ σcont. (3.2.17)

The existence of generalized eigenvectors forming an orthonormal basis in H depends
on further properties ofH. ForH0 the basis is constructed via the spatial Fourier transform
[Tha92, sec. 1.4.1]. For H = H0+V completeness has been shown for |V (x)| ≤ ν e−α|x|/|x|
with 0 ≤ ν < 2/π [Nen75] and for V (x) ∈ C∞0 in [Pic05, Ch. 6] by construction of a
generalized Fourier transform.
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3.3 Resonances

3.3.1 Analytic structure of the resolvent and Green’s function

The spectrum of H can also be analyzed from the point of view of analytic properties of
the resolvent

R(λ) ≡ 1
H − λ1

. (3.3.1)

This operator is bounded for all λ in the resolvent set ρ(H) ≡ C \ σ(H) and unbounded
for λ ∈ σ(H). One can study analytic properties of the weighted resolvent

Rψ(λ) ≡ (ψ, (H − λ)−1ψ) = (ψ,R(λ)ψ) and R0
ψ(λ) ≡ (ψ, (H0 − λ)−1ψ) (3.3.2)

for some ψ ∈ A, a dense set inH, and construct their analytic (meromorphic) continuations
from {λ ∈ C | Imλ > 0} to {λ ∈ C | Imλ ≤ 0} [HS95, Th. 16.4].

For λ ∈ C in the vicinity of the essential spectrum σess(H) the value of Rψ(λ) grows
like |Imλ|−1. At the points of the discrete spectrum λ ∈ σdisc(H) the weighted resolvent
Rψ(λ) has poles for all ψ ∈ A and

Pλ =
1

2πi

∮
|µ−λ|=ε

R(µ) dµ (3.3.3)

for some small ε > 0 gives a spectral projector projecting on the eigensubspace to the
eigenvalue λ of H. If for all ψ ∈ A the analytically continued Rψ(λ) has a pole at some
λ = λR (ImλR < 0) while R0

ψ(λR) is analytic then λR is called resonance or a resonance
pole [RS78, XII.6].

The existence of analytic continuations (by explicit construction), the association of
the poles of these continuations with the eigenvalues of some non-self-adjoint operators
obtained from H by complex dilations and the identification of these eigenvalues as reso-
nances, are results of the Aguilar-Balslev-Combes-Simon theory [HS95, Ch. 16, 17]. One
can show that the poles of the resolvent are identical with those of the scattering operator
by using the relation [AJS77, Prop. 6.11]

S = 1 + s-lim
η→0+

s-lim
δ→0+

∫ (
R0
E−iη −R0

E+iη

)
(V − V RE+iδV ) dµ(E). (3.3.4)

Often it can be shown that these poles are identical with the poles of the meromorphic
continuation of the Green’s function or the S operator (for more details and further ref-
erences we refer to [RS78, notes to Ch. XII] and [HS95, notes to Ch.16]). The Green’s
function is defined as the integral kernel of the resolvent

(R(λ) ψ) (x) ≡
∫
G(λ, x, y) ψ(y) dy. (3.3.5)

It shows some kind of a singular behaviour at λ ∈ σess(H). Analogously to the weighted
resolvent, it can be continued analytically trough σess(H) from Imλ > 0 to Imλ ≤ 0.
When σess(H) 6= R then G(λ, ·, ·) becomes a multivalued function for Imλ < 0 with a
branch cut at σess(H). Moreover, it has poles at λ ∈ σdisc(H) as well as at resonances.
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3.3.2 Perturbation of the eigenvalues

A very important question is how the bound states (discrete spectrum) and resonances
behave and transform into each other under perturbations of the potential δV . This
is essential in order to understand changes in the spectrum in time-dependent processes
when V varies in time and δV ∼ dV/dt. As we have already mentioned above, the essential
spectrum σess is highly stable under perturbations of the potential V . In contrast, the
discrete spectrum σdisc is rather sensitive: eigenvalues may move along the real axis or
disappear turning into resonances. In other words, the real poles of G(λ, ·, ·) may move
along R or leave R and go to C : Imλ < 0. For a wide class of parameterized perturbations
giving rise to the analytic family (in the sense of Kato) H(β) the regular perturbation
theory applies [RS78, Ch. XII.2]. Its main result is the convergent2 Rayleigh-Schrödinger
series for perturbed isolated eigenvalues. In case of an analytic family H(β) = H(0)+βW

the first terms of the series give

λ(β) = λ(0) + β (φ(0),Wφ(0)) +O(β2), (3.3.6)

where φ(0) is the unperturbed eigenvector to the eigenvalue λ(0) of H(0). However, for
some perturbations the series diverges and is only asymptotic (roughly the problem is
usually connected with a change of the domain of H(β) as the perturbation is switched
on), but an eigenvalue λ(β) ∈ R exists for all H(β). We do not go into more detail
referring the reader to [RS78, Ch. XII]. Yet for some “singular” perturbations the real
isolated eigenvalue disappears completely from the spectrum as soon as the perturbation is
switched on, while the spectrum becomes continuous around the point of the unperturbed
eigenvalue λ(0) ∈ σess(β > 0) (e.g. as in the Stark effect). Another situation when a
similar phenomenon occurs is an eigenvalue embedded in the continuous spectrum already
for β = 0, i.e. λ(0) ∈ σess(0), which disappears as soon as the perturbation is switched
on (e.g. helium atom). In both cases the eigenvalue becomes a complex resonance. There
are two strategies which we want to mention how to keep track of its position.

Spectral concentration

The first one uses the notion of spectral concentration and says that in the “new” contin-
uum σess(β > 0) a vector φ(β) can be found in the subspace

P(λ(0)+αβ−f(β),(λ(0)+αβ+f(β)(H(β)), f(β) = o(β) (3.3.7)

(α being the first Rayleigh-Schrödinger coefficient), i.e. localized spectrally around the
point λ(0) + αβ ∈ σess(β), which goes strongly to the unperturbed eigenvector φ(0) as
β → 0 and

lim
β→0

||(H(β)− λ(0)− αβ)φ(β)||/β = 0. (3.3.8)

2Nonzero radius of convergence in parameter β.
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It means that for every β > 0 there exists φ(β), as approximate eigenvector of H(β) to the
eigenvalue λ(0)+αβ, which can be constructed as a wave packet localized spectrally in an
interval centered at λ(0) +αβ ∈ σess(β) and having a width f(β) → 0 as β → 0. This can
be used as a “practical” definition of the resonance state for some numerical calculations.

Complex pole

The second method is based on the fact that vanishing of an isolated or embedded eigen-
value from the spectrum and turning into a resonance corresponds to a move of the pole
λ(β) of the weighted resolvent Rψ(λ, β) or of the Green’s function Gβ(λ, x, y) from the
real axis to the complex plane. Using the dilation theory one can construct a family
of non-self-adjoint operators which have a complex eigenvalue at the point of the reso-
nance [RS78, Ch. XII.6]. Unfortunately, for this kind of eigenvalues one cannot directly
apply the standard perturbation theory. However, one can obtain a Puiseux series con-
taining non-integer powers of the parameter β for the resonance position λ(β) [How74a],
though p of its leading terms may consist of integer powers of β. If f(β) = o(βp) but
f(β)/βp+1 →∞ it is called spectral concentration to order p [Nen81]. In the case of Auger
ionization in the helium atom a spectral concentration to the first order [Sim73] occurs.
The first Rayleigh-Schrödinger coefficient α1 is real, so the second coefficient α2 is the first
that may have a non-vanishing imaginary part. It follows that, for small β, the imaginary
part of the resonance pole behaves like

Γ ≡ 2 Im λ(β) ≈ 2 β2 Im α2. (3.3.9)

This is the Fermi golden rule. Γ describes approximately the decay rate of the unperturbed
eigenvector φ(0) under evolution generated by a time-independent Hamiltonian H(β) as
well as the spectral width of a wave packet approximating the resonance state. The
connection is based on the observation that a first order pole in the scattering operator at
a complex resonance position λ(β) = Eres ≡ ER + iEI causes the following approximate
structure of the scattering amplitude

a(E) =
C

E − (ER + iEI)
+ f(E), (3.3.10)

where f(E) is analytic at E = Eres. If the pole is near the real axis, i.e. EI = Γ/2 ≈ 0,
then

|a(E)|2 ≈ |C|2

(E − ER)2 + 1
4Γ2

(3.3.11)

we obtain a Breit-Wigner resonance distribution. For more details on the Fermi golden
rule stating positivity of Γ we refer to [RS78, XII.6], [How74a], [SW98] and [CS01].

Relative phase-shifts

There exists an alternative way of estimating the position of the resonances based on
the analysis of the relative asymptotic phase-shifts of the continuum wave functions. It
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has been used e.g. for identifying resonances in the Coulomb potential [RMG81] and is
explained in [GMR85]. The main point is the observation that in presence of a resonance
the continuum wave functions (i.e. the generalized eigenvectors corresponding to the
continuous spectrum) become modified in such a way that they present a special structure
of asymptotic phase-shift, namely exp(i(pr + δ(E))) and δ(E) jumps by π (say from 0 to
π) in the vicinity of the resonance position. More exactly, the point where δ(E) = π/2
coincides with the real part ER of the resonance position. The width Γ of the peak in
sin2(δ(E)) approximates the imaginary part EI of the position of the resonance.

We conclude that the resonances are continuations in β of eigenvalues λ(β) of
self-adjoint H(β).

3.3.3 Perturbation of eigenvalues at the edge of continuum ε = −1

A special case of perturbed eigenvalues turning into resonances are eigenvalues ε(λ0) of
a self-adjoint H(λ0) = H0 + λ0V embedded in the essential spectrum σess = (−∞,−1] ∪
[1,+∞) at one of its end points3. We are interested in the case ε(λ0) = −1 which we defined
in the previous section (sec. 3.2.1) as critical. Moreover, we assume that the “coupling
constant” λ0 is positive and for λ < λ0 there exists an isolated eigenvalue ε(λ) > −1. It
can be guaranteed by assuming that the potential V (x) is negative everywhere.

As λ → λ−0 the eigenvalue ε(λ) → −1+, but we need to know some more details on
the asymptotic behaviour and whether the eigenvalue exists for λ = λ0. Klaus in [Kla85,
Th. 1.1] shows that there are two cases:

1. ε(λ) ∼= −1+c(λ0−λ)+O(λ0−λ)3/2 with c > 0 and ε(λ) has a convergent expansion
in (λ0 − λ)1/2, but is non-analytic at λ = λ0,

2. ε(λ) ∼= −1 + c(λ0 − λ)2 with c > 0 and ε(λ) is analytic at λ = λ0.

So the two cases differ in the slope dε(λ)/dλ at which the critical value is reached:

case 1) lim
λ→λ0

dε(λ)
dλ

= −c < 0, case 2) lim
λ→λ0

dε(λ)
dλ

= 0. (3.3.12)

Only in case 1 the critical Hamiltonian H(λ0) has an eigenvalue ε(λ0) = −1, i.e. there
exists an eigenvector with a finite norm. Analogous results hold at the other continuum
edge ε = +1. Moreover, if the potential V (x) is spherically symmetric and κ is the angular
parameter then the above cases hold correspondingly

1. for all |κ| > 1 at ε = ±1, for κ = −1 at ε = −1, and for κ = +1 at ε = +1,

2. for κ = −1 at ε = +1 and for κ = +1 at ε = −1.
3Note a change of notation at that point: ε – eigenvalue or resonance (instead of previous λ), λ –

parameter (instead of previous β). It is caused by our attempt to use the original notation of cited sources,

mainly [RS78].



78 3. Evolution and scattering in the classical Dirac equation

It means that the case 1. occurs always except when κ = ±1 at the edge ε = ∓1. From
[Kla85, Th. 4.3] we know that the lowest eigenvalue corresponds always to |κ| = 1, while
the sign of κ may, in general, be arbitrary. However, in all known examples it is κ = −1
which gives the lowest eigenvalue and becomes critical at the smallest (positive) value of
λ. Therefore, we will assume it in the following what allows us to concentrate on case 1.
only. By this assumption Mur and Popov [MP76] calculated approximately the coefficient
c.

It is an important fact that ε(λ) is not analytic4 at λ = λ0. It allows for existence of a
complex resonance described by continuation of ε(λ) for λ > λ0 while for λ ≤ λ0 we have
a real eigenvalue. (Since this is not true in case 2. there is no complex resonance in that
case!) Since the coefficient c by the linear term in the expansion of ε(λ) with respect to
λ− λ0 is real, the first imaginary term is of order O(λ− λ0)3/2 and it has , in general, a
nonzero coefficient. Hence we obtain a universal scaling

Γ(λ)/2 ≡ Im(ε(λ)) ∼ Re(ε(λ) + 1)3/2 ∼ (λ− λ0)3/2, (3.3.13)

which describes the estimated position of the resonance in the complex plane for λ & λ0

and proves the Fermi golden rule, which happens to scale in the same way as in the
Schrödinger equation with a threshold eigenvalue [JN05]. The position of the resonance
ε(λ) can also be obtained as a solution of a transcendental equation [How74a, CS01]. In
our example studied in chapter 5.3 this equation takes a relatively simple form, though
still being transcendental and must be solved numerically.

We conclude that when the potential becomes overcritical the golden Fermi
rule holds and the threshold eigenvalue (bound state energy) perturbs to a
(complex) resonance whose real part (“resonance energy”) lies within the neg-
ative continuum.

3.3.4 Meaning of resonances in evolution

Although it is difficult to show rigorously how the existence of resonances contributes to
the evolution picture, a formal result sheds some light on it. The evolution group e−iHt

(for time-independent Hamiltonians H) can be represented via the Laplace transform as

(ψ, e−iHtψ) =
−1
2πi

lim
ε→0

∫ ∞

−∞
e−iEt Im(ψ, (H − E − iε)−1ψ) dE. (3.3.14)

If the resolvent (H−E−iε)−1 can be continued across the real axis (or σess) to ImE < 0 and
has poles there, deformation of the integration contour and the residual theorem will lead
to a sum of contributions from separate poles. Their time-dependence will be e−itER−tEI

where ER and EI are the real and imaginary parts of E, thus giving an exponential decay
of the amplitude.

4Probably a hidden assumption of analyticity led to an incorrect scaling in [GMR85].
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3.4 Evolution

The Dirac equation with a time-independent self-adjoint Hamiltonian H

i
∂

∂t
Ψ(t) = HΨ(t) (3.4.1)

treated as a Cauchy problem with a given initial vector Ψ(t0) ∈ D(H) ⊂ H has, according
to Stone’s theorem [RS72, Th. VIII.7], a unique solution of the form

Ψ(t) = U(t)Ψ(t0) = e−iH(t−t0)Ψ(t0), (3.4.2)

where U(t) is a strongly continuous one-parameter unitary group, satisfying, amongst
others, U(t0) = 1 and U(t+ s) = U(t)U(s).

The case of a time-dependent Hamiltonian H(t)

i
∂

∂t
Ψ(t) = H(t)Ψ(t) (3.4.3)

is much more complicated, since not every self-adjoint H(t) generates evolution [DG97,
B.3]. If it does, the evolution can be described by a two-parameter family of unitary
operators U(t1, t2) called a unitary propagator and satisfying

• U(t1, t2) is unitary and strongly continuous in t1, t2,

• U(t2, t1) = U∗(t1, t2) and U(t, t) = 1,

• U(t1, t2)U(t2, t3) = U(t1, t3).

(These are the conditions assumed in section 2.6 by defining evolution in the Fock space.)
It gives the solution of (3.4.3)

Ψ(t) = U(t, t0)Ψ(t0). (3.4.4)

The sufficient conditions for existence of the unitary propagator are given in [Tha92,
Th. 4.9] and [RS75, X.12]. In the case when H(t) ≡ H0 + V (t) it suffices that H0 be
self-adjoint and V (t) bounded, self-adjoint and strongly continuous [Tha92, Th. 4.10] or
V (t) ∈ L1

loc(R, B(H)) (Bochner integrable) [DG97, B.3].

3.4.1 Adiabatic theorem(s)

In the case of adiabatic evolution one considers processes driven by a slowly changing
Hamiltonian, usually written as Hε(t) ≡ H(εt) with small ε. Mathematically, this type of
evolution is equivalent to that satisfying the adiabatic equation

iε
∂

∂t
Ψ(t) = HΨ(t), (3.4.5)

which is obtained by the substitution t → t/ε. The spectrum and spectral subspaces of
Hε(t) change slowly in time. Since for static Hamiltonians H0(t) = H(0) the evolution is
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confined to any spectral subspace of H(0), e.g. an initial eigenvector evolves remaining
an eigenvector forever, a similar behaviour is expected for the adiabatic evolution as ε→
0. Let PA(t) be a spectral projector of Hε(t) on A(t) ⊂ σ(Hε(t)), where A(t) changes
continuously following the changing spectrum of Hε(t). Let Uε(t) be a unitary evolution
operator solving (3.4.5). Choose an initial vector ψ(0) ∈ PA(0)H. Then it is expected that
after the evolution, which is usually parameterized such that t ∈ [0, 1], the final vector
ψ(1) = Uε(1)ψ(0) is approximately in PA(1), i.e.

||Uε(1)PA(0)− PA(1)Uε(1)|| ≡ δ(ε) → 0 as ε→ 0. (3.4.6)

There are several theorems covering different kinds of spectral projections PA(t) providing
a bound on the function δ(ε). In the simplest case of H(t) having a purely discrete
spectrum with PA(t) being a projector onto a chosen eigenvector to an eigenvalue being a
piecewise differentiable function of time and without level crossings the adiabatic theorem
says that δ(ε) = O(ε) [GP91, Ch. 11.10].

A more general theorem of Nenciu [Nen80b] treats the situation of a finite number
of disjoint components σi(t) of the spectrum of Hε(t) having a finite (spectral) distance
between each other, but allowing e.g. separated continuous parts. The corresponding
projectors Pi(t) are assumed to be norm twice differentiable in time. Then the adiabatic
limit holds, i.e. limε→0 δ(ε) = 0. In a more refined versions of the adiabatic theorem Nenciu
gives better estimates for δ. In [Nen81] he proves the existence of projections PnA(t) such
that δ(ε) = O(εn) for every n ∈ N. In [Nen93] he constructs an asymptotic series in ε

for the projector P (t) such that δ(ε) = O
(
exp

(
− k
εa

))
for some k > 0 and a ≥ 0 which is

related to the regularity of the resolvent of Hε(t). For analytic potentials and evolution
from t = −∞ to t = +∞ Joye and Pfister [JP91] show that δ(ε) = O

(
ε2 exp

(
−a
ε

))
.

Avron and Elgart in [AE99a] prove a theorem for finite rank projections PA(t) which
allows for an embedded eigenvalue, an eigenvalue at the threshold of the continuum, or a
finite number of eigenvalue crossings requiring only PA(t) to be continuous at the crossing
points. Then the adiabatic limit holds: limε→0 δ(ε) = 0. The rate of convergence of
δ(ε) depends on the kind of level crossing and for the linear crossing it is δ(ε) = O(

√
ε)

(Born-Fock theorem) [AE98]. Another theorem of Avron and Elgart [AE99b] assuming an
eigenvalue at the threshold of the continuous spectrum gives a better estimate δ(ε) = O(ε).
For a review and references to further versions of adiabatic theorems we refer to [AE99a]
and [Teu02].

3.5 Scattering

Scattering theory is a big field of research with extensive literature present. We cite here
only those facts which will be important in our further considerations. For a more complete
picture we refer the reader to [Tha92, Ch. 8] containing scattering theory for the Dirac
equation, to [AJS77] containing a very good and richly commented introduction to the
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scattering theory, to [RS79] containing the mathematical approach with many theorems
and proofs, and to [Yaf04] for a brief review of main mathematical results.

3.5.1 Time-independent Hamiltonians

We first consider the simpler and most studied case in the scattering theory, namely that
of a time-independent Hamiltonian H = H0 + V , where H0 is a free Dirac Hamiltonian
and V is a static potential. Then there are two unitary propagators

U(t) = e−iHt and U0(t) = e−iH0t, (3.5.1)

which describe the full and free evolution, respectively.

The wave operators

The goal of the scattering theory is to relate a state f ∈ H at time t = 0 to a state g± ∈ H
which evolved from f to t→ ±∞ and evolves freely according to H0, so that

lim
t→±∞

||U(t)f − U0(t)g±|| = lim
t→±∞

||f − U∗(t) U0(t)g±|| = 0. (3.5.2)

Therefore it is useful to define operators

W± = s-lim
t→±∞

U∗(t) U0(t) = s-lim
t→±∞

eiHte−iH0t, (3.5.3)

called Møller wave operators5. There appear two natural questions: about the existence
and range of these operators. Existence requires existence of the strong limit, i.e. when
acting on every vector from H. The range of W± can maximally be the part of H cor-
responding to the continuous spectrum of H0, which we denote Hcont ≡ Pcont(H0)H. If
RangeW± = Hcont then the wave operators are called asymptotically complete. All de-
pends on the properties of the pair (H,H0), which in the given Dirac case reduce to the
properties of V .

Roughly speaking, the existence of W± depends essentially on the behaviour of V (x)
at infinity, hardly at all on its local behaviour. Sufficient conditions for existence of W±

are

• V is trace-class [Yaf04, Th. 1.4];

• |V |(1 + | · |)−1/2+ε ∈ L2(R3) for some ε > 0 (Kuroda’s criterion) [Eck74a].

When W± exist they are partial isometries from H to RangeW± ⊂ Hcont, i.e. W ∗
±W± = 1

on H and W±W
∗
± are projectors on RangeW± [Tha92, Th. 8.2]. Moreover, they satisfy

the following intertwining relations

HW± = W±H0, e−iHtW± = W±e
−iH0t. (3.5.4)

The sufficient conditions for the asymptotic completeness are:
5It is the so-called time-dependent version. For the time-independent definition by means of the resolvent

and spectral integrals we refer to [AJS77, Ch. 6].
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• (H − z)−n − (H0 − z)−n is trace-class for some n = 1, 2, ... [Tha92, Th. 8.4], [Yaf04,
Th. 1.5], [Wei03, Th. 22.19],

•
∫∞
0 ||V (H0 − z)−1χ(|x| > R)|| dR <∞ (short-range) [Tha92, Th. 8.20],

• Define6 V 2
α (x) ≡

∫
B(x,1)

|V (y)|2
|x−y|1+α dy. The following holds [Eck74b]:

0) |V |(1 + | · |)−1/2+ε ∈ L2(R3) for some ε > 0,

a) ∃α ∈ (0, 1] : supx∈R3 Vα(x) <∞ (Stummel condition),

b)
∫
B(x,1) |V (y)|2 dy → 0 as |x| → ∞,

c)
∫

R3
|V (y)|
|x−y| dy ≤M1 ∀x ∈ R3 and tends to 0 as |x| → ∞,

d)
∫

R3
|V (y)|
|x−y|2 dy ≤M2 ∀x ∈ R3 and tends to 0 as |x| → ∞,

where the condition b) can be replaced with

b’) Vα(x) → 0 as |x| → ∞.

The following three classes satisfy these general conditions:

1)

{
|V (x)| ≤ C|x|−2−ε for |x| > R,

Vα(x) ≤ C1 for |x| ≤ R+ 1,
with R > 1, C, C1, ε > 0, α ∈ (0, 1],

2) |V | ⊂ Lp(R3) ∩ L1(R3) with p > 3,

3)
∫

R3 |V (y)|q(1 + |y|)p dy <∞ with q > 3 and p > 2q − 3,

• V ∈ L3
loc(R3) and |V (x)| ≤ C|x|−2−ε for |x| > R and C, ε > 0; in case of spherically

symmetric potentials it is enough that |V (r)| ≤ C|r|−1−ε [Pea77],

• Spherically symmetric potentials satisfying
∫∞
c rε|V (r)| dr < ∞ ∀c > 0 with some

ε > 0 and one of the following conditions [Pea77]:

a) V (r) = g/r +W (r), where 0 ≤ g ≤ j + 1/2 and
∫∞
0 |W (r)| dr <∞

(
∫∞
0 |W (r) log(r)| dr <∞ for |g| = j + 1/2) or

b) V (r) ≡ V0(r) +W (r), where |rV0(r)| < g <
√

2j and∫∞
0 r

√
(j+1/2)2−g2−(j+1/2|W (r)| dr <∞ or

c) V (r) ≡ V0(r) + W (r), where |rV0(r)| > g > j + 1/2, (rV0(r))−1 has bounded
variation and

∫∞
0 r−ε|W (r)| dr <∞ for some ε > 0.

The Coulomb potential V (x) = γ/|x| is not of a short-range and does not satisfy any
of the above conditions. The wave operators W± defined in (3.5.3) do not exist as strong
limits, what has been first observed for the Schrödinger equation by Dollard [Dol64] and
holds in the Dirac case as well [DV66]. The reason is that due to the long-range interaction
the evolution at big distances never becomes truly free, what can be seen already on the

6B(x, r) denotes a ball with center x and radius r.
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classical level of a (relativistic) point particle. In oder to obtain strong limits of the kind
(3.5.3) modifiers of the asymptotic free evolution must be introduced. For a potential
having Coulomb asymptotics, i.e. V (x) = γ/|x| for |x| ≥ R > 0 the wave operators

W̃± ≡ lim
t→±∞

eiHtŨ0(t) (3.5.5)

exist and are complete [Tha92, Th. 8.21], where the modified free evolution

Ũ0(t) ≡ Ũ+
0 (t)PR+(H0) + Ũ−0 (t)PR−(H0) (3.5.6)

Ũ±0 (t) = e∓i
√

p2+1 t exp

[
−i
∫ t

0
V

(
±ps√
p2 + 1

)
ds

]
. (3.5.7)

The integral appearing in Ũ±0 (t) evaluates to a logarithmic term in
√

p2 + 1.
For general long-range potentials one must modify the free evolution in (3.5.3). De-

pending on the decay of the potential at infinity there exist several methods, the simplest
being the Dollard modifiers (introduced above in the Coulomb case). For even slower
decaying potentials one can replace e−H0t with e−iS(t,p̂) with S(t,p) being a solution of an
appropriate Hamilton-Jacobi equation, obtaining a time-dependent modifier, or construct
Isozaki-Kitada integral operators J± and define

W̃± ≡ s-lim
t→±∞

eiHtJ±e
−iH0t, (3.5.8)

obtaining time-independent modifiers. We refer to [DG97, Ch. 4] for an extensive re-
view of those methods7. For the Dirac equation with long-range potentials existence and
completeness of modified wave operators of the Isozaki-Kitada type as pseudo-differential
operators constructed in terms of approximate eigenfunctions of H has been proved in
[GY01]. The potentials are only required to have any power-law decay at infinity and be
C∞ functions such that

|DnV (x)| ≤ Cn(1 + |x|2)−|n|/2−ρ, Cn, ρ > 0 ∀n ∈ N3 (3.5.9)

and Dk ≡ −i∂/∂xk.

The scattering operator

If W± are asymptotically complete then RangeW+ = RangeW− = Hcont and one can
define the scattering operator

S = W ∗
+W− = s-lim

t1→−∞
t2→+∞

e+iH0t2e−iH(t2−t1)e−iH0t1 , (3.5.10)

which is defined on the whole H and unitary. The intertwining relations take the form

H0S = SH0, e−iH0tS = Se−iH0t (3.5.11)

and reflect the conservation of energy in the scattering processes.
7In [DG97] they are applied to the Schrödinger equation, but the ideas of the modifiers are quite general

and can be extended to the Dirac equation.
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3.5.2 Time-dependent Hamiltonians

Now, we consider Hamiltonians H(t) which via the potential V (t) depend on time. While
the free evolution U0(t) = e−iH0t is identical as in the static case, the full evolution is
described via the unitary propagator U(t1, t2) defined in (3.4.3)-(3.4.4).

The wave operators

We define the wave operators analogously to (3.5.3)

W± = s-lim
t→±∞

U(0, t) e−iH0t. (3.5.12)

Their existence and unitarity are proved for the Schrödinger equation in the case of asymp-
totic switching, i.e. V (t,x) ≡ e−ε|t|Ṽ (x) [Dol66], for potentials satisfying

||V (t, ·)||p ∈ Lr+ε(R3) ∩ Lr−ε(R3) or ||V (t, ·)||∞ ∈ L1(R3) ∩ L1+ε(R3) (3.5.13)

with p > 3/2, r = 2p/(2p − 3), ε > 0 [How74b], and for potentials V (t,x) ≡ V0(t,x) +
V1(t,x) such that∫ ∞

0
||V0(t, ·)||∞ dt <∞,

∫ ∞

0
||∇xV1(t,x·)||∞

√
1 + t2 dt <∞ (3.5.14)

and V1(·, x0) ∈ L1
loc(R+) for some x0 ∈ R3 [DG97, Ch. 3]. In [Nen80a] Nenciu argues that

the proof of Dollard [Dol66] can be automatically repeated for the Dirac equation with
asymptotically switched potentials V (t,x) ≡ ϕ(t)Ṽ (x) satisfying

Ṽij(x) ∈ Lp(R3) ∩ L2(R3), p > 3 (3.5.15)

and the switching factor ϕ(s) satisfying for every s ∈ R

0 ≤ ϕ(s) ≤ 1, lim
s→0

ϕ(s) = 1, lim
s→±∞

ϕ(s) = 0, (3.5.16)

ϕ(s) twice differentiable and

sup
s∈R

|ϕ′(s)| <∞, lim
s→±∞

ϕ′(s) = 0,
∫ +∞

−∞

(
|ϕ′(s)|2 + |ϕ′′(s)|

)
ds <∞. (3.5.17)

The gaussian switching factor ϕ(t) = exp(−t2) satisfies the above conditions, while the
exponential switching factor ϕ(t) = exp(−|t|) does not, because it is not differentiable at
t = 0.

The scattering operator

The unitary wave operators W± give rise to a unitary scattering operator

S = W ∗
+W− = s-lim

t1→−∞
t2→+∞

e+iH0t2U(t2, t1)e−iH0t1 . (3.5.18)
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3.5.3 The adiabatic scattering

Consider evolution generated by a the time-dependent Hamiltonian

Hε(t) ≡ H0 + ϕ(εt)Ṽ (x) (3.5.19)

with the switching factor ϕ(t) defined as in the previous section by (3.5.16)-(3.5.17). It
gives rise to wave operators W±

ε which are unitary for every ε > 0 (cf. previous section and
[Nen80a]). Consequently, there exists a unitary scattering operator Sε = (W+

ε )∗W−
ε for

every ε > 0. The adiabatic scattering theory addresses the question whether the adiabatic
operators W±

ε , Sε for small ε converge to those describing the static case ε = 0, i.e. W±
0 , S0,

in the limit when ε → 0. Dollard in [Dol66] proves for ϕ(εt) = exp(−ε|t|) that W±
ε

converge strongly to W±
0 as ε→ 0. This proof holds analogously for ϕ(t) = exp(−t2) and

can be generalized to arbitrary switching factors ϕ(t) satisfying (3.5.16)-(3.5.17) [Nen80a].
It is worth noting that except regularity conditions on ϕ(t) the integral condition in
(3.5.17) requires sufficiently fast decay as t → ±∞. If this is violated one can construct
counterexamples to completeness of the wave operators [Yaf78], [DG97, Ch. 3.8]. So we
take it for granted that the strong limit exists

s-lim
ε→0

W±
ε = W±

0 ≡W±. (3.5.20)

It follows a weak limit for the adjoined operators

w-lim
ε→0

(W±
ε )∗ = (W±

0 )∗ = (W±). (3.5.21)

From both above limits it follows a weak limit for the scattering operators

w-lim
ε→0

Sε = S0 ≡ S. (3.5.22)

Then, since all Sε and S are unitary, one can show that the strong limit holds

s-lim
ε→0

Sε = S0 = S. (3.5.23)

These types of convergence will be important in the proof of spontaneous particle creation
defined via the adiabatic limit. Crucial will be the fact that despite the strong convergence
there is, in general, no convergence in norm of Sε to S0.
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Chapter 4

Overcritical fields and spontaneous

particle creation

The goal of this chapter is to find physical processes which show the effect of vacuum
decay and spontaneous particle creation exclusively due to an overcritical potential. In
section 4.1 we analyze how the structure of the ground (vacuum) state changes in presence
of an overcritical potential. In section 4.2 we consider several processes with static as well
as suddenly switched on (and off) static overcritical potentials and conclude that they are
unsatisfactory for observation of the spontaneous particle creation. The main obstacles
are either no particle creation or an intensive additional pair creation due to the strongly
time-dependent switching process. Next, in 4.3 we consider properties of general time-
dependent scattering processes and show that they also fail to produce stable signatures
of particle creation due to overcriticality. Further, in 4.4 we study and successfully define
spontaneous particle creation in adiabatic processes, yet they lead to physically question-
able pair production as the adiabatic limit is approached. Finally, in 4.5 we consider
extension of these ideas to non-adiabatic processes involving overcritical potentials and
argue that they are the best candidate for demonstrating the appearance of spontaneous
particle creation in physical processes. In the next chapter we will study such processes
numerically.

Concluding, we in principle agree with Fierz and Scharf [FS79] that spontaneous pair
creation must be defined on the basis of a change in the structure of the (implemented)
scattering operator Ŝ and not solely by diving of an eigenvalue of the static Hamiltonian,
for the simple reason that only the former has the ability of describing particle creation
processes. Yet we show that both phenomena coincide in the physically relevant situations.

4.1 Vacuum structure in presence of a static potential

As all needed mathematical tools have been prepared, we are ready to attack the key
question if overcritical potentials lead to a spontaneous particle production. First, consider

87
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static overcritical potentials. We follow the analysis of Klaus and Scharf in [KS77b].

Consider a one-parameter family of Hamiltonians

Hλ = H0 + λV (4.1.1)

and assume V is smooth enough so that λV is regular for every λ > 0 (in the sense defined
in section 2.7.2). As we have observed by the examples, the strength of the potential, and
hence also its overcriticality, has nothing to do with regularity, as long as the potential
stays smooth enough.

Consider projectors P±(λ) projecting on the positive and negative spectral subspaces
of the corresponding Hamiltonian

P±(λ) =
1 + sgn(Hλ)

2
, P±(λ)H = H±(λ), (4.1.2)

which are distinguished by the property that the corresponding vacuum states Ωλ ∈ Fλ
are ground states of the respective implemented Hamiltonians Ĥλ. For every projector
P±(λ) we get a different representation in Fock space Fλ, but since any two Hamiltonians
differ by a regular potential Hλ − Hλ′ = (λ − λ′)V , all representations Fλ are unitarily
equivalent. So we can consider all operators acting in one Fock space, say in F0, which we
call the free Fock space. This special projector we denote P 0

± ≡ P±(0) and the subspaces
H0
± ≡ H±(0).

For every λ choose an orthonormal basis {φ±n (λ)} in H±(λ). Define the particles as
states created from the vacuum by the creation operators

b̂∗n(λ) = b̂∗(P+(λ)φ+
n (λ)) and d̂∗n(λ) = d̂∗(P−(λ)φ−n (λ)) (4.1.3)

and denote for simplicity the free particles and antiparticles by

b̂∗n ≡ b̂∗n(0) and d̂∗n ≡ d̂∗n(0). (4.1.4)

4.1.1 The charged vacuum

Let us now study the structure of the vacuum as the parameter λ grows from zero. It can
be shown that for potentials Vλ, which are H0–bounded (see theorem 9),

||P±(λ)− P 0
±|| < 1 (4.1.5)

for small λ. Therefore, no vector f ∈ H exists, which belongs to R+(λ) ≡ H0
+ ∩H−(λ) or

R−(λ) ≡ H0
− ∩H+(λ) (cf. theorem 3), hence n± ≡ dimR±(λ) = 0.

We can calculate the charge of the vacuum Ωλ, which is a vector in F0, with respect
to the charge operator Q̂0 corresponding to free particles

(Ωλ, Q̂0 Ωλ) =
(
Û(λ) Ω0, Q̂0 Û(λ) Ω0

)
, (4.1.6)
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where the unitary operator Û(λ) : F0 → F0 implements the Bogoliubov transformation
between the fields corresponding to P 0

± and P±(λ). Making use of theorem 3 we find

Û(λ) Ω0 = C0(λ) exp

 ∞∑
k,l=1

A(λ)klb̂∗kd̂
∗
l

Ω0 (4.1.7)

with Û0(λ) = 1 and C0(λ) guaranteeing proper normalization. Then

Qvac = (Ωλ, Q̂0 Ωλ)

=

C0(λ) exp

 ∞∑
k,l=1

A(λ)klb̂∗kd̂
∗
l

Ω0, Q̂0 C0(λ) exp

 ∞∑
k,l=1

A(λ)klb̂∗kd̂
∗
l

Ω0


= 0,

(4.1.8)

because, as can be observed easily, all particles and antiparticles are created by Û(λ) from
Ω0 in pairs, so that the vector Ωλ decomposed in F0 has non-vanishing coefficients only
in subspaces F (n,m), where n = m. Therefore, it is neutral.

The situation changes, if we consider bigger λ and hence stronger potentials λV , exactly
at the value of λ, call it λ1, where the wave function ϕ1(λ) of the lowest lying bound state
of Hλ moves from H+(λ) to H−(λ) and its energy crosses the borderline between the two
spectral subspaces, which we have chosen in (4.1.2) at E = 0 (weak overcriticality). Let
P1 be a projection on the state ϕ1(λ). Then, when λ crosses the value λ1 the projectors
change discontinuously

P+(λ+
1 ) = P+(λ−1 )− P1 (4.1.9)

P−(λ+
1 ) = P−(λ−1 ) + P1, (4.1.10)

where we have introduced a shorthand notation λ±1 for the limits limε→0 ...(λ1± ε), which
should be taken of the whole expression containing λ±1 . At the same time, the subspace
R+(λ+

1 ) becomes nontrivial (see [KS77b, Appendix] for proof) and its dimension changes
to n+ = dim(P1H) = 1 (assuming the state ϕ1(λ1) is not energetically degenerate),
while n− = 0 remains unchanged. As a consequence, the vacuum transformation (4.1.7)
changes qualitatively, because Û0(λ) becomes nontrivial (6= 1). Since n+ = 1 the sum in
the exponent starts from k = 2. Because n− + n+ changes parity (from even to odd),
it implies further changes in Û(λ), namely operators B,C and D in theorem 3 change
sign. This has the consequence that commutation of all creation operators except b̂∗1 with
the exponential terms leads to an additional “-”, which cancels with the one appearing
in commutation with the new Û0(λ+

1 ). But the last change has no consequences, when
Û(λ+

1 ) acts on the vacuum vector Ω0

Ωλ+
1

= Û(λ+
1 ) Ω0 = C0(λ+

1 ) Û0(λ+
1 ) exp

 ∞∑
k=2
l=1

A(λ+
1 )klb̂∗kd̂

∗
l

Ω0 (4.1.11)
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with

Û0(λ+
1 ) = b̂∗1 + b̂1, (4.1.12)

what reduces to Û0(λ+
1 ) = b̂∗1 when acting on the vacuum Ω0 (operator Û0(λ+

1 ) commutes
with the exponent). The new, (weakly) overcritical vacuum is then positively charged

Qvac = (Ωλ+
1
, Q̂0 Ωλ+

1
)

=

C0(λ+
1 ) b̂∗1 exp

 ∞∑
k=2
l=1

A(λ+
1 )klb̂∗kd̂

∗
l

Ω0, Q̂0 C0(λ+
1 ) b̂∗1 exp

 ∞∑
k=2
l=1

A(λ+
1 )klb̂∗kd̂

∗
l

Ω0


= 1.

(4.1.13)

On the other hand, the subcritical neutral vacuum Ωλ−1
does not go over into the overcrit-

ical charged vacuum Ωλ+
1

, even when the operator A could be made arbitrary small (e.g.
in adiabatic evolution). It can be shown [KS77b, sec. 3] that

Ωλ−1
= C0(λ−1 ) C−1

0 (λ+
1 )

(
1 +

∞∑
l=1

A(λ−1 )b̂∗1d̂
∗
l

)

exp

 ∞∑
k=2
l=1

[
A(λ−1 )kl −A(λ+

1 )kl
]
b̂∗kd̂

∗
l

 d̂∗1(λ+
1 ) Ωλ+

1
, (4.1.14)

therefore, apart from particle-antiparticle pairs, one additional antiparticle is created.
This antiparticle is defined with respect to the projector P−(λ+

1 ) corresponding to Hλ+
1

.
A similar relation holds between the overcritical and free vacua

Ω0 = C−1
0 (λ+

1 ) exp

− ∞∑
k=2
l=1

A(λ+
1 )klb̂∗kd̂

∗
l

 d̂∗1(λ+
1 ) Ωλ+

1
, (4.1.15)

where again, beside particle-antiparticle pairs, one antiparticle is created. Therefore, the
charge (of the free vacuum)

q(λ) ≡ (Ω0, Q̂λ Ω0) (4.1.16)

with respect to Hλ (i.e. in presence of the potential λV ) changes from q(0) = q(λ−1 ) = 0
to

q(λ+
1 ) = (Ω0, Q̂λ+

1
Ω0) = −1, (4.1.17)

i.e. it has jump at λ = λ1. This means that one antiparticle is created. It remains to clarify,
to which wave function ψ ∈ H the antiparticle creation operator d̂∗1(λ+

1 ) corresponds. It
must belong to H0

+ ∩H−(λ+
1 ), so it must satisfy

P 0
+ψ = ψ and P−(λ+

1 )ψ = ψ. (4.1.18)
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Therefore it cannot be equal to the diving bound state ϕ1, because the latter can be
decomposed

ϕ1 = P 0
−ϕ1 + P 0

+ϕ1 (4.1.19)

and, in general, both its components are non-zero, so it would violate the first condition
in (4.1.18). Assuming ψ has the form ψ = ϕ1 + χ, where χ is orthogonal to ϕ1

P1χ = 0, (4.1.20)

it follows from the second condition in (4.1.18)

P−(λ+
1 )(ϕ1 + χ) = ϕ1 + P−(λ+

1 )χ != ψ = ϕ1 + χ, (4.1.21)

and hence
P−(λ+

1 )χ = χ. (4.1.22)

From (4.1.20) and (4.1.22) we see that

χ = [P−(λ+
1 )− P1]χ = P−(λ−1 )χ, (4.1.23)

that is, it lies in the negative spectral subspace of Hλ+
1

orthogonal to the dived bound state,
which is nothing else than the negative continuum. Summarizing, the created antiparticle
d̂∗1(λ+

1 ) corresponds to a wave function, which consists partially of the wave function of
the dived bound state and partially lies in the negative continuum of Hλ+

1
.

Now, we show that for λ > λ1 when no more vectors change the subspace between λ+
1

and λ, there always exists a vector ψ ∈ R+(λ) = H0
+ ∩H−(λ).

Lemma 3 When for some λ > λ1

||P±(λ−1 )− P 0
±|| < 1 and ||P±(λ)− P±(λ+

1 )|| < 1 (4.1.24)

and at λ = λ1 relations (4.1.9)-(4.1.10) hold then there exists a vector ψ ∈ R+(λ) =
H0

+ ∩H−(λ).

Proof: From ||P±(λ−1 )−P 0
±|| < 1 follows that there is no vector in P±(λ−1 )H∩P 0

∓H, hence
ker(P±(λ−1 )P 0

±) = ∅ and ind (P+(λ−1 )P 0
+) = 0. Analogously, ind (P+(λ)P+(λ+

1 )) = 0. On
the other hand, we have ind (P+(λ+

1 )P+(λ−1 )) = 1. Then, according to corollary 2

ind (P+(λ)P 0
+) = −Tr(P+(λ)− P 0

+)

= −Tr(P+(λ)− P+(λ+
1 ))− Tr(P+(λ+

1 )− P+(λ−1 ))− Tr(P+(λ−1 )− P 0
+)

= ind (P+(λ)P+(λ+
1 )) + ind (P+(λ+

1 )P+(λ−1 )) + ind (P+(λ−1 )P 0
+)

= 0 + 1 + 0 = 1.

(4.1.25)

So, dim ker(P+(λ)P+(λ+
1 )) ≥ 1 and hence there exists ψ ∈ R+(λ) = H0

+ ∩H−(λ). 2
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We conclude that going over from a free or subcritical Hamiltonian Hλ with λ < λ1

to an overcritical one with λ > λ1 one new (i.e. defined with respect to the overcritical
projection P−(λ+

1 )) antiparticle appears

q(λ) = (Ω0, Q̂λ Ω0) = −1, λ > λ1 , (4.1.26)

while the corresponding (new) vacuum state becomes positively charged

Qvac = (Ωλ, Q̂0 Ωλ) = 1, λ > λ1 . (4.1.27)

There remains a question regarding the physical conditions under which the above
calculated results can be measured. Specifying, first, what are the real particles which will
be seen in the measurement, and second, what will be the time evolution of such a process
where the Hamiltonian varies between two values? To answer the first question precisely,
one should deeply analyze the measurement process: write the function or interaction of
a detector installed in the experiment in terms of the field operators, find the eigenstates
of the interaction Hamiltonian and argue (as is usually done in the studies of decoherence
and entanglement processes) that these states will be observed in the experiment. We
adopt a simplified point of view and assume that those particles are real and show up
in the measurement which correspond to the (generalized) eigenstates of a current full
Hamiltonian. The answer to the second question is essential for the problem of overcritical
particle creation. From the “static” point of view, which concerns only properties of
different Hamiltonians, but ignores the time evolution leading from one to the other, it
seems that already the weak overcriticality with at least one bound state E0 < 0 should
lead to spontaneous antiparticle creation (what is claimed in [KS77b]). But, as will be
shown in the remaining sections of this chapter, this phenomenon is physically irrelevant
and only the strong overcriticality, with at least one bound state dived into the negative
continuum, leads to physically relevant particle creation.

4.1.2 Vacuum polarization

By means of the vacuum polarization and the total charge of the vacuum Qvac introduced
in section 2.5.2 we can confirm the results (4.1.26)-(4.1.27) from the previous section 4.1.1
in another way. From (2.5.14) and (2.5.18) we know that

Qλvac =
∫
d3x ρλ(x) = Tr

[
P+(λ)− P 0

+

]
, (4.1.28)

where P±(λ), P 0
± are projections on the spectral subspaces of the corresponding Hamilto-

nians Hλ,H0 and are defined by

P−(λ) ≡ P(−∞,E0](Hλ), P+(λ) ≡ P(E0,+∞)(Hλ), P 0
± ≡ P±(0). (4.1.29)

The operator P+(λ) − P 0
+ was studied in [KS77b] and it was shown that every time an

eigenvalue crosses the value E0 as λ grows the charge of the vacuum Qvac changes by one.
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The same has been proved rigorously in [Hai04], including a renormalization method,
because P+(λ)−P 0

+ is, in general, not a trace-class operator. (We know that it is Hilbert-
Schmidt for all regular potentials, i.e. for those which guarantee unitary equivalence of
the representations based on P±(λ) and P 0

±, cf. theorem 2). Both results can be stated as

Qλvac = N(λ) ≡(number of eigenvalues of Hλ′ which crossed E0 from above)

−(number of eigenvalues of Hλ′ which crossed E0 from below)

as λ′ increased from 0 to λ.

(4.1.30)

The only difference between the authors concerns the choice of the critical value E0, by
crossing of which a particle state becomes an antiparticle state and vice versa. As we have
already remarked at the end of the previous section 4.1.1, there is no way to answer the
question of the “correct” choice of E0 on that level, as long as all representations based on
various P±(λ) defined like in (4.1.29) are unitarily equivalent. The answer whether there
exist physical processes leading to the observation of the spontaneous particle creation
must necessarily treat the change of projectors as a time-dependent process (although
discontinuous) and are studied in the next sections of this chapter. At the end of the
section 4.4.2 we arrive at the result that (in the case of negative potentials) the choice
E0 = −1 (strong overcriticality) is the one which is physically relevant for observation
of the charged vacuum with spontaneously created particles scattered to infinity. For
all choices of E0 in the interval (−1,+1) (weak overcriticality) there appears a formally
charged vacuum, but it is accompanied by a bound antiparticle, ensuring overall neutrality.
It should be possible to observe this phenomenon by calculating the total charge of the
vacuum and the particles

Qtot ≡ Qλvac + q(λ) = (Ωλ, Q̂0 Ωλ) + (Ω0, Q̂λ Ω0) = 0 (4.1.31)

restricted to some finite region, say a ball with radius R, and taking the limit t→∞. The
result in the (weakly or strongly) overcritical case should have the form

Qtot(R, t) ≡ Qλvac(R) + q(λ,R, t) = 1− ||ψ(t)||2R, (4.1.32)

where ||ψ(t)||2R is the norm of the spontaneously created antiparticle state restricted to
the ball of radius R. In the limit t → ∞ we expect a different behaviour for the bound
state in the weakly overcritical case (E0 ∈ (−1,+1)) and in the strongly overcritical case
(E0 = −1)

lim
t→∞

||ψ(t)||2R =

{
1−O(R−α), α > 0, for weak overcriticality,
0 ∀R > 0, for strong overcriticality,

(4.1.33)

therefore leading to the total charge in every finite region after a long time

Qtot(R) ≡ lim
t→∞

Qtot(R, t) =

{
O(R−α), α > 0, for weak overcriticality,
1 ∀R > 0, for strong overcriticality.

(4.1.34)
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4.2 Quasi-static potentials

4.2.1 Evolution in a constant potential

Consider a static H(t) = Hλ for all t. Then the evolution in H is described by Uλ(t2, t1) =
exp(iHλ(t2 − t1)). Creation of particles from vacuum can be measured with

U±∓ = P±(λ) Uλ(−T, T ) P∓(λ), (4.2.1)

which in this case is zero, because P±(λ) commute with the Hamiltonian Hλ and its
exponent

P±(λ) Uλ(−T, T ) P∓(λ) = Uλ(−T, T ) P±(λ) P∓(λ) = 0. (4.2.2)

Hence, using (2.6.36) and (2.6.14) we obtain

∆N = ||U−+||2HS + ||U+−||2HS = 0, ∆Q = ||U+−||2HS − ||U−+||2HS = 0, (4.2.3)

what shows that no particle production is possible in such processes, independently on the
fact if Hλ is overcritical or not.

4.2.2 Scattering in a constant potential

Scattering in a “constant potential” is defined by (3.5.10)

Sλ = s-lim
t1→−∞
t2→+∞

eiH0t2e−iHλ(t2−t1)e−iH0t1 (4.2.4)

and corresponds in fact to a scattering on a potential switched on and off at infinity
(t → ±∞) with keeping asymptotic definition of free particles with respect to H0 (see
next section 4.2.3). Assume that Sλ given above exists (see section 3.5.1 for conditions).
Then P 0

± Sλ P
0
∓ exist as well. It turns out that Sλ commutes with H0 ([Tha92, Th. 8.3]

or [RS79, XI.3]) and hence with P 0
±. Therefore,

(Sλ)±∓ ≡ P 0
± Sλ P

0
∓ = 0, (4.2.5)

what guarantees that (Sλ)±∓ are Hilbert-Schmidt and the operator Sλ is implementable
by a unitary Ŝλ in F0. Unfortunately it implies also

∆N = ||S−+||2HS + ||S+−||2HS = 0, ∆Q = ||S+−||2HS − ||S−+||2HS = 0, (4.2.6)

i.e. no particle creation at all.

No particle creation in static external fields

In more detail, the corresponding Bogoliubov transformation between the in and out
particles does not mix the particle and antiparticle creation or annihilation operators, i.e.
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b̂′(P 0
+f) = b̂(P 0

+S
∗
λP

0
+f) + d̂∗(P 0

−S
∗
λP

0
+f) = b̂(S∗λP

0
+P

0
+f) + d̂∗(S∗λ P

0
−P

0
+︸ ︷︷ ︸

=0

S∗λf) = b̂(S∗λP
0
+f)

(4.2.7)

d̂∗′(P 0
−f) = b̂(P 0

+S
∗
λP

0
−f)+d̂∗(P 0

−S
∗
λP

0
−f) = b̂(S∗λ P

0
+P

0
−︸ ︷︷ ︸

=0

f)+d̂∗(S∗λP
0
−P

0
−S

∗
λf). = d̂∗(S∗λP

0
−f)

(4.2.8)
Therefore, as the theorem of Bongaarts states ([Bon70] or [Tha92, Th. 10.10]), no particles
are created in such a scattering process

(Ω0, N̂
′Ω0) =

(
Ω0,

∑
n

[
b̂∗′(P 0

+fn)b̂′(P 0
+fn) + d̂∗′(P 0

−fn)d̂′(P 0
−fn)

]
Ω0

)

=

(
Ω0,

∑
n

[
b̂∗(P 0

+S
∗
λfn)b̂(P 0

+S
∗
λfn) + d̂∗(P 0

−S
∗
λfn)d̂(P 0

−S
∗
λfn)

]
Ω0

)
= 0.

(4.2.9)

The above theorem is quite strong – it of course requires implementability of Sλ, but
this is guaranteed once the classical scattering operator Sλ exists. It is a bit surprising,
because there are some known examples of the static fields, which are expected to produce
particles, although there do not exist rigourous proofs. We consider the most known two:
the Klein’s paradox and the Schwinger effect.

Klein’s paradox

For simplicity, consider a one- instead of 3-dimensional physical space, what does not
change the nature of the problem, and a potential

V (x) =


0 for x < 0

U for x > a

monotonically growing for 0 ≤ x ≤ a,

(4.2.10)

with U > 0. As one can find already on the classical level, there exists a current D, if
U > 2 (U > 2mc2 in physical units), that is when there exists an energetic gap such that
solutions with energies in the gap behave as electrons for x → −∞ and as positrons as
x → +∞. In the linear case V (x) = vx for 0 ≤ x ≤ a the current is D ∼ exp(−C/v)
with some C > 0 [Sau31, Szc32]. In a smooth case, V (x) ∼ tanh(vx), it has a form,
which becomes universal for big momenta and behaves again like D ∼ exp(−C/v) ∼
exp

(
−C/ dV

dx

∣∣
x=0

)
[Sau32]. This is the reason for expecting, at least intuitively, a flow of

particles created in presence of the strong static potential. Yet this problem cannot be
solved within the one-particle classical Dirac theory. In order to construct a many-particle
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picture of a scattering process in Fock space, the classical scattering operator S must be
implemented. Unfortunately, it does not exist in the form (4.2.4) (i.e. the corresponding
strong limits do not exist). Bongaarts and Ruijsenaars have studied this problem rigorously
[BR76] and have introduced modified wave operators W±, which allowed to define some
modified scattering operator S̃. Unfortunately, they prove, for U > 2 this operator is not
implementable by any unitary operator Ŝ in F0, therefore, the scattering process in a
potential causing the “Klein paradox” cannot be described in the Fock space
of free fields.

Independently of the fact, whether such a potential is physical or not, the reason for the
unsuccessful trial to describe the scattering can be the failure of QED in external fields to
handle processes with too high rate of created particles. If particles (or particle-antiparticle
pairs) were continuously produced, their number after an infinitely long time, which is
needed in the scattering, would be infinite and the Hilbert-Schmidt norms of S±∓ would
necessarily have to be infinite, causing the scattering operator to be non-implementable
in Fock space. Physically, the many created charged particles would modify the external
electromagnetic field and surely avoid further creation. Since QED in external fields does
not include this backreaction effect, it is not surprising that it leads to mathematical
problems and fails to describe the physical situation. At the moment, it seems that the
only way to solve this problem rigorously is to adopt QED corrections describing properly
the backreaction of the created charges on the electromagnetic field, as it is the case in
full QED. This is unfortunately too complicated to be solved in even such a simple static
problem.

The Schwinger effect

An analogous problem occurs in the well-known Schwinger effect [Sch51], where the one-
dimensional potential has the form

V (x) = Ax. (4.2.11)

The line of arguments followed in the previous paragraph can be repeated.

4.2.3 Sudden switch on and off of the potential

Consider now processes with a sudden switch on and off of the potential: H0 → Hλ → H0,
which differ from the scattering in the previous section only by the fact that switching
happens at finite times, say −T,+T

Hλ(t) =


H0 for t < −T,

Hλ for − T < t < T,

H0 for t > T.

(4.2.12)
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The evolution is solved by means of two unitary propagators

Uλ(t2, t1) = exp(iHλ(t2 − t1)), for |t1|, |t2| < T (4.2.13)

U0(t2, t1) = exp(iH0(t2 − t1)), for t1, t2 < T or t1, t2 > T. (4.2.14)

A full propagator in the interesting case t1 < −T , t2 > T takes the form

Uλ,T (t2, t1) = U0(t2, T ) Uλ(T,−T ) U0(−T, t1). (4.2.15)

Such processes always create particles and antiparticles, because, in general,

[Uλ,T (t2, t1)]±∓ = P 0
± Uλ,T (t2, t1) P 0

∓ = U0(t2, T ) P 0
± Uλ(T,−T ) P 0

∓ U0(−T, t1) 6= 0
(4.2.16)

and

∆N = ||[Uλ,T (t2, t1)]−+||2HS + ||[Uλ,T (t2, t1)]+−||2HS > 0. (4.2.17)

Moreover, the particles are always created in pairs, what will be discussed in more gener-
ality in section 4.3, so that ||[Uλ,T (t2, t1)]+−||HS = ||[Uλ,T (t2, t1)]−+||HS and hence

∆Q = ||[Uλ,T (t2, t1)]+−||2HS − ||[Uλ,T (t2, t1)]−+||2HS = 0. (4.2.18)

In fact, processes relevant for particle production happen only in the period t ∈ [−T, T ],
what can be easily seen by calculating the expressions appearing in (4.2.17)

||[Uλ,T (t2, t1)]±∓||HS = ||P 0
± Uλ,T (t2, t1) P 0

∓||HS
= ||P 0

± U0(t2, T ) Uλ(T,−T ) U0(−T, t1) P 0
∓||HS

= ||U0(t2, T ) P 0
± Uλ(T,−T ) P 0

∓ U0(−T, t1)||HS
= ||P 0

± Uλ(T,−T ) P 0
∓||HS

(4.2.19)

and observing that they do not depend on t1, t2 (as long as t1 < −T , t2 > T ).

It can be shown that the limits t1 → −∞ and t2 → ∞ of Uλ,T (t2, t1) do not exist,
because of complex phases of the type exp(±iEtk), attached to the vectors, which do not
converge (actually, the strong limit does not exist, the weak limit is zero). To be able to
consider processes extending to infinitely long times one has to go over from the evolution
to the scattering operator

Sλ,T ≡ s-lim
t1→−∞
t2→+∞

U0(0, t2) Uλ,T (t2, t1) U0(t1, 0)

= s-lim
t1→−∞
t2→+∞

U0(0, t2) U0(t2, T ) Uλ(T,−T ) U0(−T, t1) U0(t1, 0)

= U0(0, T ) Uλ(T,−T ) U0(−T, 0).

(4.2.20)

Again, particle creation during the whole scattering is identical to that one of the evolution
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in t ∈ [−T, T ]

||[Sλ,T ]±∓||HS = ||P 0
± Sλ,T P

0
∓||HS

= ||P 0
± U0(0, T ) Uλ(T,−T ) U0(−T, 0) P 0

∓||HS
= ||U0(0, T ) P 0

± Uλ(T,−T ) P 0
∓ U0(−T, 0)||HS

= ||P 0
± Uλ(T,−T ) P 0

∓||HS ,

(4.2.21)

and hence

||[Sλ,T ]±∓||HS = ||[Uλ,T (t2, t1)]±∓||HS , (4.2.22)

what implies

∆Qλ,T = ||[Sλ,T ]+−||2HS − ||[Sλ,T ]−+||2HS = 0. (4.2.23)

∆Nλ,T = ||[Sλ,T ]−+||2HS + ||[Sλ,T ]+−||2HS > 0. (4.2.24)

From (4.2.20) and (4.2.4) it is straightforward to observe that

Sλ = s-lim
T→∞

Sλ,T ≡ Sλ,∞, (4.2.25)

i.e. the so-called “scattering on a constant potential” is just scattering on a potential
switched on and off at infinity (t→ ±∞).

The particle and charge production for Sλ,∞ was trivial

∆Nλ,∞ = 0, ∆Qλ,∞ = 0. (4.2.26)

The limit T → ∞ in (4.2.23) is straightforward and gives immediately (4.2.26). To show
that ∆Nλ,T → ∆Nλ,∞ = 0 as T →∞ in (4.2.24) we need some calculation.

Theorem 13

lim
T→∞

∆Nλ,T = lim
T→∞

||[Sλ,T ]−+||2HS + ||[Sλ,T ]+−||2HS = 0. (4.2.27)

Proof:
By virtue of (4.2.22) it is enough to show that

lim
T→∞

||[Uλ,T (t2, t1)]±∓||2HS = 0. (4.2.28)

Using a basis {fE} of generalized eigenfunctions of Hλ and writing T = t2 − t1 we have
(all integrals below are calculated over the spectrum of Hλ with a corresponding spectral
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measure dµ(E) what we omit for simplicity)

||[Uλ,T (t2, t1)]−+||2HS = ||P 0
−Uλ,T (t2, t1)P 0

+||2HS

=
∫
dE dE′ |(fE′ , P 0

−Uλ,T (t2, t1)P 0
+fE)|2

=
∫
dE dE′

∣∣∣∣∫ dE′′ (fE′ , P 0
−Uλ,T (t2, t1)fE′′)(fE′′ , P 0

+fE)
∣∣∣∣2

=
∫
dE dE′

∣∣∣∣∫ dE′′
(
fE′ , P

0
−e

−iE′′T fE′′
)

(fE′′ , P 0
+fE)

∣∣∣∣2
=
∫
dE dE′

∫
dE′′′ e−iE′′′T (fE′ , P 0

−fE′′′)(fE′′′ , P 0
+fE)

·
∫
dE′′ e−iE

′′T (fE′ , P 0
−fE′′)(fE′′ , P

0
+fE)

=
∫
dE dE′ dE′′ dE′′′ e−i(E

′′−E′′′)T (P 0
−fE′′′ , fE′)(P

0
+fE , fE′′′)(fE′ , P

0
−fE′′)(fE′′ , P

0
+fE)

=
∫
dE dE′ dE′′ dE′′′ e−i(E

′′−E′′′)T (P 0
+fE′′ , fE)(fE , P 0

+fE′′′)(P
0
−fE′′′ , fE′)(fE′ , P

0
−fE′′)

=
∫
dE′′ dE′′′ e−i(E

′′−E′′′)T (P 0
+fE′′ , P

0
+fE′′′)(P

0
−fE′′′ , P

0
−fE′′)

=
∫
dE dE′ e−i(E−E

′)T (P 0
+fE , fE′)(fE′ , P

0
−fE)

≡
∫
dE dE′ e−i(E−E

′)TF (E,E′) ≡ F̃ (T,−T ) ≡ G(T ),

(4.2.29)

what shows that the estimated function G(T ) can be written as a (generalized) Fourier
transform F̃ (T,−T ) of some function F (E,E′). We prove that G(T ) → 0 as T → ∞ by
showing that F̃ ∈ C∞(R2), i.e. a smooth function vanishing at infinity. It is the case when
F ∈ L1(R2) [RS75, Th. IX.7]. So we must only show that the following integral is finite

∫
dE dE′ |f(E,E′)| =

∫
dE dE′ |(P 0

+fE , fE′)(fE′ , P
0
−fE)|

=
∫
fE∈H−

dE

∫
fE′∈H−

dE′ |(P 0
+P−fE , P−fE′)(P−fE′ , P

0
−P−fE)|

+
∫
fE∈H−

dE

∫
fE′∈H+

dE′ |(P 0
+P−fE , P+fE′)(P+fE′ , P

0
−P−fE)|

+
∫
fE∈H+

dE

∫
fE′∈H−

dE′ |(P 0
+P+fE , P−fE′)(P−fE′ , P 0

−P+fE)|

+
∫
fE∈H+

dE

∫
fE′∈H+

dE′ |(P 0
+P+fE , P+fE′)(P+fE′ , P

0
−P+fE)|.

(4.2.30)
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We use the following estimates for the first

|(P 0
+P−fE , P−fE′)(P−fE′ , P

0
−︸︷︷︸

1−P 0
+

P−fE)|

= |(P 0
+P−fE , P−fE′)(P−fE′ , P−fE)− (P 0

+P−fE , P−fE′)(P−fE′ , P
0
+P−fE)|

≤ |(P 0
+P−fE , P−fE′)|δ(E − E′) + |(P−fE′ , P 0

+P−fE)|2

(4.2.31)

and for the second term

|(P 0
+P−fE , P+fE′)(P+fE′ , P

0
−︸︷︷︸

1−P 0
+

P−fE)|

= |(P 0
+P−fE , P+fE′) (P+fE′ , P−fE)︸ ︷︷ ︸

0

−(P 0
+P−fE , P+fE′)(P+fE′ , P

0
+P−fE)|

= |(P+fE′ , P
0
+P−fE)|2.

(4.2.32)

The third and fourth terms are transformed analogously using the substitution P 0
+ = 1−P 0

−
instead. We obtain∫

dE dE′ |f(E,E′)|

≤
∫
fE∈H−

dE

∫
fE′∈H−

dE′ [|(P 0
+P−fE , P−fE′)|δ(E − E′) + |(P−fE′ , P 0

+P−fE)|2
]

+
∫
fE∈H−

dE

∫
fE′∈H+

dE′ |(P+fE′ , P
0
+P−fE)|2

+
∫
fE∈H+

dE

∫
fE′∈H−

dE′ |(P−fE′ , P 0
−P+fE)|2

+
∫
fE∈H+

dE

∫
fE′∈H+

dE′ [|(P 0
−P+fE , P+fE′)|δ(E − E′) + |(P+fE′ , P

0
−P+fE)|2

]

≤
∫
fE∈H−

dE |(P 0
+P−fE , P

0
+P−fE)|+

∫
fE∈H−

dE

∫
fE′∈H−

dE′ |(fE′ , P−P 0
+P−fE)|2

+
∫
fE∈H−

dE

∫
fE′∈H+

dE′ |(fE′ , P 0
+P−fE)|2

+
∫
fE∈H+

dE

∫
fE′∈H−

dE′ |(fE′ , P 0
−P+fE)|2

+
∫
fE∈H+

dE |(P 0
−P+fE , P

0
−P+fE)|+

∫
fE∈H+

dE

∫
fE′∈H+

dE′ |(fE′ , P+P
0
−P+fE)|2

= ||P 0
+P−||2HS + ||P 0

+P−||2HS + ||P 0
+P−||2HS

+ ||P 0
−P+||2HS + ||P 0

−P+||2HS + ||P 0
−P+||2HS <∞,

(4.2.33)

because for regular potentials P 0
±P∓ are Hilbert-Schmidt. 2

For answering the question of implementability of Uλ,T (t2, t1) or Sλ,T (equivalent be-
cause of (4.2.22)) one cannot use the theorem 8, because necessary conditions are violated
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by the discontinuous time variation of the potential’s strength (see example below theorem
8 for more details). However, using parts of the proof of the above theorem we can prove
the following

Theorem 14 The above defined unitary operator Sλ,T is implementable, i.e. [Sλ,T ]±∓ are
Hilbert-Schmidt.

Proof:
Using (4.2.22) it is enough to show that [Uλ,T (t2, t1)]±∓ are Hilbert-Schmidt (and hence
Uλ,T (t2, t1) is implementable. In the proof of theorem 13 we have shown (4.2.29)

||[Uλ,T (t2, t1)]−+||2HS =
∫
dE dE′ e−i(E−E

′)TF (E,E′). (4.2.34)

So in order to prove finiteness of ||[Uλ,T (t2, t1)]−+||HS it is enough to show that∣∣∣∣∫ dE dE′ e−i(E−E
′)TF (E,E′)

∣∣∣∣ ≤ ∫ dE dE′ |F (E,E′)| = ||F ||1 (4.2.35)

is finite. This has been already shown in (4.2.30)-(4.2.33). 2

We will come back to this question later studying the example of a spherical potential
well in section 6.3.

Spectrum of created particles

At this place we want to introduce the notion of a spectrum of created (anti-)particles. It
is a distribution, in the scale of energy, of the (anti-)particle creation probability (2.8.20)-
(2.8.21)

N+
E = ||P 0

− S
∗
λ,T P

0
+ φ+

E ||
2, N−

E = ||P 0
+ S∗λ,T P

0
− φ

−
E ||

2, (4.2.36)

for φ±E ∈ H0
±, where {φE} is a basis of (generalized) eigenvectors of H0. These distributions

can be rewritten as

N+
E =

∫
σ
|(φE′ , P 0

− S
∗
λ,T P

0
+ φE)|2 dµ0(E′) =

∫
σ−

|(φE′ , S∗λ,T φE)|2 dE′

=
∫
σ−

|SEE′λ,T |2dE′ for E ∈ σ+,

N−
E =

∫
σ+

|SEE′λ,T |2dE′ for E ∈ σ−,

(4.2.37)

where σ = σ(H0) = (−∞,−1] ∪ [1,∞), σ± = σ(P 0
±H0), dµ0(E) = dE and SEE

′
λ,T are

matrix elements of Sλ,T . For the considered switch on and off processes they can be
exactly calculated if we introduce {χE} as a basis of (generalized) eigenvectors of Hλ.
Then they read

SEE
′

λ,T =
∫
σλ

(φE , χE′′)ei(E+E′−2E′′)T (χE′′ , φE′) dµλ(E′′), (4.2.38)
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where σλ = σ(Hλ) = (−∞,−1]∪ [1,∞)∪{En, n = 1, 2, ... (for bound states)} and dµλ(E)
is a corresponding spectral measure. Then

N−
E =

∫
σ+

dE′
∫
σλ

dµλ(E′′
1 )
∫
σλ

dµλ(E′′
2 ) e−i(E

′′
1−E′′2 )T

· (φE , χE′′2 )(χE′′2 , φE′)(φE′ , χE′′1 )(χE′′1 , φE) (4.2.39)

We see that if T = 0 (what corresponds to a static Hamiltonian H0 with no jumps) then
the complex phase vanishes and the two integrals over dµλ(E′′

i ), i = 1, 2 reduce to identity
due to completeness of the basis χE . Finally, the remaining scalar products (φE , φE′) give
zero, because φE ∈ H0

− and φE′ ∈ H0
+ are orthogonal. The limit T → ∞ must also give

zero, but that is due to cancellation of the fast-varying phases and is not so obvious to
see.

4.2.4 Sudden switch on of the potential

The situation which we have analyzed in section 4.1.1 comparing two Hamiltonians H0

and Hλ with corresponding particle definitions and vacua can be interpreted in terms of
a process which proceeds in time. To obtain as a result the set of particles created from
vacuum Ω0, which is described by (4.1.11), we must start the time process from the free
Hamiltonian H0 and initial vacuum state Ω0, and finish with the (weakly) overcritical
Hamiltonian Hλ+

1
. Since the Bogoliubov transformation between the free particles and

antiparticles b̂∗k, d̂
∗
k and those at λ = λ+

1 is nothing else than projections following from the
change of projectors P 0

± to P±(λ+
1 ), the corresponding time-dependent process must be

a sudden change of the Hamiltonian from H0 to Hλ+
1

, which otherwise remains constant,
i.e.

H(t) =

H0 for t < 0

Hλ+
1

for t > 0
(4.2.40)

with the whole time-process lasting from some −T < 0 to some T > 0. As discussed in
section 4.1.1, such a process creates particle-antiparticle pairs and one special antiparticle,
with respect to the final static Hamiltonian Hλ+

1
. The unitary evolution operator in H

has the form

UT ≡ U(T,−T ) = Uλ+
1

(T, 0) U0(0,−T ) ≡ exp(−iHλ+
1
T ) exp(−iH0T ), T > 0.

(4.2.41)
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The charge creation can be calculated directly

∆Q[U ] = ||[UT ]+−||2HS − ||[UT ]−+||2HS
= ||P+(λ+

1 ) UT P 0
−||2HS − ||P−(λ+

1 ) UT P 0
+||2HS =

= ||P+(λ+
1 ) e

−iH
λ+
1
T
e−iH0T P 0

−||2HS − ||P−(λ+
1 ) e

−iH
λ+
1
T
e−iH0T P 0

+||2HS

= ||e
−iH

λ+
1
T
P+(λ+

1 ) P 0
− e

−iH0T ||2HS − ||e
−iH

λ+
1
T
P−(λ+

1 ) P 0
+ e−iH0T ||2HS

= ||P+(λ+
1 ) P 0

−||2HS − ||P−(λ+
1 ) P 0

+||2HS
= −1,

(4.2.42)

what agrees with (2.6.13).
If we define the scattering operator by

S ≡ s-lim
T1→−∞
T2→+∞

Uλ+
1

(0, T2) U(T2, T1) U0(T1, 0) (4.2.43)

then it reduces to

S = s-lim
T1→−∞
T2→+∞

Uλ+
1

(0, T2) Uλ+
1

(T2, 0) U0(0, T1) U0(T1, 0) = 1. (4.2.44)

It holds only under the assumption that the potential is switched on once and remains so
forever. Although it looks trivial, it has nontrivial matrix elements if one calculates them
with respect to different bases. S maps formally H = H0

+⊕H0
− on H = Hλ+

1
+ ⊕Hλ+

1
− , where

H0
± ≡ P 0

±H and Hλ+
1
± ≡ P±(λ+

1 )H. With orthonormal bases {φ±n } ∈ H0
± and {χ±n } ∈ H

λ+
1
±

we find
[S±±′ ]mn ≡ (χ±m, Sφ

±′
n ) = (χ±m, φ

±′
n ), (4.2.45)

what reflects the fact that the whole process reduces to a single projection operation. The
charge creation is then very simple to calculate

∆Q[S] = ||S+−||2HS − ||S−+||2HS
= ||P+(λ+

1 ) P 0
−||2HS − ||P−(λ+

1 ) P 0
+||2HS

= −1.

(4.2.46)

Here, the same comment must be made as at the end of section 4.1.1, that the final
state ψ, in which the antiparticle is created, is not identical with the weakly overcritical
bound state φ1 (−1 < E1 < 0), but it partially belongs to the negative continuum.
Physically, it is expected that in such strongly time dependent evolution processes with
a sudden jump of the potential the energy Ep > 0 of the created positron may be higher
than for the corresponding positron ground state, i.e. Ep > |E1|. Hence, there may appear
a non-vanishing probability that the antiparticle will get scattered (Ep > 1). Moreover,
additional pair creation (due to the big time variation of the potential) is expected, too.

Both, the evolution UT and scattering S are implementable when

||[UT ]±∓||HS = ||S±∓||HS = ||P±(λ+
1 ) P 0

∓||HS , (4.2.47)

i.e. when the switched potential is regular (in the sense of theorem 6).
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4.3 Scattering on general time-dependent potentials

4.3.1 Switch on and off of the potential

In this section we consider general scattering processes defined by evolution U(t2, t1) in a
general time-dependent potential V (t). The Hamiltonian H(t) ≡ H0 + V (t) is therefore
time-dependent, but since we assume V (t) → 0 as t→ ±∞ the initial and final Hamilto-
nians, which will define particle states, are equal: H(−∞) = H(+∞) = H0. We assume
S±∓ are Hilbert-Schmidt, hence S is implementable and gives unitary Û according to
theorem 3 (with V = 1). Further, we assume dim kerS++ > 0 so that the Û0 part of
the operator Û is non-trivial and creates particles from vacuum due to overcriticality of
the potential. It turns out that in these processes particles are created only in pairs with
antiparticles, so that the total charge does not change. It follows from the commutation
Q̂Û = ÛQ̂, which is proved in a subcritical case in [Sch95]. In general case we follow the
proof of Seipp [Sei82].

Consider a family of scattering processes S(λ) generated by Hλ(t) = H0 +λV (t). S(λ)
can be constructed by a (norm convergent) Dyson series

S(λ) =
∞∑
n=0

(−iλ)nSn (4.3.1)

Sn ≡
∫ +∞

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtnṼ (t1) . . . Ṽ (tn), (4.3.2)

with

Ṽ (t) ≡ eitH0V (t)e−itH0 . (4.3.3)

It can be shown that such S(λ) is analytic in λ. Therefore, it is also continuous in λ.
Further, S(λ)++, S(λ)∗++, S(λ)−− and S(λ)∗−− are analytic and continuous in λ, too.

Theorem 15

ind (S(λ)++) = 0 and ind (S(λ)−−) = 0. (4.3.4)

Proof:
The index is constant on a continuous family of (Fredholm) operators. Since S(0) = 1 it
holds

ind (S(0)++) = dim kerS(0)++ − dim kerS(0)∗++ = 0, (4.3.5)

ind (S(0)−−) = dim kerS(0)−− − dim kerS(0)∗−− = 0. (4.3.6)

Then, by continuity in λ, we get (4.3.4). 2

From the above theorem together with theorem 5 follows immediately that

∆Q[S(λ)] = −ind (S(λ)++) = ind (S(λ)−−) = 0, (4.3.7)
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i.e. that the scattering processes S(λ) do not change the total charge and particles may
be created only in pairs with antiparticles.

In other words, from the above theorem follows

dim kerS(λ)++ = dim kerS(λ)∗++ = dim kerS(λ)−− (4.3.8)

n+ = n−, (4.3.9)

i.e. the number of special particles and antiparticles states are equal, what can also be
stated as (cf. (2.3.69)-(2.3.70))

∃f ∈ H+ : (S−+)∗S−+f = f ⇔ ∃g ∈ H− : (S+−)∗S+−g = g. (4.3.10)

Consider now S ≡ S(1) and assume it is strong (dim kerS++ + dim kerS−− > 0). In
order to find the particle production from vacuum in the scattering process S we need to
calculate ÛΩ. To construct the implementer Û we need to apply theorem 3 for U = S

and V = 1. With n∗ ≡ n+ = n− we find

Û Ω = C0 d̂
∗
n∗ . . . d̂

∗
1b̂
∗
n∗ . . . b̂

∗
1 exp

∑
k,l

Dklb̂
∗
kd̂
∗
l

Ω

= C0 d̂
∗
n∗ . . . d̂

∗
1b̂
∗
n∗ . . . b̂

∗
1

∏
k,l

(
1 +Dklb̂

∗
kd̂
∗
l

)
Ω.

(4.3.11)

Physically, two interesting questions arise. First, if the n∗ special pairs created by
d̂∗n∗ . . . d̂

∗
1 b̂

∗
n∗ . . . b̂

∗
1 have any special properties in contrast to (in general, infinite number

of) pairs created by
∏
k,l

(
1 +Dklb̂

∗
kd̂
∗
l

)
to make them physically distinguishable in de-

tection experiments? Second, if (the number and corresponding wave functions of) the
special pairs are stable under small perturbations of the potential?

To the first question one can say, that the probability of creation of the special
(anti-)particles is 1, while for all other it is less than 1 (but may be arbitrarily near
1). Although in a single detection there is (mathematically) no reason to expect different
properties of the particles of both kinds.

The answer to the second question makes the special particles observationally even
more marginal, namely it turns out that the number n∗ of the special pairs is very unstable
under perturbations of the potential and is almost always equal to zero. To show that
consider again a class of scattering processes S(λ) which are generated by time-dependent
potentials of a different strength (∼ λ). The set of values of λ for which there are special
particle states turns out to be only discrete, what is stated in the following

Theorem 16 The set of values of λ for which n∗ = dim kerS(λ)++ > 0 is discrete.

Proof: dim kerS(λ)++ > 0 implies that there exists f ∈ H+ such that (S(λ)−+)∗S(λ)−+f =
f , i.e. (S(λ)−+)∗S(λ)−+ = P+S

∗(λ)P−S(λ)P+ has an eigenvalue 1, but this is possible
either for a discrete set of values of λ or for all λ, what follows from the analytic Fredholm
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theorem [RS72, Th.VI.14]. The latter is never the case, because for λ = 0 the operator is
P+S

∗(0)P−S(0)P+ = P+P−P+ = 0. 2

Moreover, it is only possible when [Sei82, Th.3]∫ +∞

−∞
||λV (t)|| dt ≥ ln(2), (4.3.12)

i.e. for
|λ| ≥ ln(2)∫ +∞

−∞ ||V (t)|| dt
. (4.3.13)

From the above theorem follows that even if for some λ there are special particle
states, they get destroyed when one perturbs the potential λV (t) by infinitesi-
mally changing λ. Creation of special (anti-)particles seems to be independent
from whether the potential becomes overcritical during the evolution.

4.3.2 Switch on of the potential

The situation changes completely, compared to the previous section, if the potential only
switches on, but does not switch off during the evolution

lim
t→−∞

V (t) = 0, lim
t→+∞

V (t) ≡ V∞ 6= 0 (4.3.14)

and therefore the Hamiltonian defined as Hλ(t) = H0 + λV (t) reaches two different limits
as t→ ±∞

H0 = Hλ(−∞) 6= Hλ(+∞) = H0 + λV∞ ≡ H∞
λ . (4.3.15)

The initial projectors

P± ≡ P±(H0) =
1± sgn(H0)

2
(4.3.16)

remain unchanged, but differ from the final ones

P ′±(λ) ≡ P±(H∞
λ ) =

1± sgn(H∞
λ )

2
. (4.3.17)

Now, the scattering operator is defined as

S(λ) = s-lim
t1→−∞
t2→+∞

eiH
∞
λ t2Uλ(t2, t1)e−iH0t1 . (4.3.18)

The partial operators are defined as

S(λ)±′± ≡ P ′±′(λ) S(λ) P± (4.3.19)

and are no more analytic nor even continuous in λ, because the projectors P ′±(λ) are
discontinuous at the critical values of λ, what has been discussed in section 4.1.1. Therefore
it is no longer possible to show ind (S(λ)++) = 0 (cf. theorem 15), and hence the scattering
process S(λ) may change the total charge (which is calculated with respect to two different
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vacua). It is the situation when the final vacuum becomes a charged state relative to the
initial one, discussed in section 4.1.

Unfortunately, the special states in these processes, in general, bear the same property
as those in the previous section – they are highly unstable under small perturbations of
the potential. In the following we argue in analogy to theorem 16, but first we have
to construct the series representation for S(λ) being analytic in λ. The Dyson series
constructed in (4.3.1)-(4.3.2) cannot be used now, because the integrals in (4.3.2) diverge
as t→∞. This follows from the fact that V (t) → V∞ 6= 0 and hence V (t) is not integrable
(i.e.

∫ +∞
−∞ V (t)dt diverges). Therefore we need to modify this construction. The (Dyson)

series expansion for the evolution operator is

Uλ(t, s) ≡ e−itH0Ũ−λ (t, s)eisH0 (4.3.20)

Ũ−λ (t, s) =
∞∑
n=0

(−iλ)n
∫ t

s
dt1

∫ t1

s
dt2 . . .

∫ tn−1

s
dtnṼ (t1) . . . Ṽ (tn), (4.3.21)

with
Ṽ (t) ≡ eitH0V (t)e−itH0 and Hλ(t) = H0 + λV (t). (4.3.22)

It can be used to define the “past” wave operator

W (λ)− ≡ s-lim
s→−∞

Uλ(0, s)e−isH0 = s-lim
s→−∞

Ũ−λ (0, s), (4.3.23)

which is analytic in λ. For the “future” wave operator we need a different expansion,
with H0 replaced by H∞

λ and V (t) by V ′(t) ≡ V (t)−V∞, to guarantee convergence of the
integrals at t→∞

Uλ(t, s) ≡ e−itH
∞
λ Ũ+

λ (t, s)eisH
∞
λ (4.3.24)

Ũ+
λ (t, s) =

∞∑
n=0

(−iλ)n
∫ t

s
dt1

∫ t1

s
dt2 . . .

∫ tn−1

s
dtnṼ∞(t1) . . . Ṽ∞(tn), (4.3.25)

with
Ṽ∞(t) ≡ eitH

∞
λ V ′(t)e−itH

∞
λ and Hλ(t) = H∞

λ + λV ′(t). (4.3.26)

By this definition V ′(t) → 0 as t→∞. Now, the “future” wave operator reads

W (λ)+ ≡ s-lim
s→+∞

Uλ(0, s)e−isH
∞
λ = s-lim

s→+∞
Ũ+
λ (0, s), (4.3.27)

which is analytic in λ, too. Finally, we obtain the scattering operator

S(λ) = (W (λ)+)∗W (λ)− = s-lim
s→−∞
t→+∞

(Ũ+
λ (0, t))∗Ũ−λ (0, s) (4.3.28)

and it is analytic in λ. This fact will be used in the following.
As a next step we need to study if the scattering process S(λ) implemented in Fock

space by Ŝλ creates single particles, especially if it happens due to the overcriticality
of the final potential V∞. The analysis of the structure of the implementer Ŝλ is more
complicated than in the previous section, because we pose a different question here:
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Does Ŝλ, acting on the initial vacuum Ω defined by H0, produce special
(anti-)particles with respect to the final vacuum Ω′

λ defined by H∞
λ ? That is

ŜλΩ = C0 d̂
′∗
m . . . d̂

′∗
1 b̂

′∗
n . . . b̂

′∗
1 Ω′

λ ? (4.3.29)

(where, for simplicity, we have skipped the factor
∏
k,l

(
1 +Dklb̂

′∗
k d̂

′∗
l

)
producing

pairs with probability less than 1).

The nontrivial point is that the special (anti-)particle states b̂′∗n , d̂
′∗
m are defined with respect

to the final vacuum Ω′
λ (in short “final” particles) and are different from the “initial”

particles b̂∗n, d̂
∗
m defined with respect to Ω. Theorem 3 does not provide a method for

the construction of the operator Ŝλ in such a form. Therefore we consider a following
modified process: we attach to the scattering process S(λ) : H0

+ ⊕ H0
− → Hλ

+ ⊕ Hλ
−

(with bases {φ±n } ∈ H0
± and {χ±n } ∈ Hλ

±) another process mapping back on the initial
Hilbert subspaces, namely V (λ) : Hλ

± → H0
± and defined by V (λ)χ±n = φ±n (dependence

of V on λ originates from the definition of the basis vectors χ±n ∈ Hλ
±). So we obtain

U(λ) = V (λ)S(λ) whose implementer Ûλ can be constructed via theorem 3. Also the
implementer V̂λ can be constructed by the same theorem. Since Ûλ = V̂λŜλ we can find
Ŝλ = V̂ ∗

λ Ûλ. Since the action of V̂ ∗
λ on the operators and on the vacuum has a compact

form

V̂ ∗
λ b̂

∗
nV̂λ = b̂′∗n , V̂ ∗

λ d̂
∗
nV̂λ = d̂′∗n , V̂ ∗

λ Ω = Ω′
λ, (4.3.30)

we observe that acting with V̂λ on both sides of (4.3.29) we get

ÛλΩ = V̂λŜλΩ = V̂λ

(
C0 d̂

′∗
m . . . d̂

′∗
1 b̂

′∗
n . . . b̂

′∗
1 Ω′

λ

)
= C0 d̂

∗
m . . . d̂

∗
1b̂
∗
n . . . b̂

∗
1 Ω, (4.3.31)

i.e. Ûλ produces m special (“initial”) antiparticles and n special (“initial”) particles from
vacuum. In the following we consider the case m = 1 and n = 0. The reasoning for
any m and n is analogous, but just this case is especially interesting in connection with
overcritical potentials .

Since the antiparticle creating process U(λ) consists of two steps, S(λ) and V (λ), there
appears a natural question if the antiparticle is created completely in one of the two steps
or somehow partially in both, so that it fully appears only after both steps. It turns out
that the latter is impossible and

Theorem 17 A single special antiparticle created by U = V S must be created either by
S or by V . It follows from

ind (P ′+UP+) = ind (P ′+SP+) + ind (P ′+V P+). (4.3.32)
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Proof: Using the theorem 2 we find

−ind (P ′+UP+) = Tr(U∗P ′+U − P+) = Tr(S∗V ∗P ′+V S − P+)

= Tr(S∗V ∗P ′+V S − S∗P+S) + Tr(S∗P+S − P+)

= Tr(S∗(V ∗P ′+V − P+)S) + Tr(S∗P+S − P+)

= Tr(V ∗P ′+V − P+) + Tr(S∗P+S − P+)

= −ind (P ′+V P+)− ind (P+SP+).

(4.3.33)

Since U creates a single special antiparticle we have ind (P ′+UP+) = 1, but in

ind (P ′+UP+) = ind (P ′+V P+) + ind (P+SP+) (4.3.34)

every index is an integer number. Thus, at least one of the indices on the right-hand side
must be greater or equal 1, what means that either V or S creates (at least) one special
antiparticle. 2

Next, by an analytic argument we will show that the special (anti-)particles created by
Ŝλ w.r.t. the initial vacuum Ω are unstable under small variations of λ, while those created
by V̂λ are stable if the final potential is overcritical. In other words, the stable creation of
special (anti-)particles, if it should take place, is not due to the scattering process itself,
but to the (overcritical) structure of the final vacuum Ω′

λ.
For S(λ) we repeat the reasoning behind theorem 16. The fact that Ŝλ creates special

antiparticles is equivalent to that (S(λ)−+)∗S(λ)−+ has eigenvalue 1 (cf. (2.3.69)). This
operator

(S(λ)−+)∗S(λ)−+ = P+S
∗(λ)P−S(λ)P+ (4.3.35)

is analytic in λ, because S(λ) is analytic, what has been shown above. Therefore by
the analytic Fredholm theorem it can have eigenvalue 1 either for all λ or only for
isolated values of λ. The first case does not hold, because for λ = 0 the operator is
P+S

∗(0)P−S(0)P+ = P+P−P+ = 0. The same can be shown for the creation of special
particles (i.e. for S(λ)+− instead of S(λ)−+). So we have shown that the creation of spe-
cial “initial” particles and antiparticles by Ŝλ in highly unstable under small perturbations
of λ.

The situation with V (λ) is different. Since P±V (λ) = V (λ)P ′±(λ), the operator

(V (λ)−+)∗V (λ)−+ = P+V
∗(λ)P−V (λ)P+ = P+V

∗(λ)V (λ)P ′−(λ)P+ = P+P
′
−(λ)P+

(4.3.36)
has eigenvalue 1 if and only if there exists a vector ψλ ∈ H0

+∩Hλ
− for which P ′−(λ)P+ψλ =

ψλ. As has been discussed in section 4.1.1, this is the case for overcritical potentials, i.e.
when λ > λ1, where λ1 is defined by the condition that the energy of the lowest bound state
(the smallest eigenvalue of Hλ) crosses zero. At λ = λ1 the projectors P ′±(λ), otherwise
analytic in λ, change discontinuously. Therefore there is not much use of the analytic
Fredholm theorem. It is clear that for λ < λ1 the above operator has no eigenvalue 1 and



110 4. Overcritical fields and spontaneous particle creation

for all λ > λ1 it has. Exactly the same holds for the creation of special antiparticles by
V̂λ

V̂λΩ =

Ω, λ < λ1,

d̂∗(ψ′λ)Ω, λ > λ1,
(4.3.37)

with ψ′λ ≡ V (λ)ψλ ∈ H0
−. In other words, it is due to change of structure of the final

vacuum Ω′
λ with respect to Ω

Ω =

V ∗
λ Ω = Ω′

λ, λ < λ1,

V ∗
λ d̂

∗(ψ′λ)Ω = d̂′∗(ψλ)Ω′
λ, λ > λ1.

(4.3.38)

Now, we can combine the two results for Ŝλ and V̂λ. It turns out that the stable
creation of special antiparticles from vacuum can happen only when the creation is due to
V̂λ, what is the case for overcritical final potentials (λ > λ1). But we cannot forget that
then Ŝλ must fulfill further conditions in order to allow Ûλ = V̂λŜλ for special antiparticle
creation. Let us now consider what the conditions must be (assuming λ > λ1 in the
following). Antiparticle creation

ÛλΩ = d̂∗(ψ′λ)Ω (4.3.39)

is equivalent to

ŜλΩ = V̂ ∗
λ ÛλΩ = V̂ ∗

(
d̂∗(ψ′λ)Ω

)
= d̂′∗(ψλ)Ω′

λ

(or, alternatively:) = V̂ ∗
λ ÛλV̂λV̂

∗
λ Ω = (V̂ ∗

λ ÛλV̂λ)Ω′
λ = d̂′∗(ψλ)Ω′

λ

(4.3.40)

but from (4.3.38) follows that d̂′∗(ψλ)Ω′
λ = Ω, what gives

ŜλΩ = Ω (4.3.41)

(where we consequently ignore creation of pairs with probability less than 1 by factors of
the form

∏
k,l

(
1 +Aklb̂

∗
kd̂

∗
l

)
).

At this point we see for the first time the spontaneous character of the special (anti-)par-
ticle creation in these processes, namely Ŝλ produces no special (anti-)particles with respect
to Ω, but produces some with respect to Ω′

λ

ŜλΩ =

Ω (no (anti-)particles),

d̂′∗(ψλ)Ω′
λ (one special antiparticle).

(4.3.42)

In fact, creation of the antiparticle is due to the difference between the initial and final
ground states Ω = d̂′∗(ψλ)Ω′

λ 6= Ω′
λ, what is physically described as a decay of the vacuum

state Ω, which is a ground state with respect to the initial Hamiltonian, but ceases to be
a ground state with respect to the final Hamiltonian, to the charged Ω′

λ. Therefore, the
creation of such special (anti-)particles is called spontaneous particle creation.
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While the total charge in terms of the initial particle definition cannot change even in
the evolution to the final overcritical potential

q(t) ≡ (Ûλ Ω, Q̂ Ûλ Ω) = (Ω, Û∗λ Q̂ Ûλ Ω)

= ||(Uλ)+−||2HS − ||(Uλ)−+||2HS = −ind ((Uλ)++) = 0
(4.3.43)

according to theorem 15, it changes in terms of the final particles, defined with respect to
the final vacuum,

q′(t) ≡ (Ûλ Ω, Q̂′ Ûλ Ω) = (Ω, Û∗λ V̂
∗
λ Q̂ V̂λ Ûλ Ω)

= ||(VλUλ)+−||2HS − ||(VλUλ)−+||2HS =

= ||P+VλUλP−||2HS − ||P−VλUλP+||2HS =

= ||VλP ′+UλP−||2HS − ||VλP ′−UλP+||2HS =

= ||P ′+UλP−||2HS − ||P ′−UλP+||2HS = −ind (P ′+UλP+) = −1

(4.3.44)

in our case, what confirms that one antiparticle is created with respect to Ω′
λ. Therefore

it cannot be claimed, on the basis of (4.3.43), that no spontaneous particle creation may
occur (as was done in [CO82]), because one has always to consider particles defined with
respect to the final Hamiltonian, i.e. with respect to the final vacuum state, as is done in
(4.3.44).

To have a successful antiparticle creation according to the above scheme, it must hold

V (λ)−+ψλ = ψ′λ with ||ψ′λ|| = ||ψλ|| = 1, (4.3.45)

or
ψλ = (V (λ)−+)∗ψ′λ (4.3.46)

and
||U(λ)−+)∗ψ′λ|| = ||P+U(λ)∗P−ψ′λ|| = 1. (4.3.47)

Since
(U(λ)−+)∗ψ′λ = P+S(λ)∗V ∗(λ)P−ψ′λ = P+S

∗(λ)P+ψλ, (4.3.48)

we get the expected condition on S(λ)

||P+S
∗(λ)P+ψλ|| = 1. (4.3.49)

It can be reformulated as a condition that

Pψλ
S(λ)P+S

∗(λ)Pψλ
(4.3.50)

(Pψλ
means projection on state ψλ) has an eigenvalue 1 (with the obvious eigenvector ψλ).

Because this operator is analytic in λ (Pψλ
is analytic, because ψλ is), we again by use

of the analytic Fredholm theorem conclude that it is the case either for all λ or only for
isolated values of λ. In the latter case the whole special antiparticle creation by Ûλ (and
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thus the special “final” antiparticle creation with respect to Ω′
λ by Ŝλ) will be unstable

under small variations of λ. The first case is not so simple to eliminate, but it seems
highly improbable that any, not specially prepared (as e.g. in adiabatic scattering), will
have this property. Unfortunately, we were unable to eliminate this possibility in general
by a rigorous proof. Nonetheless, using the above argumentation, we conclude that the
special “final” (anti-)particle creation (with respect to Ω′

λ) in the scattering
process where the potential is only switched on is, in general (except specially
prepared processes), unstable under small variations of λ. On the other hand,
if it should be possible then only for potentials, whose final value is overcritical.

4.4 Scattering in the adiabatic limit

Our goal is to find scattering processes which lead to (stable) production of special par-
ticles and/or antiparticles exclusively due to the overcriticality of the potential, i.e. to
spontaneous particle creation. From the previous section we know that in the processes
with switch on and off of the potential (standard scattering) the special particles and an-
tiparticles must be created in equal numbers, i.e. in pairs. However, in these processes also
many other (dynamical) pairs are created, due to the time-dependence of the potential.
Although these two kinds of pairs can be distinguished mathematically (probability of spe-
cial pairs is exactly 1, while of all other pairs is less than 1), they cannot be distinguished
in the detection experiments, because all other parameters can be identical. In case of a
non-standard scattering with only switch on of the potential the special (anti-)particles
do not have to be created in pairs, so e.g. one antiparticle can be created with respect
to the new final vacuum (which itself gets charged w.r.t. the initial one). It would be a
clear experimental signature of spontaneous particle creation, if an odd number of created
(anti-)particles could be observed or the total charge would change. Unfortunately, in
both types of the scattering processes the creation of special (anti-)particles is unstable
under small variations of the potential’s strength, what means that an arbitrarily small
change in the strength of the potential during the evolution destroys the effect of creation
of special (anti-)particles. It seems to make the effect physically irrelevant, what has been
postulated in [SS82].

Before we will try to overcome these problems, we should ask the question, which
properties, from the physical point of view, are relevant for observing the signatures of
spontaneous (anti-)particle creation. In a stronger sense, it should be a stable (under
small perturbations of the potential) creation of only special pairs, in the switch-on-off
case, and only special antiparticles (with the change of the total charge) in the switch-
on case. In a weaker sense, we can try to relax the stability condition and check what
happens near the point, where spontaneous creation of special (anti-)particles happens.
This will be discussed in the last section of this chapter. Now, consider the possibilities of
the spontaneous particle creation in the stronger sense.
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The most obvious way to eliminate the dynamical pairs is to consider time-independent
potentials. Unfortunately, as we have seen in section 4.2.2, static potentials do not create
any particles, neither dynamical nor special. Therefore, the next serious candidate is the
adiabatic scattering process, because it is free from the above problems and has a chance of
special (anti-)particle creation. A family of scattering operators Sε(λ) parameterized by ε,
the time-scale, is defined in a standard way by the evolution generated by the Hamiltonian
Hλ,ε(t) ≡ H0 +λVε(t) with Vε(t) ≡ V (εt). The adiabatic scattering is defined by the limit

S(λ) ≡ lim
ε→0

Sε(λ), (4.4.1)

what is, in general, different from S0(λ), i.e. scattering in the static potential V0(t) = V (0).
Such S(λ) is , in general, no longer analytic in λ (a limit of analytic functions does not
have to be analytic). Therefore arguments based on analyticity (through the analytic
Fredholm theorem) leading to instability of creation of the special (anti-)particles cannot
be used. Moreover, creation of dynamical pairs is suppressed and tends in the adiabatic
limit to zero, in contrast to the special (anti-)particles, which should survive the limit. In
the following we consider the adiabatic limit in the switch-on-off as well as in the switch-on
scattering.

4.4.1 Adiabatic switch on and off of the potential

Intuitive picture in the adiabatic limit

Let us recall the pictures from the introduction (chapter 1). We plot the spectrum of H(t)
(i.e. energy eigenvalues and both continua) against time t. From the adiabatic theorem
(cf. section 3.4.1) we know that “jumps” between the bound states (arrow from filled
to empty circle) are suppressed in the adiabatic limit and that the wave function of the
Dirac equation Ψ(t) follows a continuously varying eigenvector ψn(t) (bound state). This
theorem holds as long as eigenvalues En(t) stay isolated and do not touch the continuum,
what is the case for overcritical potentials.

In the situation of figure 4.1 the lowest lying eigenvalue E0(t) vanishes in continuum,
i.e. E0(t) → −1 as t→ −T−, and then reappears, i.e. E0(t) → −1 as t→ T+, with some
T > 0. Assume the system Ψ(t) = ψ0(t) at some early t < −T . The adiabatic theorem
states that Ψ(t) = ψ0(t) for all t < −T . Then, in the overcritical phase t ∈ (−T, T ), the
wave function Ψ(t) is represented by a wave packet in the negative continuum. Such wave
packets are known to “decay”, because the amplitudes of their constituents (the generalized
eigenfunctions in continuum) dephase and produce functions, which are orthogonal to the
initial ones. Finally, it is a crucial question, if the wave function follows the eigenvalue
E0(t) diving out of the continuum at t > T , i.e. if Ψ(t) = E0(t) for all t > T . It is expected
that it will not be the case and Ψ(t) will be kept in the negative continuum forever, yet
there is no adiabatic theorem describing such situation in general, only on base of the
spectral properties of H(t).
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E

t

?

continuum

continuum

(adiabatic)

Figure 4.1: Time-dependence of the spectrum of the Hamiltonian H(t).

Extending to infinite times t → ±∞, assume that V (t) → 0 as t → ±∞ and that
the bound state E0(t) vanishes asymptotically in the positive continuum. Then, if the
expected scenario is true, the scattering operator S maps an initial state from the positive
continuum φ ≡ W ∗

−(t)Ψ(t) = limt→−∞ eitH0Ψ(t) ∈ H0
+ onto a final state in the negative

continuum χ ≡ W ∗
+(t)Ψ(t) = limt→+∞ eitH0Ψ(t) ∈ H0

−, i.e. S−+φ = χ, what implies a
spontaneous creation of an antiparticle in state χ. (Additionally, a particle will be created,
cf. section 4.3 and theorem 15, or see below, so that finally a spontaneously created pair
appears.)

To provide a picture in terms of particle creation processes, we have to modify the
previous picture slightly, adopting consequences of the quantization of the Dirac field,
namely that both continua are empty and that crossing the energy-line E = 0 (denoted on
figure 4.2 by a dashed line above the time-axis) states change the subspace between H0

+

and H0
−. In a sense, the latter implies inversion of the occupation of such a state, because

at time t = t0 the state Ωt−0
in Fock space goes over to d′∗1 Ωt+0

, where Ωt is a vacuum with
respect to the Hamiltonian H(t), that is a no-particle state becomes a one-antiparticles
state and vice versa. The notion of particles refers always to the instantaneous vacuum
Ωt defined with respect to the current Hamiltonian H(t).

Figure 4.2 schematically shows the process of spontaneous pair creation in the adia-
batic limit due to the potential which becomes overcritical for some period of time. The
initial state is a vacuum (the bound state is not occupied). As the energy of the bound
state crosses zero (potential becomes weakly overcritical) there appears an antiparticle
(the bound state becomes occupied). As the eigenvalue vanishes in the negative contin-
uum (potential becomes strongly overcritical) the antiparticle state corresponds to a wave
packet, which decays in time. In the adiabatic limit it is expected that the phase lasts
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long enough (actually infinitely long) for the wave packet to decay completely. Later, as
the bound state dives out, it is not occupied, since the whole wave function is trapped in
the lower continuum. It still corresponds to a antiparticle in a scattering state. Finally,
as the bound state crosses the level E = 0 again, it becomes occupied and the final state
is a particle in a bound state and an antiparticle in the scattering state.
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2-mc

- 
(e ) -

e
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e

bounded electron

scattered positron

0

Figure 4.2: A scheme of the spontaneous pair creation in the adiabatic limit.

This is the spontaneous creation of a pair due to an overcritical potential in the adia-
batic limit. The physical interpretation within the Fock space representation follows from
the simple fact from the classical Dirac theory, namely that the (classical) scattering op-
erator S maps some initial state from the positive continuum (φ ∈ H0

+) onto a final state
in the negative continuum (χ ∈ H0

−).
However, there appears a problem, which seems specific to the adiabatic limit. It can be

explained by the following non-rigorous reasoning. Assume, the wave packet approximately
follows (i.e. is localized around) the position of the resonance in the continuum during the
overcritical phase. It should be expected that it decays along the whole way and at each
stage contributes to the final wave function which will stay trapped in the continuum.
This simplification is not very far from reality, because the decay is based on dephasing
of the amplitudes in a wave packet, so in other words such a wave packet decoheres and
therefore adds to contributions from other wave packets in a decoherent way.
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As the adiabatic limit is approached the variation of the potential becomes slower and
the overcritical phase lasts longer. Hence, the wave packet has at each stage (i.e. each
value of the potential) more and more time to decay. It should be expected that more and
more of the wave function will decay already at the early overcritical stage, thus producing
a final wave function localized near the edge of the lower continuum.
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E

Consequently, in the adiabatic limit, the final wave function should be peaked at the
edge of the negative continuum.
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Physically it would imply that the spontaneously created antiparticles have energy
E → 1+ (i.e. E → mc2 in physical units) and hence momentum (almost) zero.

But then, there appears a doubt, if the wave function really gets trapped in the con-
tinuum and does not follow the emerging bound state. The reason for this is the following.
It is known, that wave packets arising from diving of a bound state into the continuum
approximate the shape of the resonance wave function (which is a remnant of the bound
state). Their position is localized (in the energies) around the real part of the resonance’s
complex energy ER and their width Γ is proportional to its imaginary part EI . If in the
adiabatic limit the decay occurs near the edge of the continuum then ER ≈ −1. It is known
that EI → 0 as ER → −1, what implies that the width of the wave packet Γ → 0. Then
the wave packet needs more time to decay, since the decay time scales as Tdecay ∼ 1/Γ.
The proof of spontaneous particle creation in the adiabatic limit must solve this puzzle.
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Definition of spontaneous particle creation by the adiabatic limit

Consider a family of time-dependent potentials parameterized by ε

Vε(t) = V (εt). (4.4.2)

Usually one defines the adiabatic switching by introducing an explicit exponential switch-
ing factor

Vε(t,x) ≡ e−ε
2t2 Ṽ (x). (4.4.3)

We will not restrict our considerations to this special form, assuming only that the poten-
tial V (t,x) tends to zero sufficiently fast as t → ±∞ so that the wave operators W±

λ,ε(λ)
are complete and the scattering operator Sλ,ε exists and is unitary (cf. section 3.5). With-
out restriction of generality we will assume that V (t) is strongest at t = 0, what means
that the lowest eigenvalue Eλ0 (t) of Hλ(t), if exists, satisfies

min
t
Eλ0 (t) = Eλ0 (0). (4.4.4)

Obviously, the family of scattering operators Sλ,ε inH gives rise to a family of implementers
Ŝλ,ε in Fock space F . We hope to overcome the obstacles from the previous section
regarding spontaneous pair creation as we expect Sλ,ε having a non-trivial limit

lim
ε→0

Sλ,ε 6= Sλ,0 (4.4.5)

and thus
1 = lim

ε→0
||P±Sλ,εP∓|| 6= ||P±Sλ,0P∓|| = 0. (4.4.6)

Consequently we expect the same for the implementers

lim
ε→0

Ŝλ,ε 6= Ŝλ,0 (4.4.7)

and thus
0 = lim

ε→0
(Ω, Ŝλ,εΩ) 6= (Ω, Ŝλ,0Ω) = 1. (4.4.8)

The natural way to define spontaneous particle creation rigorously is the survival of particle
creation in the adiabatic limit, since creation of the dynamical pairs tends to zero, what
follows from the adiabatic theorem. Following Nenciu [Nen80a], we define a measure

rλ = 1− lim
ε→0

∣∣∣(Ω, Ŝλ,εΩ
)∣∣∣2 (4.4.9)

giving the probability of creation of any particles in the adiabatic limit. It can be shown
that the condition rλ = 0 is equivalent to Nλ = 0, where Nλ is the total number of particles
created from vacuum. Nenciu conjectures that there exists a critical value λ = λcr such
that

lim
ε→0

rλ =

0 for 0 < λ < λcr,

1 for λ > λcr.
(4.4.10)
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It is expected that the first case occurs if the potential is strongly subcritical during the
whole evolution, i.e. Eλ0 (t) exists for all t and Eλ0 (t) > −1, and the second case if V (t) is
strongly overcritical for some t ∈ (−T, T ) with T > 0, i.e. Eλ0 (t) disappears in the lower
continuum for t ∈ (−T, T ). It means that λcr should be equal to λ̃1, i.e. when Eλ0 (0) → −1
as λ→ λ̃1 (cf. (4.4.4)).

From this conjecture it follows that rλ has a jump at λ = λcr. The subcritical part
agrees with the adiabatic theorem, from which follows that particle creation tends to zero
as ε → 0. On the contrary, the overcritical part seems to contradict it, but this is just
the situation when assumptions for the adiabatic theorem are not fulfilled, namely the
eigenvalue Eλ0 (t) dives into the continuum (−∞,−1] and so does not stay isolated for all
t.

There was an attempt by Nenciu in 1987 to prove this conjecture [Nen87], but he was
not able to control the evolution at the point t0 of diving of the eigenvalue, i.e. when
Eλ0 (t) → −1 as t → t0. Instead, he introduced a small jump ∼ δ in the strength of
the potential at t = t0 and kept the potential in the overcritical phase time-independent.
It allowed him to overcome the difficulty at the edge of the continuum, but destroyed
the adiabatic character of the process and introduced again dynamical pair production,
however he showed that the production rate of the dynamical pairs tends to zero as
δ → 0. Yet, since the potential was kept only slightly overcritical and time-independent,
the result is far from being satisfactory for explaining the general situation of diving of an
eigenvalue. Later Prodan in 2000 [Pro99] tried again by splitting the adiabatic limit into
two independent limits (ε1, ε2 → 0), one in the past and one in the future (for corresponding
wave operators), but was able to prove the conjecture only by taking a special order of the
two limits. He showed that for every ε1, ε2 > 0 there exists a vector φε1 ∈ H0

+ such that

lim
ε1→0

lim
ε2→0

||P−(W+
λ,ε2

)∗W−
λ,ε1

P+φε1 || = 1, (4.4.11)

what suggests that φε1 is transported adiabatically from H0
+ in the past to H0

− in the
future by (W+

λ,ε2
)∗W−

λ,ε1
, which in the adiabatic limit ε1, ε2 → 0 gives (W+

λ )∗W−
λ = Sλ,

only when the limit ε2 → 0 in the future wave operator W+
λ,ε2

is taken before the limit
ε1 → 0 in the past wave operator W−

λ,ε1
. At this point he asked the question how far this

proof is from the required situation ε1 = ε2. We showed [Pro04] that this technique is
useless. How misleading such a procedure is can be seen by calculating, using the same
technique, that

lim
ε1→0

lim
ε2→0

||P−(W−
λ,ε2

)∗W−
λ,ε1

P+φε1 || = 1, (4.4.12)

what means that φε1 is transported adiabatically from H0
+ in the past to H0

− in the past(!)
by (W−

λ,ε2
)∗W−

λ,ε1
, what is absurd. Such a limit has nothing to do with the true definition

of the adiabatic limit where ε1 = ε2. Setting ε1 = ε2 ≡ ε in the above equation we obtain

lim
ε→0

||P−(W−
λ,ε)

∗W−
λ,εP+φε1 || = lim

ε→0
||P−P+φε|| = 0, (4.4.13)

what is physically reasonable.
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Proof ideas and problems

In this paragraph we give a sketch of the proof and point at the essential problems. It is
a fundamental result of the scattering theory in QED of external fields, that

(Ω, Ŝ Ω) =

{
0 if S+−(S+−)∗ has an eigenvalue 1,

det
[
1 + (S++)−1S+−(S+−)∗(S++)∗−1

]−1/2 otherwise.
(4.4.14)

Since the Fredholm determinant in the second case is rather difficult to treat, it is conve-
nient to replace it with some estimations. It can be shown [Nen87]

||A||H.S. → 0 ⇒ (Ω, Ŝ Ω) → 1 (no particle production) (4.4.15)

||A|| → 1 ⇒ (Ω, Ŝ Ω) → 0 (“complete” particle production)(4.4.16)

Making use of the above facts, to prove the conjecture in the adiabatic limit it remains to
show:

• In the subcritical case: ||P± Sλ,ε P∓||H.S.
ε→0−→ 0. Then (Ω, Ŝλ,ε Ω) ε→0−→ 1.

• In the overcritical case: ||P± Sλ,ε P∓||
ε→0−→ 1. Then (Ω, Ŝλ,ε Ω) ε→0−→ 0.

The proof in the subcritical case is simple. There, by the adiabatic theorem, the adiabatic
limit reduces to the static case.

E

t

Figure 4.3: Strongly subcritical evolution.

If “negative” and “positive” parts of the spectrum stay separated, then

lim
ε→0

||P± Sλ,ε P∓||H.S. = ||P± Sλ,0 P∓||H.S. = 0 (4.4.17)

The overcritical case is much more difficult. Until very recently (2005) there was no proof
of the fact

||P± Sλ,ε P∓||
ε→0−→ 1. (4.4.18)
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E

t

Figure 4.4: Strongly overcritical evolution.

Problems in the theory

First, we want to address problems which make the proof difficult. It is obvious that only
the lowest lying eigenvalue (lowest line on fig. 4.4) contributes to the result. Therefore
consider a simplified situation where only one eigenvalue was present, which for t→ ±∞
vanishes in the positive continuum [1,∞) (what is a consequence of asymptotic vanish-
ing of the potential) and in some period t ∈ [−T, T ] vanishes in the lower continuum
(−∞,−1]. (One could also consider situations where the potential tends asymptotically
to some limiting value, such that the limiting Hamiltonian has bound states (dotted line
on the figure below). Though, this would not eliminate the following difficulties, because
scattering in presence of bound states has its own problems.)

E

t

Figure 4.5: Strongly overcritical evolution (only the lowest eigenvalue shown).

In order to prove ||P− Sλ,ε P+||
ε→0−→ 1 one must find a vector φ ∈ H0

+ which will be
fully transported to χ ∈ H0

− by Sλ,ε for every small ε > 0 and λ > λcr. This is not a
simple task, because it turns out that Sλ,ε tends weakly to the static Sλ,0, what implies
that all scalar products of interest are in the adiabatic limit zero

Sλ,ε
weakly−→ Sλ,0 ⇒ ∀χ,φ∈H 〈χ|P− Sλ,ε P+ φ〉 ε→0−→ 〈χ|P− Sλ,0 P+φ〉 = 0. (4.4.19)
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Even worse, Sλ,ε tends also strongly to the static Sλ,0, what implies that no initial vector
φ ∈ H0

+ can be transported to the lower continuum in the adiabatic limit

Sλ,ε
strongly−→ Sλ,0 ⇒ ∀φ∈H ||P− Sλ,ε P+ φ|| ε→0−→ 0. (4.4.20)

This is not valid if the initial state can be a bound state φ0, but independently of this the
problem remains in the opposite direction

S∗λ,ε
strongly−→ S∗λ,0 ⇒ ∀χ∈H ||P+ S∗λ,ε P− χ||

ε→0−→ 0 ⇒ Nχ
ε→0−→ 0 (4.4.21)

where it has the consequence that the number of particles created in a given final state
χ ∈ H0

− is zero in the adiabatic limit. Yet there is no convergence of Sλ,ε to the static
Sλ,0 in norm, what finally allows the total number of particles created from vacuum to be
non-zero

Sλ,ε
norm9 Sλ,0 ⇒ ||P− Sλ,ε P+||

ε→09 0 ⇒ N ε
±
ε→09 0, (Ω, Ŝλ,ε Ω) ε→09 1 (4.4.22)

Observe that the total number of created positrons N ε
− = ||Sλ,ε||2HS =

∑
n ||P−Sλ,εP+fn||2

tends, according to (4.4.20), term-wise to zero, but does not converge as a sum as ε→ 0.
This shows how subtle the effect of spontaneous particle creation in the adiabatic limit
is. From the above it follows that the limit ||P− Sλ,ε P+||

ε→0−→ 1 cannot be shown by
construction of initial and final vectors φ ∈ H0

+, χ ∈ H0
− such that Sλ,εφ = χ. Rather

one has to accept that the initial and final vectors are “somewhere in the continuum” and
depend on ε. Then one must show that

∀ ε > 0 ∃ φε ∈ H0
+, χε ∈ H0

− : Sλ,ε φε = χε. (4.4.23)

The proof

Only very recently, in 2005, Pickl [Pic05] was able to proof the conjecture in full generality
what regards the strength of the potential and its time-dependence. Yet, could consider
only compactly supported potentials (excluding e.g. the (regularized-)Coulomb potential).
Assuming that the eigenvalue dives to the continuum with a finite slope, i.e. dE0(t)/dt→
γ < 0 as E0(t) → −1+ (cf. section 3.3.3 and equation (3.3.12)), he showed that the decay
of the wave function Ψ(t) (in the sense ||Ψ(t)||∞ = O(1)) occurs after t ∼ ε−2/3, what is
less than the duration of the overcritical phase T ∼ ε−1. Hence the wave packet decays
completely and in the adiabatic limit

lim
ε→0

(ψ0(t),Ψ(t)) = 0 ∀ t > T/ε, (4.4.24)

i.e. the wave function Ψ(t) does not dive out with the reappearing bound state ψ0(t)
(at εt > T ), but remains trapped in the negative continuum. The proof is relatively
complicated technically (about 80 pages of text) and we will not cite it here. As we
mentioned at the beginning of this section, it solves the problem of a slow decay of narrow
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peaks at the edge of continuum (Tdecay ∼ 1/Γ and Γ → 0 as ER → −1−). It also confirms
our expectation that in the adiabatic limit the wave function finally trapped in the
negative continuum will be localized at its edge, implying that the spectrum
of the spontaneously created antiparticles will have energies peaked at E ≈ 1+

(i.e. E ≈ mc2 in physical units) and hence momenta (almost) equal to zero.
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The scenario

Concluding, we present the scenario of particle creation in subsequent phases of the evo-
lution. Adiabatic processes have the advantage of possessing a well defined and physically
meaningful vacuum vector at every time, namely Ωt defined by the current projector
P±(t) with respect to the spectrum of the instantaneous Hamiltonian H(t). These vacua
are related to the initial one Ω ≡ Ω−∞ by

Ωt = Ŵ ∗
−(t) Ω, (4.4.25)

where Ŵ−(t) is an implementer of the past wave operatorW−(t) ≡ lims→−∞ U(t, s)ei(t−s)H0

and U(t, s) is the adiabatic evolution operator (their special implementation properties will
be discussed in the next section 4.4.2). Accordingly, particles b̂t(P+(t) ϕ) and antiparticles
d̂t(P−(t) ϕ) are defined with respect to the instantaneous vacuum Ωt. Then, we distinguish
the following stages, characterized by the behaviour of the state vector Φ(t) = Ŵ−(t) Ω
and the lowest eigenvalue E0(t):

• initial: Φ(−∞) = Ω,

• weakly subcritical (E0(t) > 0): Φ(t) = Ωt,

• weakly overcritical (−1 < E0(t) < 0): Φ(t) = d̂′∗(P−(t) ψ0(t)) Ωt – one antiparti-
cle in a bound state ψ0(t) w.r.t. the charged vacuum Ωt,

• strongly overcritical (E0(t) dived into the negative continuum): Φ(t) = d̂′∗(P−(t) Ψ(t)) Ωt,
(where Ψ(t) ∈ H−(t)) – one antiparticle in a scattering state Ψ(t) w.r.t. the charged
vacuum Ωt,
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• weakly overcritical (−1 < E0(t) < 0): Φ(t) = d̂′∗(P−(t) Ψ(t)) Ωt – one antiparticle
in a scattering state Ψ(t) w.r.t. the charged vacuum Ωt,

• weakly subcritical (E0(t) > 0): Φ(t) = b̂′∗(P+(t) ψ0(t)) d̂′∗(P−(t) Ψ(t)) Ωt – one
antiparticle in a scattering state Ψ(t) and one particle in a bound state ψ0(t) w.r.t.
the neutral vacuum Ωt,

• final: Φ(∞) = b̂′∗(P+ ψ0(∞)) d̂′∗(P− χ) Ω – one antiparticle in a scattering
state χ and one particle in a bound or scattering state ψ0(∞) w.r.t. the
neutral vacuum Ωt.

Problems in the numerics

The above discussed subtlety of the effect of spontaneous particle creation in the adiabatic
limit causes huge problems in the numerical simulation of the evolution or scattering.
First note, that the limit in norm of a sequence of operators (here: the adiabatic limit
ε → 0) can differ from the strong limit only on the infinite dimensional Hilbert space
dimH = ∞. Theoretically this condition is satisfied in the Dirac theory, but in numerical
calculations one always has dimHnum < ∞, because there is no way to simulate a true
continuum, which must be replaced with a finite (e.g. cut-off in energies) discretized one.
It implies that using any asymptotically static basis in the discretized continuum,
independent of ε, there is no possibility of observing the spontaneous particle
creation by performing a (numerical) adiabatic limit.

The reason can be understood in terms of decay of a wave packet in continuum. The
wave packet in the negative continuum representing φε evolved to times t ≈ 0 decays
in the adiabatic limit, because as ε tends to zero the duration of the overcritical phase
increases, so the wave packet is evolved for longer and longer times. But wave packets in
continuum decay and after a long time never come back to the initial shape, what is the
necessary condition to build a localized wave function corresponding to the bound state
eventually diving out of the continuum. The “decayed” wave packet remains forever in the
negative continuum and builds asymptotically χε. On the contrary, in a numerical finite
dimensional discretized continuum no wave packet decay occurs – it returns periodically
near its initial shape. Therefore standard numerical procedures cannot show the effect of
spontaneous particle creation in the adiabatic limit.

However, there is a possibility of making better numerics, modifying the way of ap-
proaching the adiabatic limit. Assume that the discretized continuum states correspond
to generalized eigenvectors to discrete values of energy. Let the energy levels be equidis-
tant with gaps ∆E. Observe, that although no true decay of wave packets is possible,
the evolution in the discrete system is a good approximation to the continuous one for
times t . 1/∆E (it is a characteristic time-scale of the discrete evolution, after which
the artificial oscillations begin). Hence, it cannot be a good approximation in the adi-
abatic limit, where the numerical time of evolution T must grow as 1/ε, when ε → 0.
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But one can modify this procedure by making the discretization gap ∆E dependent
on ε, namely ∆E(ε) ∼ ε ∼ 1/T . Then one can reach a good approximation for times
t . 1/∆E(ε) ∼ 1/ε ∼ T . Unfortunately, numerical expense of such a scheme is huge
and grows like ∼ 1/ε4. This scaling makes reaching of the adiabatic limit in a numerical
simulation practically impossible.

4.4.2 Adiabatic switch on of the potential

Actually, the adiabatic switch on process is a part of the adiabatic switch on and off
process, which he have discussed in the previous section 4.4.1. Here, we want to discuss
the (above postponed) procedure and physical consequences of implementation of the
evolution operator U(t2, t1) and of the wave operator W−(t) in the general situation of an
adiabatically switched on potential.

Assume that at the initial time t1 the Hamiltonian is H(t1) = H0 + V (t1) ≡ H1, the
corresponding spectral projectors are P± and the vacuum is denoted by Ω. At the final
time t2 the Hamiltonian is H(t2) = H0 + V (t2) ≡ H2, the projectors are P ′± and the
vacuum Ω′. The evolution U(t2, t1) is adiabatic, what means

U(t2, t1)P%(t1)(H1) = P%(t2)(H2)U(t2, t1), (4.4.26)

where P%(t)(H(t)) describes a spectral projection on part %(t) of the spectrum of H(t),
which varies continuously and stays isolated from the rest of the spectrum during the
evolution. Assume, at t = t1 there are bound states ψn (n = 0, 1, 2, ..., N , where N finite
or infinite) with energies 0 < En < 1 and they moves continuously without crossing to ψ′n
with E′

n at t = t2. Let 0 < E′
n < 1 for n = 1, 2, ... and consider different values of E′

0.
From the adiabaticity of the evolution follows for the bound states

U(t2, t1)Pψn = Pψ′nU(t2, t1) for n = 0, 1, 2, ... (4.4.27)

where Pψn = PEn(H1) is a projection on state ψn. It means that U(t2, t1) maps the bound
states onto each other

U(t2, t1)ψn = ψ′n for n = 0, 1, 2, ... (4.4.28)

Since the continuous spectra of H1 and H2 are equal, it holds

U(t2, t1)Pσ± = P ′σ±U(t2, t1), (4.4.29)

where we have simplified the notation introducing Pσ± ≡ Pσ±(H1) and P ′σ± ≡ Pσ±(H2)
with σ+ ≡ [1,∞) and σ− ≡ (−∞,−1]). In order to construct the implementer Û of
U(t2, t1) by theorem 3 we need the partial evolution operators

U±′± ≡ P ′±′U(t2, t1)P±, (4.4.30)

which in case of the adiabatic evolution can be calculated explicitly. We only need to
consider three physically different cases:
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A) weakly subcritical: 0 < E′
0 < 1,

B) weakly overcritical: −1 < E′
0 < 0,

C) strongly overcritical: E′
0 dissolved in the negative continuum.

Then, using (4.4.27) and (4.4.29) and writing U for U(t2, t1), we obtain

A) weakly subcritical: 0 < E′
0 < 1,

U−− = P ′σ−UPσ− = U(Pσ−)2 = UPσ− = UP−

U++ =

(
P ′σ+

+
N∑
n=0

Pψ′n

)
U

(
Pσ+ +

N∑
n=0

Pψn

)
= P ′σ+

UPσ+ +
N∑
n=0

Pψ′nUPψn

= U

(
(Pσ+)2 +

N∑
n=0

(Pψn)2
)

= UP+

U+− =

(
P ′σ+

+
N∑
n=0

Pψ′n

)
UPσ− = U

(
Pσ+ +

N∑
n=0

Pψn

)
Pσ− = 0

U−+ = P ′σ−U

(
Pσ+ +

N∑
n=0

Pψn

)
= UPσ−

(
Pσ+ +

N∑
n=0

Pψn

)
= 0

(4.4.31)

hence dim kerU−− = dim kerU++ = 0 and no special states exist.

B) weakly overcritical: −1 < E′
0 < 0,

U−− =
(
P ′σ− + Pψ′0

)
UPσ− = U

(
Pσ− + Pψ0

)
(Pσ−) = UP−

U++ =

(
P ′σ+

+
N∑
n=1

Pψ′n

)
U

(
Pσ+ +

N∑
n=0

Pψn

)
= P ′σ+

UPσ+ +
N∑
n=1

Pψ′nUPψn

= U

(
(Pσ+)2 +

N∑
n=1

(Pψn)2
)

= U(P+ − Pψ0)

U+− =

(
P ′σ+

+
N∑
n=1

Pψ′n

)
UPσ− = U

(
Pσ+ +

N∑
n=1

Pψn

)
Pσ− = 0

U−+ = (P ′σ− + Pψ′0)U

(
Pσ+ +

N∑
n=0

Pψn

)
= U(Pσ− + Pψ0)

(
Pσ+ +

N∑
n=0

Pψn

)
= UPψ0

(4.4.32)

hence dim kerU−− = 0, dim kerU++ = 1 and one special state exists: U−+ψ0 = ψ′0.

C) strongly overcritical: E′
0 dissolved in the negative continuum, namely U(t2, t1)ψ0 =
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ψ̃′0 ∈ P ′σ−H,

U−− = P ′σ−UPσ− = U
(
Pσ− + Pψ0

)
(Pσ−) = UP−

U++ =

(
P ′σ+

+
N∑
n=1

Pψ′n

)
U

(
Pσ+ +

N∑
n=0

Pψn

)
= P ′σ+

UPσ+ +
N∑
n=1

Pψ′nUPψn

= U

(
(Pσ+)2 +

N∑
n=1

(Pψn)2
)

= U(P+ − Pψ0)

U+− =

(
P ′σ+

+
N∑
n=1

Pψ′n

)
UPσ− = U

(
Pσ+ +

N∑
n=1

Pψn

)
Pσ− = 0

U−+ = P ′σ−U

(
Pσ+ +

N∑
n=0

Pψn

)
= U(Pσ− + Pψ0)

(
Pσ+ +

N∑
n=0

Pψn

)
= UPψ0

(4.4.33)

hence dim kerU−− = 0, dim kerU++ = 1 and one special state exists: U−+ψ0 = ψ̃′0.

Summarizing, in all cases the auxiliary operators of theorem 3 describing the dynamical
pair creation and annihilation are trivial A = D = 0, what is a special property of the
adiabatic evolution. The operators B and C, describing separate evolution of particles
and antiparticles, respectively, are non-zero, but they do not play any role if Û acts on the
vacuum. The special part of Û , namely Û0, describing creation of a special (anti-)particle
is trivial Û0 = 1 in case A and non-trivial Û0 = d̂∗(V ψ′0) in cases B and C, where we need
to introduce the operator V describing the change of the projectors from P± to P ′± and
guaranteeing the expression of the final state in terms of the final vacuum by V̂ ∗Ω = Ω′ (cf.
section 4.3.2 for more details). Therefore, the state evolved from vacuum in the adiabatic
evolution from t1 to t2 is

Φ = V̂ ∗ Û Ω =


V̂ ∗ Ω = Ω′ in case A,

V̂ ∗
(
d̂∗(V ψ′0) Ω

)
=

d̂′∗(ψ̃′0) Ω′ in case B,

d̂′∗(ψ′0) Ω′ in case C.

(4.4.34)

We conclude that in the weakly subcritical case (A) nothing interesting happens
and vacuum remains vacuum, hence we call this vacuum stable. In cases B
and C an antiparticle is created with respect to the final vacuum, while the vacuum
state Ω′ itself becomes positively charged relative to Ω, so that the total charge with
respect to Ω is conserved in the evolution. It seems that the vacuum in these both
cases becomes unstable during the evolution and decays to a different one by producing
an antiparticle. Yet it is not obvious that it has physically the same meaning in both
cases. In the strong overcriticality case (C) the created antiparticle is in a
scattering state ψ̃′0 and when evolved further, after long enough time, will
depart to spatial infinity, where it can be detected in experiment. In contrast,
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in the weak overcriticality case (B) the antiparticle occupies a bound state ψ′0
and together with the positively charged vacuum Ω′ forms a stable composite,
which probably cannot be detected by any charge-based measurement. Such
interpretation is in agreement with the fact that two unitarily equivalent representations
of CAR describe the same physical situation and cannot be distinguished. The weakly
overcritical (B) and weakly subcritical (A) situations are unitarily equivalent
(cf. section 2.4.5), so the structure of the final state is a matter of choice of the final
projector. If we chose instead of P ′± = (1± sgn(H1))/2, what gives

P ′+ = P[0,∞)(H1) and P ′− = P(−∞,0)(H1), (4.4.35)

a different pair (used by Greiner et al. [GMR85, RMG74, RMG81])

P ′′+ = P(−1,∞)(H1) and P ′′− = P(−∞,−1](H1), (4.4.36)

we would have a vacuum as a final state, as in case A. Since by theorem 2 the projectors
give rise to equivalent representations of CAR, all physical consequences must be the same.

4.5 Spontaneous particle creation in a weaker sense

The “weaker sense” means that we relax the stability condition for creation of (anti-)particles
in a special state and check what happens near such a point.

Until now we have only considered the creation of (anti-)particles in special states,
what was possible in overcritical as well as subcritical potentials. Yet, this phenomenon,
in general, turned out to be unstable under small perturbations of the potential. The only
situation, when stability was guaranteed, i.e. a pair particle-antiparticle was always cre-
ated, was the adiabatic limit of a scattering process in presence of an overcritical potential.
But, due to the slowness of the switching on to overcriticality, the whole wave function (in
the Dirac equation) decays already at the edge of the continuum giving rise to production
of antiparticles with vanishing momentum. The result, although mathematically correct,
is not fully satisfactory from the physical point of view for two reasons. First, adiabatic
processes are not realizable in experiment and the adiabatic limit itself does not provide
enough information about general slow processes. Although, in the proof of Pickl [Pic05]
one can find estimates on the decay of the wave function for small adiabatic parameters ε
and use them to estimate the energy distribution of the created antiparticles, which will
obviously be localized at the edge of the negative continuum, one cannot extrapolate them
to bigger values of ε corresponding to quicker processes. Second, the adiabatic result de-
pends on the position and properties of the resonance appearing in the negative continuum
due to overcriticality only at the edge of the continuum – later, it is completely indepen-
dent of how the resonance behaves. It is in deep disagreement with a more intuitive result
for quick processes, where the resonance becomes a remnant of the dissolved bound state,
“carries” in form of a wave packet its (nearly whole) amplitude and decays accordingly
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to its spectral width, finally contributing to the creation of antiparticles with the same
spectral distribution. Of course, we do not indent and cannot discredit a proved result in
the adiabatic limit. We only point out that it is of limited use in understanding of pair
creation in general time-dependent overcritical potentials with physical parameters.

Pair creation in special states is described schematically by

Ŝ Ω = C0 b̂
∗(χ+) d̂∗(χ−) Ω, (4.5.1)

(where we neglect possible other pairs in non-special states), and is due to the fact that
χ± ∈ H0

± are eigenvectors of S±∓(S±∓)∗ to the eigenvalue 1. It means that S maps a
vector (one for each sign) from H0

± to H0
∓, so there exist φ± ∈ H0

± such that S±∓φ∓ =
χ±. In section 4.3 we have shown that such a phenomenon is unstable with respect to
small changes in the potential’s strength λ. Perturbing the potential slightly results in
destroying the existence of eigenvalues 1 of S±∓(S±∓)∗ and making them smaller than
1. By continuity in λ, the vectors χ± and φ+ will change only slightly, but it cannot
be avoided that each of them will get an admixture belonging in to the other spectral
subspace H0

±. Now, there will exist a pair of vectors φ′± ∈ H0
± such that

S′φ′± = χ′± = (P+ + P−)χ′± ≡ χ′±+ + χ′±− ≡ α±χ′′±+ + β±χ′′±− (4.5.2)

with ||χ′′±+ || = ||χ′′±+ || = 1 and |α±|, |β±| < 1, |α±|2 + |β±|2 = 1. By continuity in λ

the norms of the “admixtures” ||χ′+− || = |β−| and ||χ′−+ || = |α+| should be small, i.e.
α+, β− ≈ 0. Implementation of S′ gives essentially a “regular” pair creation (i.e. no
special states)

Ŝ′ Ω = C ′0 : exp
(
D b̂∗(χ′′++ ) d̂∗(χ′′+− )

)
: Ω = C ′0

(
1 +D b̂∗(χ′′++ ) d̂∗(χ′′+− )

)
Ω, (4.5.3)

where (cf. theorem 3)

D = (χ′′+− , S′−+(S′++)−1χ′′++ ) =
(
χ′′+− , S′−+

1
α+

φ′+
)

=
(
χ′′+− ,

β+

α+
χ′′+−

)
=
β+

α+
(4.5.4)

is very big, because α+ ≈ 0. (The limit α+ → 0 is non-trivial, what is manifested by
change in the structure of Ŝ, as shown in [Sei82].) The normalization constant C ′0 satisfies

1 = ||Ŝ′ Ω||2 = |C ′0|2(1 + |D|2), (4.5.5)

what gives

|C ′0| =
1√

1 + |D|2
=

1√
1 + |β+|2

|α+|2

=
|α+|√

|α+|2 + |β+|
= |α+|. (4.5.6)

Therefore, we can rewrite (4.5.3) as

Ŝ′ Ω = eiϑ
(
α+ + β+ b̂∗(χ′′++ ) d̂∗(χ′′+− )

)
Ω, (4.5.7)



4.5. Spontaneous particle creation in a weaker sense 129

what explicitly shows that in the neighbourhood of the case when special pairs (4.5.1) are
created with probability 1, the probability of a pair creation is still big (|β+|2 ≈ 1).

On the one hand, this result can be applied for any potentials (sub- or overcritical)
in any processes (quick or slow), where it implies that the special pair creation (4.5.1) is
reached smoothly as a limit of a non-special pair creation (4.5.3) by small variation of the
potential [Sei82] (confirmed also numerically in case of heavy ion collisions [RMMG81]).
Therefore, no abrupt change in the rate of the pair creation occurs and no essential differ-
ence between sub- and overcritical potentials is observed, what has been used as a main
argument against the existence (or significance) of the spontaneous pair creation [SS82].
This reasoning is not acceptable, mainly due to a very restrictive definition of the sponta-
neous particle creation (stronger sense) and too wide class of possible scattering processes
considered.

On the other hand, the neighbourhood of the special case discussed above can be
interpreted as a neighbourhood of an adiabatic process, i.e. a general slow scattering
process (but different from the adiabatic limit), which according to the above result should
produce a pair with a big probability due to the overcriticality of the potential. At the
same time, no (or almost no) pair will be created in a slow subcritical process. Therefore
a jump in the rate of the pair creation occurs at the edge between sub- and
overcritical processes. This we call spontaneous particle creation in a weaker

sense. The stronger sense is defined by the condition of special states, or
in other words, by probability 1 for pair creation and is realized only in the
adiabatic limit.

One can ask, how far one can depart from the adiabatic limit, i.e. how quick a scattering
process can be, to give still a significant probability for pair creation due to overcriticality.
The first answer could be that as the process becomes quick one looses control over the
jumps between all possible states during the evolution of the Dirac wave function, so the
probabilities of finding Sφ+ in the positive and negative continua become of the same order,
i.e. α+ ≈ β+. But this does not differ from quick subcritical processes, what suggests that
slowness (or adiabaticity) is the necessary condition to have an essential overcritical pair
creation. Yet, in practice the situation is more advantageous due to a resonance which
appears for the overcritical potentials and modifies the negative continuum wave functions
in such a way that they contain most of the wave function evolved from an initial bound
state, even in a very quick diving process. To see the effect if suffices to consider a sudden
jump process, being the worst possible case as a limit of extremely quick processes, in
which a bound state disappears immediately for the switched on overcritical potential. The
amount of the initial bound state ψ0 in the overcritical negative continuum (projection:
P ′−) is usually big, i.e. ||P ′−ψ0|| ≈ 1 (cf. section 6.2.2). It bears some similarity to
subcritical situations, where the potential changes quickly. In the limit of a sudden jump
the amplitude to find the wave function of an initial bound state in the final bound state
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is (ψ′0, ψ0), which can be estimated by the perturbation theory

(ψ′0, ψ0) = 1 +O(∆V ). (4.5.8)

There is one essential difference between slow evolution of bound states and of resonances
(by which we will here mean wave packets corresponding to a dived bound state in the
continuum). For bound states the slower the process is the more stable the state becomes,
in the sense that by the adiabatic theorem the amplitude of a wave function evolved from
an initial bound state ψ0(0) in a final bound state ψ0(T ) behaves like

||U(T, 0) ψ0(0)− ψ0(T )|| = O
(

1
T

)
, (4.5.9)

what implies

A0(T ) ≡ (ψ0(T ), U(T, 0) ψ0(0)) = 1 +O
(
T−2

) T→∞−→ 1. (4.5.10)

For resonances the effect of slow evolution is the opposite, because a wave packet ψR, in
contrast to a bound state, decays (hence we call it unstable)

AR(T ) ≡ (ψR(T ), U(T, 0) ψR(0)) T→∞−→ 0. (4.5.11)

It is relatively simple to show it for evolution in presence of a constant potential where
U(T, 0) = exp(−iTH) and ψR(T ) = ψR(0). Decomposing the wave packet in continuum
(φE are continuum wave functions)

ψR(t) =
∫
σ
a(E)φE dE, (4.5.12)

where σ ⊂ σcont(H), and
∫
σ |a(E)|2 dE = 1, we find

AR(T ) = (ψR(0), U(T, 0) ψR(0)) =
∫
σ

∫
σ
a(E′)a(E)

(
φE′ , e

−iTHφE
)
dE′ dE

=
∫
σ

∫
σ
a(E′)a(E)e−iTE (φE′ , φE)︸ ︷︷ ︸

δ(E′−E)

dE′ dE

=
∫
σ
|a(E)|2e−iTE dE = O

(
T−1

) T→∞−→ 0.

(4.5.13)

In fact, the estimation by O(T−1) is the weakest one, assuming only that a(E) is square
integrable. However, since the resonance is spectrally localized and usually smoothly
distributed one gets stronger estimates, e.g. for a Breit-Wigner type distribution

a(E) =
a0

Γ2 + (E − E0)2
→ AR(T ) ∼ e−ΓT (4.5.14)

and for Gaussian packets even faster.
These estimations hold only for constant (in that case overcritical) potentials with a

static resonance. Yet, we are interested in situations where the resonance moves in the



4.5. Spontaneous particle creation in a weaker sense 131

continuum due to the varying overcritical potential. Although, no (analogous to bound
states) adiabatic theorem for resonances is known, we will try to describe non-rigorously
what happens to the amplitude AR(t) of a moving resonance during a slow evolution.
Therefore, we will follow the ideas of a constructive proof of the adiabatic theorem given
in [GP91]. Let the time interval t ∈ [0, T ] be parameterized by t ≡ Tτ with τ ∈ [0, 1] and
consider now τ as evolution parameter and T as a constant. Decompose the evolution
operator into three parts

UT (τ) ≡ V (τ)ST (τ)WT (τ) (4.5.15)

which satisfy the following evolution equations

i
dV (τ)
dτ

= K(τ)V (τ), V (0) = 1, K(τ) ≡ i

∫
σ(τ)

dPE(τ)
dτ

PE(τ)dµ(E), (4.5.16)

where PE(τ) are projectors on the basis states φE(τ), which are chosen to be eigenvectors
(bound states) or generalized eigenvectors (continuum) of the Hamiltonian H(τ), σ(τ) =
σ(H(τ)) is the spectrum of H(τ) and dµ(E) is the corresponding spectral measure.

i
dST (τ)
dτ

= TH̃(τ)ST (τ), ST (0) = 1, H̃(τ) ≡ V ∗(τ)HV (τ) (4.5.17)

and

i
dWT (τ)
dτ

= −K̃T (τ)WT (τ), WT (0) = 1, K̃T (τ) ≡ S∗T (τ)V ∗(τ)K(τ)V (τ)ST (τ).
(4.5.18)

The three operators V (τ), ST (τ),WT (τ) play the following roles. V (τ) rotates (in the
Hilbert space) the eigenvectors of the initial Hamiltonian H(0) to the corresponding eigen-
vectors of H(τ), for bound states according to continuity of the eigenvalues En(τ) and in
continuum to the same value of E. It means that

PEn(τ)V (τ) = V (τ)PEn(0) for |En| < 1, (4.5.19)

PE(τ)V (τ) = V (τ)PE(0) for |E| ≥ 1. (4.5.20)

ST (τ) evolves the states φE(0) according to H̃(τ), of which they are eigenvectors, hence
it simply equips them with a phase exp(−iTθE(τ)), where θE(τ) ≡

∫ τ
0 E(τ ′)dτ ′

ST (τ) =
∫
σ(τ)

e−iTθE(τ)PE(τ)dµ(E). (4.5.21)

Finally, WT (τ) describes time-changes exclusively due to the variation of the basis vectors
φE(τ). Summarizing, the action of the evolution operator UT (τ) splits into three actions:

• jumps between basis states due to their time-change (WT (τ)),

• quasi-free evolution due to the action of the Hamiltonian (ST (τ))

• and rotation to follow the changing basis vectors (V (τ)).
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The idea of the proof of a standard adiabatic theorem is to show (by cancellation of
phases of all jump-between-states amplitudes) that WT (τ) = 1 +O(1/T ). Then UT (τ) ∼=
V (τ)ST (τ) as T →∞ and, acting on the eigenvectors,

UT (τ)PEn(0) ∼= V (τ)ST (τ)PEn(0) = eiTθEn (τ)V (τ)PEn(0) = eiTθEn (τ)PEn(τ). (4.5.22)

Then the amplitude of the evolved bound state (4.5.10) can be estimated to

A0(T ) = (ψ0(T ), UT (1)ψ0(0)) =
(
ψ0(T ), V (1)ST (1)

(
1 +O

(
1
T

))
ψ0(0)

)
=
(

1 +O
(

1
T

))
(V ∗(1)ψ0(T ), ST (1)ψ0(0))

=
(

1 +O
(

1
T

))
(ψ0(0), e−iTθ0(1)ψ0(0))

=
(

1 +O
(

1
T

))
e−iTθ0(1).

(4.5.23)

In the case of a resonance we must use a projector on the wave packet ψR(τ) instead of
a bound state, which has different properties especially with respect to ST (τ), because
it is not an eigenvector of H(τ) and therefore the action of ST (τ) does not reduce to a
simple multiplication by a phase factor. Although, using the above construction we can
analogously calculate the amplitude (4.5.11) of the evolved time-dependent resonance.
Taking τ = 1 we find

AR(T ) = (ψR(T ), U(T, 0) ψR(0))

= (ψR(T ), UT (1)ψR(0)) = (ψR(T ), V (1)ST (1)WT (1)ψR(0))

= (S∗T (1)V ∗(1)ψR(T ),WT (1)ψR(0)) = (S∗T (1)ψR(0),WT (1)ψR(0))

(4.5.24)

The left-hand side of the scalar product can be expanded in the basis φE(0) using (4.5.12)

S∗T (1)ψR(0) =
∫
σ(τ)

eiTθE(1)PE(0)dµ(E)
∫
σ(τ)

aE′(0)φE′(0)dµ(E′)

=
∫
σ(τ)

eiTθE(1)aE(0)φE(0)dµ(E).
(4.5.25)

About the right-hand side we know that it decays like WT (τ) = 1 + O(1/T ) for big T .
Thus

AR(T ) =

(∫
σ(τ)

eiTθE(1)aE(0)φE(0)dµ(E),
(
1 +O

(
1
T

))
ψR(0)

)

=
(

1 +O
(

1
T

))
·

(∫
σ(τ)

eiTθE(1)aE(0)φE(0)dµ(E),
∫
σ(τ)

aE′(0)φE′(0)dµ(E′)

)

=
(

1 +O
(

1
T

))
·
∫
σ(τ)

eiTθE(1)|aE(0)|2φE(0)dµ(E)︸ ︷︷ ︸
O(T−1) or O(e−ΓT )

.

(4.5.26)



4.5. Spontaneous particle creation in a weaker sense 133

About the last integral we know that it generally behaves like O(T−1), but for a Breit-
Wigner distribution of aE(0), which is a typical shape of a resonance, it decays exponen-
tially (cf. (4.5.14)). Finally we obtain

AR(T ) =
(
1 +O

(
1
T

))
· O(e−ΓT ). (4.5.27)

Now we see clearly the difference between the adiabatic evolution of bound states (4.5.23)
and resonances (4.5.27). Although the first factor (due to WT ) guarantees that there are
almost no jumps due to the time-variation of the basis during the evolution, the second
terms (due to ST ) differ essentially. Since a bound state is an eigenvector, whose adiabatic
evolution becomes trivial and reduces to multiplication by a phase factor, the resonance is
represented by a wave packet and decays usually exponentially in long and slow evolution.

We can conclude that evolving a wave function, starting from a bound state which
dissolves in the negative continuum when the potential becomes overcritical, transforms
it to a wave packet representing a resonance. This resonance moves deeper and deeper
into the continuum as the strength of the potential increases further, yet the wave packet
does not necessarily follow it. As we see from (4.5.27), there are essentially two factors
preventing an optimal result to reach AR(T ) ≈ 1, what requires both factors being big
(≈ 1). In slow processes (tending to adiabaticity in a limit) the first factor tends to 1, but
the second factor becomes very small due to the decay of the wave packet. In contrast, in
quick processes (tending to a sudden jump in a limit) the second factor tends to 1 (because
ST (1) → 1 as T → 0), but the first one becomes less than one. Actually, the latter case
seems more optimistic, because WT (τ) → V ∗(τ) as T → 0. Therefore

AR(T ) = (ψR(T ), V (1)ST (1)WT (1)ψR(0)) → (ψR(T ), V (1)1V ∗(1)ψR(0))

= (ψR(T ), ψR(0))
(4.5.28)

as T → 0, what is not only non-zero, but can even be relatively big, when the difference
between the initial and final Hamiltonians ∆V is not too big. In such case the perturbation
theory gives the estimation

(ψR(T ), ψR(0)) = 1 +O(∆V ). (4.5.29)

We conclude with a somewhat surprising result that the probability to observe the
wave function in a final resonance state (localized apart from the edge of the
continuum), which evolved from an initial bound state and eventually dived
into the continuum, is bigger for quick processes than for slow ones. In the
latter case the probability tends to zero due to the decay of the wave packet
during its whole evolution along the moving resonance, mainly near the edge
of the continuum, where the resonance appears. In case of quick processes
it is unknown which rate of time-variation gives the optimal result, i.e. the
maximal probability.
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The last question is difficult to answer in the above framework. The optimal result,
when the product of both factors in (4.5.27) becomes maximal, can be an interplay between
both, i.e. an optimal combination of the decay and the loss due to basis-rotation. However,
we expect, that the optimal result is reached in the sudden-jump limit, but we were unable
to proof it rigorously.

The question of optimal excitation of a final resonance state will be studied in the
numerical part (part II) of this work. It has a big significance for the (spontaneous) pair
creation in presence of overcritical potentials, because the amplitude of the resonance is
the upper bound for the amplitude of pair creation. More precisely, the amplitude of pair
creation with an antiparticle in the resonance state is just the part of the resonance, which
has decayed during the overcritical period and this is bounded by the excitation amplitude
of the resonance. To learn about the behaviour of this amplitude from the numerics we
will consider potentials which vary from an initial subcritical value to an overcritical one
at different rates, then stay overcritical to allow the wave packet decay (and contribute to
an antiparticle production), and finally return to the initial subcritical value, producing
an accompanying particle (in a bound state, when done adiabatically).



Part II

Examples and numerical study
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Chapter 5

Dirac equation with a spherically

symmetric square well potential

In this chapter we construct solutions to the Dirac equation in presence of a spherically
symmetric potential well, which will be used in the next chapter, where we are going to
study particle production in time-dependent overcritical potentials. The two-parameter
class of the potential wells is sufficient to cover all cases of interest. The spatial profile
of the potential is chosen to be a spherically symmetric square potential well, for which
it is relatively simple to find all normalized wave functions – solutions of the stationary
Dirac equation, to be used as a basis in the Hilbert space. We first give an introduction
to the Dirac equation in presence of spherically symmetric potentials and construct the
partial wave decomposition based on algebraic properties of the Dirac operator. Then
we solve the Dirac equation for a two-parameter class of spherically symmetric potential
wells, giving an orthogonal and normalized complete set of wave functions. Further, we
analyze the structure and behaviour of bound states and by analytic continuation find
resonances in the overcritical potentials.

5.1 Dirac equation in spherical symmetry

We consider the Dirac equation for a particle in the electromagnetic field[
γµ
(
i~∂µ −

e

c
Aµ(x)

)
−mc

]
Ψ(x) = 0 (5.1.1)

where Ψ is a bispinor (Ψα, α = 1, .., 4) and x stands for 4-coordinates in Minkowski space.
It can be rewritten in the form

i~
∂Ψ
∂t

(x) =
[
cαip̂i +mc2β + eA0(x) + eαiAi(x)

]
Ψ(x) ≡ ĤΨ(x), (5.1.2)

where

• the total Hamiltonian: Ĥ = Ĥ0 +W ,
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• the free Hamiltonian: Ĥ0 = cαip̂i +mc2β,

• the momentum operator: p̂i = −i~∂i,

• the Dirac matrices: αi = γ0γi, β = γ0,

• and the potential: W (x) = eA0(x) + eαiAi(x).

Let the potential be purely electric (Ai(x) = 0) and spherically symmetric: W (x) =
eA0(x) ≡ V (r). The spherical symmetry allows for the decomposition of the Hilbert space
(of Ψ at a given time)

H = L2(R3)4 ' L2(R1
+)⊗ L2(S2)4. (5.1.3)

There exist two operators which commute with the spherically symmetric Hamiltonian: the
total orbital momentum operator ~J = ~L+ ~S and the spin-orbit operator K = β(2~S · ~L+1)
(with ~L = x ∧ ~p and ~S = 1

4i(~α ∧ ~α)). They are related by K = β( ~J2 − ~L2 + 1
4).

We choose a complete set of orthonormal eigenvectors

~J2Φmj = j(j + 1)Φmj , j =
1
2
,
3
2
,
5
2
, ... (5.1.4)

J3Φmj = mjΦmj , mj = −j,−j + 1, ..., j (5.1.5)

Every subspace (j,mj) is 4-times degenerate (C∞(S2)4 is 4-dimensional). Because K

commutes with ~J , we choose

KΦmj ,κj = −κjΦmj ,κj , κj = ±(j +
1
2

). (5.1.6)

The set (j,mj , κj) is still 2-times degenerate. We write the vectors in the form

Φmj ,κj = c+Φ+
mj ,κj

+ c−Φ−
mj ,κj

, (5.1.7)

where

Φ+
mj ,∓(j+ 1

2
)

=

(
iχ
mj

j∓ 1
2

0

)
, Φ−

mj ,∓(j+ 1
2
)

=

(
0

χ
mj

j± 1
2

0

)
, (5.1.8)

and

χ
mj

j− 1
2

=
1√
2j


√
j +mj Y

mj− 1
2

j− 1
2√

j −mj Y
mj+

1
2

j− 1
2

 , (5.1.9)

χ
mj

j+ 1
2

=
1√

2j + 2


√
j + 1−mj Y

mj− 1
2

j+ 1
2

−
√
j + 1 +mj Y

mj+
1
2

j+ 1
2

 . (5.1.10)
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Y m
l (l = 0, 1, 2, ...; m = −l,−l + 1, ..., l) are spherical harmonics defined by means of the

associated Legendre polynomials Pml

Y m
l (θ, φ) =

√
2l + 1

4π
(l −m)!
(l +m)!

eimφPml (cosθ), m > 0 (5.1.11)

Pml (x) =
(−1)m

2ll!
(1− x2)m/2

dm+l

dxm+l
(x2 − 1)l (5.1.12)

Y −m
l (θ, φ) = (−1)mY m

l (θ, φ) (5.1.13)

Then the “angular” part of the Hilbert space splits into a direct sum of the subspaces
spanned by the eigenvectors to the eigenvalues (j,mj , κj)

[L2(S2)] =
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
κj=±(j+ 1

2
)

Kmj ,κj , (5.1.14)

where
Kmj ,κj =

{
c+Φ+

mj ,κj
+ c−Φ−

mj ,κj
|c± ∈ C

}
. (5.1.15)

The free Hamiltonian takes the form

H0 = −i~c(~α~er)
(
∂r +

1
r
− 1
r
βK

)
+ βmc2. (5.1.16)

With respect to the basis
{

Φ+
mj ,κj

,Φ−
mj ,κj

}
in K the expressions β and −i~α~er read

β =

(
1 0
0 −1

)
, −i~α~er =

(
0 −1
1 0

)
(5.1.17)

and finally the total Hamiltonian

hmj ,κj =

(
mc2 ~c(−∂r + κj

r )
~c(∂r + κj

r ) −mc2

)
+

(
V (r) 0

0 V (r)

)
, (5.1.18)

H =
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
κj=±(j+ 1

2
)

hmj ,κj . (5.1.19)

So every function in the Hilbert space

H = L2(R3)4 ' L2(R1
+)⊗

 ∞⊕
j= 1

2
, 3
2
,...

j⊕
mj=−j

⊕
κj=±(j+ 1

2
)

Kmj ,κj

 (5.1.20)

may be written in the form

Ψ(r, θ, φ) =
∑

j,mj ,κj

[
1
r
f+
mj ,κj

(r)Φ+
mj ,κj

(θ, φ) +
1
r
f−mj ,κj

(r)Φ−
mj ,κj

(θ, φ)
]
. (5.1.21)

If we consider Ψ to be time-dependent, then the functions f± will also depend on time.
Because all Φ±

mj ,κj
are orthogonal, the Dirac equation (5.1.2) reduces to
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i~
∂f+

mj ,κj

∂t
= mc2f+

mj ,κj
− ~c

∂f−mj ,κj

∂r
+

~cκj
r

f−mj ,κj
+ V (r)f+

mj ,κj
(5.1.22)

i~
∂f−mj ,κj

∂t
= −mc2f−mj ,κj

+ ~c
∂f+

mj ,κj

∂r
+

~cκj
r

f+
mj ,κj

+ V (r)f−mj ,κj
. (5.1.23)

If we look for stationary solutions, we separate the time-dependence

f+
mj ,κj

(t, r) = e−iEt/~fmj ,κj (r) (5.1.24)

f−mj ,κj
(t, r) = e−iEt/~gmj ,κj (r). (5.1.25)

Then the system reduces to two coupled ODE’s

~c
∂g(r)
∂r

− ~cκj
r

g(r) +
(
E −mc2 − V (r)

)
f(r) = 0 (5.1.26)

~c
∂f(r)
∂r

+
~cκj
r

f(r)−
(
E +mc2 − V (r)

)
g(r) = 0 (5.1.27)

and we skipped the indices (mj , κj). Introducing the dimensionless variables

ε =
E

mc2
, υ(R) =

V (r)
mc2

, R =
mc

~
r (5.1.28)

we obtain a form more suitable for numerical integration

∂g(R)
∂R

− κ

R
g(R) + (ε− 1− υ(R)) f(R) = 0 (5.1.29)

∂f(R)
∂R

+
κ

R
f(R)− (ε+ 1− υ(R)) g(R) = 0 (5.1.30)

This system can be separated for arbitrary potentials as follows. We can calculate f(R)
from (5.1.26) and insert into (5.1.27) and analogous for g(R), obtaining

g′′(R)− κ(κ− 1)
R2

g(R) +
[
(ε− υ(R))2 − 1

]
g(R)−

(
g′(R)− κ

R
g(R)

) υ′(R)
ε− υ(R)− 1

= 0

(5.1.31)

f ′′(R)− κ(κ+ 1)
R2

f(R) +
[
(ε− υ(R))2 − 1

]
f(R) +

(
f ′(R) +

κ

R
f(R)

) υ′(R)
ε− υ(R) + 1

= 0

(5.1.32)
It may be rewritten in the Sturm-Liouville form(

g(R)′

ε− υ(R)− 1

)′
+
−κ(κ−1)

R2 +
[
(ε− υ(I))2 − 1

]
− κ

R
υ′(R)

ε−υ(R)−1

ε− υ(R)− 1
g(R) = 0(5.1.33)

(
f(R)′

ε− υ(R) + 1

)′
+
−κ(κ+1)

R2 +
[
(ε− υ(R))2 − 1

]
+ κ

R
υ′(R)

ε−υ(R)+1

ε− υ(R) + 1
f(R) = 0(5.1.34)

Redefining

g̃(R) ≡ g(R)√
ε− υ − 1

, f̃(R) ≡ g(f)√
ε− υ + 1

(5.1.35)
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we finally get

g̃(R)′′ +
[
−κ(κ− 1)

R2
+
[
(ε− υ(R))2 − 1

]
− κ

R

υ′(R)
ε− υ(R)− 1

−3
4

(υ′(R))2

(ε− υ(R)− 1)2
− 1

2
υ′′(R)

ε− υ(R)− 1

]
g̃(R) = 0 (5.1.36)

f̃(R)′′ +
[
−κ(κ+ 1)

R2
+
[
(ε− υ(R))2 − 1

]
+
κ

R

υ′(R)
ε− υ(R) + 1

−3
4

(υ′(R))2

(ε− υ(R) + 1)2
− 1

2
υ′′(R)

ε− υ(R) + 1

]
f̃(R) = 0 (5.1.37)

Although the separation is always successful, the resulting equations represent a rather
unusual eigenvalue problem which is difficult to solve. However, it may prove advantageous
if the potential’s derivatives take a simple form.

The decoupled equations may be useful in determining the asymptotic behaviour of
solutions, e.g. the Coulomb potential υ(R) = Z/R leads for R→∞ to

g̃(R)′′ +

[
−1 +

(
ε− Z

R

)2

− κ(κ− 1)
R2

+O(R−3)

]
g̃(R) = 0 (5.1.38)

f̃(R)′′ +

[
−1 +

(
ε− Z

R

)2

− κ(κ+ 1)
R2

+O(R−3)

]
f̃(R) = 0 (5.1.39)

and for R ≈ 0

g̃(R)′′ +

[
1
4 − κ2 + Z2

R2
+O(R−1)

]
g̃(R) = 0 (5.1.40)

f̃(R)′′ +

[
1
4 − κ2 + Z2

R2
+O(R−1)

]
f̃(R) = 0. (5.1.41)

5.2 Square well potential

Consider a square potential well

V (r) = −V0Θ(a− r) =

{
−V0, r < a

0, r > a
. (5.2.1)

Decomposing the wave function

Ψ(t, r, θ, φ) =
1
r
e−iEt/~

∑
j,mj ,κj

[
fE,mj ,κj (r)Φ+

mj ,κj
(θ, φ) + gE,mj ,κj (r)Φ−

mj ,κj
(θ, φ)

]
(5.2.2)

and introducing dimensionless variables

ε =
E

mc2
, υ(R) =

V (r)
mc2

, U =
V0

mc2
, R =

mc

~
r, A =

mc

~
a (5.2.3)

the Dirac equation (5.1.2) for fixed quantum numbers (mj , κj) reads
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∂g(R)
∂R

− κ

R
g(R) + (ε− 1− υ(R)) f(R) = 0 (5.2.4)

∂f(R)
∂R

+
κ

R
f(R)− (ε+ 1− υ(R)) g(R) = 0 (5.2.5)

Differentiating by R and eliminating first derivatives we obtain

g′′(R)− κ(κ− 1)
R2

g(R) +
[
(ε− υ(R))2 − 1

]
g(R)− υ′(R)f(R) = 0 (5.2.6)

f ′′(R)− κ(κ+ 1)
R2

f(R) +
[
(ε− υ(R))2 − 1

]
f(R) + υ′(R)g(R) = 0, (5.2.7)

where prime denotes derivative with respect to R.
For the given potential (5.2.1) the last term with υ′(R) is always zero, except at the

point R = A which needs to be considered separately. Around that point we can integrate
both equations from A− ε to A+ ε and take the limit ε→ 0. The result is that the first
derivatives of g and f have a discontinuity there

∆g′(A) = g′(A+)− g′(A−) = Uf(A) (5.2.8)

∆f ′(A) = f ′(A+)− f ′(A−) = −Ug(A). (5.2.9)

Introducing new functions

g(R) =
√
RG(R), f(R) =

√
RF (R) (5.2.10)

the first-order equations take the form

G′(R)−
κ− 1

2

R
G(R) + [ε− 1− υ(R)]F (R) = 0 (5.2.11)

F ′(R) +
κ+ 1

2

R
F (R)− [ε+ 1− υ(R)]G(R) = 0 (5.2.12)

and the second-order (decoupled) equations

• for R < A

G′′(R) +
1
R
G′(R) +

[
(ε+ U)2 − 1−

(κ− 1
2)2

R2

]
G(R) = 0 (5.2.13)

F ′′(R) +
1
R
F ′(R) +

[
(ε+ U)2 − 1−

(κ+ 1
2)2

R2

]
F (R) = 0 (5.2.14)

• for R > A

G′′(R) +
1
R
G′(R) +

[
ε2 − 1−

(κ− 1
2)2

R2

]
G(R) = 0 (5.2.15)

F ′′(R) +
1
R
F ′(R) +

[
ε2 − 1−

(κ+ 1
2)2

R2

]
F (R) = 0. (5.2.16)
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These are Bessel equations. The most general solutions read

• for R < A

G(R) = A1J|κ− 1
2
|(
√

(ε + U)2 − 1R) +B1N|κ− 1
2
|(
√

(ε + U)2 − 1R)(5.2.17)

F (R) = C1J|κ+ 1
2
|(
√

(ε + U)2 − 1R) +D1N|κ+ 1
2
|(
√

(ε + U)2 − 1R)(5.2.18)

• for R > A and |ε| > 1

G(R) = A2J|κ− 1
2
|(
√
ε2 − 1R) +B2N|κ− 1

2
|(
√
ε2 − 1R) (5.2.19)

F (R) = C2J|κ+ 1
2
|(
√
ε2 − 1R) +D2N|κ+ 1

2
|(
√
ε2 − 1R) (5.2.20)

• for R > A and |ε| < 1

G(R) = A3I|κ− 1
2
|(
√

1− ε2R) +B3K|κ− 1
2
|(
√

1− ε2R) (5.2.21)

F (R) = C3I|κ+ 1
2
|(
√

1− ε2R) +D3K|κ+ 1
2
|(
√

1− ε2R) (5.2.22)

Where J,N are Bessel functions and I,K are modified Bessel functions.
Inserting the solutions (5.2.17-5.2.22) into the first-order coupled equations (5.2.11-

5.2.12) connects the amplitudes of G and F

C1 = sign (κ)

√
(ε + U)2 − 1
ε+ U − 1

A1 (5.2.23)

D1 = sign (κ)

√
(ε + U)2 − 1
ε+ U − 1

B1 (5.2.24)

C2 = sign (κ)

√
ε2 − 1
ε− 1

A2 (5.2.25)

D2 = sign (κ)

√
ε2 − 1
ε− 1

B2 (5.2.26)

C3 =

√
1− ε2

1− ε
A3 (5.2.27)

D3 = −
√

1− ε2

1− ε
B3. (5.2.28)

To simplify the following expressions introduce abbreviations

ω1 =
√

(ε + U)2 − 1, ω2 =
√
ε2 − 1, ω3 =

√
1− ε2. (5.2.29)

Condition at R = 0

The square-integrability condition∫
Ψ(x)Ψ(x)d3x ∼

∫ ∞

0

(
|f(r)|2 + |g(r)|2

)
dr ∼

∫ ∞

0
R
(
|F (R)|2 + |G(R)|2

)
dR <∞

(5.2.30)
requires the asymptotic behaviour F (R) ∼ Rp, G(R) ∼ Rq with p, q > −1.

The functions N|κ− 1
2
|(
√

(ε + U)2 − 1R) and N|κ+ 1
2
|(
√

(ε + U)2 − 1R) can never simul-
taneously fulfill this requirement. It follows B1 = D1 = 0, hence
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• for R < A

G(R) = A1J|κ− 1
2
|(
√

(ε + U)2 − 1R) (5.2.31)

F (R) = C1J|κ+ 1
2
|(
√

(ε + U)2 − 1R) (5.2.32)

At R = 0 both solutions vanish G(0) = F (0) = 0.

5.2.1 Wave functions

Continuum

Wave functions with |ε| > 1 describe scattering states. Their energies belong to the
continuous spectrum (−∞,−1) ∪ (1,∞). There is no additional boundary condition at
infinity since all solutions G(R), F (R) oscillate with a constant amplitude as R→∞.

The matching condition at R = A

F (R−) = F (R+), G(R−) = G(R+) (5.2.33)

gives the values of A2, B2

A2 ≡ A1Ã2 = −A1sign (κ)
π

2
Aω2

·
[
J|κ− 1

2
|(ω1A)N|κ+ 1

2
|(ω2A)− ε− 1

ε+ U − 1
ω1

ω2
J|κ+ 1

2
|(ω1A)N|κ− 1

2
|(ω2A)

]
(5.2.34)

B2 ≡ A1B̃2 = A1sign (κ)
π

2
Aω2

·
[
J|κ− 1

2
|(ω1A)J|κ+ 1

2
|(ω2A)− ε− 1

ε+ U − 1
ω1

ω2
J|κ+ 1

2
|(ω1A)J|κ− 1

2
|(ω2A)

]
. (5.2.35)

Finally the form of the continuum wave functions is:

• for R < A

G(R) = A1J|κ− 1
2
|(
√

(ε + U)2 − 1R) (5.2.36)

F (R) = C1J|κ+ 1
2
|(
√

(ε + U)2 − 1R) (5.2.37)

• for R > A

G(R) = A2J|κ− 1
2
|(
√
ε2 − 1R) +B2N|κ− 1

2
|(
√
ε2 − 1R) (5.2.38)

F (R) = C2J|κ+ 1
2
|(
√
ε2 − 1R) +D2N|κ+ 1

2
|(
√
ε2 − 1R) (5.2.39)

with

C1 = sign (κ)

√
(ε + U)2 − 1
ε+ U − 1

A1 (5.2.40)

C2 = sign (κ)

√
ε2 − 1
ε− 1

A2 (5.2.41)

D2 = sign (κ)

√
ε2 − 1
ε− 1

B2 (5.2.42)

The last undefined constant A1 will be determined by normalization.
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Bound states

Square-integrable solutions with |ε| ≤ 1 describe bound states. First, we show that they
exist only for ε > 1−U . Consider the system of equations (5.4.3)-(5.4.4) and the boundary
conditions G(0) = F (0) = 0 and G(R), F (R) → 0 as R → ∞. Assume ε < 1 − U .
Asymptotic analysis at R ∼= 0 shows that both functions must have the same sign, so
assume they are positive. Since κ(κ ± 1) ≤ 0 and (ε − υ(R))2 − 1 < 0, both second
derivatives g′′(R), f ′′(R) ≥ 0 for all R ≥ 0 except R = A. It means that both first
derivatives g′(R), f ′(R), which were positive in the vicinity of R = 0, grow until the point
R = A. At this point both derivatives have a jump according to (5.2.8)-(5.2.9). ∆g′(R)
is positive, ∆f ′(R) is negative, so g′(R) increases. For R > A, g′(R) grows further and it
never becomes negative, hence it will never fulfill the asymptotic boundary condition at
infinity, namely g(R) → 0. The argument for ε = 1 − U is similar. Here the asymptotic
analysis at R = 0 gives that g(R) ≡ 0 and it will stay zero for all R < A, because it solves
the equation (5.4.3) there. Therefore we argue analogously, but for f(R) instead of g(R).
The second derivative f ′′(R) ≥ 0 for all R 6= A, so the first derivative f ′(R) grows for
R < A, at R = A it has no jump, because g(A) = 0, and further f ′(R) grows for R > A.
It will never become negative, so it cannot fulfill the asymptotic boundary condition at
infinity: f(R) → 0.

We have shown that bound states may exist only for ε > 1 − U . Then ω1 =√
(ε + U)2 − 1 and ω3 =

√
1− ε2 are real. The functions I|κ+ 1

2
|(ω3R) and I|κ− 1

2
|(ω3R)

never fulfill the asymptotic condition at infinity (G(R), F (R) → 0), so A3 = C3 = 0.
Hence, the final form of the bound state wave functions is:

• for R < A

G(R) = A1J|κ− 1
2
|(
√

(ε + U)2 − 1R) (5.2.43)

F (R) = C1J|κ+ 1
2
|(
√

(ε + U)2 − 1R) (5.2.44)

• for R > A

G(R) = B3K|κ− 1
2
|(
√

1− ε2R) (5.2.45)

F (R) = D3K|κ+ 1
2
|(
√

1− ε2R) (5.2.46)

with

C1 = sign (κ)

√
(ε + U)2 − 1
ε+ U − 1

A1 (5.2.47)

D3 = −
√

1− ε2

1− ε
B3. (5.2.48)

Matching at R = A gives the value of B3

B3 = A1

J|κ− 1
2
|(ω1A)

K|κ− 1
2
|(ω3A)

(5.2.49)
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and the implicit condition on the energy ε (quantization condition)

J|κ− 1
2
|(ω1A)K|κ+ 1

2
|(ω3A) + sign (κ)

1− ε

ε+ U − 1
ω1

ω3
J|κ+ 1

2
|(ω1A)K|κ− 1

2
|(ω3A) = 0, (5.2.50)

which needs to be solved in order to obtain the energy levels of the system.
The last undefined constant A1 will be determined by normalization up to a complex

phase, which will be chosen as to make A1 real. This, together with the fact that ω1 and
ω3 are real, guarantees that the functions G(R) and F (R) are real.

5.2.2 Normalization

To fix the last free coefficient A1, the overall amplitude of the wave function, we need to
impose a normalization condition. In order to do that we first introduce a restricted scalar
product 〈ψ|ψ′〉mj ,κj in Kmj ,κj . The full scalar product of the wave functions from H

Ψ(r, θ, φ) =
∑

j,mj ,κj

[
1
r
fmj ,κj (r)Φ+

mj ,κj
(θ, φ) +

1
r
gmj ,κj (r)Φ−

mj ,κj
(θ, φ)

]
(5.2.51)

has the form

〈〈Ψ|Ψ′〉〉 =
∫

R3

d3xΨ(x)Ψ′(x)

=
∫ ∞

0
r2dr

∫
S2

dΩ
1
r

∑
j,mj ,κj

[
fmj ,κj (r)Φ+

mj ,κj (θ, φ) + gmj ,κj (r)Φ−
mj ,κj (θ, φ)

]
·1
r

∑
j′,m′

j ,κ
′
j

[
f ′m′

j ,κ
′
j
(r)Φ+

m′
j ,κ

′
j
(θ, φ) + g′m′

j ,κ
′
j
(r)Φ−

m′
j ,κ

′
j
(θ, φ)

]
=

∑
j,mj ,κj

∫ ∞

0
dr
[
fmj ,κj (r)f ′mj ,κj

(r) + gmj ,κj (r)g′mj ,κj
(r)
]

=
~
mc

∑
j,mj ,κj

∫ ∞

0
RdR

[
Fmj ,κj (R)F ′mj ,κj

(R) +Gmj ,κj (R)G′mj ,κj
(R)
]

≡ ~
mc

∑
j,mj ,κj

〈ψmj ,κj |ψ′mj ,κj
〉

(5.2.52)

where

ψmj ,κj (r) =

(
Fmj ,κj (R)
Gmj ,κj (R)

)
(5.2.53)

and the restricted scalar product

〈ψ|ψ′〉 =
∫ ∞

0

(
F (R)
G(R)

)†(
F ′(R)
G′(R)

)
R dR =

∫ ∞

0

[
F (R)F ′(R) +G(R)G′(R)

]
R dR.

(5.2.54)
A1 will be determined by the normalization up to a complex phase, which may be chosen
arbitrarily, but independent on the energy ε.
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Continuum

Since the continuum wave functions are not integrable, we normalize the scalar product
of a pair of eigenvectors to energies ε, ε′ to a delta function

〈ψε|ψε′〉 = δ(ε− ε′). (5.2.55)

A rather lengthy calculation leads to the condition

A1 =

√√√√ |ε− 1|

2
(
|Ã2|2 + |B̃2|2

) . (5.2.56)

The complex phase has been chosen as to make A1 always real.

Bound states

Bound states are integrable and we normalize them to unity

||ψε||2 ≡ 〈ψε|ψε〉 = 1. (5.2.57)

Again, a rather lengthy calculation gives

A1 =
√

2
A
·{

J|κ− 1
2
|(ω1A)2

[
−
J|κ− 1

2
|−1(ω1A)J|κ− 1

2
|+1(ω1A)

J|κ− 1
2
|(ω1A)2

+
K|κ− 1

2
|−1(ω3A)K|κ− 1

2
|+1(ω3A)

K|κ− 1
2
|(ω3A)2

]

+
(ε+ U)2 − 1
(ε+ U − 1)2

J|κ+ 1
2
|(ω1A)2·[

−
J|κ+ 1

2
|−1(ω1A)J|κ+ 1

2
|+1(ω1A)

J|κ+ 1
2
|(ω1A)2

+
K|κ+ 1

2
|−1(ω3A)K|κ+ 1

2
|+1(ω3A)

K|κ+ 1
2
|(ω3A)2

]}−1/2

.

(5.2.58)

Here, too, the complex phase has been chosen as to make A1 always real (with ω1, ω3 ∈ R).

5.2.3 Singular values of parameters ε, U

There are two (or counted with both sign combinations, four) special values of the param-
eters ε, U , where the Dirac equations become singular, namely: (ε+ U)2 = 1 and ε2 = 1.
They require separate analysis.

Special case: (ε+ U)2 = 1

This case is singular, because the equations (5.2.13)-(5.2.14) change their character at that
point. They become scale invariant (change R → λR is a symmetry) and their solutions
(5.2.31)-(5.2.32) cannot be Bessel functions any more, but must rather have a form of a
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power of R. The origin of the problem is that the values of ε satisfying (ε + U)2 = 1 lie
at the edge of a “local continuum” inside the potential well, which is simply shifted by U
from the usual values ±1. At the same time solutions outside the well, (5.2.38)-(5.2.39)
and (5.2.45)-(5.2.46), behave regularly at these special values of ε.

There are two ways to deal with the problem: one can either solve the equations anew
or calculate a limit in the general solutions as (ε + U)2 → 1. We choose the second one,
because we are interested if the limiting procedure produces a correct result (i.e. if the
limit is regular), what is of some importance in numerical calculations.

Unfortunately, simply setting (ε+U)2 = 1 does not produce reasonable wave functions,
namely

G(R) = A1J|κ− 1
2
|(0) = A1 · 0, F (R) = C1J|κ+ 1

2
|(0) = C1 · 0. (5.2.59)

Though, it is not a real problem, because at the same time A1, C1 → ∞. In fact, it is a
consequence of the choice of normalization, which, taken properly into account, restores
reasonable wave functions. We will write asymptotic formulas for G(R), F (R) and A1, C1

at ω1 =
√

(ε + U)2 − 1 ∼= 0, using (5.5.21), and observe that singular terms cancel, leading
to well-behaved wave functions.

G(R) ∼= A1
ω
|κ− 1

2 |
1 R|κ−

1
2 |

2|κ−
1
2 | Γ(

∣∣κ− 1
2

∣∣+ 1)
(5.2.60)

F (R) ∼= A1
sign (κ)
ε+ U − 1

ω
|κ+ 1

2 |+1

1 R|κ+
1
2 |

2|κ+
1
2 | Γ(

∣∣κ+ 1
2

∣∣+ 1)
(5.2.61)

To find the asymptotic behaviour of A1 we need to consider separately the cases ε+U ∼= ±1
and sign (κ) = ±1. While in ε + U ∼= −1 the energy belongs certainly to the lower
continuum (ε < −1), in ε + U ∼= 1 it depends on the strength of the potential. But we
know from a general analysis that there is no bound state with energy ε = 1−U , therefore
we analyze only the continuum case for U > 2.
• ε+ U ∼= −1 (ε in lower continuum) and κ > 0:

A1
∼=

√
2

|ε+1|
1
πA

2κ− 1
2 Γ(κ+ 1

2
)

ω
κ− 1

2
1 Aκ− 1

2√∣∣∣N|κ+ 1
2
|(ω2A)

∣∣∣2 +
∣∣∣J|κ+ 1

2
|(ω2A)

∣∣∣2 ≡
2κ−

1
2 Γ(κ+ 1

2)

ω
κ− 1

2
1

· Ã1
−+

(5.2.62)

where Ã1
−+

is finite. Inserting this into (5.2.60) and (5.2.61) gives

G(R) ∼= Ã1
−+

·Rκ−
1
2 , F (R) ∼= 0. (5.2.63)

Of course, this is the form of the solution only for R < A. For R > A the usual formulas
(5.2.38)-(5.2.39) for the wave functions may be used, although the normalization constants
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A2, B2 need to be evaluated by a limit procedure, too, since they contain a product of A1

and J|κ± 1
2
|(ω1A)

A2
∼= −Ã1

−+
· π

2
ω2AA

κ− 1
2N|κ+ 1

2
|(ω2A) (5.2.64)

B2
∼= Ã1

−+
· π

2
ω2AA

κ− 1
2J|κ+ 1

2
|(ω2A). (5.2.65)

• ε+ U ∼= −1 (ε in lower continuum) and κ < 0:

A1
∼=

√
2

|ε+1|
1
πA

2−κ+1
2 Γ(−κ+ 3

2
)

ω
−κ+1

2
1 A−κ+1

2√∣∣∣N|κ+ 1
2
|(ω2A) + ε−1

ω2

−κ+ 1
2

A N|κ− 1
2
|(ω2A)

∣∣∣2 +
∣∣∣J|κ+ 1

2
|(ω2A) + ε−1

ω2

−κ+ 1
2

A J|κ− 1
2
|(ω2A)

∣∣∣2
≡

2−κ+
1
2 Γ(−κ+ 3

2)

ω
−κ+ 1

2
1

· Ã1
−−

(5.2.66)

where Ã1
−−

is finite. Inserting this into (5.2.60) and (5.2.61) gives

G(R) ∼= Ã1
−−

·R−κ+
1
2 , F (R) ∼= Ã1

−−
·
(
−κ+

1
2

)
R−κ−

1
2 . (5.2.67)

Analogously to the previous case we find

A2
∼= Ã1

−−
· π

2
ω2A

[
A−κ+

1
2N|κ+ 1

2
|(ω2A) +

ε− 1
ω2

(
−κ+

1
2

)
A−κ−

1
2N|κ− 1

2
|(ω2A)

]
(5.2.68)

B2
∼= −Ã1

−−
· π

2
ω2A

[
A−κ+

1
2J|κ+ 1

2
|(ω2A) +

ε− 1
ω2

(
−κ+

1
2

)
A−κ−

1
2J|κ− 1

2
|(ω2A)

]
.

(5.2.69)
• ε+ U ∼= 1 (ε in lower continuum, U > 2) and κ < 0:
Introduce an auxiliary variable y ≡ ε+ U − 1 ∼= 0. Then ω1

∼=
√

2y.

A1
∼=
√

2
−κ− 3

2 Γ(−κ+ 1
2)

√
y −κ−

3
2

√
2

ε2−1
ω2

πA−κ− 3
2√∣∣∣N|κ− 1

2
|(ω2A)

∣∣∣2 +
∣∣∣J|κ− 1

2
|(ω2A)

∣∣∣2
≡
√

2
−κ− 3

2 Γ(−κ+ 1
2)

√
y −κ−

3
2

· Ã1
+−

(5.2.70)

where Ã1
+−

is finite. Inserting this into (5.2.60) and (5.2.61) gives

G(R) ∼= 0, F (R) ∼= −Ã1
+−

·R−κ−
1
2 . (5.2.71)

A2
∼= −Ã1

+−
· π

2
(ε− 1)A−κ+

1
2N|κ− 1

2
|(ω2A) (5.2.72)

B2
∼= Ã1

+−
· π

2
(ε− 1)A−κ+

1
2J|κ− 1

2
|(ω2A). (5.2.73)
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• ε+ U ∼= −1 (ε in lower continuum, U > 2) and κ > 0:

A1
∼=
√

2
κ− 1

2 Γ(κ+ 1
2)

√
yκ−

1
2

· √
2

|ε+1|
1

πAκ+1
2√∣∣∣N|κ+ 1

2
|(ω2A)− ε−1

ω2

A
κ+ 1

2

N|κ− 1
2
|(ω2A)

∣∣∣2 +
∣∣∣J|κ+ 1

2
|(ω2A)− ε−1

ω2

A
κ+ 1

2

J|κ− 1
2
|(ω2A)

∣∣∣2
≡
√

2
κ− 1

2 Γ(κ+ 1
2)

√
yκ−

1
2

· Ã1
++

(5.2.74)

where Ã1
++

is finite. Inserting this into (5.2.60) and (5.2.61) gives

G(R) ∼= Ã1
++

·Rκ−
1
2 , F (R) ∼= Ã1

++
· 1
κ+ 1

2

Rκ+
1
2 . (5.2.75)

A2
∼= −Ã1

++
· π

2
ω2A

κ+ 1
2

[
N|κ+ 1

2
|(ω2A)− ε− 1

ω2

A

κ+ 1
2

N|κ− 1
2
|(ω2A)

]
(5.2.76)

B2
∼= Ã1

++
· π

2
ω2A

κ+ 1
2

[
J|κ+ 1

2
|(ω2A)− ε− 1

ω2

A

κ+ 1
2

J|κ− 1
2
|(ω2A)

]
. (5.2.77)

Special case: ε2 = 1

In this case energy lies on the edge of the continuous spectrum. From the general theory
it is not known whether the boundary point belongs to the spectrum or not. This value
must be studied separately. By inserting the value ε2 = 1 into (5.2.15)-(5.2.16) we find
that the only acceptable solutions are

G(R) ∼ R−|κ−
1
2 |, F (R) =∼ R−|κ+

1
2 | for R > A. (5.2.78)

The exact formulas with the proper normalization can be obtained by taking the limit
ε → ±1 in the bound-state wave functions. Consider first the solutions (5.2.43)-(5.2.44)
for R < A. The functions J|κ± 1

2
|(ω1R) behave regularly, but some terms in the definition

of the normalization constant A1 become singular

K|κ± 1
2
|(ω3A) →∞ as ω3 → 0. (5.2.79)

Therefore we must make use of the asymptotic formula (5.5.24) to find the (finite) limit

A1
∼=
√

2
A

{
−J|κ− 1

2
|−1(ω1A)J|κ− 1

2
|+1(ω1A) + J|κ− 1

2
|(ω1A)2

∣∣κ− 1
2

∣∣∣∣κ− 1
2

∣∣− 1

+
(ε+ U)2 − 1
(ε+ U − 1)2

[
−J|κ+ 1

2
|−1(ω1A)J|κ+ 1

2
|+1(ω1A) + J|κ+ 1

2
|(ω1A)2

∣∣κ+ 1
2

∣∣∣∣κ+ 1
2

∣∣− 1

]}−1/2

.

(5.2.80)
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The wave functions for R > A become asymptotically

G(R) ∼= A1·J|κ− 1
2
|(ω1A)

(
R

A

)−|κ− 1
2 |
, F (R) ∼= A1·sign (κ)

ω1

ε+ U − 1
J|κ+ 1

2
|(ω1A)

(
R

A

)−|κ+ 1
2 |

(5.2.81)
as ε → ±1. In the calculation we have used the relation between different Bessel func-
tions which is satisfied for every bound state, namely the “energy quantization” condition
(5.2.50). From it follows

J|κ− 1
2
|(ω1A)

J|κ+ 1
2
|(ω1A)

∼= −sign (κ)
(
A

2

)sign(κ)
√
ε+ U + 1
ε+ U − 1

Γ(
∣∣κ− 1

2

∣∣)
Γ(
∣∣κ+ 1

2

∣∣) ·
{

1/(1 + ε), for κ < 0,
1− ε, for κ > 0,

(5.2.82)
what gives in particular:

J|κ+ 1
2
|(ω1A) = 0 for κ < 0, ε = −1 and J|κ− 1

2
|(ω1A) = 0 for κ > 0, ε = 1.

(5.2.83)
In other cases both J|κ± 1

2
|(ω1A) are finite ( 6= 0). The above has the consequence that

F (R > A) ≡ 0 for κ < 0, ε = −1 and G(R > A) ≡ 0 for κ > 0, ε = 1.

5.2.4 Bound states – analysis

In this section we will study the structure of bound states of the square well potential, i.e.
solutions for ε of the energy quantization equation (5.2.50)

J|κ− 1
2
|(ω1A)K|κ+ 1

2
|(ω3A) + sign (κ)

1− ε

ε+ U − 1
ω1

ω3
J|κ+ 1

2
|(ω1A)K|κ− 1

2
|(ω3A) = 0, (5.2.84)

as functions of the parameters U,A and κ. From the operator theory we know that
bound-state energies belong to the point spectrum and are countable, hence we can use
the notation εn, where n counts the bound states. We need a unique numeration procedure
for every U,A and κ, which will be convenient for further analysis. We will use the natural
one, basing on counting the bound states from the lowest lying with n = 0 upwards with
increasing n, but with one modification, namely if a bound-state appears or disappears
at the bottom of the spectrum as U or A vary, no renumbering will occur. This choice of
numbering is consistent, if the dependence of εn on U,A is continuous and the are no level
crossings, what is true within every partial wave subspace, i.e. for fixed value of κ [Tha92,
sec. 4.7.3]. Then, for every U,A we will have Ep, Ep+1, ..., Eq present in the spectrum,
with 0 ≤ p ≤ q, but not necessarily p = 0. Dependence on κ cannot be continuous
since κ takes only integer values. Moreover, level crossing of eigenvalues corresponding to
different values of κ is possible. Therefore, the numbering procedures for different κ are
independent.

Continuity of εn(U,A) can be shown as a consequence of differentiability, which is a
stronger condition. To show that the derivative with respect to U or A is regular and
finite it is sufficient to differentiate the formula (5.2.84) with respect to the parameter U
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or A and calculate ∂εn(U,A)/∂U or ∂εn(U,A)/∂A, respectively, what is a trivial algebraic
operation. It is not difficult to show that both formulas are regular and finite for |εn| < 1
and εn > 1 − U . The cases εn → ±1 must be treated by a limiting procedure and lead
to finite results, too. Therefore εn(U,A) are continuous and differentiable functions of U
and A.

In what follows we will concentrate mainly on the dependence of εn(U,A) on U . There-
fore we will only write εn(U), assuming that A is constant. First, from general quantum
mechanics, for bound states described by Hψn = Enψn we know that variation of the
eigenvalue due to variation of the Hamiltonian is equal to δEn = 〈ψn|δHψn〉. In our case
it leads to

δεn = 〈ψn|δυ ψn〉 = −δU ·
∫ ∞

0

[
F (R) Θ(A−R) F (R) +G(R) Θ(A−R) G(R)

]
R dR

= −δU ·
∫ A

0

[
|F (R)|2 + |G(R)|2

]
R dR

(5.2.85)

and hence

ε′n(U) ≡ δεn(U)
δU

= −
∫ A

0

[
|F (R)|2 + |G(R)|2

]
R dR < 0 (5.2.86)

because the integrand is strictly positive. It proves that the bound-state energies εn(U)
are differentiable and that they are decreasing functions of the potential’s strength U .

Now we want to answer the question whether the bound-state energies move downwards
with increasing U starting from ε = 1 and reaching ε = −1 or reach asymptotically some
other value within the interval (−1, 1). Before we carry on with the analysis, let’s first
restrict the considerations to the case κ = −1. It will turn out that among all angular
momentum sectors just this one gives the lowest lying bound states (the strongest binding)
and therefore contains the absolute ground state. Roughly, the reason is that for κ = −1
the effective repulsive centrifugal potential is the weakest. Therefore, this sector is of
biggest interest for us. The mathematical task simplifies for a given value of κ, especially
for κ = −1 for which the Bessel functions have the simplest trigonometric form, but we
will see later that the general character of solutions remains essentially the same for other
values of κ.

Case κ = −1

For κ = −1 the Bessel functions can be expressed as

J|κ+ 1
2
|(z) = J 1

2
(z) =

√
2
πz

sin(z), J|κ− 1
2
|(z) = J 3

2
(z) =

√
2
πz

(
sin(z)
z

− cos(z)
)

(5.2.87)

K|κ+ 1
2
|(z) = K 1

2
(z) =

√
π

2z
e−z, K|κ− 1

2
|(z) = K 3

2
(z) =

√
π

2z

(
1
z

+ 1
)
e−z (5.2.88)
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and (5.2.84) reduces to

1−
A
√

(εn + U)2 − 1

tan
(
A
√

(εn + U)2 − 1
) =

εn + U + 1
εn + 1

(
1 +A

√
1− ε2n

)
. (5.2.89)

First, observe that for weak potentials there are no bound states:

• a ≈ 0
Making use of tan(x) ≈ x for x ≈ 0 we find from (5.2.89)

0 ≈ 1 + εn + U

1 + εn
, (5.2.90)

which has no solutions for |εn| ≤ 1.

• U ≈ 0
From the general discussion about bound-states in 5.2.1 we know that εn > 1 − U ,
thus εn → 1 as U → 0. Therefore

√
(εn + U)2 − 1 ≈ 0 and

√
1− ε2n ≈ 0. Using

again tan(x) ≈ x for x ≈ 0 we obtain from (5.2.89)

0 ≈ 1, (5.2.91)

what means that there are no solutions.

To find for which parameters U,A first solutions appear, it is enough to consider the
limit εn → 1− in (5.2.89). The condition takes an implicit form

tan
(
A
√
U(U + 2)

)
= −2A

√
U + 2
U

(5.2.92)

and cannot be solved analytically. Nevertheless, the existence of a sequence of solutions can
be proved as follows. The r.h.s. is always negative. A

√
U(U + 2) increases monotonically

and unboundedly in both variables A and U > 0. Thus the function tan(A
√
U(U + 2))

grows monotonically and is negative on every interval

A
√
U(U + 2) ∈

(
(k − 1

2
)π, kπ

)
, k ∈ Z (5.2.93)

and takes values in the whole R−. On the other hand, −2A
√

(U + 2)/U , considered as a
function of A starts at 0 for A = 0 and decreases monotonically towards −∞ as A grows.
Therefore the above equation has exactly one solution in every interval

A+
k ∈

(
(k − 1

2)π√
U(U + 2)

,
kπ√

U(U + 2)

)
for k > 0. (5.2.94)

Considered as a function of U , the r.h.s. −2A
√

(U + 2)/U starts at −∞ for U → 0+ and
increases monotonically to −2A as U → ∞. Therefore there is at least one solution in
every interval

U+
k ∈

−1 +

√
1 +

(k − 1
2)2π2

A2
,−1 +

√
1 +

k2π2

A2

 for k > 0. (5.2.95)
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To prove that there is exactly one solution in every interval it is sufficient to observe
that the l.h.s. function L(U) crosses the r.h.s. function R(U) always from below, i.e.
L′(U) > R′(U) at the points L(U) = R(U). This can be easily shown by little algebra
and use of the inequality A

√
U(U + 2) > π/2, which follows from the relation (5.2.93) for

the lowest possible value k = 1.
Finally, we have shown that there is an infinite, increasing sequence of parameters U

or A, respectively, for which new bound states at εn(U,A) = 1 appear.
Now we can show that there are also infinite sequences of parameters U and A for

which the bound-states disappear at εn(U,A) = −1. Analogously, consider the limit
εn → −1+ in (5.2.89). It turns out that the r.h.s. becomes (+)infinite. On the l.h.s. it
must correspond to zeros of tan(A

√
(−1 + U)2 − 1), what gives a discrete set of solutions

A
√

(−1 + U)2 − 1 = kπ, k ∈ Z. (5.2.96)

It can be solved either for a sequence of values A

A−k =
kπ√

U(U − 2)
, k = 1, 2, 3, ... (5.2.97)

or a sequence of values U

U−k = 1 +

√
1 +

k2π2

A2
, k = 0, 1, 2, ... (5.2.98)

These are so-called critical values for the strength of the potential, when a bound-state
reaches the edge of the negative continuous spectrum εn = −1, although the value U0

must be excluded from the set, because, as will become clear later, no bound state reaches
the value −1 already for U = 2.

Observe that at the critical values of U±k there exists always a bound-state with the
exact energy εn = ±1, because the corresponding wave functions are square integrable,
what has been generally shown by Klaus in [Kla85].

Next, let’s differentiate the formula (5.2.89) with respect to the parameter U and A

and calculate ∂εn(U,A)/∂U and ∂εn(U,A)/∂A, respectively. The trigonometric functions
in the result may be eliminated by use of (5.2.89).
• with respect to U :

∂εn(U,A)
∂U

=

(Aω3 + 1)2 (εn+U+1)2

(εn+1)2
− (Aω3 + 1)

[
εn+U+1
εn+1 + ω2

1
(εn+1)(εn+U)

]
+A2ω2

1

(Aω3 + 1)2 (εn+U+1)2

(εn+1)2
− (Aω3 + 1)

[
εn+U+1
εn+1 − Uω2

1
(εn+1)2(εn+U)

]
+A2ω2

1 + Aεnω2
1(εn+U+1)

ω3(εn+1)(εn+U)

(5.2.99)

This formula looks complicated, but it can be easily shown that it is regular and finite for
all |εn| ≤ 1 and εn > 1 − U . Therefore εn(U) is differentiable and thus also continuous.
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Two special cases are important: the slope of the function when a new bound-state appears
at εn = 1

lim
εn→1−

dεn
dU

= 0−, (5.2.100)

what implies that every new bound-state departs from the positive continuum smoothly,
and the slope of the function as bound-state disappears at εn = −1

lim
εn→−1+

dεn
dU

= − U − 1
2U − 3

< 0, (5.2.101)

because U ≥ 2 in order to make εn → −1+ possible. It means that every bound-state
energy reaching the top of the negative continuum crosses the line εn = −1 (from above)
with a finite slope, what has been generally proved by Klaus in [Kla85]. These two results
will be important for the analysis of adiabatic scattering processes.
• with respect to A:

∂εn(A)
∂A

=
(Aω3 + 1)2 (εn+U+1)2

(εn+1)2
− (2Aω3 + 1) εn+U+1

εn+1 +A2ω2
1

A(εn+U)
ω2

1

[
(Aω3 + 1)2 (εn+U+1)2

(εn+1)2
− (Aω3 + 1) εn+U+1

εn+1 +A2ω2
1

]
+ A2εn(εn+U+1)

ω3(εn+1)

(5.2.102)
This derivative is also regular and finite for |εn| < 1 and εn > 1 − U , hence εn(U,A) are
continuous and differentiable functions of U and A.

Treating εn as functions of U we have already found points where new bound-states
appear εn(U) = 1 and where strongly bound states disappear εn(U) = −1, and we also
know that the functions εn(U) are continuous. To assign the first to the second we will
show that the functions εn(U) may take values only in some skewed bands on the plane
(U, εn). Let’s analyze single terms in the formula (5.2.89). Obviously

A
√

(εn + U)2 − 1 > 0, 1 +A
√

1− ε2n > 1 and
εn + U + 1
εn + 1

> 1. (5.2.103)

It follows that
tan

(
A
√

(εn + U)2 − 1
)
< 0. (5.2.104)

It defines allowed intervals for the variable Aω1

A
√

(εn + U)2 − 1 ∈
(

(n+
1
2

)π, (n+ 1)π
)
, n ∈ Z+

0 , (5.2.105)

what can be solved for εn

εn ∈

√1 +
(n+ 1

2)2π2

A2
− U,

√
1 +

(n+ 1)2π2

A2
− U

 . (5.2.106)

This relation defines skew bands, where solutions εn can be found. These bands coincide
with the intervals U+

k at the value εn = 1, where new bound-states appear. Since we
know that in every such interval there appears exactly one new bound-state, the bands
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are disjoint and the functions εn(U) are continuous, the conclusion is that in every band
defined above there is exactly one curve εn(U) starting at εn(U+

n+1)) = 1 and finishing at
εn(U−n+1) = −1 (figure 5.1). It guarantees a unique numbering of bound-states. It becomes
here also transparent that the possible critical potential U−0 = 2 must be excluded, because
it does not lie within any band.

–1

–0.5

0

0.5

1

E

2 4 6 8 10
U

Figure 5.1: Bound states εn for different values of the potential’s strength U (solid lines)
and bounding regions according to (5.2.106) (dashed straight lines).

We want to add one more relation, which will be important in a numerical search for
solutions of (5.2.89), namely the condition saying which bound-states (numbers) can be
present for a given potential’s strength. Taking into account that −1 ≤ εn ≤ 1 the last
relation can be resolved for n

A

π

√
(U − 1)2 − 1− 1 ≤ n ≤ A

π

√
(U + 1)2 − 1− 1

2
. (5.2.107)

Case κ = 1

For κ = 1 the quantization condition (5.2.84) takes a similar simple form

1−
A
√

(εn + U)2 − 1

tan
(
A
√

(εn + U)2 − 1
) = −εn + U − 1

1− εn

(
1 +A

√
1− ε2n

)
. (5.2.108)

The analysis of bound states can be performed in a fully analogous way, but there is no
point to not present it here.

Other values of κ

The analysis of the full condition (5.2.84) for any κ cannot be done so easily, because
the Bessel functions have more complicated properties than the trigonometric functions



5.2. Square well potential 157

appearing in cases κ = ±1. Though, some analogous results can be proved analytically,
the rest must be verified numerically.

Equation (5.2.84) can be split into terms of a known sign

−sign (κ)

√
(ε + U)2 − 1
ε+ U − 1︸ ︷︷ ︸

+

J|κ+ 1
2
|(
√

(ε + U)2 − 1A)

J|κ− 1
2
|(
√

(ε + U)2 − 1A)
=

√
1− ε2

1− ε︸ ︷︷ ︸
+

K|κ+ 1
2
|(
√

1− ε2A)

K|κ− 1
2
|(
√

1− ε2A)︸ ︷︷ ︸
+

.

(5.2.109)
Then, the signs of the remaining terms must fulfill

sign (κ)·sign
(
J|κ+ 1

2
|(
√

(ε + U)2 − 1A)
)
·sign

(
J|κ− 1

2
|(
√

(ε + U)2 − 1A)
)

= −1 (5.2.110)

in order to guarantee existence of a solution. For given κ and A the l.h.s of the above
condition is a function of ε+U and

√
(ε + U)2 − 1 is a monotonic function of ε+U . The

Bessel functions oscillate around zero, i.e. they change sign perpetually. Moreover, since
the indices of both Bessel functions in this equation differ by 1, their zeros lie alternately
on the real axis. It follows that there exist infinite number of intervals (a−n , b

−
n ) of ε + U

such that both Bessel functions have the same sign with A
√

(a+
n )2 − 1 and A

√
(b+n )2 − 1

being zeros of the corresponding Bessel functions. The complementary set on R+ is an
infinite sum of intervals (a+

n , b
+
n ) = (b−n , a

−
n+1) of ε+U such that the Bessel functions have

opposite signs. The first set presents a solution for the case sign (κ) < 0 and the second
for sign (κ) > 0. Finally, we obtain intervals, for a given U , where possible values of bound
state energies εn can be found, namely

εn ∈
(
a±n − U, b±n − U

)
, (5.2.111)

where the sign is to be chosen equal to sign (κ). These are obviously skew bands in function
of U , as it was the case for κ = −1.

5.2.5 Critical point

It is important to know for which values of U the critical points εn = −1+ appear, espe-
cially what is their order with respect to the value of κ. Equation (5.2.109) is convenient
for such analysis, because the l.h.s. is finite and r.h.s. is singular – both K-Bessel functions
tend to zero as ε→ −1+

√
U

U − 2

J|κ+ 1
2
|(
√

(U − 1)2 − 1A)

J|κ− 1
2
|(
√

(U − 1)2 − 1A)
= −sign (κ) lim

ε→−1+

√
1− ε2

1− ε

K|κ+ 1
2
|(
√

1− ε2A)

K|κ− 1
2
|(
√

1− ε2A)

=
−sign (κ)

2A
lim
x→0

x ·
K|κ+ 1

2
|(x)

K|κ− 1
2
|(x)

=

0, κ < 0

−κ− 1
2

A , κ > 0.
(5.2.112)

The first case, κ < 0 has a straightforward solution

J|κ+ 1
2
|(
√

(U − 1)2 − 1A) = 0, (5.2.113)
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and gives an infinite sequence of critical values Un (whose values must be calculated
numerically). The other case, κ > 0, is more complicated, but with a little analysis it can
also be shown that its solutions form an infinite sequence Un.

In fact, we are mostly interested in the first critical value, i.e. the smallest critical
value of U , say U1, when the lowest bound state ε1 reaches the negative continuum. This
holds not only for all critical values Un within a given value of κ, but also among all values
of κ. Hence we ask the question, what is the order of values U1 for different κ. Consider
first κ < 0. The condition for criticality reduces to an equation for zeros of the Bessel
function

J−κ− 1
2
(x) = 0 (5.2.114)

with x ≡
√

(U − 1)2 − 1A being a monotonically growing function of U and −κ− 1
2 > 0.

From the theory of Bessel functions [Wat22] we know that the first positive zeros of Jν(x)
move monotonically left, towards x = 0 as the index ν grows. Moreover, the second zeros
to any value of ν are always to the right of all first zeros to any value ν ′. Therefore, calling
xκn the n-th (positive) zero of the above equation, we have

x−1
1 < x−2

1 < x−3
1 < ... < x−1

2 < x−2
2 < x−3

2 < ... (5.2.115)

and because x is a monotonically growing function of U , we get the first critical values

U−1
1 < U−2

1 < U−3
1 < ... < U−1

2 < U−2
2 < U−3

2 < ... (5.2.116)

It means that among all negative values of κ overcriticality happens first for κ = −1,
then for κ = −2, etc. More involved analysis shows that solutions for κ > 0 are placed
alternately to those for −κ, hence we finally obtain

U−1
1 < U1

1 < U−2
1 < U2

1 < U−3
1 < U3

1 < ... < U−1
2 < U1

2 < U−2
2 < U2

2 < U−3
2 < U3

2 < ...

(5.2.117)
i.e. overcriticality occurs always first for κ = −1, then for κ = 1, then κ = −2, then κ = 2,
etc. It allows us to concentrate in the following mainly on the overcriticality in the sector
κ = 1, as it happens for the weakest potentials.

5.3 Overcriticality and resonances

Since overcriticality happens always first (i.e. for the smallest value of U) for κ = −1, we
will restrict our considerations in this section only to that sector. To give numerically some
values, we choose the radius of the potential well A = 1 in the dimensionless variables,
what corresponds to a = ~/(mc) = λC being the Compton wavelength of the electron. On
the one hand, this is the natural length scale in this problem, on the other, the structure
of bound states is relatively simple – for every value of U only one bound state is present
and new bound states appear at ε = 1 roughly as overcritical disappear at ε = −1 with
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increasing U . The critical value for the strength of the potential is (5.2.98)

U−1 = 1 +

√
1 +

π2

A2
≈ 4.297 (for A = 1), (5.3.1)

The slope at which the bound state ε1(U) reaches the edge of the continuum ε = −1 is
(5.2.101)

lim
ε1→−1+

dε1(U)
dU

= − U − 1
2U − 3

∣∣∣∣
U=U−1

≈ −0.589 < 0 ∀A>0. (5.3.2)

For overcritical potentials, i.e. for U > U−1 , the bound state turns into a resonance, whose
position we have defined in section 3.3 as a complex pole of the resolvent continued to the
second Riemann sheet. In practice, it corresponds to a solution of the bound state (energy
quantization) formula (5.2.89)

1−
A
√

(ε + U)2 − 1

tan
(
A
√

(ε + U)2 − 1
) =

ε+ U + 1
ε+ 1

(
1 +A

√
1− ε2

)
, (5.3.3)

continued analytically beyond the complex cut along (−∞,−1) in the variable ε. Here,
the square roots

√
1− ε2 and

√
(ε + U)2 − 1 must be properly continued, what means

that a special branch must be chosen. A typical
√
· function has a cut along the negative

real axis R−. It leads to cuts along (−∞,−1) and (1,∞) in
√

1− ε2 and (−1−U, 1−U)
and −U + iR in

√
(ε + U)2 − 1. Since for overcritical potentials we have U > 2, there is

an interval (1 − U,−1) through which we will go from the lower Im(ε) < 0 to the upper
Im(ε) > 0 half plane choosing a universal branching. Since

√
(ε + U)2 − 1 is analytic and

single-valued there, only
√

1− ε2 must be treated in a special way, namely by choosing the
branch cut in the

√
· along the positive imaginary half-axis iR+, we make

√
(ε + U)2 − 1

analytic when crossing the segment (1 − U,−1) (see figure 5.2). We expect complex
resonances to be placed in the area εR ≡ Re(ε) ∈ (1 − U,−1), εI ≡ Im(ε) > 0. This
picture is similar to that obtained in [HR85].

For A = 1 we have found the complex resonance energy as a continuation of the value
of the bound state energy (for U ∈ (4.00, 4.28)), moving with increasing U ∈ (4.29, 5.00)
from the vicinity of the point ε = −1 (at U = U−1 ≈ 4.29) further to the left (εR decreases,
as the bound state energy) and leaving the real axis, with increasing εI (figure 5.3).

Far from the point ε = −1 the resonance lies on a straight line εI ≈ −0.325 (εR + 1)−
0.019. In the vicinity of the critical point (figure 5.4), we find εI ≈ −0.58 (−εR−1)3/2, what
confirms the theoretical prediction (3.3.13) εI ∼ (−εR − 1)3/2 and agrees with the scaling
obtained explicitly for the square well potential in [AB65] as well as generally in [Kla85].
It disagrees with the result of Greiner et al. [GMR85], who by the method of perturbation
theory at the boundary between the sub- and overcritical potential obtained scaling εI ∼
(−εR − 1)2. The reason may be that their method implicitly assumes analyticity of ε(λ)
what is not true at the threshold.

Alternatively, we can plot the real and imaginary values of the resonance position,
εR and εI , against the strength of the potential U . In figures 5.5-5.6 we can observe the
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Figure 5.2: Chosen analytic continuation of
√

1− ε2 and
√

(ε + U)2 − 1.

bound state behaviour for U . 4.29 (εI = 0, εR decreasing) and the resonance behaviour
(εI 6= 0) for U & 4.29. For overcritical U the resonance εR(U) continues decreasing at the
same rate as the bound state did, almost linearly εR(U) ≈ − U−1

2U−3

∣∣∣
U=U−1

· (U −U−1 )− 1 ≈

−0.589 (U − U−1 ) − 1, while the behaviour of εI(U) is nonanalytic at the critical point,
εI(U) = 0 for U < U−1 and εI(U) ≈ 0.26 (U − U−1 )3/2.
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Figure 5.3: Position of the complex resonance (dots) for U ∈ (4, 5) with linear and power-
law fits (solid lines).
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Figure 5.4: Position of the complex resonance (dots) in the vicinity of the critical point
and a power-law fit εI ∼ (−εR − 1)3/2 (solid line).
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Figure 5.5: Real part of the position of the complex resonance (dots) and a linear fit (solid
line).
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Figure 5.6: Imaginary part of the position of the complex resonance (dots) and a power-law
fit εI ∼ (U − U−1 )3/2 (solid line).
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5.4 Regularity of the square well potential

At the end of this chapter we want to study the regularity (in the sense defined in section
2.7.2 and theorem 6) of the square well potential

V (r) = −V0 Θ(a− r) =

{
−V0, r < a

0, r > a
. (5.4.1)

Since V (r) is discontinuous its Fourier transform V̂ (p) falls off like 1/|p|2 for big |p|
(2.7.29) and hence satisfies the necessary condition (2.7.25), but does not satisfy the
sufficient condition (2.7.26) for being regular, so we must leave the problem open. On the
other hand, we have shown in section 2.7.2 that smoothing out the discontinuity at r = a

by making the potential only continuous (2.7.30)

V (r) =


−V0, r < a− δ

−V0
2 + V0

2
(r−a)
δ , |r − a| ≤ δ

0, r > a+ δ

(5.4.2)

with some small δ > 0, is enough to make the Fourier transform V̂ (p) fall off faster and
satisfy the sufficient condition for regularity (2.7.26).

It remains to check which influence the δ-regularization has on all the solutions of the
Dirac equation presented in this chapter. To this end we consider the system of equations
(5.2.6)

g′′(R)− κ(κ− 1)
R2

g(R) +
[
(ε− υ(R))2 − 1

]
g(R)− υ′(R)f(R) = 0 (5.4.3)

f ′′(R)− κ(κ+ 1)
R2

f(R) +
[
(ε− υ(R))2 − 1

]
f(R) + υ′(R)g(R) = 0 (5.4.4)

(written with dimensionless variables therefore R instead of r, etc.) The system can be
solved first in the interval R ∈ [0, A) starting from the boundary condition at R = 0 and
then by matching at R = A with the solutions for R > A. The first derivatives of g and f
are discontinuous at R = A (5.2.8) and their jumps ∆g,∆f determine the coefficients of
the solutions for R > A. In the case of δ-regularized potential it can be easily shown that
these jumps are modified so that

∆gδ −∆g = O(δ), ∆fδ −∆f = O(δ). (5.4.5)

In the same way behave all other parameters of the solutions which can depend on δ. It
proves that the δ-regularization procedure is a regular perturbation and all solutions tend
to those of the pure square well as δ → 0.
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5.5 Appendix: Bessel functions

5.5.1 Bessel equation

The Bessel differential equation has the form

y′′(z) +
1
z
y′(z) +

(
α2 − ν2

z2

)
y(z) = 0. (5.5.1)

A linearly independent pair of solutions are the Bessel function of the first kind (reg-
ular in z = 0) and of the second kind: Jν(αz), Nν(αz) or the two Hankel functions
H

(−)
ν (αz),H(+)

ν (αz).
The modified Bessel equation is obtained by the change α→ iα

y′′(z) +
1
z
y′(z)−

(
α2 +

ν2

z2

)
y(z) = 0. (5.5.2)

Its linearly independent solutions are Iν(αz) (regular at z = 0) and Kν(αz).

5.5.2 Connections between the Bessel functions

J and N

There is a connection between J and N

Nν(z) =
cos(πν)Jν(z)− J−ν(z)

sin(πν)
. (5.5.3)

For the half-integer indices it reduces to

N|κ± 1
2
|(z) = sign (κ) (−1)κJ−|κ± 1

2
|(z). (5.5.4)

J, N and H(−), H(+)

Jν(z) =
H

(+)
ν (z) +H

(−)
ν (z)

2
, Nν(z) =

H
(+)
ν (z)−H

(−)
ν (z)

2i
, (5.5.5)

H(+)
ν (z) = Jν(z) + iNν(z), H(−)

ν (z) = Jν(z)− iNν(z). (5.5.6)

J, N and I, K

Iν(z±) = e∓ν
iπ
2 Jν(±iz±), Kν(z±) = ± iπ

2
e±ν

iπ
2 H(±)

ν (±iz±) (5.5.7)

Jν(iz±) = e±ν
iπ
2 Iν(±z±), Nν(iz±) = − 2

π
e∓ν

iπ
2 Kν(±z±)∓ ie±ν

iπ
2 Iν(±z±) (5.5.8)

for arg(z+) ∈ (−π, π2 ) and arg(z−) ∈ (−π
2 , π).

Negative index

J−ν(z) = cos(πν)Jν(z)− sin(πν)Nν(z), N−ν(z) = sin(πν)Jν(z) + cos(πν)Nν(z),

(5.5.9)

I−ν(z) = e2πiνIν(z) +
2
π

sin(πν)Kν(z), K−ν(z) = Kν(z) (5.5.10)
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Recurrence relations

J ′ν(z) = ±ν
z
Jν(z)∓ Jν±1(z), N ′

ν(z) = ±ν
z
Nν(z)∓Nν±1(z), (5.5.11)

I ′ν(z) = ±ν
z
Iν(z) + Iν±1(z), K ′

ν(z) = ±ν
z
Kν(z)−Kν±1(z). (5.5.12)

They are equivalent to[
z±νJν(z)

]′ = ±z±νJν∓1(z),
[
z±νNν(z)

]′ = ±z±νNν∓1(z), (5.5.13)[
z±νIν(z)

]′ = z±νIν∓1(z),
[
z±νKν(z)

]′ = −z±νKν∓1(z). (5.5.14)

For half-integer indices

J ′|κ− 1
2
|(z) = sign (κ)

|κ− 1
2 |

z
J|κ− 1

2
|(z)− sign (κ) J|κ+ 1

2
|(z) (5.5.15)

J ′|κ+ 1
2
|(z) = −sign (κ)

|κ+ 1
2 |

z
J|κ+ 1

2
|(z) + sign (κ) J|κ− 1

2
|(z) (5.5.16)

(what holds for N in the same form).

Wronskians

Define the Wronskian of two functions by W [f, g] ≡ fg′ − f ′g.

W [Jν , Nν ] =
2
πz
, W [Iν ,Kν ] = −1

z
. (5.5.17)

It follows a relation for half-integer indices

J|κ− 1
2
|(z)N|κ+ 1

2
|(z)− J|κ+ 1

2
|(z)N|κ− 1

2
|(z) = sign (κ)

2
πz
. (5.5.18)

5.5.3 Integrals of Bessel functions∫
rJν(αr)2dr =

r2

2
[
Jν(αr)2 − Jν+1(αr)Jν−1(αr)

]
=
r2

2
J ′ν(αr)2 +

1
2

(
r2 − ν2

α2

)
Jν(αr)2 (5.5.19)

∫
rKν(αr)2dr =

r2

2
[
Kν(αr)2 −Kν+1(αr)Kν−1(αr)

]
= −r

2

2
K ′
ν(αr)2 +

1
2

(
r2 +

ν2

α2

)
Kν(αr)2 (5.5.20)

5.5.4 Asymptotic behaviour

For z ≈ 0

Jν(z) ∼=
(z/2)ν

Γ(ν + 1)
, Nν(z) ∼= − 1

π
Γ(ν)

(z
2

)−ν
, for Re(ν) > 0 (5.5.21)

Kν(z) ∼=
1
2

Γ(ν)
(z

2

)−ν
, for Re(ν) > 0 (5.5.22)
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For z →∞

Jν(z) ∼=
2
πz

cos
(
z − 1

2
πν − 1

4
π

)
, Nν(z) ∼=

2
πz

sin
(
z − 1

2
πν − 1

4
π

)
for | arg z| < π

(5.5.23)

Kν(z) ∼=
π

2z
e−z, Iν(z) ∼=

1
2πz

ez for | arg z| < π/2 (5.5.24)

For ν →∞

Jν(z) ∼=
1√
2πν

( ez
2ν

)ν
, Nν(z) ∼= −

√
2
πν

( ez
2ν

)−ν
(5.5.25)



Chapter 6

Particle production in a

time-dependent overcritical

potential

In this chapter we want to study these details of the spontaneous particle creation, dis-
cussed in part I, which could not be decided analytically on a general level. Here, we
construct a series of examples of time-dependent processes (sudden, quick, slow switch
on and off of a sub- and overcritical potentials) by using always the same spatial poten-
tial and considering only various time-dependent amplitudes, what is sufficient to cover
all cases of interest. The spatial profile of the potential is chosen to be the spherically
symmetric square potential well, discussed in the previous chapter. We derive a system
of differential equations to be implemented numerically for calculation of the scattering
operator, discuss various sources of errors introduced by the numerical discretization and
try to find estimations for them.

First, we consider sudden switch on and next switch on and off of an overcritical
potential and calculate the spectrum of produced particles and antiparticles. We observe
that for sufficiently long overcritical periods a peak forms in the antiparticle spectrum and
we compare it with the shape of the resonance in the overcritical potential. Later, we
consider continuous switch on and off processes, explaining how difficult the treatment of
extremely narrow resonance peaks at the edge of the negative continuum is. We consider
subcritical potentials in order to show an adiabatic limit in which no particles are created.
Then we compare processes, where the overcritical potentials are switched on at different
speed and are possibly frozen in the overcritical phase.

We prove, in agreement with the conclusions of section 4.5, that the wave packet in
the negative continuum representing a dived bound state partially follows the moving
resonance and partially decays at every stage of evolution. This continuous decay is
more intensive in slow processes, while in quick processes the wave packet more precisely
follows the resonance. In the adiabatic limit, the whole decay occurs already at the
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edge of continuum, resulting in production of antiparticles with vanishing momentum. In
contrast, in quick switch on processes with delay in the overcritical phase, the spectrum
of the created antiparticles agrees best with the shape of the resonance.

6.1 Numerical evolution in a basis

The evolution equation for the wave function reads

H(t)Ψ(t,x) = i~
∂Ψ(t,x)

∂t
. (6.1.1)

The Hamiltonian H(t) is time-dependent and has the form H(t) = H0 + V (t). At every
instant of time (t plays the role of a parameter) we can choose an infinite countable set of
orthonormal vectors {ψk(t,x)} in H forming a basis, because H is separable. With respect
to that basis, or rather the one-parameter (t) family of bases, we can decompose the wave
function (at every time) as

Ψ(t,x) =
∑
k

ak(t) ψk(t,x). (6.1.2)

Although separability of H is generally a useful property, it does not help much in con-
structing a good basis for numerical calculations. The main reason is that it is very difficult
to find an explicit representation of them, having necessary convergence and completeness
properties. Even if it were possible, they would be numerically rather impractical, be-
cause it is not to expect that there would be a simple relation to e.g. eigenvectors of the
Hamiltonian, which are of interest in calculations.

Instead of solving the evolution equation numerically using a basis, one could try to
integrate it numerically in space discretizing R3. The drawback of this method is that one
has to use a large number of points in R3 in order to encode the information on oscillating
continuum wave functions. In a sense, the set of functions on the discretized R3 forms also
a (incomplete) basis in H (e.g. in [BGGS03] over 5 · 106 points in R3 had to be used).

Adiabatic basis

Therefore, we rather start with the spectral representation introduced in section 3.2.2
of the Hamiltonian H(t) using its generalized eigenvectors ψE(t,x) calculated at every
instant of time t, building the so-called adiabatic basis

Ψ(t,x) =
∫
σ(t)

aE(t) ψE(t,x) dµ(E)

=
∫
σcont(t)

aE(t) ψE(t,x) dµ(E) +
∑

En∈σdisc(t)

aEn(t) ψEn(t,x),
(6.1.3)

where σ(t) ≡ σ(H(t)) is the spectrum of H(t), which contains continuous part σcont(t)
and may contain discrete set of bound states σdisc(t), and dµ is the corresponding spectral
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measure. Inserting this into the above evolution equation we obtain a system of evolution
equations for the coefficients

ȧE(t) =
1
i~

∫
σ(t)

〈
ψE

∣∣∣∣(H(t)− i~
∂

∂t

)
ψE′

〉
aE′(t) dµ(E′)

= − i
~

∫
σ(t)
〈ψE |H(t)ψE′〉 aE′(t) dµ(E′)−

∫
σ(t)
〈ψE |ψ̇E′〉 aE′(t) dµ(E′),

(6.1.4)

assumed that the basis vectors ψE(t,x) are differentiable with respect to time. If E ∈
σdisc(t) this equation has the same form after the replacement E → εn. In the literature,
the amplitudes aE(t) are often referred to as excitations of channels and the above system
of equations (for all E ∈ σ(t)) is called coupled channel equations.

If we choose the basis ψE(t,x) to be generalized eigenvectors of H(t) then the first
term on the r.h.s. simplifies

ȧE(t) = − i
~

∫
σ(t)

E′ 〈ψE |ψE′〉︸ ︷︷ ︸
δ(E−E′)

aE′(t) dµ(E′)−
∫
σ(t)
〈ψE |ψ̇E′〉 aE′(t) dµ(E′)

= − i
~
E aE(t)−

∫
σ(t)
〈ψE |ψ̇E′〉 aE′(t) dµ(E′).

(6.1.5)

With the redefinitions

aE(t) ≡ bE(t) e−iχE(t), χE(t) ≡ 1
~
E (t− t0), for E ∈ σcont, (6.1.6)

aEn(t) ≡ bEn(t) e−iχEn (t), χEn(t) ≡ 1
~

∫ t

t0

En(t′) dt′, for E ∈ σdisc. (6.1.7)

we can remove the first term and get

ḃE(t) = −
∫
σ(t)

e−i(χE(t)−χE′ (t))〈ψE |ψ̇E′〉 bE′(t) dµ(E′). (6.1.8)

Static basis

Analogously, one can consider the static basis of generalized eigenvectors of the free Hamil-
tonian H0, which gives the decomposition

Ψ(t,x) =
∫
σ0

aE(t) ψE(t,x) dµ0(E) =
∫
σcont

0

aE(t) ψE(t,x) dµ(E), (6.1.9)

where σ0 ≡ σ(H0) = σcont
0 ≡ σcont(H0) is the spectrum of H0 which is purely continuous

and dµ is the corresponding spectral measure. The coupled channel equations are different
from in the adiabatic basis and take the form

ȧE(t) = − i
~

∫
σcont

0(t)
〈ψE |(H0 + V (t))ψE′〉 aE′(t) dµ(E′)

= − i
~
E aE(t)− i

~

∫
σcont

0(t)
〈ψE |V (t)ψE′〉 aE′(t) dµ(E′).

(6.1.10)
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Introducing
aE(t) ≡ cE(t) e−iE(t−t0) (6.1.11)

we remove the first term and get

ċE(t) = − i
~

∫
σcont

0(t)
e−i(E−E

′)t〈ψE |V (t)ψE′〉 cE′(t) dµ(E′). (6.1.12)

6.1.1 Construction of the (classical) scattering operator S

In the following we choose the adiabatic basis. Equations (6.1.4) and (6.1.8) can be used to
solve the Dirac equation for a wave function. To calculate the evolution or the scattering
operator numerically, we have to find its all matrix elements

UE′E = 〈ψE′ |U ψE〉, SE′E = 〈ψE′ |S ψE〉. (6.1.13)

To reach this goal, the coupled channel equations can be used in the following way. Assume,
we want to calculate matrix elements of the evolution operator U ≡ U(t1, t0), so we have

Ψ(t1) = U Ψ(t0), UEE ≡ 〈ψE(t1)|U ψE′(t0)〉 (6.1.14)

together with the representations

Ψ(t0) ≡
∫
σ(t0)

aE(t0) ψE(t0) dµ(E), (6.1.15)

Ψ(t1) ≡
∫
σ(t1)

aE(t1) ψE(t1) dµ(E). (6.1.16)

Inserting them into the above, we easily find

aE(t1) =

〈
ψE(t1)

∣∣∣∣∣ U
∫
σ(t0)

aE′(t0) ψE′(t0) dµ(E′)

〉

=
∫
σ(t0)

〈ψE(t1) | U ψE′(t0)〉 aE′(t0) dµ(E′)

=
∫
σ(t0)

UEE′ aE′(t0) dµ(E′).

(6.1.17)

Hence, the channel amplitudes aE(t0) and aE(t1) are uniquely connected by UEE′ . Un-
fortunately, we need rather an opposite kind of relation, giving from the numerically cal-
culated aE(t0), aE(t1) the needed evolution operator. Therefore, we can consider special
initial values of the amplitudes of the form

aE(t0) = δ̃(E − E′) ≡


δ(E − E′), for E′ ∈ σcont,

δEE′ ≡

1, if E = E′,

0, if E 6= E′,
for E′ ∈ σdisc

(6.1.18)

for a given value E′. Then
aE(t1) = UEE′ , (6.1.19)
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what means that the numerical calculated aE(t1) give “one row” of the matrix elements
UEE′ for a given E′. To obtain all matrix elements, one has to repeat this procedure for
all E′ ∈ σ(t1). Yet, it is numerically more favourable to perform the calculations for all
values of E′ simultaneously. We can namely introduce extended amplitudes aE′E(t) such
that they initially assume special values

aE′E(t0) = δ̃(E′ − E), (6.1.20)

or equivalently define a one-parameter family of wave functions

ΨE′(t) ≡
∫
σ(t)

aE′E(t) ψE(t) dµ(E) (6.1.21)

satisfying the initial conditions

ΨE′(t0) = ψE′(t0). (6.1.22)

It leads to

aE′E(t1) = UEE′ , (6.1.23)

i.e. all matrix elements of U are calculated in a single numerical run1.

The limit of infinite times t0 → −∞ and t1 → ∞ will, in general, not exist for the
evolution operator, as we have it mentioned before, because of complex phases which do
not reach any limit. Therefore, to consider the infinite limit, we have to go to the scattering
operator S, defined by

S ≡ s-lim
t0→−∞
t1→+∞

eit1H0 U(t1, t0) e−it0H0 . (6.1.24)

The exponents cancel the complex oscillating factors in U and S as well as its matrix
elements exist in the limit. Next, we use the fact that the potential vanishes asymptotically
and hence H(t) → H0 as t→ ±∞. In consequence, the generalized eigenvectors reach the
limits: limt→±∞ ψE(t) = ϕE , but the initial condition for the extended amplitudes must
be modified by a corresponding phase factor: limt→−∞ eiEtaE′E(t) = δ̃(E′ − E), which
follows from the initial condition for the wave functions

lim
t→−∞

(
ΨE(t)− e−iEtϕE

)
= 0, (6.1.25)

because ϕE evolve asymptotically according to exp(−itH0). Then, the matrix elements of

1which is of course computationally more involved, yet in all saves some steps which are repeated for

every channel in the standard procedure
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S can be defined and calculated as follows

SE′E ≡ 〈ϕE′ |S ϕE〉 = lim
t0→−∞
t1→+∞

〈
e−it1H0ϕE′

∣∣ U(t1, t0) e−it0H0 ϕE
〉

= lim
t0→−∞
t1→+∞

〈
e−it1E

′
ϕE′

∣∣ U(t1, t0) e−it0E ϕE
〉

= lim
t0→−∞
t1→+∞

eit1E
′ 〈ϕE′ | U(t1, t0) ΨE(t0)〉

= lim
t0→−∞
t1→+∞

eit1E
′ 〈ϕE′ | ΨE(t1)〉

= lim
t1→∞

eit1E
′
aEE′(t1).

(6.1.26)

Define, for convenience,
cEE′(t) ≡ eitE

′
aEE′(t). (6.1.27)

It satisfies the simple initial condition limt→−∞ cE′E(t) = δ̃(E′ − E) and gives rise to the
decomposition

ΨE′(t) ≡
∫
σ(t)

e−iEtcE′E(t) ψE(t) dµ(E). (6.1.28)

The matrix elements of the scattering operator are obtained as a simple limit

SE′E = lim
t→∞

cEE′(t). (6.1.29)

Summarizing, we compare all introduced amplitude types

aE′E(t) = e−iχE(t)bE′E(t) = e−itEcE′E(t), (6.1.30)

where aE′E construct the matrix elements of the evolution operator U , cE′E construct in
the limit the scattering operator S and bE′E fulfill the coupled channel equations having the
simplest form. We want to mention that these types are often confused in the literature,
e.g. in the series of papers by Reinhardt et al. [RMG81, RMMG81], etc. as well as in the
book of Eichler [EM95], where bE′E and cE′E are mixed up. Fortunately, the error is only
up to the complex phase factor which disappears in many observables of interest, like the
number of particles created in a scattering process, but may influence more complicated
results involving interference of the phase factors.

At the end, note that in the static basis the amplitudes aE′E also construct the evolu-
tion operator U , while cE′E construct the scattering operator S, too.

6.1.2 Continuum discretization and cut-off

Numerical calculations cannot be performed in an infinite basis with a continuous parame-
ter (E). There is even no way to remember (encode) all coefficients aE(t) when E ∈ σcont(t).
Therefore, σcont(t) must be discretized and cut-off so that the resulting set σ̃cont(t) is finite.
One way is to base on an integration approximation scheme, replacing the integral by a
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sum, picking a discrete set of points where the integrand should be evaluated, and keeping
the gaps ∆En between them small2

Ψ(t,x) ≈
∑

E∈σ̃cont(t)

aE(t) ψE(t,x) ∆E +
∑

En∈σdisc(t)

aEn(t) ψEn(t,x)

≡
∑
n

ãn(t) ψ̃n(t,x) ∆En +
∑
n

an(t) ψn(t,x)
(6.1.31)

where En ∈ σ̃cont(t). The simplest choice is to pick equidistant points within the contin-
uum, ∆En = ∆E, and choose start points E±

0 what gives

σ̃cont 3 En =

E+
0 + (n− 1)∆E, n > 0,

E−
0 − (n− 1)∆E, n < 0.

(6.1.32)

Optimal choice of E±
0 , giving best approximation of the integral, is E±

0 = ±1 ± ∆E/2.
Then

Ψ(t,x) ≈
∞∑
n=1

ãn(t) ψ̃n(t,x) ∆E +
−1∑

n=−∞
ãn(t) ψ̃n(t,x) ∆E +

∑
n

an(t) ψn(t,x). (6.1.33)

This system is still infinite, hence as next one has to cut-off the infinite sums to finite,
introducing the numbers N± of (numerical) states in the positive and negative discretized
continua. Finally,

Ψ(t,x) ≈
N+∑
n=1

ãn(t) ψ̃n(t,x) ∆E +
−1∑

n=−N−

ãn(t) ψ̃n(t,x) ∆E +
∑
n

an(t) ψn(t,x). (6.1.34)

Here, the argument for the approximation is more involved and concerns the quantities to
be calculated. Namely, it is expected that the matrix elements of the discretized evolution
or scattering operator, which will be calculated by this method, are small for big absolute
values of the index |n|. This condition must be carefully checked, since it is not obvious
at all and is not always fulfilled.

Fano formalism: extraction of the resonance state

When a resonance is present in the continuum there is a method, called sometimes the
Fano formalism, to treat it as a separate state. One defines a projector on the resonance
state and by its help redefines all states in the continuum to make them orthogonal to
the resonance state (in a sense, one subtracts the resonance from the continuum) [WS70],
so that the new continuum does not “contain” the resonance any more, what can be
observed in a phase-shift analysis (mentioned in section 3.3.2) of the new continuum wave
functions [RMG81]. Such new basis does not diagonalize the Hamiltonian what leads to

2Some other methods are based upon stationary or Weyl time-dependent wave packets, but their calcu-

lation is much more involved numerically. For their definition and comparison we refer to [Bru01], [GGS03]

and [BS85].
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a nontrivial free evolution of the states, in particular, the resonance gets “coupled” to the
new continuum and its amplitude decays in time.

There are two problems with this method, which cause that we do not adopt it in our
calculations. First, the resonance eigenfunction corresponding to a complex pole of the
resolvent (cf. section 3.3) is not normalizable in Hilbert space. Therefore one has to use
some other, similar function to represent the resonance, but such choice is always arbitrary,
like e.g. in [RMG81], where a phase-shift analysis with a cut-off at big distances has been
performed. Second, the problem of “no decay” of a resonance in a discretized finite
continuum for long evolution times, which we discussed in section 4.4.1 under “Problems
in the numerics”, remains, because it is a consequence of a finite-dimensionality of the
Hilbert space spanned by a discretized finite continuum and not of a choice of the basis.

6.2 Time-dependence: sudden switch on

First, we consider the simplest time-dependent process, which we called in the previous
chapter quasi-static, where the potential is almost all the time static, except a single
moment when its value changes discontinuously. Here, time-dependent will be the strength
of the spherically symmetric square well, i.e.

V (t,x) = V (t, r) = U(t) · υ(r) = U(t) ·Θ(a− r) =

{
U(t), r < a,

0, r > a
(6.2.1)

and

U(t) = −U − (U ′ − U) ·Θ(T − |t|) =

−U, t < 0,

−U ′, t > 0,
(6.2.2)

with U ′ > U > 0. It gives

V (t,x) = V (t, r) ≡

V1(r), t < 0,

V2(r), t > 0
, H(t) ≡

H1, t < 0,

H2, t > 0.
(6.2.3)

From theorem 9 or 10 with a = 0 and b = U ′ follows that H(t) = H0 + V (t) is self-
adjoint on D(H0) for every time t. Because H(t) is constant for t < 0 and t > 0 there
exists a unitary propagator (cf. section 3.4)

U(t2, t1) =


e−iH1(t2−t1) for t1, t2 < 0,
e−iH2(t2−t1) for t1, t2 > 0,
e−iH2t2eiH1t1 for t1 < 0 < t2.

(6.2.4)

Since V (t) is of short-range the wave-operators (3.5.3) exist and are complete (e.g. because
V (t) ∈ Lp(R3) with any p > 0 – cf. section 3.5.1). Consequently, there exists a unitary
scattering operator S in H (3.5.10). According to considerations in section 4.2.4 and
equation (4.2.47) this scattering operator S is implementable when the switched potential
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Figure 6.1: Switch on-off: time-dependence of the potential’s strength.

is regular (in the sense of theorem 6). Though the still do not know whether the square
well potential is regular, we have shown in section 5.4 that it can be easily regularized by
making it continuous what hardly modifies the solutions. We will be able to check the
regularity and thereby the implementability of S for the exact square well when we find
the operator S explicitly.

The scattering operator in H can be calculated, as discussed in the previous section,
from the coupled channel equations (inserting the discontinuously varying potential), how-
ever we can easily solve the evolution in two bases φE and χE consisting of generalized
eigenvectors to the Hamiltonians H1 and H2, respectively, and make a projection at t = 0
to find

SU
′U

E′E = 〈χE′ , φE〉. (6.2.5)

It means that to calculate SU
′U

E′E we only need to evaluate the scalar products (χE′ , φE),
what we do below.

6.2.1 Projections – scalar products

From now on, we go over to dimensionless variables introduced in (5.2.3). Consider the
bases φε and χε as special cases of a more general family of bases ψε,U formed by the
generalized eigenvectors of HU ≡ H0 − Uυ(r). In this section we will calculate the scalar
products 〈ψε,U |ψε′,U ′〉.

Let Fε,U and Gε,U denote the functions Fε,U (R) and Gε,U (R) solving the Dirac equa-
tions (5.2.11)-(5.2.12). First, using these equations, transform the following expression
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(
(ε+ U)− (ε′ + U ′)

) ∫ A

0

[
Gε,U Gε′,U ′ + Fε,U Fε′,U ′

]
R dR

=
∫ A

0

[
(ε+ U) Gε,U Gε′,U ′ + (ε+ U) Fε,U Fε′,U ′

]
R dR

−
∫ A

0

[
Gε,U (ε′ + U ′) Gε′,U ′ + Fε,U (ε′ + U ′) Fε′,U ′

]
R dR

(5.2.11)
(5.2.12)

=
∫ A

0

[(
F ′ε,U +

κ+ 1
2

R
Fε,U −Gε,U

)
Gε′,U ′

+

(
−G′ε,U +

κ− 1
2

R
Gε,U + Fε,U

)
Fε′,U ′

]
R dR

−
∫ A

0

[
Gε,U

(
F ′ε′,U ′ +

κ+ 1
2

R
Fε′,U ′ −Gε′,U ′

)

+Fε,U

(
−G′ε′,U ′ +

κ− 1
2

R
Gε′,U ′ + Fε′,U ′

)]
R dR

=
∫ A

0

[
F ′ε,U Gε′,U ′ + Fε,U G

′
ε′,U ′ +

1
R
Fε,U Gε′,U ′

−G′ε,U Fε′,U ′ −Gε,U F
′
ε′,U ′ −

1
R
Gε,U Fε′,U ′

]
R dR

=
∫ A

0

[
R
(
Fε,U Gε′,U ′ −Gε,U Fε′,U ′

)]′
dR

=A
[
Fε,U (A) Gε′,U ′(A)−Gε,U (A) Fε′,U ′(A)

]
.

(6.2.6)

Analogously, we can transform

(
ε− ε′

) ∫ ∞

A

[
Gε,U Gε′,U ′ + Fε,U Fε′,U ′

]
R dR

(5.2.11)
(5.2.12)

=
∫ ∞

A

[
R
(
Fε,U Gε′,U ′ −Gε,U Fε′,U ′

)]′
dR

= −A
[
Fε,U (A) Gε′,U ′(A)−Gε,U (A) Fε′,U ′(A)

]
+ lim
R→∞

R
[
Fε,U (R) Gε′,U ′(R)−Gε,U (R) Fε′,U ′(R)

]
.

(6.2.7)

By a similar technique, using (5.2.11)-(5.2.12), we can show

(
ε+ ε′

) [
Fε,U Gε′,U ′ −Gε,U Fε′,U ′

] (5.2.11)
(5.2.12)

= W
[
Gε,U , Gε′,U ′

]
+W

[
Fε,U , Fε′,U ′

]
, (6.2.8)

with W denoting the Wronskian of two functions. Using the last three relations, we can
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express the scalar product as

〈ψε,U |ψε′,U ′〉 ≡
∫ ∞

0

[
Gε,U Gε′,U ′ + Fε,U Fε′,U ′

]
R dR

=
∫ A

0

[
Gε,U Gε′,U ′ + Fε,U Fε′,U ′

]
R dR+

∫ ∞

A

[
Gε,U Gε′,U ′ + Fε,U Fε′,U ′

]
R dR

=
[

1
(ε+ U)− (ε′ + U ′)

− 1
(ε− ε′)

]
A
[
Fε,U (A) Gε′,U ′(A)−Gε,U (A) Fε′,U ′(A)

]
+

1
ε2 − ε′2

lim
R→∞

R
(
W
[
Gε,U , Gε′,U ′

]
+W

[
Fε,U , Fε′,U ′

])
=

A(U − U ′)
[(ε− ε′) + (U − U ′)](ε− ε′)

[
Gε,U (A) Fε′,U ′(A)− Fε,U (A) Gε′,U ′(A)

]
+

1
ε2 − ε′2

lim
R→∞

R
(
W
[
Gε,U , Gε′,U ′

]
+W

[
Fε,U , Fε′,U ′

])
(6.2.9)

It remains to evaluate the limit R → ∞ in the last expression. The functions F and G

tend to zero exponentially for bound states and oscillate with a very slow ∼ R−1/2 decay
in the continuum. Therefore we immediately get zero in the case when at least one of the
functions describes a bound state, i.e. one of the energies ε or ε′ is in (−1, 1). If both are
in the continuum then we must insert the explicit form of the solutions (5.2.38)-(5.2.39),
use the asymptotic expansion of the Bessel functions (5.5.23) and utilize the distributional
identities

lim
R→∞

sin(kR)
k

= πδ(k), lim
R→∞

cos(kR)
k

= 0 (6.2.10)

to obtain

1
ε2 − ε′2

lim
R→∞

R
(
W
[
Gε,U , Gε′,U ′

]
+W

[
Fε,U , Fε′,U ′

])
=
[
A2(ε, U)A2(ε, U ′) +B2(ε, U)B2(ε, U ′)

] 2
|ε− 1|

δ(ε− ε′). (6.2.11)

Finally, we have

〈ψε,U |ψε′,U ′〉 =
A(U − U ′)

[(ε− ε′) + (U − U ′)](ε− ε′)

[
Gε,U (A) Fε′,U ′(A)− Fε,U (A) Gε′,U ′(A)

]
+


[
A2(ε, U)A2(ε, U ′) +B2(ε, U)B2(ε, U ′)

]
2

|ε−1| δ(ε− ε′), |ε|, |ε′| > 1,

0, otherwise.

(6.2.12)
It satisfies explicitly the complex conjugation property

〈ψε,U |ψε′,U ′〉 = 〈ψε′,U ′ |ψε,U 〉. (6.2.13)

Below we analyze some special values of ε, ε′, U and U ′ in this formula.
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Singular point ε = ε′

For energies ε, ε′ such that ε − ε′ → 0 the denominator of the first term in the scalar
product (6.2.12) becomes zero. The terms (U − U ′)/[(ε− ε′) + (U − U ′)] cancel to 1 and
the behaviour of the term

[
Gε,U Fε′,U ′ − Fε,U Gε′,U ′

]∣∣
A

depends on whether the energies
are in the continuous or discrete spectrum. In continuum,

[
Gε,U Fε,U ′ − Fε,U Gε,U ′

]∣∣
A

is
finite and non-zero, in general. Therefore, the first term becomes singular at ε = ε′, having
a pole of the first order. The second term contains δ(ε− ε′) and is also singular at ε = ε′.
Later, to integrate the scalar product (6.2.12) over the continuum, the principal value will
have to be taken.

In the bound state situation, there are again two cases. In the first, it may happen that
the potential strengths are different U 6= U ′, but both have a bound state with the same
energy ε = ε′. Because the functions Gε,U (A), Fε,U (A) depend on U only by the normaliza-
tion constants, which can be taken in front of the difference

[
Gε,U Fε,U ′ − Fε,U Gε,U ′

]∣∣
A

,
the rest depends only on the energies ε, ε′, which we put equal and get zero. To deal with
the result 0/0 we have to differentiate this expression with respect to ε at the point ε = ε′.
A rather lengthy calculation gives finally a finite result, which we do not cite here, because
it is very rarely used.

The second case, when the bound state energies ε′ → ε together with U ′ → U , i.e.
ε = εn(U) and ε′ = ε′n(U ′) correspond to the same bound state, will be treated below as
a limit U ′ → U .

Singular point ε+ U = ε′ + U ′

Again, for ε+U = ε′ +U ′ the denominator of the first term in the scalar product (6.2.12)
becomes zero and (U−U ′)/(ε−ε′) cancel to −1, yet the term

[
Gε,U Fε′,U ′ − Fε,U Gε′,U ′

]∣∣
A

becomes zero, too, what can be deduced from (6.2.6)

(
(ε+ U)− (ε′ + U ′)

) ∫ A

0

[
Gε,U Gε′,U ′ + Fε,U Fε′,U ′

]
R dR

= A
[
Fε,U (A) Gε′,U ′(A)−Gε,U (A) Fε′,U ′(A)

]
. (6.2.14)

The integral on the l.h.s. is bounded, hence the r.h.s. must vanish when (ε+U)−(ε′+U ′) →
0. Therefore, the whole first term in the scalar product is of type 0/0 and we again must
differentiate it with respect to ε to find the limit which is finite. The second term of the
scalar product (6.2.12), containing δ(ε−ε′), vanishes, because we consider here only ε 6= ε′

and U 6= U ′.

Limit U ′ → U

For completeness we add a short analysis of the limit U ′ → U in the scalar product formula
(6.2.12). If both energies ε and ε′ belong to the continuum, the first term vanishes and the
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second term becomes 1 · δ(ε− ε′) therefore reproducing the orthonormality of the basis

〈ψε,U |ψε′,U 〉 = δ(ε− ε′). (6.2.15)

If one of the energies belongs to the discrete and the other to the continuous spectrum then
the limit U ′ → U in (6.2.12) gives trivially zero. If both energies ε, ε′ are from the discrete
spectrum (i.e. correspond to bound states) then they are functions of U,U ′, respectively.
Enumerating the bound states with n,m we have ε = εn(U) and ε′ = εm(U ′). The first
(and only) term of (6.2.12) vanishes when U = U ′ and εn(U) 6= limU ′→U εm(U ′) = εm(U),
i.e. for n 6= m. In the case n = m we get again 0/0 and must differentiate with respect to
U , including the dependence of εn(U) and εm(U). A lengthy calculation gives 1, hence

〈ψεn,U |ψεm,U 〉 = δnm, (6.2.16)

confirming orthonormality of bound states.

Asymptotic behaviour for |ε|, |ε′| � 1

For the purpose of numerical error estimation, we need to find the asymptotic behaviour
of the scalar product (6.2.12) for big values of one or both values of |ε|, |ε′|. Since we
consider only continuum wave functions, we use the definitions (5.2.36)-(5.2.37)

Gε,U (A) = A1(ε, U) J|κ− 1
2
|(ω1A), (6.2.17)

Fε,U (A) = C1(ε, U) J|κ+ 1
2
|(ω1A) (6.2.18)

and C1(ε, U) = sign (κ)
√

(ε+U)2−1

ε+U−1 A1(ε, U) with A1(ε, U) being the normalization con-
stant. The asymptotic analysis gives

A1(ε, U) ∼=
√
|ε|
2
, C1(ε, U) ∼= sign (κ) sign (ε)A1(ε, U) (6.2.19)

and

J|κ± 1
2
|(ω1A) ∼=

√
2

πA|ε|
cos
(
|ε+ U |A− π

2

∣∣∣∣κ± 1
2

∣∣∣∣− π

4

)
. (6.2.20)

Combined together we obtain

|Gε,U (A)| . 1√
πA

, |Fε,U (A)| . 1√
πA

. (6.2.21)

Hence, for |ε| � 1 and ε′ arbitrary, we find the estimate

∣∣〈ψε,U |ψε′,U ′〉∣∣ . √
A |U − U ′|√

π ε2
(
|Fε′,U ′(A)|+ |Gε′,U ′(A)|

)
, (6.2.22)

which shows that the absolute value of the scalar product vanishes for big energies like
∼ |ε|−2 for a constant value of ε′.
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For both |ε|, |ε′| being big we find

Gε,U (A) Fε′,U ′(A)− Fε,U (A) Gε′,U ′(A) ∼= − 1
πA

sin
[
(ε− ε′ + U − U ′)A

]
. (6.2.23)

Because ε− ε′ may be small, we must keep the second term in the scalar product (6.2.12),
approximating only the factor multiplying the delta-function

A2(ε, U) A2(ε, U ′) +B2(ε, U) B2(ε, U ′)
2

|ε− 1|
∼=

2
|ε|

cos
[
(U − U ′)A

]
. (6.2.24)

Finally, we get

〈ψε,U |ψε′,U ′〉 ∼= −(U − U ′) sin [(ε− ε′ + U − U ′)A]
π(ε− ε′ + U − U ′)(ε− ε′)

+
2
|ε|

cos
[
(U − U ′)A

]
δ(ε− ε′) ,

(6.2.25)
which approximates also cases with ε ≈ ε′ and ε + U ≈ ε′ + U ′. For sign (ε) = −sign (ε′)
it reduces to ∣∣〈ψε,U |ψε′,U ′〉∣∣ . |U − U ′|

π|ε− ε′|2
. (6.2.26)

Implementability of S

Now, having

SU
′U

E′E = 〈ψε,U |ψε′,U ′〉

=
A(U − U ′)

[(ε− ε′) + (U − U ′)](ε− ε′)

[
Gε,U (A) Fε′,U ′(A)− Fε,U (A) Gε′,U ′(A)

]
+


[
A2(ε, U)A2(ε, U ′) +B2(ε, U)B2(ε, U ′)

]
2

|ε−1| δ(ε− ε′), |ε|, |ε′| > 1,

0, otherwise

(6.2.27)

we can explicitly investigate the implementability of S.

Theorem 18 The above defined unitary operator S is implementable in Fock space, i.e.
S±∓ are Hilbert-Schmidt.

Proof:
Since for t2 > 0 > t1 holds (4.2.47)

||[U(t2, t1)]±∓||HS = ||S±∓||HS , (6.2.28)

it is enough to show that [UT ]±∓ are Hilbert-Schmidt (and hence implementable in F).

||U(t2, t1)−+||2HS =
∫ ∞

0
dµ(ε)

∫ 0

−∞
dµ(ε′) |(χε′ , φε)|2

=
∫ ∞

1
dε

∫ −1

−∞
dε′

A2(U − U ′)2
∣∣∣Gε,U (A) Fε′,U ′(A)− Fε,U (A) Gε′,U ′(A)

∣∣∣2
[(ε+ U)− (ε′ + U ′)]2(ε− ε′)2

+
∑

bound states

(...)

(6.2.29)
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The sum over the bound states is finite hence we do not need to consider it any more.
The double-integral, call it I1, can be split using the asymptotic form of the integrand by
the scheme

I1 =
∫
X =

∫
(X −Xasympt)︸ ︷︷ ︸

I2

+
∫
Xasympt︸ ︷︷ ︸
I3

. (6.2.30)

Again I2 must be finite, so we need to consider further only I3. Using (6.2.25) we have

I3 =
∫ ∞

1
dε

∫ −1

−∞
dε′

(U − U ′)2 sin2((ε+ U − ε′ − U ′)A)
π2(ε+ U − ε′ − U ′)2(ε− ε′)2

. (6.2.31)

By substitution v ≡ ε− ε′, w ≡ ε+ ε′ and introducing ∆U ≡ U − U ′ we obtain

I3 =
∆U2

π2

∫ ∞

2
dv

∫ v−2

2−v
dw

sin2((v + ∆U)A)(v − 2)
(v + ∆U)2v2

≤ ∆U2

π2
sup
v≥2

v − 2
v2︸ ︷︷ ︸

≤1/2

·
∫ ∞

(2+∆U)A

sin2(x)
x2

dx︸ ︷︷ ︸
≤π

≤ ∆U2

2π
<∞.

(6.2.32)

So we have shown finiteness of ||U(t2, t1)−+||HS . The case ||U(t2, t1)+−||HS can be treated
analogously. Finally, U(t2, t1) and hence S are implementable in the Fock space F . 2

Moreover, it follows immediately

Theorem 19 The spherically symmetric square well potential defined in (5.2.1) is regular
(in the sense of theorem 6).

Proof:
By (4.2.47) we have

||P±(λ+
1 ) P 0

∓||HS = ||[U(t2, t1)]±∓||HS = ||S±∓||HS , (6.2.33)

and according to the theorem 18 these norms are finite. Hence, by theorem 6 the potential
is regular. 2

This result falsifies the conjecture of Nenciu and Scharf [NS78] that the
condition (2.7.27) decides about regularity of the potential. The square well
does not satisfy this condition, but is regular.

Particle production and continuum cut-off problem

The numerical problems with the infinite set of continuum states, mentioned above, appear
in this very simple setting of a sudden switch on of the potential first at the level of a
particle production, where a first integral over the continuum must be evaluated. The
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numbers of particles and antiparticles created from vacuum are (4.2.37)

N+
ε =

∫
σ−
|SU ′Uεε′ |2dε′ =

∫
σcont

−

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′ +
∑
σ−disc

∣∣〈ψε,U ′ |ψε′n,U 〉∣∣2 ∆ε′n (6.2.34)

N−
ε =

∫
σ+

|SU ′Uεε′ |2dε′ =
∫
σcont

+

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′ +
∑
σ+

disc

∣∣〈ψε,U ′ |ψε′n,U 〉∣∣2 ∆ε′n. (6.2.35)

Introducing cut-offs in both continua σcont± at the values ε±cut we get

N+
ε =

∫ −1

ε−cut

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′ +
∑
σ−disc

∣∣〈ψε,U ′ |ψε′n,U 〉∣∣2 ∆ε′n + δN+
ε (6.2.36)

N−
ε =

∫ ε+cut

1

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′ +
∑
σ+

disc

∣∣〈ψε,U ′ |ψε′n,U 〉∣∣2 ∆ε′n + δN−
ε , (6.2.37)

where δN±
ε are errors due to the neglected tails of the integrals, which can be estimated

with the help of (6.2.26) to

|δN+
ε | =

∫ ε−cut

−∞

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′ . ∫ ε−cut

−∞

|U − U ′|2

π2|ε− ε′|4
dε′ =

|U − U ′|2

3π2(ε− ε−cut)3
≤ |U − U ′|2

3π2|ε−cut|3
,

(6.2.38)

|δN−
ε | =

∫ ∞

ε+cut

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′ . ∫ ∞

ε−cut

|U − U ′|2

π2|ε− ε′|4
dε′ =

|U − U ′|2

3π2(ε+cut − ε)3
≤ |U − U ′|2

3π2|ε+cut|3
.

(6.2.39)

The cut-offs ε±cut must be chosen so that the errors are small relative to the interesting
quantities, i.e.

|δN±
ε | � |N±

ε |. (6.2.40)

6.2.2 Particle production spectra – numerical results

In all calculations below we assume A = 1. In most cases, stable numerical results have
been obtained from εcut = 6 and 50 states in the discretized continuum, if not stated
otherwise below.

Weakly subcritical → strongly overcritical

Consider a switch on process from a weakly subcritical U = 2 with a bound state at
ε1 ≈ 0.641 to a strongly overcritical U ′ = 5 with no bound states. In that case

N+
ε =

∫ −1

ε−cut

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′, (6.2.41)

N−
ε =

∫ ε+cut

1

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′ +
∣∣〈ψε,U ′ |ψε1,U 〉∣∣2 . (6.2.42)
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Figure 6.2: Switch on: weakly subcritical → strongly overcritical. Particle (up) and
antiparticle (down) production. The (blue) dashed line shows contribution from the diving
bound state only.

On figure 6.2 we see that production of antiparticles is strongly peaked around εpeak ≈
−1.5. The diving bound state itself makes the strongest contribution. The bumps in the
particle production spectrum, weaker than the antiparticle peak by more then 3 orders of
magnitude, are due to interference effects at the finite size of the potential well and have
period π/A. In the positive spectrum stable numerical results have been obtained first
from εcut = 21 due to its non-local distribution.

Weak (no bound states) → strongly overcritical

The existence of the peak in the antiparticle production spectrum is related to the overcrit-
icality of the final potential, where a bound state dives into the continuum and becomes
a resonance. In order to check if the existence of the peak is related to the existence of a
bound state in the initial potential, we consider a weak initial potential U = 1 which has
no bound states. On figure 6.3 we clearly see the peak, which is only slightly weaker than
the one from the case above, i.e. with a bound state ε1 ≈ 0.641.



184 6. Particle production in a time-dependent overcritical potential

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

N

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
E

Figure 6.3: Switch on: weak (no bound states) → strongly overcritical. Antiparticle
production from the initial weak potential with no bound states (red solid line) compared
to slightly higher production from initial potential with a bound state (blue dashed line).

Weakly overcritical → strongly overcritical

– initial ground state

Now, consider a switch on from a weakly overcritical U = 4 with a bound state at ε1 ≈
−0.794 to a strongly overcritical U ′ = 5 with no bound states. Here,

N+
ε =

∫ −1

ε−cut

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′ +
∣∣〈ψε,U ′ |ψε1,U 〉∣∣2 , (6.2.43)

N−
ε =

∫ ε+cut

1

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′, (6.2.44)

what differs essentially from the previous case with an initial subcritical potential. Now,
since ε1 < 0, there is no contribution from that initial state to the spectrum of antiparticles,
because it is already in the antiparticle subspace, what in the Dirac language means that
in the initial vacuum (ground state) it is initially occupied like the negative continuum.

– initial vacancy

Therefore, we consider also an initial state different from a vacuum Ω0, but corresponding
to an unoccupied state ε1 < 0 in the Dirac language. It gives an initial state Φ0 ≡
d̂∗(ψε1,U ) Ω0. The remaining parameters are the same as above, namely U = 4 and
U ′ = 5. Now, the particle production expectation values change due to Φ0 6= Ω0

N+
ε =

(
Ŝ Φ0, b̂

′
ε

∗
b̂′ε Ŝ Φ0

)
, N−

ε =
(
Ŝ Φ0, d̂

′
ε

∗
d̂′ε Ŝ Φ0

)
. (6.2.45)
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Figure 6.4: Switch on: weakly overcritical → strongly overcritical. Antiparticle produc-
tion from initial empty bound state – big (blue) peak and from initial filled bound state
(ground state) – flat (red) peak.

A short calculation gives

N+
ε =

∫ −1

ε−cut

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′, (6.2.46)

N−
ε =

∫ ε+cut

1

∣∣〈ψε,U ′ |ψε′,U 〉∣∣2 dε′ +
∣∣〈ψε,U ′ |ψε1,U 〉∣∣2 . (6.2.47)

what is again of the same form as the initial weakly subcritical case and the bound state
with ε1 < 0 contributes again strongly to the spectrum of antiparticles. Both situations
are compared on figure 6.4.

Almost strongly overcritical → slightly strongly overcritical

In this case we consider a small jump in the potential’s strength through the critical value
U−1 ≈ 4.29. As a result we obtain a distribution dominantly localized in the negative
continuum of energies, corresponding to antiparticle creation spectrum with (positive)
energies |ε|. We can compare the position of the complex resonance with the position
and width of the peak. On figures 6.5 we see the peaks for several values of the final
potential’s strength U ′ together with listed complex values of the resonance ε1. The
qualitative expectation is confirmed that peaks laying near to the edge of the continuum
are narrow, because the corresponding resonances’ imaginary part is small. Since the
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peaks are normalized almost to 1 (only a tiny part of the distribution is localized in the
positive continuum), the narrow peaks are high.

On figure 6.6 we have a quantitative comparison between the (minus) real part of
the resonance position −εR(U) with the position of the antiparticle production peak εres
and the imaginary part of the resonance position εI(U) with the width of the antiparticle
production peak Γ. The parameters εres and Γ are obtained by fitting a Lorentz-type
resonance curve to the antiparticle production spectrum

A

2π
Γ

(ε− εres)2 + Γ2
. (6.2.48)

We can see that the parameters of the peaks fit very precisely to the parameters of the
complex resonances for slightly overcritical potentials 4.3 . U . 4.5, while for stronger fi-
nal potentials U & 4.5 some small discrepancy appears and becomes bigger with increasing
value of U , or in other words, as the peak moves away from the edge of the continuum and
becomes wider. Several fits are shown on figure 6.7. Exact numerical values are presented
in the table 6.1, where ∆εres and ∆Γ represent the fitting errors, which for U ′ = 5.00
exceed the values of 1% and 3%, respectively. Again the scaling εI ∼ (−εR − 1)3/2 con-
firms the theoretical prediction (3.3.13) and agrees with the results obtained in [AB65]
and [Kla85], and disagrees with the result in [GMR85].

U ′ εR εres ∆εres |εR − εres| εI Γ/2 ∆Γ/2 |εI − Γ/2|
4.32 1.01368 1.01370 1.7E-6 1.9E-5 9.238E-4 9.2E-4 2.4E-6 3.8E-6
4.34 1.02565 1.02566 1.4E-6 1.3E-5 0.00236 0.00234 2.1E-6 1.5E-5
4.36 1.03773 1.03769 1.8E-6 3.6E-5 0.00418 0.00417 3.1E-6 1.0E-5
4.38 1.04992 1.04980 6.8E-6 1.2E-4 0.00633 0.00632 1.0E-5 1.0E-5
4.46 1.09994 1.09893 6.0E-5 0.001 0.017 0.018 9.0E-5 1.1E-4
4.61 1.19969 1.19449 3.7E-4 0.005 0.046 0.047 5.6E-4 9.0E-4
4.75 1.30060 1.28943 7.1E-4 0.011 0.079 0.082 0.001 0.003
4.88 1.40133 1.38386 7.3E-4 0.017 0.112 0.117 0.001 0.004
5.00 1.49999 1.47515 0.0011 0.025 0.143 0.148 0.002 0.004

Table 6.1: Antiparticle production spectra with Lorentz peak-curve fits.
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Figure 6.5: Switch on: almost strongly overcritical → strongly overcritical with various
final potential strengths. Position and width of the peaks in the antiparticle production
spectra agree well with the position of the complex resonances.
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Figure 6.6: Switch on: almost strongly overcritical → strongly overcritical. Comparison
between the position and width of the antiparticle production peak and the position of
the complex resonance in the final potential. A ∼ (U −U−1 )3/2 curve is fitted to the width
Γ(U).
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Figure 6.7: Switch on: almost strongly overcritical → strongly overcritical. Numerical
values of the complex resonance and parameters of the fitted Lorentz-type peaks to the
antiparticle production spectra.
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6.3 Time-dependence: sudden switch on and off

First, we consider the simplest time-dependent processes, which we called in the previous
chapter quasi-static, where the potential is almost all the time static, except single mo-
ments when its value changes discontinuously. Here, time-dependent will be the strength
of the spherically symmetric square well, i.e.

V (t,x) = V (t, r) = U(t) · υ(r) = U(t) ·Θ(a− r) =

{
U(t), r < a,

0, r > a
(6.3.1)

and

U(t) = −U − (U ′ − U) ·Θ(T − |t|) =

−U, −T < t < T,

−U ′, |t| > T,
(6.3.2)

with U ′ > U > 0. It gives

V (t,x) = V (t, r) ≡

V1(r), |t| > T,

V2(r), −T < t < T
(6.3.3)

and correspondingly

H(t) ≡

H1, |t| > T,

H2, −T < t < T
(6.3.4)

t

V0

-U

-U’

-T +T

Figure 6.8: Switch on-off: time-dependence of the potential’s strength.

Analogously to the previous section, theorem 9 or 10 with a = 0 and b = U ′ says that
H(t) = H0 + V (t) is self-adjoint on D(H0) for every time t. Because H(t) is constant for
|t| < T and |t| > T there exists a unitary propagator (cf. section 3.4)

U(t2, t1) =



e−iH1(t2−t1) for t1, t2 < −T or t1, t2 > T,

e−iH2(t2−t1) for |t1|, |t2| < T,

e−iH2t2eiH1t1 for t1 < −T < t2 < T,

e−iH1t2eiH2t1 for − T < t1 < T < t2,

e−iH1t2e−2iH2T eiH1t1 for t1 < −T and t2 > T.

(6.3.5)
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Since V (t) is of short-range the wave-operators (3.5.3) exist and are complete (e.g. because
V (t) ∈ Lp(R3) with any p > 0 – cf. section 3.5.1). Consequently, there exists a unitary
scattering operator S in H (3.5.10). This scattering operator is implementable, according
to section 4.2.3 and equation (4.2.22), if and only if the unitary evolution operator U(t2, t1)
with t1 < −T , t2 > T is. The implementability of both, S and U(t2, t1), has been shown
in theorem 13.

Now, the scattering operator in H can be calculated, as discussed in the previous sec-
tion, from the coupled channel equations (inserting the discontinuously varying potential),
however we can easily solve the evolution in only two bases φε and χε consisting of general-
ized eigenvectors to the Hamiltonians H1 and H2, respectively, and make two consecutive
projections at t = ±T to find

SU,U
′

ε′ε =
∫
σ′

(φε′ , χε′′)ei(ε+ε
′−2ε′′)T (χε′′ , φε) dµ′(ε′′), (6.3.6)

where σ′ ≡ σ(H2) and d̂µ′ is the corresponding spectral measure. It turns out that the
only quantity to be calculated to obtain SU,U

′

ε′ε are the scalar products (χε′ , φε). Obviously,
for T = 0 the scattering operator reduces

SU,U
′

ε′ε =
∫
σ′

(φε′ , χε′′)(χε′′ , φε) dµ′(ε′′) = (φε′ , φε) = δ̃(ε′ − ε). (6.3.7)

Asymptotic behaviour for |ε|, |ε′| � 1 and continuum cut-off

Since the integral in (6.3.6) runs over an unbounded spectrum σ′ we are forced to introduce
numerical cut-offs at some finite energies ε±cut (as in the previous section 6.2.1) which
introduce the error

δSU,U
′

ε′ε =

(∫ ε−cut

−∞
+
∫ +∞

ε+cut

)
(φε′ , χε′′)ei(ε+ε

′−2ε′′)T (χε′′ , φε) dε′′. (6.3.8)

For the energies |ε|, |ε′| � |ε±cut| we can use the approximative formula (6.2.22) and obtain

∣∣∣δSU,U ′ε′ε

∣∣∣
∼=
A|U − U ′|2

π

(∫ ε−cut

−∞
+
∫ +∞

ε+cut

)
|Fε,U (A)|+ |Gε,U (A)|

|ε′′|2
|Fε′,U (A)|+ |Gε′,U (A)|

|ε′′|2
dε′′

.
2A|U − U ′|2

3π
(|Fε,U (A)|+ |Gε,U (A)|) (|Fε′,U (A)|+ |Gε′,U (A)|)

|εcut|3

= O
(

1
|εcut|3

)
,

(6.3.9)

where we have chosen ±ε±cut ≡ εcut. Thus the error of numerically calculated SU,U
′

ε′ε is small
when the cut-offs ε±cut are chosen big enough. The total particle production

N+
ε ≡

∫
σ−

∣∣∣SU,U ′εε′

∣∣∣2 dµ(ε′) (6.3.10)
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with energy |ε| � εcut has two sources of error, namely due to the error in S̃U,U
′

ε′ε (calculated
with cut-offs) and due to the cut-off introduced directly in

Ñ+
ε ≡

∫
σ−>ε−cut

∣∣∣S̃U,U ′εε′

∣∣∣2 dµ(ε′). (6.3.11)

The error is

δN+
ε ≡ N+

ε −Ñ+
ε =

∫ 0

−εcut

(∣∣∣S̃U,U ′εε′

∣∣∣2 − ∣∣∣SU,U ′εε′

∣∣∣2) dµ(ε′)+
∫ −εcut

−∞

∣∣∣SU,U ′εε′

∣∣∣2 dµ(ε′). (6.3.12)

Using

SU,U
′

εε′ = S̃U,U
′

εε′ + δSU,U
′

εε′ (6.3.13)

we estimate the first integral in (6.3.12)∣∣∣∣∫ 0

−εcut

(∣∣∣S̃U,U ′εε′

∣∣∣2 − ∣∣∣SU,U ′εε′

∣∣∣2) dµ(ε′)
∣∣∣∣

≤
∫ 0

−εcut

(∣∣∣S̃U,U ′εε′ δSU,U
′

εε′

∣∣∣+
∣∣∣δSU,U ′εε′

∣∣∣2) dµ(ε′)

≤

√∫ 0

−εcut

∣∣∣S̃U,U ′εε′

∣∣∣2 dµ(ε′) ·

√∫ 0

−εcut

∣∣∣δSU,U ′εε′

∣∣∣2 dµ(ε′) +O(|εcut|−6) · |εcut|

≤ Ñ+
ε · O(|εcut|−5/2) +O(|εcut|−5),

(6.3.14)

where we have used δSU,U
′

ε′ε = O(|εcut|−3) and the Cauchy-Schwarz inequality. In order
to estimate the second integral in (6.3.12) we must first estimate SU,U

′

εε′ for |ε| < εcut and
ε′ < −εcut. In the case ε′ < −2εcut using (6.2.22), (6.2.25) and (6.2.26) we find

∣∣∣SU,U ′εε′

∣∣∣ ≤ ∣∣∣∣∫ +εcut

−εcut

(φε, χε′′)ei(ε+ε
′−2ε′′)T (χε′′ , φε′) dε′′

∣∣∣∣
+
∣∣∣∣(∫ −εcut

−∞
+
∫ +∞

+εcut

)
(φε, χε′′)ei(ε+ε

′−2ε′′)T (χε′′ , φε′) dε′′
∣∣∣∣

.

√∫ +εcut

−εcut

|(φε, χε′′)|2 dµ(ε′′)

·

√√√√∫ +εcut

−εcut

(√
A|U − U ′|√

πε′2

)2

(|Fε′′,U ′(A)|+ |Gε′′,U ′(A)|)2 dµ(ε′′)

+

∣∣∣∣∣
∫ −εcut

−∞
(|Fε,U (A)|+ |Gε,U (A)|)

√
A|U − U ′|2 sin((ε′′ − ε′ + U ′ − U)A)
π3/2ε′′2 (ε′′ − ε′)(ε′′ − ε′ + U ′ − U)

dµ(ε′′)

∣∣∣∣∣
+
∫ +∞

+εcut

√
A|U − U ′|√
πε′′2

(|Fε,U (A)|+ |Gε,U (A)|) |U − U ′|
π(ε′′ − ε′)2

dµ(ε′′)

(6.3.15)
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∣∣∣SU,U ′εε′

∣∣∣ . 1 ·
√
A|U − U ′|√

πε′2

√∫ +εcut

−εcut

(|Fε′′,U ′(A)|+ |Gε′′,U ′(A)|)2 dµ(ε′′)

+(|Fε,U (A)|+ |Gε,U (A)|)
√
A|U − U ′|2

π3/2

∣∣∣∣∫ −εcut

−∞

sin((ε′′ − ε′ + U ′ − U)A)
ε′′2 (ε′′ − ε′)(ε′′ − ε′ + U ′ − U)

dε′′
∣∣∣∣

+
√
A|U − U ′|2

π3/2
(|Fε,U (A)|+ |Gε,U (A)|)

∫ +∞

+εcut

1
ε′′2(ε′′ − ε′)2

dε′′.

(6.3.16)

The integral in the second line must be calculated in the principal-value sense. A rather
lengthy calculation leads to the estimation

1
|ε′|

[
1
εcut

+
1
|ε′|

ln
(
|ε′ + εcut|
εcut

)]
≤ 1
|ε′|εcut

for ε′ < −2εcut. (6.3.17)

The integral in the third line can be estimated by 1/(εcut |ε′|2). It gives∣∣∣SU,U ′εε′

∣∣∣ . O
(

1
|ε′|2

)
+O

(
1

|ε′|εcut

)
+O

(
1

εcut |ε′|2

)
. (6.3.18)

In the case when −2εcut ≤ ε′ < −εcut the estimation (6.3.17) for the principal-value
integral cannot be used and we must slightly change the above method and estimate∣∣∣∣∫ −εcut

−∞
(φε, χε′′)ei(ε+ε

′−2ε′′)T (χε′′ , φε′) dε′′
∣∣∣∣

≤

√√√√∫ −εcut

−∞

(√
A|U − U ′|√
πε′′2

)2

(|Fε,U (A)|+ |Gε,U (A)|)2 dµ(ε′′)

·

√∫ −εcut

−∞
|(χε′′ , φε′)|2 dµ(ε′′)

≤
√
A|U − U ′|√

π
(|Fε,U (A)|+ |Gε,U (A)|)

√∫ −εcut

−2∞

1
ε′′4

dε′′ · 1

(6.3.19)

We estimate the integral by ∫ −εcut

−2∞

1
ε′′4

dε′′ =
1

3ε3cut
≤ 8

3|ε′|3
. (6.3.20)

So we get (for −2εcut ≤ ε′ < −εcut)∣∣∣SU,U ′εε′

∣∣∣ . O
(

1
|ε′|2

)
+O

(
1
|ε′|3

)
+O

(
1

εcut |ε′|2

)
. (6.3.21)

Finally, we can write

∣∣∣SU,U ′εε′

∣∣∣ .
 O

(
1

|ε′|2

)
+O

(
1

|ε′|εcut

)
for ε′ < −2εcut,

O
(

1
|ε′|2

)
for − 2εcut ≤ ε′ < −εcut.

(6.3.22)
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Now we can estimate the second integral in (6.3.12)∣∣∣∣∫ −εcut

−∞

∣∣∣SU,U ′εε′

∣∣∣2 dµ(ε′)
∣∣∣∣ ≤ ∣∣∣∣∫ −2εcut

−∞

∣∣∣SU,U ′εε′

∣∣∣2 dµ(ε′)
∣∣∣∣+
∣∣∣∣∫ −εcut

−2εcut

∣∣∣SU,U ′εε′

∣∣∣2 dµ(ε′)
∣∣∣∣

.
∫ −2εcut

−∞

[
O
(

1
|ε′|2

)
+O

(
1

|ε′|εcut

)]2

dε′

+
∫ −εcut

−2εcut

[
O
(

1
|ε′|2

)]2

dε′

= O
(

1
ε3cut

)
+O

(
1
ε3cut

)
= O

(
1
ε3cut

)
.

(6.3.23)

So we have shown

δN+
ε = Ñ+

ε · O

(
1

ε
5/2
cut

)
+O

(
1
ε3cut

)
, (6.3.24)

what means that the (relative) error in calculation of the particle production due to the
introduction of cut-offs can be made arbitrarily small by choosing appropriate εcut.

6.3.1 Positron spectra – switch on and off

The most interesting question is if the antiparticle production spectra for the switch on-
off processes differ essentially from those of the only switch on processes discussed in the
previous section. For several reasons it can be expected that they should be similar. First
(mathematical), because the scalar product formula 〈ψε,U |ψε′,U ′〉 contains a ∼ δ(ε − ε′)
term, which keeps the distribution of the wave function in the energy unchanged, up
to the other term, singular as ∼ (ε − ε′)−1, whose role is more difficult to estimate.
Second (physical), a wave packet which decayed in the switched-on potential U ′ is localized
spatially outside of the potential well, where the wave functions ψε,U ′ and ψε,U do not differ
at all, therefore a projection of one on the other should not change the distribution in the
energy scale of the wave packet. Of course, for not decayed wave packets the above should
not hold and the peak-like distribution of the wave function in the negative continuum
should build-up back giving finally again the bound state of U . The decay time for the
Lorentzian wave packet is Γ−1.

Buildup of the peak in time

In contrast to the switch on processes, the switch on-off processes have a characteristic
time scale, namely the time T between switch on and off of the stronger potential. In the
overcritical period the wave packets in the negative continuum (obtained numerically in
the previous section) decay (approximately exponentially) and give rise to a peak in the
negative continuum after the potential is eventually switched off. So the (exponential)
decay of the wave packet leads to an (exponential) dependence of the amplitude of the
peak on time A(T ) ∼ (1 − e−ΓT/2), where Γ is the width of the peak. Figures 6.9-6.10
present the antiparticle production spectra for different duration times T of the switched
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on potential U ′. For T = 50 the wave packet is (almost) fully decayed, because Γ/2 ≈ 0.143
and hence it reaches 1− e−ΓT/2 ≈ 0.999 of its maximal amplitude.

Position, width and the buildup of the peaks

As next we show the different buildup rates of peaks with different widths (and thus at
different positions). Figure 6.11 shows that for T = 10 the wider (right) peak around
ε ≈ 1.5 is higher, while for T = 20 figure 6.12 shows the narrower (left) peak around
ε ≈ 1.1 gets higher and remains so for all bigger values of T . The latter is natural, since
narrower wave packets must be higher to have the same norm. The reason for the opposite
situation at T = 10 is that wider wave packets decay quicker and the right peak decayed
nearly fully, while the left peak decayed roughly to half of its maximal height.

Moreover, figures 6.11-6.12 show a qualitative difference in the antiparticle production
spectra between strongly overcritical and subcritical intermediate potentials U ′. For over-
critical we always have a clear peak, while for subcritical there is only a small universal
periodic structure (also seen in the overcritical cases) with period π/T . Yet, this quantita-
tive difference is only observable for delay times T sufficiently long for the wave packets to
decay (at leas partially), but vanishes at short times T . On figure 6.13 there is no essential
difference between the sub- and overcritical spectra, the subcritical with U ′ = 4.2 differs
by about 20% from the overcritical with U ′ = 4.4, which differs much more (by about
45%) from another overcritical with U ′ = 5.0.

Peak vs. resonance

Here we want to check how the shape of the peak depends on the energy of the bound state
in the initial potential. In other words, it is clear that the resonance in the overcritical
potential does not depend on the initial potential, but it is not clear how it is “excited”
in the process of sudden diving of different initial bound states. On figures 6.14 we can
see that the final peak is nearly identical for various initial potentials U = 2, 3, 4 with
bound states ε1 = 0.641,−0.048,−0.794, respectively, independent of the overcritical pe-
riod (T = 5, 20). However, the little differences show some regularity, namely the deeper
the initial bound state lies the more left shifted and higher the corresponding peak is.
This difference, although not big, is very interesting, if we want to compare the shapes
of the peaks with the position of the complex resonance, which depends uniquely on the
overcritical potential. Table 6.2 shows the results of fitting of the Lorentz peak curves
to the antiparticle production spectra. It is clear that: (a) for longer overcritical periods
T the peaks fit better to the resonance parameters (due to the complete decay) and (b)
peaks generated in processes with deeper lying initial bound state fit better to the reso-
nance parameters, what means that higher lying bound states (further from the negative
continuum) due to stronger jump of the potential’s strength U − U ′ excite more states in
the negative continuum than only those corresponding to the shape of the resonance.
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Figure 6.9: Switch on-off: weakly subcritical → strongly overcritical. Antiparticle
production spectra for different duration times T of the switched on potential U ′.
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Figure 6.10: Switch on-off: weakly overcritical → strongly overcritical. Antiparticle
production spectra for different duration times T of the switched on potential U ′.
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Figure 6.11: Switch on-off: buildup of the peaks in overcritical vs. no peaks in subcritical
potential for the duration time T = 10 of the switched-on phase. Wider peak appears
quicker and is wider at intermediate times T .

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

U=2  A=1  N=200
T=20

 U'=4.2 (subcritical)
 U'=4.4 (slightly overcr.)
 U'=5.0 (overcritical)

N

E

Figure 6.12: Switch on-off: buildup of the peaks in overcritical vs. no peaks in subcritical
potential for the duration time T = 20 of the switched-on phase. Narrow peak becomes
eventually higher for long times T .
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Figure 6.13: Switch on-off: no quantitative difference between subcritical and overcritical
potentials in the switched-on phase for short times (T = 1).

T U εres ∆εres |εres − εR| Γ ∆Γ |Γ− εI |
5 2 1.580 1.5E-3 0.079 0.267 3.1E-3 0.123

5 3 1.557 1.0E-3 0.057 0.284 2.6E-3 0.141

5 4 1.477 1.0E-3 0.023 0.303 2.7E-3 0.159

20 2 1.524 8.7E-4 0.024 0.144 1.9E-3 0.001

20 3 1.516 6.7E-4 0.016 0.140 1.4E-3 0.003

20 4 1.493 6.4E-4 0.007 0.135 9.2E-4 0.008

Table 6.2: Fitted (by Lorentz curves) position εres and half-width Γ of the peaks vs
complex resonance position |εR| ≈ 1.5 and |εI | ≈ 0.143.

Concluding, the resonance in the negative continuum for switched on over-
critical potentials gets strongly and dominantly excited and the shape of the
peak in the antiparticle production spectrum (position and width) fits well to
the parameters of the corresponding resonance, although the sudden switch
processes are far from being adiabatic and it is in principle unclear how strong
the rest of both continua will get excited. In the following sections we will analyze
smooth switch on and on-off processes up to the adiabatic situation and compare the
excitation of the resonance to the results obtained in this section.
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Figure 6.14: Switch on-off: peaks in the antiparticle production spectrum for various
initial potentials U (i.e. bound state energies ε1) and duration times T of the overcritical
phase.
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Appendix: numerical tests (discretization density and cut-off)

Figure 6.15 shows the same physical situation with different continuum discretization
parameters N and ∆ε. In a wide range of parameters the results remain stable.
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Figure 6.15: Switch on-off: numerical tests with different continuum discretization param-
eters N and ∆ε. In the chosen range of parameters the results remain stable.

Figures 6.16 show that in the discretized continuum no true decay of wave packets
occurs. The numerical results give some approximation to the continuous case, but at times
T such that the phases of the neighbouring points become equal, i.e. (ε + ∆ε)T − εT =
∆εT = 2π, the wave packet builds up again to its original shape and the peak in the
antiparticle production spectrum vanishes. Therefore the numerical approximation works
for T � 2π/∆ε. We see that for T ≤ 100 the peak builds up, while for T = 1000 it
shrinks, what is a numerical artefact.
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Figure 6.16: Switch on-off: numerical tests with different duration times T of the overcriti-
cal phase for given continuum discretization parameters. Good approximation is obtained
only for T � 2π/∆ε ≈ 126. For T = 1000 the peak decreases again, what is wrong.
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6.4 Time-dependence: continuous in time

6.4.1 Adiabatic basis – coupled channel equations

We start with the coupled channel equations (6.1.8) for the adiabatic basis and need to
evaluate the scalar products 〈ψE |ψ̇E′〉. To this end we differentiate the formula defining
the generalized eigenvectors

H(t)ψE(t) = E(t)ψE(t) (6.4.1)

with respect to time, keeping in mind that in our convention the bound state energies
E(t) = En(t) are time-dependent, but continuum energies E(t) = E not. After some
manipulations, we arrive at

〈ψE |ψ̇E′〉 = −〈ψE |V̇ (t)ψE′〉
E(t)− E′(t)

, where E(t) 6= E′(t). (6.4.2)

For bound states it can be shown, that the scalar products 〈ψn|ψ̇n〉 ≡ 〈ψEn |ψ̇En〉 must be
purely imaginary. If the basis vectors ψk(t,x) are chosen real for all times, what has been
done, these scalar products must vanish. Finally,

ḃE(t) =
∫
σ̃(t)

e−i(χE(t)−χE′ (t))
〈ψE |V̇ (t)ψE′〉
E(t)− E′(t)

bE′(t) dµ(E′). (6.4.3)

where the integration goes over the whole spectrum ofH(t) except the value E(t) appearing
on the l.h.s, i.e. over the whole spectrum for E(t) in the continuum (practically no
difference, since E(t) is of measure zero), but over all E′ 6= En(t) for E(t) = En(t) in the
point spectrum.

For numerical calculations we utilize the dimensionless variables, introducing in addi-
tion to (5.2.3)

τ =
mc2

~
t, (6.4.4)

and get

ḃε(τ) =
∫
σ̃(τ)

e−i(χε(τ)−χε′ (τ))
〈ψε|υ̇(τ)ψε′〉
ε(τ)− ε′(τ)

bε′(τ) dµ(ε′). (6.4.5)

Calculation of the scalar products 〈ψε|υ̇(τ)ψε′〉

The time-dependent potential is

υ(τ,R) = U(τ) Θ(A−R), (6.4.6)

so its time-derivative is

υ̇(τ,R) = U̇(τ) Θ(A−R). (6.4.7)



6.4. Time-dependence: continuous in time 203

Let Gε,U (R) and Fε,U (R) be the components of the wave functions ψε,U (R) with the energy
ε in the potential parameterized by U (ε may belong to the point as well as the continuous
spectrum). The scalar product can be calculated as follows

〈ψε,U |υ̇(τ)ψε′,U 〉 = U̇(τ)
∫ A

0
R
[
Gε,U (R)Gε′,U (R) + Fε,U (R)Fε′,U (R)

]
dR

= U̇(τ)
R
[
Fε,U (R)Gε′,U (R)−Gε,U (R)Fε′,U (R)

]∣∣∣A
0

ε− ε′

= U̇(τ)
A
[
Fε,U (A)Gε′,U (A)−Gε,U (A)Fε′,U (A)

]
ε− ε′

,

(6.4.8)

where we skipped explicit dependence on τ in U acting as index. Finally the system of
coupled evolution equations becomes

ḃε(τ) = AU̇(τ)
∫
σ̃(τ)

e−i(χε(τ)−χε′ (τ))

[
Fε,U (A) Gε′,U (A)−Gε,U (A) Fε′,U (A)

]
(ε− ε′)2

bε′(τ) dµ(ε′) .

(6.4.9)

Explicit form of the coupling “matrix” elements

Now we can make use of the explicit form of the wave functions. Because F (R) and
G(R) are continuous at R = A we can choose any of the two solutions, which are defined
respectively for R < A and R > A. The first choice has the advantage that both, the
continuum and the bound-state wave functions, have the same form

G(R) = A1J|κ− 1
2
|(
√

(ε + U)2 − 1R) (6.4.10)

F (R) = C1J|κ+ 1
2
|(
√

(ε + U)2 − 1R) (6.4.11)

C1 = sign (κ)

√
(ε + U)2 − 1
ε+ U − 1

A1 (6.4.12)

and can further be treated together. The term in the square brackets in (6.4.9) can be
evaluated to

Fε,U (A) Gε′,U (A)−Gε,U (A) Fε′,U (A) =

= sign (κ)A1(ε, U)A1(ε′, U)

·
[

ω1

ε+ u− 1
J|κ+ 1

2
|(ω1A)J|κ− 1

2
|(ω

′
1A)− ω′1

ε′ + U − 1
J|κ− 1

2
|(ω1A)J|κ+ 1

2
|(ω

′
1A)
] (6.4.13)

The second order pole at ε = ε′ in (6.4.9) is indeed a first order pole, because

Fε,U (A) Gε′,U (A)−Gε,U (A) Fε′,U (A) ≈ (ε′ − ε) ·H(ε, U) for ε ≈ ε′ (6.4.14)
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and

H(ε, U) ≡ |A1(ε, U)|2

ω1(ε+ U − 1)

[
sign (κ)

2κ(ε+ U) + 1
ω1

ω1J|κ+ 1
2
|(ω1A)J|κ− 1

2
|(ω1A)

−A(ε+ U)
(
ω1|J|κ+ 1

2
|(ω1A)|2 + ω1|J|κ− 1

2
|(ω1A)|2

)]
(6.4.15)

is finite. The integral in (6.4.9) containing the (actual) first order pole at ε = ε′ is to
be calculated in a principal-value sense. Yet, it causes some difficulties in our numerical
integration procedure.

Asymptotic behaviour for |ε|, |ε′| � 1

For the purpose of numerical error estimation we find the asymptotic behaviour of the
integrand in (6.4.9) at big values of |ε| and |ε′|. We have

ω2 =
√
ε2 − 1 ∼= |ε|+O

(
1
ε

)
, ω1 =

√
(ε + U)2 − 1 ∼= |ε+ U |+O

(
1
ε

)
. (6.4.16)

Using the asymptotic forms of the Bessel functions (5.5.23), we find first

Ã2(ε, U) ∼= cos((|ε+ U | − |ε|)A), B̃2(ε, U) ∼= − sin((|ε+ U | − |ε|)A), (6.4.17)

then

Ã1(ε, U) ∼=
√
|ε|
2
, (6.4.18)

and finally

Fε,U (A) Gε′,U (A)−Gε,U (A) Fε′,U (A)

∼=
1
πA

sin
[
(ε− ε′)A− π

2

(∣∣∣∣κ− 1
2

∣∣∣∣+
1
2

)(
sign (ε)− sign

(
ε′
))]

=

 1
πA sin [(ε− ε′)A] , for sign (ε) = sign (ε′) ,
1
πA(−1)|κ−

1
2 |+ 1

2 sin [(ε− ε′)A] , for sign (ε) = −sign (ε′)
(6.4.19)

with the above defined regular function

H(ε, U) ∼=

 1
πA , for sign (ε) = sign (ε′) ,
1
πA(−1)|κ−

1
2 |+ 1

2 , for sign (ε) = −sign (ε′) ,
(6.4.20)

which becomes asymptotically constant for |ε|, |ε′| � 1.

Numerical coupled channel equations

Combining the coupled channel equations (6.4.9) with considerations about the calculation
of the scattering operator in section 6.1.1 we arrive at the following numerical procedure.
We solve numerically the system of differential equations

ḃεε′(τ) = −
∫
σ̃(τ)\{ε′}

bεε′′(τ) Mε′ε′′(τ) dµ(ε′′) (6.4.21)
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where σ̃(τ) is the discretized spectrum of H(τ) defined in section 6.1.2 and the coupling
matrix elements are

Mεε′(τ) = −AU̇(τ)e−i(χε(τ)−χε′ (τ))

[
Fε,U (A) Gε′,U (A)−Gε,U (A) Fε′,U (A)

]
(ε− ε′)2

. (6.4.22)

From (6.1.29) and (6.1.30) it follows that the scattering operator is obtained by

Sεε′ = lim
τ→∞

eiτεe−iχε(τ)bε′ε(τ) (6.4.23)

when the initial condition is chosen as

lim
τ→∞

bε′ε(τ) = δ̃(ε′ − ε). (6.4.24)

In the numerical integration of (6.4.21) the time τ must be discretized to τn such that
τn+1 = τn + ∆τ . Then the equations take the form

bεε′(τn+1) = bεε′(τn)−
∫
σ̃(τ)\{ε′}

bεε′′(τn) Mε′ε′′(τn) dµ(ε′′) ∆τ. (6.4.25)

Replacing Mε′ε′′(τn) with Mε′ε′′((τn + τn+1)/2) slightly improves the convergence rate as
∆τ → 0.

Singularity problem at ε = ε′

As already mentioned, the singularity at ε = ε′ in Mεε′(τ), being actually a first order pole,
causes that the integral in (6.4.21) must be calculated in a principal-value sense. There-
fore one must be especially careful when discretizing the continuum and transforming the
integral into a sum. (This problem is absent in the numerical scheme with continuum dis-
cretization based upon wave packets like in [BS85].) The correct procedure for integration
of a function f(ε, ε′) having a first order pole at ε = ε′ is

PV−
∫
f(ε, ε0) dε ≡ PV−

∫
g(ε, ε0)
ε− ε0

dε ≈
∑
n6=0

g(εn, ε0)
εn − ε0

∆ε+ g′(ε0)∆ε (6.4.26)

with g(ε, ε′) regular at ε = ε′ and

g′(ε0) ≡ ∂

∂ε
g(ε, ε0)

∣∣∣∣
ε=ε0

= lim
δ→0

g(ε0 + δ, ε0)− g(ε0 − δ, ε0)
2δ

= lim
δ→0

f(ε0 + δ, ε0) + f(ε0 − δ, ε0)
2

≈ f(ε0 + ∆ε, ε0) + f(ε0 −∆ε, ε0)
2

.

(6.4.27)

This scheme must be applied to (6.4.21) by replacing f(ε′, ε′′) with −bεε′′(τ) Mε′ε′′(τ).
It is important to note that not only the singular term Mε′ε′′(τ) but the full function
−bεε′′(τ) Mε′ε′′(τ) must be differentiated at ε = ε′, what is not easy because we know only
discrete numerical values of bεε′′(τ)

b̃ij(τ) ≡ bεi,εj (τ). (6.4.28)
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Writing Mε′ε′′(τ) ≡ gε′ε′′(τ)/(ε′ − ε′′) we obtain

˙̃
bij(τ) ∼= −

∑
k 6=j

b̃ik(τ) Mjk(τ) ∆εk +
d

dε
bεiε(τ) Mεjε(τ)

∣∣∣∣
ε=Ej

∆εj

∼= −
∑
k 6=j

b̃ik(τ) Mjk(τ) ∆εk +
bεiεj+1(τ)− bεiεj−1(τ)

2∆εj
gεjεj (τ)∆εj

+ bεiεj (τ)
gεjεj+1(τ)− gεjεj−1(τ)

2∆εj
∆εj .

(6.4.29)

In order to find the function gεε′ one has to differentiate twice

gεε′ ≡
∂2

∂ε′2

[
Fε,U (A) Gε′,U (A)−Gε,U (A) Fε′,U (A)

]∣∣∣∣
ε′=ε

. (6.4.30)

The result is quite a long expression and we do not give it here.

Continuum cut-off

Error control due to the introduction of cut-offs in the continuum is much more compli-
cated in the system described by coupled channel equations with a continuously changing
potential than in the previously studied cases with quasi-static potentials. Therefore we
only sketch the ideas of the estimations needed to show that the error can be made arbitrar-
ily small when the cut-offs are chosen appropriately. First, we argue that the amplitudes
bεε′(τ) satisfying the system of equations (6.4.21) and the initial conditions (6.4.24) stay
uniformly bounded during the evolution by

|bεε′(τ)| ≤ O
(

1
(ε− ε′)2

)
for |ε− ε′| � 1. (6.4.31)

This is a consequence of the asymptotic form of the coupling matrix elements Mεε′ derived
in (6.4.19). We do not have a rigorous proof of this fact, but numerical evidence confirms
that behaviour. Moreover, considering discretized time one can show that bεε′(τn) has that
form at every τn = n∆τ . Next, we estimate how much of the amplitude bεε′(τ) “flows” to
the region outside the cut-offs, i.e. for |ε0| < εcut

||bε0·||out ≡

√(∫ −εcut

−∞
+
∫ ∞

εcut

)
|bε0ε|2 dµ(ε) ≤ O

(
1

(ε0 − εcut)3/2

)
+O

(
1

(ε0 + εcut)3/2

)
.

(6.4.32)

The amplitudes bεε′(τ) calculated with cut-offs have two sources of error: due to neglect
of the amplitudes outside the cut-offs (new error introduced at every time) and due to the
evolution of the approximate quantity (propagation of the error). It becomes transpar-
ent when we write the time-derivative of a difference between the exact bεε′(τ) and the
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approximated b̃εε′(τ) amplitude

|ḃε0ε −
˙̃
bε0ε| =

∣∣∣∣∫ +∞

−∞
bε0ε′Mεε′ dµ(ε′)−

∫ +εcut

−εcut

b̃ε0ε′Mεε′ dµ(ε′)
∣∣∣∣

≤
∣∣∣∣(∫ −εcut

−∞
+
∫ ∞

εcut

)
bε0ε′Mεε′ dµ(ε′)

∣∣∣∣︸ ︷︷ ︸
I1(ε0,ε)

+
∣∣∣∣∫ εcut

−εcut

(bε0ε′ − b̃ε0ε′)Mεε′ dµ(ε′)
∣∣∣∣︸ ︷︷ ︸

I2(ε0,ε)

(6.4.33)

The second integral I2(ε0, ε) can be estimated by use of the Cauchy-Schwarz inequality

I2(ε0, ε) ≤

√∫ εcut

−εcut

|bε0ε′ − b̃ε0ε′ |2 dµ(ε′) ·

√∫ εcut

−εcut

|Mεε′ |2 dµ(ε′)

≡ ||bε0· − b̃ε0·||in · ||Mε·||in,

(6.4.34)

where we have introduced a new norm ||...||in which will be useful later. The estimation
of the first integral I1(ε0, ε) is more involved and requires information on the behaviour of
bε0ε′ , namely the bound (6.4.31). One can show that

I1(ε0, ε) ≤
∣∣∣∣(∫ −εcut

−∞
+
∫ ∞

εcut

)
C

(ε0 − ε′)2
sin((ε− ε′)A)

(ε− ε′)2
dµ(ε′)

∣∣∣∣
≤ O

(
1

(ε0 − εcut)2(ε− εcut)2

)
+O

(
1

(ε0 + εcut)2(ε+ εcut)2

)
,

(6.4.35)

for big ε0, ε or εcut, but it behaves less singular at the ends of the cut-off interval

I1(ε0, ε) ≤ O
(

log(ε± εcut)
(ε0 − εcut)2

)
for ε± εcut ≈ 0. (6.4.36)

Now, we can estimate the total error in the amplitudes due to the cut-offs

||bε0· − b̃ε0·||in =

√∫ εcut

−εcut

|bε0ε′ − b̃ε0ε′ |2 dµ(ε′). (6.4.37)

We find its time-derivative using the above estimations
d

dτ
||bε0· − b̃ε0·||in =

1

||bε0· − b̃ε0·||in

∫ εcut

−εcut

|bε0ε − b̃ε0ε| |ḃε0ε −
˙̃
bε0ε| dµ(ε)

≤
∫ εcut

−εcut

|bε0ε − b̃ε0ε| ||Mε·||in dµ(ε) +
1

||bε0· − b̃ε0·||in

∫ εcut

−εcut

|bε0ε − b̃ε0ε| I1 dµ(ε)

≤

√∫ εcut

−εcut

|bε0ε − b̃ε0ε|2 dµ(ε)︸ ︷︷ ︸
||bε0·−b̃ε0·||in

·

√∫ εcut

−εcut

||Mε·||2in dµ(ε)︸ ︷︷ ︸
≡||M··||in

+
1

||bε0· − b̃ε0·||in

√∫ εcut

−εcut

|bε0ε − b̃ε0ε|2 dµ(ε)︸ ︷︷ ︸
||bε0·−b̃ε0·||in

·

√∫ εcut

−εcut

|I1(ε0, ε)|2 dµ(ε)

≤ ||bε0· − b̃ε0·||in · ||M··||in +

√∫ εcut

−εcut

|I1(ε0, ε)|2 dµ(ε)

(6.4.38)
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The last integral to estimate is finite, because its (quadratic) logarithmic singularities at
ε± εcut ≈ 0 are integrable. It can be shown that it behaves like∫ εcut

−εcut

|I1(ε0, ε)|2 dµ(ε)

≤ O
(

1
(εcut)3

)[
O
(

1
(ε0 − εcut)4

)
+O

(
1

(ε0 + εcut)4

)
+O

(
1

(ε0 − εcut)2(ε0 + εcut)2

)]
(6.4.39)

for big ε0 or εcut, but for ε0 ± εcut ≈ 0 it behaves like∫ εcut

−εcut

|I1(ε0, ε)|2 dµ(ε)

≤ O
(

1
(εcut)3

)[
O
(
log(ε0 ± εcut)2

)
+O

(
log(ε0 ± εcut)

ε2cut

)
+O

(
1
ε4cut

)]
(6.4.40)

So, finally we have

d

dτ
||bε0· − b̃ε0·||in(τ) ≤ ||bε0· − b̃ε0·||in(τ) · ||M··||in(τ) +O

(
1

(εcut)7/2

)
(6.4.41)

when ε0 is not too near the cut-off at ±εcut. Having this estimate, we can show a uniform
bound (in εcut) on the error in the whole evolution

||bε0· − b̃ε0·||in(τ) ≤ O

(
1

(εcut)7/2 |̂|M··||in

)(
e|̂|M··||in·τ − 1

)
, (6.4.42)

where |̂|M··||in ≡ supτ ′∈(0,τ) ||M··||in(τ ′). We see that the error can be made arbitrarily
small by an appropriate choice of the cut-off value εcut. In an analogous way one can show
an estimate for the particle production N±

ε , but we do not cite here these long calculations.

Unitarity control

The operator b(τ) giving in the limit τ → ∞ the scattering operator S is unitary for
every τ , i.e. it holds b(τ)∗b(τ) = 1. While the exact coupled channel equations (6.4.21)
preserve unitarity of b(τ), the numerical equations do not keep b̃(τ) exactly unitary, i.e.
the condition b(τ)∗b(τ) = 1 gets violated. The difference b(τ)∗b(τ) − 1 can be used as
an error estimator for the numerical result. In a single time step τn → τn+1 we have
symbolically

b̃ij(τn+1) = b̃ij(τn) +
∑
k

b̃ik(τn) Hjk(τn) (6.4.43)

where
Hjk(τn) ≡ −Mjk(τn)∆εk∆τ. (6.4.44)

It gives
[b(τn+1)∗b(τn+1)]ij = [b(τn)∗b(τn)]ij +

∑
k

Hki(τ)∗Hkj(τ) (6.4.45)
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or in short

b(τn+1)∗b(τn+1)− b(τn)∗b(τn) = H(τ)∗H(τ) = O(H2). (6.4.46)

If we define the error as Err(τ) ≡ ||b(τ)∗b(τ) − 1||, where the norm can be an absolute
value of the trace, Hilbert-Schmidt or any other matrix norm, we find by starting with τ0
where Err(τ0) = 0

Err(τN ) = ||b(τN )∗b(τN )− b(τ0)∗b(τ0)||

=

∣∣∣∣∣
∣∣∣∣∣
N−1∑
k=0

b(τk+1)∗b(τk+1)− b(τk)∗b(τk)

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
N−1∑
k=0

H(τk)∗H(τk)

∣∣∣∣∣
∣∣∣∣∣ .

(6.4.47)

Taking into account (6.4.44), the fact that M(τ) has the form U̇(τ)M̃(τ) and the norm is
proportional to the number of states NE in the discretized spectrum we can estimate

Err(τN ) . N ∆τ2 ||U̇ ||2 ∆ε2 N2
E ||M̃ ||2 (6.4.48)

where ||U̇ || ≡ supk |U̇(τk)|, ∆ε ≡ supm ∆εm and ||M̃ || ≡ supk
√
||M(τk)∗M(τk)||/NE .

Finally it can be written as

Err(τN ) .
T 2

N
||U̇ ||2 |εmax − εmin|2 ||M̃ ||2, (6.4.49)

where T ≡ N∆τ and |εmax − εmin| is the range of the discretized energy spectrum. It
shows that when the number of time-discretization steps N grows while the total time T is
kept constant, hence ∆τ → 0, the error Err(τN ) decreases like 1/N . It proves convergence
of the numerical scheme to a one giving in the limit a unitary b and thus unitary scattering
matrix S.

6.4.2 Continuous switch on and off

We want to consider processes where the potential is continuously switched on and off.
The interesting parameters are the time rate of the switch on-off and duration of the
overcritical phase. Therefore we choose a simple function describing the time-dependence
of the potential’s strength, which allows us to control easily both parameters

U(t) =



−U0, t < −T0/2− T1,

−U1 + t+T0/2
T1

(U0 − U1), −T0/2− T1 < t < −T0/2,

−U1, −T0/2 < t < T0/2,

−U1 − t−T0/2
T2

(U0 − U1), T0/2 < t < T0/2 + T2,

−U0, T0/2 + T2 < t,

(6.4.50)
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with U1 > U0 > 0. The full potential is

V (t,x) = V (t, r) = U(t) · υ(r) = U(t) ·Θ(a− r) =

{
U(t), r < a,

0, r > a
. (6.4.51)

t

U

-U0

-U1
T

1 T
2

T
0

Figure 6.17: Smooth switch on-off: time-dependence of the potential’s strength.

Once again we use the theorem 9 or 10 with a = 0 and b = U ′ to find that H(t) =
H0 + V (t) is self-adjoint on D(H0) for every time t. Since V (t) is bounded, self-adjoint
and continuous (cf. section 3.4 there exists a unitary propagator U(t2, t1) [Tha92, Th.
4.10]. If we treat

H̃0 ≡ lim
t→±∞

H(t) = H0 − U0 · υ(r) (6.4.52)

as an asymptotic Hamiltonian and

Ṽ (t, r) = (U(t) + U0) · υ(r) (6.4.53)

as its perturbation then it has a switching factor

ϕ(t) =
U(t) + U0

U1 − U0
, (6.4.54)

what together gives

H(t) = H̃0 + Ṽ (t, r) = H̃0 + (U1 − U0) ϕ(t) υ(r). (6.4.55)

Since the spatial part of the potential υ(x) is short-range and belongs to Lp(R3) with any
p > 0 and the switching factor ϕ(t) satisfies (3.5.16)-(3.5.17) the wave-operators (3.5.12)
exist and are complete (cf. section 3.5.2). Consequently, there exists a unitary scattering
operator S in H (3.5.18). It is implementable in F , because such Ṽ (t, r) satisfies conditions
of theorem 8 (it satisfies (2.8.28)-(2.8.29) in the example below the theorem).
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6.4.3 Particle production spectra – subcritical

First, we study potentials which stay subcritical during the whole evolution (it is enough
to choose U0 and U1 subcritical). We can observe how the total (dynamical) particle
production depends on the time rate of change of the potential as well as application (and
numerical precision) of the adiabatic theorem in slow processes.

Dynamical production and the adiabatic limit

Figure 6.18 shows antiparticle production for a series of processes with different speeds of
switching, i.e. different values of T1 and T2 (here T1 = T2). There is no doubt that for
slower processes (bigger value of T1,2) particle production decreases. As one can deduce
from the proof of the adiabatic theorem, which we sketched in section 4.5, the vanishing
of the amplitude distribution in the negative continuum in adiabatic limit is reached via a
multiplicative factor quickly oscillating in energy. Therefore we can see oscillations in the
spectrum with period ∼ 1/T . Simultaneously, the amplitudes decrease for longer times.
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Figure 6.18: Antiparticle production spectra for a series of processes with different speeds
of potential switching.

The next figure 6.19 shows the total production (the integrated spectrum) of antipar-
ticles (which is equal to the total number of particles) as a function of the time-rate of the
switching process. It scales as 1/T and slowly reaches zero in the adiabatic limit.
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Figure 6.19: Total production of antiparticles (=particles) as a function of the time-rate
of the switching process. Fitted curve 0.18/T1.

6.4.4 Particle production spectra – overcritical

Here, the initial and final potential U0 will be subcritical, while the intermediate U1 will
be overcritical. We expect a bound state diving into the negative continuum, turning into
a resonance which can decay, depending on the duration of the overcritical period. Finally,
the bound state reappears, but the amplitude of the wave function (which previously was
identical with the initial bound state) in this state will be decreased by the amount which
decayed in the continuum and has been trapped there. As we have discussed in section 4.5
and have observed in the previous numerical section, it is clear that a resonance decays
in a static potential. Yet, it is unclear, what really happens to a moving resonance in
presence of a time-dependent potential. In section 4.5 we reached the conclusion that in
quick processes the peak (i.e. peak-shape energy distribution of the wave function in the
continuum) should roughly follow the position of the resonance, because the situation is
similar to consecutive projections from one to the next basis in continuum, corresponding
to changing Hamiltonian H(t). Of course, part of the wave function gets dispersed (into
both continua) due to the quick time-dependence. On the other hand, in slow processes
the peak additionally decays at every stage of the evolution. As we have seen in section
4.5, the dispersion due to the time-change of the basis gets small, but the loss of the
amplitude due to the continuous decay becomes essential. However, the resonance near
the edge of the continuum is very narrow and decays slower than as it gets deeper and
becomes wider. Therefore, the decay in time-dependent overcritical potentials is quite
complicated with different phenomena occurring simultaneously, of which one does not
know theoretically which will dominate. In order to understand their interplay, we need
to perform numerical simulations.
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Narrow peaks – non-uniform continuum discretization

One of the most difficult problems in numerical simulations of moving resonances is the
fact that their width tends to zero as their position approaches the edge of the continuum.
As we have estimated in previous sections, it behaves like Γ ∼ (−εres + 1)3/2, where εres
is the position of the peak near the continuum’s edge at ε = −1. Numerics with uniform
continuum discretization by ∆εn = ∆ε cannot handle this problem, because some peaks
(near the edge) have width Γ < ∆ε. On figure 6.20 (presenting an antiparticle creation
spectrum in slow switch on/off process) we see problems at the edge of the continuum:
consecutive refinements of the discretization step do not converge and the curve behaves
unstable – there are big jumps between the values of the neighbouring points near the
maximum. Further refinement of the discretization step (figure 6.21) still behaves unstable
and shows no convergence.

In order to successfully treat peaks numerically, one always has to have several points
within every peak. It suggests to choose a non-uniform discretization with ∆εn smaller for
εn ≈ −1, where the peaks are narrower. To find the optimal distribution of discretization
points εn and intervals ∆εn, let’s first consider approximation of an abstract integral over
a peak. Divide the real axis into the intervals (x−n , x

+
n ) with ∆xn ≡ x+

n − x−n and take the
values of the function f(x) at discrete points xn ∈ (x−n , x

+
n ). Then∫

f(x) dx−
∑
n

f(xn) ∆xn ∼=
∑
n

f ′(xn)
(
x+
n + x−n

2
− xn

)
∆xn

+
∑
n

1
3
f ′′(xn)

[
(x+
n )2 + (x−n )2 + x+

n x
−
n + 3x2

n − 3x+
n xn − 3x−n xn

]
∆xn

(6.4.56)

The first sum vanishes when we choose xn = (x+
n + x−n )(2), i.e. in the middle of the

intervals, whatever their distribution is. Then, the second term becomes∑
n

4
3
f ′′(xn) ∆x3

n. (6.4.57)

It can be shown that the next term is of order ∼ ∆x5
n, so much smaller. In order to

minimize the above sum at given number of discretization points, we must choose

∆xn ∼
∆x

3
√
|f ′′(xn)|

. (6.4.58)

Consider now f(x) being resonance shapes

f(x) ≡ fxR,Γ(x) ≡ Γ
(x− xR)2 + Γ2

. (6.4.59)

Their second derivative have maxima at x = xR and

max
x
|f ′′(x)| =

2
Γ3
. (6.4.60)
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Figure 6.20: Slow switch on-off process: decay of the wave packet occurs during the whole
overcritical phase, starting near the continuum’s edge, where the peak is very narrow.
There are no enough points in the discretized continuum to represent the peak and the
numerical resolution becomes insufficient.
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Figure 6.21: Slow switch on-off: refining the continuum’s discretization step does not help,
because the peak is arbitrary narrow near the continuum’s edge and therefore cannot be
handled by this method.
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Further, we know that there is a scaling between the position and width of the resonance
Γ ≈ α x3/2, where we use x for −ε− 1. Hence, we can estimate the terms

|f ′′(xn) ∆x3
n| ≤

2 ∆x3
n

α3 x
9/2
n

= 2

(
∆xn
α x

3/2
n

)3

. (6.4.61)

Therefore we should choose ∆xn ∼ x
3/2
n ·∆x what agrees with the intuition that ∆xn ∼

Γ ∼ x
3/2
n should be optimal. The last step is to determine such xn. It turns out (by solving

a simple differential equation) that these points must be placed at

xn =
xmax

(1 + α(n− 1))2
(6.4.62)

with x1 = xmax and the inverse order xn+1 < xn, i.e. xn tending to 0. Figure 6.22 shows
the distribution of ∆xn vs. xn. Since the number of points is finite, there is a last point,
xN , nearest x = 0 with smallest interval ∆xN and there are no more points between xN

and 0. Hence, we can only consider peaks which entirely lie above xN . Roughly, a peak
centered at xR with width Γ is localized in 70% (in the sense of an integral) in the interval
(xR−2 Γ, xR+2 Γ) and its amplitude outside this interval is less than 1/5 of its maximum.
Figure 6.23 shows how many discretization points lie “within” the peak (i.e. within this
interval) at every value of x under the assumption that Γ = Γ(x) = α x3/2 as we have
found for resonances in section 5.3 and is shown on figure 5.3. We can see clearly that
the number of points within every peak is approximately constant 16 ± 1 for x & 0.05.
Below this value this discretization scheme is not reliable, what is confirmed on figure
6.24 presenting exact value of the integral of the peak on the interval (0, 1) against the
approximation based on discretization xn.

Concluding, this discretization scheme treats all peaks laying between xmin =
xN and xmax = x1 with the same accuracy, but it does not allow for treating peaks
laying near and below xN , what is a problem of all discretization schemes, because of
arbitrarily narrow peaks near the edge of the continuum. We want to argue now, that it
is not a real problem for the evolution processes. Assume U(t) starts from a subcritical
value U(t0) = U0 and tends to overcritical U(t1) = U1. In between, at t = tcr, it reaches
the critical value U(tcr) = Ucr such that the deepest bound state energy reaches ε = −1.
Then, for t > tcr we have a resonance, which lies very near the continuum edge and is
very narrow for t ≈ tcr. However, the time-dependent process must be discretized in time
to be numerically applicable, i.e. divided into time-steps tn. Then, there exists a step,
say n′, such that U(tn′−1) < Ucr is subcritical, while U(tn′) > Ucr is overcritical (we must
avoid situation with U(tn) exactly critical, because many formulas become singular at that
point and are numerically inapplicable). So, the resonance appears first at position, say
xR(tn′) > 0, which is well separated from the edge of continuum (although it may be very
near). We have only to choose the discretization in such a way, that xN � xR(tn′), i.e.
(nearly) the whole peak is well approximated by the discretization points.
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Figure 6.22: Distribution of the discretization points in the negative continuum: ∆xn vs.
xn with x ≡ −ε− 1 and line ∆x ∼ x3/2.
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Figure 6.24: Exact value of the integral of the peak on the interval (0, 1) (solid red line)
against the approximation based on discretization xn (dashed blue line).
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Quick processes with no overcritical delay

Consider first processes with quick switch on and off of the potential with no overcritical
delay phase. We obtain nearly no particle creation, also nearly no dynamical, even if the
time-variation of the potential is big. The reason is that the whole process is very short
and the wave function gets nearly projected from one to another basis (corresponding to
changing Hamiltonian H(t)) and finally gets projected onto the initial basis with no loss
due to the evolution (of phases), what results in (nearly) no particle production.

The main contribution to the antiparticle production spectrum in the overcritical pro-
cesses has the bound state, which dives into the negative continuum during the evolutions.
More precisely, the antiparticle production distribution

N−
ε =

∫
σ+

|Sεε′ |2dε′ =
∫
σcont

+

|Sεε′ |2dε′ +
∑
σ+

disc

|Sεε′n |
2∆ε′n. (6.4.63)

is dominated by the last term, which corresponds to the energy distribution ε in the
negative continuum of an amplitude of a wave function evolving from the initial bound
state with energy ε′n and diving into the continuum during the evolution, when it assumes
a peak shape around the resonance position. If this amplitude distribution goes back
to the final bound state, no antiparticle production occurs. If (some part of) it remains
in the negative continuum, it contributes to the antiparticle production. Therefore, it
is interesting to observe how this distribution changes during the evolution. Figure 6.25
shows the final particle production, which is nearly zero (≈ 0.001), as well as consecutive
distributions of the discussed amplitude. Clearly, it moves along the moving resonance as
the strength of the potential increases and then moves back as the strength of the potential
decreases. Finally, it rebuilds the bound state wave function, whose amplitude just after
the dive-out amounts 0.978.

Quick processes with overcritical delay

If we allow for a delay in the overcritical phase, causing the potential value to freeze for
some time T > 0, the situation changes completely. The amplitude of the dived bound
state forming a peak in the continuum decays3 during the delay and remains trapped there
in the switch-off phase. Finally, it contributes dominantly to the antiparticle production
distribution. The same effect has been observed in numerical calculations in the case of
heavy ion collisions with delay [RMMG81].

Figure 6.26 shows the distribution of the wave packet representing the dived bound
state moving along the moving resonance up to the deepest position, when the potential
is strongest. Then the delay T = 50 causes the peak around ε ≈ 1.469 with a half-width
Γ ≈ 0.177 to decay completely. Consequently the peak stays there in the dive out phase

3The “decay” means here a dephasing of different energy contributions such that the wave packet

becomes orthogonal to its initial value in the sense of a scalar product.
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Figure 6.25: Quick switch on-off process with no overcritical delay: the antiparticle pro-
duction, which is nearly zero (red diamonds on bottom) and the amplitude of the wave
packet representing the dived bound state at several time instants (1-5 diving in, 6-9 diving
out).
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and does not follow the resonance moving back left. The final amplitude in the dived-out
bound state is tiny and amounts about 0.015. Figure 6.26 shows also the total particle
production, whose profile is identical with those of the decayed peak and its integral, i.e.
the total probability of antiparticle production is nearly 1.

Intermediate and slow processes

Now, we analyze slower processes and allow the wave packet to decay during the switch on
and off phase. First, to show the idea of the continuous decay but avoid complications at
the edge of the continuum, we consider situation, where the initial subcritical potential U0

is suddenly switched to some overcritical value U1, then changes continuously to a stronger
value U2, stays for some time T > 0 constant, goes back to the value U1, and eventually
jumps back to U0. It has the advantage that we start at U1 with a relatively wide peak
well separated from the continuum’s edge. We have chosen

U0 = 4.00 subcritical, (6.4.64)

U1 = 4.90 resonance: εR = −1.417, εI = 0.117, (6.4.65)

U2 = 5.00 resonance: εR = −1.500, εI = 0.143 (6.4.66)

and choose the switch-in T1 and switch-out T2 phase duration to be in the range from
T1 = T2 = 0.005 to T1 = T2 = 250. Figure 6.27 shows the resulting antiparticle production
spectra. For diving-times below T1 ≤ 0.5 the peak is completely transported near the
resonance position in the strongest potential U2 (fitted εres ≈ 1.505, Γ ≈ 0.155) and
decays fully in the delay phase with T = 25. For T1 = 5 which is of order of magnitude
of the characteristic decay time (between 6.99 and 8.55 depending on the position of the
resonance) there appears a slight deviation in the antiparticle production spectrum. For
slower dive-in processes, i.e. for T1 ≥ 25 the spectrum changes essentially. It moves
towards lower energies, what means that the peak decays earlier during the switch-on
phase. In the extremely slow switch-on with T1 = 250 the whole peak decays already at
U = U1 (fitted εres ≈ 1.375, Γ ≈ 0.160).

Now, we can make the same comparison eliminating the initial jump in the potential’s
strength and start with wave packets localized near the continuum’s edge. However,
as we discussed at the begin of this section, simulation of a truly continuous switch on
process in numerically impossible and the discretization of time always introduces small
jumps in the switch on and off phases, including a jump from some slightly subcritical
potential U0 to slightly overcritical U1. So we choose U0 = 4.29 (bound state energy
ε1 = −.996), U1 = 4.40 (resonance εR = −1.062, Γ = 0.0087) and U2 = 5.00 (resonance:
εR = −1.500, εI = 0.143). Since the results for this choice of parameters are clear enough,
there is no point to force the value U1 against the critical value Ucr = 4.297, what induces
tremendous increase of the computational expense due to the extremely narrow peaks
which require very dense discretization of the continuum. The results, the antiparticle
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Figure 6.26: Quick switch on-off process with overcritical delay T = 50: the amplitude of
the wave packet representing the dived bound state at several time instants: 1-7 diving in,
8-9 diving out after the delay and decay (peak shape remains constant) and the antiparticle
production, which is identical with the decayed peak’s shape (red filled squares).
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Figure 6.27: Slow switch on-off process with initial and final jump and overcritical delay
T = 25: antiparticle production spectra for different time rates of the switch on and switch
off phase. The slower is the switch phase the earlier (shifted to lower energies) decays the
wave packet representing the dived bound state.
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production spectra, for these parameters and switch on/off duration times in the range
between T1 = T2 = 0.006 and T1 = T2 = 300 are presented on figure 6.28. Again,
for short switch on/off times T1 � 1 the wave packet is transported near the position
of the resonance in the deepest potential U2 (fitted εres ≈ 1.469, Γ ≈ 0.197) where it
decays during the delay phase with T = 50. For slower switch on processes the decay
occurs continuously during the switch on, when the resonance moves right. The wave
packet partially decays and partially follows the resonance, what results in a distributed
spectrum of antiparticle production (like e.g. for T1 = 24). For extremely slow processes,
which approach the adiabatic limit, the peak decays almost fully as soon as it appears in
the continuum, what in our case occurs for U = U1 (fitted εres ≈ 1.101, Γ ≈ 0.0742).

Concluding, the wave packet in the negative continuum representing the
dived bound state in presence of an overcritical potential partially follows a
moving resonance and partially decays continuously in the whole overcriti-
cal period, what, in general, results in an antiparticle production spectrum
distributed over all positions of the resonance during the overcritical phase.
The slower the overcritical potential varies the more intensive the continuous
decay is. In contrast, the quicker the overcritical potential varies the more
accurately the peak follows the position of the resonance.

Optimal resonance excitation

Figure 6.29 presents comparison between the antiparticle creation spectra for a sudden
switch on and off (T1 = T2 = 0) from slightly subcritical U0 = 4.29 (bound state ε1 =
−0.996) with overcritical delay T = 50, continuous switch on and off with T1 = T2 = 0.006
and overcritical delay T = 50, and the theoretical shape of the (Lorentz) resonance for the
final potential U1 = 5. Due to the quick time-dependence the spectrum for the sudden
switch on-off differs slightly from the ideal resonance shape. Yet, the spectrum for the con-
tinuous switch on-off differs more and is shifted to lower energies, what is the property of
all continuous processes, where the peak decays continuously during the evolution. From
figure 6.28 we know that for slower processes the spectrum is even more shifted to lower en-
ergies. Therefore the optimal time-rate for switching on/off to obtain maximal production
corresponding to the resonance is reached in the sudden switch case. In contrast, when we
start from an initial potential which is far from being critical and choose U0 = 1.5 (bound
state ε1 = +0.905), the antiparticle production spectrum shown on figure 6.30 differs more
from the theoretical resonance shape and is shifted slightly to higher energies (what is the
effect of a stronger contribution from the dynamical production). Since slower processes
give shift to lower energies, there should theoretically exist an optimal time-rate such that
the maximum of the spectrum agrees with those of the theoretical resonance. However,
this time-rate must be extremely quick, because for T1 = T2 = 0.006 we get the spectrum
shown on the figure 6.30, which is essentially shifted to lower energies. Our numerical
methods do not allow us for successful consideration of shorter switch times and to reach
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Figure 6.28: Slow switch on-off process with overcritical delay T = 50: antiparticle pro-
duction spectra for different time rates of the switch on and switch off phase. The slower is
the switch phase the earlier (shifted to lower energies) decays the wave packet representing
the dived bound state.
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the discontinuous sudden switch limit. Yet, it does not seem essential, because this time
scale is physically already tremendously short ( 10−24 s.).

We can conclude, that the optimal time-rate for switch on and off processes
with a long overcritical delay to obtain maximally peaked spectrum of created
antiparticles agreeing with the shape of the resonance in the overcritical po-
tential is reached for (almost) suddenly switched on and off potentials. Slower
and adiabatic switching, due to the continuous decay of the wave packet in
the negative continuum (representing the dived bound state), lead to spectra
peaked at lower energies, with the position εmax → 1+ in the adiabatic limit.
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Figure 6.29: Antiparticle creation spectra for a sudden switch on and off (T1 = T2 = 0)
from slightly subcritical U0 = 4.29 with overcritical delay T = 50 and continuous switch
on and off with T1 = T2 = 0.006 with overcritical delay T = 50 compared to the theoretical
shape of the (Lorentz) resonance for the final potential U1 = 5.
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Figure 6.30: Antiparticle creation spectra for a sudden switch on and off (T1 = T2 = 0)
from a weak potential U0 = 1.5 with overcritical delay T = 50 and continuous switch on
and off with T1 = T2 = 0.006 with overcritical delay T = 50 compared to the theoretical
shape of the (Lorentz) resonance for the final potential U1 = 5.



Chapter 7

The inverse problem

In this chapter we want to ask the question how much information about the time-
dependent potential can be reconstructed from the scattering data, represented by the
scattering operator or the particle production spectrum. Being aware that such procedure
is far from being unique, we consider several simplified cases, where only few degrees of
freedom of the potential are to be guessed. Using results from the previous chapter we give
some answers to what extent information about the potential’s parameters can be suc-
cessfully obtained. Finally, we propose a simple approximation method (master equation)
basing on exponential, decoherent decay of time-dependent resonances for prediction of
particle creation spectra. Despite its simplicity we obtain relatively good agreement with
the results of full numerical calculations from the previous chapter. This method can be
relatively easily applied to the inverse problem.

7.1 Time-dependent inverse scattering

The problem of reconstructing the Hamiltonian or potential from the scattering data
is know in the literature as an inverse (scattering) problem. In general (for the Dirac
equation) it is already impossible to solve the inverse problem for static potentials. Only in
some cases, where the form of the potential is further restricted (e.g. spherical symmetry)
there is a chance for a unique result. The last possibility is to treat the potential as
belonging to a n-parameter family of functions and fit the n parameters to obtain the
scattering data nearest to those which are given. In case of time-dependent potentials the
situation regarding general methods is hopeless. Only parameter fitting can be tried.

7.2 Overcriticality

It is interesting, if unique signs of overcriticality can be found in the scattering data. Of
course, overcriticality implies spontaneous particle creation. Yet, as we have shown in part
I, the spontaneous particle creation defined rigorously is practically useless and extremely

227



228 7. The inverse problem

rare (i.e. unstable with respect to tiny perturbations of the potential). On the other hand,
the spontaneous particle creation in a weaker sense, discussed in section 4.5, is not unique.
As long as the resulting peak in the antiparticle production is narrow and high, there is
no doubt regarding overcriticality, but for wide and small peaks, which are of order of
the dynamical production, the uniqueness is lost. Let’s consider several cases, when this
question can be answered.

7.2.1 Short duration processes

As we have seen in section 6.3.1, there is no quantitative difference between subcritical and
overcritical potentials when the overcritical period is short. Figure 7.1 shows the situation
for a sudden switch on and off with delay T = 1. The difference between the sub- and
overcritical spectra is not more than 20% in amplitude and both have the same shape.
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Figure 7.1: Switch on-off: no quantitative difference between subcritical and overcritical
potentials in the switched-on phase for short times (T = 1). U ′ = 4.2 (black) is subcritical,
while U ′ = 4.4 (red) and U ′ = 5 (green) are overcritical.
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Figure 7.2: Quick switch on-off process with no overcritical delay: the antiparticle produc-
tion, which is nearly zero (red diamonds on bottom) and the amplitude of the wave packet
representing the dived bound state at several time instants (1-5 diving in, 6-9 diving out).
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The reason is that although a wave packet appears in the overcritical continuum, it
has not enough time to decay and dives out forming a reappearing bound state again. It
can be clearly seen on figure 7.2 which presents a process with continuous switch on/off
(T1 = T2 = 0.01) and no delay. The wave packet moves right and then back left, what
results in nearly no particle production.

7.2.2 Quick processes with delay

The situation changes dramatically, when the overcritical phase has a delay of order of
the decay time of the resonance. Whether for sudden switch on-off (figure 7.3) or for
continuous (figure 7.4), the wave packet always decays at the position of the resonance
in the overcritical potential and clearly contributes to the antiparticle creation spectrum.
Here the inverse problem is trivial.
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Figure 7.3: Switch on-off: the peaks in overcritical vs. no peaks in subcritical potential
for the duration time T = 20 of the switched-on phase.

The position of the resonance allows for a unique determination of the value of the
overcritical potential. The only open question is the duration of the overcritical delay. We
know (cf. figure 7.5) that the maximal amplitude of the peak in the particle production
spectrum is reached like ∼ (1−e−2ΓT ). Times T , which are of order of 1/Γ can be uniquely
determined, but for very long times the uniqueness gets lost.

7.2.3 Slow continuous switching processes

The most complicated are slow continuous switch on/off processes, during which the wave
packet decays continuously and contributes to the particle production spectrum at many
positions, corresponding to the moving position of the resonance. Here, there is no doubt
that the wave packet decays hence the overcriticality is proved, but it is by no means
obvious how to deduce the time-dependence of the potential (figure 7.6). In the following
section we propose an approximative method to deal with this problem.
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Figure 7.4: Quick switch on-off process with overcritical delay T = 50: the amplitude of
the wave packet representing the dived bound state at several time instants: 1-7 diving in,
8-9 diving out after the delay and decay (peak shape remains constant) and the antiparticle
production, which is identical with the decayed peak’s shape (red filled squares).

7.3 Master equation

Using time-dependent perturbation theory one can try to predict the particle production
spectra, but this is not easy, as discussed in [MRG83] and references therein. Alternatively,
one can try to find analytical results in some limiting situations, like very quick processes
considered in [BM98]. But we want to concentrate on the contribution to the particle
production spectrum from the dynamically decaying resonance in an overcritical potential.

7.3.1 Particle production from the position of the resonance

The approximation technique, which we want to develop in this section, bases on the
observation of the decay of a wave packet in continuum. A decay is possible because the
wave packet is spread over a range of energies, or more exactly, over a set of continuum
wave functions being generalized eigenvectors to different eigenvalues (energies). These
energies act as frequencies in a free evolution so that every component changes its complex
phase in a different rate. Just the dephasing of all components leads to the decay – the
wave packet stays localized in energy, but disperses spatially and therefore projected on
its initial value gives a number smaller than one. It can be shown that a Lorentz-type
peak with a half-width Γ

φR =
∫
aEφE dE =

∫ √
Γ

√
π
√

(E − ER)2 + Γ2
φE dE (7.3.1)

decays exponentially in free evolution

aR(t) ≡ 〈φE |e−iHtφR〉 = e(−iER−Γ)t, (7.3.2)
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Figure 7.5: Switch on-off: weakly subcritical → strongly overcritical. Antiparticle
production spectra for different duration times T of the switched on potential U ′.

or

|aR(t)|2 = e−2Γt. (7.3.3)

In other words, the part of the wave packet with the amplitude |aR(t)| < 1 still corresponds
to the initial wave packet and forms a spatially localized part of the wave function, while
the rest corresponds to the spatially spread out function of vanishing amplitude. Yet, it
is still well localized in the energy spectrum and will stay localized forever, giving rise
to the particle creation spectrum (because it is just this part of the wave packet, which
gets trapped in the continuum). For a time-dependent Hamiltonian, when the resonance
moves, one can approximately assume that only the non-decayed (∼ |aR(t)|) part of the
wave packet will follow the resonance, while the decayed part remains untouched in the
continuum and does not interact (one can argue that after dephasing or decoherence the
part of the wave packet behaves “classically” showing no more interference). We suggest
a simplified picture (cf. figure 7.7) that the wave packet during evolution in a time-
dependent Hamiltonian partially follows the resonance shape and partially decays, and
the part which has decayed immediately decouples from the system only contributing to
the final particle production spectrum.

The technique of the approximation bases on two relations: first describes the contribu-
tion of the decaying wave packet to the particle production spectrum and second describes
the loss of amplitude of the wave packet which follows a moving (time-dependent) reso-
nance. The above argumentation leads to the following equation

dN(E, t) = −d|aR(t)|2f2(E,ER(t),Γ(t)), (7.3.4)

where N(E, t) is the sum of contributions to the distribution of produced particles until
time t and

f(E,ER(t),Γ(t)) ≡
√

Γ
√
π
√

(E − ER)2 + Γ2
(7.3.5)
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Figure 7.6: Slow switch on-off process with overcritical delay T = 50: antiparticle produc-
tion spectra for different time rates of the switch on and switch off phase. The slower is
the switch phase the earlier (shifted to lower energies) decays the wave packet representing
the dived bound state.

is the idealized shape of a resonance. This equation can be integrated over time

N(E, t) = −
∫ t

t0

d|aR(t)|2

dt
f2(E,ER(t),Γ(t)) dt, (7.3.6)

assuming initially N(E, t0) = 0. Following the technique presented in the proof of adia-
batic theorem (section 4.5) we assume (what however does not have to be true for reso-
nances) that the evolution of a wave packet splits into decay and follow of the resonance
position. Therefore we assume that the resonance decays at every instant of time as if it
were evolving freely, i.e.

d |aR(t)|2

dt
= −2 Γ(t) |aR(t)|2. (7.3.7)

Now, this equation can be inserted into the previous one and we obtain

N(E, t) =
∫ t

t0

2 Γ(t) |aR(t)|2f2(E,ER(t),Γ(t)) dt. (7.3.8)

The last two equations form a closed system, if the parameters of the resonance ER(t),Γ(t)
are known. They depend uniquely on the potential U(t), whose dependence on time re-
mains the last free parameter in the system. Its solution, the final particle production
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Figure 7.7: Decay of the wave packet in the negative continuum following the position of
the resonance and contributing to the spectrum of created antiparticles.

spectrumN(E, t1) is to be compared with the exact particle production. When the approx-
imation woks well, the time-dependent position of the resonance or the time-dependence
of the potential can be found by a simple fitting.

For extremely narrow peaks a further approximation can be made. When Γ ≈ 0 then

f(E,ER,Γ) ≈ δ(ER − E) (7.3.9)

and

N(E, t) =
∫ t

t0

2 Γ(t) |aR(t)|2f2(E,ER(t),Γ(t)) dt =
∑

t0≤ti≤t:
ER(ti)=E

2 Γ(ti) |aR(ti)|2

|E′
R(ti)|

(7.3.10)

Knowing ER(t) and Γ(t) the particle production N(E, t1) can be calculated analytically.
By the same, the inverse problem can be solved analytically.

7.3.2 Square well potential

We apply this technique to the time-dependent square well potential considered in the
previous chapter. We consider decay of a wave packet during a continuous switch on
process from U1 = 4.40 to U2 = 5 at different time-rates, after which a long delay phase
occurs with T0 = 50. We consider switch times in the range from T = 0.006 to T = 60.
The results, “exact” numerically calculated particle production spectra and approximated
by the presently discussed method, are shown on figure 7.8.

We see a quite good agreement for the intermediate values T = 12, 24, but some
discrepancy for very quick as well as for very slow switch on processes. Unfortunately, these
are regimes, where we are not certain that the “exact” spectra are correct. For extremely
slow processes there appear big numerical errors due to slowly evolving (and decaying) very
narrow peaks near the continuum’s edge. On the contrary, for very quick processes, the
wave packet is transported far from the edge, but this transport occurs in many numerical
steps during which small errors add up. Finally, the numerical uncertainty does not allow
us to draw conclusions in these extreme situations, and actually did not allow us to work
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Figure 7.8: “Exact” numerically calculated particle production spectra and approximated
by the presently discussed method.

further on this method until the full numerical code does not reach a better precision.
Only to show the flexibility of this technique we have fitted a different amplitude time-
development |aR(t)| in order to match the given particle production spectrum for T = 60.
By a simple modification in the decay rate (which can be further improved) we have
obtained quite good agreement (dotted blue line on figure 7.8). It seems that for nearly
any particle production spectrum there exists a function |aR(t)| such that the generated
N(E, t1) approximates the given spectrum. The question how good this approximation is
open and worth further work, because its numerical simplicity and possibility of application
to the inverse problem are very tempting.



Chapter 8

Conclusions

“Das Problem zu erkennen ist wichtiger, als die Lösung zu erkennen,
denn die genaue Darstellung des Problems führt zur Lösung.”

A. Einstein

We solve a longstanding open problem of definition and existence of the spontaneous
particle creation. We accept the demand (Scharf et al.) that the definition of the effect
must be formulated in Fock space as well as that the information on particle creation is
contained in the structure of the implemented scattering operator Ŝ. Hence, we treat it as
a part of the definition and a necessary condition. However, we show that the change in
the structure of Ŝ does not have to lead to stable, observable effects. On the other hand,
we show that the condition (Greiner et al.) for a classical Dirac Hamiltonian having of a
bound state dived into the continuum is a necessary condition for the existence of stable,
physically observable spontaneous particle creation.

In order to treat this problem rigorously, we carefully develop the theory of QED in
external fields. In particular, we implement in Fock space and discuss for the first time the
evolution of time-dependent Hamiltonians with unequal initial and final external fields,
what is necessary to understand spontaneous creation of a single (anti-)particle.

We show that the spontaneous particle creation exists only in a weaker sense (defined
in section 4.5), i.e. overcritical fields lead to a vacuum decay and spontaneous particle
creation, but there are no processes in which one can observe exclusively the spontaneous
antiparticle with the energy corresponding to the resonance position in the overcritical
field. Either there are other particles created confusing the picture (dynamical pairs in
quick processes) or the spontaneous antiparticle does not fit to the parameters of the
resonance (much smaller momentum and kinetic energy) independent on the strength of
the overcritical field and position of the resonance (adiabatic limit).

Moreover, we demonstrate numerically how a wave packet in the negative continuum
representing the dived bound state in presence of an overcritical potential partially follows
a moving resonance and partially decays continuously during the whole overcritical period,
what in general results in an antiparticle production spectrum distributed over all posi-
tions of the resonance during the overcritical phase. The slower the overcritical potential
varies the more intensive the continuous decay is. In contrast, the quicker the overcritical
potential varies the more accurately the peak follows the position of the resonance.
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Ann. Henri Poincaré, 5:1137–1157, 2004. math-ph/0307002.



240 8. Conclusions

[How74a] J. S. Howland. Puiseux series for resonances at an embedded eigenvalue.
Pacific J. Math., 55(1):157–176, 1974.

[How74b] J. S. Howland. Stationary scattering theory for time-dependent hamiltonians.
Math. Ann., 207:315–335, 1974.

[HR85] J. Hoppe and J. Reinhardt. Complex dilations in relativistic quantum me-
chanics and the Lamb shift for resonances. UFTP preprint 151/1985, 1985.

[HS95] P. D. Hislop and I. M. Sigal. Introduction to Spectral Theory: With Appli-
cations to Schrodinger Operators, pages Ch. 16–17. Applied Mathematical
Sciences. Springer Verlag New York, 1995.

[JN05] A. Jensen and G. Nenciu. The Fermi golden rule and its form at thresholds
in odd dimensions. preprint mp-arc, 05-148, 2005.

[JP91] A. Joye and Ch-Ed. Pfister. Exponentially small adiabatic invariant for the
Schrödinger equation. Comm. Math. Phys., 140:15–41, 1991.

[Kla80a] M. Klaus. Dirac operators with several Coulomb singularities. Helv. Phys.
Acta, 53:463–482, 1980.

[Kla80b] M. Klaus. On the point spectrum of Dirac operators. Helv. Phys. Acta,
53:453–462, 1980.

[Kla85] M. Klaus. On coupling constant thresholds and related eigenvalue properties
of Dirac operators. Journal für Mathematik, 362:197–212, 1985.

[KS77a] M. Klaus and G. Scharf. The regular external field problem in quantum
electrodynamics. Helv. Physica Acta, 50:779–802, 1977.

[KS77b] M. Klaus and G. Scharf. Vacuum polarization in Fock space. Helv. Physica
Acta, 50:803–814, 1977.
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