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We deal with nonnegative distributional supersolutions for a class of linear elliptic equations
involving inverse-square potentials and logarithmic weights. We prove sharp nonexistence results.

1. Introduction

In recent years, a great deal work has been made to find necessary and sufficient conditions
for the existence of distributional solutions to linear elliptic equations with singular weights.
Most of the papers deal with weak solutions belonging to suitable Sobolev spaces. We quote
for instance, [1–4] and references therein.

In the present paper, we focus our attention on a class of model elliptic inequalities
involving singular weights and we adopt the weakest possible concept of solution, that is,
that one of distributional solution.

LetN ≥ 2 be an integer, R ∈ (0, 1], and let BR be the ball in R
N of radius R centered at

0. In the first part of the paper, we study nonnegative solutions to

−Δu − (N − 2)2

4
|x|−2u ≥ α|x|−2∣∣log|x|∣∣−2u in D′(BR \ {0}), (1.1)
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where α ∈ R is a varying parameter. By a standard definition, a solution to (1.1) is a function
u ∈ L1

loc(BR \ {0}) such that

−
∫

BR

uΔϕdx − (N − 2)2

4

∫

BR

|x|−2uϕdx ≥ α
∫

BR

|x|−2∣∣log|x|∣∣−2uϕdx (1.2)

for any nonnegative ϕ ∈ C∞
c (BR \ {0}). Notice that the weights in (1.1) derive from the

inequality

∫

B1

|∇u|2dx − (N − 2)2

4

∫

B1

|x|−2|u|2 ≥ 1
4

∫

B1

|x|−2∣∣log|x|∣∣−2|u|2dx, (1.3)

which holds for any u ∈ C∞
c (B1 \ {0}). It is well known that the constants (N − 2)2/4 and

1/4 are sharp and not achieved (see, e.g., [5–8] and Appendix A). Inequality (1.3)was firstly
proved by Leray [9] in the lower-dimensional caseN = 2.

Due to the sharpness of the constants in (1.3), a necessary and sufficient condition for
the existence of nontrivial and nonnegative solutions to (1.1) is that α ≤ 1/4 (compare with
Theorem B.2 in Appendix B and with Remark 2.6).

In case α ≤ 1/4, we provide necessary conditions on the parameter α to have the
existence of nontrivial solutions satisfying suitable integrability properties.

Theorem 1.1. Let R ∈ (0, 1] and let u ≥ 0 be a distributional solution to (1.1). Assume that there
exists γ ≤ 1 such that

u ∈ L2
loc

(

BR; |x|−2
∣
∣log|x|∣∣−2γdx

)

, α ≥ 1
4
− (1 − γ)2. (1.4)

Then u = 0 almost everywhere in BR.

We remark that Theorem 1.1 is sharp, in view of the explicit counterexample in
Remark 2.6.

Let us point out some consequences of Theorem 1.1. We use the Hardy-Leray
inequality (1.3) to introduce the space H̃1

0(B1) as the closure of C∞
c (B1 \ {0}) with respect

to the scalar product

〈u, v〉 =
∫

B1

∇u · ∇v dx − (N − 2)2

4

∫

B1

|x|−2uv dx (1.5)

(see, e.g., [3]). It turns out that H̃1
0(B1) strictly contains the standard Sobolev space H1

0(B1),
unlessN = 2.
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Take γ = 1 in Theorem 1.1. Then problem (1.1) has no nontrivial and nonnegative
solutions u ∈ L2

loc(BR; |x|−2| log |x||−2dx) if α = 1/4. Therefore, if in the dual space H̃1
0(BR)

′, a
function u ∈ H̃1

0(BR), solves

−Δu − (N − 2)2

4
|x|−2u ≥ 1

4
|x|−2∣∣log|x|∣∣−2u in BR,

u ≥ 0,

(1.6)

then u = 0 in BR.
Next take γ = 0 and α ≥ −3/4. From Theorem 1.1 it follows that problem (1.1) has

no nontrivial and nonnegative solutions u ∈ L2
loc(BR; |x|−2dx). In particular, if N ≥ 3 and if

u ∈ H1
0(BR) ↪→ L2(BR; |x|−2dx) is a weak solution to

−Δu − (N − 2)2

4
|x|−2u ≥ −3

4
|x|−2∣∣log|x|∣∣−2u in BR

u ≥ 0,

(1.7)

then u = 0 in BR. Thus Theorem 1.1 improves some of the nonexistence results in [2] and in
[4].

The case of boundary singularities has been little studied. In Section 2, we prove sharp
nonexistence results for inequalities in cone-like domains in R

N , N ≥ 1, having a vertex at
0. A special case concerns linear problems in half-balls. For R > 0, we let B+

R = BR ∩ R
N
+ ,

where R
N
+ is any half-space. Notice that B+

R = (0, R) or B+
R = (−R, 0) ifN = 1. A necessary and

sufficient condition for the existence of nonnegative and nontrivial distributional solutions to

−Δu − N2

4
|x|−2u ≥ α|x|−2∣∣log|x|∣∣−2u in D′(B+

R

)

(1.8)

is that α ≤ 1/4 (see Theorem B.3 and Remark 3.3), and the following result holds.

Theorem 1.2. Let R ∈ (0, 1],N ≥ 1, and let u ≥ 0 be a distributional solution to (1.8). Assume that
there exists γ ≤ 1 such that

u ∈ L2
(

B+
R; |x|−2

∣
∣log|x|∣∣−2γdx

)

, α ≥ 1
4
− (1 − γ)2. (1.9)

Then u = 0 almost everywhere in B+
R.

The key step in our proofs consists in studying the ordinary differential inequality

−ψ ′′ ≥ αs−2ψ in D′(a,∞),

ψ ≥ 0,
(1.10)



4 Journal of Inequalities and Applications

where a > 0. In our crucial Theorem 2.3, we prove a nonexistence result for (1.10), under
suitable weighted integrability assumptions on ψ. Secondly, thanks to an “averaged Emden-
Fowler transform”, we show that distributional solutions to problems of the form (1.1) and
(1.8) give rise to solutions of (1.10); see Sections 2.2 and 3, respectively. Our main existence
results readily follow from Theorem 2.3. A similar idea, but with a different functional
change, was already used in [10] to obtain nonexistence results for a large class of superlinear
problems.

In Appendix A, we give a simple proof of the Hardy-Leray inequality for maps with
support in cone-like domains that includes (1.3) and that motivates our interest in problem
(1.8).

Appendix B deals in particular with the case α > 1/4. The nonexistence Theorems B.2
and B.3 follow from an Allegretto-Piepenbrink type result (Lemma B.1).

In the last appendix, we point out some related results and some consequences of our
main theorems.

Notation 1. We denote by R+ the half real line (0,∞). For a > 0, we put Ia = (a,∞).We
denote by |Ω| the Lebesgue measure of the domain Ω ⊂ R

N . Let q ∈ [1,+∞) and let ω be
a nonnegative measurable function onΩ. The weighted Lebesgue space Lq(Ω;ω(x)dx) is the
space of measurable maps u in Ω with finite norm (

∫

Ω |u|qω(x)dx)1/q. For ω ≡ 1 we simply
write Lq(Ω). We embed Lq(Ω;ω(x)dx) into Lq(RN ;ω(x)dx) via null extension.

2. Proof of Theorem 1.1

The proof consists of two steps. In the first one, we prove a nonexistence result for a class of
linear ordinary differential inequalities that might have some interest in itself.

2.1. Nonexistence Results for Problem (1.10)

We start by fixing some terminologies. Let D1,2(R+) be the Hilbert space obtained via the
Hardy inequality

∫∞

0

∣
∣v′∣∣2ds ≥ 1

4

∫∞

0
s−2|v|2ds, v ∈ C∞

c (R+) (2.1)

as the completion of C∞
c (R+) with respect to the scalar product

〈v,w〉 =
∫∞

0
v′w′ ds. (2.2)

Notice thatD1,2(R+) ↪→ L2(R+; s−2 ds)with a continuous embedding andmoreoverD1,2(R+) ⊂
C0(R+) by Sobolev embedding theorem. By Hölder inequality, the space L2(R+; s2 ds) is
continuously embedded into the dual space D1,2(R+)′.

Finally, for any a > 0 we put Ia = (a,∞) and

D1,2(Ia) =
{

v ∈ D1,2(R+) | v(a) = 0
}

. (2.3)
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We need two technical lemmata.

Lemma 2.1. Let f ∈ L2(Ia; s2 ds) and v ∈ C2(R+)∩L2(Ia; s−2 ds) be a function satisfying v(a) = 0
and

−v′′ ≤ f in Ia. (2.4)

Put v+ := max{v, 0}. Then v+ ∈ D1,2(Ia) and

∫∞

a

∣
∣
∣(v+)′

∣
∣
∣

2
ds ≤

∫∞

a

fv+ds. (2.5)

Proof. We first show that (v+)′ ∈ L2(R) and that (2.5) holds. Let η ∈ C∞
c (R) be a cutoff function

satisfying

0 ≤ η ≤ 1, η(s) ≡ 1 for |s| ≤ 1, η(s) ≡ 0 for s ≥ 2, (2.6)

and put ηh(s) = η(s/h). Then ηhv
+ ∈ D1,2(Ia) and ηhv

+ ≥ 0. Multiply (2.4) by ηhv
+ and

integrate by parts to get

∫∞

a

ηh
∣
∣
∣(v+)′

∣
∣
∣

2
ds − 1

2

∫∞

a

η′′h|v+|2ds ≤
∫∞

a

ηhfv
+ds. (2.7)

Notice that for some constant c depending only on η it results that

∣
∣
∣
∣

∫∞

a

η′′h|v+|2ds
∣
∣
∣
∣
≤ c
∫2h

h

s−2|v+|2ds −→ 0 (2.8)

as h → ∞, since v+ ∈ L2(Ia; s−2 ds). Moreover,

∫∞

a

ηhfv
+ ds −→

∫∞

a

fv+ ds (2.9)

by Lebesgue theorem, as fv+ ∈ L1(Ia) by Hölder inequality. In conclusion, from (2.7)we infer
that

∫h

a

∣
∣
∣(v+)′

∣
∣
∣

2
ds ≤

∫∞

a

fv+ds + o(1) (2.10)
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since ηh ≡ 1 on (a, h). By Fatou’s Lemma, we get that (v+)′ ∈ L2(Ia) and (2.5) readily follows
from (2.10). To prove that v+ ∈ D1,2(Ia), it is enough to notice that ηhv+ → v+ in D1,2(Ia).
Indeed,

∫∞

a

∣
∣1 − ηh

∣
∣
2
∣
∣
∣(v+)′

∣
∣
∣

2 ≤
∫∞

h

∣
∣
∣(v+)′

∣
∣
∣

2
ds = o(1),

∫∞

a

∣
∣η′h
∣
∣
2|v+|2ds ≤ c

∫∞

h

s−2|v+|2ds = o(1),
(2.11)

as (v+)′ ∈ L2(Ia) and v+ ∈ L2(Ia; s−2 ds).

Through the paper, we let (ρn) be a standard mollifier sequence in R, such that the
support of ρn is contained in the interval (−1/n, 1/n).

Lemma 2.2. Let a > 0 and ψ ∈ L2(Ia; s−2 ds). Then ρn 
 ψ ∈ L2(Ia; s−2 ds) and

ρn 
 ψ → ψ in L2
(

Ia; s−2 ds
)

, (2.12)

gn := ρn 

(

s−2ψ
)

− s−2(ρn 
 ψ
) −→ 0 in L2

(

Ia; s2 ds
)

. (2.13)

Proof. We start by noticing that ρn
ψ → ψ almost everywhere. Thenwe useHölder inequality
to get

s−2
∣
∣
(

ρn 
 ψ
)

(s)
∣
∣
2 = s−2

∣
∣
∣
∣

∫

ρn(s − t)1/2ρn(s − t)1/2ψ(t)dt
∣
∣
∣
∣

2

≤ s−2
(
1
n
+ s
)2 ∫

ρn(s − t)t−2
∣
∣ψ(t)

∣
∣
2
dt

≤
(

1 +
1
na

)2∣
∣
∣

(

ρn 

(

s−2ψ2
))

(s)
∣
∣
∣

(2.14)

for any s > a > 0. Since s−2ψ2 ∈ L1(Ia), then ρn
(s−2ψ2) → s−2ψ2 in L1(Ia). Thus s−1(ρn
ψ) →
s−1ψ in L2(Ia) by the (generalized) Lebesgue Theorem, and (2.12) follows.

To prove (2.13), we first argue as before to check that

s2
∣
∣
∣
∣

∫

ρn(s − t)t−2ψ(t)dt
∣
∣
∣
∣

2

≤
(

1 − 1
na

)−2∣
∣
∣

(

ρn 

(

s−2ψ2
))

(s)
∣
∣
∣ (2.15)

for any s > a > 0. Thus ρn 
 (s−2ψ) converges to s−2ψ in L2(Ia; s2 ds) by Lebesgue’s Theorem.
In addition, s−2(ρn 
ψ) → s−2ψ in L2(Ia; s2 ds) by (2.12). Thus gn → 0 in L2(Ia; s2 ds) and the
Lemma is completely proved.

The following result for solutions to (1.10) is a crucial step in the proofs of our main
theorems.
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Theorem 2.3. Let a > 0 and let ψ be a distributional solution to (1.10). Assume that there exists
γ ≤ 1 such that

ψ ∈ L2
(

Ia; s−2γ ds
)

, α ≥ 1
4
− (1 − γ)2. (2.16)

Then ψ = 0 almost everywhere in Ia.

Proof. We start by noticing that L2(Ia; s−2γ ds) ↪→ L2(Ia; s−2 ds) with a continuous embedding
for any γ < 1. In addition, we point out that we can assume

α =
1
4
− (1 − γ)2. (2.17)

Let ρn be a standard sequence of mollifiers, and let

ψn = ρn 
 ψ, gn = ρn 

(

s−2ψ
)

− s−2(ρn 
 ψ
)

. (2.18)

Then ψn → ψ in L2(Ia; s−2γ ds) and almost everywhere, and gn → 0 in L2(Ia; s2 ds) by
Lemma 2.2. Moreover, ψn ∈ C∞(Ia) is a nonnegative solution to

−ψ ′′
n ≥ αs−2ψn + αgn in D′(Ia). (2.19)

We assume by contradiction that ψ /= 0. We let s0 ∈ Ia such that εn := ψn(s0) → ψ(s0) > 0. Up
to a scaling and after replacing gn with s20gn, we may assume that s0 = 1. We will show that

εn := ψn(1) −→ ψ(1) > 0 (2.20)

leads to a contradiction. We fix a parameter

δ >
1
2
− γ ≥ −1

2
(2.21)

and for n large we put

ϕδ,n(s) := εns−δ ∈ L2
(

I1; s−2γ ds
)

. (2.22)

Clearly, ϕδ,n ∈ C∞(R+) and one easily verifies that (ϕδ,n)n is a bounded sequence in
L2(I1; s−2γ ds) by (2.20) and (2.21). Finally, we define

vδ,n = ϕδ,n − ψn = εns−δ − ψn, (2.23)

so that vδ,n ∈ L2(I1; s−2γ ds) and vδ,n(1) = 0. In addition, vδ,n solves

−v′′
δ,n ≤ αs−2vδ,n − cδεns−2−δ − αgn in I1, (2.24)
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where cδ := δ(δ + 1) + α = δ(δ + 1) + (1/4) − (1 − γ)2. Notice that cδ > 0 and that all the
terms in the right-hand side of (2.24) belong to L2(I1; s2 ds), by (2.21). Thus Lemma 2.1 gives
v+
δ,n

∈ D1,2(I1) and

∫∞

1

∣
∣
∣
∣

(

v+
δ,n

)′∣∣
∣
∣

2

ds ≤ α
∫∞

1
s−2
∣
∣
∣v+

δ,n

∣
∣
∣

2
ds − cδεn

∫∞

1
s−2−δv+

δ,n ds + o(1), (2.25)

since v+
δ,n is bounded in L2(I1; s−2 ds) and gn → 0 in L2(I1; s2 ds). By (2.17) and Hardy’s

inequality (2.1), we conclude that

(

1 − γ)2
∫∞

1
s−2
∣
∣
∣v+

δ,n

∣
∣
∣

2
+ cδεn

∫∞

1
s−2−δv+

δ,n ds = o(1). (2.26)

Thus, for any fixed δ we get that v+
δ,n → 0 almost everywhere in I1 as n → ∞, since εncδ is

bounded away from 0 by (2.20). Finally, we notice that

ψn = ϕδ,n − vδ,n ≥ εns−δ − v+
δ,n. (2.27)

Since ψn → ψ and v+
δ,n

→ 0 almost everywhere in I1, and since εn → ψ(1) > 0, we infer that

ψ ≥ ψ(1)s−δ almost everywhere in I1. (2.28)

This conclusion contradicts the assumption ψ ∈ L2(I1; s−2γ ds), as δ > 1/2 − γ was arbitrarily
chosen. Thus (2.20) cannot hold and the proof is complete.

Remark 2.4. If α > 1/4, then every nonnegative solution ψ ∈ L1
loc(Ia) to problem (1.10)

vanishes. This is an immediate consequence of Lemma B.1 in Appendix B and the sharpness
of the constant 1/4 in the Hardy inequality (2.1).

Remark 2.5. Consider the characteristic equation of the ordinary differential equation (1.10):

δ(δ + 1) + α = 0. (2.29)

For α ≤ 1/4, let

δα =
√
1 − 4α − 1

2
(2.30)

be the largest roof of the above equation. Then it is not difficult to see that the proof of
Theorem 2.3 highlights that

ψ(s) ≥ cs−δα in Ia, (2.31)

for some constant c > 0. Moreover, one can easily verify that the function s �→ s−δα belongs to
L2(Ia; s−2γ ds) if and only if α < (1/4) − (1 − γ)2.
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2.2. Conclusion of the Proof

We will show that any nonnegative distributional solution u to problem (1.1) gives rise to a
function ψ solving (1.10), and such that ψ = 0 if and only if u = 0. To this aim, we introduce
the Emden-Fowler transform u �→ Tu by letting

u(x) = |x|(2−N)/2(Tu)
(
∣
∣log|x|∣∣, x|x|

)

. (2.32)

By change of variable formula, for any R′ ∈ (0, R), it results than

∫

BR′
|x|−2∣∣log|x|∣∣−2γ |u|2dx =

∫∞

|logR′|

∫

SN−1
s−2γ |Tu|2 dsdσ, (2.33)

so that Tu ∈ L2(Ia × S
N−1; s−2γ ds dσ) for any a > aR := | logR|. Now, for an arbitrary ϕ ∈

C∞
c (IaR)we define the radially symmetric function ϕ̃ ∈ C∞

c (BR) by setting

ϕ̃(x) = |x|(2−N)/2ϕ
(∣
∣log|x|∣∣), (2.34)

so that ϕ = Tϕ̃. By direct computations, we get

∫

BR

u

(

Δϕ̃ +
(N − 2)2

4
|x|−2ϕ̃

)

dx =
∫∞

aR

ϕ′′
∫

SN−1
Tudσ ds,

∫

BR

|x|−2∣∣log|x|∣∣−2uϕ̃ dx =
∫∞

aR

s−2ϕ
∫

SN−1
Tudσ ds.

(2.35)

Thus we are led to introduce the function ψ defined in IaR by setting

ψ(s) =
∫

SN−1
(Tu)(s, σ)dσ. (2.36)

We notice that ψ ∈ L2(Ia; s−2γ ds) for any a > aR, since

∫∞

a

s−2γ
∣
∣ψ
∣
∣
2
ds ≤

∣
∣
∣S

N−1
∣
∣
∣

∫∞

a

∫

SN−1
s−2γ |Tu|2dsdσ (2.37)

by Hölder inequality. Moreover, from (2.35) it immediately follows that ψ ≥ 0 is a
distributional solution to

−ψ ′′ ≥ αs−2ψ in D′(IaR). (2.38)

By Theorem 2.3, we infer that ψ = 0 in IaR , and hence u = 0 in BR. The proof of Theorem 1.1 is
complete.
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Remark 2.6. The assumptions on the integrability of u in Theorem 1.1 are sharp. If α > 1/4,
use the results in Appendix B. For α ≤ 1/4, let δα be defined in (2.30) and notice that the
function uα ∈ L1

loc(B1) defined by

uα(x) = |x|(2−N)/2∣∣log|x|∣∣−δα (2.39)

solves

−Δuα − (N − 2)2

4
|x|−2uα = α|x|−2∣∣log|x|∣∣−2uα in D′(B1 \ {0}). (2.40)

Moreover, if γ ≤ 1 then

uα ∈ L2
loc

(

B1; |x|−2
∣
∣log|x|∣∣−2γdx

)

iff α <
1
4
− (1 − γ)2. (2.41)

Finally we notice that, by Remark 2.5, for every solution u ∈ L1
loc(BR \ {0}), there exists a

constant c > 0 such that

∫

Sn−1
u(rσ)dσ ≥ cuα(rσ) for a.e. r ∈ (0, R). (2.42)

3. Cone-Like Domains

LetN ≥ 2. To any Lipschitz domain Σ ⊂ S
N−1, we associate the cone

CΣ :=
{

rσ ∈ R
N | σ ∈ Σ, r > 0

}

. (3.1)

For any given R > 0, we introduce also the cone-like domain

CRΣ := CΣ ∩ BR =
{

rσ ∈ R
N | r ∈ (0, R), σ ∈ Σ

}

. (3.2)

Notice that CSN−1 = R
N \ {0} and CR

SN−1 = BR \ {0}. If Σ is an half-sphere S
N−1
+ , the CS

N−1
+

is an
half-space R

N
+ and CR

S
N−1
+

is a half-ball B+
R, as in Theorem 1.2.

Assume that Σ is properly contained in S
N−1. Then we let λ1(Σ) > 0 be the principal

eigenvalue of the Laplace operator on Σ. If Σ = S
N−1, we put λ1(SN−1) = 0.

It has been noticed in [11, 12], that

μ(CΣ) := inf
u∈C∞

c (CΣ)
u/= 0

∫

CΣ
|∇u|2dx

∫

CΣ
|x|−2|u|2dx

=
(N − 2)2

4
+ λ1(Σ). (3.3)
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The infimum μ(C) is the best constant in the Hardy inequality for maps having compact
support in CΣ. In particular, for any half-space R

N
+ , it holds that

μ
(

R
N
+

)

=
N2

4
. (3.4)

The aim of this section is to study the elliptic inequality

−Δu − μ(CΣ)|x|−2u ≥ α|x|−2∣∣log|x|∣∣−2u in D′
(

CRΣ
)

. (3.5)

Notice that (3.5) reduces to (1.1) if Σ = S
N−1. Problem (3.5) is related to an improved Hardy

inequality for maps supported in cone-like domains which will be discussed in Appendix A.

Theorem 3.1. Let Σ be a Lipschitz domain properly contained in S
N−1, R ∈ (0, 1], and let u ≥ 0 be a

distributional solution to (3.5). Assume that there exists γ ≤ 1 such that

u ∈ L2
(

CRΣ; |x|−2
∣
∣log|x|∣∣−2γdx

)

, α ≥ 1
4
− (1 − γ)2. (3.6)

Then u = 0 almost everywhere in CRΣ.

Proof. Let Φ ∈ C2(Σ) ∩ C(Σ) be the positive eigenfunction of the Laplace-Beltrami operator
−Δσ in Σ defined by

−ΔσΦ = λ1(Σ)Φ in Σ,

Φ = 0 on ∂Σ.
(3.7)

Let u ∈ L2(CRΣ; |x|−2| log |x||−2γdx) be as in the statement, and put aR = | logR|. We
let Tu ∈ L2(IaR × Σ; s−2γ ds dσ) be the Emden-Fowler transform, as in (2.32). We further let
ψ ∈ L2(IaR ; s

−2γ ds) defined as

ψ(s) =
∫

Σ
(Tu)(s, σ)Φ(σ)dσ. (3.8)

Next, for ϕ ∈ C∞
c (IaR) being an arbitrary nonnegative test function, we put

ϕ̃(x) = |x|(2−N)/2ϕ
(∣
∣log|x|∣∣)Φ

(
x

|x|
)

. (3.9)

In essence, our aim is to test (3.5) with ϕ̃ to prove that ψ satisfies (1.10) in IaR . To be more
rigorous, we use a density argument to approximate Φ in W2,2(Σ) ∩ H1

0(Σ) by a sequence
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of smooth maps Φn ∈ C∞
c (Σ). Then we define ϕ̃n accordingly with (3.9), in such a way that

Tϕ̃n = ϕΦn. By direct computation, we get

∫

CRΣ
u

(

Δϕ̃n +
(N − 2)2

4
|x|−2ϕ̃n

)

dx =
∫∞

aR

∫

Σ
(Tu)ϕ′′Φn dσ ds

+
∫∞

aR

∫

Σ
(Tu)ϕΔσΦn dσ ds,

λ1(Σ)
∫

CRΣ
|x|−2uϕ̃n dx = λ1(Σ)

∫∞

aR

∫

Σ
(Tu)ϕΦn dσ ds,

∫

CRΣ
|x|−2∣∣log|x|∣∣−2uϕ̃n dx =

∫∞

aR

∫

Σ
s−2(Tu)ϕΦn dσ ds.

(3.10)

Since ϕ̃n ∈ C∞
c (CRΣ) is an admissible test function for (3.5), using also (3.3)we get

−
∫∞

aR

∫

Σ
(Tu)ϕ′′Φn dσ ds ≥ α

∫∞

aR

∫

Σ
s−2(Tu)ϕΦn dσ ds

−
∫∞

aR

∫

Σ
(Tu)ϕ(ΔσΦn + λ1(Σ)Φn)dσ ds.

(3.11)

Since Φn → Φ and ΔσΦn + λ1(Σ)Φn → 0 in L2(Σ), we conclude that

−
∫∞

aR

ϕ′′ψ ds ≥ α
∫∞

aR

s−2ϕψ ds. (3.12)

By the arbitrariness of ϕ, we can conclude that ψ is a distributional solution to (1.10).
Theorem 2.3 applies to give ψ ≡ 0, that is, u ≡ 0 in CRΣ.

The next result extends Theorem 3.1 to cover the caseN = 1. Notice that R+ = (0,∞) is
a cone and (0, 1) is a cone-like domain in R.

Theorem 3.2. Let R ∈ (0, 1] and let u ≥ 0 be a distributional solution to

−u′′ − 1
4
t−2u ≥ αt−2∣∣log t∣∣−2u in D′(0, R). (3.13)

Assume that there exists γ ≤ 1 such that

u ∈ L2
(

(0, R); t−2
∣
∣log t

∣
∣
−2γ
dt
)

, α ≥ 1
4
− (1 − γ)2. (3.14)

Then u = 0 almost everywhere in (0, R).
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Proof. Write u(t) = t1/2ψ(| log t|) = t1/2ψ(s) for a function ψ ∈ L2(IaR ; s
−2γ ds) and then notice

that ψ is a distributional solution to

−ψ ′′ ≥ αs−2ψ in D′(IaR). (3.15)

The conclusion readily follows from Theorem 2.3.

Remark 3.3. If α > 1/4, then every nonnegative solution u ∈ L1
loc(CRΣ) to problem (3.5) vanishes

by Theorem B.3.
In case α ≤ 1/4, the assumptions on α and on the integrability of u in Theorems 3.1

and 3.2 are sharp. Fix α ≤ 1/4, let δα be defined in (2.30) and define the function

uα(rσ) = r(2−N)/2∣∣log r
∣
∣
−δαΦ(σ). (3.16)

Here Φ solves (3.7) if N ≥ 2. If N = 1, we agree that σ = 1 and Φ ≡ 1. By direct
computations, one has that uα solves (3.5). Moreover, if γ ≤ 1 and R ∈ (0, 1) then uα ∈
L2(CRΣ; |x|−2| log |x||−2γdx) if and only if α < (1/4) − (1 − γ)2.

Remark 3.4. Nonexistence results for linear inequalities involving the differential operator
−Δ − μ(Cσ)|x|−2 were already obtained in [12].

Appendices

A. Hardy-Leray Inequalities on Cone-Like Domains

In this appendix, we give a simple proof of an improved Hardy inequality for mappings
having support in a cone-like domain. We recall that for Σ ⊂ S

N−1 we have set C1
Σ = {rσ | r ∈

(0, 1), σ ∈ Σ} and that μ(CΣ) = (N − 2)2/4 + λ1(Σ).

Proposition A.1. Let Σ be a domain in S
N−1, withN ≥ 2. Then

∫

C1
Σ

|∇u|2dx − μ(CΣ)
∫

C1
Σ

|x|−2|u|2 ≥ 1
4

∫

C1
Σ

|x|−2∣∣log|x|∣∣−2|u|2dx (A.1)

for any u ∈ C∞
c (C1

Σ).

Proof. We start by fixing an arbitrary function v ∈ C∞
c (R+×Σ). We apply the Hardy inequality

to the function v(·, σ) ∈ C∞
c (R+), for any fixed σ ∈ Σ, and then we integrate over Σ to get

∫∞

0

∫

Σ
|vs|2dsdσ ≥ 1

4

∫∞

0

∫

Σ
s−2|v|2dsdσ. (A.2)



14 Journal of Inequalities and Applications

In addition, notice that v(s, ·) ∈ C∞
c (Σ) for any s ∈ R+. Thus, the Poincaré inequality for maps

in Σ plainly implies

∫∞

0

∫

Σ
|∇σv|2dsdσ − λ1(Σ)

∫∞

0

∫

Σ
|v|2dsdσ ≥ 0. (A.3)

Adding these two inequalities, we conclude that

∫∞

0

∫

Σ

[

|vs|2 + |∇σv|2
]

dsdσ − λ1(Σ)
∫∞

0

∫

Σ
|v|2dsdσ ≥ 1

4

∫∞

0

∫

Σ
s−2|v|2dsdσ (A.4)

for any v ∈ C∞
c (R+ ×Σ). We use once more the Emden-Fowler transform T in (2.32) by letting

v := Tu ∈ C∞
c (R+ × Σ) for u ∈ C∞

c (C1
Σ). Since

∫

C1
Σ

[

|∇u|2 − (N − 2)2

4
|x|−2|u|2

]

dx =
∫∞

0

∫

SN−1

[

|vs|2 + |∇σv|2
]

dsdσ, (A.5)

then (2.33) readily leads to the conclusion.

Remark A.2. The arguments we have used to prove Proposition A.1 and the fact that the best
constant in the Hardy inequality for maps in C∞

c (R+) is not achieved show that the constants
in inequality (A.1) are sharp, and not achieved.

Remark A.3. Notice that forN ≥ 1, we have CSN−1 = R
N \ {0} and μ(CSN−1) = (N − 2)2/4. Thus

(A.1) gives (1.3) for u ∈ C∞
c (B1 \ {0}).

In the next proposition, we extend the inequality (A.1) to cover the caseN = 1.

Proposition A.4. It holds that

∫1

0

∣
∣u′
∣
∣
2
dt − 1

4

∫1

0
t−2|u|2dt ≥ 1

4

∫1

0
t−2
∣
∣log t

∣
∣
−2|u|2dt (A.6)

for any u ∈ C∞
c (0, 1). The constants are sharp, and not achieved.

Proof. Write u(t) = t1/2ψ(| log t|) = t1/2ψ(s) for a function ψ ∈ C∞
c (R+) and then apply the

Hardy inequality to ψ.

Next, let θ ∈ R be a given parameter and let Σ be a Lipschitz domain in S
N−1, with

N ≥ 2. For an arbitrary u ∈ C∞
c (C1

Σ), we put v = |x|−θ/2u. Then the Hardy-Leray inequality
(A.1) and integration by parts plainly imply that

∫

C1
Σ

|x|θ|∇v|2dx − μ(CΣ; θ)
∫

C1
Σ

|x|θ−2|v|2 ≥ 1
4

∫

C1
Σ

|x|θ−2∣∣log|x|∣∣−2|v|2dx (A.7)
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for any v ∈ C∞
c (C1

Σ), where

μ(CΣ; θ) :=
(N − 2 + θ)2

4
+ λ1(Σ). (A.8)

It is well known that

(N − 2 + θ)2

4
= inf

u∈C∞
c (RN\{0})
u/= 0

∫

B1
|x|θ|∇u|2dx

∫

B1
|x|θ−2|u|2dx

(A.9)

is the Hardy constant relative to the operator Lθv = −div(|x|θ∇v). For the case N = 1, one
can obtain in a similar way the inequality

∫1

0
tθ
∣
∣v′∣∣2dt − (θ − 1)2

4

∫1

0
tθ−2|v|2dt ≥ 1

4

∫1

0
tθ−2
∣
∣log t

∣
∣
−2|v|2dt (A.10)

which holds for any θ ∈ R and for any v ∈ C∞
c (0, 1).

B. A General Necessary Condition

In this appendix, we show in particular that a necessary condition for the existence of
nontrivial and nonnegative solutions to (1.1) and (3.5) is that α ≤ 1/4. We need the following
general lemma, which naturally fits into the classical Allegretto-Piepenbrink theory (see for
instance, [13, 14]).

Lemma B.1. Let Ω be a domain in R
N , N ≥ 1. Let a ∈ L∞

loc(Ω) and a > 0 in Ω. Assume that
u ∈ L1

loc(Ω) is a nonnegative, nontrivial solution to

−Δu ≥ a(x)u D′(Ω). (B.1)

Then

∫

Ω

∣
∣∇φ∣∣2dx ≥

∫

Ω
a(x)

∣
∣φ
∣
∣
2
dx, for any φ ∈ C∞

c (Ω). (B.2)

Proof. Let A ⊂ Ω be a measurable set such that |A| > 0 and u > 0 in A. Fix any function
φ ∈ C∞

c (Ω) and choose a domain Ω̃ ⊂⊂ Ω such that |Ω̃ ∩ A| > 0 and φ ∈ C∞
c (Ω̃). For any

integer k large enough, put fk = min{a(x)u, k} ∈ L∞(Ω̃). Let vk ∈ H1
0(Ω̃) be the unique

solution to

−Δvk = fk in Ω̃,

vk = 0 on ∂Ω̃.
(B.3)
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Notice that vk ∈ C1,β(Ω̃) for any β ∈ (0, 1). Since the function fk is nonnegative and nontrivial,
then vk ≥ 0. Actually it turns out that v−1

k ∈ L∞
loc(Ω̃) by the Harnack inequality. Finally, a

convolution argument and the maximum principle plainly give

u ≥ vk > 0 almost everywhere in Ω̃. (B.4)

Since v−1
k
φ ∈ L∞(Ω̃), then we can use v−1

k
φ2 as test function for (B.3) to get

∫

Ω
∇vk · ∇

(

v−1
k φ

2
)

dx =
∫

Ω
fkv

−1
k φ

2 dx ≥
∫

Ω
fku

−1φ2 dx (B.5)

by (B.4). Since ∇vk · ∇(v−1
k φ

2) = |∇φ|2 − |vk∇(v−1
k φ)|

2 ≤ |∇φ|2, we readily infer

∫

Ω

∣
∣∇φ∣∣2 dx ≥

∫

Ω
fku

−1φ2 dx (B.6)

and Fatou’s Lemma implies that

∫

Ω

∣
∣∇φ∣∣2dx ≥

∫

Ω
a(x) φ2dx. (B.7)

The conclusion readily follows.

The sharpness of the constants in (1.3) (compare with Remark A.2) and Lemma B.1
plainly imply the following result.

Theorem B.2. Let N ≥ 1, R ∈ (0, 1], and c, α ≥ 0. Let u ∈ L1
loc(BR \ {0}) be a nonnegative

distributional solution to

−Δu − c|x|−2u ≥ α|x|−2∣∣log|x|∣∣−2u in D′(BR \ {0}). (B.8)

(i) If c > (N − 2)2/4, then u ≡ 0.

(ii) If c = (N − 2)2/4 and α > 1/4, then u ≡ 0.

We notice that proposition (i) in Theorem B.2 was already proved in [15] (see also [16]).
Finally, from Remark A.2 and Lemma B.1, we obtain the next nonexistence result.

Theorem B.3. Let Σ be a domain properly contained in S
N−1, R ∈ (0, 1], and c, α ≥ 0. Let u ∈

L1
loc(CRΣ) be a nonnegative distributional solution to

−Δu − c|x|−2u ≥ α|x|−2∣∣log|x|∣∣−2u in D′
(

CRΣ
)

. (B.9)
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(i) If c > μ(CΣ), then u ≡ 0.

(ii) If c = μ(CΣ) and α > 1/4, then u ≡ 0.

Remark B.4. It would be of interest to know if the sign assumption on the coefficient a in
Lemma B.1 can be weakened.

C. Extensions

In this appendix, we state some nonexistence theorems that can be proved by using a suitable
functional change u �→ ψ and Theorem 2.3. We shall also point out some corollaries of our
main results.

C.1. The k-Improved Weights

We define a sequence of radii Rk → 0 by setting R1 = 1 and Rk = e−1/Rk−1 . Then we use
induction again to define two sequences of radially symmetric weights Xk(x) ≡ Xk(|x|) and
zk in BRk by setting X1(|x|) = | log |x||−1 for |x| < 1 = R1 and

Xk+1(|x|) = Xk

(∣
∣log|x|∣∣−1

)

, zk(x) = |x|−1
k∏

i=1

Xi(|x|) (C.1)

for all x ∈ BRk \ {0}. It can be proved by induction that zk is well defined on BRk and zk ∈
L2
loc(BRk). We are interested in distributional solutions to

−Δu − (N − 2)2

4
|x|−2u ≥ αz2ku D′(BR \ {0}) (C.2)

for R ∈ (0, Rk]. The next result includes Theorem 1.1 by taking k = 1.

Theorem C.1. Let k ≥ 1, R ∈ (0, Rk] and let u ≥ 0 be a distributional solution to (C.2). Assume
that there exists γ ≤ 1 such that

u ∈ L2
loc

(

BR; z2kX
2(γ−1)
k

dx
)

, α ≥ 1
4
− (1 − γ)2. (C.3)

Then u = 0 almost everywhere in BR.

Proof. We start by introducing the kth Emden-Fowler transform u �→ Tku,

u(x) = zk(|x|)−1/2|x|(1−N)/2Xk(|x|)1/2(Tku)
(

Xk(|x|)−1, x|x|
)

. (C.4)

Notice that for any R < Rk it results that

∫

BR

z2kX
2(γ−1)
k |u|2dx =

∫∞

Xk(R)−1
s−2γ

∫

SN−1
|Tku|2dsdσ, (C.5)



18 Journal of Inequalities and Applications

so that Tku ∈ L2(Ia × S
N−1; s−2γ ds dσ) for any a > Xk(R)

−1. This can be easily checked by
noticing that X′

k
= zkXk. Next we set

ψu(s) :=
∫

SN−1
(Tku)(s, σ)dσ. (C.6)

By (C.5), we have that ψ ∈ L2(Ia; s−2γ ds) for any a > Xk(R)
−1. Thanks to Theorem 2.3, to

conclude the proof, it suffices to show that ψ is a distributional solution to −ψ ′′ ≥ αs−2ψ in the
interval Iã, where ã = Xk(R)

−1. To this end, fix any test function ϕ ∈ C∞(Iã) and define the
radially symmetric mapping ϕ̃ ∈ C∞

c (BR \ {0}) such that Tkϕ̃ = ϕ. By direct computation, one
can prove that

Δϕ̃ +
(N − 2)2

4
|x|−2ϕ̃ = ωϕ̃ + |x|(1−N)/2z3/2k X−3/2

k ϕ′′
(

Xk(|x|)−1
)

, (C.7)

where ω ≡ 0 if k = 1, and

ω =
1
2

⎡

⎣

(
k−1∑

i=1

zi

)2

− 1
2

k−1∑

i=1

z2i

⎤

⎦ (C.8)

if k ≥ 2. Since ω ≥ 0, then

∫

BR

u

(

Δϕ̃ +
(N − 2)2

4
|x|−2ϕ̃

)

dx ≥
∫∞

ã

ψϕ′′ ds (C.9)

provided that ϕ is nonnegative. In addition, it results that

∫

BR

z2kuϕ̃ dx =
∫∞

ã

s−2ψϕds. (C.10)

Since ϕwas arbitrarily chosen, the conclusion readily follows.

By similar arguments as above and in Section 2, we can prove a nonexistence result of
positive solutions to the problem

−Δu − μ(CΣ)|x|−2u ≥ αz2ku D′
(

CRΣ
)

, (C.11)

where CΣ is a Lipschitz proper cone in R
N ,N ≥ 1, and CR

Σ = CΣ ∩ BR. We shall skip the proof
of the following result.
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Theorem C.2. Let k ≥ 1, R ∈ (0, Rk], and let u ≥ 0 be a distributional solution to (C.11). Assume
that there exists γ ≤ 1 such that

u ∈ L2
(

CRΣ; z2kX
2(γ−1)
k

dx
)

, α ≥ 1
4
− (1 − γ)2. (C.12)

Then u = 0 almost everywhere in CRΣ.

Some related improved Hardy inequalities involving the weight zk and which
motivate the interest of problems (C.2) and (C.11) can be found in [5, 7, 8] and also [6].

C.2. Exterior Cone-Like Domains

The Kelvin transform

u(x) �−→ |x|2−Nu
(

x

|x|2
)

(C.13)

can be used to get nonexistence results for exterior domains in R
N .

Let Σ be a domain in S
N−1, N ≥ 2, and let CΣ be the cone defined in Section 2. We

recall that μ(CΣ) = (N − 2)2/4 + λ1(Σ). Since the inequality in (1.1) is invariant with respect
to the Kelvin transform, then Theorems 1.1 and 3.1 readily lead to the following nonexistence
result.

Theorem C.3. Let Σ be a Lipschitz domain in S
N−1, withN ≥ 2. Let R > 1, α ∈ R, and let u ≥ 0 be

a distributional solution to

−Δu − μ(CΣ)|x|−2u ≥ α|x|−2∣∣log|x|∣∣−2u in D′
(

CΣ \ BR

)

. (C.14)

Assume that there exists γ ≤ 1 such that

u ∈ L2
(

CΣ \ BR; |x|−2
∣
∣log|x|∣∣−2γdx

)

, α ≥ 1
4
− (1 − γ)2. (C.15)

Then u = 0 almost everywhere in CΣ \ BR.

A similar statement holds in case N = 1 for ordinary differential inequalities in
unbounded intervals (R, 0) with R > 0, and for problems involving the weight z2k.

C.3. Degenerate Elliptic Operators

Let θ ∈ R be a given real parameter. We notice that u is a distributional solution to (3.5) if and
only if v = |x|−θ/2u is a distributional solution to

−div
(

|x|θ∇v
)

− μ(CΣ; θ)|x|θ−2v ≥ 1
4
|x|θ−2∣∣log|x|∣∣−2v in D′

(

CRΣ
)

, (C.16)
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where μ(CΣ; θ) is defined in Remark A.2. Therefore, Theorems 1.1 and 3.1 imply the following
nonexistence result for linear inequalities involving the weighted Laplace operator Lθv =
−div(|x|θ∇v).

Theorem C.4. Let Σ be a Lipschitz domain in S
N−1. Let θ ∈ R, R ∈ (0, 1], α ∈ R, and let v ≥ 0 be a

distributional solution to (C.16). Assume that there exists γ ≤ 1 such that

v ∈ L2
(

CRΣ; |x|θ−2
∣
∣log|x|∣∣−2γdx

)

, α ≥ 1
4
− (1 − γ)2. (C.17)

Then v = 0 almost everywhere in CRΣ.

A nonexistence result for the operator −div(|x|θ∇v) similar to Theorem C.3 or to
Theorem C.1 can be obtained from Theorem C.4, via suitable functional changes.

Acknowledgments

The authors thank the Referee for his carefully reading of the paper and for his valuable
comments. M. M. Fall is a research fellow from the Alexander-von-Humboldt Foundation.

References

[1] H. Brezis andM.Marcus, “Hardy’s inequalities revisited,”Annali della Scuola Normale Superiore di Pisa.
Classe di Scienze. IV, vol. 25, no. 1-2, pp. 217–237, 1997.

[2] Adimurthi and K. Sandeep, “Existence and non-existence of the first eigenvalue of the perturbed
Hardy-Sobolev operator,” Proceedings of the Royal Society of Edinburgh A, vol. 132, no. 5, pp. 1021–1043,
2002.

[3] J. Dávila and L. Dupaigne, “Comparison results for PDEs with a singular potential,” Proceedings of the
Royal Society of Edinburgh A, vol. 133, no. 1, pp. 61–83, 2003.

[4] K. T. Gkikas, “Existence and nonexistence of energy solutions for linear elliptic equations involving
Hardy-type potentials,” Indiana University Mathematics Journal, vol. 58, no. 5, pp. 2317–2345, 2009.

[5] Adimurthi, N. Chaudhuri, and M. Ramaswamy, “An improved Hardy-Sobolev inequality and its
application,” Proceedings of the American Mathematical Society, vol. 130, no. 2, pp. 489–505, 2002.

[6] G. Barbatis, S. Filippas, and A. Tertikas, “Series expansion for Lp Hardy inequalities,” Indiana
University Mathematics Journal, vol. 52, no. 1, pp. 171–190, 2003.

[7] N. Chaudhuri, “Bounds for the best constant in an improved Hardy-Sobolev inequality,” Zeitschrift
für Analysis und ihre Anwendungen, vol. 22, no. 4, pp. 757–765, 2003.

[8] N. Ghoussoub and A. Moradifam, “On the best possible remaining term in the Hardy inequality,”
Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 13746–
13751, 2008.
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