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Abstract. A c c m e  impacl parameter determination in a heavy-ion collision is crucial for almost 
all further analysis. We investigate the capabilities of an attificial neural network i n  lhst respeck 
First resulls show lhal the neural network is capable of improving the accuracy of the impact 
parameter determination based on observables such as the Row angle, the average directed in- 
plane uansvene momentum and the difference between lnnwerse and longitudinal momenla. 
However. further investigations are necessary U) discover the full potential of lhe mural network 
approach. 

The physics of heavy-ion collisions is motivated by the idea to leam something about 
the properties of hot and dense nuclear matter [MI. In order to investigate highly 
compressed nuclear matter in heavy-ion collisions it is important to select only the most 
central collisions. On the other hand, recently discovered new phenomena such as pionic 
bounce-off and squeeze-out are only observed in semiperipheral collisions. Therefore the 
proper determination of the impact parameter in a heavy-ion collision is crucial to almost 
all fuither analysis. There have been various approaches towards the determination of the 
impact parameter, most of which are either based on the mean particle multiplicity or on 
a transverse momentum analysis (directivity-cut). However, all of these methods have one 
thing in common: they tend to break down for impact parameters smaller than 2 fenni. In 
general the accuracy is about dz1 to f1.5 fermi. 

In this contribution, an artificial neural network has been used to determine the impact 
parameter. For a proper analysis of the network's performance, the analysed heavy-ion 
collisions have to be supplied by a theoretical event-generator rather than by experiment. 
Otherwise it would be impossible to compare the network output with a target value for the 
impact parameter of the heavy-ion collision. For our investigations, we applied an extension 
of the quantum molecular dynamics model (QMD) [9-l1], which explicitly incorporates 
isospin and pion production via the delta resonance (IQMD) [ 12-14]. In the QMD model the 
nucleons are represented by Gaussian-shaped density distributions. They are initialized in 
a sphere of a radius R = I .14A'I3 fm, according to the liquid-drop model. Each nucleon is 
supposed to occupy a volume of h3, so that the phase space is uniformly filled. The initial 
momenta are randomly chosen between 0 and the local Thomas-Fermi momentum. The 
A p  and AT nucleons interact via two- and three-body Skyrme forces, a Yukawa potentid. 
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momentum-dependent interactions, a symmetry potential (to achieve a correct distribution 
of protons and neutrons in the nucleus) and explicit Coulomb foxes between the Zp and 
ZT protons. They are propagated according to Hamilton’s equations of motion. Hard N-N 
collisions are included by employing the collision term of the well known vuu/Buu equation 
[ 5 ,  15-18]. The collisions are done stochastically, in a similar way as in the cascade models 
[ 19,201. In addition, the Pauli blocking (for the final state) is taken into account by regarding 
the phase-space densities in the final states of a two-body collision. 

As input for the neural net we use the flow angle Sflow, the average directed in- 
plane transverse momentum Pr,dit, and an observable Q Z Z  which compares transverse with 
longitudinal momentum. The flow angle can be extracted from the flow-tensor 

“=I  

using a sphericity analysis [ZI]. 
The average directed in-plane transverse momentum px.ar is defined as 

and Q z z  can be calculated as 

A+Av 

n=I 
Q z z = ~ P : - P ~ = ~ P : - P : - P ;  P , =  p i (n )  i = x , y , z .  

The impact parameter dependence of these obsewables has been well established [ 141. 
We now sketch the neural network algorithm used, a standard feedforward two-layer 

perceptron trained by error-backpropagation [22 ,23] .  The network consists of a single 
‘hidden’ layer of nonlinear units receiving inputs from the applied data vector (e.g. 
(Snow. p=.d,,, Qzz)) and transfemng their signals to the output unit (we use a single linear 
output unit, whose continuous-valued output represents the impact parameter). 

In our feedforward network, every unit (of the hidden or output layer) is connected to 
each unit of the preceding layer, performing a weighted sum over all input signals, and 
finally calculating its own signal by applying a ‘squashing’ function to the result: 

for hidden units, and 

for output units. (As squashing functions we use O(Z) = tanh(Z), and e(Z) = Z. 
respectively.) The connection weight, between units j to unit i, is given by wi,. yk is 
a component of the data vector. For each unit, we include a connection to a constant signal, 
So = I ,  which provides an activity threshold. 



Letter to the Editor L23 

First, the network's weights are initialized with small random values. During training, 
for each learning pattem an output is produced and rated by the error function 

where SYget is the desired output. Successively for each pattem, the weights are updated 
according to a gradient descent in the weight space with respect to the error function, 

with g as a learning parameter. This leads to the learning rules 

using the definition 

and 

where 

For a complete learning session, typically several hundred cycles through the entire training 
data are necessary. Training is stopped when the performance on a set of test data does 
not improve any further. In contrast to the extensive training phase, very little calculation 
time is needed for the application of a trained network. A trained network may even be 
transformed into electronic hardware, which would be faster than our computer simulation 
by orders of magnitude. 

Two sets, each containing 2600 Au(1 A GeV)Au events, generated by the IQMD model 
[ 141, form the simulation data. The first data set contains a minimum bias calculation, thus 
giving a sample from the full impact parameter range, whereas the second one is limited to 
impact parameters smaller than three fermi. Both data sets have been subjected to an angular 
cut according to the acceptance of the FOP1 spectrometer in its phase I1 setup [24]. For each 
impact parameter range, the network is provided with 10% of the data as learning samples 
and then it has  to estimate the impact parameter for the remaining 90% of events. To avoid 
overfitting, we controlled the network's performance after each learning cycle by applying 
the full test data-set. The network used for the full input vector with three components 
consisted of five hidden units and one output neuron. In order to determine the amount 
of hidden units needed for the best network performance, the number of hidden units was 
increased from one to eight in single increments and the respective network performance 
was tested. No significant performance increase was achieved for more than five hidden 
units. 
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Figure 1. Dependence between impact parameter b and VflRoxr. px,& and Qrz for central and 
minimum bias Aut1 A GeV)Au evenls as calculated by the tQMD model. Each even1 is rcpresenled 
as a dol. Both the leaming sample and the test sample are plolled. 

Figure 1 shows scatter plots (each dot representing one event) describing the functional 
dependence of the impact parameter on either one of the three inputs, Onow, Px.dir and Q z z ,  
as calculated by the lQMD model. Using the minimum bias data set, the neural network 
output essentially produced a nonlinear fit to the impact parameter dependence of these 
inputs which is also intuitively apparent from the figure. In order to minimize errors due 
to statistical fluctuations in the events, it is, however, desirable to simultaneously tit the 
impact parameter as a function of O&, Px,d,, and Q Z Z .  This gives a trajectory in a three- 
dimensional phase space with the impact parameter as an evolution parameter. For standard 
fitting techniques this poses a more difficult problem. which we instead left again to the 
neural network. Table I shows the average absolute error (in fermi) between the impact 
parameter estimated by the neural network and the actual impact parameter (using the test 
data set) for the functions h(On,), h(p&dir), ~ ( Q z z )  and b(OB,,, pr,dir, QZZ)  as leamed by 
the neural net. 
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Figure 2. True impact parameter versus impact parameter predicted by the neural network for 
the minimum bias data-set using the full input vector. The best performance is achieved in the 
3 to 9 fm impact parameter range. 

Table 1. Average absolute e m r  (in fermi) between the impact paramew h leamed by the neural 
network and the actual impact parameter as a function of either ~ 9 % ~ .  h . d a  or QZZ and as a 
function of r9fiOw. pl,* and Qzz simultaneously. 

Imoact Dammeter O h n S b < 3 f m  O f m < h < 1 2 f m  

For the minimum bias data-set the neural network is able to extract a better fit using all 
three inputs than using only one of them. For central events this is not the case: a simple 
mapping of ~ ( Q z z )  shows almost identical results. This becomes understandable looking 
at figure 1, where b(Qzz) clearly shows the least fluctuations. 

Figure 2 shows a graphical representation of the network performance on the minimum 
bias data-set using the full input vector. The hue impact parameter is plotted versus the 
impact parameter estimated by the neural network. The best performance is achieved in the 
range between 3 fm and 9 fm. For very central and very peripheral collisions the width of 
the output deviations increases. 

With the selected preprocessed event input, classical fitting techniques suffice for a 
good estimate of the impact parameter. Compared with previously used techniques [251, 
the suggested observables can improve the accuracy of the impact parameter determination. 
However, we surely have not used the neural network approach up to its full potential: a 
larger network will most likely be capable of handling raw event-data and recognizing 
patterns which are indistinguishable for classical types of analysis. In addition, more 
sophisticated network models (e.g. with higher order or optimized connectivity 126,271) 
could be used instead of our exploratory straightforward model to gain calculational 
efficiency. In the form of a VLSI chip it  might even serve as a hardware event-trigger 
for the impact parameter. 



L26 Letter to the Editor 

References 

Scheid W. Ligensa R and Greiner W 1968 Phys. RN. Len. 21 1479 
Scheid W. MUller H and Greiner W 1974 Phys. R e , .  Len. 32 741 
Csemai L P and Kapusta I I 1966 Phys. Rep, 131 7.25 
Stock R 1986 Phys. Rep. 135 261 
St6cker H and Greiner W 1966 Phys. Rep. 137 277 
Ciare R B and Stroman D 1986 Phys. Rep. 141 179 
Schurmann B. Zwermann W and Malfliet R 1986 Phys. Rep. 147 3 
Cassing W, Melag V. Mosel U and Niita K 1990 Phys, Rep. 1% 365 
Aichelin J and Stacker H 1986 Phys. Len. 1768 14 
Aichelin J. Roxnhauer A, Peilen G. Sucker H and Greiner W 1987 Phys. Rrr. Leff. 58 1926 
Aichelin J 1991 Phys. Rep. 202 233 
Hannack Ch, St6cker Hand Greiner W 1988 Pmc. Inr. Workhop onGmss Properrirso~Nucleiand Nuclear 

Hannack C. Zhuxia L. Neise L. !Wen G. Rosenhauer A. Sorge H. Aichelin I ,  StWker H and Greiner W 

HarInack Ch 1993 PhD f h d s  (GSI.Reporl93-5) 
Kmse H. lac& B V and St(lcker H 1985 Phys. Rev  Lcn. 54 269 
Aichelin I and Bemch G 1985 Phys. Rev. C 31 1730 
Wolf C. Batko G. Cassing W, Mosel U, Niita K and Schaer M 1990 Nucl, Phys. A 517 615 
Li B A, Bauer W and Bemch C F 1991 Phys. R o .  C 45 2095 
Yariv Y and Frankel Z 1979 Phys. Rev  C 20 2227 
Cugnon J 1980 Phys. Ree. C 22 1865 
Danielewiu P and Odyniec G 1985 Phys. Len. 157R 145 
McClelland I L and Rumelhan D E (ed) 1986 Porollel Disrrihured PrnCming vols I and 2 (Cambridge, 

See also Muller B and Reinhardt J 1990 Nciwal Nelworks (Berlin: Springer) and references therein 
Pelte D. Reisdorf W and Wienold T (for the FOP1 collaboration) 1993 GSr Nuclrrichrm 9-93 (unpublished) 

Grigorian Y I (for the FOPI-Collaboration) 1992 CSI Scienrific Rfpnrl IWI p 28. and various other 

Bishcoff A and Sch L n B 1993 Artificial Neural N c m r k s  vol 3 (Amsterdam] (lo appear] 
Hergen F, Finnoff W and Zimmermann H G 1993 Neural Network (lo be published] 

Eniforion XVI (Hirschegz, Klein!#uIserful. Ausrria) ed H Feldmeier 

1989 Nucl. Phys. A 495 303 .. 

MA: MIT Press) 

and private communications 

conuibutions by e FOPI-Collaboration in the same repon 


