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(µ ,T )-phase diagram according to general expectations, with an analytic quark-hadron crossover
at µ = 0 turning into a first order transition at some critical chemical potential µE . By contrast, re-
cent simulations using imgainary µ followed by analytic continuation obtained a critical structure
in the {mu,d ,ms,T,µ} parameter space favouring the absence of a critical point and first order line.
I review the evidence for the latter scenario, arguing that the various raw data are not inconsistent
with each other. Rather, the discrepancy appears when attempting to extract continuum results
from the coarse (Nt = 4) lattices simulated so far, and can be explained by cut-off effects. New (as
yet unpublished) data are presented, which for N f = 3 and on Nt = 4 confirm the scenario without
a critical point. Moreover, simulations on finer Nt = 6 lattices show that even if there is a critical
point, continuum extrapolation moves it to significantly larger values of µE than anticipated on
coarse lattices.
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Figure 1: Left: Expected phase diagram for physical QCD. Right: The prediction from a recent lattice in-
vestigation [13]. The entire phase boundary between plasma and confined phase corresponds to a crossover.

1. Introduction

One of the most fascinating and challenging tasks in the study of QCD under extreme condi-
tions remains to elucidate its phase diagram as a function of temperature and baryon density. QCD
is a strongly coupled theory, and it has recently become clear that certain strong coupling features
persist also in the quark gluon plasma regime up to the temperatures that are currently accessible
experimentally. Hence, perturbation theory fails us for this problem, and simulations of lattice
QCD are the only known tool by which we may hope to ultimately come to reliable theoretical
predictions for QCD. Unfortunately, until 2001 the so-called “sign-problem” of lattice QCD has
prohibited simulations at finite baryon density.

Despite this lack of reliable calculations, it is generally believed that the phase diagram quali-
tatively looks as in Fig. 1 (left). Lattice simulations have been operating along the temperature axis
at µ = 0 for a long time, and results have been consistent with an analytic crossover in this regime.
However, it was only very recently that these computations could be performed with realistic quark
masses and on reasonably fine lattices [1], so that we now may have confidence in this prediction.
For T = 0 and finite density, on the other hand, a number of models and perturbative arguments
[2, 3] predict a first order phase transition to a superconducting regime at some µc >∼1 GeV. In the
simplest scenario the phase boundary encountered in this finite density transition and that of the
finite temperature transition are continuously connected. In this case the first order transition line
must terminate in a second order end-point, thus leading to the familiar phase diagram, Fig. 1 (left).
For more detailed arguments and references, see e.g. [2, 4].

Significant progress in lattice QCD was made since 2001, with several different methods now
available that circumvent the sign problem, rather than solving it: i) Multi-parameter reweighting
[5], ii) Taylor expansion around µ = 0 [6] and iii) simulations at imaginary chemical potential,
either followed by analytic continuation [7] or Fourier transformed to the canonical ensemble [8].
It is important to realize that all of these approaches introduce some degree of approximation.
However, their systematic errors are rather different, thus allowing for powerful crosschecks. All
methods are found to be reliable as long as µ/T <∼1, or µB <∼550 MeV, which includes the region of
interest for heavy ion collisions. Reviews specialized on technical aspects can be found in [9, 10].

In particular, a calculation using reweighting methods for N f = 2 + 1 with physical quark
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Figure 2: Left: Schematic phase transition behaviour of N f = 2 + 1 flavor QCD for different choices of
quark masses (mu,d ,ms), at µ = 0 Right: Numerical results for the chiral critical line. Also shown are the
physical point according to [11], and a fit corresponding to a possible tricritical point mtric

s ∼ 2.8T .

masses on a coarse lattice (Nt = 4, a ∼ 0.3 fm) appeared to confirm the expected phase diagram and
gave a prediction for the critical end point at µE

B ∼ 360(40) MeV [11]. Similarly, an investigation
of the convergence radius for the Taylor series of the pressure in the N f = 2 theory with bare quark
mass m/T = 0.1 yielded a signal for the endpoint at µ E

B /TE = 1.1± 0.2, TE/Tc(µ = 0) = 0.95
[12]. By contrast, a recent study of N f = 2 + 1,3 using imaginary chemical potentials reached a
surprising conclusion contradicting the standard scenario: for physical values of the quark masses
there would be no critical point or first order line at all, the crossover region extends all the way to a
possible line delimiting the superconducting phase, as in Fig. 1 (right) [13]. In the following I will
go through the evidence for this unorthodox scenario and argue that the raw data of the apparently
contradicting investigations are actually consistent with each other. The apparent discrepancy arises
when attempting to extract continuum physics and can be explained by standard cut-off effects.

2. The nature of the QCD phase transition: qualitative picture

Rather than fixing QCD to physical quark masses and just varying T,µ , it is instructive to
consider varying quark masses and the full parameter space {mu,d ,ms,T,µ}. The qualitative picture
for the order of the phase transition at zero density is shown in Fig. 2 (left). In the limits of zero
and infinite quark masses (lower left and upper right corners), order parameters corresponding to
the breaking of a global symmetry can be defined, and one finds numerically at small and large
quark masses that a first-order transition takes place at a finite temperature Tc. On the other hand,
one observes an analytic crossover at intermediate quark masses. Hence, each corner must be
surrounded by a region of first-order transition, bounded by a second-order line.

Now consider the effect of a baryonic chemical potential, µB = 3µ . As a function of quark
chemical potential µ , represented vertically in Fig. 3, the critical line determined at µ = 0 now
spans a surface. The standard expectation for the QCD phase diagram is depicted in Fig. 3 (left).
The first order region expands as µ is turned on, so that the physical point, initially in the crossover
region, eventually belongs to the critical surface. At that chemical potential µE , the transition is
second order: that is the QCD critical point. Increasing µ further makes the transition first order.
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Figure 3: The chiral critical surface in the case of positive (left) and negative (right) curvature. If the
physical point is in the crossover region for µ = 0, a finite µ phase transition will only arise in the scenario
(left) with positive curvature, where the first-order region expands with µ . Note that for heavy quarks, the
first-order region shrinks with µ [14].

Drawn in the (T,µ)-plane, this corresponds to the expected diagram Fig. 1 (left). A completely
different scenario arises if instead the first-order region shrinks as µ is turned on, Fig. 3 (right).
Now the physical point remains in the crossover region for any µ . Hence, existence and location
of the critical point depend on two parameters of this phase diagram: the distance of the physical
point from the critical line at µ = 0, and the sign and strength of the critical surface’s bending.

2.1 How to “measure” the properties of a phase transition

A lattice calculation of the properties of a phase transition consists of two steps. First, one
needs to find the phase boundary, i.e. the critical coupling βc separating the confined/chirally bro-
ken regime from the deconfined/chirally symmetric regime. To this end one computes the expecta-
tion value of the “order parameters” O for those symmetries, like the chiral condensate 〈ψ̄ψ〉 or the
expectation value of the Polyakov loop, as well as its associated fluctuations, or generalized sus-
ceptibilities, χ = V (〈O2〉−〈O〉2). For fixed quark masses, the transition is then announced by the
rapid change of the order parameter as a function of lattice gauge coupling β , and the peak of the
susceptibility serves to locate it more precisely, cf. Fig. 4 (left). Using the two-loop beta-function
(or some numerical fit to a non-perturbative beta-function), βc can be converted to a critical tem-
perature Tc. This first step of locating the phase boundary is comparatively easy.

However, on a finite volume, this critical coupling, viz. temperature, is only pseudo-critical,
no true non-analytic phase transition can occur on finite volumes. The order of the transition thus
has to be determined by a finite size scaling analysis. With larger and larger volumes, the peak
in the susceptibility will begin to diverge if there is a true phase transition, and the rate of its
divergence, associated with some critical exponent, determines whether it is a first or second order
phase transition. In the case of a crossover the peak stays finite and analytic. Another, for our
purposes more practical, observable is the Binder cumulant, to be evaluated at β = βc,

B4(m,µ) =
〈(δψ̄ψ)4〉

〈(δψ̄ψ)2〉2 , δψ̄ψ = ψ̄ψ −〈ψ̄ψ〉. (2.1)

In the infinite volume limit, B4 → 1 or 3 for a first order transition or crossover, respectively,
whereas it assumes a particular value characteristic of the universality class at a critical point.
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Figure 4: Left: The chiral condensate and its susceptibility when passing through the (pseudo-)critical
coupling of the phase boundary. Right: Finite size behaviour of the Binder cumulant around a 3d Ising
critical point.

For 3d Ising universality, one has B4 → 1.604. Hence B4 is a non-analytic step function, which
gets smoothed out to an analytic curve on finite volumes, its slope increasing with volume to
gradually approach the step function, Fig. 4 (right). Once the universality class of a critical point
is established by finite size scaling, B4 allows to investigate the change of the order of a transition
already on a single (large enough) volume. In [13], we have used 83,123 and 163 ×4 lattices with
standard staggered fermions to estimate the critical couplings for which B4 = 1.604, and check their
consistency on different volumes. Here, I also report on new µ = 0 simulations on 123,183 ×6.

3. The chiral critical line mc
s(mu,d)

For N f = 3, and at zero density, the critical quark mass marking the boundary between the
crossover and the first order region is large enough for simulations to be carried out, and it was
possible to determine it with some accuracy [15, 16, 17, 13]. Moreover, finite size analyses estab-
lished it to belong to the Z(2) universality class of the 3d Ising model [15]. The critical mass can
be read off from the red squares in Fig. 5 (left), where data for the Binder cumulant are shown as a
function of varying quark mass, amc = 0.0263(3) or mc/Tc = 0.105(1) [13].

Starting from this point, the boundary line has been mapped for the non-degenerate N f = 2+1
theory, again with Nt = 4 [13], where we have assigned a chemical potential to the two degenerate
light quarks only. The methodology is the same as in the three flavour case: fix a strange quark
mass ams and scan the Binder cumulant in the light quark mass amu,d for the corresponding critical
point. Repeating for several strange quark masses produces the critical line amc

s(amu,d) shown in
Fig. 5 (right).

In order to set a physical scale for the boundary line, spectrum calculations at T ∼ 0 have been
performed [13] at the parameters indicated by the arrows in Fig. 5 (right). They show that ms at
the upper arrow is approximately tuned to its physical value ( mK

mρ
∼ mK

mρ
|phys=0.65), while the pion

is lighter than in physical QCD ( mπ
mρ

= 0.148(2) < mπ
mρ

|phys = 0.18). This confirms that the physical
point lies to the right of the critical line, i.e. in the crossover region.
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Figure 5: Left: B4 as a function of quark mass and µi for N f = 3,Nt = 4. Right: Comparison of the Binder
cumulant for µ = 0 on Nt = 4,6 lattices.

4. Strong cut-off effects on the critical line

While the universality class of a critical point is determined by long range fluctuations and
thus should be insensitive to cut-off effects on a coarse lattice, the critical quark mass is a quantity
requiring renormalization and expected to be highly sensitive. Here we present as yet unpublished
data of a simulation on the finer Nt = 6 lattice for N f = 3. Fig. 5 (right) shows a comparison
between the Nt = 4 and Nt = 6 data for B4(m), as a function of m/T . If the lattice spacings were
in the scaling region, the critical values extracted from the intersection with the Ising value should
be close to each other. In contrast, the critical bare quark mass on the Nt = 6 lattice is smaller by
almost a factor of five, mc/T ≈ 0.02. We have also computed the pion mass corresponding to this
mc on Nt = 4,6, finding mc

π ≈ 1.68,0.96, respectively. Similar observations have been made when
comparing unimproved and improved staggered fermion results on Nt = 4 lattices [15]. Hence, the
boundary line in the phase diagram appears to be still far from the continuum result. Note that this
implies the gap between the physical point and the critical line to widen significantly towards the
continuum, thus moving µE to larger values for fixed curvature of the critical surface.

5. Finite density phase diagram using imaginary µ

For imaginary µ = iµi the fermion determinant is real positive and simulations can be carried
out in the same way as at µ = 0. The problem then is to get back to the physical situation or real
µ . This is easily possible if an observable, measured as a function of imaginary chemical potential,
can be fitted by a truncated Taylor expansion in µi/T ,

〈O〉 =
N

∑
n

cn

( µi

πT

)2n
. (5.1)

Note that, because of an exact reflection symmetry of QCD under µ →−µ , only even terms appear.
Clearly, µ/(πT ) has to be small enough for this series to converge well, but there is a limited radius
of convergence: when going in the imaginary direction, a Z(3) transition to the neighbouring, and
unphysical, center-sector of the gauge group is crossed at µi/T = π/3, thus limiting the useful
range for this approach to |µ|/T <∼1.
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5.1 The critical temperature at finite density

The peak position in the susceptibilities calculated for several imaginary µ can be fitted by a
leading O(µ2) and next-to-leading O(µ4) Taylor series, the data are well described by the leading
term, βc(am,aµ) = 5.1369(3)+ 1.94(3)(am− amc

0)+ 0.781(7)(aµ)2 + . . . Converting to contin-
uum units by means of the two-loop beta-function yields the result

Tc(µ,m)

Tc(µ = 0,mc(0))
= 1+2.111(17)

m−mc(0)

πTc
−0.667(6)

(

µ
πTc(0,m)

)2

+ . . . (5.2)

Note that one obtains coefficients of order one when expanding in the “natural” parameter (µ/πT ),
as one might expect on the grounds that the Matsubara modes of finite temperature field theory,
coming in multiples of πT , are setting the scale of the problem. The coefficients depend on N f , a
comparison of the leading µ2-coefficient for various cases can be found in [10]. The curvature gets
stronger with increasing N f , which is consistent with expectations based on the large Nc expansion.
Subleading coefficients are also beginning to emerge as we discuss in section 5.3. Note that the
continuum conversions using the two-loop beta-function are certainly not reliable for these coarse
lattices, while fits to non-perturbative beta-functions tend to increase the curvature. Finally, detailed
comparisons of βc(µ) calculated via reweighting techniques or analytic continuation have been
made for N f = 2,4 using equal lattice actions, and complete quantitative agreement is found [8].

5.2 The critical point as a function of quark masses

Let us now move to the second step in the program and discuss the order of the phase transition
as a function of quark masses and chemical potential. The strategy followed in [13] is to compute
the change of the critical line as a function of imaginary chemical potential and fit it by a truncated
Taylor series, just as was done for the critical coupling. Again the Binder cumulant was used to
determine the order of the transition. The data for N f = 3 and various µi are shown in Fig. 5 (left).
The chemical potential is found to have almost no influence on B4 as a function of quark mass.
The change of mc with µ2, i.e. the leading coefficient in a Taylor expansion, is determined from
d(amc)/d(aµ)2 = −(∂B4/∂ (aµ)2)/(∂B4/∂ (am)) and we obtain

amc(aµ) = 0.0270(5)−0.0024(160)(aµ)2. (5.3)

Care must be taken for the conversion to physical units. The crucial point is that T = 1/(aNt),
and for fixed Nt the lattice spacing is adjusted with changing µ to tune the temperature so as to stay
on the critical line, i.e. a(T (µ)) changes. Expressing the change of the critical quark mass with
chemical potential in lattice and continuum units as

amc(µ)

amc(0)
= 1+

c′1
amc(0)

(aµ)2 + ...,
mc(µ)

mc(0)
= 1+ c1

( µ
πT

)2
+ ... (5.4)

then c1 and c′1 are related by

c1 =
π2

N2
t

c′1
amc(0)

+

(

1
Tc(m,µ)

dTc(mc(µ),µ)

d(µ/πT )2

)

µ=0
. (5.5)

Since c′1 is consistent with zero, the second term dominates, leading to an overall negative coeffi-
cient c1 = −0.7(4) [13]. This is evidence that, in the N f = 3 theory on an Nt = 4 lattice, the region
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Figure 6: Finite difference calculation of the dβc/d(aµ)2 (left) and c′1 ∼ (∂B4/∂ (aµ)2 (right). The error
bands correspond to the leading and next-to-leading order fits from [13].

of first-order transitions shrinks as a baryon chemical potential is turned on, and the unexpected
scenario of Fig. 3 (right) is realized. Interestingly, similar qualitative conclusions are obtained
from simulations of the three flavour theory with an isospin chemical potential [18], as well as
simulations at imaginary µ employing Wilson fermions [19].

5.3 Check of systematics

Clearly, this is a rather consequential finding, and one must ask how reliable it is. Firstly,
our result for c1 is only two standard deviations away from one with opposite sign. Second, one
might worry about systematic errors when fitting only the first term of the Taylor series. Higher
terms with alternating signs could fake a leading coefficient c′1 ≈ 0 in a truncated series. Such terms
would no longer cancel after continuation to real µ , leading to a different picture. In order to clarify
this question we are currently performing a direct calculation of the derivatives dβc/d(aµ)2 and
∂B4/∂ (aµ)2, thus avoiding a fit of the whole function by a truncated Taylor series. We compute
the derivatives as finite differences,

dO
d(aµ)2 = lim

(aµ)2→0

O(aµ)−O(0)

(aµ)2 , (5.6)

which offers several means to improve the signal. O(aµ) is evaluated by reweighting, which has
no overlap problem for |aµ| ≤ 0.1, thus eliminating uncorrelated fluctuations in the terms of the
difference. The reweighting is done in the imaginary µ-direction, since then there is no sign prob-
lem and the reweighting factor is less noisy. This in turn permits to compute the reweighting factor
by noisy estimators rather than exactly, which is much cheaper.

The results of these computations are shown in Fig. 6. The derivatives are obtained by extrap-
olation to µ = 0: dβc/d(aµ)2 = −0.746(1), c′1 = −0.11(2). Also shown in the figures are the one
sigma error bands from our previous O(µ2) and next-to-leading O(µ4) direct fits to B4, as tabulated
in [13]. Note that the derivatives are completely consistent with the µ 4 fits, but not with the leading
order ones, i.e. we are indeed sensitive to more than just the leading coefficient. In the derivative
calculation this is indicated by the slight slope. Note, that the errors of the derivative computation
are dramatically smaller, so that now c′1 is non-zero and negative beyond reasonable doubt. As
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Figure 7: Left: Effect of keeping the quark mass fixed in lattice units in [11]. Right: Comparison at finite µ
between the N f = 2+1 and the N f = 2 theory considered in [12].

discussed above, the conversion to continuum units adds a dominant negative contribution to this.
We conclude that, on an Nt = 4 lattice, the phase diagram Fig. 3 (right) is realized.

6. Discussion

Our results about the critical surface appear to be in qualitative contradiction with those of
[11], [12], which both conclude for the existence of a critical point (µE ,TE) at small chemical
potential µE/TE <∼1. However, in considering the reasons for such disagreement, one can see that
the different data sets are actually not inconsistent with each other, and the differing pictures can
be explained by standard systematic effects.

In [12] the critical point was inferred from an estimate of the radius of convergence of the
Taylor expansion of the free energy. Regardless of the systematics when only 4 Taylor coefficients
are available, the estimate is made for N f = 2. The (µ,T ) phase diagram of this theory might well
be qualitatively different from that of N f = 2 + 1 QCD, as illustrated in Fig. 7 (right). Its critical
endpoint point, obtained by intersecting a critical surface when going up vertically from the N f = 2
quark mass values, is clearly a long way from the critical endpoint of physical QCD, and nothing
follows quantitatively from the value of one for the other.

In [11] the double reweighting approach was followed. By construction, this reweighting
is performed at a quark mass fixed in lattice units: amu,d = Nt

mu,d
Tc

= const. Since the critical
temperature Tc decreases with µ , so does the quark mass. This decrease of the quark mass pushes
the transition towards first order, which might be the reason why a critical point is found at small
µ . This effect is illustrated in the sketch Fig. 7 (left), where the bent trajectory intersects the critical
surface, while the vertical line of constant physics does not. Put another way, [11] measures the
analogue of c′1 instead of c1 in Eq. (5.4). From their Fig. 1 [11] we see that the distance of the
theory from criticality stays constant for small µ , consistent with a small or zero coefficient c′1 ≈ 0.
Taking the variation a(T (µ)) into account could then make a dominant contribution, which might
possibly change the results qualitatively.

A robust finding is the high quark mass sensitivity of the critical point: irrespective of the
sign, if c1 ∼ O(1) in Eq. (5.4), then mc(µ) is a slowly varying function of µ , just as the pressure,
screening masses or Tc. Hence, µE(m) is rapidly varying. A change of quark masses by a few
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percent will then imply a change of µE by O(100%), which makes an accurate determination of µE

a formidably difficult task. Our combined results of a negative curvature of the critical surface as
well as an increasing gap between the µ = 0 critical line and the physical point make the existence
of a critical point at small µE very unlikely.

A last note of caution concerns the fact that most investigations have used unimproved stag-
gered quarks on coarse Nt = 4 lattices only. This might be worrisome given the exceedingly light
quarks involved, as one should take the continuum limit before the chiral limit for this discretization
[20, 21]. Investigations on finer lattices are indispensable in order to settle these issues. Finally,
a more complicated phase structure with additional critical surfaces in Fig. 3 might allow for a
critical point not continuously connected to the µ = 0 transition.

Acknowledgement: Unpublished work reported here is done in collaboration with P. de Forcrand.
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