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1. Introduction

The phase diagram of QCD as a function of temperatureT and quark chemical potentialµ is
governed by the interplay of the chiral symmetry and the center symmetry [1]. These symmetries
are exact for zero and infinite quark masses, respectively. Therefore, varying the quark masses
away from their physical values towards these limits provides useful insight into the behaviour of
QCD at the physical mass point.

Similarly, making the chemical potential complex providesenhanced information on the be-
haviour of QCD at real chemical potential. Since the sign problem which plagues simulations at
non-zeroµ [2] is absent whenµ is pure imaginary, the regime of imaginaryµ is actually the only
direction in the complexµ plane where complete, reliable information on the behaviour of QCD
can be obtained. It turns out that a rich phase diagram as a function of(T,µ = iµI ) and of the quark
masses(mu = md,ms) emerges. The critical and tricritical features of this phase diagram, with their
associated scaling laws, have consequences for the behaviour of QCD at realµ .

Here, we summarize what is known about this phase diagram andsketch (Fig. 2) a plausible
scenario, consistent with current numerical simulations augmented with reasonable assumptions
of continuity of the critical surfaces. We explore in particular the implications for the behaviour
of QCD in the two-flavor chiral limit(mu = md = 0,ms = ∞). In that limit, it is widely believed
that QCD undergoes a finite-temperature, second-orderO(4) chiral transition atµ = 0, which turns
first-order at a tricritical point for some realµ [3]. However, other possibilities exist. Atµ = 0 in
particular, the finite-temperature transition might be first-order. The present numerical evidence is
inconclusive: using Wilson fermions,O(4) scaling is preferred [4], while with staggered fermions
O(4) scaling has been elusive, and first-order behaviour has alsobeen claimed [5]. Note that
behaviour consistent withO(4) has been seen with improved staggered fermions, in anNf = 2+1
setup where the strange quark mass is fixed at its physical value [6]. Approaching the chiral limit
from the imaginaryµ direction offers a novel, independent method to help settlethe issue.

2. Three-dimensional Columbia plot

The thermal behaviour of QCD atµ = 0, as a function of the quark massesmu =md ≡mu,d and
ms is summarized in the well-known Columbia plot Fig. 1 (left). TheNf = 3 chiral symmetry and
the Z3 center symmetry are achieved in the lower left and upper right corners, respectively. This
gives rise to first-order transitions. For intermediate quark masses, numerical simulations indicate
a smooth crossover as a function of temperature. Hence, the first-order regions must be bounded
by second-order critical lines: the chiral critical line inthe lower left corner, and the deconfinement
critical line in the upper right corner. In the absence of further symmetry, the universality class is
expected (and has been numerically verified) to be that of the3d Ising model. The chiral critical
line joins with themu,d = 0 axis at a tricritical point, for a strange quark massmtric

s which is larger
than the physical strange quark mass on coarse lattices [7] or smaller when using improved actions
[6]. TheNf = 2 chiral limit is obtained in the upper left corner.

When the chemical potential is turned on, the two critical lines sweep critical surfaces as a
function ofµ . For both lines, it has been observed that the first-order region shrinks, as represented
Fig. 1 (right) [7, 8, 9]. Here, we want to show real and imaginaryµ in a single figure. Therefore,
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Figure 1: (Left) “Columbia plot”: schematic phase transition behaviour ofNf = 2+ 1 QCD for different
choices of quark masses(mu,d,ms) at µ = 0. Two critical lines separate the regions of first-order transitions
(light or heavy quarks) from the crossover region in the middle, which includes the physical point. (Right)
Critical surfaces swept by the critical lines asµ is turned on. For light quarks [7, 8, 10] as well as for
heavy quarks [9], numerical simulations indicate that the first-order region shrinks as the chemical potential
is turned on.

we adopt(µ/T)2 for the z coordinate: real and imaginaryµ appear above and below theµ = 0
plane, respectively. Of particular interest is the Roberge-Weiss plane(µ/T)2 =−(π/3)2. We now
argue that the 3-dimensional phase diagram ofNf = 2+1 QCD is likely to be described by Fig. 2.

3. Phase diagram in the Roberge-Weiss plane

The two symmetries of the partition function

Z(µ) = Z(−µ), Z
(µ

T

)

= Z

(

µ
T
+ i

2πn
3

)

(3.1)

imply reflection symmetry in the imaginaryµ direction about the “Roberge-Weiss” valuesµ =

iπT/3(2n+1) which separate different sectors of the center symmetry [11]. Transitions between
neighbouring sectors are of first order for highT and analytic crossovers for lowT [11, 12, 13], as
indicated Fig. 3 (left). The corresponding first-order transition lines may end with a second-order
critical point, or with a triple point, branching off into two first-order lines. Which of these two
possibilities occurs depends on the number of flavors and thequark masses.

Recent numerical studies have shown that a triple point is found for heavy and light quark
masses, while for intermediate masses one finds a second-order endpoint. As a function of the
quark mass, the phase diagram atµ/T = iπ/3 is as sketched Fig. 3 (middle). This happens for both
Nf = 2 [14] andNf = 3 [15].

If one assumes that theNf = 2 andNf = 3 tricritical points are connected to each other in the
(mu,d,ms) quark mass plane, the resulting phase diagram is depicted Fig. 3 (right), with two tricriti-
cal lines separating regions of first-order and of second-order transitions. This phase diagram is the
equivalent of the Columbia plot, now at imaginary chemical potentialµ/T = iπ/3. Note that the
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Figure 2: 3d phase diagram. The vertical axis is(µ/T)2, so that real and imaginary chemical potentials
are above and below theµ = 0 plane, respectively. The “bottom plane” corresponds to the Roberge-Weiss
transition valueµ/T = iπ/3. The thicker red lines are tricritical. Tricritical points marked “2” and “3” have
been identified for theNf = 2 [14] andNf = 3 [15] theories, respectively. The object of the present study is
the blue line in the “backplane”ms = ∞ (Nf = 2) joining two tricritical points.

assumption of continuity of the tricritical lines can be checked directly by numerical simulations,
since there is no sign problem for imaginaryµ .

Now, as(µ/T)2 is varied between zero and the Roberge-Weiss value−(π/3)2, the Columbia
plot must change from Fig. 1 (left) to Fig. 3 (right). Assuming continuity of the critical surfaces
at imaginaryµ , which again can be checked by numerical simulations, the resulting 3-dimensional
phase diagram is that of Fig. 2. The two red surfaces (“chiral” and “deconfinement”) are critical.
They are bounded by lines, among which the following are tricritical: (i) the two lines in the
(µ/T)2 = −(π/3)2 Roberge-Weiss plane; (ii ) the line in themu,d = 0 chiral plane. Note that the
Nf = 2 (i.e. ms = ∞) “backplane” contains two tricritical points on the chiralcritical surface: one
in the Roberge-Weiss plane, the other on themu,d = 0 vertical axis (see Fig. 2). The location of the
latter is related to the value of the tricritical strange quark mass.

4. Tricritical scaling

In the vicinity of a tricritical point, scaling laws apply. The phase diagram is similar to that of
a metamagnet, with two external fields:H, which respects the symmetry, andH† which breaks it
(like a staggered and an ordinary magnetic field), depicted Fig. 4 (left). The three surfacesS0,S+,S−
indicate first-order transitions. They meet at a line of triple pointsLτ , depicted by a solid line. They
are bounded by second-order transition lines, depicted by dotted lines. All four lines meet at the
tricritical point (Tt ,Ht).
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Figure 3: (Left) Generic phase diagram as a function of imaginary chemical potential and temperature. Solid
lines are first-order Roberge-Weiss transitions. The behaviour along dotted lines depends on the number of
flavors and the quark masses. (Middle) For Nf = 2 andNf = 3, the endpoint of the Roberge-Weiss line is
a triple point (where 3 first-order lines meet) for light or heavy quark masses, and an Ising critical point for
intermediate quark masses. Thus, two tricritical masses exist. (Right) The simplest assumption is that the
Nf = 2 andNf = 3 tricritical points are joined by tricritical lines [15]. This assumption can be checked with
Nf = 2+1 imaginary-µ simulations.

In our case, the scaling exponents governing the behaviour near the tricritical point are mean-
field, because QCD becomes 3-dimensional as the correlationlength diverges while the temperature
is fixed to that of the tricritical point, andd = 3 is the upper critical dimension for tricriticality. Of
course, this implies the presence of potentially large logarithmic corrections to scaling.

Here, we are interested in the second-order linesS±, corresponding to a departure from the
symmetry planeH† = 0. Along these lines, the scaling law isH† ∝ |t|5/2, where the reduced
temperaturet is measured along the tangent toLλ . For Nf = 2 QCD, tricritical scaling should be
satisfied near the tricritical points:
(i) (µ/T)2 =−(π/3)2: thenH† ∼

[

(µ/T)2+(π/3)2
]

, t ∼ (mu,d −mtric), so that

[

(µ/T)2+(π/3)2] ∝ (mu,d −mtric)
5/2 (4.1)

(ii) mu,d = 0: thenH† ∼ mu,d, t ∼
[

(µ/T)2− (µ/T)2|tric
]

, so that

mu,d ∝
[

(µ/T)2− (µ/T)2|tric
]5/2

(4.2)

It is not clear how broad the scaling window is around each of these two tricritical points. The
two scaling windows might overlap, leading to a very constrained system of equations, with 3
unknowns (the two constants of proportionality in eqs.(4.1,4.2) and(µ/T)2|tric — mtric having
been determined already in [14]) and one constraint (continuity of the derivative at the intersection
of the two scaling curves), leading to a phase diagram as in Fig. 5 (left), which could be determined
from only two points measured by Monte Carlo. Reason for suchoptimism can be found in Fig. 4
(right), where the scaling window around the thirdNf = 2 tricritical point, corresponding to heavy
(u,d) quarks, is shown to extend far into the region of real chemical potential [15, 16].
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Figure 4: (Left) Schematic phase diagram of a metamagnet. The external field H† breaks the symme-
try, while H does not. (Right) For heavy quarks, tricritical scaling in the vicinity of the Roberge-Weiss
imaginary-µ value extends far into the region of realµ [15].

5. Preliminary Nf = 2 results

Following the above discussion, we performed simulations of Nf = 2 QCD, with staggered
quarks of massesamq = 0.01 and 0.005 onNt = 4 lattices, scanning in(µ/T)2 to determine the
value of imaginaryµ corresponding to a second-order transition. Our observable is the Binder
cumulant of the quark condensate. Consistent results are obtained from the finite-size scaling of
the plaquette distribution. The two critical points are shown Fig. 5 (right). Disappointingly, it
seems impossible to smoothly match two tricritical scalingcurves passing through these points.
Additional masses are needed to determine the critical curve. Nevertheless, assuming convexity
of the critical curve already constrains themu,d = 0 tricritical point to lie at(µ/T)2 & −0.3. The
figure illustrates the case where this point lies atµ = 0. It might also lie at(µ/T)2 > 0, so that the
µ = 0 chiral transition would be first-order. Additional small-mass measurements are underway
and will settle this issue. Note that we are simulating two-flavour QCD by taking the square root of
the staggered determinant, and approaching the chiral limit at fixed, rather coarse lattice spacing.
This is the wrong order of limits, and is the most likely approach to expose a failure of rooting.

Finally, our phase diagram Fig. 2 makes it clear that, if the transition in the masslessNf = 2
theory isO(4), turning on a real chemical potential (i.e. going up the vertical axis in the back) will
not make it become first-order. Obtaining such behaviour requires that the chiral critical surface
bend away from theNf = 3 chiral point, or that another, non-chiral critical surface appear at largeµ .
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Figure 5: (Left) Strategy used: to determine the critical line, we fix the quark mass and measure the corre-
sponding critical imaginary chemical potential. The two tricritical scaling lines may match smoothly if the
scaling windows overlap. (Right) Preliminary results: the scaling windows do not seem to overlap; convexity
places themu,d = 0 tricritical point at(µ/T)2 &−0.3. For illustration, it is placed atµ = 0 in the figure.

References

[1] For a review, see e.g. E. Laermann and O. Philipsen, Ann. Rev. Nucl. Part. Sci.53 (2003) 163
[hep-ph/0303042].

[2] P. de Forcrand, PoSLAT2009 (2009) 010 [arXiv:1005.0539 [hep-lat]].

[3] A. M. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov and J. J. M. Verbaarschot, Phys. Rev. D
58 (1998) 096007 [hep-ph/9804290].

[4] Y. Iwasaki, K. Kanaya, S. Kaya and T. Yoshie, Phys. Rev. Lett. 78 (1997) 179 [hep-lat/9609022].

[5] M. D’Elia, A. Di Giacomo and C. Pica, Phys. Rev. D72, 114510 (2005) [hep-lat/0503030]; G. Cossu,
M. D’Elia, A. Di Giacomo and C. Pica, arXiv:0706.4470 [hep-lat]; C. Bonati, G. Cossu, M. D’Elia,
A. Di Giacomo and C. Pica, PoS LATTICE2008 (2008) 204 [arXiv:0901.3231 [hep-lat]].

[6] S. Ejiri, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, P. Petreczky, C. Schmidt and W. Soeldneret
al., Phys. Rev. D80 (2009) 094505 [arXiv:0909.5122 [hep-lat]].

[7] P. de Forcrand and O. Philipsen, JHEP0701 (2007) 077 [arXiv:hep-lat/0607017].

[8] P. de Forcrand and O. Philipsen, JHEP0811 (2008) 012 [arXiv:0808.1096 [hep-lat]].

[9] S. Kim et al., PoSLAT2005 (2006) 166 [arXiv:hep-lat/0510069].

[10] P. de Forcrand and O. Philipsen, Nucl. Phys. B673 (2003) 170 [arXiv:hep-lat/0307020].

[11] A. Roberge and N. Weiss, Nucl. Phys. B275 (1986) 734.

[12] P. de Forcrand and O. Philipsen, Nucl. Phys. B642, 290 (2002) [arXiv:hep-lat/0205016].

[13] M. D’Elia and M. P. Lombardo, Phys. Rev. D67, 014505 (2003) [arXiv:hep-lat/0209146].

[14] M. D’Elia and F. Sanfilippo, Phys. Rev. D80 (2009) 111501 [arXiv:0909.0254 [hep-lat]]; C. Bonati,
G. Cossu, M. D’Elia and F. Sanfilippo, Phys. Rev. D83, 054505 (2011) [arXiv:1011.4515 [hep-lat]].

[15] P. de Forcrand and O. Philipsen, Phys. Rev. Lett.105 (2010) 152001 [arXiv:1004.3144 [hep-lat]].

[16] M. Fromm, J. Langelage, S. Lottini and O. Philipsen, arXiv:1111.4953 [hep-lat].

7


