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1. Introduction

The phase structure of strongly-interacting matter at non-vanishing temperature and densities
and in particular the possible existence of a critical endpoint (CEP) is currently a very active frontier
both theoretically and experimentally. Our present knowledge of the QCD phase diagram in the
non-perturbative regime rests upon effective descriptions since first-principle approaches such as
QCD lattice simulations mostly fail at large densities, for recent developments see e.g. [1]. Several
extrapolation methods have been proposed to overcome the fermion sign problem. All of these
approximations have their own problems and their reliability is still under investigations, see e.g. [2]
for reviews. Therefore, it would stand to reason to combine the approximation schemes with QCD-
like effective model calculations. A comparison of the analytical model results with the lattice
calculations will shed light on their principal applicabilities. Here we focus on the Taylor expansion
method [3] for small chemical potentials, see also [4].

It is based on an expansion of the pressure p in powers of x ≡ µ/T around vanishing quark
chemical potential µ:

p(µ/T )
T 4 =

∞

∑
n=0

cn(T )
(

µ

T

)n
with cn(T ) =

1
n!

∂ n
(

p(T,µ)/T 4
)

∂ (µ/T )n

∣∣∣∣∣
µ=0

. (1.1)

The relevant Taylor coefficients cn(T ) can be calculated with standard techniques at µ = 0 [5]. The
convergence of the series may be improved by a resummation based on a Padé approximation

[L/M]≡ RL,M(x) =
p(x)
q(x)

=
p0 + p1x+ · · ·+ pLxL

1+q1x+ · · ·+qMxM , (1.2)

where the Padé coefficients pi and q j can be extracted from the Taylor coefficients cn up to the
order L+M. Hence, no further input is required for the application of a Padé resummation. By
means of the Padé resummation often an extended convergence range and more stable results with
fewer coefficients can be obtained, in particular in the presence of singularities.

2. A model analysis

As an effective QCD-like model framework we chose the N f = 2+1 flavor Polyakov quark-
meson (PQM) model which exhibits a chiral crossover at vanishing densities at Tχ ∼ 206MeV and
a CEP around (Tc,µc)∼ (185,167)MeV. Its thermodynamics at µ = 0 is in agreement with recent
lattice simulations [6]. The PQM model Lagrangian consist of a quark-meson part

LPQM = q̄(iD/−hφ5)q+Lm−U (Φ,Φ̄) , (2.1)

where the N f quark fields q are coupled via a Yukawa interaction h to the scalar and pseudoscalar
meson nonets φ and to the Polyakov loop via the covariant derivative. The purely mesonic contri-
bution reads

Lm = Tr
(
∂µφ

†
∂

µ
φ
)
−m2 Tr(φ †

φ)−λ1
[
Tr(φ †

φ)
]2−λ2 Tr

(
φ

†
φ
)2

+c
(
det(φ)+det(φ †)

)
+Tr

[
H(φ +φ

†)
]
. (2.2)
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Figure 1: Runtime comparison for the DD and AD methods

The pure gauge sector is encoded (in the logarithmic version of) the Polyakov loop potential [7]

Ulog

T 4 = −a(T )
2

Φ̄Φ+b(T ) ln
[
1−6Φ̄Φ+4

(
Φ

3 + Φ̄
3)−3

(
Φ̄Φ
)2
]

(2.3)

whose parameters are fitted to lattice data. The matter back-reaction to the pure Yang-Mills sys-
tem [9] is not considered in this work. The remaining model parameters are chosen to reproduce
meson masses and decay constants in the vacuum [8]. The grand potential in mean-field approx-
imation is obtained by integrating the quark loop which yields a function of the (non-strange and
strange) chiral order parameters (σx,σy) and the Polyakov-loop variables (Φ,Φ̄)

Ω =U (σx,σy)+Ωq̄q
(
σx,σy,Φ,Φ̄

)
+U

(
Φ,Φ̄

)
.

Their temperature and chemical potential dependence is found by minimizing the grand potential

∂Ω

∂σx
=

∂Ω

∂σy
=

∂Ω

∂Φ
=

∂Ω

∂ Φ̄

∣∣∣∣
min

= 0 , (2.4)

where min labels the global minimum of the potential. This introduces an only numerically invert-
ible implicit µ-dependence in the pressure p(T,µ) =−Ω(T,µ)|min.

An analytic evaluation of the Taylor coefficients is not only cumbersome due to the exponen-
tially increasing number of terms but becomes finally impossible by the implicit µ-dependence.
Standard numerical derivate techniques such as divided differences (DD) fail at higher orders due
to the increasing numerical errors. By means of the novel derivative technique, based on algorith-
mic differentiation (AD), higher order derivatives can be calculated with extremely high precision,
essentially limited only by machine precision. This works even in the case of only numerically
solvable implicit dependences, such as in Eq. (2.4). Furthermore, also the performance of the AD
technique is superior to the DD method as demonstrated in Fig. 1 where the time to calculate the
d-th order derivatives is shown as a function of d. With the DD method one needs at least d + 1
function evaluations for a d-th order derivatives and a linear d-dependence is obtained in contrast
to the logarithmic dependence for the AD method, see [10] for further details. High-order Taylor
coefficients calculated with the AD technique in the PQM model are given in [11]. The method is
neither restricted to vanishing µ nor mean-field approximation and can be used to search for signals
of the CEP in higher moments [14].
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Figure 2: Comparison of the quark number susceptibility in the mean-field model (PQM) with different
orders of the extrapolation methods in the crossover region (left panel) and at the CEP (right panel).

2.1 Thermodynamics

The Taylor expansion can be applied straightforwardly to extrapolate thermodynamic quanti-
ties such as the quark-number susceptibility χ = ∂ 2 p/(∂ µ2) to finite densities. In Fig. 2 the scaled
susceptibility χ/T 2 calculated in the PQM model is compared to results obtained with the Tay-
lor expansion and the Padé resummation. It diverges exactly at the CEP which is located for our
chosen parameters at (Tc,µc)∼ (185,167)MeV, correspondingly µc/Tc ∼ 0.9 (right panel) and is
finite otherwise. Both, the Taylor expansion and the Padé resummation cannot capture this diver-
gence and yield finite values around Tc. For comparison the left panel shows χ in the crossover
regime (µ/T = 0.8). In the chirally broken phase, i.e., for temperatures smaller than the one of the
χ peak, the agreement improves with increasing expansion orders. At larger temperatures T ∼ Tχ

the extrapolations exhibit some unphysical peaks which are not present in the model calculation.
These peaks, which are also seen in extrapolations where lattice simulation coefficients have been
used (see e.g. [12]), are solely an artifact of the extrapolation. However, an important observation
is that in both cases the [4/4] Padé approximation yields nearly the same result as the 16-th order
Taylor expansion although it requires only the 8-th order Taylor coefficients. Hence, in our case
the Padé approximation reduces the number of required derivatives roughly by a factor of two.

2.2 Determining the phase boundary and locating the CEP

The Taylor expansion is limited by the closest singularity in the complex µ-plane. Its distance
to the expansion point can be obtained from the convergence radius of the series:

r = lim
n→∞

r2n = lim
n→∞

∣∣∣∣ c2n

c2n+2

∣∣∣∣1/2

. (2.5)

If the limiting singularity lies on the real axis the convergence radius corresponds to the location
of a critical point. As the limit n→ ∞ cannot be carried out in a numerical study the estimators of
the convergence radius at finite n may depend on the considered observable and approach the true
convergence radius differently. Therefore we also consider the convergence radius for the quark
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Figure 3: Left: Estimates for the radius of convergence obtained from r2n (solid lines) and rχ

2n−2 (dashed
lines) for different orders of the Taylor expansion. Also shown is the chiral phase boundary (red line; dashed:
crossover, solid: first order). The black dot indicates the CEP. Right: Estimate of the phase boundary at
T = 190MeV ∼ 0.92 Tχ with r2n and rχ

2n and poles in the Padé approximation of the pressure and quark
number susceptibility as a function of the order of the Taylor expansion 2n. The used highest coefficient is
c2n+2. The dotted horizontal line indicates the phase boundary calculated directly at finite µ .

number susceptibility rχ

2n which is related to the one of the pressure via

rχ

2n =

∣∣∣∣∣ cχ

2n

cχ

2n+2

∣∣∣∣∣
1/2

=

(
(2n+2)(2n+1)
(2n+3)(2n+4)

)1/2

r2n+2 . (2.6)

In Fig. 3(a) we show the results for both estimators for three different truncation orders
(2n = 8,16,24) in the (T,µ) phase diagram. Note that the difference in the radii of convergence,
estimated from r2n and rχ

2n−2 is only caused by the prefactor in Eq. (2.6) as the same Taylor coef-
ficients contribute to both estimators. Close to Tχ the oscillations in the Taylor coefficients caused
by the imaginary part of the limiting singularity entail oscillations in the radii of convergence and
do not allow for a stable estimate of the phase boundary there. For somewhat smaller temperatures
the radii of convergence approach the phase boundary from above with increasing truncation order
n. The observed agreement in the crossover region suggests that the singularity limiting the Taylor
expansion is close to the real µ-axis and the small imaginary part is negligible. In particular, this
is still valid for the region in the vicinity of the CEP.

The determination of the radius of convergence or the phase boundary with the Padé series
is more involved. For the [N/2] case the Padé approximant has a pole at x = ±

√
cN/cN+2 which

coincides with the estimator r2N , see Eq. (2.5). For a general [L/M] Padé approximant the pole
structure is more elaborated. In the general case we use the first pole at real and positive µ in
order to estimate the phase boundary. Since all Taylor coefficients with their corresponding error
enter in the Padé approximant the error propagation is more involved here in contrast to the pre-
vious discussion where only two error sources enter. In this context, the application of the Padé
approximation in lattice simulations is much more involved. However, in the model analysis the
coefficients, obtained with the AD technique, exhibit extremely small numerical errors and result in
a stable and reliable Padé approximation. In Fig. 3(b) we show for a fixed temperature T = 0.92 Tχ

the estimates of the phase boundary extracted from Padé approximations for the pressure (p) and
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Figure 4: Temperature Tc,n at which the Taylor coefficients cn becomes negative for different truncation
orders n. The solid horizontal line denotes the critical temperature of the CEP.

the quark number susceptibility (χ) for different truncation orders n. The chosen temperature is
slightly above the temperature of the CEP in the phase diagram. In addition, the estimates for
the radii of convergence (r2n and rχ

2n) and the chiral crossover chemical potential (dashed hori-
zontal line) are also shown. For small truncation orders 2n ≤ 8 the [N/2] Padé approximations
coincide with the radii of convergence as expected. For 2n > 8 we observe that the Padé approx-
imation converges faster for the pressure as well as for the susceptibility compared to the radii of
convergence of the Taylor series. We conclude that the Padé approximation converges faster at
intermediate truncation orders in particular for the quark number susceptibility. The estimate of the
phase boundary from the Padé approximation becomes comparable to the one obtained from the
Taylor expansion coefficients only at significantly larger truncation order. For example, in Fig. 3(b)
the distance of the Padé estimate to the horizontal line at 2n = 12 is achieved with Taylor coeffi-
cients only for 2n≥ 20. However, the lower truncation order in the Padé approximation induces a
more involved error propagation which might hamper lattice simulations but not calculations with
the AD-techniques.

From the discussion given so far and from Fig. 3(b) one may conclude that at fixed temperature
the radius of convergence can be estimated with an accuracy of about 15%-20% from a O(µ12)

series expansion. This is an acceptable uncertainty in view of the difficulties in current QCD
calculations at non-zero chemical potential. When Tc is known the CEP could be determine from

µc = r(Tc) = lim
n→∞

rn(Tc) . (2.7)

However, the determination of Tc is still a non-trivial task. A criterion is needed, that allows to
estimate for a given expansion order the temperature regime where all expansion coefficients may
stay positive. In this case the singularity limiting the convergence is located on the real axis in the
complex µ-plane and hence corresponds to a second-order phase transition [13]. In Fig. 4 we plot
the temperature Tc,n where the Taylor coefficient cn(T ) becomes negative. This yields an upper
bound for the critical temperature. Of course, in the limit n→ ∞ the temperature series should
approach the critical temperature of the CEP, i.e.,

Tc = lim
n→∞

Tc,n . (2.8)
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However, we found in our model analysis only a very slow convergence of the estimators for
the critical temperature of the CEP. Even at the 20-th truncation order there is still a temperature
difference of the order of 20 MeV which is why we do not apply Eq. (2.7).

3. Summary and Conclusion

In this talk we discussed convergence properties of the Taylor expansion towards finite den-
sity QCD in a three flavor PQM model framework. A newly developed differentiation technique
allowed for the calculation of high order Taylor coefficients with high precision. With a Padé re-
summation the number of required Taylor coefficients can be reduced by a factor of two to obtain
a similar convergence radius. For temperatures above the critical endpoint a good agreement of the
radius of convergence with the phase boundary is found, in particular for the estimator of the quark
number susceptibility. With a 12-th order Padé approximation a satisfying estimate of the phase
boundary could be achieved. However, a determination of the critical temperature including the
location of the CEP is hampered by the slow convergence of the estimators Tc,n.

Support by the BMBF Grant 06BI9001 and by the Helmholtz-University Young Investigator Grant
No. VH-NG-332 is acknowledged.
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