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1. Introduction

Lattice computations of the potential of a pair of static-light mesons (in the following also
referred to asB mesons) are of interest, because they constitute first principles determinations of a
hadronic force. Until now interactions between static-light mesons have exclusively been studied
in the quenched approximation [1, 2]. Here I report on the status of an investigation with two
flavors of dynamical Wilson twisted mass quarks. Forces are not only studied between the lightest
static-light mesons (denoted byS), but also first excitations are taken into account (denotedby P−).
Note that there is another ongoing study of static-light meson interactions with dynamical quarks,
which has also been reported during this conference [3].

2. Trial states and quantum numbers

2.1 Static-light mesons

Here I consider static-light mesons, which are made from a static antiquarkQ̄ and a light quark
ψ ∈ {u, d}. Consequently, isospinI = 1/2 andIz ∈ {−1/2, +1/2}. Since there are no interac-
tions involving the static quark spin, it is appropriate to classify static-light mesons by the angular
momentum of their light degrees of freedomj. I do not consider non-trivial gluonic excitations,
hence j = 1/2 and jz = {−1/2, +1/2}, which is the spin of the lightu/d quark. Parity is also a
quantum number,P ∈ {+ , −}.

The lightest static-light meson has quantum numbersjP = (1/2)− (denoted byS). The first
excitation, which is≈ 400MeV heavier, has quantum numbersjP = (1/2)+ (denoted byP−).
Examples of corresponding static-light meson trial statesareQ̄γ5ψ |Ω〉 andQ̄γ jψ |Ω〉 for Smesons
andQ̄ψ |Ω〉 andQ̄γ jγ5ψ |Ω〉 for P− mesons respectively.

For a more detailed discussion of static-light mesons I refer to [4, 5].

2.2 BB systems

The aim of this work is to determine the potential of a pair ofB mesons as a function of their
separationR (without loss of generality I choose the axis of separation to be thezaxis). To this end
one has to compute the energy of eigenstates of the Hamiltonian containing two static antiquarks
Q̄(r1) andQ̄(r2), r1 = (0,0,−R/2) andr2 = (0,0,+R/2), which define the positions of the twoB
mesons, and which will be surrounded by light quarks and gluons.

TheseBB states are characterized by several quantum numbers. Sincethere are two light
u/d valence quarks, isospinI ∈ {0, 1} andIz ∈ {−1, 0, +1}. Due to the separation of the static
antiquarks along thez axis, rotational symmetry is restricted to rotations around this axis. Con-
sequently, states can be classified by thez component of total angular momentum. However, as
already mentioned in section 2.1 there are no interactions involving the static quark spin. There-
fore, it is appropriate to labelBB states by thez component of the angular momentum of the light
degrees of freedomjz ∈ {−1, 0, +1}. Parity is also a symmetry and, therefore, a quantum num-
ber,P ∈ {+ , −}. For states withjz = 0 there is an additional symmetry, reflection along an axis
perpendicular to the axis of separation (without loss of generality I choose thex axis). The cor-
responding quantum number isPx ∈ {+ , −}. When using| jz| instead of jz, Px is a quantum
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number for all states. To summarize,BBstates can be characterized by the following five quantum
numbers:(I , Iz, | jz|,P,Px).

I useBB trial states

(C Γ)AB

(

Q̄C(r1)ψ
(1)
A (r1)

)(

Q̄C(r2)ψ
(2)
B (r2)

)

|Ω〉, (2.1)

where the lower indicesA, B andC denote spinor indices,C = γ0γ2 is the charge conjugation
matrix andΓ is a combination ofγ matrices. Note that it is essential to couple the light degrees of
freedom of both mesons in spinor space, because these degrees of freedom determine the quantum
number| jz|. Proceeding in a naive way by coupling light and static degrees of freedom in bothB
mesons separately will not result in a well defined angular momentum| jz| and, therefore, will mix
different sectors. To obtainI = 0, the flavors of the light quarks have to be chosen according to
ψ(1)ψ(2) = ud−du, while for I = 1 three possibilities exist,ψ(1)ψ(2) ∈ {uu, dd, ud+ du}. BB
trial states are collected in Table 1 together with their quantum numbers.

ψ(1)ψ(2) = ud−du ψ(1)ψ(2) = ud+du ψ(1)ψ(2) ∈ {uu, dd}

Γ | jz| P, Px result P, Px result P, Px result

γ5 0 −, + A, SS +, + R, SS +, + R, SS
γ0γ5 0 −, + A, SS +, + R, SS +, + R, SS

1 0 +, − A, SP −, − R, SP −, − R, SP
γ0 0 −, − R, SP +, − A, SP +, − A, SP
γ3 0 +, − R, SS −, − A, SS −, − A, SS

γ0γ3 0 +, − R, SS −, − A, SS −, − A, SS
γ3γ5 0 +, + A, SP −, + R, SP −, + R, SP

γ0γ3γ5 0 −, + R, SP +, + A, SP +, + A, SP

γ1/2 1 +, ± R, SS −, ± A, SS −, ± A, SS
γ0γ1/2 1 +, ± R, SS −, ± A, SS −, ± A, SS
γ1/2γ5 1 +, ∓ A, SP −, ∓ R, SP −, ∓ R, SP

γ0γ1/2γ5 1 −, ∓ R, SP +, ∓ A, SP +, ∓ A, SP

Table 1: quantum numbers ofBB trial states; due to explicit isospin breaking,(I = 1, Iz = 0) and
(I = 1, Iz = ±1) states are not degenerate in twisted mass lattice QCD (cf. section 3) and, therefore, listed
separately; “result” characterizes the shapes of the numerically computedBBpotentials (A: attractive poten-
tial; R: repulsive potential; SS: lower asymptotic value 2m(S); SP: higher asymptotic valuem(S)+ m(P−);
cf. section 4).

3. Lattice setup

I use 243×48 gauge field configurations generated by the European Twisted Mass Collabora-
tion (ETMC). The fermion action isNf = 2 Wilson twisted mass,

SF[χ , χ̄ ,U ] = a4∑
x

χ̄(x)
(

DW + iµqγ5τ3

)

χ(x) (3.1)
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[6, 7], whereDW is the standard Wilson Dirac operator andχ = (χ (u),χ (d)) is the light quark
doublet in the so-called twisted basis. In the continuum thetwisted basis is related to the physical
basis by the twist rotationψ = eiγ5τ3ω/2χ , whereω is the twist angle.ω has been tuned to maximal
twist, i.e. ω = π/2, where static-light mass differences are automaticallyO(a) improved. The
gauge action is tree-level Symanzik improved [8]. I useβ = 3.9 andµq = 0.0040 corresponding to
a lattice spacinga = 0.079(3) fm and a pion massmPS= 340(13)MeV [9]. For details regarding
these gauge field configurations I refer to [10, 11].

In twisted mass lattice QCD at finite lattice spacing SU(2) isospin is explicitely broken to U(1),
i.e. Iz is still a quantum number, butI is not. Moreover, parityP has to be replaced by twisted mass
parityP(tm), which is parity combined with light flavor exchange. The consequence is that twisted
massBBsectors are either labeled by(Iz, | jz|,P(tm)P

(tm)
x ) for Iz =±1 or by(Iz, | jz|,P(tm),P

(tm)
x )

for Iz = 0. A comparison with the set of quantum numbers discussed in section 2.2 shows that in
the twisted mass formalism there are only half as manyBBsectors as in QCD, i.e. QCDBBsectors
are pairwise combined. Nevertheless, it is possible to unambiguously interpret states obtained
from twisted mass correlation functions in terms of QCD quantum numbers. The method has
successfully been applied in the context of static-light mesons [12] and is explained in detail for
kaons andD mesons in [13]. For a detailed discussion of twisted mass symmetries in the context
of BBsystems I refer to an upcoming publication [14].

When computing correlation functions, I use several techniques to improve the signal quality
including operator optimization by means of APE and Gaussian smearing and stochastic propaga-
tors combined with timeslice dilution. These techniques are very similar to those used in a recent
study of the static-light meson spectrum [4, 5] and will alsobe explained in detail in [14].

In contrast to spectrum calculations for static-light mesons [4, 5] and static-light baryons [15],
where we have always used the HYP2 static action, I perform computations both with the HYP2
static action and with unsmeared links representing the world lines of the static antiquarks. In par-
ticular for smallQ̄Q̄ separationsR<

∼2a ultraviolet fluctuations are important, which are, however,
filtered out, when using HYP smeared links. The effect of HYP smearing is shown in Figure 1.
For all results presented in the following potential valuescorresponding toR≤ 2a have been com-
puted by means of unsmeared links, while for larger separations HYP smearing has been applied
to improve the signal-to-noise ratio.

2m(S)−800MeV

2m(S)−400MeV

2m(S)
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Figure 1: theBBpotential corresponding toψ(1)ψ(2) = uu, Γ = γ3 computed with unsmeared links and with
the HYP2 static action.
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4. Numerical results

TheBBpotentials presented and discussed in the following have been obtained by fitting con-
stants to effective mass plateaus obtained from temporal correlation functions of trial states (2.1).
In twisted mass lattice QCD there are 24 independentIz = 0 trial states (i.e. trial states not related
by symmetries) and 12 independentIz = ±1 trial states, i.e. 36 resulting potentials, which are not
related by symmetries (cf. Table 1). Some of these potentials are quite similar, while others are
not. In total there are four significantly different types ofpotentials: two of them are attractive, the
other two are repulsive; two have have asymptotic values forlarge separationsR, which are larger
by around 400MeV compared to the other two (cf. the “result” columns of Table 1). For each of
the four types an example is plotted in Figure 2.
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ψ(1)ψ(2) = uu, Γ = 1
ψ(1)ψ(2) = uu, Γ = γ0
ψ(1)ψ(2) = uu, Γ = γ5
ψ(1)ψ(2) = uu, Γ = γ3

Figure 2: examples ofBBpotentials as functions of the separationR.

To understand the asymptotic behavior, it is convenient to express theBB creation operators
appearing in (2.1) in terms of static-light meson creation operators. For the potentials shown in
Figure 2 one finds after some linear algebra

(C 1)AB

(

Q̄C(r1)uA(r1)
)(

Q̄C(r2)uB(r2)
)

=

= −S↑(r1)P−↓(r2)+S↓(r1)P−↑(r2)−P−↑(r1)S↓(r2)+P−↓(r1)S↑(r2) (4.1)

(C γ0)AB

(

Q̄C(r1)uA(r1)
)(

Q̄C(r2)uB(r2)
)

=

= −S↑(r1)P−↓(r2)+S↓(r1)P−↑(r2)+P−↑(r1)S↓(r2)−P−↓(r1)S↑(r2) (4.2)

(C γ5)AB

(

Q̄C(r1)uA(r1)
)(

Q̄C(r2)uB(r2)
)

=

= −S↑(r1)S↓(r2)+S↓(r1)S↑(r2)−P−↑(r1)P−↓(r2)+P−↓(r1)P−↑(r2) (4.3)

(C γ3)AB

(

Q̄C(r1)uA(r1)
)(

Q̄C(r2)uB(r2)
)

=

= −iS↑(r1)S↓(r2)− iS↓(r1)S↑(r2)+ iP−↑(r1)P−↓(r2)+ iP−↓(r1)P−↑(r2). (4.4)
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At large separationsR the BB potentials are expected to approach the sum of the masses of the
two individual B mesons. When considering (4.1) to (4.4) and Figure 2, one cansee that the two
potentials with the lower asymptotic value (ψ(1)ψ(2) = uu, Γ = γ5 and ψ(1)ψ(2) = uu, Γ = γ3)
containSScombinations. These are significantly lighter than the alsopresentP−P− combinations
and should, therefore, dominate the correlation functionsand effective masses at large temporal
separations. The asymptotic value of the corresponding potentials should be around 2m(S), which
is the case. In contrast to that the other two potentials withthe higher asymptotic value
(ψ(1)ψ(2) = uu, Γ = 1 andψ(1)ψ(2) = uu, Γ = γ0) exclusively containSP− combinations. Their
asymptotic value is expected at aroundm(S)+m(P−), which is also reflected by Figure 2.

This expansion ofBB creation operators in terms of static-light meson creationoperators also
provides an explanation, why potentials computed with different operators, but which have iden-
tical quantum numbers, are of different type. An example is given by ψ(1)ψ(2) = uu, Γ = γ3 and
ψ(1)ψ(2) = uu, Γ = 1, both having quantum numbers(I = 1, Iz = +1, | jz| = 0,P = −,Px = −).
The Γ = γ3 potential is attractive with an asymptotic value at around 2m(S), while the Γ = 1
potential is repulsive with an asymptotic value at aroundm(S) + m(P−). From (4.1) and (4.4)
one can read off that the static-light meson content is essentially “orthogonal”: theΓ = γ3 oper-
ator containsSSandP−P− combinations, whereas theΓ = 1 operator is exclusively made from
SP− combinations. While the correspondingΓ = γ3 correlator yields the ground state in the
(I = 1, Iz = +1, | jz| = 0,P = −,Px = −) sector, which closely resembles a pair ofS mesons,
theΓ = 1 operator mainly excites the first excitation, which is similar to anSP− combination. The
generated ground state overlap is, therefore, rather smalland, consequently, very large temporal
separations would be needed to extract the ground state potential. Presumably, the potential corre-
sponding to theΓ = 1 operator has a small ground state contribution, which contaminates the first
excited state potential. This is supported by the observation that the asymptotic value of theΓ = 1
potential is slightly lower thanm(S)+ m(P−). For a clean extraction of this first excited state an
analysis of a 2×2 correlation matrix is needed.

From the 36 independent potentials one can also deduce a rulestating, whether aBBpotential
is attractive or repulsive. The rule is quite simple.
A BB potential is attractive, if the trial state is symmetric under meson exchange, repulsive,
if the trial state is antisymmetric under meson exchange.
Here meson exchange means exchange of flavor, spin and parity. One can easily verify this rule for
the examples discussed above: the operators (4.2) and (4.4)are symmetric under meson exchange
and give rise to attractive potentials, while the operators(4.1) and (4.3) are antisymmetric under
meson exchange and yield repulsive potentials. This more general rule is in agreement to what has
been observed in quenchedBBcomputations forSSpotentials [1, 2].

5. Conclusions

I have presented results of an ongoing computation ofBB potentials. Various channels char-
acterized by the quantum numbers(I , Iz, | jz|,P,Px) have been investigated. The computations
have been performed with dynamical, rather light quark masses (mPS≈ 340MeV). The results
have been interpreted in terms of individualSandP− mesons. A simple rule has been established
stating, whether aBBpotential is attractive or repulsive.
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The statistical accuracy of the correlation functions needs to be improved.BB systems are
rather heavy and, hence, effective masses are quickly lost in noise. At the present level of statistics
slight contamination from excited states cannot be excluded. To this end contractions are ongoing.

Future plans include studying the light quark mass dependence, the continuum limit and finite
volume effects. Moreover, alsoBBs andBsBs potentials could be computed. To treat thesquark as
a fully dynamical quark, such computations should be performed onNf = 2+ 1+ 1 flavor gauge
field configurations currently produced by ETMC [16]. It would also be interesting to supplement
the lattice computation by a perturbative calculation ofBB potentials at small separationsR<

∼2.
Finally, one could use the obtainedBB potentials as input for phenomenological considerations to
answer e.g. the question, whether twoB mesons are able to form a bound state.

Acknowledgments

I acknowledge useful discussions with Pedro Bicudo, William Detmold, Rudolf Faustov,
Roberto Frezzotti, Vladimir Galkin, Chris Michael and Attila Nagy. This work has been supported
in part by the DFG Sonderforschungsbereich TR9 Computergestützte Theoretische Teilchenphysik.

References

[1] C. Michael and P. Pennanen [UKQCD Collaboration], Phys.Rev. D60, 054012 (1999)
[arXiv:hep-lat/9901007].

[2] W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D76, 114503 (2007) [arXiv:hep-lat/0703009].

[3] G. Bali and M. Hetzenegger, talk by M. Hetzenegger at “XXVIIIth International Symposium on
Lattice Field Theory”, Villasimius, Sardinia (2010).

[4] K. Jansen, C. Michael, A. Shindler and M. Wagner [ETM Collaboration], JHEP0812, 058 (2008)
[arXiv:0810.1843 [hep-lat]].

[5] C. Michael, A. Shindler and M. Wagner [ETM Collaboration], arXiv:1004.4235 [hep-lat].

[6] R. Frezzotti, P. A. Grassi, S. Sint and P. Weisz [Alpha collaboration], JHEP0108, 058 (2001)
[arXiv:hep-lat/0101001].

[7] R. Frezzotti and G. C. Rossi, JHEP0408, 007 (2004) [arXiv:hep-lat/0306014].

[8] P. Weisz, Nucl. Phys. B212, 1 (1983).

[9] R. Baronet al. [ETM Collaboration], arXiv:0911.5061 [hep-lat].

[10] Ph. Boucaudet al. [ETM Collaboration], Phys. Lett. B650, 304 (2007) [arXiv:hep-lat/0701012].

[11] P. Boucaudet al. [ETM collaboration], Comput. Phys. Commun.179, 695 (2008) [arXiv:0803.0224
[hep-lat]].

[12] B. Blossier, M. Wagner and O. Pene [European Twisted Mass Collaboration], JHEP0906, 022 (2009)
[arXiv:0903.2298 [hep-lat]].

[13] R. Baronet al. [ETM Collaboration], arXiv:1005.2042 [hep-lat].

[14] M. Wagner [ETM Collaboration], to be published.

[15] M. Wagner and C. Wiese [ETM Collaboration], arXiv:1008.0653 [hep-lat].

[16] R. Baronet al. [ETM Collaboration], JHEP1006, 111 (2010) [arXiv:1004.5284 [hep-lat]].

7


