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1. Introduction

In this project, we perform first steps towards extracting phoperties of they(980) andk
resonances from lattice QCD.

The mass and width of an infinite volume resonance can thealtgtbe extracted from Eu-
clidean lattice QCD by studying the corresponding energglteas a function of the lattice site
with an extension of Lischer’s finite volume methpd[]1]4]. 81

However, such an analysis is challenging because severaiyetevels have to be extracted
from the lattice simulation with high accuracy. Therefore, follow an exploratory approach: we
perform a study of correlator matrices of four-quark opansin order to investigate whether bound
four-quark states are observed in 8g£980) or k channels. Recently, in such a set-ufNipn= 2
QCD, hints at bound tetraquark states in thandk channels have been identifiddl [6].

We compute the correlator matrices in a mixed act{$rf][7, 8lyais of four-quark states on
the lattice ignoring disconnected contributions. The gedb answer the question whether there
is a bound tetraquark or molecule state in #€é980) or k channel. Identifying such a state in
addition to the free scattering states could be a hint on #étere of the corresponding resonance.
Additionally, the overlap to different interpolating opéors could be studied.

The lattice study is based dfx = 2+ 1+ 1 gauge configurations generated by the European
Twisted Mass (ETM) Collaboration. Details on the generati the ensembles can be found in
Ref. [@]. The analysis is performed on four ensembles withtéick spacing o ~ 0.086fm and
pion masses between,; ~ 280MeV andn,: ~ 450MeV, see Tablf 1.

For the computation of observables we use a twisted maseetirstion for the valences
qguarks, which is different from the sesaquarks to avoid the problem of mixing betwegsandc
quarks, for details cf. Ref{][F] 8].

2. Interpolating operatorsand extraction of energy levels

To perform a four-quark analysis a§(980), we compute correlatofg; (t) =< O (t)OJT(O) >
with interpolating operators

o=y Z (dx)rHsx)) (SX)rFu(x)) fori=1,2,3, (2.1)
X u=123

O = 3 [d(XFisT ()], [s"(Oriu(x)], for i =45, (2.2)

Os = 3 (SX)5(¥)) (d(x)ysu(x)) , (2.3)

with the y-matricesT 1 = y5, 'y = y#, T = y#y5, T4 =Cys, ['5=C, C= yp}». Due to the omis-
sion of disconnected diagrams the artificial pseudossgdarstate, which we cals in the follow-
ing, will be relevant for the calculation. To ensure the eotridentification of the)smt state, we
explicitly included the operatdDg.
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ensemble f3 ally allg als L/a Nenf Smearing

A30.32 190 00030 0150 Q190 32 672 APE
A40.20 190 00040 0150 Q190 20 500 none
A40.24 190 00040 0150 Q190 24 1259 APE
A80.24 190 00080 0150 Q190 24 1225 APE

Table 1: The input parameters of the ensembles used in this profechumber of configurations and the
smearing type employed.

For further clarification of the nature of the examined Statiee two-meson operators

07 = 3 (ds(x) T () wuly)), (2.4)
X y

Os = 3 (SX)ys(x) S (d(y)ysu(y)) (2.5)
X y
are studied as well (on a single ensemble).

In order to extract energy levels from the correlator masjave solve the generalized eigen-
value problem (GEVP)[[3 1Q, L1]. However, due to the preseufcpairs of pseudoscalar me-
son stategM; > and|M, > coupling to our operators according £0M1|Oj|M, > 0 problems
arise: one of the two mesons can travel forward the othervackin time, severely complicat-
ing the analysis of our correlators. To avoid these probjesgsrestrict the analysis o< T /4
andT —t < T /4, because the single-meson contributions are not reléwasufficiently smalit
(or T —t). For a more detailed discussion we refer to an upcomingigatin and to the Refs.
(B, [£2,[1B]. Excited state contributions are taken into aotdy performing two-mass fits to the
eigenvalues of interest.

3. Reaults

3.1 ap(980): four-quark and two-particle operators, a single ensemble

We start by discussingy(980) (I(JPC) = 1(0*™)) results obtained using ensemble A40.20
(cf. Table[]l). This ensemble with rather small spatial eixfer~ 1.72fm) is particularly suited to
distinguish two-particle states with relative momentunirstates with two particles at rest and
from possibly existingyp(980) four-quark states (the former have a rather large energgusecone
quantum of momentum iBmin = 271/L ~ 720 MeV).

Figure[1a shows effective mass plots from & 2 correlation matrix with &K molecule
operatorO; (see equation (2.1)) and a diquark-antidiquark oper@p{.2). The corresponding
two plateaus are around 1000MeV and, therefore, consisteghtwith a possibly existingy(980)
four-quark state and with two-particke+ K andns+ 1 states, where both particles are at rest.

Increasing this correlation matrix to>44 by adding two-particlék + K and Ns+ T opera-
tors (equations[(2.4) andl (2.5)) yields the effective massghown in Figurd]1b. The same two
low-lying states are resolved, however, with significaftétter quality. Two additional states are
observed, whose plateaus are around 1500 M@900 MeV. From this 4 4 analysis we conclude
the following:
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Figure 1. ap(980) sector, A40.20 ensembléa) Effective masses as functions of the temporal separation,
2 x 2 correlation matrix (local operatord(K molecule, diquark-antidiquark). Horizontal lines indiea
the expected two-particlg + K and nNs+ 1 energy levels.(b) 4 x 4 correlation matrix (local operators:
KK molecule, diquark-antidiquark, two-partidie+ K, two-particlen + ). (c), (d) Squared eigenvector
components of the two low-lying states frdy) as functions of the temporal separation.

1. We do not observe a third low-lying state around 1000 Mednehough we provide op-
erators, which are of four-quark type as well as of two-phettype. This suggests that the two
low-lying states are the expected two-partile- K and ns+ 1 states, while no additional stable
ap(980) four-quark state does exist in the A40.20 ensemble.

2. The effective masses of the two low-lying states are ofhrhetter quality in Figurg] 1b
than in FigurdJla. We attribute this to the two-partikle- K and nNs+ moperators, which presum-
ably create larger overlap to those states than the foukguaerators. This in turn confirms the
interpretation of the two low-lying states as two-partistates.

3. To investigate the overlap in a more quantitative way, ha@asthe squared eigenvector
components of the two low-lying states in Figlite 1c and Féfd (cf. Ref. [B] for a more detailed
discussion of such eigenvector components). Clearlyothedt state is ofs+ rrtype, whereas the
second lowest state is Bf+ K_type. On the other hand, the two four-quark operators asnéafly
irrelevant for resolving those states. These eigenvedtas give additional strong support of the



Lattice investigation of the tetraquark candidate$380) and K Jan Oliver Daldrop

above interpretation of the two low lying states as two-ipkristates.
4. The estimated energy levels of two-particle excitatiwite one relative quantum of momen-
tum are consistent with the effective mass plateaus of thenskand third excitation in Figuf¢ 1b.

Figure[la and Figuié 1b also demonstrate that two-partiatesscan be resolved by four-quark
operators, i.e. two-particle operators are not necegssided, to extract the full spectrum. Since
we are mainly interested in possibly existing states witti@ng four-quark component, we restrict
the correlation matrices computed for other ensemblesuedoark operators.

3.2 ap(980): four-quark operators, many ensembles

We have analyzed the three additional ensembles listedhte flawith respect t@p(980) in
a similar way as explained in the previous subsection. Thia wiference is that this time we
exclusively use four-quark operators, but no two-partmperators. To be able to resolve more
than two low-lying states, we use the operai@iso Og.

An effective mass plot for the A30.32 ensemble (cf. Tgblesi3hiown in Figurg]2 together
with the expected energy levels of the relevant two-partitates and the masses extracted by fits.
The effective mass plots for the other ensembles will be shiavean upcoming publication.

On a qualitative level our findings agree for all ensembles,are as reported in the previous
subsection: there are always two low-lying states, whosgsesaare consistent with the expected
masses of the two-particle+ K_andns+ rtstates; higher excitations (the third, forth, etc. exeect
state) are in all cases significantly heavier and consistétht two-particle excitations with one
relative quantum of momentum.

ap(980) sector K sector

T T T - T T T T T T
3.0 L m(K[k]) + m(K[-k]) —— | 30 | m(K[k]) + m(n[—k]) (light I =1/2,3/2 comb.)
H 3 m(ns[k]) +m(m[—k]) -~ . m(K|[k]) + m(n[—k]) (heavy I =1/2,3/2 comb.) -
ﬁ mass from fit 1 cloos mass from fit
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Figure 2: Effective masses as functions of the temporal separatiothtoaf(980) andk sector for the
A30.32 ensemble. Horizontal lines indicate the expecteatpgarticleK + K and ns+ 1T energy levels.
Additionally, the masses extracted from fits are included.

3.3 k: four-quark operators, many ensembles

The analysis for th& sector ((J7) = 1/2(07)) closely parallels the analysis of tiag(980)
sector presented above. We consider®correlation matrices containingkarr molecule operator
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analogue tdD; and further operators correspondingdgto Os with the appropriate valence quark
content, so that our operators are essentially identictiidse considered in Ref][6].

In twisted mass lattice QCD the isosgilis not a quantum number. Therefore, it is not suffi-
cient to only resolvd = 1/2 two-particleK + 17 states. One has to take into account also mixing
with | = 3/2 two-particleK + 77 states, i.e. it is necessary to resolve these low-lying praxticle
states at the same time (details will be discussed in an upggpublication).

An effective mass plot for the A30.32 ensemble is shown inifé[ together with the expected
energy levels of two-particl& + 17 states and the masses extracted by fits. While effective mass
plateaus are consistent with these expected two-particdegg levels, there is no indication of
any additional low lying state, i.e. of a possibly existingubd four-quarkk state. While this is
suggested by experimental data, it contradicts the findafigise similar recent lattice study a&f

[l

4. Summary and Outlook

We computed the low-lying spectrum in thg(980) andk sectors by employing trial states
designed to have a substantial overlap with both two-parsicd possibly existing tetraquark states.
With our ensembles, we did not see additional states belsafe tthat can be identified with the
expected two-particle spectrum. The next states appeghlpgonsistent with excitations of the
first quantum of momentum (&/L) on top of those thresholds. This is somewhat difficult te rec
oncile with the additional state found in Rdf] [6] in tkechannel, despite the rather similar lattice
setups.

We find that the low lying spectrum has essentially exclugivwerlap to two-particle trial
states. This suggests that the states that we see are, itlideedpected two-particles states at the
threshold and not tightly bound states either of molecylpe or diguark-antidiquark type.

These conclusions can be strengthened by studying morenesluby introducing twisted
boundary conditions[[]14] and by studying further trial stabf different type. As for the latter,
it will be crucial to combine four quarks with traditional gik-antiquark operators including dis-
connected diagrams. As for the volume dependence, we plasetthe finite volume formulae of
Luscher [L[RIB[]4[]5] and their extensions to multiple clegsdeveloped in Refd. [ILp,]16, 17] 18].
At present, our limited number of volumes is insufficient garch an analysis. Corresponding
computations are in progress.
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