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Zusammenfassung: Über die Wechselwirkung von thermischen
Gezeiten und Schwerewellen in der mittleren Atmosphäre

Einleitung

Die mittlere Atmosphäre ist ein besonderer Teil des Klimasystems. Sie ist nicht im direk-
ten Kontakt mit der Erdoberfläche und hat doch großen Einfluss auf uns. Der chemische
Bestandteil Ozon, welcher in der mittleren Atmosphäre maximale Konzentrationen hat,
sorgt zum Beispiel für eine Absorption von gefährlicher UV-Strahlung und bildet so-
mit einen Schutzschild für uns Menschen. Aber auch dynamische Mechanismen, die zur
Kopplung zwischen der unteren und mittleren Atmosphäre führen, sind von besonderem
wissenschaftlichen Interesse. Atmosphärische Wellen, welche über einen großen Bereich
von Raum- und Zeitskalen existieren, breiten sich von der unteren zur mittleren Atmo-
sphäre aus und tragen in einem bedeutendem Maße zum Austausch von Energie und
Impuls zwischen beiden Bereichen bei. Das Spektrum der Wellenaktivität reicht dabei
von planetaren Wellen, wie thermischen Gezeiten, bis hin zu mesoskaligen Phänomenen,
wie brechenden Schwerewellen. Doch gerade die enorme Spannbreite von Skalen, invol-
viert in die Dynamik der mittleren Atmosphäre, macht ihre detaillierte Beschreibung zu
einer anspruchsvollen Aufgabe.

Im zeitlichen Mittel hat die mittlere Atmosphäre eine besondere Temperaturstruk-
tur. Ausgehend von der Tropopause bei ca. 10 km bis 15 km nimmt die Temperatur in
der darüber liegenden Luftschicht, der Stratosphäre, durch die Absorption von solarer
Strahlung zu. Die Stratopause bei ca. 50 km bis 60 km markiert mit mehr als 10◦C die
Höhe des Temperatur-Maximums. Oberhalb davon, in der Mesosphäre, sinkt die Luft-
temperatur wieder, da die Konzentration der mit der Solarstrahlung wechselwirkenden
Konstituenten abnimmt. Besonders außergewöhnlich ist die Temperaturabnahme in der
Mesosphäre während der Sommersonnenwenden. In der polaren Sommermesopause bei
ca. 85 km, also gerade dort, wo während des polaren Tages permanent die Sonne scheint,
werden die kältesten Temperaturen von unter −140◦C erreicht. Dieses bemerkenswer-
te Phänomen führt zur Bildung von nachtleuchtenden Eiswolken in dieser Höhe, die
während des Sommers von mittleren und hohen Breiten aus beobachtet werden können.

Die globale residuelle Zirkulation, welche den Sommer- mit dem Winterpol verbin-
det, trägt wesentlich zur thermischen Struktur der mittleren Atmosphäre bei. Im Mittel
steigt die Luft über der tropischen Tropopause auf und wird in der Stratosphäre zum
Winterpol transportiert. Diese großräumigen Luftbewegungen bewirken anomale Ozon-
Konzentrationen in hohen Breiten und sind bekannt als Brewer-Dobson-Zirkulation. In
der Mesosphäre reicht die residuelle Zirkulation bis zur Sommerhemisphäre und führt zu
einem Aufsteigen der Luft über dem Sommerpol und einem Absinken über dem Winter-
pol. Durch die Druckabnahme dehnen sich aufsteigende Luftpakete aus und werden somit
adiabatisch gekühlt, während absinkende Luftpakete sich durch die wirkende Kompres-
sion erwärmen. So entwickeln sich eine dynamisch induzierte, kalte Sommermesopause
und eine warme Winterstratopause.

In der Mesosphäre kann die globale residuelle Zirkulation hauptsächlich auf das Bre-
chen von Schwerewellen zurückgeführt werden. Diese Wellen, bei denen Luftpakete in
einer stabil geschichteten Atmosphäre um ihre Gleichgewichtslage schwingen, werden
überwiegend durch Gebirge, Gewitterwolken, Fronten und dynamische Instabilitäten in
der Troposphäre angeregt. Sie transportieren Energie und Impuls aufwärts und beein-
flussen entscheidend die mittlere Energie- und Impulsbilanz in den Regionen, wo sie
durch Instabilitäten in kleinere turbulente Strukturen zerfallen. Die Vielzahl von bre-
chenden Schwerewellen-Paketen erzeugt eine mittlere Kraft und treibt so die globale
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residuelle Zirkulation an.

Ein weiterer wichtiger Kopplungsmechanismus zwischen unterer und mittlerer Atmo-
sphäre sind thermische Gezeiten. Diese großskaligen atmosphärischen Wellen werden
hauptsächlich durch die Erwärmung der Luft auf der Tagseite der Erde verursacht.
Entscheidend sind dabei die Absorption von solarer Strahlung von Ozon und Wasser-
dampf sowie die Freisetzung von latenter Wärme. Thermische Gezeiten sind periodische,
großräumige Fluktuationen in Temperatur und Wind. Sie sind harmonische Oszillatio-
nen mit Perioden von 24 h, 12 h und höheren Vielfachen und dominieren mit Amplituden
von bis zu 30 K und 50 m/s die Tages-Variabilität in der oberen Mesosphäre.

Die Wechselwirkung zwischen Schwerewellen und Gezeiten wird in der Mesosphäre
wichtig. Zum einen verändern die periodischen Strömungsmuster der Gezeiten die Aus-
breitungsbedingungen der Schwerewellen. Schwerewellen-Pakete werden in ihren Eigen-
schaften zeitlich verändert, destabilisiert und in ihrem Brechungsvorgang beeinflusst.
Zum anderen entstehen durch die periodische Modulation von Schwerewellen periodi-
sche Kräfte und Heizraten, welche auf die thermischen Gezeiten zurückwirken. Dieser
Effekt ist besonders in den Regionen wichtig, wo Schwerewellen-Pakete durch ihren tur-
bulenten Zerfall, Impuls und Energie auf die großskalige Strömung übertragen. Dort
erhöht sich zusätzlich der Einfluss der kleinskaligen turbulenten Mischung, welcher sich
destruktiv auf die Gezeitenwellen auswirkt.

Die vielen Raum- und Zeitskalen, die bei der Wechselwirkung von Schwerewellen und
Gezeiten wichtig sind, machen es unmöglich, alle involvierten Prozesse mithilfe von
detaillierten numerischen Simulationen zu ergründen. In der Vergangenheit wurden des-
halb die großskaligen Gezeitenwellen mithilfe von linearen und nicht-linearen Modellen
untersucht, die kleinskaligen Prozesse aber, wie Schwerewellen und Turbulenz, durch
Parametrisierungen nur näherungsweise beschrieben. Es konnte gezeigt werden, dass ei-
ne durch Gezeitenwinde periodisch modulierte Schwerewellen-Kraft die Phasenlage der
Gezeiten verschiebt und so die vertikale Wellenlänge der Gezeiten verringert. Allerdings
wurden verschiedene Effekte auf die Gezeitenamplitude beobachtet und auf unterschied-
liche Formulierungen in den Anfangsspektren und Dissipationsmechanismen der para-
metrisierten Schwerewellen zurückgeführt. Da ein Großteil der bisherigen Studien kon-
ventionelle Schwerewellen-Parametrisierungen mit sehr restriktiven Annahmen benutzt,
ist es jedoch äußerst fraglich, inwieweit eine solche Beschreibung für das Ergründen
der Schwerewellen-Gezeiten-Wechselwirkung hinreicht. Für diese Arbeit wurde deswe-
gen das Ziel gesetzt, die Defizite der konventionellen Beschreibung der Schwerewellen-
Ausbreitung in realistischen Gezeiten zu quantifizieren.

Die Methodik:
”

Ray Tracing“

Die detaillierte mathematische Beschreibung eines Schwerewellen-Feldes in einer sich
verändernden Hintergrundströmung ist für realistische Fälle sehr aufwendig. Eine kla-
re Interpretation der dynamischen Mechanismen für Veränderungen im Wellenfeld ist
schwierig. Wie in dieser Arbeit ausführlich diskutiert, kann aber mithilfe der sogenann-
ten multiplen Skalen-Asymptotik eine Reduktion auf die wesentliche Dynamik der Wel-
len vollzogen werden. Es werden nur lokal-monochromatische Wellenpakete betrachtet,
denen man eine Frequenz, einen Wellenvektor und eine Amplitude als einzigste Eigen-
schaften zuordnet. Die kleinskaligen Fluktuationen der Wellenphasen werden nicht be-
trachtet. Aus dem Wellenpaket wird eine Art Wellenteilchen, das die genannten Eigen-
schaften besitzt und sich mit seiner Gruppengeschwindigkeit fortbewegt. Durch den Pfad
des Wellenteilchens entsteht ein Strahl, woraus sich der Name Strahlmodell oder

”
Ray

Tracing“ ableitet. Entlang eines Strahls können sich die Eigenschaften des Wellenfeldes

VI



abhängig von den Symmetrien der Hintergrundströmung ändern. Analog zu konven-
tionellen Schwerewellen-Parametrisierungen, die meist als vertikale Säulen aufgebaut
sind, basiert die

”
Ray Tracing“-Methode auf einschneidenden Näherungen. Zum Bei-

spiel können Reflexionen, Überlagerungen und nichtlineare Wechselwirkungen von meh-
reren Wellenfeldern, und der turbulente Zerfall nur unzureichend beschrieben werden.
Im Gegensatz zu konventionellen Schwerewellen-Parametrisierungen werden aber mit
der

”
Ray Tracing“-Methode sowohl die Effekte durch zeitliche Variabilität als auch die

Effekte durch horizontale Inhomogenitäten in der Hintergrundströmung berücksichtigt.
Deshalb kann ein Strahlmodell wichtige Einblicke in den Ablauf dynamischer Prozesse
während der Schwerewellen-Gezeiten-Wechselwirkung bieten und kann die Fehler durch
die strengeren Annahmen in den konventionellen Parametrisierungen quantifizieren.

Die
”
Ray Tracing“-Methode wurde in der Vergangenheit benutzt, um klein- bis me-

soskalige Schwerewellen-Pakete in einfachen periodischen Hintergrundströmungen zu
untersuchen. Es stellte sich heraus, dass die zeitliche Veränderung der großskaligen
Strömungen eine Modulation der Schwerewellen-Frequenz verursacht, während die räum-
liche Änderung auf die Komponenten des Wellenvektors wirkt und eine Refraktion
der Welle hervorruft. In der vorliegenden Arbeit wird die

”
Ray Tracing“-Methode auf

die Problemstellung der Schwerewellen-Gezeiten-Wechselwirkung angewendet. Vom Au-
tor wurde das globale Strahlmodell RAPAGI1 entwickelt, welches im besonderen Ma-
ße den Einfluss der Gezeitenwellen auf nach oben propagierende Schwerewellen-Pakete
berücksichtigt. Realistische Gezeitenfelder werden aus dem Zirkulationsmodell HAM-
MONIA2 entnommen. Dieses am Max-Planck-Institut für Meteorologie in Hamburg
entwickelte Modell ist eines der führenden Klimamodelle der mittleren Atmosphäre.
Ganztages-Schwingungen in Wind und Temperatur aus HAMMONIA werden als Aus-
breitungsbedingung für Schwerewellen-Pakete festgelegt und in das globale Strahlmodell
RAPAGI übergeben.

Im Folgenden werden drei verschiedene Experimente für RAPAGI beschrieben, um
den Einfluss von zeitlicher Periodizität und horizontaler Inhomogenität der Gezeiten-
wellen auf die Schwerewellen-Dynamik zu untersuchen. Für alle Experimente wird ein
Schwerewellen-Ensemble aus 14 Komponenten benutzt, bei denen die einzelnen Anteile
homogene und stationäre Anregungsbedingungen in einer Höhe von ca. 20 km haben.
Das Ensemble wird so gewählt, dass zum einen der mittlere Schwerewellen-Effekt im
Mesopausen-Bereich hinreichend gut repräsentiert ist, zum anderen jedoch die Interpre-
tation der zeitlichen und räumlichen Variabilität in den Schwerewellen-Eigenschaften
vereinfacht wird. Da konventionelle Parametrisierungen von Schwerewellen typischer-
weise keine zeitlichen Änderungen und auch nur vertikale Gradienten der großskali-
gen Strömungen berücksichtigen, wird ein globales

”
Ray Tracing“-Experiment erstellt,

welches sowohl die zeitliche als auch die horizontale Abhängigkeit der HAMMONIA-
Felder ignoriert und somit den konventionellen Ansatz nachstellt (

”
TS“-Experiment).

Im zweiten Experiment werden hauptsächlich horizontale Gradienten des Hintergrunds
vernachlässigt und die horizontale Propagation der Schwerewellen verhindert (

”
noREF“-

Experiment). Wellenpakete breiten sich nur vertikal aus, haben aber im Gegensatz zum

”
TS“-Experiment eine endliche Ausbreitungsgeschwindigkeit und spüren demnach die

zeitliche Veränderung der Gezeitenwellen. Im dritten Experiment wird das Strahlmodell
RAPAGI ohne Approximationen benutzt (

”
full“-Experiment). Es dient als Referenz. Die

Modulation der Schwerewellen-Frequenz und die endliche vertikale Informationsausbrei-
tung tritt in den beiden Experimenten

”
noREF“ und

”
full“ auf, während die Refraktion

1

”
RAy PArameterization of Gravity-wave Impacts“

2

”
HAmburg MOdel of the Neutral and Ionized Atmosphere“
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der horizontalen Schwerewellenzahlen und die horizontale Ausbreitung der Wellenpakete
nur im Experiment

”
full“ möglich ist.

Aus den globalen
”
Ray Tracing“-Simulationen wird für das erwähnte Schwerewellen-

Ensemble eine zeitlich mittlere und eine periodische Kraftwirkung abgeschätzt. Sie ist
besonders dann wichtig, wenn der turbulente Zerfall der Wellen einsetzt. Aber gera-
de dieser Prozess wird weder in konventionellen Parametrisierungen noch in der

”
Ray

Tracing“-Methode realistisch beschrieben. Eine einfache Abschätzung der turbulenten
Dämpfung wird durch das Sättigungs-Schema gegeben, welches trotz seiner Defizite bei
konventionellen Parametrisierungen verbreitet ist und auch in der vorliegenden Arbeit
verwendet wird. Darin wird das ungehinderte Anwachsen der Schwerewellen-Amplituden
beschränkt, wenn die Schwelle zur konvektiven Instabilität innerhalb des betrachteten
Wellenfeldes überschritten wird.

Ergebnisse

Die vorliegende Arbeit besteht aus zwei wichtigen Teilbereichen. Zum einen wird eine
konsistente, theoretische Basis für die Schwerewellen-Gezeiten-Wechselwirkung geschaf-
fen und zum anderen werden numerische Simulations-Experimente zur Quantifizierung
der Mechanismen während der Wechselwirkung durchgeführt.

Im ersten Teil wird die großskalige Dynamik aus den fundamentalen Erhaltungssätzen
abgeleitet und schrittweise wichtige Näherungen und ihre zugrundeliegenden Annahmen
erläutert. Die mittleren dynamischen und thermodynamischen Effekte durch subskali-
ge Phänomene, welche Schwerewellen und die durch sie erzeugte Turbulenz beinhalten,
werden detailliert hergeleitet. Es wird gezeigt, dass die Formulierung der Kräfte und
Heizraten von der Art der Filterung der großskaligen Dynamik abhängt. Sowohl die
ortsgebundene Eulersche Mittelung als auch die mitbewegte Lagrangesche Mittelung
werden untersucht und die wichtigsten Unterschiede zwischen beiden herausgestellt.
Als unmittelbare Folge der Unterschiede zwischen beiden Formulierungen ergibt sich,
dass die Art der Subskalen-Parametrisierung von der Interpretation der aufgelösten,
mittleren Strömung abhängt. Mithilfe der multiplen Skalen-Asymptotik und der WKB-
Theorie3 wird für die Dynamik von Schwerewellen ein System von Gleichungen abge-
leitet, welches die großskalige Veränderung von Schwerewellen-Eigenschaften wie zum
Beispiel Frequenz und Wellenvektor beschreibt. Bei der Ableitung dieser

”
Ray Tra-

cing“-Gleichungen werden die benutzten Annahmen intensiv diskutiert. Speziell kann
eine nahtlose Beschreibung von Schwerewellen vom nicht-hydrostatischen Grenzfall bis
hin zur Trägheits-Schwerewelle nur durch eine künstliche Hybridisierung der zu Grun-
de liegenden approximativen Gleichungen erreicht werden. Dies folgt aus dem unter-
schiedlichen Skalenverhalten der verschiedenen Schwerewellen-Regime und wurde in der
bisherigen Literatur nicht hinreichend betrachtet.

Im zweiten Teil werden mithilfe der
”
Ray Tracing“-Methode realistische Experimente

zur Schwerewellen-Gezeiten-Wechselwirkung durchgeführt. In diesem Rahmen wird zum
ersten Mal die Gültigkeit der Annahmen von konventionellen Schwerewellen-Parametri-
sierungen untersucht. Zwei wichtige Effekte der thermischen Gezeiten und des klima-
tologischen Strömungsfeldes werden herausgestellt. Zum einen verursachen die zeitlich
periodischen Schwankungen der Gezeitenwinde eine Modulation der ortsgebundenen Fre-
quenz eines Schwerewellen-Paketes. Zum anderen werden durch horizontale Gradienten
in der gesamten Hintergrundströmung Schwerewellen-Pakete horizontal abgelenkt. Die
entstehende Refraktion der horizontalen Wellenzahl kann die horizontale Struktur des
Schwerewellen-Feldes entscheidend verändern und zu einer Drehung sowie zur Stauchung

3Wentzel-Kramers-Brillouin-Theorie
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bzw. Streckung der Welle führen. Bei der horizontalen Refraktion ist der Einfluss des
zonal gemittelten, klimatologischen Zonalwindes besonders wichtig. Durch beide Effek-
te, Frequenz-Modulation und horizontale Refraktion, werden Schwerewellen-Pakete so
modifiziert, dass sich auch die Kräfte und Heizraten, die bei ihrem turbulenten Zerfall
entstehen, signifikant verändern. Eine genaue Erläuterung wird im Folgenden gegeben.

Durch die Frequenz-Modulation erfolgt ein Austausch von Energie zwischen der Hinter-
grund-Strömung und dem Wellenpaket. Im gleichen Maße wie die Frequenz wird auch
die horizontale Phasengeschwindigkeit der Schwerewellen, die der Quotient aus Frequenz
und horizontaler Wellenzahl ist, verändert. Die Modulation der Phasengeschwindig-
keit hat bedeutende Auswirkungen auf das Verständnis der Schwerewellen-Gezeiten-
Wechselwirkung. Im konventionellen Bild werden eine Momentaufnahme des vertikalen
Verlaufs des Hintergrundwindes und eine als konstant angenommene horizontale Pha-
sengeschwindigkeit gegenüber gestellt. Schwerewellen, die gegen den Wind laufen, haben
beste Ausbreitungsbedingungen. Nähert sich die Geschwindigkeit des Hintergrundwin-
des an die Phasengeschwindigkeit der Wellen an, schrumpft das betrachtete Wellenpa-
ket vertikal bei gleichzeitigem Amplitudenwachstum. Setzt sich dieser Vorgang fort, wird
das Wellenpaket destabilisiert und bricht an einer sogenannten kritischen Schicht, an der
Wind und Phasengeschwindigkeit den gleichen Wert haben. In der Brechungshöhe tritt
die maximale durch Schwerewellen induzierte Kraftwirkung und Heizrate auf. Im Be-
reich der oberen Mesosphäre verändern aber die periodischen Schwankungen der Gezei-
ten signifikant die Hintergrundströmung. Die konventionelle Theorie der Schwerewellen-
Gezeiten-Wechselwirkung sagt dann voraus, dass sich transiente, kritische Schichten
bilden, die mit der Gezeitenphase nach unten wandern und somit eine stark lokalisierte,
periodische Kraft entsteht. Diese Abschätzung ist aber problematisch, da hier weder
die endliche vertikale Ausbreitungsgeschwindigkeit der Schwerewellen noch der Einfluss
der Zeitabhängigkeit der Gezeiten auf Schwerewellen-Eigenschaften in Betracht gezo-
gen werden. Die periodischen Schwankungen modulieren die horizontale Schwerewellen-
Phasengeschwindigkeit so, dass sie dem Gezeitenwind folgt. Es entsteht eine Art Aus-
weichbewegung, die die kritische Filterung verringert und die Kraftwirkung auf einen
größeren Höhenbereich verteilt. Die periodische Schwerewellen-Kraft, und demnach auch
der Einfluss der durch Gezeiten modulierten Schwerewellen zurück auf die Gezeitenwel-
len selbst, ist in Wirklichkeit kleiner als von der konventionellen Abschätzung erwartet.
Mithilfe des

”
noREF“-Experiments wird für die realistischen Strömungsfelder aus dem

Modell HAMMONIA im Vergleich zum
”
TS“-Experiment eine Verringerung der peri-

odischen Schwerewellen-Kraft im Mittel um 30 % gefunden. Lokal wird die Kraft aber
um bis zu 90 % reduziert.

Ebenso wird die Wirkung von horizontalen Inhomogenitäten der Hintergrundströmung
auf Schwerewellen in konventionellen Parametrisierungen ausgeblendet. Auch diese Ef-
fekte werden mithilfe der

”
Ray Tracing“-Methode untersucht und Veränderungen in

den Schwerewellen-Eigenschaften sowie in den durch Schwerewellen induzierten mitt-
leren und periodischen Kräften quantifiziert. Die horizontale Refraktion verändert die
Richtung und Länge des horizontalen Wellenvektors der Schwerewellen und zusammen
mit der horizontalen Wellenausbreitung auch die Verteilung der Wellenpakete im Raum.
Vornehmlich haben die meridionalen Gradienten des mittleren zonalen Windes Einfluss
auf die Wellen-Refraktion. Wellenpakete, die gegen die Hintergrundströmung laufen,
werden in der Stratosphäre in das Maximum der Wind-Jets hineingeführt. Durch dieses
Verhalten wird analog zum Fermatschen Prinzip der geometrischen Optik die Laufzeit
der Schwerewellen in der mittleren Atmosphäre minimiert. Es entsteht eine Fokussie-
rung von Schwerewellen-Feldern, bei gleichzeitiger Zunahme der meridionalen Wellen-
zahl. Durch diesen Effekt wird der Betrag des horizontalen Wellenvektors im Experiment
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”
full“ im Mittel um ca. 10 % vergrößert. Dies hat zur Folge, dass sich die horizontale

Phasengeschwindigkeit im Mittel um den selben Betrag verringert und infolgedessen
Schwerewellen-Pakete früher destabilisiert werden und zerfallen. Außerdem wird der
Schwerewellen-Impulsfluss reduziert und die mittlere Kraft auf die Hintergrundströmung
im

”
full“-Experiment im Mittel um ca. 20 % bis 30 % verkleinert. Die Reduktion der

zeitlich mittleren Schwerewellen-Kraft bewirkt unmittelbar auch eine Verringerung der
periodischen Schwerewellen-Kraft um einen vergleichbaren Betrag. Die horizontale Wel-
lenausbreitung führt im

”
full“-Experiment zu räumlichen Verschiebungen der Wellen-

felder. Typische Distanzen zwischen den Positionen von Wellenpaketen bei 20 km und
80 km Höhe betragen 20◦ bis 30◦ sowohl in Länge als auch in Breite.

Die periodische Kraft durch Schwerewellen-Dämpfung wirkt zwar zurück auf die Ge-
zeitenwellen, doch die dynamische Rückkopplung zwischen beiden wird in dieser Ar-
beit nicht vollzogen. Vielmehr werden äquivalente Rayleigh-Koeffizienten berechnet, um
die Rückwirkung der Schwerewellen-Kräfte auf die Gezeiten abzuschätzen. Für diese
komplexen Koeffizienten wird die periodische Kraft auf den Gezeitenwind und dessen
Tendenz projiziert, da die effektive Wirkung von der Phasenlage zwischen Kraft und
Wind abhängt. Der Realteil des äquivalenten Rayleigh-Koeffizienten beschreibt den An-
teil der Schwerewellen-Kraft, der genau in Phase oder Gegenphase zum Wind liegt. Der
Imaginärteil des äquivalenten Rayleigh-Koeffizienten jedoch resultiert aus der Kraft-
komponente, die um 90 Grad zum Gezeitenwind phasenverschoben ist. Für das

”
TS“-

Experiment, welches die Annahmen bei konventionellen Parametrisierungen nachstellt,
werden positive Realteile und negative Imaginärteile der Rayleigh-Koeffizienten gefun-
den. Erstere weisen auf eine Abschwächung der Gezeitenamplituden hin und sind ein
typisches, aber in der Literatur kontrovers diskutiertes Ergebnis der Sättigungsannahme
für brechende Schwerewellen. Zweitere zeigen eine Verkleinerung der vertikalen Gezeiten-
Wellenlänge an. Im Experiment

”
full“ verursachen sowohl Frequenz-Modulation als auch

horizontale Refraktion eine Verringerung der äquivalenten Rayleigh-Koeffizienten. Der
Imaginärteil der Rayleigh-Koeffizienten bleibt vorrangig negativ. Der Betrag seiner Mi-
nima im Bereich der Mesopause wird auf der Winterhemisphäre um den Faktor vier
reduziert, während er sich um einen vergleichbaren Betrag auf der Sommerhemisphäre
erhöht. Der Realteil der Rayleigh-Koeffizienten wird drastisch verringert. Die Maxima
im Mesopausen-Bereich reduzieren sich um einen Faktor zwei bis vier. In Polnähe und
in der unteren Thermosphäre ist so gut wie keine Dämpfung der Gezeiten durch Schwe-
rewellen im

”
full“-Experiment zu erwarten. Da die Rayleigh-Koeffizienten nur eine erste

Abschätzung für den Einfluss vom brechenden Schwerewellen auf Gezeiten bieten, wird
in Zukunft eine interaktive Kopplung zwischen beiden Wellenphänomenen benötigt, um
die Erkenntnisse über deren Wechselwirkung weiter zu vertiefen. Des weiteren muss
über eine Schwerewellen-Anregung durch realistische Erzeugungsmechanismen in der
Troposphäre nachgedacht werden. Die Schwerewellen-Gezeiten-Wechselwirkung bleibt
also eine anspruchsvolle, aber spannende Aufgabe.
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1. Introduction

1.1. On middle atmosphere dynamics

The middle atmosphere is a fascinating part of the climate system. It is not directly
in contact with surface of the earth but it strongly influences our life. For instance, in
the middle atmosphere important chemical species such as ozone are present. It absorbs
energy from then sun and protects us from dangerous UV radiation. Recently, the
dynamical coupling between the middle atmosphere and the troposphere has become the
focus of scientific interest (e.g the SPARC initiative 1). Waves excited in the troposphere
encounter various propagation conditions on their way up and can act back in different
ways on the lower atmosphere. The spectrum of wave activity ranges from planetary
structures such as solar thermal tides to mesoscale phenomena like gravity waves. The
huge range of scales involved makes the dynamics of the middle atmosphere a challenging
task.

The special vertical structure of the middle atmosphere is shown in fig. 1.1. Above

Figure 1.1.: The zonal-mean zonal wind [ū] (left) and the zonal-mean temperature [T̄ ] (right)
in the lower and middle atmosphere for mean January conditions obtained from HAMMONIA
data (see section 3.1).

the cold tropopause, from about 10 km to 15 km, the mean temperature rises. In the
summer hemisphere, ozone heating is responsible for that increase, but in the winter,
dynamical effects are responsible. The mesosphere starts above the warm stratopause,
located between about 50 km and 60 km. Here, the concentration of radiatively active
air constituents strongly decreases, and the average temperature diminishes accordingly.
Contrary to our intuition, however, the coldest region in the middle atmosphere is a
place where the sun continuously shines, the polar summer mesopause. With average
temperatures below 130 K, it is the coldest place in the whole atmosphere. Two wind

1Information is available at http://www.atmosp.physics.utoronto.ca/SPARC/index.html
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systems dominate the middle atmosphere. As shown in fig. 1.1, the west-wind vortex
controls motion in the winter hemisphere and the east-wind jet the summer hemisphere
with wind speeds up to 80 m/s. Above the mesopause region, the zonal wind reverses.

The mean residual circulation connecting the summer to the winter pole causes the ex-
traordinary temperature structure of the middle atmosphere. On average, air rises above
the tropical tropopause and is transported to the winter pole in the stratosphere. These
large-scale motions, known as the Brewer-Dobson circulation, explain the anomalous
ozone concentrations in high winter latitudes [Andrews et al., 1987]. In the mesosphere,
this circulation extends to the summer hemisphere and induces ascending motion at
the summer pole and descending motion at the winter pole with an inter-hemispheric
coupling between the two. Due to the enormous decrease in background pressure with
altitude, rising air packets expand and descending air packets are compressed. Adiabatic
cooling results in the first case and adiabatic warming in the second. A dynamically
induced cold summer mesopause and warm winter stratopause develop as a result.

It is believed that mesoscale gravity waves excited by e.g. orography, deep convec-
tion and dynamical instability processes are the main cause of the residual circulation
in the mesosphere [Fritts and Alexander , 2003]. Since the pioneering work of Lindzen
[1981], Dunkerton [1982] and Holton [1982], the mechanisms of wave driving have been
well established. The breaking of mesoscale gravity waves exerts a mean force in the
mesopause region that differs between the two hemispheres. In the winter west-wind
jet, preferentially westward propagating gravity waves reach the mesopause and de-
posit their negative zonal pseudo-momentum2. A negative zonal force results in the
winter mesosphere/lower thermosphere (MLT). The opposite happens in the summer
hemisphere where there is a corresponding positive force. Climatologically, the mean
gravity-wave forces are approximately balanced by a mean Coriolis torque which pushes
air northward on both hemispheres in winter. Hence, the inter-hemispheric pole-to-
pole circulation and the temperature structure far from radiative equilibrium are the
consequences of the impact of mesoscale gravity waves on middle atmosphere dynamics.

Another important coupling mechanism between lower and middle atmospheres are
solar thermal tides. They are large-scale atmospheric waves which are excited mainly by
solar heating of ozone in the stratosphere and by heating of water vapor and latent heat
release in the upper troposphere [Chapman and Lindzen, 1970]. Thermal tides were
first investigated with respect to surface pressure, where their impact is small [Lindzen,
1990]. But as tidal waves propagate upward, the extreme decrease in density leads to
increasing perturbations in wind and temperature as less mass is transported by tidal
oscillations. In the MLT region, the amplitudes are considerably large and dominate
the diurnal variability.

1.2. Interaction of gravity waves and thermal tides

As the Earth’s atmosphere is continuously heated by the sun, tidal waves are always
present in the middle atmosphere, even though their magnitude may undergo large
variations [Lieberman et al., 2007; Liu et al., 2007]. Hence, the background conditions
for gravity-wave propagation are periodically modulated by tidal perturbations. These
impacts on gravity waves are far from being small. Therefore, the understanding of

2 As discussed by McIntyre [1981], the physical momentum is not necessarily a property which is locally
attached to the waves. For gravity waves, the term “pseudo-momentum” (see also Bühler [2009] and
section 4.4) is more appropriate to describe a wave quantity which appears in the mean momentum
budget.
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the interaction of gravity waves and thermal tides is important for an understanding of
many processes in the middle atmosphere.

For the interaction between gravity waves and thermal tides, one might discriminate
between the impact of tides on gravity waves and the impact of gravity waves on tides.
Clearly, the two are non-linearly connected, but this type of linear thinking can illu-
minate several important mechanisms of the interaction process. First, as mentioned,
thermal tides change the background conditions for gravity-wave propagation. It is
mainly the tidal winds that are responsible for major changes in gravity-wave proper-
ties. Thermal tides can destabilize gravity-wave packets and modify the gravity-wave
breaking process. Second, due to the periodic modulation of gravity-wave fields, peri-
odic gravity-wave forces and heating rates result especially when gravity waves deposit
their pseudo-momentum and energy in the wave-breaking process. The enhanced tur-
bulent diffusion due to the decay of globally-distributed gravity-wave packets can also
strengthen the turbulent mixing of tidal properties. Finally, the induced tidal flows and
temperature perturbations can act back on the gravity waves and change their impact
on the tidal fields in a very non-linear way. Hence, a multitude of ways exists in which
gravity wave and thermal tides might affect each other and this had initiated many
investigations in the past.

The study of the interactions between gravity waves and thermal tides began with
the work of Fritts and Vincent [1987], Forbes et al. [1991] and Miyahara and Forbes
[1991], with simple qualitative interpretations of the impact of gravity waves based on
Lindzen’s saturation hypothesis [Lindzen, 1981] and with simplified linear modeling of
tidal waves. Subsequently, refinements of all aspects of the models and discussions
of the effect of different gravity-wave parameterizations were done within linear tidal
models [McLandress, 1997; Meyer , 1999; Ortland and Alexander , 2006] and non-linear
circulation models of the middle atmosphere including the diurnal cycle [Mayr et al.,
1999; Norton and Thuburn, 1999; Mayr et al., 2001; Akmaev , 2001; McLandress, 2002].
A weakness of all the mentioned modeling studies is that they applied gravity-wave
parameterizations with very restrictive assumptions.

Gravity-wave parameterizations typically work in vertical columns in which tempo-
ral and horizontal dependence of the background medium is neglected [McLandress,
1998]. Gravity-wave fields are assumed to adjust instantaneously to any change in the
whole vertical column. As tidal waves induce large and fast variations of the flow, it
is questionable whether the stationarity assumption is still valid. It is discussed in this
study how time-dependence and horizontal gradients can have a significant impact on
gravity-wave propagation and dissipation.

The more realistic behavior of small-scale gravity waves in a temporally changing
large-scale wave was investigated by several authors [Broutman, 1984; Broutman and
Young , 1986; Zhong et al., 1995; Eckermann and Marks, 1996; Sonmor and Klaassen,
2000; Sartelet , 2003]. This problem is of interest in both the atmospheric and the
oceanographic context. With the help of the ray-tracing method, motion of gravity-
wave packets were directly described. Changes in gravity-wave properties were found
which in some circumstances significantly differ from the estimate of the conventional
parameterization. Most of the mentioned studies have in common that the ray tracing
is applied in the presence of very simplified background waves. This motivated the
use of the ray-tracing method for mesoscale gravity waves in a background of more
realistic thermal tides obtained from climate model simulations. The comparison of
diurnal gravity-wave forces retrieved from the ray tracing simulations to the conventional
approach is one of our major concerns.

In contrast to the parameterization approach, high-resolution global simulations have
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been performed very recently by Watanabe and Miyahara [2009]; Becker [2012]. Al-
though dynamical processes which lead to the excitation of resolved gravity waves are
well captured in these investigations, the intermittent excitation of gravity waves by deep
moist convection is still not sufficiently well reproduced. Hence, one major gravity-wave
source in the tropics is still not available to complex simulation experiments. Addition-
ally, global models take only hydrostatic gravity waves into account. Furthermore, the
inherent complexity of such models complicates the interpretation of the results and
the formulation of explanations of the gravity wave-tidal interaction. Hence, models
of intermediate complexity as presented here are needed for a deeper understanding of
middle atmosphere dynamics.

1.3. On self-consistency in subgrid-scale parameterizations

Models are abstractions of real-world systems. In most situations, there is an inherent
impossibility to describe all essential parts of the dynamics sufficiently due to incom-
plete knowledge about the whole system or other, e.g. computational, restrictions. To
overcome this problem, unresolvable processes are approximately parameterized. In the
best case, parameterizations are based on physical understanding of the corresponding
process and satisfactorily constrained. In the worst case, parameterizations are just a
set of tuning parameters adjusted to meet the modeler’s needs.

In atmospheric modeling, parameterizations are mainly needed to describe small-
scale processes which are beyond the spatial and temporal model resolution threshold.
For instance, these include turbulent eddies and mesoscale gravity waves for middle-
atmosphere climate models. In recent years, the self-consistent formulation of subgrid-
scale parameterizations received large scientific attention. Several studies have been de-
voted to the angular momentum budget of turbulence parameterizations [Becker , 2001;
Burkhardt and Becker , 2006; Becker and Burkhardt , 2007] and gravity-wave parameteri-
zations [Shepherd and Shaw , 2004; Shaw and Shepherd , 2007; Shaw and Shepherd , 2009],
turbulent, dissipative heating [Boville and Bretherton, 2003; Becker , 2003a; Burkhardt
and Becker , 2006; Becker and Burkhardt , 2007] and direct gravity-wave heating [Becker
and Schmitz , 2002; Becker , 2004; Akmaev , 2007]. It was emphasized that parameteri-
zations of dynamical processes must not conflict with the underlying conservation law
structure of the flow dynamics. Conservation of angular momentum and total energy
and the 2nd law of thermodynamics are important restrictions which should be respected
in the formulation of a subgrid-scale parameterization.

1.4. Outline

This thesis consists of two main parts: In the first, the theoretical concept of the in-
teraction between thermal tides, gravity waves and induced turbulence is developed.
A major theme of the current study is parameterization self-consistency. Hence, the
terms in which the subgrid-scale gravity waves interact with the tides are derived here
with special care. It is one of the major aims of this thesis to provide the theoretical
framework for the interaction process. Assumptions in and restrictions to the current
study are lucidly discussed. The second part is devoted to the description and interpre-
tation of results obtained from ray-tracing simulations of gravity waves in thermal tides,
where the comparison between the complex ray simulations and the conventional param-
eterization reveals important insights into the impact of thermal tides on gravity-wave
propagation and dissipation.
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The impact of small-scales on the large-scale flow is derived in chapter 2 using anelastic
theory. Thermal tides are explained in chapter 3 with the help of a monthly mean daily
cycle obtained from the climate model HAMMONIA. Chapter 4 is devoted to gravity
waves, their structure, and their excitation mechanisms. Multiple-scale asymptotics and
Wentzel-Kramer-Brillouin (WKB) theory is applied to the linear dynamics of gravity
waves within a general moving basic state, and the ray-tracing method is derived for the
propagation of gravity waves in thermal tides. In chapter 5, global ray-tracing simula-
tions performed using the HAMMONIA data as background for wave propagation are
discussed. The impacts of time-dependence and horizontal structure of the background
conditions on the gravity-wave fields are studied. Three different ray-tracing experi-
ments with differing assumptions are presented, and the diurnal forcing due to gravity
waves in each is compared. The deficiencies of the conventional parameterization ap-
proach are evaluated. A summary and outlook is given in chapter 6 and supplementary
material is collected together in the appendix.

Some of the theoretical considerations were inspired by a work on multiple-scale
asymptotics by Achatz et al. [2010] to which the author contributed. A shortened ver-
sion of the discussion of the ray-tracing results appeared in the Journal of Geophysical
Research [Senf and Achatz , 2011]. Global ray-tracing simulations with a background
of thermal tides and the calculation of the corresponding diurnal forces have not been
done before to this extent. As most of the former studies of gravity wave-tide interac-
tion were based on conventional gravity-wave parameterizations, the careful evaluation
of the assumptions made in these parameterizations is of large scientific interest. The
present study was able to contribute significantly to this issue and to address at least
some of the problems appearing in vertical column parameterizations when temporal
and horizontal dependence of the background flow is taken into account. The work of
the author was financed as a project in the priority program CAWSES of the German
Science Foundation (DFG). A corresponding overview about the project activities was
given in Achatz et al. [2012]. Lastly, a derivation of generalized sound-proof dynamics
and its underlying variational structure is in preparation [Senf and Achatz , 2012].
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2. A hierarchy of flow phenomena

In this chapter, the theoretical basis of the interaction between gravity waves (GWs)
and thermal tides is provided. The main goal is to derive average GW effects, and this
is performed in detail to highlight the assumptions and approximation steps necessary
for a consistent description. To begin with, the fundamental conservation laws of an
ideal, dry, compressible fluid are reviewed, followed by a step-by-step reduction of the
underlying dynamics. First, anelastic theory is presented and discussed. Second, a
scale-selective filter is applied over turbulent scales, and then over gravity-wave scales.
It is shown that the corresponding gravity-wave forces and heating rates depend on the
type of averaging operator, i.e. the Eulerian or the Lagrangian mean. In other words,
from a modeler’s perspective the formulation of gravity-wave parameterizations depends
on the interpretation of mean values.

2.1. From compressible to sound-proof dynamics

2.1.1. Basic compressible flow

The fundamental conservation laws form the starting point of the detailed derivation
of average GW effects. An ideal, dry, compressible gas in a rotating frame of reference
is considered. Balance equations for the mass, momentum and total energy of a fluid
parcel can be derived and found e.g. in Lange [2002]:

ρDtv + 2Ω× ρv = ∇ · T− ρ∇Φ , (2.1)

Dtρ+ ρ∇ · v = 0 , (2.2)

ρDt

(
v2

2
+ e+ Φ

)
= ∇ · (T · v − q) + ρQ , (2.3)

where v is the three-dimensional wind, and Dt = ∂t + v · ∇ is the advective derivative.
The stress tensor T = F − p1 includes contributions of normal pressure p and tension
due to molecular friction F. Φ, e, q and Q are external force potential, internal energy,
heat flux crossing the fluid parcel’s boundary and rate of heating, respectively. From
the total energy eq. (2.3), changes in the fluid entropy per unit mass s are determined
by1

ρDts =
1

T
(F ··∇v + ρQ−∇ · q) . (2.4)

The fluid entropy can change by internal heating, i.e. by dissipation of mechanical
energy ε = F · ·∇v/ρ, and by an external input of heat Q − ∇ · q/ρ. The second law
of thermodynamics states that the entropy change is greater than the external input
of heat for an irreversible process. This constrains the dissipation rate ε to be positive
definite [Lange, 2002].

1 The notation is adapted from Lange [2002]: It is not explicitly distinguished between row and column
vectors. The dyadic product between a and b is denoted as ab. The scalar product between vectors
is a · b and between a dyad and a vector ab · c = a(b · c). In this way, the double scalar product is
defined, where the first scalar product is applied to the inner and the second to the outer vectors of
the dyads, i.e. ab ·· cd = (b · c)(a · d).
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2.1.2. On available energetics of the compressible dynamics

The set of compressible equations (2.1)-(2.3) supports several kinds of waves. But only
a small portion of the total potential energy e + Φ is converted into kinetic energy of
these waves and is called “available energy” [Lorenz , 1955]. In a resting basic state,
acoustic and gravity waves contribute to the available energy of a compressible fluid. In
the following, the partitioning of energy between both types of waves is discussed for
an inviscid, adiabatic flow. This is the preparation for the construction of the anelastic
theory in which acoustic waves are suppressed.

The natural thermodynamic state variables of internal energy e are entropy s and
specific volume ρ−1. For an air parcel in isentropic motion, the specific volume changes
a lot. However, the pressure p of the air parcel adjusts quickly fast to the surrounding
background pressure. This behavior favors the use of specific enthalpy h(p, s) in a
discussion of available energetics [Andrews, 1981; Bannon, 2004, 2005]. With h = e+p/ρ,
the conservation of total energy (2.3) for inviscid, adiabatic motion is

ρ Dt

(
v2

2
+ h− p/ρ+ Φ

)
+∇ · (pv) = 0 . (2.5)

For an ideal, dry gas, the specific enthalpy is

h(p, s) = cp T (p, s) = cp

(
p

p00

)R/cp
es/cp , (2.6)

where the standard pressure p00, the heat capacity at constant pressure cp and the ideal
gas constant R appear. In the following, the explicit dependence of h on p and s is
not used. Rather the structure of the specific enthalpy suggests the introduction of the
Exner pressure

π(p) =

(
p

p00

)R/cp
(2.7)

and the potential temperature

θ(s) = es/cp , (2.8)

in which the enthalpy is bi-linear

h = cpπθ . (2.9)

Next, using a hydrostatic reference state

∇pr = −ρr∇Φ , (2.10)

the energetics of perturbations, e.g. p′ = p−pr, is investigated. As discussed by Lighthill
[1978], the rate of work due to the reference pressure pr

ρ−1∇ · (prv) = ρ−1pr ∇ · v + ρ−1v · ∇ pr = pr Dtρ
−1 + ρ−1Dtpr = Dt(pr/ρ) (2.11)

should be excluded from the energy flux pv. Adopting notation of Andrews [1981],

ρ Dt

(
v2

2
+ Πan + Πel

)
+∇ ·

(
p′v
)

= 0 (2.12)
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is obtained with the anelastic part of available potential energy

Πan = cpπrθ + Φ = han + Φ (2.13)

and the elastic (or acoustic) contribution

Πel = cpπ
′θ − p′/ρ . (2.14)

In eq. (2.13), the anelastic enthalpy han = h(pr, s) is defined. As shown in section
2.1.4, this quantity is important in the construction of anelastic thermodynamics. After
linearization, it was demonstrated by Andrews [1981], that the available potential energy
is a function only of s′, or equivalently of θ′, whereas the acoustic energy only depends
on p′. The expressions

Πan ≈
1

2N2

(
g θ′

θr

)2

and Πel ≈
1

2c2
s

(
p′

ρr

)2

(2.15)

are familiar results from linear wave theory [Gossard and Hooke, 1975; Lighthill , 1978],
where the square of buoyancy frequency N2 = g ∂z ln θr, the square of the speed of
sound c2

s = γRTr and the ratio of heat capacities γ = cp/cv were utilized. Hence, in an
anelastic approximation the acoustic term Πel should disappear.

2.1.3. Discussion of sound-proof approximations

It is mostly assumed that acoustic waves have a negligible impact on the evolution
of flow phenomena connected to weather and climate, and as acoustic waves strongly
influence the numerical implementation of the flow equations [Durran, 1999], it is of some
advantage to filter sound waves from the compressible dynamics in an analytic fashion.
For non-hydrostatic motion, the anelastic and the pseudo-incompressible equations are
valuable examples of systems of sound-proof equations.

The anelastic system was introduced by Ogura and Phillips [1962] for an isentropic
reference state in a study of atmospheric convection. In their work, the set of compress-
ible equations was expanded around an isentropic reference atmosphere with uniform
potential temperature. Restricting their analysis to low Mach number flows [Durran,
2008], they could show that the resulting dynamical equations suppress acoustic modes.
Wilhelmson and Ogura [1972] extended the work of Ogura and Phillips [1962] by allow-
ing for a non-isentropic basic state. As some problems with the conservation of energy
of the resulting system were discovered, Lipps and Hemler [1982] re-derived the anelas-
tic equations with modifications to fulfill the energetic constraints. As discussed by
Lipps [1990] (and e.g. Achatz et al. [2010]) the anelastic equations are only applicable
to weakly stratified basic states in which the vertical variations of basic state entropy
are small.

Durran [1989] derived the pseudo-incompressible equations for low Mach number
flows. Also for the derivation of the traditional pseudo-incompressible dynamics, ther-
modynamic reference profiles of a resting basic state are used. In the mass balance,
Durran [1989] introduced a pseudo-mass, or equivalently a pseudo-density, which is con-
servatively transported by the flow. This differs from the anelastic dynamics in which
the reference mass is assumed to be conserved. Note that in the pseudo-incompressible
equations, only variations of the true mass of an air parcel due to pressure perturbations
are neglected, whereas in the anelastic equations, also variations due to entropy pertur-
bations are neglected [Senf and Achatz , 2012]. Because of this difference, no change
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in the pseudo-incompressible momentum balance is needed to maintain total energy
conservation for the case of a non-isentropic basic state.

Using a multi-scale technique, Achatz et al. [2010] investigated the asymptotic behav-
ior of compressible, pseudo-incompressible, and anelastic flows under conditions repre-
sentative of GW breaking. They found that the pseudo-incompressible and compress-
ible versions are consistent, but some differences appear for the anelastic system in
that limit. Davies et al. [2003] performed normal mode analysis to evaluate the ac-
curacy of the sound-proof systems compared to the compressible one. They did not
recommend the use of the anelastic system and also partially discouraged the use of
the pseudo-incompressible system for the purposes of numerical weather prediction and
climate simulations. Nance and Durran [1997] reported in a more positive way about
the performance of the sound-proof equations. In a study of mountain waves, both
sound-proof systems achieved acceptable results with the pseudo-incompressible system
performing slightly better. On the other hand, it was discussed by Durran [2008] that
the performance of the sound-proof systems becomes unsatisfactory if the fluid motion is
significantly influenced by Earth’s rotation. In fact, this is true for large-scale planetary
wave dynamics. Durran [2008] recommended the use of a compressible, hydrostatic
model for that purpose. The use of an anelastic approximation may thus lead to a
less-than-optimal large-scale equation system. However, the averaging of the resulting
equations, especially the Lagrangian-mean average, is much simpler than for the com-
pressible dynamics [Becker and Schmitz , 2002; Becker , 2003b; Becker , 2004]. Therefore,
despite its shortcomings, the anelastic system is used in the present study.

2.1.4. The anelastic approximation

The anelastic equations, discussed above, will form the basis for the description of GW
motion. Its derivation is sketched here. First, the mass balance, eq. (2.2), is altered.
As mentioned, the effect of the perturbation density on the actual mass of a fluid parcel
is neglected. The reference mass is transported conservatively, so that

∇ · (ρrv) = 0 . (2.16)

Next, the momentum balance is modified in a way described by Durran and Arakawa
[2007]. The hydrostatic reference state, eq. (2.10), is included in eq. (2.1) and the stress
tensor is expanded:

Dtv + 2Ω× v = −∇p
ρ

+
∇pr
ρr

+
1

ρ
∇ · F .

The first approximation which enters the momentum balance concerns the magnitude of
the perturbations of thermodynamic variables. Typically, these are orders of magnitude
smaller than the corresponding reference values in geophysical flow situations. For
instance, the global mean surface pressure is around 1000 hPa, whereas the difference
between low and high pressure events is not larger than 100 hPa. Therefore, linearization
of the momentum equation with respect to ρ and p and replacing ρ→ ρr in the viscous
force leads to

Dtv + 2Ω× v = −∇p
′

ρr
− gρ′

ρr
ez +

1

ρr
∇ · F , (2.17)

where a vertical gravitational force −∇Φ = −gez has been assumed. Again, ρ′ and p′

denote deviations from the reference state ρr and pr, respectively. With the help of the

10



linearized equation of state of an ideal gas

ρ′

ρr
=

p′

c2
s ρr
− θ′

θr
, (2.18)

terms involving p′ and ρ′ in eq. (2.17) are reformulated

−∇p
′

ρr
− gρ′

ρr
ez = −∇

(
p′

ρr

)
+

(
p′

ρr

∂zθr
θr

+
gθ′

θr

)
ez .

It was argued by Lipps [1990] that the term which couples the pressure perturbation
with the static stability is negligible at this order of the anelastic expansion. Clearly,
this is only valid for weakly stratified flows [Achatz et al., 2010]. Hence, the anelastic
momentum equation becomes

Dtv + 2Ω× v = −∇φ+ b ez +
1

ρr
∇ · F , (2.19)

where the normalized pressure φ = p′/ρr and the buoyancy b = gθ′/θr have been
introduced.

For the anelastic thermodynamics, the entropy evolution eq. (2.4) is modified.2 The
anelastic entropy is defined via [Bannon, 1996]

Dtsan =
cp
θr
Dtθ =

Qan
Tr

, (2.20)

where

Qan =
1

ρr
F ··∇v +Q− 1

ρr
∇ · q (2.21)

is the anelastic rate of heating. Several equivalent forms of the thermodynamics can be
stated. From the partitioning of the available energy in section 2.1.2 only the anelastic
part (2.13) is retained to define the anelastic enthalpy [Durran and Arakawa, 2007]

han = cpπrθ . (2.22)

Using the evolution of anelastic entropy (2.20), the hydrostatic assumption for the ref-
erence values, i.e. cpθr∂zπr = −g and Tr = πrθr, an equation for the anelastic enthalpy
results:

Dthan = −(g + b)w +Qan . (2.23)

Finally, the evolution equation of the buoyancy is

Dtb+ wN2

(
1 +

b

g

)
=
gQan
cpTr

. (2.24)

For the discussion of the anelastic energetics, the enthalpy form of the thermody-
namic equations is the most useful. The kinetic energy evolution equation is derived by
v·(2.19), i.e.

ρrDt

(
v2

2

)
= −∇ · (ρrv φ− v · F) + ρrwb−∇v ··F . (2.25)

2 Very recently, an elegant discussion of the thermodynamics of the pseudo-incompressible approxima-
tion appeared in Klein and Pauluis [2012].
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Energy is exchanged via stresses at the boundaries of a fluid parcel and with anelastic
enthalpy due to buoyant production and mechanical dissipation. Meanwhile, han is
influenced by the external force potential. The total anelastic energy obeys

ρrDt

(
v2

2
+ Πan

)
= −∇ · (ρrv φ− v · F− q) + ρrQ , (2.26)

where Πan = han + Φ. Obviously, the acoustic energy Πel, involved in the available
energetics of a compressible fluid in (2.12), is absent here.

In the following, the set of anelastic equations is used to derive the effective forces
and heating rates due to subgrid-scale processes. Later in section 4.2 and 4.3.2, the
anelastic equations are linearized and GW solutions within a tidal background flow are
investigated.

2.2. On scale-selective filtering of subgrid-scale processes

2.2.1. Introduction

The careful reduction of the dynamics of a complex system is one of the most ambitious
tasks in scientific research, but it is the necessary basis for understanding and modeling
of many phenomena. In fluid dynamics, it has proven useful to distinguish different
flow phenomena by their temporal and spatial scales. Unfortunately, the grouping of
different flow structures is not as unique as one might wish. Usually no clear spectral
gaps separate regions with different temporal and spatial properties. Nevertheless, one
of the most common approaches is to select just a few flow features and assume that
they exist in superposition in the flow under consideration. For the anelastic system,
the flow may be divided into turbulence, gravity waves and large-scale motion, whereas
acoustic waves were removed in advance. Filter operators are defined which average over
the corresponding subgrid-scales. For instance a box average over several kilometers
for turbulence and several hundred kilometers for gravity waves might be one choice.
Another possibility is the ensemble filter in which one would average over an ensemble
of stochastically-distributed realizations of the subgrid-scale process, e.g. an ensemble
of gravity waves with randomly shifted initial phases. Regardless of the definition of
the averaging operator, it has to fulfill certain Reynolds assumptions about the filtering
[see e.g. Lange, 2002]. Without loss of generality, the ensemble average is considered in
the following. It is assumed that all field variables continuously depend on the ensemble
parameter α and are denoted by vα, etc. Two different formulations of the averaging
operators are introduced:

The Eulerian average is a local average. The mean field is estimated via a weighted
integration over all realizations of the ensemble at a fixed position x on the large-
scale grid and a fixed time t. With weight Wα, the Eulerian average of velocity v
is 〈

v
〉
(x, t) =

w
dαWαvα(x, t) . (2.27)

The Lagrangian average is a non-local average. Here, contrary to the Eulerian mean,
a field variable is evaluated at a displaced position x + ξα and the integration
is done over an ensemble of different fluid trajectories. The displacement ξα is
induced by subgrid-scale motion. Hence, the Lagrangian mean is〈

v
〉L

(x, t) =
〈
vξ
〉
(x, t) =

w
dαWαvα(x+ ξα(x, t), t) . (2.28)
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For small displacements, calculating the Lagrangian average only requires infor-
mation about the (unresolved) local neighborhood of x. The position x on the
large-scale grid is interpreted as the location of the ensemble-mean fluid trajectory.
Therefore, the Lagrangian average 〈v〉L is an average over the set of all individual
fluid trajectories.

It is not quite obvious which type of average is more appropriate for description of
the dynamics of the resolved flow. It clearly depends on the desired interpretation
of the mean fields and perhaps on the straightforwardness of the formulation of the
corresponding subgrid-scale parameterization.

2.2.2. On turbulent structures

Applying a scale-selective filter over turbulent structures yields an averaged flow which
includes all the effects of gravity waves and the large-scale dynamics and furthermore
some average turbulence impact. In the following, the Eulerian average is chosen for
the filtering of subgrid-scale turbulence. Note, however that there has been inten-
sive research in the field of Lagrangian averaging of turbulent fluctuations [see Holm,
1999, 2002, and references therein], in which the so-called Camassa-Holm equations or
Navier-Stokes alpha models arise. Even though the application of the Lagrangian aver-
age to filter turbulence is very interesting, it is clearly outside the scope of the present
work.

In the following, each flow quantity is divided into an Eulerian mean and a turbulent
part, e.g. 〈v〉t and v′′, where the subscript t denotes the average over random turbulent
fluctuations. The averaging operator is applied to the anelastic continuity equation
(2.16),

∇ ·
(
ρr 〈v〉t

)
= 0 , (2.29)

to the momentum eq. (2.19)(
∂t + 〈v〉t · ∇

)
〈v〉t + 2Ω× 〈v〉t = −∇〈φ〉t + 〈b〉t ez +

1

ρr
∇ ·
(
〈F〉t + Rt

)
, (2.30)

and to the enthalpy eq. (2.23)

ρr

(
∂t + 〈v〉t · ∇

)
〈han〉t = −ρrg 〈w〉t − ρr 〈b〉t 〈w〉t − ρr

〈
b′′w′′

〉
t

−∇ ·
(
〈q〉t + J t

)
+ 〈F〉t ··∇ 〈v〉t +

〈
F′′ ··∇v′′

〉
t
+ ρr 〈Q〉t . (2.31)

The Reynolds stress tensor

Rt = −ρr
〈
v′′v′′

〉
t

(2.32)

and the turbulent sensible heat-flux

J t = ρr
〈
v′′h′′an

〉
t

(2.33)

arise from the non-linear advection terms and give the average transport of turbulent
momentum and sensible heat by turbulent fluctuations. The vertical turbulent buoyancy
flux ρr 〈b′′w′′〉t and the average frictional heating due to dissipation of turbulent kinetic
energy 〈F′′ ··∇v′′〉t influence the dynamics of the mean anelastic enthalpy. The average
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flow equations are completed by an evolution equation for the mean turbulent kinetic
energy Et,kin = ρr

〈
|v′′|2/2

〉
t
,

∂tEt,kin +∇ ·
(
〈v〉t Et,kin +

ρr
2

〈
v′′|v′′|2

〉
t
+ ρr

〈
φ′′v′′

〉
t
−
〈
F′′ · v′′

〉
t

)
=

ρr
〈
b′′w′′

〉
t
−
〈
∇v′′ ··F′′

〉
t
+ Rt ··∇ 〈v〉t ≡ Ėt,kin , (2.34)

where the shorthand Ėt,kin is defined following Becker [2003b]. The vertical turbulent
buoyancy flux ρr 〈b′′w′′〉t and the average frictional heating due to dissipation of turbu-
lent kinetic energy 〈F′′ ··∇v′′〉t are eliminated from the average anelastic enthalpy eq.
(2.31) to yield

ρr

(
∂t + 〈v〉t · ∇

)
〈han〉t = −ρrg 〈w〉t − ρr 〈b〉t 〈w〉t −∇ ·

(
〈q〉t + J t

)
+
(
〈F〉t + Rt

)
··∇ 〈v〉t + ρr 〈Q〉t − Ėt,kin . (2.35)

When the vertical turbulent buoyancy flux ρr 〈b′′w′′〉t, shear production Rt · ·∇ 〈v〉t
and dissipation of turbulent kinetic energy 〈∇v′′ ··F′′〉t are in balance then Ėt,kin = 0.
This is assumed in the following and called “quasi-stationary turbulence”. However,
when a time-dependent turbulence model is used in a study of the interaction between
gravity waves and thermal tides this point must be revised. The major change from the
unfiltered to the filtered anelastic dynamics is the inclusion of the Reynolds stresses and
the subgrid-scale enthalpy flux which are added to their molecular counterparts. For
convenience, the Eulerian-mean anelastic equations of quasi-stationary turbulence are
summarized here:

∇ ·
(
ρr 〈v〉t

)
= 0 ,(

∂t + 〈v〉t · ∇
)
〈v〉t + 2Ω× 〈v〉t = −∇〈φ〉t + 〈b〉t ez +

1

ρr
∇ ·
(
〈F〉t + Rt

)
,

ρr

(
∂t + 〈v〉t · ∇

)
〈han〉t = −ρr

(
g + 〈b〉t

)
〈w〉t −∇ ·

(
〈q〉t + J t

)
+
(
〈F〉t + Rt

)
··∇ 〈v〉t + ρr 〈Q〉t .

(2.36)

(2.37)

(2.38)

Remarks on the turbulent available potential energy

The total kinetic energy of the flow is a non-linear, or more precisely a quadratic,
function of the flow velocity v. This bi-linearity leads to the appearance of two kinetic
energy terms in the averaged dynamics: the kinetic energy of the average flow ρr 〈v〉2t /2
and the averaged turbulent kinetic energy Et,kin. As discussed above the sum of the
anelastic enthalpy and the force potential, i.e. Πan = han+Φ, plays the role of available
potential energy and is a function of the entropy perturbation s−sr, or equivalently the
buoyancy b, for a given reference state sr [see e.g. Andrews, 1981]. Averaging of Πan(b)
leads to

〈Πan(b)〉t = Πan(〈b〉t) +
(
〈Πan(b)〉t −Πan(〈b〉t)

)
(2.39)

where the first term is the available potential energy of the averaged flow. The term in
parentheses is the averaged turbulent available potential energy. Note that, the explicit
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dependence of Πan on b is only known for special cases such as constant temperature
reference states and linear perturbations [Andrews, 1981]. From eq. (2.15)

〈Πan(b)〉t ≈
〈b〉2t
2N2

+

〈
b′′2
〉
t

2N2
(2.40)

is obtained. A similar partitioning was utilized by Plumb [1983] in his discussion on
the atmospheric energy cycle. An exact partitioning can also be done in the Boussinesq
case [Achatz , 2007].

2.2.3. On filtering of gravity waves

Motivation

In the following, it is assumed that the dynamics of gravity waves is not sufficiently
resolved within a general circulation model (GCM). The model variables describe the
average large-scale flow where GW motion is filtered out, but the choice of the average
is to some extent arbitrary and strongly depends on the interpretation of the resolved
variables. In section 2.2.1, two different filter operators acting on a random ensemble of
gravity waves were introduced: the Eulerian average and the Lagrangian average.

If the set of anelastic equations (2.36)-(2.38) is locally averaged in an Eulerian sense,
then mean equations result which are equivalent to the set of turbulence-averaged equa-
tions. GW forces result from the divergence of the GW momentum flux tensor and
GW direct heating rates depend on the dissipation of GW kinetic energy, the vertical
GW buoyancy flux and the convergence of GW sensible heat fluxes [Becker and Schmitz ,
2002; Becker , 2003a, b; Becker , 2004]. The classical GCM can be formulated in abstract
notation as

M[Y ] = Z , (2.41)

where M is the non-linear model operator acting on the resolved, Eulerian-averaged
variables summarized in the vector Y , and Z is the parameterization of the impact of
subgrid-scale processes which is needed when the underlying set of equations is averaged
in the classical Eulerian sense.

However, it has been argued, e.g. by Andrews et al. [1987], that in contrast to the Eule-
rian circulation, the residual circulation is more appropriate for describing the transport
of air. The two differ especially, when the circulation is driven by waves affected by the
Earth’s rotation. The discussion comes up most frequently in the context of globally-
averaged circulations driven by Rossby waves, but easily translates to locally averaged
flows driven by inertia-gravity waves. As the residual description is equivalent to the
Lagrangian-mean one, it might be favorable to establish a GCM based on a Lagrangian-
average. Therefore, if the underlying dynamics is averaged in a Lagrangian sense the
variable vector of the Lagrangian-mean flow Y L is different from its Eulerian counter-
part Y . The difference, which might be called the Stokes correction Y S = Y L − Y ,
arises due to different formulations of the subgrid-scale parameterization. Starting from
the Eulerian-mean model (2.41), a Lagrangian-mean model can be constructed with the
form

M[Y L] = ZL , (2.42)

where the same kernel M is used to integrate the Lagrangian-averaged variables Y L,
but a different set of subgrid-scale parameterizations

ZL = Z +M[Y L]−M[Y ] (2.43)
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is used. If the difference between Y and Y L in the initial state is ignored (as this might
be hard to specify), the main difference between the Eulerian-mean and Lagrangian-
mean flow arises due to the specification of the subgrid processes Z and ZL. That is,
for a given GCM, the type of the parameterizations determines whether the variables
should be interpreted as Eulerian-mean or Lagrangian-mean. In any case, either can be
converted into the other by adding or subtracting the Stokes correction Y S at any time
step.

The equation (2.43) gives a hint as to how the subgrid-scale parameterizations differ:
For small-amplitude waves, the Stokes corrections Y S are also small compared to Y L.
Hence, M[Y ] can be expanded around Y L and the subgrid-scale parameterizations in
the Lagrangian-mean model are

ZL ≈ Z + L[Y S ;Y L] , (2.44)

where L[Y S ;Y L] is the corresponding linear, tangent model which advances Y S given
the basic state Y L. Even if this connection between the Eulerian-mean and Lagrangian-
mean model is quite straightforward, a different (hopefully more didactic) route is chosen
in deriving the parameterizations of the Lagrangian-mean model in the proceeding para-
graphs. In the following, first the conventional Eulerian model is formulated, and then
the Lagrangian-mean model is derived by investigating the displaced dynamics as done
in Andrews and McIntyre [1978].

Eulerian average

An Eulerian average is applied to the set (2.36)-(2.38). The former mean-flow variables,
e.g. 〈v〉t, are decomposed into a new Eulerian mean 〈v〉w describing the large-scale part
of the flow, and a GW perturbation v′. An ensemble of randomly shifted gravity waves
is assumed and the Eulerian average is performed with respect to the set of random
realizations, but a spatial filter with a horizontal extent of a few hundred kilometers can
also be appropriate for GW filtering. Hence, the large-scale continuity equation is

∇ ·
(
ρr 〈v〉w

)
= 0 . (2.45)

In the average momentum equation(
∂t + 〈v〉w · ∇

)
〈v〉w + 2Ω× 〈v〉w = −∇〈φ〉w + 〈b〉w ez

+
1

ρr
∇ ·
(
〈F〉w + 〈Rt〉w + Rw

)
(2.46)

the divergence of the GW momentum flux tensor

Rw = −ρr
〈
v′v′

〉
w

(2.47)

appears as an additional force. Again, this arises due to the quadratic non-linearity in
the momentum advection. The Eulerian-averaged thermodynamic equation,

ρr

(
∂t + 〈v〉w · ∇

)
〈han〉w = −ρrg 〈w〉w − ρr 〈b〉w 〈w〉w

−∇ ·
(
〈q〉w + 〈J t〉w + Jw

)
+
(
〈F〉w + 〈Rt〉w

)
·· ∇ 〈v〉w + ρr

(
〈Q〉w + E

)
,

(2.48)
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has two different GW heating sources. The first results from the convergence of GW
sensible heat-flux

Jw = ρr
〈
v′h′an

〉
w

(2.49)

which originates from the non-linear advection of specific anelastic enthalpy, whereas
the second is the rate of GW energy deposition

E = −
〈
b′w′

〉
w

+
1

ρr

〈(
F′ + R′t

)
·· ∇v′

〉
w

(2.50)

and emerges from the non-linear nature of mechanical dissipation and vertical en-
tropy transport. According to Becker [2004], both induce an additional heating of
the Eulerian-mean flow. As the structures of the heat sources Q and heat fluxes q and
J t were not specified, possible interactions between radiation and gravity waves as well
as chemical reactions and gravity waves are hidden in the mean terms, 〈Q〉w, 〈q〉w and
〈J t〉w. As discussed by Akmaev [2007], these GW impacts also contribute to the GW
energy deposition onto the mean flow. The GW impacts on the Eulerian-mean flow are
summarized in the box below:

fgw = − 1

ρr
∇ ·
(
ρr
〈
v′v′

〉
w

)
: GW force

Qgw = − 1

ρr
∇ ·
(
ρr
〈
v′h′an

〉
w

)
+ E : GW heating rate

E = −
〈
b′w′

〉
w

+ εgw : GW energy deposition

εgw =
1

ρr

〈(
F′ + R′t

)
··∇v′

〉
w

: GW dissipation rate

(2.51)

(2.52)

(2.53)

(2.54)

A very short introduction to the Generalized Lagrangian-mean theory

The generalized Lagrangian-mean (GLM) theory invented by Andrews and McIntyre
[1978] explains how to construct a Lagrangian-mean model including the representation
of subgrid-scale effects. Its main features are sketched here briefly. The interested reader
is referred to the original article or to a didactic introduction given in Bühler [2009].

As mentioned above, a set of fluid trajectories results from the different realizations
of the subgrid-scale process. In GLM theory, the coordinate x on the large-scale grid
is interpreted as the location of the ensemble-mean fluid trajectory.3 The trajectory of
an individual realization is displaced to the position xξ = x + ξ where ξ(x, t) denotes
the displacement of the fluid trajectory.4 These relations are sketched in fig. 2.1. Each
variable can be evaluated at the mean position, e.g. v = v(x, t), and at the actual fluid
position, denoted by vξ = v(xξ, t). The lift from the mean to the actual position defines
a map x → x + ξ(x, t), the “lifting map”, and is denoted by the superscript ξ. Note
that also expressions including differential operators can be lifted, such as ∇φ→ (∇φ)ξ,
but the lifting does generally not commute with the operators, i.e. (∇φ)ξ 6= ∇(φξ).
The Lagrangian average was defined in section 2.2.1. With the present notion of the
lifting map it can be written 〈v〉Lw =

〈
vξ
〉
w

, where the fluid variable is evaluated at the

3 This is comparable to the semi-Lagrangian approach as each time step a new mean trajectory is
chosen which ends at the large-scale grid point.

4 In the following, the notation of the ensemble parameter α is suppressed
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Figure 2.1.: A sketch of a mean trajectory (thick solid line) and one realization of an actual fluid
trajectory (dashed line). The mean position x, the actual position xξ and the displacement ξ

are plotted, and both, the actual fluid velocity vξ and the Lagrangian-mean velocity 〈v〉Lw, are
shown (after Bühler and McIntyre [1998]).

actual position xξ of each individual trajectory. Then the Lagrangian disturbance is
v` = vξ − 〈v〉Lw.

In the following, transformations of infinitesimal line, surface and volume elements
under the lifting map are considered [Bühler , 2009]. These transformation rules are
important in the derivation of Lagrangian-mean dynamics. A line element is distorted
via

dxξ = dx · ∇xξ = dx · (1 +∇ξ) , (2.55)

where the chain rule was applied and 1 denotes the identity matrix. A surface element
is rotated and deformed via the transformation matrix K. The lifted surface element
obeys

dAξ = K ·A , (2.56)

where K has to be determined. Lastly, the change in size of a volume element is given
by the Jacobian J = |∇xξ| of the transformation, i.e.

dV ξ = J dV . (2.57)

The last relation can lead to an explicit expression for K. A volume element is determined
by a surface element and a line element,

dV ξ = dxξ · dAξ = dx · ∇xξ ·K · dA = J dV . (2.58)

As the last equality should hold for any meaningful combination of dx and dA, the
transformation K is obtained by inversion, i.e.

K = J
(
∇xξ

)−1
= |∇xξ|

(
∇xξ

)−1
. (2.59)

For displacements ξ small compared to the local wavelength of a perturbation, a linear
approximation is

K ≈ (1 +∇ · ξ) (1−∇ξ) ≈ (1 +∇ · ξ) 1−∇ξ , (2.60)

where the Jacobian is approximately the trace of ∇xξ, i.e. J ≈ 1 +∇ · ξ for small ξ.
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Lifted anelastic dynamics and Lagrangian average

The transformation rules for dV ξ and dAξ are now used to derive some integral rela-
tionships for conservation laws. For instance, the reference mass within a small volume
Vξ centered at position xξ is given by

w

Vξ
dV ρr =

w

V

dV ξ ρξr =
w

V

dV Jρξr . (2.61)

A sequence of two variable changes dV → dV ξ → dV was performed. The volume V
centered at position x moves with the velocity of the mean trajectory, thus with 〈v〉Lw.
Therefore, the lifted anelastic continuity equation at xξ is

d

dt

w

V

dV
(
Jρξr

)
= 0 ⇔ ∂t

(
Jρξr

)
+∇ ·

(
〈v〉Lw Jρ

ξ
r

)
= 0 . (2.62)

The quantity ρ̃r = Jρξr might be called pseudo-reference density. ρ̃r is a mean quantity
because it obeys the same dynamics as 〈ρ̃r〉w and no initial shift between the two is
assumed. From ρ̃r = 〈ρ̃r〉w a simple linear relation for the continuity equation arises
[Bühler , 2009; Senf and Achatz , 2012]

ρ̃r = Jρξr ≈ (1 +∇ · ξ)(ρr + ξ · ∇ρr) ≈ ρr ⇒ ∇ · (ρrξ) ≈ ∇ · (ρ̃rξ) ≈ 0 (2.63)

Next, the major simplification appears in the advection term, which is the overall
advantage of the GLM theory. Using conservation of reference mass, the anelastic mo-
mentum within Vξ changes according to

d

dt

w

Vξ
dV ρrv =

d

dt

w

V

dV ρ̃rv
ξ =

w

V

dV ρ̃r

(
∂t + 〈v〉Lw · ∇

)
vξ . (2.64)

The advection of any quantity at xξ happens with Lagrangian-mean velocity, thus
(Dtv)ξ = (∂t + 〈v〉Lw · ∇)vξ. Therefore, when the non-linear advection is averaged
in a Lagrangian sense, no second moments of subgrid-scale perturbations result. This
is the main difference to the Eulerian-mean technique.

For the lifting of flux divergences, the theorem of Gauss is applied at the fluid position
xξ, e.g.

w

Vξ
dV ∇ · Rt =

{

∂Vξ
dA · Rt =

{

∂V

dAξ · Rξ
t =

{

∂V

(Rξ
t )
T · dAξ

=
{

∂V

(Rξ
t )
T ·K · dA =

{

∂V

dA ·KT · Rξ
t =

w

V

dV ∇ ·
(
KT · Rt

)
.

(2.65)

Hence, each flux tensor is rotated and deformed by KT to compensate for changes of
the surface through which the flux goes. Finally, a recipe for lifting the anelastic set is
obtained:

(i) lift of a quantity b via ρrb→ ρ̃rb
ξ

(ii) Lagrangian mean advection ρr(∂t + v · ∇)v → ρ̃r(∂t + 〈v〉Lw · ∇)vξ

(iii) transformation of lifted flux tensor in the divergence ∇ · Rt → ∇ ·
(

KT · Rξ
t

)
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Applying these rules to the anelastic momentum eq. (2.37) and anelastic enthalpy eq.
(2.38), their lifted counterparts are(

∂t + 〈v〉Lw · ∇
)
vξ + 2Ωξ × vξ = −

(
∇φ
)ξ

+ bξ eξz +
1

ρ̃r
∇ ·
(

KT ·
(
Fξ + Rξ

t

) )
, (2.66)

(
∂t + 〈v〉Lw · ∇

)
hξan = −

(
g + bξ

)
wξ − 1

ρ̃r
∇ ·
(

KT ·
(
qξ + Jξt

) )
+ εξ +Qξ ,

(2.67)

where for convenience the notion of the turbulent filter operator 〈.〉t was dropped and vξ

is interpreted the as turbulence-averaged velocity vector lifted to the fluid position xξ.
Note that the term (∇φ)ξ will be the major source of GW forces. Next, the set of lifted
equations is averaged which then forms the basis of the Lagrangian mean dynamics(

∂t + 〈v〉Lw · ∇
)
〈v〉Lw +

〈
2Ωξ × vξ

〉
w

= −
〈(
∇φ
)ξ〉

w
+
〈
bξ eξz

〉
w

+
1

ρ̃r
∇ ·
〈

KT ·
(
Fξ + Rξ

t

)〉
w
,

(2.68)

(
∂t + 〈v〉Lw · ∇

)
〈han〉Lw = −

(
g + 〈b〉Lw

)
〈w〉Lw −

〈
b`w`

〉
w

− 1

ρ̃r
∇ ·
〈

KT ·
(
qξ + Jξt

) 〉
w

+ 〈ε〉Lw + 〈Q〉Lw .
(2.69)

In some parts, the Lagrangian-mean system resembles the Eulerian-mean system. It is
the appearance of the several lifted terms, e.g.

〈
(∇φ)ξ

〉
w

, that makes further simplifi-
cation necessary. Therefore, two major approximations are imposed:

(i) “the scale-separation assumption”: smallness of ξ compared to the background
scales, and

(ii) “the small-amplitude assumption”: smallness of ξ compared to the corresponding
GW length,

After considerable manipulations (discussed in appendix A.1), the final set of Lagrangian-
mean equations is(

∂t + 〈v〉Lw · ∇
)
〈v〉Lw + 2Ω× 〈v〉Lw = −∇〈φ〉w + 〈b〉Lw ez +

1

ρ̃r
∇ ·
(
〈F〉w + 〈Rt〉w

)
+

1

ρ̃r
∇ ·
(
− ρ̃r

〈
ξ∇φ′

〉
w

+
〈
ξ∇ ·

(
F′ + R′t

)〉
w

)
, (2.70)

(
∂t + 〈v〉Lw · ∇

)
〈han〉Lw = −

(
g + 〈b〉Lw

)
〈w〉Lw −

〈
b′w′

〉
w

− 1

ρ̃r
∇ ·
(
〈q〉w + 〈J〉w +

〈
ξ∇ ·

(
q′ + J ′t

)〉
w

)
+ εm + εgw + 〈Q〉Lw , (2.71)

where εm and εgw denote the mean dissipation rates of the resolved flow and of the
subgrid-scale gravity waves, respectively. The term ρ̃r 〈ξ∇φ′〉w can be interpreted as
the average work of the GW displacements against the GW pressure perturbations
[McIntyre, 1980]. By integration by parts, −ρ̃r 〈ξ∇φ′〉w ≈ ρ̃r

〈
φ′(∇ξ)T

〉
w

is the work
done by the perturbation pressure ρ̃rφ

′ against the corrugated fluid surface. In mountain
wave studies, the term 〈p′∂xζ〉w is known as the zonal form drag exerted on the mountain
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ridge by the flow where ζ is the displacement of the flow by the topography [Nappo,
2002]. Bretherton [1969] pointed out that Jones [1967] had shown that 〈p′∂xζ〉w can
be “interpreted [...] in terms of the vertical flux of angular momentum”. Furthermore,
with reference to Jones [1967] and Bretherton [1969], Smith [1979] considered it as the
“correct form of wave drag in a rotating fluid”. Similarly, the term

〈
ξ∇ ·

(
F′ + R′t

)〉
w

is
the average work of the GW displacements against the molecular and turbulent stresses
due to GW motion. The corresponding Lagrangian-mean GW force is

fLgw = − 1

ρ̃r
∇ ·
(
ρ̃r
〈
ξ∇φ′

〉
w
−
〈
ξ∇ ·

(
F′ + R′t

)〉
w

)
: GW force (2.72)

The second part, which couples the GW and the turbulence parameterizations, will be
neglected in the remainder of the thesis. This is justified only if the wave Reynolds
number is sufficiently large. For the thermal impact of gravity waves, the convergence
of sensible heat-flux is absent. GW heating results from the vertical GW buoyancy flux,
the GW dissipation rate and additionally from the interaction between the GW parame-
terization and the molecular and turbulent diffusive fluxes. Hence, the Lagrangian-mean
heating due to gravity waves is

QLgw = − 1

ρ̃r
∇ ·
( 〈
ξ∇ ·

(
q′ + J ′t

)〉
w

)
+ E : GW heating rate

E = −
〈
b′w′

〉
w

+ εgw : GW energy deposition

εgw =
1

ρr

〈(
F′ + R′t

)
··∇v′

〉
w

: GW dissipation rate

(2.73)

(2.74)

(2.75)

Note that in the above formulation, the energy deposition E is equal in the Eulerian and
Lagrangian average for the imposed approximations. It is up to the modeler whether
the Eulerian-mean forces and heating rates, fgw and Qgw, or their Lagrangian-mean

counterparts, fLgw and QLgw, are preferred. Comments on that can be found in Brether-
ton [1969] who stated that “the force exerted across a surface always consisting of the
same material particles differs in this instance from the force exerted across surface
z = constant. [...] Thus there is an essential difference between equations formulated in
terms of Eulerian means (at a fixed point or in horizontal planes) or Lagrangian means
(following fluid particles), and care is needed before applying the results to ensure that
the formulation is internally consistent.” The discussion of that topic will be renewed
in section 4.4 with the focus on generalized Eliassen-Palm theorems and in section 5.5
concerning the analysis of GW forces obtained from global ray-tracing experiments.
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2.3. Summary

• The dynamical and thermal impacts of subgrid-scale gravity waves and turbulence
were consistently derived.

• For the fundamental compressible equations, the partitioning between acoustic
and available potential energies was presented.

• The anelastic system which inhibits propagating acoustic waves was reviewed and
several implications were discussed.

• After averaging over turbulent scales, the filtered anelastic system remains struc-
turally equal to its unfiltered counterpart, only turbulent heat and momentum
fluxes are added to the molecular fluxes (quasi-stationary turbulence).

• The dynamics of the mean flow is obtained by a second average over GW scales.

• Two types of averages, the Eulerian-mean and the Lagrangian-mean, were intro-
duced and discussed.

• In the Eulerian-mean flow, GW forces result from the divergence of the momentum-
flux tensor and heating rates are due to the convergence of sensible heat fluxes,
vertical entropy fluxes and dissipation of GW mechanical energy.

• In contrast, in the Lagrangian-mean flow, GW forces are induced by the divergence
of GW stresses which arise from the average work of GW displacements against
GW pressure perturbations and frictional stresses.

• Furthermore, for GW impacts on the Lagrangian-mean thermodynamics, the con-
vergence of sensible fluxes is absent and an additional interaction between gravity
waves and the diffusivity-parameterization appears.
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3. Overview of diurnal tides

Thermal tides are introduced in this chapter. Special focus is on diurnal variations in
the middle atmosphere excited by the daily cycle in solar heating. Both the diurnal
heating rates and tides are obtained from the global climate model HAMMONIA which
is briefly presented.

3.1. HAMMONIA model

The HAMMONIA model is a spectral general circulation model with coupled chemistry.
It is an upward extension of the ECHAM5 model up to the lower thermosphere and
built and operated at the Max Planck Institute of Meteorology at Hamburg [Schmidt
et al., 2006]. The flow dynamics are based on a set of compressible, hydrostatic equa-
tions equivalent to Becker [2003b], with a generalized vertical coordinate η including
the effect of orography. It was shown by several studies that simulation results from
HAMMONIA compare quite well with recent observations [e.g Achatz et al., 2008; Yuan
et al., 2008] and that it is one of the leading state-of-the-art climate models of the mid-
dle atmosphere. This makes HAMMONIA simulations highly valuable for this study of
gravity wave-tide interactions. However, it is questionable whether all sub-grid param-
eterizations in HAMMONIA are consistent with the general conservation law structure
of the underlying dynamics. Several issues concerning the frictional heating due to
molecular and turbulent motion and direct heating due to GW breakdown in current
state-of-the-art general circulation models are discussed by Becker [2001]; Becker and
Schmitz [2002]; Becker [2004]; Burkhardt and Becker [2006].

Global horizontal wind, temperature and geopotential data have been provided from
a twenty year time slice experiment from 1980 to 1999 in typical solar maximum condi-
tions. The simulation output has a spectral truncation at T311 and 67 vertical levels.
The corresponding equivalent horizontal grid spacing is about 700 km and the distance
between vertical levels is about one kilometer in the lower atmosphere and increases to
three kilometers in the mesosphere. The data were re-gridded to a 48 × 48 horizon-
tal grid. Monthly averaged values at eight different times a day with an increment of
3 hours have been taken to calculate a monthly-mean diurnal cycle. In the current study,
only mean January data, representative of Northern hemisphere winter conditions, are
used. With the help of a Fourier analysis in time, the monthly-mean diurnal cycle has
been analyzed for the temporal average and the average diurnal tide. Semi-diurnal and
shorter-period tidal variations have been excluded from the present analysis.

Beside several other physical parameterizations, HAMMONIA applies the Hines pa-
rameterization (see e.g. McLandress [1998]) to estimate the so-called non-orographic
GW drag. Hence, the tidal data used in this study already felt the impact of grav-
ity waves due to the parametrized forces and heating rates. As will be shown, it is
questionable whether these GW effects on thermal tides are quantitatively as well as
qualitatively realistic due to the drastic assumptions made in the parameterization.

1 Spectral truncation: The model equations are expanded in spherical harmonics Y m
′

n′ with the total
wavenumber n′ and the zonal wavenumber m′. The triangular truncation T31 means that the
maximal m′ is set to the maximal n′ = 31.
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3.2. Diurnal heating rates

The day-side of the earth is heated by solar radiation. The emissions by atmospheric
greenhouse gases cool the atmosphere. Due to the rotation of the earth, the local heating
rates are approximately periodic with a period of a day. The resulting daily cycle is
dominated by the first harmonic, but higher harmonics are also excited by inherent
asymmetries in the heating signal. For instance, latent heating due to deep convection
is highly intermittent and more likely to appear in the afternoon.

HAMMONIA incorporates several processes which lead to a periodic heating of the
atmosphere. Contributions are grouped into:

• large-scale cumulus convection and condensation heating

• heating due to absorption of solar insolation which are sorted into three bands:
(i) 5 - 105 nm, (ii) 105 - 250 nm and (iii) ≥ 250 nm

• cooling by infrared emissions of atmospheric greenhouse gases, especially water
vapor and carbon dioxide

• frictional heating due to molecular and turbulent diffusion, convergence of molec-
ular and turbulent heat fluxes, energy deposition of gravity waves, convergence
of GW entropy fluxes (as argued before, these effects may not be consistently
described in HAMMONIA)

The sum of all different contributions is shown in fig. 3.1 at two times, 06:00 UT
and 12:00 UT, in the middle troposphere and stratopause region. In the troposphere,

Figure 3.1.: The sum of all heating rates in HAMMONIA at two times, 06:00 UT (left column)
and 12:00 UT (right column). In the mid-troposphere (upper row) the heating rates are domi-
nated by latent heating and direct radiative effects of water vapor, whereas in the stratopause
region (lower row) ozone has the strongest impact on heating rates.
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deep convection over Indonesia, and the Congo and Amazon basins lead to a local
heating of the atmosphere of up to 10 K per day. Large-scale condensation processes
are also important in the troposphere, especially in the mid-latitude Atlantic. In the
stratopause region (about 50 km), the heating rates are about two times larger than
in the troposphere and mainly induced by the absorption of ultraviolet solar radiation
by ozone and infrared emission by carbon dioxide. The ozone heating only occurs in
the day-time due to incident sun light. The hemispheric asymmetry of ozone heating is
due to the inclination of solar insolation angle (Northern winter). Infrared emissions of
carbon dioxide are much less affected by the daily cycle.

The zonally averaged amplitude of the diurnal heating rates extracted from the HAM-
MONIA simulations is shown in fig. 3.2. There are two main regions where diurnal heat-

Figure 3.2.: Total amplitudes of diurnal heating rates (left) and density-scaled heating rates
(right). In the scaling factor

√
ρr/ρ00, a reference density of ρ00 = 0.01 kg m−3 was chosen.

ing is large: (i) in the troposphere by the impact of convection, condensation and direct
radiative effects of water vapor, and (ii) in the stratopause region by periodic heating
due to ozone. The diurnal heating amplitudes have maxima of about 5 and 15 K per day
for the troposphere and the stratopause region respectively. Thus, a significant amount
of the heating shown in fig. 3.1 is connected to higher harmonics.

The left part of fig. 3.2 seems to suggest that the diurnal tide is mainly excited
close to the stratopause. However, this underestimates the impact of the troposphere.
As discussed by Lindzen [1966, 1967], the relevant forcing in the tidal equations is
a density-scaled heating rate given by

√
ρr/ρ00Q, where ρ00 is an arbitrary reference

density. The impact of troposphere is thus more than a factor 8 larger than in the regions
above. The concept of a rescaled heating rate is explained by the fact that throughout
the middle atmosphere, the density decrease strongly enhances tidal amplitudes as less
dense air is transported by tidal oscillations. Since the variations of kinetic energy of the
thermal tides due to shear and buoyant production as well as dissipation processes are
mostly of the same order, the wind amplitudes increase like the square root of inverse

density, i.e. uT ∝ ρ
−1/2
r , where uT denotes the diurnal wind perturbation. The tidal

temperature perturbations grow similarly. Hence, if the density factor is eliminated
from the thermodynamics, the heating rate changes to Q→

√
ρr/ρ00Q. Therefore, the
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troposphere has an enormous impact on the formation of thermal tides.

3.3. Diurnal tides

The periodic heating of the troposphere and stratopause region induces a large-scale
temperature perturbation, causing buoyant motion which feeds back into the horizontal
kinetic energy of the thermal tides and excites horizontal tidal winds. The tidal per-
turbation propagates away from the source region in both the upward and downward
directions. The downward branch is reflected at the surface and propagates upward
again. The two branches may interfere. The mean background wind and temperature
affect the propagation of the tides by forming wave guides and changing the tides’ modal
structure [Ortland , 2005a, b]. Furthermore, resonant interactions between large-scale
planetary waves and tides may form secondary tidal waves [Achatz et al., 2008].

The diurnal part of the tidal variations was extracted from the HAMMONIA data
via Fourier analysis. For instance, the zonal tidal wind is represented by

uT = uR cos(Ωt) + uI sin(Ωt) , (3.1)

where the Fourier coefficients uR and uI are functions of longitude λ, latitude ϕ and
altitude z. Ω = 2π (24 h)−1 is the diurnal frequency. Again for the sake of simplicity,
semi-diurnal and shorter-period tidal variations have been excluded from the present
analysis, with corresponding extensions left to future work. The migrating parts of
diurnal variations have zonal wavenumber one and follow the apparent motion of the
sun. Thus, the migrating part of the diurnal zonal wind variation is given by [Achatz
et al., 2008]

uT,mig = uR,mig cos(Ωt+ λ) + uI,mig sin(Ωt+ λ) . (3.2)

As investigated by several authors [Achatz et al., 2008, and references therein], the heat-
ing in equatorial convection zones and the interaction of the migrating tide with plan-
etary waves excites diurnal variations which are not sun-synchronous. They are called
non-migrating tides and defined as the residual diurnal variation after the subtraction
of the migrating parts, i.e.

uT,non = uT − uT,mig . (3.3)

They are composed of several components with different zonal wavenumbers.
The real and imaginary parts of the diurnal zonal wind, diurnal meridional wind and

diurnal temperature are shown in fig. 3.3 at 110 km altitude. The local wind maxima
easily exceed 50 m/s. The zonal wind is more symmetric about the equator whereas the
meridional wind tends to be more anti-symmetric. In addition to the migrating zonal
wind part, non-migrating parts with zonal wavenumbers two and three are important.
The meridional wind, however, is more controlled by its migrating parts. The diurnal
temperature perturbation has local maxima of up to 30 K.

A vertical cross-section of the real part of zonal wind uR is shown in fig. 3.4 for
different latitudes. uR has been scaled by the square root of density

√
ρr/ρ00. There

are two altitude regions where dissipation of tidal-wave energy seems to happen: in
the lower stratosphere and in the upper mesosphere. In the southern hemisphere lower
stratosphere (at about 20 km), the phase lines of the convectively-excited tidal compo-
nents become shallower which can indicate that there exists a critical mean-wind level.2

2 For critical levels of gravity waves see also the discussion in sections 4.3.1 and 5.3.5.
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Figure 3.3.: Real part (left) and imaginary part (right) of diurnal zonal wind (upper row),
diurnal meridional wind (middle row) and diurnal temperature (lower row) at 110 km altitude
from HAMMONIA simulations. A contour interval of 5 m/s and 5 K was chosen for wind and
temperature, respectively.

The phase lines are negatively tilted which suggests that the phase progression is west-
ward. As there is an east-wind jet in the southern (summer) hemisphere, the difference
between the tidal phase velocity and the mean wind velocity is reduced. Another hint
to the critical level filtering is that the height of the extinction of the westward mov-
ing non-migrating tides rises from 30S to 0 and eventually vanishes at 15N and further
northward. In the northern hemisphere, the west-wind jet supports westward tidal-wave
motion. Another possible cause for the damping of the westward-moving tide at 20 km
and 30S could be the destructive interference with the tidal component excited in the
stratopause region. Furthermore, there exists a tendency for the non-migrating parts of
the diurnal tide to be preferentially eastward-moving in the southern (summer) hemi-
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Figure 3.4.: A vertical cross-section of the real part of scaled diurnal zonal wind at different
latitudes 30S, 15S, 0, 15N and 30N (from left to right) from HAMMONIA simulations. The
wind was scaled with a factor

√
ρr/ρ00 were a reference density of ρ00 = 10−5 kg m−3 was

chosen. Phase lines of the westward-moving parts were indicated by black lines, whereas phases
of eastward-moving parts were accentuated by blue lines.

sphere and westward-moving in the northern (winter) hemisphere. These are typical
properties of (in this case large-scale) gravity waves. Another interesting feature can
be seen at ϕ = 0 and altitude 20 km: a so-called St. Andrew’s cross, where several
beams are radiated away from a localized source [Nappo, 2002], but due to the typical
wind conditions only the eastward-moving branch can escape. The westward-moving
migrating part has larger vertical wavelength and is superposed on the non-migrating
part in both hemispheres. Dissipation of tidal-wave energy in the upper mesosphere
is due to molecular viscosity and thermal diffusivity. Energy originating in the lower
atmosphere and transported into and dissipated in the upper atmosphere via thermal
tides is one of the major coupling mechanisms between the different atmospheric layers.

The total amplitude of diurnal variations is defined in analogy to a zonal and temporal
root-mean square, i.e. as

U =
√

[u2
R + u2

I ] , (3.4)

which corresponds to the amplitude definition of Ortland and Alexander [2006]. The
bracket [.] denotes the zonal average. The total amplitudes of the diurnal zonal wind U ,
diurnal meridional wind V and diurnal temperature disturbance are shown in fig. 3.5.
The wind amplitudes have a double maximum structure with peaks at about 20N and
20S and between 100 km and 110 km. The meridional wind amplitude V is larger than
the zonal wind amplitude U . A hemispheric asymmetry between northern hemisphere
winter and southern hemisphere summer is also visible. The total temperature amplitude
peaks in the tropics between 110 km and 120 km. The amplitudes of the migrating parts
are shown in fig. 3.5. The migrating tides peak at 33 m/s and 48 m/s for the zonal and
meridional winds, respectively, which is only about 60% and 85% of their total diurnal
variances. The migrating temperature variation of 21 K accounts for only 35% of the
diurnal variance. The amplitudes of non-migrating tides shown in fig. 3.5 have a single
maximum in the equatorial region and are comparable to or, in the case of the diurnal
zonal wind variation, even larger than the amplitudes of the migrating tide.
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Figure 3.5.: Zonally-averaged total amplitudes of diurnal tides (upper row), and amplitudes
of migrating (middle row) and non-migrating parts (lower row) of zonal wind (left column),
meridional wind (middle column) and temperature (right column) obtained from HAMMONIA
simulation data.
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3.4. Discussion

It has been shown that tidal waves dominate the daily variability in the mesosphere/
lower thermosphere with wind amplitudes up to 50 m/s and temperature perturbations
of up to 30 K. Smaller scale gravity waves are strongly affected by changes in the
background conditions imposed by thermal tides. This impact seems to be far from small
and justifies the present interest in and detailed investigation of the gravity wave-tidal
wave interaction. Another important point is that the periodic wind and temperature
changes due to tides are relatively fast and can directly modify GW propagation and
certain GW properties, as will be explained in chapter 4 and 5. This temporal effect
is one of the major focuses of the present work and was not investigated properly in
the past [as discussed in Senf and Achatz , 2011; Achatz et al., 2012]. In the ray-tracing
simulations discussed in chapter 5, migrating as well as non-migrating parts of diurnal
variations are considered as background for GW propagation.

3.5. Summary

• Simulation data from the complex chemistry-climate model HAMMONIA have
been analyzed with respect to diurnal variations.

• Diurnal heating by solar insolation is strong in the troposphere due to radiative
interactions of water vapor, latent heating of large-scale condensation and cumulus
convection, especially in the tropics.

• Ozone heating maximizes in the upper stratosphere.

• Migrating tides follow the apparent motion of the sun and have large amplitudes
in the subtropical mesopause region.

• Non-migrating tides also strongly impact the diurnal cycle in the tropical
mesopause and lower thermosphere.
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4. Dynamics of gravity waves

The dynamics of gravity waves (GWs) can be divided into three stages: (i) excitation,
(ii) propagation and (iii) dissipation. The various, mainly tropospheric, gravity-wave
sources are discussed first. Then the temporal evolution of small-amplitude waves in a
resting isothermal basic state is introduced. The extension to linear gravity waves in
a general moving basic state with special focus on middle-atmosphere thermal tides is
addressed using multiple-scale analysis and WKB theory. A set of ray-tracing equation
is derived which describes the vertical and horizontal evolution of nearly monochromatic
gravity-wave trains. This method allows one to follow the wave field from its (prescribed)
source to the region, where it is dissipated, and to monitor the possible changes in wave
properties. In the dissipation region, here the mesosphere / lower thermosphere, gravity
waves force a mean flow via deposition of pseudo-momentum and energy. The Eliassen-
Palm (EP) theorems are used to explain the impact on the mean flow. As the influence
of the temporal and horizontal dependence due to thermal tides on the gravity-wave
propagation is taken into account, the EP-theorems are generalized.

4.1. Discussion of gravity-wave sources

Before the dynamics of gravity waves is derived explicitly, their sources, mainly located
in the troposphere, will be discussed. There is a variety of different mechanisms through
which gravity waves are excited, all connected to vertical lifting of air, localized body
forces and heating of air. A comprehensive overview of GW sources was given by Fritts
and Alexander [2003] and is summarized here.

In mountainous areas, a flow across topography induces oscillations in a stably-
stratified environment. Propagating gravity waves result in the lee of the mountains.
The horizontal scales of the mountain waves are dictated by the horizontal structure of
the mountains, but their vertical wavelength is determined by the background stability
and the speed of the surface wind. Because the wave source, i.e. the mountain range,
does not move with respect to the geostationary frame, topographic waves have zero
frequency and phase velocity.

Moist convection is also able to produce gravity waves. Fritts and Alexander [2003]
proposed three excitation mechanisms (i) thermal forcing, (ii) a mechanical oscillator,
and (iii) the obstacle or “transient mountain” mechanism. In the thermal forcing mech-
anism, latent heat release inside a convective cloud causes a temperature anomaly that
moves away from the heating source. The extreme updraft within a convective cloud
can intermittently push the cloud top against the tropopause. The moving cloud be-
haves like a mechanical oscillator. Finally, the cloud can be viewed as a moving obstacle
which, due to convective heating, modifies the shape of the isentropes in the lowest
stable layers [Fritts and Alexander , 2003]. Air parcels transported by the background
wind rise to negotiate the cloud obstacle and GW motion is excited. The momentum
flux by convectively forced gravity waves is distributed over a large range of non-zero
phase velocities [Song and Chun, 2005].

Dynamical instabilities are another mechanism responsible for GW excitation. The
collapse of a shear layer via Kelvin-Helmholtz instability can lead to the so-called enve-
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lope radiation of GW packets in which a coherent sequence of Kelvin-Helmholtz billows
develops. Similarly, in the adjustment process of a nearly geostrophically balanced flow,
gravity waves are emitted. This happens for instance in exit regions of the tropospheric
jet streams. Another lifting process occurs in the vicinity of fronts. Close to a cold
front, warmer air is lifted rapidly, convective clouds are formed, and the air column is
lifted. Frontal, convective and dynamical excitation of gravity waves tend to operate
together and are hard to distinguish.

A variety of different GW sources exists and the properties of the excited gravity
waves are extremely variable. A superposition of all types of gravity waves forms a
virtually continuous GW spectrum. The interaction between gravity waves and the
background flow and non-linear wave-wave interactions further shape the spectrum of
gravity waves, making a quantitative description of the GW properties close to a source
highly uncertain [Alexander et al., 2010]. With this problem in mind, a simple toy
ensemble of vertically moving gravity waves described in section 5.2.1 was chosen as the
lower boundary conditions for the global ray-tracing simulations described in chapter 5.
The simplicity of the employed GW ensemble made it possible to correctly attribute the
tidal-wave impacts on the propagation of the gravity waves. As pointed out in chapter
6, however, major advancements are expected from the use of more realistic choices of
GW sources.

4.2. Propagation of linear gravity waves in a resting,
isothermal atmosphere

It is assumed that gravity waves, which are able the reach the middle atmosphere, have
small amplitudes at their source altitude. If a GW packet propagates vertically over
several scale-heights, its amplitude increases by orders of magnitudes. This is because
less mass is transported by the GW oscillation as the mean air density decreases expo-
nentially. Hence in its early stage, GW motion might be described within a linear frame.
Furthermore, the non-linear advection terms remain quite small for nearly monochro-
matic gravity waves until the onset of instability.

This motivates the study of the dynamics of small-amplitude gravity waves. In the
following, the anelastic equations (2.36) - (2.38) are linearized around an isothermal,
hydrostatic background at rest. Linear dynamics is analyzed in Cartesian coordinates
on a local tangent plane at latitude ϕ0, e.g. mid-latitudes with ϕ0 = 45N. This is
a typical textbook example [Pedlosky , 2003] in which several interesting properties of
gravity waves can be investigated. The important extension to GW packets in moving
basic states is presented in later sections. Ignoring the effects of friction and diabatic
heating, the linear anelastic equations are 1

∂tu
′ − fv′ + ∂xφ

′ = 0 , (4.1)

∂tv
′ + fu′ + ∂yφ

′ = 0 , (4.2)

∂tw
′ + ∂zφ

′ = b′ , (4.3)

∂tb
′ + w′N2 = 0 , (4.4)

∂xu
′ + ∂yv

′ + ∂zw
′ − w′/Hρ = 0 . (4.5)

1The parts of the Coriolis term containing the vertical velocity are ignored. As seen in section 4.3.2
inertia-gravity waves are nearly hydrostatic and the corresponding w′-terms are small. For non-
hydrostatic gravity waves, the whole Coriolis term 2Ω× v′ is negligible.
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The density scale-height Hρ = −(∂z ln ρr)
−1 is constant and equal to RTr/g with Tr the

constant reference temperature. The square of the buoyancy frequency N2 = g2/(cpTr)
and the Coriolis parameter f = 2Ω sin(ϕ0) are also constants. The background density
decreases exponentially, ρr(z) = ρ00 exp(−(z−z00)/Hρ) where ρ00 is the reference density
at a reference level z00.

The solution of the set (4.1)-(4.5) is sketched in the following. To eliminate the impact
of the background density ρr, all GW variables are scaled with the inverse square-root
of ρr. Then the resulting equation system admits wave solutions of the form{

v′, φ′, b′
}

= Re

{{
v̂, φ̂, b̂

}√ρ00

ρr
eiΘ
}
. (4.6)

{v̂, φ̂, b̂} are the complex wave amplitudes of wind v′, scaled pressure φ′ and buoyancy b′.

The ρ
−1/2
r -term is responsible for the enormous increase in magnitude with height of

vertically propagating gravity waves. The GW phase Θ obeys

Θ = kx+ ly +mz − ωt , (4.7)

which defines the zonal wavenumber k, meridional wavenumber l, vertical wavenumberm
and ground-based frequency ω, but is only valid for this simple example. For slowly
varying basic states, the definition of the wavenumber vector k = kex + ley +mez and
frequency is generalized in section 4.3.3.

The Fourier ansatz (4.6) is inserted into the set of linear partial differential equations
(4.1)-(4.5) and an algebraic, homogeneous linear system results. Non-trivial solutions
are only possible if the determinant of the corresponding system matrix vanishes. A
relation results which connects the wave frequency ω to the wavenumbers k, l and m,
the reference buoyancy frequency N and the Coriolis parameter f . This is the dispersion
relation for gravity waves [Fritts and Alexander , 2003]

ω2 =
N2k2

h + f2
(
m2 + (2Hρ)

−2
)

k2
h +m2 + (2Hρ)−2

, (4.8)

where kh =
√
k2 + l2 denotes the horizontal wavenumber. The term (2Hρ)

−2 in eq.
(4.8) can be viewed as a small shift of the vertical wavenumber m, becoming equal to
m for a vertical wavelength of 4πHρ. For typical scale heights of 7 km, this occurs for
wavelengths larger than 100 km. For gravity waves with vertical wavelengths smaller
than 40 km, the frequency shift by the (2Hρ)

−2-term is less than 5 %. Hence, it might not
be critical to neglect this term in the following discussion so that the relevant dispersion
relation reduces to

ω2 =
N2k2

h + f2m2

k2
h +m2

. (4.9)

There is a large range of possible wave periods for which propagating gravity waves
can exist. The high-frequency limit of eq. (4.9) is obtained for large aspect ratios
k2
h/m

2 � 1, i.e. for m2 → 0, and the low frequency limit for small aspect ratios
k2
h/m

2 � 1, i.e. m2 →∞:

ω2 → N2 for m/kh � 1 : high-frequency limit, (4.10)

ω2 → f2 for m/kh � 1 : low-frequency limit. (4.11)

The oscillations of fluid parcels are purely vertical in the high-frequency limit. For typical
mean temperatures Tr = 240 K, the minimum wave period is about 5 minutes. When
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a GW field approaches the limit of highest frequencies it is reflected (known as turning
level). On the other hand, so-called inertial oscillations constitute the low-frequency
limit, and are purely horizontal and unaffected by gravity. At ϕ0 = 45N, the maximum
wave period is about 17 hours. This limit is approached, for instance, near a so-called
critical layer which can be responsible for an extreme increase in m2. In between both
limits, i.e. for periods between a few minutes to about a day, free wave propagation is
possible.

The dispersion relation (4.9) can be reformulated in terms of the vertical wavenumber
m, i.e.

m2 = k2
h

N2 − ω2

ω2 − f2
=
k2
hN

2

ω2

1− ω2/N2

1− f2/ω2
. (4.12)

There are three different approximations of (4.12) frequently in use [see e.g. Fritts and
Alexander , 2003]:

• the non-hydrostatic GW regime with ω � f , where

m2 =
k2
hN

2

ω2

(
1− ω2

N2

)
⇔ ω2 =

N2k2
h

k2
h +m2

(4.13)

• the medium-frequency GW regime with ω � f and ω � N , where

m2 =
k2
hN

2

ω2
⇔ ω2 =

N2k2
h

m2
(4.14)

• and the inertia-gravity wave regime with ω � N , where

m2 =
k2
hN

2

ω2 − f2
⇔ ω2 =

N2k2
h

m2
+ f2 . (4.15)

The non-hydrostatic GW regime and the inertia-gravity wave regime are branches of the
full dispersion relation which show the asymptotic behavior of either the high- or low-
frequency limits. The medium-frequency regime, in between the two, is the most simple,
valid for wave periods on the order of hours. It is usually used in GW parameterizations
[McLandress, 1998]. As shown in section 4.3.2, the different scaling behavior of the
non-hydrostatic and the inertia-GW regimes, i.e. ω ∼ N for the first and ω ∼ f
for the latter, makes separate multiple-scale analyses necessary when a slowly varying
background state is permitted.

The motion of a GW field is characterized by two sets of velocities. The phase
velocities ch = ω/kh and cz = ω/m describe the motion of GW phase lines in the
horizontal and vertical directions, respectively. The group velocities

cgh =
∂ω

∂kh
=

kh
|k|2

N2 − ω2

ω
(4.16)

and

cgz =
∂ω

∂m
= − m

|k|2
f2 − ω2

ω
(4.17)

are even more important and describe the horizontal and vertical propagation of the
envelope of a GW packet [Pedlosky , 2003]. The wave energy is transported by the group
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wavenumber > 0 < 0

zonal wavenumber k eastward westward

meridional wavenumber l northward southward

vertical wavenumber m downward upward

Table 4.1.: Sign convention for GW wavenumbers. The given directions indicate the GW group
flow.

velocity. cgh and ch have the same sign, but cgz and cz have opposite signs. Hence for
upward moving GW energy, the GW phases move downward. The wavenumber vector
and the group velocity form a right angle. GW motion is dispersive. Assuming ω > 0,
GW group propagation is eastward for k > 0, northward for l > 0 and upward for
m < 0. The sign convention is summarized in tab. 4.1.

The structure of a simple Gaussian GW packet is plotted in fig. 4.1. GW winds are
shifted by 90 relative to the buoyancy or potential temperature field. Upward winds are
associated with upward displacements of air parcels with smaller background entropy
than the air above and thus lead to negative temperature perturbations.

Figure 4.1.: Phase structure of a Gaussian GW packet. The buoyancy field is plotted in colors
with positive areas in red and negative areas in blue, and the wind is shown with arrows in
arbitrary units. The group velocity cg (large filled arrow) and the wavenumber vector k (large
open arrow) are also shown.
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4.3. Propagation of linear gravity waves in a general moving
basic state

4.3.1. Possible impacts of background wind and stability

So far, the impact of the background wind which advects the GW field has been ne-
glected. The speed by which GW phase crests approach an observer depends on whether
the observer is fixed to the ground or moves with the mean wind.2 Hence in the two
reference frames different frequencies are measured. The frequency obtained in the geo-
stationary frame is called the observed or ground-based frequency ω and the frequency
measured in the moving frame is called the intrinsic frequency ω̂. The transport by
the mean wind induces a shift in frequency called a Doppler shift k · u. This is the
frequency due to wave crest advection. The Doppler shift is also familiar from everyday
life. An observer waiting on the street will hear an approaching ambulance siren with
a higher pitched sound than if the ambulance is stopped. This instantly reverses to a
lower pitched sound after the passage of the ambulance. Also, no changes in the static
stability of the background atmosphere were treated in the previous section which may
alter the restoring force.

If the intrinsic frequency is denoted by ω̂ then the equation

ω = ω̂ + k · u (4.18)

holds. The dispersion relation (4.9) is a relation between wave quantities in a moving
frame. When constant background motion is included then

ω̂2 = (ω − k · u)2 =
N2k2

h + f2m2

k2
h +m2

(4.19)

relates the (constant) mean wind u and (constant) stability frequency N to the intrinsic
GW frequency ω̂.3 With the horizontal phase speed ch = ω/kh and the horizontal
background wind uh = k · u/kh projected onto the wave direction kh/kh, the medium-
frequency approximation of m in eq. (4.14) simplifies to

m =
N

uh − ch
, (4.20)

where the root with cz = ω/m < 0 was chosen. For the medium-frequency approxima-
tion, the two limits m → 0 for N → 0 and |m| → ∞ for uh → ch are possible. The
first refers to wave reflection whereas the second is called critical level filtering at the
critical level where uh approaches ch. However, as noted before, the medium-frequency
dispersion relation (4.20) is not appropriate for describing either one of these limiting
cases.

The impact of wind and stability variations on the GW dispersion may be quantified
using the HAMMONIA data introduced in section 3.1. As in section 4.2, a constant
temperature Tr = 240 K and zero wind ur = 0 m/s are assumed. The resulting reference
buoyancy frequency is Nr =

√
g2/(cpTr) = 72 cycles per hour. The variations of the

buoyancy frequency ∆N and zonal background wind ∆u with respect to these reference
values are shown in fig. 4.2. The range between the minimum and maximum time-mean

2 The mean wind is either the Eulerian-mean or the Lagrangian-mean wind depending on the way it is
obtained (as discussed in section 2.2.1). In the simulations in chapter 5, u is taken from the climate
model HAMMONIA and is more closely connected to the Eulerian-mean. For simplicity of notation
the filter operator is dropped in the following discussions.

3 Concerning the sign convention: From eq. (4.19) it becomes clear that ω̂ > 0 is only possible for
ω > k · u. In the case ω > k · u and ω̂ < 0, all directions given in tab. 4.1 are reversed.
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Figure 4.2.: Variations of zonal wind ∆u (left) and buoyancy frequency ∆N (right) as functions
of altitude. The range between minimum and maximum difference between the actual and the
reference value (ur = 0, Nr =

√
g2/(cpTr)) is indicated by colors, dark red and dark blue for

temporally averaged HAMMONIA January and orange and light blue with diurnal variations
also included. The solid white line indicates the median and the dashed white lines the 25th
and 75th percentiles of the darker range. The scaling of the relative variations was made with
c0 = 30 m/s and Nr = 72 cycles per hour.

wind achieved globally at each altitude level is plotted with dark red shading. In the
tropopause region, the west-wind jets reach up to 80 m/s. In the stratopause region,
winter westerly and summer easterly winds are maximized. A third maximum is visible
at about 95 km and is connected to the wind reversal in the summer mesopause region.
Altogether, the wind variations are quite large. The variations in buoyancy frequency,
plotted with dark blue shading, are much narrower at each altitude and vertical changes
dominate the overall distribution. Hence, a mean vertical profile of buoyancy frequency
might capture most of the buoyancy structure. This confirms the assumptions made in
the anelastic expansion derived in section 2.1.4. The use of a mean reference profile for
the buoyancy frequency seems to be sufficient for this study.

Using lighter colors, the impact of the diurnal tides on the range of wind and stability
variations is also shown in fig. 4.2. In the upper mesosphere / lower thermosphere, the
diurnal wind variations become significant and extend the range between the extreme
values up to 50 m/s. The diurnal variations in the buoyancy frequency are also shown
and are mainly visible between 80 km and 120 km. As discussed next, they might be
negligible compared to the diurnal wind variations.

Consider the medium-frequency dispersion relation (4.20). If the horizontal phase
velocity ch = c0 is kept constant, then changes in u and N are uniquely attributable to
changes in m, i.e.

∆m =
∂m

∂N
∆N +

∂m

∂uh
∆uh (4.21)

which leads via eq. (4.20) to

∆m

m
=

∆N

N
+

∆uh
ch − uh

. (4.22)
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Therefore, the absolute stability variation ∆N is scaled by the full value N , but the
absolute wind variation ∆uh is only scaled by the difference ch − uh which can be
significantly smaller than uh alone. With respect to the reference values, the relative
variations are approximately ∆N/Nr and ∆u/c0 with c0 = 30 m/s and Nr = 72 cycles
per hour, also shown in fig. 4.2. The relative variations in the zonal wind can reach
up to 300 %, whereas relative variations in the buoyancy frequency are no larger than
30 % when an appropriate altitude profile is chosen. One should keep in mind that this
oversimplified picture changes as time-dependence and horizontal inhomogeneities of the
background are taken into account. Nevertheless, it demonstrates that GW fields are
mainly influenced by the background wind due to Doppler shifting k · u.

4.3.2. Multiple-scale asymptotics

Motivation

In the previous sections, linear GW solutions within a simplified setup, a resting, isother-
mal basic state, have been derived. Even in the last discussion of possible mean wind
effects, a constant background wind was assumed and only the sensitivity of the disper-
sion relation to variations in the constant background quantities was investigated. This
is quite unrealistic because winds and temperatures vary as function of space and time.
However, no simple linear GW solution exists in the general case and the full set of
equations has to be solved. Even where this might be feasible, the gain in information
about the GW motion and its interpretation is quite restricted for the full solution.

Fortunately, variations of the basic state often happen on temporal and spatial scales
different from those of the GW motion. This two-scale behavior, i.e. large scales for the
background and small scales for gravity waves, will be used in the following to derive an
asymptotic set of equations which is simpler to solve and interpret than the full equation
set and its solution. Furthermore for GW parameterizations in climate models where
fast GW variations are beyond the resolution threshold, an asymptotic description of
GW impacts is needed.

In the following, multiple-scale asymptotics are presented with a focus on small-scale
gravity waves. Similar derivations for rotating flows were provided in a number of
studies. Grimshaw [1975a] used the square of the so-called Froude number as a small
parameter in which he expanded the set of compressible equations (also assuming a
small Mach number). In his derivation he additionally assumed that the wave Rossby
number is order one which is equivalent to a buoyancy frequency N on the order of the
Earth’s angular frequency Ω. However, this assumption is not realistic for atmospheric
conditions. Shaw and Shepherd [2009] provided a very general asymptotic framework
for subgrid-scale motion, but they did not consider the scale separation between the
vertical scale of the waves and the basic state resulting in a set of equations equivalent
to the medium-frequency GW regime discussed below. They were not able to consis-
tently include low- or high-frequency limits within their derivation. These issues will be
addressed in the following.

Typical scales of the background state

The horizontal scales of the background range from several thousand kilometers up to
the circumference of the earth. Within this range, a representative horizontal length
scale L̂ is chosen. As given in tab. 4.2, L̂ ≈ 10 000 km is a typical value for the zonal
wavelength of diurnal tides and for (quasi)-stationary planetary waves. However, no
distinction between zonal and meridional scales is made here, even though the meridional
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structure of the mean wind jet and the diurnal tides might be narrower. The vertical
scale of the basic state Ĥ is associated with the density-scale height of the atmosphere.
Hence, Ĥ ≈ 10 km (as listed in tab. 4.2) is an appropriate choice. The aspect ratio
âB = Ĥ/L̂ of the background flow is about 10−3. This is closely related to the ratio of f
to N in mid-latitudes where the Rossby deformation radius RD = NĤ/f is of the order
of L̂ [Pedlosky , 1982]. The background time scale T̂ ranges from one day for diurnal tides
up to several weeks for (quasi-)stationary planetary waves. T̂ ≈ 1 day is a reasonable
choice for the investigation of tidal-wave effects.

quantity symbol magnitude

background time scale T̂ O (1 day)

background horizontal scale L̂ O (10 000 km)

background vertical scale Ĥ O (10 km)

aspect ratio âB = Ĥ/L̂ O
(
10−3

)
Table 4.2.: List of typical background scales.

The average zonal wind has typical magnitudes in the order of several 10 m/s. For di-
urnal tides, these values are only reached in the upper mesosphere / lower thermosphere.
The horizontal phase velocity of the diurnal tides scales like Ω L̂ and is about one order
of magnitude larger than Û. Nevertheless, the zonal wind scale Û is connected to the
tidal phase velocity via Û = Sr−1

m Ω L̂ where the mean Strouhal number Srm = L̂Ω/Û
measures the ratio between advective and tidal time-scale [Klein, 2000] and is typically
large, Srm = O (10). As discussed in chapter 3, the meridional tidal wind has approxi-
mately the same magnitude as the zonal wind. Thus, choosing one horizontal wind-scale
Û seems to be sufficient for diurnal tides in the MLT region. The ratio between Earth’s
rotation time-scale Ω−1 and the background time-scale T̂ in the Coriolis force defines the
mean Rossby number Rom = (Ω T̂)−1. For diurnal tides Rom is approximately one. The
time-mean flow including planetary waves is close to geostrophic equilibrium [Holton,
2004] in which the horizontal pressure gradient is mostly balanced by the Coriolis force.
Hence the corresponding Rossby number is much smaller than one. The magnitude of
the density-scaled mean pressure φ is denoted by P̂. For tides, pressure changes are gov-
erned by changes in the inertia and Coriolis forces, thus, P̂ = Sr Û2 is appropriate. For
the geostrophic components of the background flow, the balance between pressure gra-
dient and Coriolis force implies the relation P̂ = ΩL̂Û which also reduces to P̂ = Sr Û2.
The hydrostatic balance of the basic state enforces a relation between the mean buoy-
ancy scale B̂ and the mean pressure scale P̂, i.e. B̂ = P̂/Ĥ. The mean vertical velocity is
in the order of several cm/s. The ratio Ω/N̂ is in the order of 10−3 where N̂ is a typical
scale of the buoyancy frequency of about 100 cycles per hour, thus Ω2/N̂2 ∼ â2

B. The

advective change of the mean buoyancy field scales like B̂/T̂ = ŴN̂2. Diabatic effects
are assumed to be weaker. The scale of the vertical velocity Ŵ is then

Ŵ =
B̂

N̂2T̂
=

P̂

ĤN̂2T̂
=

ΩL̂Û

N̂2ĤT̂
=

Ω2

N̂2

Û

âBΩT̂
= âBRomÛ . (4.23)

The typical background scales are summarized in tab. 4.3.
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quantity relation

background horizontal wind Û = Sr−1
m L̂Ω

background density-scaled pressure P̂ = Srm Û2

background buoyancy B̂ = Srm Û2/Ĥ

background vertical wind Ŵ = âB Rom Û

mean Strouhal number Srm = L̂Ω/Û

mean Rossby number Rom = (ΩT̂)−1

Table 4.3.: Relations between the different background scales, variables and mean flow numbers.

Typical wave scales

There is a large variety of possible horizontal GW scales. First, they depend on the
geometry of the source and, second, on the interaction of the excited GW packet with
the local flow. Hence the choice of the typical GW scale is somewhat arbitrary and is
not meant to exclusively restrict the analysis to one very specific problem. Nevertheless,
two possible choices for the horizontal GW scale l̂ are introduced: l̂ = O (100 km)
for medium-frequency waves and l̂ = O (1 km) for non-hydrostatic waves.4 A vertical
GW scale of ĥ = O (1 km) is specified, even though the local vertical GW scale might
change a lot due to the impact of the mean wind shears. The aspect ratio â = ĥ/l̂
becomes ≈ 10−2 and ≈ 1 for the medium-frequency and non-hydrostatic GW regimes,
respectively. For fixed GW length-scales, the wave time-scale can be determined using
the dispersion relation (4.9) and its approximations (4.13) and (4.14). For medium-
frequency gravity waves, the typical time-scale is t̂ = (âN̂)−1 and in the order of hours,
and for non-hydrostatic gravity waves, t̂ = N̂−1 is in the order of minutes. The dominant
scales for the medium-frequency regime are listed in tab. 4.4.

quantity symbol magnitude

wave time scale t̂ O (1 hr)

wave horizontal scale l̂ O (100 km)

wave vertical scale ĥ O (1 km)

aspect ratio â = ĥ/l̂ O
(
10−2

)
two-scale ratio ε = ĥ/Ĥ O

(
10−1

)
Table 4.4.: List of typical GW scales for the medium-frequency regime.

The typical wave and background scales were chosen in such a way that the combined
flow system exhibits two-scale behavior. The ratio between the vertical wave scale ĥ

and the vertical background scale Ĥ is a small number in the order of 10−1 and referred

4 Clearly, whether a GW field is called medium-frequency or non-hydrostatic depends on the size of
the horizontal and the vertical scale.
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to as the two-scale ratio

ε ≡ εz =
ĥ

Ĥ
: small two-scale ratio. (4.24)

Just as different wave aspect-ratios were assumed for the different GW regimes, the other
scale-ratios, i.e. for horizontal and temporal scales, depend on the regime considered
and are not necessarily equal to ε. For instance, the ratio between the horizontal scale
of the wave l̂ and the background L̂ denoted by εx behaves like

εx =
l̂

L̂
=

âB

â
ε . (4.25)

For the medium-frequency and for the non-hydrostatic regime, εx takes values of ≈ 10−2

and ≈ 10−4, respectively. The ratio of time scales is

εt =
t̂

T̂
=

Rom
Row

, (4.26)

where Row = (Ωt̂)−1 is the wave Rossby number. Row gives a typical ratio between
inertial and Coriolis forces and is typically large. For medium-frequency gravity waves,
Row = O (10), whereas for non-hydrostatic gravity waves, Row = O

(
103
)
.

In section 4.2, it was discussed that GW perturbations grow exponentially with the
inverse square root of background density. With the ansatz (4.6), this effect was removed
from the GW perturbations. The remaining scales of horizontal wind û, vertical wind
ŵ, density-scaled pressure p̂ and buoyancy b̂ are considered. In the following, the focus
is on small-amplitude gravity waves which obey

û = ε Û . (4.27)

This connects the scale of the background wind and the GW wind and imposes an
additional constraint on the various scale ratios. For Ω/N̂ = âB, Û = ΩL̂/Srm and
t̂ = (âN̂)−1, the GW wind û can be reformulated as

û = ε
ΩL̂

Srm
= ε

N̂Ĥ

Srm
=

N̂ĥ

Srm
= Sr−1

m

l̂

t̂
. (4.28)

As Sr−1
m is a small number ∼ ε, the advective time-scale l̂/û is about one order of mag-

nitude larger than t̂. The horizontal pressure gradient p̂/l̂ is dominated by a temporal
change in û, thus

p̂ = Sr−1
m

(
l̂

t̂

)2

= Sr−1
m

(
N̂ĥ
)2

. (4.29)

For the vertical momentum balance, it is assumed that the local change in w′ is in the
order of b′ or ∂zp

′ or smaller. Hence, the pressure gradient p̂/ĥ can be used to estimate
the buoyancy scale b̂:

b̂ = Sr−1
m N̂2ĥ . (4.30)

The last expression is connected to the upper threshold of b̂ given by convective insta-
bility, where surfaces of equal entropy or equivalently potential temperature overturn.
Since, ∂z(θr + θ′) = 0 is the marginal convective stability condition, the upper bound

b̂c = ĥN̂2 (4.31)
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results [Achatz et al., 2010]. The investigated wave regime with b̂ = Sr−1
m b̂c is approxi-

mately linear and sufficiently far below the convective instability threshold. Finally for
the vertical wind-scale,

ŵ =
b̂

N̂2t̂
= Sr−1

m

ĥ

t̂
(4.32)

is obtained because buoyancy perturbations are the result of the lifting of air packets.
The last relation also shows that the vertical displacement of an air parcel is about one
order of magnitude smaller than the vertical wavelength of small-amplitude waves.

The wave Rossby number can be written as Row = â/âB and the associated constraint
on the horizontal scale-ratio is εx = εRo−1

w . Additionally, the background buoyancy-
scale B̂ is then related to the wave buoyancy-scale b̂, i.e.

B̂

b̂
=

P̂

Ĥ

ĥ

p̂
= ε

ΩL̂Û

Srmû2
= ε−1 . (4.33)

For consistency, the above requirements should be met within a systematic scaling anal-
ysis.

The linear anelastic equations

Based on the anelastic equations (2.36)- (2.38), the dynamics of small-amplitude gravity
waves is derived. Quasi-stationary turbulence is assumed and as discussed before, addi-
tional turbulent stresses and heat fluxes are added to the molecular contributions. For
the description of gravity waves, two different routes were suggested in section 2.2.3. On
the one hand, gravity waves can be described as perturbations from the Eulerian-mean.
On the other hand, viewing them as disturbances from the Lagrangian-mean might be
convenient, too. As in the following small-amplitude waves within a scale-separated flow
are considered, both strategies yield the same set of equations. It is therefore sufficient
to focus only on one, in this case the Eulerian, description of wave perturbations. GW
perturbations are marked by a prime, e.g u′, and the notation of the filter operator
is dropped for the background flow, e.g. 〈u〉w → u. In the limit of small-amplitude
perturbations, the linear GW dynamics is governed by

∇ ·
(
ρrv
′) = 0 , (4.34)

Dtv
′ + 2Ω× v′ = −v′ · ∇u−∇φ′ + b′ ez +

1

ρr
∇ ·
(
F′ + R′t

)
, (4.35)

Dtb
′ + w′N2 = −v′ · ∇b− wb′ + w′b

Hθ
+
gQ′an
cpTr

, (4.36)

where Hθ = (∂z ln θr)
−1 is the reference potential temperature scale height.5 The back-

ground flow mainly affects the wave motion due to the advection by the horizontal wind
u given in the operator Dt = ∂t + u · ∇h + w∂z and changes in the reference profile of
buoyancy frequency denoted by N . In the investigations in chapter 5, u is composed
of a climatologically averaged field and temporally varying diurnal tides. In contrast
to simple GW studies in vertical shear flows, horizontal and temporal variations in
the background medium are also important. The gradients of the background medium
change the momentum and heat content of the waves via the terms v′ · ∇u and v′ · ∇b.

5 The second term on the right-hand-side of eq. (4.36) usually does not appear in the Boussinesq
equations, and the term w′b/Hθ even survives the scale asymptotics performed in section 4.3.2.
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The first influences the kinetic energy of the waves and gives rise to the so-called shear
production term and the second influences the available potential energy of the waves
and is connected to a buoyancy production.6

The impact of turbulence is parametrized with a very simple diffusion approach. If
in contrast to Becker [2001] plane-parallel flow is assumed, the molecular and turbulent
stresses might be approximated by

F′ + R′t = ρr (ν + νt)
(
∇v′ + (∇v′)T

)
, (4.37)

where the molecular and turbulent diffusion coefficients, ν and νt, have been introduced.
The resulting frictional force is

f ′R = (ν + νt)
{
∇2v′ +∇(∇ · v′)

}
+
∂z(ρr(ν + νt))

ρr

(
∂zv

′ +∇w′
)
. (4.38)

Additionally, the linearized heat source

Q′an = ε′ +Q′ − 1

ρr
∇ ·
(
q′ + J ′t

)
(4.39)

and the linearized dissipation rate

ε′ =
1

ρr

(
F′ + R′t

)
··∇u+

1

ρr
(F + Rt) ··∇v′ (4.40)

are obtained. Although the linearized dissipation rate also contains gradients of the
large-scale flow, it is suggested that they play only a minor role in changing the heat
content of a GW field. The molecular and turbulent fluxes of entropy are more important
and are approximated by

− g

cpTrρr
∇ ·
(
q′ + J ′t

)
=

1

ρr
∇ ·
(
ρr (κ+ κt)∇b′

)
=

1

ρr
∇ ·
( ρr

Pr
(ν + νt)∇b′

)
, (4.41)

with molecular and turbulent diffusivities, κ and κt, respectively. In the second step, the
Prandtl number Pr was introduced and no distinction between molecular and turbulent
Prandtl number was made. Next, the dimensions are removed from the linear anelastic
equations.

Non-dimensional equations, gravity-wave regimes and distinguished limits

In the system under consideration two dominant time scales t̂ and T̂ , two horizontal
scales l̂ and L̂, and two vertical scales ĥ and Ĥ exist. For the linear GW dynamics, the
set of short scales {l̂, ĥ, t̂} are chosen as dimensions of the coordinates {x, t}, so that
the non-dimensional coordinates {x∗, t∗} obey

{x, y} = l̂ {x∗, y∗} z = ĥ z∗ and t = t̂ t∗ . (4.42)

Dependence on the long scales is denoted by {εxx∗h, εz∗, εtt∗}. The multiple scaling
property of the perturbation variables is given by e.g. u∗(x∗, t∗; εxx

∗
h, εz

∗, εtt
∗).

In appendix A.2, a set of non-dimensional equations of motion is derived. Besides the
small two-scale ratio ε = ĥ/Ĥ,

• the mean Strouhal number Srm = L̂Ω/Û,

6 The buoyancy production in the balance of the available potential energy should not be confused
with the vertical wave buoyancy flux 〈b′w′〉w.
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• the aspect ratios of the wave, â = ĥ/l̂, and the background, âB = Ĥ/L̂,

• the Rossby numbers of the wave, Row = (Ωt̂)−1, and the background, Rom =
(ΩT̂)−1,

• and the wave Reynolds number7 Rew = ĥ2/(v̂t̂)

also appear there. Furthermore, the ratios between temporal and horizontal scales, i.e.
εt and εx, are present. The set of parameters can be used to construct asymptotic
relations in the limit of certain parameters being small (or large). However, as discussed
by Klein [2008], a singular limit might be obtained when one single parameter is brought
to zero (or infinity) while keeping the others constant. If in the multi-parameter space
the limit of several parameters is investigated then the order of the individual limits
matters. Under the topic “distinguished limits” several parameters are “glued” together
and the explicit path in the multi-parameter space is specified [e.g. Klein, 2000; Klein,
2008; Achatz et al., 2010].

This is performed in the following for the linear anelastic set of equations. All param-
eters are related to the two-scale ratio ε as shown in tab. 4.5, but with different scaling
assumptions for different regimes of GW motion. Therefore, an asymptotic expansion
of non-dimensional equations is done with only one single parameter ε.

independent dependent

regime â Rom Rew Row εx εt

inviscid, non-hydrostatic 1 1 ε−1 ε−3 ε4 ε3

inviscid, medium-frequency ε2 1 ε−1 ε−1 ε2 ε

inviscid, inertia-gravity wave ε3 ε ε−1 1 ε ε

Table 4.5.: List of scaling assumptions made for the different GW regimes. The background
aspect ratio âB = ε3 and mean Strouhal number Srm = ε−1 are set. Then different choices for
the aspect ratio â, the background Rossby number Rom and the wave Reynolds number Rew
as functions of the two-scale ratio ε determine the wave Rossby number Row and the ratios of
temporal and horizontal scales, εt and εx.

The non-hydrostatic regime: Flow situations are investigated in which the clear sep-
aration between horizontal and vertical wave scales vanishes. The relevant scalings are
listed in tab. 4.5. For aspect ratios in the order of â ∼ 1, the time scale of the GW
perturbation is given by t̂ ∼ N̂−1, i.e. in the order of minutes. Hence, the wave Rossby
number is large, Row ∼ ε−3, and the separation between temporal and horizontal scales
is large. The GW structure is nearly unaffected by Earth’s rotation and horizontal
gradients of the background flow. Furthermore, it is assumed that on their way up-
ward, the GW fields are not perturbed by localized heating, hence the heating number
He is O

(
ε−2
)
, and are weakly damped by friction, thus Rew ∼ ε−1. With all these

assumption, the non-hydrostatic GW motion is to O
(
ε2
)

governed by

∇∗h · u∗ +
∂w∗

∂z∗
= ε

(
w∗

H∗ρ

)
, (4.43)

7 The wave Reynolds number Rew is the typical ratio between inertial and viscous forces incorporating
molecular and turbulent diffusion and is also usually large.
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Dv∗

DT ∗
+∇∗φ∗ − b∗ez = ε

(
−w∗∂U

∗

∂z∗
+ (ν∗ + ν∗t ) ∇∗ · (∇∗v∗)

)
, (4.44)

Db∗

DT ∗
+ w∗(N∗)2 = ε

(
−w∗∂B

∗

∂z∗
− w∗B∗

H∗θ
+
ν∗ + ν∗t

Pr
∇∗ · (∇∗b∗)

)
, (4.45)

where all dimensionless quantities have an asterisk. The dimensionless horizontal back-
ground wind is denoted by U∗ and the dimensionless background buoyancy is B∗.
D/DT ∗ is the advective derivative with the horizontal wind.

The inviscid, medium-frequency regime: The inviscid, medium-frequency regime is
typically described by the wave scales given in tab. 4.4. The wave aspect ratio is small
â ≈ 10−2. The wave time-scale is in the order of hours. Thus the time-scale ratio is
≈ 10−1 and also approximately equal to Ro−1

w . The horizontal scales of the wave and the
background are still separated by a factor of ≈ 10−2. Again, Rew ∼ ε−1 and He ∼ ε−2

are assumed. These relations are the basis of the scaling of the medium-frequency GW
regime in tab. 4.5. Then the non-dimensional GW equations from appendix A.2 are to
O
(
ε2
)

governed by

∇∗h · u∗ +
∂w∗

∂z∗
= ε

(
w∗

H∗ρ

)
, (4.46)

Du∗

DT ∗
+∇∗h φ∗ = ε

(
−W ∗∂u

∗

∂z∗
− w∗∂U

∗

∂z∗
(4.47)

− f∗ ez × u∗ + (ν∗ + ν∗t )
∂2u∗

∂z∗ ∂z∗

)
,

∂φ∗

∂z∗
− b∗ = 0 , (4.48)

Db∗

DT ∗
+ w∗(N∗)2 = ε

(
−W ∗ ∂b

∗

∂z∗
− w∗∂B

∗

∂z∗
− w∗B∗

H∗θ
+
ν∗ + ν∗t

Pr

∂2b∗

∂z∗ ∂z∗

)
, (4.49)

where f∗ = 2 sinϕ is the non-dimensional Coriolis parameter.

The inertia-gravity wave regime: In the limit of large wave time-scales, the wave
structure becomes sensitive to the rotation of earth. In the inertia-gravity wave regime,
the scale separation between the wave and background time-scales is questionable. Thus,
if t̂ ∼ Ω−1, then the background Rossby number should be small, i.e. Rom = ε, for scale-
separated motion. These requirements are met for geostrophically balanced flows, but
certainly not for the diurnal tides. Therefore, the scale asymptotics may fail in the limit
of very slow inertia-gravity waves.

In the following, the inertia-gravity wave regime is constructed with the scaling as-
sumptions from tab. 4.5 ignoring possible problems resulting from tidal background
flows. To O

(
ε2
)
∇∗h · u∗ +

∂w∗

∂z∗
= ε

(
w∗

H∗ρ

)
, (4.50)

Du∗

DT ∗
+ f∗ ez × u∗ +∇∗h φ∗ = ε

(
−W ∗∂u

∗

∂z∗
− v∗ · ∇∗U∗ + (ν∗ + ν∗t )

∂2u∗

∂z∗ ∂z∗

)
, (4.51)

∂φ∗

∂z∗
− b∗ = 0 , (4.52)
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Db∗

DT ∗
+ w∗(N∗)2 = ε

(
−W ∗ ∂b

∗

∂z∗
− v∗ · ∇∗B∗ − w∗B∗

H∗θ
+
ν∗ + ν∗t

Pr

∂2b∗

∂z∗ ∂z∗

)
. (4.53)

Hybrid dynamics

One could think to use each of the three regimes, the non-hydrostatic, the medium-
frequency and the inertia-gravity wave, separately to describe the dynamics of their
corresponding gravity waves. Beside the redundant work this would entail, an intelligent
strategy would have to be invented to jump smoothly between the regimes if suddenly
the conditions for the validity of one are violated. This seems to be unnecessarily
complicated.

In the following, a hybridization of the different GW regimes is proposed. The main
focus remains on the medium-frequency dynamics, but both limiting cases, the non-
hydrostatic and the inertia-gravity wave limit, enter the flow description. The hybrid
system is chosen to be

∇∗h · u∗ +
∂w∗

∂z∗
= ε

(
w∗

H∗ρ

)
, (4.54)

Dv∗

DT ∗
+ f∗ ez × u∗ +∇∗φ∗ − b∗ez = ε

(
−W ∗∂u

∗

∂z∗
− v∗ · ∇∗U∗

+ (ν∗ + ν∗t ) ∇∗ · (∇∗v∗)
)
, (4.55)

Db∗

DT ∗
+ w∗(N∗)2 = ε

(
−W ∗ ∂b

∗

∂z∗
− v∗ · ∇∗B∗ − w∗B∗

H∗θ
+
ν∗ + ν∗t

Pr
∇∗ · (∇∗b∗)

)
. (4.56)

Unlike the medium-frequency dynamics, it also contains non-hydrostatic motion, the
direct impact of Earth’s rotation and the three-dimensional gradients of the background
flow. Note, however, that GW motions in the high and low-frequency limit are inherently
different, and therefore, besides the somewhat arbitrary hybridization, no systematic
way exists to obtain this asymptotic set of equations for typical atmospheric conditions.
If a study of GW motion e.g. Marks and Eckermann [1995] is able to describe non-
hydrostatic and inertial effects within one single formulation, the discussed hybridization
strategy must be implicitly hidden in the asymptotic derivation of the resulting system
which has not been clarified by the corresponding authors.

4.3.3. Wentzel-Kramers-Brillouin theory for gravity waves

Motivation

Wentzel-Kramers-Brillouin (WKB) theory was first invented in the context of quantum
mechanics. Semi-classical, approximate solutions of the Schrödinger equation were found
which are assumed to be sufficiently described by locally monochromatic wave packets
[Messiah, 1961] Since they are slow compared to variations of the wave phase, amplitude
changes are ignored. Hence, WKB theory uses the inherent two-scale behavior of wave
packets and easily translates to the atmospheric context.

As discussed in section 4.3.2, GW motion can happen on temporal and spatial scales
different from those of the basic state. This two-scale behavior will be used in the
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following to construct solutions of the asymptotic hybrid system (4.54)-(4.56). Locally
monochromatic GW packets are investigated in which the short scales are associated
with variations in the wave phase whereas the large-scale inhomogeneities of the basic
state induce slow changes in other wave-packet properties such as the wave amplitudes
or wavenumber vectors. Hence, the wave packet is a generic object which has the scaling
properties of a realistic GW field.

The wave-packet ansatz

The hybrid set (4.54)-(4.56) is asymptotically solved with the wave-packet ansatz

v∗ = Re
{
v̂∗(X∗, T ∗) eiΘ(X∗, T ∗)/ε

}
, (4.57)

φ∗ = Re
{
φ̂∗(X∗, T ∗) eiΘ(X∗, T ∗)/ε

}
, (4.58)

b∗ = Re
{
b̂∗(X∗, T ∗) eiΘ(X∗, T ∗)/ε

}
. (4.59)

The dimensionless wave amplitudes v̂∗, φ̂∗ and b̂∗ only depend on the slow variables
X∗ = εx∗ and T ∗ = εt∗ for which εx = ε and εt = ε was assumed within the hybridiza-
tion. The GW phase Θ depends on the fast variables while its derivatives only show
slow variations. This is emphasized by the additional ε−1 factor. The partial temporal
and spatial derivatives of the wave packet, e.g. of velocity

∂v∗

∂t∗
= Re

{(
i
∂Θ

∂T ∗
v̂∗ + ε

∂v̂∗

∂T ∗

)
eiΘ/ε

}
, (4.60)

∇∗Xv∗ = Re
{

(i (∇∗XΘ) v̂∗ + ε∇∗X v̂∗) eiΘ/ε
}

(4.61)

are dominated to O
(
ε0
)

by the variations of the phase. Amplitude variations however
appear in the next order ε1. ∇∗X is the nabla operator in the slow coordinates X∗.
Extending the definition of the GW phase in a resting basic state eq. (4.7), the dimen-
sionless GW wavenumber vector k∗ and the dimensionless GW observed frequency ω∗

are defined as [Hayes, 1970]

k∗ = ∇∗XΘ , (4.62)

ω∗ = − ∂Θ

∂T ∗
. (4.63)

The dimensionless intrinsic frequency measured in a frame moving with the background
is given by

ω̂∗ = − DΘ

DT ∗
= ω∗ − k∗ ·U∗ . (4.64)

As discussed in section 4.3.1, the main difference between ω̂∗ and ω∗ is the Doppler shift
by the horizontal background wind U∗. In contrast to section 4.3.1, U∗ can vary slowly
over the length and time-scales of a GW packet. Finally, the amplitude of the wave
packet is expanded in orders of ε to obtain e.g. for the wind amplitude

v̂∗ = v∗0 + εv∗1 + . . . . (4.65)
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Lowest order O
(
ε0
)
: Dispersion and polarization relations

The wave-packet ansatz is inserted into the hybrid system (4.54)-(4.56) and the cor-
responding definitions of wavenumber vectors and frequencies are used. To the lowest
order in ε, a homogeneous system of linear equation results:

−iω̂∗ −f∗ 0 ik∗ 0

f∗ −iω̂∗ 0 il∗ 0

0 0 −iω̂∗ im∗ −N∗

ik∗ il∗ im∗ 0 0

0 0 N∗ 0 −iω̂∗


·



u∗0

v∗0

w∗0

φ∗0

b∗0/N
∗


=



0

0

0

0

0


, (4.66)

where k∗, l∗ and m∗ denote the dimensionless zonal, meridional and vertical wavenum-
ber, respectively. First of all, the matrix above, in the following denoted as M, is
anti-Hermitian, i.e. the adjoint matrix M+ is equal to −M. Second, the linear system
only has trivial solutions unless M is singular, i.e. unless the determinant of M is zero.
This connects the intrinsic frequency ω̂∗ to all other variables, i.e. to k∗, l∗, m∗, f∗ and
N∗. The resulting relation is called “dispersion relation” and is now obtained after a
series of manipulations. The amplitudes of v∗0 and φ∗0 are rewritten as function of b∗0.
From thermodynamics,

w∗0 =
iω̂∗

(N∗)2
b∗0 (4.67)

is obtained. The vertical momentum balance

iω̂∗w∗0 + b∗0 = im∗φ∗0 (4.68)

is rewritten as

φ∗0 = − i

m∗
(N∗)2 − (ω̂∗)2

(N∗)2
b∗0 , (4.69)

and the horizontal balance(
−iω̂∗ −f∗

f∗ −iω̂∗

)
·

(
u∗0

v∗0

)
= −i

(
k∗

l∗

)
φ∗0 , (4.70)

changes to (
u∗0

v∗0

)
=

(N∗)2 − (ω̂∗)2

(ω̂∗)2 − (f∗)2

(
−iω̂∗k∗ + l∗f∗

−iω̂∗l∗ − k∗f∗

)
b∗0

m∗(N∗)2
. (4.71)

The relations between v∗0, φ∗0 and b∗0 are called “polarization relations” and determine to
lowest order the phase relations between the wind, pressure and buoyancy perturbations
in a GW field. They can also be used to estimate the subgrid-scale stresses and heat
fluxes due to gravity waves. The continuity equation is used to obtain the dispersion
relation

(ω̂∗)2 = (ω∗ − k∗ ·U∗)2 =
(N∗k∗h)2 + (f∗m∗)2

(k∗h)2 + (m∗)2
(4.72)

The last relation is identical to eq. (4.19) from the linear GW solution in a resting basic
state with the major exception that eq. (4.72) is an asymptotic result for small ε in
which slow variations of background properties N∗, f∗ and U∗ are allowed. Therefore,
eq. (4.72) gives the natural extension to GW motion in general moving basic states.
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First order O
(
ε1
)
: Amplitude equations

In the lowest order of the asymptotic expansion, relations between the GW wind, pres-
sure and buoyancy perturbations were obtained, but still one amplitude measure, say
b∗0, remained unknown. Now, in the next order, O

(
ε1
)
, an equation for the evolution

of the GW amplitude results. Inserting the wave-packet ansatz into the hybrid system
(4.54)-(4.56) and collecting terms of order ε, the first order system

−iω̂∗ −f∗ 0 ik∗ 0

f∗ −iω̂∗ 0 il∗ 0

0 0 −iω̂∗ im∗ −N∗

ik∗ il∗ im∗ 0 0

0 0 N∗ 0 −iω̂∗


·



u∗1

v∗1

w∗1

φ∗1

b∗1/N
∗


+



DT ∗u
∗
0 + ∂X∗φ

∗
0

DT ∗v
∗
0 + ∂Y ∗φ

∗
0

DT ∗w
∗
0 + ∂Z∗φ

∗
0

∇∗X · v∗0
DT ∗(b

∗
0/N

∗)


(4.73)

=



−W ∗ (im)u∗0 − v∗0 · ∇∗XU∗ − (ν∗ + ν∗t )|k∗|2u∗0
−W ∗ (im)v∗0 − v∗0 · ∇∗XV ∗ − (ν∗ + ν∗t )|k∗|2v∗0

−(ν∗ + ν∗t )|k∗|2w∗0
w∗0/H

∗
ρ

−W ∗ (im)b∗0/N
∗ − v∗0 · ∇∗XB∗/N∗ − w∗0B∗/(N∗H∗θ )− (ν∗ + ν∗t )|k∗|2b∗0/(Pr N∗)


arises. Eq. (4.73) looks quite complicated on the first sight, and one might wonder
that the next order amplitude corrections v∗1, φ∗1 and b∗1 appear. They are coupled to
the matrix M. However, as M has a right eigenvector projecting onto its null space, it
is also possible to find a left eigenvector doing the same, and thus eliminate this term
by left multiplying (4.73) with the left eigenvector. As M is anti-Hermitian, the left
eigenvector projecting onto its null space is equal to the complex conjugate of the right
eigenvector. Therefore,
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, (4.74)
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where ()? denotes the complex conjugate and ()T is the transpose.8 This is a known
strategy to obtain an evolution equation for wave energy, which here obeys

D

DT ∗

(
|v∗0|2

2
+
|b∗0|2

2(N∗)2

)
+∇∗X ·

(
Re {v∗0(φ∗0)?}

)
− Re {w∗0(φ∗0)?}

H∗ρ

= −Re {u∗0(v∗0)?} ··∇∗XU∗ −Re {b∗0(v∗0)?} · ∇
∗
XB
∗

(N∗)2
−Re {b∗0(w∗0)?} B∗

(N∗)2H∗θ

+ (ν∗ + ν∗t )|k∗|2
(
|v∗0|2

2
+ Pr−1 |b∗0|2

2(N∗)2

)
, (4.75)

when the real part of eq. (4.74) has been taken. Using the polarization relations from
the previous section, the evolution of the unknown amplitude measure is determined.

4.3.4. Gravity-wave propagation and the ray-tracing method

The dispersion relation (4.72) is a diagnostic relation between the GW frequency, GW
wavenumbers and basic state properties. But as GW frequency and GW wavenumbers
are calculated from one single GW phase function, it is also possible to construct prog-
nostic relations for them. This enables one to explicitly follow the GW motion in time
and monitor changes of relevant GW properties. Called “ray tracing”, it is a simplified
view of the propagation of GW packets and eases the interpretation of changes in the
GW fields, but it has only a restricted range of validity due to the assumption of scale-
separated wave packets. The ray-tracing method will be developed and explained below,
keeping in mind that it will be applied to GW propagation through middle-atmosphere
thermal tides in chapter 5.

In the subsequent sections, dimensions are included in all variables, so the asterisks
are removed, e.g. k∗ → k, the background wind changes like U∗ → u and lowest
order GW amplitudes change like v∗0 → v̂. All results easily translate to dimensional
quantities, but some important relations will be restated.

Ray tracing in a plane-parallel atmosphere

Ray tracing is based on the assumption that a locally monochromatic GW field obeys
a dispersion relation, in our case

ω̂2 = (ω − k · u)2 =
N2k2

h + f2m2

k2
h +m2

: GW dispersion relation. (4.76)

The horizontal background wind u is a function of time and space and the (reference)
buoyancy frequency N and the Coriolis parameter f only depend on altitude and lati-
tude, respectively. The GW field is divided into small parts in which local values of GW
frequency ω, GW wavenumber vector k and an appropriate amplitude measure can be
defined. Each part of the GW field is called a wave parcel and moves with its group
velocity cg. The geometric position x of the wave parcel is determined by its initial
position and the solution of

dtx = cg (4.77)

8 It is not distinguished between column and row vectors in most of this thesis.
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where dt = ∂t+cg ·∇ is the derivative along the group ray x(t). The group velocity has
been already introduced in section 4.2. It measures the speed with which the envelope
of the wave packet propagates and has the components

cgλ =
∂ω

∂k
= u+

k

|k|2
N2 − ω̂2

ω̂
, (4.78)

cgϕ =
∂ω

∂l
= v +

l

|k|2
N2 − ω̂2

ω̂
, (4.79)

cgz =
∂ω

∂m
= − m

|k|2
ω̂2 − f2

ω̂
. (4.80)

As discussed in section 4.2, the sign of vertical group velocity cgz is opposite to the
sign of the ratio m/ω̂. Hence, if the positive root of (4.76) with ω̂ > 0 is chosen,
then m < 0 for upward moving gravity waves. The sign of the wavenumbers gives
the direction of the GW phase progression, k > 0 (k < 0) for eastward (westward),
l > 0 (l < 0) for northward (southward), and m > 0 (m < 0) for upward (downward)
phase motion. Again, as in the simple example in section 4.2, phase motion of gravity
waves is downward for upward-moving wave energy.

In the following, the dispersion relation (4.76) will be written in the abstract notation
ω = ω(k,Λ), where the local properties of the background medium are summarized in
the vector Λ [Bretherton and Garrett , 1968]. Additionally, as discussed before and given
e.g. by Hayes [1970], the GW observed frequency ω and the GW wavenumber vector k
are defined by the local variations of the GW phase Θ,

ω = −∂tΘ : GW observed frequency

k = ∇Θ : GW wavenumber vector

(4.81)

(4.82)

The dispersion relation (4.76) gives a Hamilton-Jacobi equation for the GW phase Θ

−∂tΘ = ω(∇Θ,Λ) (4.83)

and can be used to derive evolution equations for ω and k. The local rate of change in
observed frequency is

∂ω

∂t
=
∂ω

∂ki

∂ki
∂t

+
∂ω

∂Λn

∂Λn
∂t

(4.84)

where ki = k ·ei and i and n index coordinate directions and the number of background
quantities, respectively.9 The conservation of wave crests [Pedlosky , 2003]

∂tk = −∇ω (4.85)

follows from Schwarz’s theorem, i.e. ∂t∇Θ = ∇∂tΘ. Therefore, using cgi = ∂ω/∂ki and
dt = ∂t + cg · ∇, a ray equation for the observed frequency is found:

dtω =
∂ω

∂Λn

∂Λn
∂t

. (4.86)

The temporal variability of the background medium induces changes of the GW observed
frequency along the ray. For the GW wavenumber vector k, the same procedure applies.

9Summation over repeated indices, i.e. aibi =
∑I
i=1 aibi, is implied where the number I depends on

the context.
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The gradient in eq. (4.85) is expressed in Cartesian coordinates, i.e. ∇ = ei∂xi where
xi is one of x, y and z. The corresponding tendencies of the wavenumbers kj are

∂kj
∂t

= − ∂ω
∂ki

∂ki
∂xj
− ∂ω

∂Λn

∂Λn
∂xj

. (4.87)

Fortunately, the tensor ∂xjki is symmetric, due to ∂xj∂xiΘ = ∂xi∂xjΘ, and thus a ray
equation for the wavenumbers can be established:

dtkj = − ∂ω

∂Λn

∂Λn
∂xj

. (4.88)

The spatial inhomogeneities lead to changes of the GW wavenumbers along the ray.
From the dispersion relation (4.76), the derivatives ∂ω/∂Λn are

∂ω

∂u
= k,

∂ω

∂v
= l,

∂ω

∂f
=

fm2

ω̂|k|2
and

∂ω

∂N
=

Nk2
h

ω̂|k|2
. (4.89)

The ray-tracing equations for a plane-parallel atmosphere are then

dtω = k · ∂tu , (4.90)

dtk = −k · ∂xu , (4.91)

dtl = −k · ∂yu−
fm2

ω̂|k|2
∂yf , (4.92)

dtm = −k · ∂zu−
Nk2

h

ω̂|k|2
∂zN . (4.93)

The time-dependence of the background wind, in our case the effect of the diurnal
tide, induces a modulation of GW observed frequency ω along the ray. The horizontal
gradients in the background wind, the beta-effect and vertical changes in stability N
lead to changes in the GW wavenumbers.

For a complete description of the wave field, the wave amplitude is needed. As shown
in section 4.3.3, the wave energy equation arose in the first order of the WKB expansion.
Including dimensions, eq. (4.75) translates to

∂tEw +∇ ·
(
uEw +

ρr
2
Re
{
v̂φ̂?

})
= −ρr

2
Re {ûv̂?} ··∇u− ρr

2
Re
{
b̂ v̂?

}
· ∇b
N2
− ρr

2
Re
{
b̂ ŵ?

} b

N2Hθ
− τ−1Ew , (4.94)

where the continuity equations (2.36) and (4.34) were used and

Ew = ρr

(〈
|v′|2

〉
w

2
+

〈
b′2
〉
w

2N2

)
= ρr

(
|v̂|2

4
+
|b̂|2

4N2

)
(4.95)

is the wave energy. The damping rate

τ−1 = 2(ν + νt)|k|2
(
µ+ Pr−1(1− µ)

)
(4.96)

depends on the ratio µ = Ekin/Ew of GW kinetic energy Ekin = ρr
〈
|v′|2

〉
w
/2 and

total wave energy Ew. µ changes due to the impact of rotation on wave motion, i.e.
for ω̂ → N : µ → 1/2 and for ω̂ → f : µ → 1. τ depends on the Prandtl number. If
Pr = 1 then simply τ−1 = 2(ν + νt)|k|2. Dunkerton [1989] argued that Pr & 3 is more
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realistic for breaking gravity waves as turbulent damping will be strongly localized in
GW phases where mixing of entropy is low.

As shown in appendix A.4, the non-dissipative wave energy sources are related to the
change of ω̂ along the ray so that eq. (4.94) reduces to the wave action law (see also
Bretherton and Garrett [1968])

dtA = −A ∇ · cg − τ−1A , (4.97)

where A = Ew/ω̂ denotes the wave action density and τ−1 is due mainly to wave breaking
processes. The change in the volume of a ray bundle [Walterscheid , 2000] is determined
by the divergence of the group flow. Wave action conservation was also studied in a
much more general context [Andrews and McIntyre, 1978; Grimshaw , 1984].

The damping rate τ−1 is estimated via a highly simplified turbulence parameteri-
zation based on saturation theory [Lindzen, 1981]. In this scheme, the GW amplitudes
are forced back to the convective instability threshold if they have the tendency to grow
above it. τ−1 is calculated in a way to ensure that the saturation condition is fulfilled
[Holton, 1982]. The explicit dependence of τ on the diffusion coefficient and Prandtl
number will remain unspecified as in chapter 5 only GW forces are considered. For
GW heating rates, it is supposed that a more sophisticated approach in parametrizing
the turbulence impact is needed [see e.g. Marks and Eckermann, 1995]. Additionally,
in the MLT region molecular viscosity and thermal diffusivity become more important
and are included into the damping process. Note however that in the middle and upper
thermosphere, also the dispersion of GW fields would be strongly affected by molecular
motion [Vadas and Fritts, 2005].

Ray tracing in a shallow, spherical atmosphere

In the following, special emphasis on metric corrections appearing in a shallow, spherical
atmosphere is made. This derivation appeared in Senf and Achatz [2011] and may be
compared to Hasha et al. [2008]. Again following Hayes [1970], GW observed frequency
ω and GW wavenumber vector k are connected to local variations of the GW phase Θ
by eq. (4.81) and (4.82). But now, the gradient in eq. (4.82) is expressed in spherical
coordinates

∇ =
eλ

aE cosϕ

∂

∂λ
+
eϕ
aE

∂

∂ϕ
+ ez

∂

∂z
(4.98)

where according to the shallow atmosphere approximation [Phillips, 1966] the radial
distance r is replaced by the mean radius of earth aE . Note that k is defined as local
Cartesian quantity, but its projection on the set of spherical unit vectors {eλ, eϕ, ez}
changes during its evolution.

As the unit vectors ei in their respective coordinate directions do not depend on time,
the derivation of the ω-equation (4.90) remains unchanged. Only the evolution of k is
affected. Following the same strategy as before, the local tendency of k in eq. (4.87) is

∂k

∂t
= − ∂ω

∂ki
∇ki −

∂ω

∂Λn
∇Λn , (4.99)

where now the gradient is not expressed in Cartesian coordinates. The next crucial
step is rewriting the term cgi∇ki as an advective derivative supplemented by metric
corrections, i.e.

cgi∇ki = cgi∇ (k · ei) = ∇k · cg + cgi∇ei · k . (4.100)
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Since ∇k = ∇∇Θ is a symmetric tensor of second order, ∇k = (∇k)T , it follows that
∇k · cg = cg · ∇k. Now, the projection k = kiei is applied once again to arrive at

cgi∇ki = (cg · ∇ki) ei + cg · ∇ei ki + cgi∇ei · k (4.101)

= (cg · ∇ki) ei + cg ·
(
∇ei − (∇ei)T

)
ki , (4.102)

where in the last line∇ (ei · ej) = 0 was used. Hence, the ray equations for the wavenum-
bers ki are

(dtki) ei = − ∂ω

∂Λn
∇Λn − cg ·

(
∇ei − (∇ei)T

)
ki , (4.103)

valid for general coordinate systems [Hasha et al., 2008].
As before, the shallow atmosphere approximation will be used so that vertical deriva-

tives of all unit vectors and all derivatives of the outward pointing unit vector ez are
neglected. Thus, only the convergence of the meridians is taken into account and the
metric terms are

∇eλ =
tanϕ

aE
eλeϕ and ∇eϕ = −tanϕ

aE
eλeλ . (4.104)

These terms lead to an additional geometric refraction of the horizontal wavenumbers
to compensate for the changes in the unit vectors due to the curvature of earth. Using
the wave action conservation eq. (4.97) with

∇ · cg =
∂λcgλ + ∂ϕ (cosϕ cgϕ)

aE cosϕ
+ ∂zcgz , (4.105)

a ray equation for the vertical flux FA = cgzA of wave action density A is obtained, i.e.
dtFA = dtcgzA+ cgzdtA, which can be written as

dtFA = −
(
τ−1 − τ−1

non

)
FA , (4.106)

where all non-dissipative effects have been collected into the rate

τ−1
non = c−1

gz

(
∂tcgz +

cgλ∂λcgz − cgz∂λcgλ
aE cosϕ

+
(cosϕ cgϕ) ∂ϕcgz − cgz∂ϕ (cosϕ cgϕ)

aE cosϕ

)
,

(4.107)

which can be either positive or negative. τ−1
non is derived by expanding and rewriting

the terms dtcgzA and −A∇ · cg via dt = ∂t + cgλ/(aE cosϕ) ∂λ + cgϕ/aE ∂ϕ + cgz∂z and
eq. (4.105). Eq. (4.106) extends the relation given by Marks and Eckermann [1995]
to time-dependent flows in spherical geometry. Changes in FA result from dissipation
via −τ−1FA and from temporal and horizontal variations of group velocity via τ−1

nonFA.
The latter are connected to a local change of the volume which neighboring GW rays
occupy [Broutman et al., 2004]. In the upcoming simulations, the turbulent damping is
the major contribution and changes in GW properties, chiefly ω and kh, modify the GW
breakdown, i.e. the damping rate τ−1. Hence, time- and horizontal dependence of the
background flow have a mostly indirect impact on the diurnal GW force by changing
the turbulence parameterization. This is in contrast to direct non-dissipative forces due
to transience and horizontal refraction, i.e. from τ−1

nonFA, as discussed in section 5.3.3
and by Dunkerton [1981], Eckermann and Marks [1996], and Bühler [2009].
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In summary, the ray-tracing equations in a spherical shallow atmosphere are

dtω = k · ∂tu ,

dtk = −k · ∂λu

aE cosϕ
+
k tanϕ

aE
ĉgϕ ,

dtl = −k · ∂ϕu
aE
− fm2

ω̂|k|2
∂ϕf

aE
− k tanϕ

aE
ĉgλ ,

dtm = −k · ∂zu−
Nk2

h

ω̂|k|2
∂zN ,

dtFA = −
(
τ−1 − τ−1

non

)
FA .

(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

The metric corrections from u lead to the change cg → ĉg on the right-hand sides of eq.
(4.109) and (4.110), where ĉg is the intrinsic group velocity. Again, the time-dependence
of the background wind induces the modulation of ω along the ray. In Addition to the
horizontal wind gradients, the geometric terms, the last terms of eq. (4.109) and (4.110),
are responsible for a turning of the horizontal wavenumber vector kh. In a hypothetical
isothermal earth at rest, a wave packet is forced to move on a great circle rather than
on a latitude circle as in the plane-parallel atmosphere. Several aspects of numerical
implementation of global ray tracing are discussed in the appendix A.6.

4.4. Eliassen-Palm theorems

In the study of gravity wave-tide interaction, forces and heating rates resulting from the
non-dissipative energy exchanges along the path of GW propagation and from dissipative
GW break-down are of major concern. Within simplified basic states, the way gravity
waves interact with the background medium was stated in a very elegant form called
the “Eliassen-Palm theorems”. They enable the estimation of the strength and location
of mean-wind changes and are reviewed in the following.

The Eliassen-Palm theorems are stated in the book of Lindzen [1990]. “[The first]
theorem tells us that the momentum flux is such that if deposited in the mean flow it
will bring u towards c” [Lindzen, 1990, p. 146], where c is the zonal GW phase velocity,
i.e. 〈

p′w′
〉
w

= −ρr(u− c)
〈
u′w′

〉
w
. (4.113)

“[The second] theorem tells us that in the absence of (i) damping, (ii) local thermal
forcing, and (iii) critical levels, no momentum flux is deposited or extracted from the
basic flow” [Lindzen, 1990, p. 148], so that

∂z
(
ρr
〈
u′w′

〉
w

)
= 0 . (4.114)

Both theorems have proven extremely helpful for the interpretation of the interaction
between gravity waves and a mean flow. However, several assumptions have been made
in their derivation, namely (i) 2D-GW motion, (ii) no rotation, and (iii) only vertical
shears in the background flow. In the following, generalized Eliassen-Palm relations are
derived when the assumptions are relaxed.

It is shown in appendix A.3 that in the WKB approximation the vertical pressure flux
is equal to the intrinsic vertical flux of wave energy Ew, i.e.〈

p′w′
〉
w

= ĉgzEw . (4.115)
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Since the considered gravity waves are affected by rotation the momentum flux is re-
placed by the more meaningful Eliassen-Palm flux (EP flux)

FEP = −ρr
(〈
u′qw

′〉
w
− f

〈
b′u′⊥

〉
w
/N2

)
(4.116)

where u′q and u′⊥ denote the velocity perturbation along and perpendicular to the hor-
izontal wavenumber vector. As the EP flux FEP = −ĉgzkhA gives the (negative of
the) vertical flux of horizontal pseudo-momentum khA, the first Eliassen-Palm theorem
generalizes to 〈

p′w′
〉
w

= (uh − ch)FEP , (4.117)

where ch is horizontal phase velocity, uh denotes the horizontal background wind in the
wave direction and A = Ew/ω̂ is the wave action density. This may be stated with
Lindzen’s words: “the EP flux is such that if deposited in the mean flow it will bring
uh towards ch”.10 Note that uh must be interpreted as Lagrangian-mean velocity here,
as FEP is closer connected to the pseudo-momentum flux than to the momentum flux
itself.

Also for the second EP-theorem, the impact on the Lagrangian-mean flow is of interest.
As shown in appendix A.3, ∇ · (ρr 〈ξ∇hφ′〉w) ≈ ∇ · (ĉgkhA) is the divergence of the
intrinsic flux of the horizontal pseudo-momentum vector [Grimshaw , 1975a]. Hence,
the dynamics of khA is needed. With the wave action law (4.97) and the kh-dynamics
(A.83), one obtains

∂t (khA) +∇ · (cgkhA) = −∇hu · khA−
fβm2

ω̂|k|2
Aeϕ − τ−1khA . (4.118)

The horizontal inhomogeneities in the background conditions are the sources of the
horizontal pseudo-momentum. Rewriting the last relation, a generalized variant of the
second Eliassen-Palm theorem is found, i.e.

∇ · (ĉgkhA) = −∂t (khA)−∇h · (ukhA)−∇hu · khA−
fβm2

ω̂|k|2
Aeϕ − τ−1khA . (4.119)

Therefore, even if (i) damping, (ii) heating or (iii) critical filtering is excluded, a lo-
cal mean flow is forced by wave transience and the horizontal inhomogeneities in the
background conditions.

10This actually implies that no pseudo-momentum is locally produced by the interaction with the mean
flow.

56



4.5. Summary

• GW sources were reviewed.

• Linear dynamics of small-amplitude gravity waves were discussed.

• Gravity waves in a resting isothermal basic state were chosen as a didactic intro-
duction.

• Then an extension to gravity waves in a large-scale moving basic states was pro-
vided.

• Within a multiple-scale analysis, the dynamics of gravity waves was viewed as a
two-scale system with fast variations on the wave scales and slow variations on the
background scales.

• Asymptotically, the three different GW regimes were investigated:

(i) the non-hydrostatic regime (high-frequency limit),

(ii) the medium-frequency regime,

(iii) and the inertia-gravity wave regime (low-frequency limit).

• Hybrid GW dynamics was constructed including the essential features of all
regimes.

• Wentzel-Kramers-Brillouin theory for locally monochromatic wave trains was uti-
lized.

• Local dispersion, polarization and wave action relations arose for slowly varying
background flows.

• The ray-tracing method was introduced in which parts of the GW field are traced
along its group velocity.

• The impact of GW fields on the background flow was briefly discussed with the
help of generalized Eliassen-Palm theorems.
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5. Modulation of gravity waves in thermal tides

Global ray-tracing simulations are presented in this chapter. Parts of gravity-wave
fields are traced through a time-changing background flow including tides from HAM-
MONIA. Effects of temporal and horizontal variations in the background conditions on
gravity-wave propagation are investigated. Diurnal gravity-wave forces are calculated
and compared to a conventional gravity-wave parameterization.

5.1. Introduction

The periodic change of the diurnal winds modulates GW fields propagating through
it. As indicated in section 4.3.1, different Doppler shifts k · u occur during different
tidal phases. Changes in k · u induce changes in certain GW properties and appear as
source terms in the set of ray-tracing equations (4.109)-(4.112). The impact of vertical
wind shear is of major importance for vertically propagating gravity waves and usually
incorporated into conventional GW parameterizations [McLandress, 1998]. However,
there are also effects resulting from the time-dependence of the diurnal tides and the
horizontal inhomogeneities of the combined background flow. The first is responsible for
a periodic modulation of the GW observed frequency while the latter inducing a mostly
irreversible refraction of the horizontal wavenumbers. Both effects are introduced and
discussed below. Some of the upcoming discussion is published in Senf and Achatz
[2011] and Achatz et al. [2012].

In the upcoming sections, frequency modulation and horizontal refraction are pre-
sented in two different ways: On the one hand, simplified examples are given to illus-
trate the underlying principles of each phenomenon, and rough estimates are provided
regarding how the different effects can impact on the GW-tide interaction. On the other
hand, global ray-tracing simulations within realistic tides have been performed for a
set of experiments to obtain quantitative results. For this, a new global ray-tracing
model was built by the author to fulfill all requirements of a consistent ray description
in a tidal background which was not available from existing models.1 The diurnal GW
force is the major concern of this study as well as how it changes due to the impact
of frequency modulation and horizontal refraction. The realistic GW simulations are
compared to the conventional vertical-column approach which is usually applied in GW
parameterizations.

5.2. Global ray-tracing simulations with RAPAGI

5.2.1. Gravity-wave ensemble

A global numerical model was built by the author based on the set of ray-tracing eqns.
(4.108)-(4.112). The model, named RAPAGI (Ray PAmeterization of Gravity-wave Im-
pacts), is a global ray-tracing model, the implementation details of which are given in

1 For instance, the ray model GROGRAT maintained by Stephen Eckermann, Naval Research Labo-
ratory, Washington is public available, but does not incorporate effects of temporal and horizontal
dependence of the basic state in the calculation of wave amplitude.
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appendix A.6. The RAPAGI simulations used a small and highly idealized ensemble of
gravity waves previously used by Becker and Schmitz [2003], listed in tab. 5.1. Gravity

# α [deg] Lh[km] ch[ms−1] Fh[10−3 J m−3]

1 0 385 6.8 0.32

2 45 410 6.8 0.38

3 90 504 10.2 0.35

4 135 570 6.8 0.38

5 180 596 6.8 0.45

6 225 570 6.8 0.38

7 270 504 10.2 0.35

8 315 410 6.8 0.38

9 0 385 32.8 0.32

10 45 410 20.4 0.38

11 135 570 20.4 0.38

12 180 596 32.8 0.45

13 225 570 20.4 0.38

14 315 410 20.4 0.38

Table 5.1.: 14 members of the GW ensemble used in the simulations. α denotes the azimuth angle
towards which the waves propagate, zero towards the east and increasing counter-clockwise. Lh
and ch are the horizontal wavelength and phase velocity in the wave direction and Fh the vertical
flux of horizontal pseudo-momentum at the lower boundary ẑB = 20 km.

waves with horizontal wavelengths between about 400 km and 600 km and random
initial phases are globally homogeneously and continuously emitted at the lower bound-
ary, ẑB = 20 km. Each of the 14 independent GW components is integrated forward
separately. The gravity waves are directed into 8 equally spaced azimuth directions,
beginning at east and increasing counter-clockwise at 45 intervals. The GW ensemble is
non-isotropic with largest kh directed to the east, the largest ch in the zonal directions
and the largest momentum flux to the west (see tab. 5.1).

It was shown by Becker and Schmitz [2003] that the mean residual circulation of the
middle atmosphere is well reproduced in a large-scale GCM when their GW ensemble
is used with a Lindzen GW parameterization. Note, however, that as it mostly resulted
from tuning the GW parameters, this GW ensemble is just one of many possibilities.
Therefore, the simple GW ensemble is viewed as a “toy” configuration in which the effect
of temporal and horizontal variation of the background conditions can be investigated.

5.2.2. Experimental setup

A hierarchy of three different experiments, named in order of decreasing complexity
“full”, “noREF” and “TS”, was used, as listed in tab. 5.2.

The “full” experiment is a full ray-tracing simulation without any approximations
for horizontal and time dependence, i.e. the unmodified eqns. (4.108) - (4.112) are
integrated along the ray path given by eqns. (A.98), (A.99), (A.100). Thus, changes in

60



dependence “full” “noREF” “TS”

time yes yes no

horizontal yes no no

Table 5.2.: Overview of the three different experiments which were performed with the same
initial conditions and background medium. “full”, “noREF” and “TS” are the short-cuts of
experiments explained in detail in the text.

ω, kh and m appear, induced by mean flow changes. Also, the geographical distribution
of the GW fields is altered in the process.

“noREF” (no refraction) is a simplified ray-tracing experiment in which neither hor-
izontal refraction nor horizontal propagation are allowed. In the simulation, the right-
hand sides of eqns. (A.98), (A.99) and (4.109), (4.110) have been set to zero. Addition-
ally, horizontal derivatives and curvature terms in eq. (4.112) have been ignored. Hence
in experiment “noREF”, ray points are only allowed to propagate vertically but have
a finite group velocity and feel the transience of the background wind. The horizontal
wavenumber vector kh is constant along each ray, but ω and m vary to compensate for
temporal and vertical changes in the background conditions, respectively.

The third experiment, denoted by “TS” (time slicing), is equivalent to a Lindzen-
type vertical column parameterization with temporally fixed background fields at each
time step [McLandress, 1998]. Only vertical variations of the background are taken into
account. Simulations with a stationary background fixed at each tidal phase, i.e.

uTS,n = ū+ uR cos (2πn/12) + uI sin (2πn/12) (5.1)

for n = 1, . . . , 12 , were used for a good sampling of the diurnal cycle. At the end, an
analysis of the composite of the different phases was performed.

With the three experiments, effects of frequency modulation and refraction of the
horizontal wavenumber vector can be extracted. Differences between “TS” and “noREF”
are attributed to the first, whereas differences between “noREF” and “full” to the latter.
As the simpler simulations “TS” and “noREF” are obtained by successively simplifying
the “full” ray-tracing system, a consistent comparison of the results is possible while
keeping numerical and implementation parameters the same.

5.3. Gravity-wave frequency and phase-speed modulation

5.3.1. Motivation

The local time-dependence of the diurnal tides has a large impact on GW motion.
First, the background medium changes while gravity waves are moving through it and
seeing different temporal snapshots of the tides at different altitude levels. Therefore,
depending on the travel time of individual gravity waves it might be incorrect to assume
a stationary background field, keeping mean and tidal flow fixed, as is done in most GW
parameterizations [McLandress, 1998] and in the “TS” experiment. Second, the GW
properties are directly affected by the time-dependence of the diurnal tides which seems
to be of major importance. From the ray equation (4.108), it is clear that the observed
frequency ω is changed by the periodic influence of the diurnal tides. This effect is
called “frequency modulation” and is explained in detail in the following sections. In
the sections 5.3.2-5.3.4, the mechanism of frequency modulation is introduced within
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a simple minimalistic example, and the energetics of non-dissipative wave-mean flow
interactions and the impact on the saturation region are discussed. In section 5.3.5, the
investigation is extended to more realistic flows and the experiments from section 5.2.2
are utilized to quantify frequency modulation of gravity waves in HAMMONIA diurnal
tides.

5.3.2. The mechanism of frequency modulation

For an introduction to the frequency modulation, a simple background flow is consid-
ered here. It consists only of a zonal wind component u(z, t) = U sin(Mz − Ωt) with
the large-scale vertical wavenumber M = −2π/Lz, the vertical wavelength Lz and the
amplitude profile U(z) [Broutman, 1984; Broutman and Young , 1986; Eckermann and
Marks, 1996]. The thermodynamic background state is isothermal. For diurnal tides
with M = −2π (30 km)−1 and Ω = 2π (1 day)−1, the phase velocity C = Ω/M is down-
ward and in the order of 0.3 m/s. Two examples are investigated in the following: two
continuously emitted GW trains and a transient GW packet.

First, consider two counter-propagating GW trains, one propagating in the positive
zonal direction and one in the negative with zonal wavenumbers k = ±k0. Both are
continuously emitted at the ground with phase velocities c = ±c0, respectively. A very
simple profile of the tidal amplitude is assumed. The wind amplitude U is zero at the
ground and slowly increases to a constant value at a certain altitude zT . Then the
ray-tracing eqns. (4.108), (4.109) reduce to

dtω = k ∂tu , (5.2)

dtk = 0 , (5.3)

which can be combined to the ray equation for the zonal phase velocity c = ω/k

dtc = ∂tu . (5.4)

Therefore, a local tendency of background wind is connected to a change of zonal phase
velocity c along the ray. But as also shown by Eckermann and Marks [1996] and Wal-
terscheid [2000], phase velocity changes arise only due to frequency changes. Above zT ,
u is monochromatic and a solution of the form c(z − Ct) can be found for which eq.
(5.4) becomes (

1 +
cgz
|C|

)
∂tc = ∂tu . (5.5)

Assuming small U , the ansatz

c ≈ ±c0 + δc sin(Mz − Ωt) (5.6)

gives the phase velocity variation δc to lowest order

δc =
U

1 +
cgz,0
|C|

, (5.7)

where cgz,0 is the initial vertical group velocity at the ground. For upward propagating
gravity waves, the frequency modulation acts so that c follows u. The exact solution
of eq. (5.5) and its linear approximation (5.6) and (5.7) are shown in fig. 5.1 for a
monochromatic tidal wave with constant amplitude U = 40 m/s. The linear approxi-
mations (5.6) and (5.7) perform quite well even in the case of large U . Only the peak
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Figure 5.1.: The vertical profiles of zonal wind (thick solid) with U = 40 ms−1 and the exact
solution for c of eq. (5.5) for 3 counter-propagating GW pairs: c0 = 5 ms−1 (dotted), c0 =
30 ms−1 (thick dashed) and c0 = 60 ms−1 (dot-dashed). The linear approximation (5.6) for
c0 = 30 ms−1 (thin dashed) is also shown. In the calculations, the Coriolis effect was neglected
and zT was far below 60 km.

values of c in fig. 5.1 are under-estimated in regions where vertical GW motion is slowed
down.

The second example, the propagation of a transient GW packet is shown in fig. 5.2.
A Gaussian wave packet, with its envelope centered at 24 h and with an envelope width
of 4 h, is excited at the lower boundary z = 0. Initially it has a zonal wavelength of
300 km, a zonal phase velocity of 40 m/s and a zonal momentum flux of 0.4 mJ/m3. It is
traced through a tidal wind u(z, t) = U sin(Mz−Ωt) where the zonal wind amplitude U
is Gaussian-shaped with a maximum of 40 m/s at 100 km altitude and a width of 20 km.
In the time-altitude plot, the rays are curved with steeper slopes in tidal phases with
negative wind and shallower slopes in positive wind phases. The wave packet is vertically
accelerated in the former and decelerated in the latter. The GW phases move downward
as the packet envelope propagates upward. The GW phase lines are steeper in negative
and shallower in positive tidal winds. The tilting of GW phase lines is connected to
an increase of vertical wavenumber and a deceleration of the GW packet. Also visible
in fig. 5.2 is that the GW period is increased in tidal minima and decreased in tidal
maxima. Thus, the transience of the background tide enforces a frequency modulation
proportional to the tidal wind itself. The largest GW temperature amplitudes appear
in altitudes below the tidal maxima. Further above, GW fields are strongly damped by
saturation.

The second panel of fig. 5.2 shows the amplitude of the tidal wind U and the amplitude
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Figure 5.2.: Propagation of a GW packet through a tidal background. Left: The zonal tidal wind
and the GW temperature perturbation are shown in contours and colors with intervals of 10 m/s
and 2 K, respectively. The time evolution of an initially Gaussian wave packet is obtained by
ray tracing (each 20th ray is indicated by thick lines). Right: The amplitude of the tidal wind
(open circles), amplitude of c-modulation (filled squares) and the estimate via (5.7) (dashed).

of the GW phase velocity variation δc. At their maxima at 100 km, the variation of GW
phase velocity is about 27% of the tidal wind variation. For the given GW packet with
kh = 2π (300km)−1 and c0 = 40 m/s, the vertical group velocity is 1.7 m/s compared
to the local tidal phase velocity of C ≈ −0.3 m/s. From the earlier (in this case crude)
estimate (5.7), a relative variation of 15% is expected. This suggests that eq. (5.7)
gives a lower bound for the phase velocity modulation in more realistic tidal winds with
possibly substantial positive deviations.

In general, as pointed out e.g. by Walterscheid [2000], the slower the GW propagates
in the vertical, the more pronounced is the effect of frequency modulation. For eq. (5.7),
two limits are obtained: for cgz,0 � |C|, δc→ U and for cgz,0 � |C|, δc→ 0. Hence, the
effect is more important for slow gravity waves and seems to be negligible for fast gravity
waves. Based on this, one might conclude that the effect of frequency modulation is
restricted to only very slowly vertical propagating gravity waves. However, it is believed
that critical-layer-type interactions with the mean wind are very important to induce
breakdown and dissipation of gravity waves in the middle atmosphere and especially in
the mesopause region [Fritts and Alexander , 2003]. When a spectrum of gravity waves
approaches a critical region, a large part of the spectrum is slowed down and becomes
aware of the time-dependence of the background conditions. This makes the author
believe that the effect of frequency modulation is of general importance in a realistic
middle atmosphere including temporal variation of solar-thermal tides.

5.3.3. Simple energetics of frequency modulation

At first glance, it seems to be surprising that the observed frequency ω can change for
an observer that remains fixed at the ground. As the frame of reference is not altered
in the observation, ω-modulation is not caused by Doppler shifts in contrast to the
intrinsic frequency ω̂. It is discussed in the following that the energetic exchange with
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the induced mean flow is responsible for the ω-modulation.
As in Broutman and Grimshaw [1988], energetics for the simple example above are

considered. Only non-dissipative interactions between the waves and the mean flow are
taken into account. A dynamical situation is constructed in which a zonal background
flow only depending on z and t is sustained. It is assumed that the local inertia of the
background is entirely balanced by the Coriolis force. Hence, there is a need to also
include a meridional background wind component, but no pressure or entropy pertur-
bations are excited in this (artificial) setup. Throughout the discussion, it is assumed
that the GW amplitudes are small and that a convergent expansion of the mean flow
in orders of small wave amplitudes exists. Therefore, the zero order mean flow u0 is
distinguished from the wave-induced flow u2 which is second order in wave amplitudes.
The two sum up to u. As defined, u0 is governed only by inertial motions, i.e.

∂tu0 + fez × u0 = 0 , (5.8)

where f = Ω. The last relation defines a suitable meridional flow v0. The kinetic energy
of this lowest order mean flow does not change, ∂t(ρru

2
0/2) = 0, and by construction,

the corresponding available potential energy is zero.
Next, non-dissipative medium-frequency GW dynamics are assumed. A zonally prop-

agating GW packet extending infinitely in both horizontal directions is excited at a
source level where its amplitude and corresponding zonal pseudo-momentum P = kA
might change in time (e.g. as provided in fig. 5.2). On the way up, P is conserved since
(i) no GW dissipation and (ii) no zonal inhomogeneities in the background conditions
are taken into account. From eq. (4.119),

∂tP = −∂zF (5.9)

where the pseudo-momentum flux F = cgzP is equal to the GW momentum flux.2 The
GW energy Ew = ρr/2

(〈
|u′|2

〉
w

+
〈
b′2
〉
w
/N2

)
is not conserved and obeys (compared

to eq. (4.94))

∂tEw +∇ ·
(
u0Ew + ρr

〈
v′φ′

〉
w

)
= −F ∂zu0 . (5.10)

The GW packet exchanges energy with the mean flow via shear production. The last
relation further simplifies as here no horizontal inhomogeneities were taken into account
and thus only the vertical energy transport ρr 〈w′φ′〉w = ĉgzEw matters. Hence, the
wave energy equation reduces to

∂tEw + ∂z
(
ρr
〈
v′φ′

〉
w

)
= −F ∂zu0 . (5.11)

Next, it is discussed how this transfer of energy from the waves to the mean flow estab-
lishes a wave-induced flow.

The second order mean flow is influenced by GW motion. The momentum balance is

∂tu2 + fez × u2 = − 1

ρr
∂zF eλ , (5.12)

where it was assumed that the gravity waves only propagate in the zonal direction. The
induced zonal mean flow u2 behaves like a forced harmonic oscillator,

∂tt(ρru2) + f2ρru2 = ∂ttP . (5.13)

2Remember that this is only the case if the impact of rotation on GW motion is ignored.
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Therefore, u2 has two parts: the first is a locally-induced mean flow u
(loc)
2 and equal to

the GW pseudo-momentum P, whereas the second, u
(sw)
2 , describes a train of secondary

waves, in this case inertial waves [Broutman and Grimshaw , 1988]. Thus,

u2 = u
(loc)
2 + u

(sw)
2 (5.14)

where

ρru
(loc)
2 = P and ρru

(sw)
2 = −f

tw

−∞
dτP sin(f(t− τ)) . (5.15)

For example, u
(loc)
2 and u

(sw)
2 are plotted in fig. 5.3 for the GW packet traced in fig.

5.2. The locally induced flow is positive and attached to the wave packet as it moves

Figure 5.3.: The induced flow of a GW packet propagating through a tidal background. The
zonal wind perturbation of the locally induced mean flow (left) and the secondary inertial wave
(right) are shown in colors. Again, the first-order zonal tidal wind is plotted in contours with
intervals of 10 m/s.

eastward. As dissipative effects were taken into account in the ray-tracing simulation,
the wave packet is strongly damped via the saturation scheme below the positive tidal-
wave crest at about 100 km and 36 h and then slowly recovers. Also, a secondary
inertial wave is induced after the passage of the GW packet and remains. Interestingly,

u
(sw)
2 is anti-correlated to u0 in this example and would contribute to a reduction of

tidal amplitudes. However, it is not obvious that this would generally be the case for
induced secondary waves and needs further investigation. In the example of fig. 5.3,
the magnitude of the induced flow is comparable to the leading order flow and thus an
expansion of the results in wave amplitude is not appropriate. Nevertheless, the rest of
this section continues with the description of small-amplitude waves.

The kinetic energy ρru
2
2/2 would be fourth order in wave amplitude and does not

contribute to the energetic budget at the given order, but as shown below, the coupling
between lowest order and second order flow ρru0 ·u2 gives a kinetic energy contribution
which is important for the energy exchange between the mean flow and the waves.
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Without external heating, the total energy of the wave-mean flow system is conserved
and obeys (see eq. (2.26))

∂t
(
ρr|u+ u′|2/2 + Πan

)
+∇ ·

{
ρr(u+ v′)(|u+ u′|2/2 + Πan + φ)

}
= 0 , (5.16)

where Πan denotes the available potential energy of the coupled wave-mean flow system.
The last equation is averaged over GW scales, horizontal energy fluxes are neglected and
only terms up to second order in wave amplitudes are retained, i.e.

∂t
(
ρr|u0|2/2 + ρru0 · u2 + Ew

)
+ ∂z

(
ρr
〈
u′w′

〉
w
u0 + ρr

〈
φ′w′

〉
w

)
= 0 . (5.17)

The term ρr 〈u′w′〉w u0 is the mean advective flux of kinetic energy due to GW pertur-
bations. It is obtained from linearizing

〈
w′|u+ u′|2/2

〉
w

. The mean advective flux of
available potential energy 〈w′Πan〉w is negligible as no entropy is transported vertically,
i.e. 〈w′b′〉w = 0. Using, ∂t(ρr|u0|2/2) = 0 and F = ĉgzP, the energy conservation is
reformulated as

∂t

(
Ew + ρru0u

(loc)
2 + ρru0 · u(sw)

2

)
+ ∂z

(
ĉgz(u0P + Ew)

)
= 0 . (5.18)

The pseudo-energy, which is the sum of the wave energy and the coupling between
lowest order and locally induced mean flow (compare e.g. Broutman and Grimshaw
[1988]; Bühler [2009])

E = Ew + u0P , (5.19)

appears in the last equation. Note that ρru
(loc)
2 = P. The vertical flux of total energy

is equal to the vertical flux of E , i.e.

ρr
〈
u′w′

〉
w
u0 + ρr

〈
φ′w′

〉
w

= ĉgzE . (5.20)

Using dtω = k∂tu0, the energy budget

∂tEw + ∂z

(
ĉgzEw

)
= − F∂zu0 , (5.21)

∂t

(
ρru0u

(loc)
2

)
+ ∂z

(
ĉgzu0P

)
= Adtω + F∂zu0 , (5.22)

∂t

(
ρru0 · u(sw)

2

)
= −Adtω , (5.23)

is obtained. Note the following remarks:

(i) The wave energy Ew is transported by ĉgz and exchanges with the contribution

ρru0u
(loc)
2 from the locally-induced flow via shear production −F∂zu0.

(ii) The energetic contribution ρru0u
(loc)
2 , which is connected to the locally-induced

mean flow ρru
(loc)
2 = P, is also transported by ĉgz and remains attached to the

GW field. Furthermore, it interacts also with the secondary wave field which is
locally excited via the ω-modulation term.

(iii) The ω-modulation can only appear within a background medium which admits
wave motion and furthermore, ω-modulation appears here in the lowest order of
wave amplitudes because the background flow was excited in the past by some
prior leading-order process, i.e. whatever causes the u0-oscillation.

67



(iv) If a horizontally compact GW packet propagates through the oscillating back-
ground flow, then the corresponding GW force would also induce a horizontal
pressure gradient. As a result, vertically-propagating secondary gravity waves
with a horizontal wavelength connected to the horizontal extend of the primary
GW packet would emerge.

(v) In contrast to Lindzen [1990], the term Fu0 is not included in the transport of Ew
as it is more appropriate for describing induced mean-flow dynamics.

(vi) Clearly, the induced flow is, at least for the non-dissipative dynamics, of significant
importance.

5.3.4. The impact on saturated gravity-wave trains

In the following, the impact of ω-modulation on the saturation of GW trains within a
monochromatic tidal wave, u = U sin(Mz − Ωt), is investigated, ignoring any induced
mean flows. This might be appropriate in the region of GW breaking where momentum
diffusion is dominant. Diurnal forces due to saturation for a conventional vertical-column
parameterization are compared to the forces obtained with a time-dependent solution
of eq. (5.5). For medium-frequency gravity waves, the zonal wind amplitude |u′| is set
back to the saturation threshold |u′s| = |c − u| above the level of convective instability
[Fritts, 1984]. This also applies for time-dependent flows. Saturation leads to a flux of
zonal GW pseudo-momentum

F =
ρr
2

k

N
ĉ 3
h =

ρr
2

k0

N
(c− u)3 , (5.24)

where the horizontal intrinsic phase velocity ĉh = ±(c − u), the zonal wavenumber
k = ±k0 and the reference density ρr are used. In the case of small U and c0 � U ,
where in the conventional approach no critical levels are encountered and saturation
is not disrupted due to strong wind shears which may overcome the effect of density
decrease, the resulting force is fλ = −∂zF/ρr.

In the conventional approach, the GW phase velocity is assumed to be constant, i.e.
c = ±c0, and thus, the saturation flux becomes

F±conv =
ρr
2

k0

N

(
±c3

0 − 3c2
0U sin(Mz − Ωt) + . . .

)
, (5.25)

where terms nonlinear in U are not given explicitly. The diurnal force exerted on the
mean flow due to the damping of counter-propagating gravity waves is

fconv,T = − 1

ρr

∂

∂z

(
F+
conv + F−conv

)
(5.26)

= −3c2
0Uk0

N

(
1

Hρ
sin ΦT −M cos ΦT

)
, (5.27)

with the tidal phase ΦT = Mz − Ωt and the density scale height Hρ = −(∂z ln ρr)
−1.

Terms nonlinear in U/c0 have been neglected.
On the other hand, by taking realistic GW propagation into account, the periodic

change in the background wind induces a modulation of frequency and hence zonal
phase velocity (see eq. (5.6) and (5.7)). This effect reduces the variation of the intrinsic
horizontal phase velocity, the saturation pseudo-momentum flux and hence the diurnal
force due to gravity waves. Utilizing eq. (5.6), the diurnal force

fT = fconv,T

(
1− δc

U

)
(5.28)
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is obtained. Recall that δc < U , which is ensured by eq. (5.7). Therefore, the diurnal
GW force fT is reduced due to phase velocity variations compared to the conventional
approach. Note also that no critical layer is encountered by the gravity waves in the
time-dependent approach. The localized deposition of GW pseudo-momentum at the
conventional critical layer is smoothed out by the effects of frequency modulation.

5.3.5. Vertical column thinking and phase velocity modulation in realistic
flows

Large-scale circulation models need to apply GW parameterizations [McLandress, 1998].
Horizontal gradients of the background medium are neglected, leading via eq. (4.109)
and (4.110) to a conserved horizontal wavenumber kh. The time-dependence of the
transient large-scale motion is also neglected in the vertical column. GW trains are
assumed to feel a stationary background and adjust instantaneously to a given wind
field. In this sense, perturbations in the GW field propagate infinitely fast to the levels
above. The advective time scale associated with a vertically propagating GW field,
however, can be on the order of a day. This does not mean that the scale-separation
assumption that the GW times-scale ∼ ω̂−1 should be significantly less than a day
is violated. In eq. (5.7), the ratio cgz,0/C can be interpreted as the ratio between
the background time scale and the GW advective time scale and it, rather than ω̂/Ω,
directly affects the variation of GW phase velocities and diurnal forces.

The distribution of travel times of rays from the lower boundary at ẑB = 20 km to
ẑ = 88 km is shown in figure 5.4 for the “full” experiment (see section 5.2.2). In this
experiment, the GW ensemble (described in section 5.2.1) is propagated using the full
set of ray-tracing equations (4.108)-(4.112) through a background flow consisting of a

Figure 5.4.: Distribution of travel times from the lower boundary ẑB = 20 km to about ẑ = 88 km
for a composite of slower GW members 1 to 8 (light gray) and faster GW members 9 to 14
(darker gray) from the “full” experiment. A bin size of half a day was chosen. Each pair of two
neighboring bars shares the same bin for ease of comparison.
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temporal-mean flow and the average diurnal variations obtained from the climate model
HAMMONIA, as explained in section 3.1. For the histograms in fig. 5.4, the travel
time of each ray calculated from the difference between its initial launch time and the
time it reaches at a certain position is obtained. The travel time of ray points close to
HAMMONIA grid points are taken and, depending on their distance to that grid point,
a weighted average is constructed. Then the travel times at all horizontal grid points at
the ẑ = 88 km level for all times of the last two days of integration are collected. The
initially slower part of the GW ensemble, i.e. GW members 1 to 8 from tab. 5.1, has a
broad almost uniform distribution in the range of 8 to 18 days. The faster GW members
9 to 14 contribute to a long tailed distribution with a maximum between 2 and 3 days.
Some parts of the GW field with long travel times are captured near critical layers.

The experience obtained from the vertical column model has guided the conventional
thinking of GW - mean flow interaction. The horizontal phase velocity of the gravity
waves ch is assumed to be constant with height. Its value is compared to the vertical
profile of the horizontal background wind in the GW direction, uh = u · kh/kh. The
difference between the two, i.e. the intrinsic horizontal phase velocity ĉh = ch − uh,
is to a good approximation directly proportional to the vertical GW wavelength (see
medium-frequency approximation (4.20)). When ĉh approaches its minimum, the verti-
cal structure of the GW contracts and turbulent diffusion becomes much more effective.
The saturation momentum flux (5.24) is proportional to ĉ3

h whose vertical variations
determine the GW force on the background medium. Hence, a consistent estimate of ĉh
is of major importance.

Fig. 5.5 shows the zonal phase velocity for GW ensemble member 12 (see tab. 5.1)
at λ = 0 and ϕ = 15N from the “noREF” experiment at four different times. In the
“noREF” experiment, horizontal refraction and propagation of GW rays is switched off
and rays move only vertically through a basic state which includes temporal mean and

Figure 5.5.: Vertical profiles of the zonal background wind (open circles) and zonal GW phase
velocity (filled squares) of the westward GW ensemble member 12 at λ = 0 and ϕ = 15N for the
“noREF” experiment at four different times.
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average diurnal fields from HAMMONIA in representative January conditions. The GW
member 12 moves westward and thus has favorable conditions within the mean zonal
west-wind. But in contrast to the conventional vertical-column thinking, the zonal phase
velocity c is not constant with altitude! Beyond 80 km, phase velocity variations δc grow
to 15 m/s. As horizontal refraction is not allowed here, the variations in phase velocity
result only from frequency modulation due to the periodic changes of the diurnal tides.

For the eastward-propagating GW member 9, a temporal snapshot of ch and uh at
time t = 0 and day 16 is given in fig. 5.6 at ϕ = 15S for the “full” experiment.
This experiment again includes effects of horizontal propagation and refraction. The

Figure 5.6.: The horizontal phase velocity ch (colors) and the horizontal background wind uh in
the wave direction (contours) at t = 0 of day 16 and ϕ = 15S for the eastward propagating GW
member 9 in the “full” experiment.

variations in ch match surprisingly well to the variations in uh in the mesopause region.
This suggests a “cooperation” between frequency modulation and horizontal refraction
due to tides. The amplitude of the ch-modulation becomes more than 30 m/s, larger
than the initial phase velocity in the lower thermosphere. Hence, there is no single
(constant) phase velocity which can be attributed to the GW field when the temporal
variation of the thermal tide is present. Furthermore, due to the large ω-variations,
negative values of ch occur at the minima of the tidal winds.

The frequency modulation due to diurnal tides is one of the most important effects
that reduces the strength of the GW-tide interaction. This has already been suggested
in the context of the simple example (see eq. 5.28) and is inspected in more detail with
respect to realistic diurnal tides in section 5.5.

5.4. Horizontal propagation and refraction of gravity-wave
fields

5.4.1. Motivation

It might also be of interest to investigate horizontal deviations from the vertical-column
approximation and its impact on the GW-tide interaction. First, the horizontal motion
of GW fields can lead to large horizontal displacements. This happens especially in
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regions where vertical GW motion is slowed down. The average horizontal GW propa-
gation alters the mean distribution of GW fields, changing the time-mean force due to
gravity waves but also the diurnal GW force. Second, the horizontal inhomogeneities of
the temporal mean flow and of the diurnal variations induce changes in the horizontal
wavenumbers k and l as given by eq. (4.109) and (4.110), called “horizontal refraction”.
The temporally averaged horizontal refraction leads to changes in the GW fields which
indirectly affect the diurnal tides. In the next sections, simple examples of the mean re-
fraction effects are introduced. A discussion of the horizontal refraction in more realistic
flows is provided in section 5.4.4

5.4.2. Mechanisms of mean horizontal refraction

Dunkerton [1984] and Eckermann [1992] showed that it is mainly the meridional gra-
dients of the mean zonal wind [ū] that cause horizontal refraction of GW fields in the
middle atmosphere. Gravity waves propagating against the jet are refracted into its
maximum. This is easily shown using the ray-tracing eq. (4.110). Typical northern
winter conditions for the upper stratosphere are assumed. A change in l due to the
zonal mean wind is

dtl
∣∣
mean

= −k ∂ϕ[ū]/aE , (5.29)

where for simplicity curvature effects have been excluded. In the winter hemisphere,
gravity waves propagating against the jet, i.e. with k < 0, have the best propagation
conditions. On the northern flank of [ū], the wind increases with decreasing ϕ, thus
∂ϕ[ū] < 0, and similarly ∂ϕ[ū] > 0 on the southern flank. Hence, dtl|mean < 0 north of
the jet and > 0 south of the jet. An initially zonally aligned GW packet is refracted
into the winter west-wind jet. In the summer hemisphere, the east-wind jet with [ū] < 0
supports eastward GW motion with k > 0, but because the Doppler shift k[ū] is negative,
as in the winter hemisphere, the same arguments apply. The effect is illustrated in fig.
5.7(a).

Figure 5.7.: Schematic view of the mean refraction of the horizontal wavenumber vector. Panel
(a): [ū] (solid line) induces refraction of kh (open arrows) into the jet. Panel (b): Horizontal
velocity due to vorticity (bold arrows) and strain deformation (plus/minus signs) of a stationary
planetary wave (solid streamlines) control the tendencies in k (horizontal open arrows) and l
(vertical open arrows).
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A rough estimate of the change in meridional wavenumber |∆l| of an initially zon-
ally directed GW field is presented in the following. Within a latitude interval of
around 20◦, equivalent to a meridional distance of ∆y ≈ 2000 km, the mean zonal
wind [ū] increases (decreases) by about ∆u ≈ 60 m/s from high- to mid-latitudes in the
northern (southern) hemisphere upper stratosphere. Hence, the meridional gradient is
|∂ϕ[ū]/aE | ≈ |∆u/∆y| ≈ 3× 10−5 s−1. A GW with initial values of k = 2π (300 km)−1,
c = 20 m/s, and thus cgz ≈ 0.4 m/s, excited in the lower atmosphere, propagates into
the jet region. Due to the meridional wind gradients, it is refracted into the jet core,
while the vertical wind shear leads to a decrease of its vertical wavenumber |m|. The
GW packet accelerates up to a maximum vertical group velocity of ≈ 6 m/s. The wave
field goes along a path of minimal travel time (analogous to Fermat’s principle in geo-
metric optics). Between 30 km and 70 km altitude, i.e. ∆z ≈ 40 km, the average group
velocity is about c̃gz ≈ 3 m/s. Thus, the GW is there for ∆t ≈ ∆z/c̃gz ≈ 1.3 × 104s,
or about 4 hours. During this time interval, meridional refraction is most effective and
induces a cumulative change of |∆l|/k ≈ |∂ϕ[ū]/aE |∆t ≈ 40% above the jet. Note
that since the zonal wavenumber remains constant (∂λ[ū] = 0, ignoring the metric cor-
rection in eq. (4.109)), the horizontal wavenumber kh = |k|

√
1 + ∆l2/k2 increases by

about |∆kh/k| ≈ ∆l2/(2k2) ≈ 8%. In addition to the effect on kh, there is horizontal
redistribution of the GW field.

Planetary Rossby waves in the winter stratosphere also affect the horizontal refraction
of gravity waves [Dunkerton and Butchart , 1984]. A simple wave field in a channel with
Cartesian geometry is shown in fig 5.7(b). The planetary wave is described by a simple
stream function ψ = −Ψ sin(x) sin(y), where x and y have been scaled by the channel
size and Ψ is an arbitrary constant. For u = −∂yψ and v = ∂xψ, the divergence
and shear deformation of the horizontal background wind are zero, so gravity waves in
this simple planetary wave are only affected by the vorticity ζ = 2 ∂xv and the strain
deformation ϑ = 2 ∂xu. Following Bühler [2009], the tendencies of k and l are

dtkh
∣∣
pw

= −S · kh , (5.30)

with the wind-shear tensor

S =

(
∂xu ∂xv

∂yu ∂yv

)
=

1

2

(
ϑ ζ

−ζ −ϑ

)
. (5.31)

Thus, the planetary wave vorticity leads to a rotation of kh, via dtk|ζ = −ζl and
dtl|ζ = ζk, in the sense of the background vorticity. Cyclonic vorticity leads to anti-
clockwise turning of kh and anticyclonic vorticity leads to clockwise turning of kh. The
strain deformation induces via dtk|ϑ = −ϑk and dtl|ϑ = ϑl a change in the magnitude of
the corresponding wavenumbers. For instance, positive strain increases the magnitude
of l. Both effects are summarized in fig. 5.7(b). Initially westward propagating gravity
waves crossing the planetary wave trough in high latitudes are refracted to the south
downstream of the ridge. Gravity waves from lower latitudes are refracted northward
upstream of the ridge (down- and upstream with respect to [u] > 0).

The beta-effect (the second term on the right-hand side of eq. (4.110)) is usually
small and causes a decrease of l in the northern and an increase of l in the southern
hemisphere mid-latitudes. Lastly, geometric effects due to the spherical shape of earth
induce additional GW refraction (the last terms in eq. (4.109) and (4.110)). In a
hypothetical isothermal earth at rest, the angular momentum L = r × kA of a non-
dissipating GW packet is constant along its path. This is shown in appendix A.5 for
a shallow atmosphere. The wave packet is forced to move on a great circle [Dunkerton
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and Butchart , 1984; Hasha et al., 2008]. For an initially zonally aligned GW at middle
or higher latitudes, the geometric refraction causes equatorward motion.

5.4.3. The impact on saturated gravity-wave trains

In section 5.3.4, the impact of frequency modulation on saturated GW trains was dis-
cussed. A related topic is raised here with emphasis on the impact of horizontal (merid-
ional) refraction on saturated wave trains. Again, the conventional vertical-column
approach for the simple example described above is compared to a solution which takes
horizontal gradients of the background flow into account. In the following, the GW
train with initial values of k = 2π (300 km)−1 and c = 20 m/s moving through a typical
January zonal mean wind [ū] is considered again. If the influence of the mean meridional
wind on the Doppler shift is neglected, i.e. |l[v̄]| � |k[ū]|, than the intrinsic frequency ω̂
remains almost unaffected by meridional refraction. But as the cumulative change in l
leads to an increase in the horizontal wavenumber of ∆kh ≈ 8 %, the intrinsic horizontal
phase velocity ĉh is also reduced by 8 %. If the breakdown of the GW is described by
saturation, then the corresponding flux of GW pseudo-momentum is given by eq. (5.24),
i.e. F ∝ ĉ 3

h (again assuming the medium-frequency approximation). Compared to the
conventional saturation flux Fconv, the value of F is reduced due to refraction by a factor
of 3∆kh/|k| ≈ 24 %. Therefore, if the vertical dependence of this additional factor is
ignored, the real zonal force fλ is also diminished by horizontal refraction compared to
the force fconv,λ calculated within the vertical-column approach, i.e.

fλ = fconv,λ

(
1− 3

∆kh
kh

)
. (5.32)

The force reduction due to horizontal gradients is mainly a temporal average effect, but
it reduces the diurnal GW force as well.

5.4.4. Horizontal refraction in realistic flows

Stationary mean flows

Here, the impact of realistic but stationary mean flows on the propagation of GW rays
is investigated. Simplified ray-tracing experiments including the effects of horizontal
propagation and refraction analogous to the complex “full” experiment from tab. 5.2
have been performed.

The impact of the zonal-mean flow on meridional propagation and refraction is stud-
ied. In climatological January conditions, with [ū] and [v̄] obtained from HAMMONIA,
rays of the four different GW members 9, 10, 12 and 13 (see tab. 5.1), are calculated
and plotted in fig. 5.8. In fig. 5.8(a), one sees that the initially eastward propagating
GW member 9 has the best conditions in the summer east-wind jet. There, the rays are
mainly vertically aligned. In the mesopause region, the summer wind reversal induces a
deceleration of vertical GW motion, and the GW rays refract into the meridional direc-
tion, i.e. into the tropics. In the winter hemisphere, gravity waves are mainly filtered.
The impact of Earth’s curvature on ray propagating can also be seen by comparing the
former ray calculations to a simulation without curvature terms (gray rays). Curvature
effects are important mainly in high latitudes where great circle propagation leads to
equatorward motion of the group rays. As seen for three rays at high northern latitudes,
there exists some chance for member 9 to circumvent the west-wind jet. For member 10,
which is initially north-eastward directed, the picture is quite similar. Larger meridional
displacements of rays appear, with some of the rays initially in the southern hemisphere
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Figure 5.8.: Rays (black lines) of GW members (a) 9, (b) 10, (c) 12 and (d) 13, see tab. 5.1,
in a climatological January flow [ū] (colors). Each ray is started at a meridional grid point and
above 20 km. For comparison, ray calculation have been repeated with the curvature terms in
(4.109) and (4.110) switched off (gray lines).

reaching the northern mid-latitudes in the lower thermosphere. For members 12 and
13 which are initially west- and south-westward directed, respectively, the situation is
almost mirrored, but as the east-wind jet has a larger meridional extent than the west-
wind jet, the region of ray propagation in the winter mesosphere is much narrower.
Above the middle atmosphere jets, crossing of rays at one or more points happens.
These are caustics due to the meridional focusing of GW rays, as mentioned by Dunker-
ton [1984], and indicate that a locally monochromatic description of the gravity waves
is not appropriate anymore.

The impact of stationary planetary waves on realistic GW propagation is illustrated
in fig. 5.9. Another ray-tracing experiment was performed in the climatological HAM-
MONIA background, but now including zonal variations. Rays of the initially south-
westward directed GW member 13 (see tab. 5.1) are plotted for different launch longi-
tudes and latitudes. The main message of the picture is that GW motion is extremely
complex in this wavy background. Rays are strongly curved and change their propa-
gation direction within a small geographical region. Gravity waves from high latitudes
have the tendency to move equatorward. Mid-latitude gravity waves behave quite ir-
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Figure 5.9.: A stationary planetary wave in the stratosphere and its effects on GW rays. The
zonal geopotential height disturbance (colors) at 50 km in intervals of 50 m and several group
rays of GW member 13 in the northern hemisphere are plotted. The initial ray positions at 6
different longitudes and 8 different latitudes (different shades of gray) are marked by filled circles
and their projections on the 50 km surface are shown.

regularly in their meridional movement. A net northward motion seems to occur and is
caused by the mean refraction due to the zonally averaged flow (compare to fig. 5.8).

Background with diurnal tides

Next, effects of the mean horizontal refraction in a background flow including diurnal
tides are discussed. Results from the “full” experiment are analyzed in that context.
As the background conditions are time-dependent, it should be kept in mind that rays
and stream lines are not identical. This should be taken into account in the following
analysis of GW fields. A collection of several zonally and temporally averaged GW
quantities is shown in fig. 5.10 for GW members 9, 10, 12 and 13 . The arrows show the
mean group velocities [c̄gϕ] and 100 [c̄gz], illustrating the mean streaming of GW fields.
The shadings indicate the zonally and temporally averaged geographical distribution of
the initial latitudinal position the GW field had at the lower boundary ẑB = 20 km
where the rays were initialized. This is a passive tracer in the full three-dimensional
group flow without any sources and sinks and illustrates the displacement of each part
of the GW field. The last quantity overlaid in the plots is the zonally and temporally
averaged background wind in the wave direction [ūh]. Negative contours indicate GW
propagation against the wind and positive contours GW propagation with the wind.

GW members 9 and 10 are respectively eastward and north-eastward aligned at the
lower boundary ẑB = 20 km. They have favorable propagation conditions in the southern
hemisphere stratosphere. In the jet core at about 30S, the mean group-velocity vectors
are mainly vertically aligned. At the jet edges, parts of the GW fields are refracted
into the jet core. In the summer mesopause region, GW fields are slowed down due
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Figure 5.10.: Meridional projection of the temporally and zonally averaged group velocities
([c̄gϕ] , 100 [c̄gz]) (arrows) for several GW ensemble members (a) 9, (b) 10, (c) 12 and (d) 13.
The horizontal background wind in the wave direction [ūh] is plotted in contours with an interval
of 10 m/s. Positive contours are black and negative white. The initial meridional position of
the GW field at the lower boundary ẑB = 20 km, where the rays have been initialized, is shown
using shading with an interval of 10.

to reversing background winds. The GW fields avoid the positive jet core and are
refracted into mid-latitudes. Especially for GW member 10, this refraction leads to an
irreversible growth of the meridional wavenumber above 90 km and to large meridional
displacements. In the northern hemisphere, the GW fields can propagate vertically
through the minima of planetary wave structures.

GW members 12 and 13 are respectively westward and south-westward aligned at the
lower boundary. The westerly-wind vortex of the northern winter hemisphere provides
most favorable propagation conditions. In the jet core, the group velocities are mainly
vertical. At the wind reversal, GW fields are refracted in the meridional direction. For
GW member 13, the mean latitude positions are interchanged in the lower thermosphere.
Parts of the GW field initially in the northern mid-latitudes have moved southward to
the equatorial region and even into the southern hemisphere, whereas parts of the GW
field initially from the subtropics have propagated northwards. As discussed before,
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due to the modulation of stratospheric winds by planetary waves, zonally dependent
wave guides can develop. The easterly-wind jet in the southern hemisphere to a large
extent prohibits propagation of GW member 12 and 13. Interestingly, some chance
exists for parts of the high-latitude GW field to circumvent the jet core (GW member
12). Above the critical jet, GW fields are refracted southward and spread over a large
horizontal domain. The considerable horizontal expansion of GW fields, as seen e.g.
for GW member 12 at 100 km and between 80S and 10N, as well as for GW member
13 above 110 km and between 80S and 30N, also influences the amplitudes of the GW
fields via eq. (4.112). The corresponding change in GW amplitudes is not incorporated
in most previous ray-tracing work [Marks and Eckermann, 1995; Hasha et al., 2008;
Song and Chun, 2008] which commonly apply the assumption of a constant vertical flux
FA = cgzA of wave action density A.

The results shown in fig. 5.10 are compared to the ray calculation in the zonally
averaged flow shown in fig. 5.8. Clearly, the domain where GW motion is possible is
greatly widened. Temporal and zonal variations in the background conditions lead to a
smooth mean distribution of GW fields. Accentuated “shadow” regions beyond which
no ray motion is possible, e.g. the “shadow” of the east-wind jet in figs. 5.8(c) and
5.8(d), tend to shrink. The increased variability in the background conditions causes a
stronger mixing of GW rays. A comparison of ray-tracing calculations with the geometric
effects switched off illustrates that geometric refraction can lead to reduced poleward
GW motion and increases the probability of the intrusion of high-latitude parts of the
GW field into lower latitudes.

The temporally averaged field of the horizontal wavenumber vector at 80 km is given
in fig 5.11. The initially eastward directed GW member 12 and the initially westward
directed GW member 9 are plotted in the northern and southern hemisphere, respec-
tively. Around 30S and 30N, each of the corresponding GW members are roughly zonally
aligned. In the tropics/subtropics, the horizontal wavenumber vectors kh are refracted
poleward, and in the mid- to high latitudes kh points equatorward. As discussed in

Figure 5.11.: The temporally averaged horizontal wavenumber vector at 80 km for GW members
9 (red arrows) and 12 (blue arrows) plotted only until the equator. Darker colors indicate larger
magnitudes of the meridional wavenumber.
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section 5.4.2, it is mainly the meridional gradients in [ū] that are responsible for that
behavior.

In the following, the statistical nature of the meridional GW motion is investigated.
The relative occurrence of meridional displacements of the four GW members is plotted
in fig. 5.12. GW fields appearing in the altitude range from 60 to 120 km and covering
one daily cycle have been analyzed globally. GW members 9 and 12, which are zonally

Figure 5.12.: Distribution of meridional displacements for GW members 9 (left, light gray), 12
(left, dark gray), 10 (right, light gray) and 13 (right, dark gray). The bin size is 5 with each two
neighboring bars sharing the same bin as in fig. 5.4.

aligned at the lower boundary ẑB, have broad distributions of meridional displacements
with the most probable values around zero. Displacements larger than 30 appear, and
a secondary maximum arises for GW member 12 at about 50. This is connected to the
intrusion of polar gravity waves into lower latitudes in the southern hemisphere (see also
fig. 5.8(c) and fig. 5.10(c)). GW members 10 and 13 are initially counter-propagating
pairs with north-eastward and south-westward direction. Because they initially have a
preferential meridional direction, they also show larger displacements than GW members
9 and 12. Essentially, the distributions are mainly one-sided with a maximum value at
zero and a slow decay in the direction of preferred propagation. For the main branches
of the distributions, median displacements of 26 and −27 occur for members 10 and
13, respectively. Surprisingly, displacements larger than 100 are also possible which
shows the possibility of interhemispheric GW propagation. Additionally, a secondary
maximum appears for GW member 13 at about 50. By inspection of fig. 5.8(d) and fig.
5.10(d), this can be attributed to the poleward intrusion of subtropical GW fields into
the northern hemisphere.

5.5. Gravity-wave forces on the tide

5.5.1. Mean gravity-wave forces

Before investigating the periodic GW forces, which are one major focus of this study,
changes in the temporal mean GW force are inspected. As discussed by Andrews et al.
[1987], the relevant GW forcing of the mean flow, in the present case the temporally
averaged flow plus diurnal tides, is given by the divergence of the GW pseudo-momentum
flux rather than the GW momentum flux itself. The main difference between the two
arises for slowly vertically propagating inertia-gravity waves. These waves produce a
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Stokes drift counterbalanced by an Eulerian-mean flow locally attached to the waves
[Bühler , 2009]. Hence, some parts of the force inferred from the divergence of the
momentum flux are needed to sustain the local Eulerian circulation and do not change
the background conditions. To avoid these artificial flow phenomena, the average flow
should be interpreted as Lagrangian-average motion for which the corresponding forces
were derived in section 2.2.3. The vertical flux of zonal pseudo-momentum is [Fritts and
Alexander , 2003]

F = ρr
〈
ζ∂xφ

′〉
w

= ĉgz kA = ρr
〈
u′w′

〉
w

(
1− f2

ω̂2

)
, (5.33)

where here ζ is the vertical displacement of the fluid by GW motion. Again the primes
denote GW perturbations averaged over reasonable scales via the bracket operator, and
the equal signs hold only in the WKB limit (as discussed in section 4.3.3 and calculated
in appendix A.3). Therefore, the wave stress on the (Lagrangian) mean flow is reduced
by a factor of (1− f2/ω2).

In neglecting horizontal variations in the GW fields, the horizontal force due to GW
stresses is [Fritts and Alexander , 2003]

fLgw, h ≈ −
1

ρr
∂z (ĉgzkhA) , (5.34)

but the impact of horizontal inhomogeneities in the background conditions on the diurnal
GW force are of special interest here. Hence, the more complete form (2.72) which
includes the full divergence of the flux tensor of GW pseudo-momentum [see Grimshaw ,
1975a]

fLgw, h = − 1

ρr
∇ · (ĉgkhA) : Lagrangian-mean horizontal GW force (5.35)

is used. Compared to eq. (2.72) in section 2.2.3, the work against the frictional stresses
is omitted as wave motion under large wave Reynolds number conditions is assumed.

In the following, an ensemble mean force is calculated by an arithmetic average over
all 14 GW members introduced in section 5.2.1. The temporally and zonally averaged
zonal GW force is shown in fig. 5.13. Three experiments, (a) “full”, (b) “noREF”
and (c) “TS”, are compared. In the mesopause region at about 80 km to 85 km, the
typical dipole structure is visible, with a negative forcing peak in winter and a positive
peak in summer. In the “TS” simulation, the peak values are about -55 and 48 m/s
per day which is a factor 1.5 to 2 smaller than typical GW forcing values in realistic
GCM simulations [compare e.g. Alexander et al., 2010; Richter et al., 2010]. Besides
this deficit, it is instructive to quantify the impact of tidal time-dependence and mean
horizontal gradients on the time-mean GW force using the 3 experiments. There is no
significant change between the GW forces in the “TS”-experiment (fig. 5.13(c)) and the
“noREF”- experiment (fig. 5.13(b)) when focusing on the mesopause region. Hence,
the frequency modulation has no significant impact on the mean force there. On the
other hand, the GW force is diminished in the “full”-simulation with values of about
−40 and 36 m/s per day due to the impact of horizontal refraction. This is a reduction
of about 17 % and 35 % in the southern and northern hemispheres, respectively, and,
as explained in section 5.4.3, a temporal mean effect resulting from a cumulative change
in the horizontal wavenumber kh. For the “full”-simulation, force-weighted hemispheric
averages [Preusse et al., 2009] of |∆k|/kh, |∆l|/kh and |∆kh|/kh were calculated with
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Figure 5.13.: Temporally and zonally averaged zonal GW force fλ in the (a) “full”, (b) “noREF”
and (c) “TS” experiment. Contour interval is 5 ms−1 day−1 and negative values represented by
dashed lines.

northern hemispheric values of 47 %, 11 % and 12 % respectively. There, changes in
l seem to dominate changes in kh. Using eq. (5.32), the increase in kh can explain
a reduction of the temporal mean force of about 36 %. In the southern hemisphere,
however, the situation is not such as clear.

Different ray simulations excluding either tides or planetary waves were also performed
(not shown). For the reduction of the temporally mean force, equivalent values were
found even if temporal and zonal variations of the background flow were excluded.
Furthermore, runs with tides only were performed but no clear impact of the tidal
gradients on the GW saturation was found.

5.5.2. Periodic forces due to wave stresses

Since GW fields in the MLT region are periodically modulated by tidal winds, they
produce a periodic force acting back on the diurnal tides. For instance, consider the
zonal force fλ = fLgw, h · eλ given in fig. 5.14. The temporal behavior of fλ at two
specific geographic locations, λ = 60E, ϕ = 30S and λ = 60E, ϕ = 30N, was taken
from the “full” experiment. In the southern hemisphere, eastward propagating gravity
waves lead to a positive pseudo-momentum deposition and thus a positive force at
about 80 km. In the southern lower thermosphere, westward moving gravity waves
which circumvent the east-wind jet (see fig. 5.8(c) and fig. 5.10(c)) induce a negative
force. In the northern hemisphere, westward propagating gravity waves deposit their
negative pseudo-momentum between 80 km and 100 km. The temporal mean force is
strongly disturbed by the impact of tides on GW saturation. In tidal phases where the
background wind becomes positive, eastward propagating gravity waves are destabilized.
The vertical GW wavelength and the volume occupied by the wave field shrinks. Due
to the first effect, the GW fields are more sensitive to turbulent diffusion, the latter
induces an additional increase in GW amplitudes. Breakdown of the gravity waves
results below the maxima of the tidal wind. For westward moving gravity waves the
opposite holds. The tidal winds cause an undulation of the total GW pseudo-momentum
deposition in which the diurnal GW force component can be of the order of the temporal
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Figure 5.14.: Temporal behavior of the zonal GW force fλ (color) from the “full” experiment
at λ = 60 E and ϕ = 30S (left) and ϕ = 30N (right) in intervals of 5 ms−1 day−1. The zonal
background wind is plotted in contours with an interval of 10 m/s.

mean force. To summarize, a net negative force results when the tidal wind enters its
negative phase, and a net positive force emerges when the tidal wind enters its positive
phase. This suggests that the diurnal GW force is positively correlated with the local
tidal acceleration. The effect is discussed more quantitatively in section 5.5.4, where
equivalent Rayleigh friction coefficients are introduced.

The zonally-averaged amplitude of the diurnal zonal force is calculated (compare to eq.
(3.4)) and shown in fig. 5.15 for the three experiments “full”, “noREF” and “TS”. The
results from the “TS” experiment, fig. 5.15(c), which mimics the effect of a conventional
Lindzen GW parameterization, are chosen as a basis for comparison. In the northern
winter hemisphere a pronounced subtropical maximum with a peak force of 40 m/s
per day can be seen whereas in the southern summer hemisphere and high latitudes the
forcing peaks at about 80 m/s per day. The overall structure of the forcing amplitudes of
the “TS” experiment compares quite well to past investigations by several authors with
very different assumptions on GW source parameters, even though a highly simplified
GW ensemble is used here. For instance, Miyahara and Forbes [1991] presented in their
fig. 6 a GW forcing field with a strong subtropical winter maximum at 88 km of about
100 m/s per day and a weak subtropical summer maximum. Also, the strong high-
latitude forcing is at about 110 km. The asymmetry between subtropical winter and
summer maxima at about 90 km was even stronger in the work of Meyer [1999] (his
fig. 10) with peaks at 60 m/s per day (winter) and 10 m/s per day (summer). Ortland
and Alexander [2006] (their fig. 6-10) found symmetric configurations with subtropical
peaks between 90 and 100 km in the range of 40 to 60 m/s per day but used equinox
conditions for the time mean background. In a non-linear simulation with resolved
gravity waves, Watanabe and Miyahara [2009] (their fig. 9) found lower peaks at about
70 km, also with a more pronounced subtropical winter maximum of 30 m/s per day.
Thus, at least the amplitudes of the zonal forces of the present study are in the range of
past investigations. Note that all of the mentioned studies focused only on amplitudes
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Figure 5.15.: Amplitudes of the zonal diurnal GW force fλ in ms−1 day−1 for the (a) “full”, (b)
“noREF” and (c) “TS” experiments. Contour interval is 3 ms−1 day−1.

of the diurnal migrating components of the forces whereas a composite of migrating and
non-migrating forcing components is shown here.

For the “noREF” experiment (fig. 5.15(b)), the total forcing amplitude is decreased.
The northern maximum is reduced to 28 m/s per day which is about 30% less than the
“TS” value. In the southern hemisphere, dramatic differences arise in the high-latitude
maximum with a reduction of up to 70%. Relations (5.5) and (5.28) are used to roughly
estimate this frequency-induced reduction. When averaged globally over the altitude
range of 60 km to 120 km, the mean tidal vertical phase velocity is C ≈ −0.34 m/s,
and when additionally averaged over the GW ensemble, the mean GW vertical group
velocity is cgz,0 ≈ 0.52 m/s. Eqns. (5.5) and (5.28) imply a reduction of 40% in the
average diurnal force. Considering the crudeness of the assumptions made, this estimate
is quite good.

The forcing amplitudes are further decreased in the “full” experiment (fig. 5.15(a)).
The asymmetry between the subtropical winter and summer maxima is reduced. Peak
winter values close to 20 m/s per day are only 50% of the “TS” winter maximum.
In addition, the high-latitude peak at about 110 km has moved equatorward to 30S.
Its value is reduced to about 90% of the conventional estimate. In high latitudes,
the forcing is diminished due to the effect of mean horizontal refraction. The globally
and spectrally averaged reduction of the diurnal, zonal GW force is 65% for the “full”
experiment compared to the “TS” experiment.

The amplitude of the meridional diurnal force is shown in fig. 5.16. Its structure is
similar to the zonal forcing shown in fig. 5.15, but its maxima reach only about 40% of fλ,
likely the result of the anisotropy of the chosen GW ensemble. With reference to satellite
observations, it was discussed by Lieberman et al. [2010] that the meridional GW force
can be as much as twice as large as the zonal GW force. This feature is not reproduced
with the simple toy GW ensemble. In the “noREF” and “full” experiments (fig. 5.16(a)
and 5.16(b)) the winter peak is reduced 30% of its “TS” value. The subtropical summer
forcing changes slightly between the three experiments. Interestingly, the high-latitude
summer peak at about 60S and 110 km in the “TS” simulation totally vanishes in the
“noREF” experiment and reappears in the “full” simulation at 30S. This indicates that,
owing to horizontal refraction, initially zonally aligned parts of the GW fields turn in the
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Figure 5.16.: Same as fig.5.15, but for the amplitude of the meridional GW force on the diurnal
tide with a contour interval of 2 ms−1 day−1.

meridional direction and dominate the meridional forcing amplitude in some regions.

5.5.3. Direct effects of horizontal refraction on the diurnal forcing

As discussed by Preusse et al. [2009], horizontal refraction of vertically propagating grav-
ity waves may lead to changes in the induced forcing. In the following, the complete GW
forcing (5.35) is divided into contributions connected to horizontal inhomogeneities of
the pseudo-momentum flux tensor, turning and stretching of the horizontal wavenumber
vector, and dissipation of wave action. The last is the dominant contribution, but the
corrections due to the others are of special interest here. First, the zonal force can be
divided into horizontal and vertical divergence parts

fLgw, h · eλ = fλ = fλ,hor + fλ,vert , (5.36)

where

fλ,hor = − 1

ρr

{
∂λ

aE cosϕ
(ĉgλkA) +

∂ϕ
aE

(ĉgϕkA)

− tanϕ

aE
(ĉgλl + ĉgϕk)A

} (5.37)

and

fλ,vert = − 1

ρr
∂z (ĉgzkA) . (5.38)

Note that metric terms arise because the terms eλeϕ, etc. in the representation of the
pseudo-momentum tensor ĉgkhA depend on the coordinate system.

Usually, only fλ,vert is considered as forcing [Fritts and Alexander , 2003; Preusse et al.,
2009]. This term is divided into the different contributions mentioned above. With the
azimuth angle of GW direction in the horizontal plane α and writing k = kh cosα, the
decomposition

fλ,vert = fλ,turn + fλ,str + fλ,diss (5.39)
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is defined, where force contributions owing to horizontal turning of gravity waves

fλ,turn = −∂z (cosα)

ρr
kh ĉgzA , (5.40)

horizontal stretching of the GW field

fλ,str = −∂z(kh)

ρr
cosα ĉgzA

(
1 + kh ∂kh(ln ĉgz)

)
, (5.41)

and convergence of vertical flux of wave action

fλ,diss = −
∂z (ĉgzA)

∣∣
kh

ρr
kh cosα (5.42)

appear.

The first force fλ,turn gives a local forcing contribution when the horizontal wavenum-
ber vector kh turns with height due to refraction induced by horizontal gradients of the
background wind and by geometric effects. Preusse et al. [2009] calculated the zonally
and temporally averaged turning force utilizing their GW source spectrum. They found
that this term is mostly of second order with magnitudes not larger than 5% of the
dominant contribution.

The second force fλ,str arises due to changes in the horizontal wavenumber and re-
sults from horizontal stretching or shrinking of GW structures due to horizontal inho-
mogeneities of the background conditions. The stretching force includes contributions
associated with (i) changes in the magnitude of the horizontal pseudo-momentum khA
and (ii) vertical changes in the vertical group velocity ĉgz only due to refraction. The
latter may be understood as refraction-induced variations in the volume occupied by the
GW fields. The factor kh ∂kh(ln ĉgz) varies between−2 for the reflection limit |m|/kh → 0
and 2 for the critical layer limit |m|/kh → ∞. Therefore, by the action of GW volume
compression, the force due to horizontal contraction of the GW field can be enhanced by
a factor of 3! To the knowledge of the author, the magnitude of this term has not been
considered separately in any published literature such as Preusse et al. [2009]. The last
force fλ,diss gives the convergence of the wave action flux not connected to horizontal
refraction. This forcing contribution arises when GW fields dissipate.

As before, diurnal amplitudes of the several forces are shown. Fig. 5.17 gives an
overview of magnitudes of the various force contributions. Obviously, the force due
to dissipation of vertical wave action flux fλ,diss in fig. 5.17(d) is dominant for the
interaction between gravity waves and thermal tides, with major contributions in the
whole domain. The force due to the horizontal divergence of the flux of zonal pseudo-
momentum (fig. 5.17(a)) has two maxima in the mesopause region with peaks of about
1 m/s per day and an additional peak in the southern thermosphere of about 2 m/s
per day. The forcing due to turning of kh (fig. 5.17(b)) peaks in the subtropical winter
hemisphere at about 80 km and in the subtropical summer hemisphere at about 105 km
with a peak value of 1 m/s per day. The force due to stretching (fig. 5.17(c)) is about
two to three times larger than the turning force. The subtropical winter maximum peaks
at a surprisingly high 5 m/s per day. Hence, the horizontal deformation of the GW field
seems to be more important than realized in the past.

Horizontal averages of the amplitudes of fλ,hor, fλ,turn, fλ,str and fλ,diss relative to
fλ are plotted in fig. 5.18. In the mesosphere, the convergence of the wave action flux
contributes about 150% of the full forcing amplitude. This overestimation is reduced

85



Figure 5.17.: Diurnal amplitudes of different zonal force contributions: (a) fλ,hor, (b)
fλ,turn, (c) fλ,str and (d) fλ,diss. A non-linear color scale has been used with contours at
0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5 and 10 in m/s per day.

mainly by the effect of GW field stretching which contributes around 60% below 75
km. It is found that in this region the GW horizontal wavelengths shrink with altitude,
i.e. kh increases. The growth in kh partially compensates the dissipative reduction in
wave action flux. The process is related to the phenomenon known as wave capture
[Bühler and McIntyre, 2005; Bühler , 2009]. However, the induced mean flow and its
interaction with the GW fields are not considered here. The relative contributions due
to the horizontal divergence of zonal pseudo-momentum flux and the horizontal turning
of the wavenumber vector range between 10% and 25%.

As discussed, changes in kh due to background flow inhomogeneities induce direct
forces acting locally on the background flow, but the effect of permanent changes in
the GW field is much larger than local effects. Changes accumulate as parts of the
wave field propagate through the middle atmosphere. This can be seen by the large
difference between the forcing amplitude derived from the different simulations, i.e.
when comparing “full” and “noREF” experiments as in fig. 5.15. These differences are
not fully explained by taking only local force contributions due to horizontal refraction
into account. The cumulative changes in the wavenumbers are important.

Figure 5.18.: Horizontal average between 60S and 60N of the contributions of fλ,hor (open circles),
fλ,turn (filled circles), fλ,str (open squares) and fλ,diss (filled squares) relative to the full zonal
force of fig. 5.15(a).
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5.5.4. Equivalent Rayleigh friction coefficients

Equivalent Rayleigh friction coefficients (ERFs) have been introduced in the context of
GW-tide interaction by Miyahara and Forbes [1991]; Forbes et al. [1991] and further
discussed by McLandress [2002]. With the help of ERFs, the effects of gravity waves
can be incorporated into a linear tidal model [Miyahara and Forbes, 1991; Forbes et al.,
1991; Ortland , 2005b]. However, the concept also has diagnostic value for non-linear
simulations with parametrized gravity waves [McLandress, 2002] as well as simulations
with resolved gravity waves [Watanabe and Miyahara, 2009].

Previous studies mainly focused on the GW effect on the migrating tidal components
whereas non-migrating parts have been ignored. Here both effects are discussed in a
zonally averaged manner. With the definition of the real part γR and imaginary part γI
of the ERFs

γR = −U−2
[
fλ uT

]
, (5.43)

γI = −Ω−1U−2
[
fλ ∂tuT

]
, (5.44)

the diurnal force is approximated by

fλ ≈ −γR uT −
γI
Ω
∂tuT , (5.45)

where again the brackets and overbar denote zonal and temporal average, respectively.
uT is the zonal diurnal wind and U denotes the zonally-average diurnal wind amplitude
(see eq. (3.4)).

Note that
[
fλ uT

]
is the average tidal kinetic energy tendency induced by zonal GW

forcing. Since
[
fλ uT

]
< 0 is equivalent to γR > 0, positive real parts of the ERFs

indicate regions of decrease in tidal kinetic energy and therefore damping of the tides.
The imaginary part of the ERF acts on the tidal phase structure. For γI < 0, a
decrease in tidal vertical wavelength is observed (see discussion by McLandress [2002];
Ortland [2005a]). A reduction of tidal vertical wavelength is seen as a very robust result
in previous investigations, whereas the GW effect on tidal amplitudes is controversial
[Ortland and Alexander , 2006, and references therein].

The real parts of the ERFs are shown in fig. 5.19 for the “full”, “noREF” and “TS”
simulations. For the reference simulation “TS” in fig. 5.19(c), large positive peaks up
to 60 × 10−6s−1 occur. The maxima correspond to values of 2 to 5 per day which are
a factor of 3 to 5 larger than values reported by Forbes et al. [1991] and McLandress
[2002], but in line with Miyahara and Forbes [1991].

Fig. 5.19(c) shows the typical way a Lindzen saturation parameterization acts on γR.
Consider, for instance, a vertical profile at 45S. Negative values of γR are encountered
below about 78 km and positive values above that altitude. The mean onset of GW
breaking is around 75 km where for this profile the small negative peak appears. Negative
γR can lead to an increase in tidal amplitudes which is typical for gravity waves which
approach their critical levels [Lu and Fritts, 1993; Mayr et al., 1999]. This also holds
if the onset of convective instability of breaking gravity waves is dominated by tidal
winds. In altitudes above the onset of breaking, the saturation is controlled rather by
the density decrease than by the increase in tidal wind amplitudes. This is explained
with the help of the simple example of section 5.3.2 in the limit c0 � U and eq. (5.27).
Assuming additionally that tidal amplitudes slowly increase in the vertical with HU =
(∂z lnU)−1 > 0, the real part of the ERF is [Lu and Fritts, 1993]

γR,conv =
3c2

0k0

N

(
1

Hρ
− 1

HU

)
. (5.46)
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Figure 5.19.: Real part of the equivalent Rayleigh friction coefficient of the zonal tidal wind for
the (a) “full”, (b) “noREF” and (c) “TS” experiment in 10−6s−1 with an interval of 2×10−6s−1.
Negative values are shaded.

Clearly, density and wind changes act in complementary ways on the GW saturation.
Positive values of γR are consistently obtained above the onset of GW breaking. This
is in line with sensitivity studies reported by McLandress [1997] and contributes to the
discussion raised by Akmaev [2001] on the effect of Lindzen-type saturations.

For the “noREF” experiment (fig. 5.19(b)), the magnitude of γR is reduced. The
latitude-altitude structure is wave-like with a vertical wavelength comparable to the tidal
wavelength. In fig. 5.19(a), the magnitude of the ERF is further reduced. Compared
to the “noREF” experiment, the influence of γR is drastically lowered in high latitudes
and in the thermosphere. Fig. 5.19(a) corresponds surprisingly well to the non-linear
simulation with resolved gravity waves by Watanabe and Miyahara [2009], even though
here a simple GW ensemble was used and no feedback between gravity waves and tides
was taken into account.

The imaginary parts γI of the ERFs are shown in fig. 5.20. For the “TS” experiment
in fig. 5.20(c), two distinct negative peaks appear at 45N, 85 km and 60S, 100 km
with respective magnitudes around −27 and −60 in units of 10−6s−1. In the “noREF”
experiment, the mid-latitude winter maximum is reduced to 40%. In the summer mid-
latitude mesopause region there is an additional negative peak of about −25× 10−6s−1.
The dominant thermospheric negative maximum in the “TS” simulation has changed
its sign in the “noREF” simulation. Finally, in fig. 5.20(a), γI for the “full” ray-
tracing experiment is shown. For γI from the “full” experiment any significant impact
on the lower thermosphere has disappeared. Two negative maxima in the mid-latitude
mesopause region are present with peaks around −20 and −15 in 10−6s−1 in the southern
and northern hemispheres, respectively.

Horizontal averages of γR and γI are comparable in magnitude to the values published
by McLandress [2002]. For the “full” simulation, one distinct peak appears between 80
and 85 km in both γR and γI with respective values of 3 and −7 in 10−6s−1.
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Figure 5.20.: Same as fig. 5.19, but for the imaginary part.

5.6. Summary

• The simple GW ensemble from Becker and Schmitz [2003] was chosen as a “toy”
configuration to investigate the impacts of temporal and horizontal dependence of
the HAMMONIA tides on GW propagation and dissipation.

• Each of the 14 GW members were integrated separately within three different
experiments:

(i) full ray tracing (“full”),

(ii) only vertical ray tracing with time-dependence (“noREF”),

(iii) and the conventional GW parameterization setting (“TS”).

• The modulation of GW observed frequencies results from the time-dependence of
the diurnal tides.

• Illustrative examples are discussed for which it was shown that

(i) the frequency variations (and corresponding phase velocity variations) depend
on the ratio between mean GW group velocity and tidal phase speed,

(ii) the variations in the saturated pseudo-momentum flux decrease leading to
lower diurnal GW forcing amplitudes, and that

(iii) less critical filtering appears in the interaction with tidal winds.

• The horizontal refraction of GW fields is induced by horizontal inhomogeneities of
the HAMMONIA winds and can directly or indirectly change the GW influence
on thermal tides.

• The mean wind jets in the stratosphere refract gravity waves propagating against
the wind into the jet streams.
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• Planetary waves in the northern winter hemisphere lead to complex, zonally de-
pendent GW motion and meridional transport of GW fields.

• Zonal inhomogeneities and temporal variability enhance the mixing of GW rays
and lead to smoother fields of GW properties with smaller “shadow” regions behind
critical jets.

• Large meridional displacements of gravity waves can be found for the given GW
ensemble.

• Periodic modulation of GW pseudo-momentum fluxes causes a diurnal GW force.

• Frequency modulation and horizontal refraction are each responsible for an overall
reduction of the GW forcing amplitude by about 30%,and in some regions by up
to 90%.

• The direct effects of the horizontal refraction on the diurnal forcing are in the order
of 10% to 20% in main forcing altitudes and partially compensate each other.

• Possible effects of the GW force on the tides depend on the phase relation between
them. For this, equivalent friction coefficients are defined:

(i) the real part acts on tidal amplitudes

(ii) while the imaginary part acts on the tidal phase structure.

• Compared to the conventional simulations, the damping of the tidal amplitudes
(which results from the Lindzen saturation assumption and is considered contro-
versial in the literature) is significantly decreased.

• The shrinking of tidal phase structure is found for negative imaginary parts of
the friction coefficients and is more confined to the mesopause region in the full
ray-tracing simulation.
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6. Conclusions and Outlook

6.1. Conclusions

The interaction between gravity waves and thermal tides in the middle atmosphere
was investigated. It is believed that gravity-wave breakdown to small-scale turbulent
structures is the dominant mechanism for gravity-wave forcing on the mean flow [Fritts
and Alexander , 2003]. As this breaking process is periodically modulated by tidal waves,
a periodic force results which acts back on middle-atmosphere tides. Hence, a large range
of scales spanning from local turbulent eddies to global circulations is involved in the
interaction process of which only a small part is resolved in most modern climate models
like HAMMONIA. The way gravity waves and tides interact, and also the exchange
with the “third partner”-turbulence, are only approximately described using effective
subgrid-scale parameterizations.

For this parameterization problem, a consistent theoretical framework was provided.
After an investigation of the acoustic and available potential energies of compressible
fluid dynamics, the anelastic theory was introduced for the description of gravity-wave
motion. A dynamical system with three inherent scales was assumed. The first is con-
nected to the fast turbulent eddies, the second to the gravity-wave motion and the last to
the large-scale variations of the basic state flow including thermal tides. Application of
a scale-selective filter achieved a reduced large-scale system in which effects of subgrid-
scales were included. Mean turbulent forces resulted from turbulent stresses, and heating
rates appeared due to mean dissipation of mechanical energy, turbulent fluxes of entropy
and sensible heat. For subgrid-scale gravity waves, two different filter strategies were
investigated: the Eulerian average and the Lagrangian average. The Eulerian average
consists of a local average fixed in space and time. Eulerian-mean gravity-wave forces
result from the divergence of the gravity-wave momentum-flux tensor. In contrast, the
Lagrangian average is an average along fluid trajectories. Lagrangian-mean gravity-
wave forces arise from the divergence of the so-called gravity-wave pseudo-momentum
flux tensor which is related to the work done by fluid displacements against the per-
turbation pressure. For gravity waves affected by Earth’s rotation, the two descriptions
are different, but the Lagrangian-mean framework seems to be more appropriate. How-
ever, as discussed, the choice of the average depends on the modeler’s taste regarding
which kind of gravity-wave parameterization is useful and thus which interpretation of
the mean flow is favored. With these preparations, a solid basis was created for the
discussion of the impacts of gravity waves on the tidal flow.

The “first partner” in the interaction process, the diurnal tides, was introduced with
the help of simulation data from the complex chemistry-climate model HAMMONIA.
Diurnal variations in winds and temperature were calculated from a monthly-mean daily
cycle. In the mesopause region, the tidal winds have magnitudes up to 50 m/s and are
the dominant variability pattern. The extreme wind variations have a strong influence
on any type of perturbation moving through them. It was also discussed that non-
migrating tidal components, which do not follow the apparent motion of the sun, have
a large impact on the tropical middle atmosphere.

For the “second partner” in the interaction process, the gravity waves, linear small-
amplitude dynamics were discussed. The reader was led step-by-step to the general ray-
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tracing method for gravity waves. First, a typical textbook example of gravity waves
was given. With respect to a resting isothermal basic state, dispersion of gravity-wave
fields and its typical approximations were discussed. Then an extension of gravity-
wave motion in general moving basic states was provided. Via a multiple-scale analysis,
the asymptotic regimes for gravity-wave propagation were derived including the non-
hydrostatic, the medium-frequency and the inertia-gravity wave regimes. The essential
properties of all regimes were collected into a hybrid scheme. Via Wentzel-Kramers-
Brillouin theory, asymptotic solutions in the form of gravity-wave packets or modulated
wave trains were found. Local dispersion, polarization and wave action relations hold
even if the background flow varies slowly compared to the gravity-wave scales. The
previous relations form the basis for the ray-tracing method in which each part of the
gravity-wave field is traced along its group velocity. The gravity-wave properties change
depending on the variations in the background flow. The possible impact of gravity
waves on the background flow was discussed with the help of generalized Eliassen-Palm
theorems. It was shown, that even if the gravity waves are not affected by (i) viscous
damping (ii) local heating and (iii) critical filtering, they can force an induced flow via
wave transience and horizontal refraction of the wave field.

The ray-tracing method was applied to the gravity wave-tide interaction. The main
objective was an evaluation of the assumptions usually made by single-column gravity-
wave parameterizations. A global analysis of gravity-wave fields was performed with
a zonally dependent climatological mean flow and diurnal tides taken from HAMMO-
NIA. To quantify the impact of temporal and horizontal variability, a small and highly
simplified gravity-wave ensemble was used as a “toy” configuration for the investigation
of gravity-wave propagation. Three ray-tracing experiments, (i) “TS” (time slicing),
(ii) “noREF” (no horizontal refraction) and (iii) “full”, with increasing complexity were
performed. In all three, the background conditions were unaffected by gravity-wave
forces. A successive reduction of imposed assumptions gave the opportunity to compare
the ray-tracing results with the conventional approach.

When the time-dependence of the thermal tides is included in the description of
gravity-wave propagation, observed gravity-wave frequencies are modulated [Eckermann
and Marks, 1996; Walterscheid , 2000]. Also, the horizontal gravity-wave phase velocity
ch is periodically changed such that the waves avoid their conventional critical level.
Since ch follows the shape of the background wind, the diurnal gravity-wave forcing
is reduced. When horizontal refraction is included, meridional gradients of the clima-
tological background refract gravity-wave fields into the wind jets in such a way that
the waves minimize their travel time. Global wave guides are thus formed, occasionally
leading to large meridional displacements of parts of the gravity-wave field and to an
interhemispheric exchange of wave energy.

The frequency modulation and refraction of horizontal wavenumbers of the gravity-
wave fields can substantially reduce the diurnal gravity-wave forcing on the thermal
tide. The inclusion of horizontal propagation especially decreases the forcing in polar
regions and in the lower thermosphere. Direct forces due to horizontal refraction are
not dominant but may lead to second order changes of the diurnal force in some regions.
Hence, the apparent differences between the simulations with different restrictions on
horizontal refraction and time-dependence are not explained by local forcing effects.
Cumulative changes, which each part of the gravity-wave fields undergoes during its
propagation, are however of significance.

With the help of Rayleigh friction coefficients, the possible effect of the diurnal gravity-
wave force on the diurnal tides was estimated. For the conventional gravity-wave pa-
rameterization with the Lindzen saturation assumption, the real part of the equivalent
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Rayleigh friction coefficient is mainly positive and is therefore expected to produce a
damping of tidal amplitudes. This situation changes when the temporal and horizontal
dependence of the background conditions is taken into account. In the more complex
ray-tracing simulations, which also use the simple saturation approach for parameteriz-
ing turbulence, the forcing is more confined to the mesopause region with much smaller
coefficients. Furthermore, there are alternating areas of positive and negative influence
on the tide. For the imaginary part of the Rayleigh friction coefficient, results from pre-
vious investigations are confirmed [Ortland and Alexander , 2006, and reference therein].
Two negative peaks are found in the mesopause region, which as shown by those authors,
decreases the vertical wavelength of the thermal tides.

The idealizations in this study certainly limit the generality of the conclusions that
can be drawn regarding the realistic impact of gravity waves on the tide. Nevertheless,
it seems to support the view that gravity-wave parameterization should not be used
blindly. All assumptions have to be tested for each target problem.

6.2. Outlook

The motto of further improvements to this study would be convergence to more real-
ism with respect to the interaction between gravity waves and thermal tides. Several
important points concerning this issue are:

• coupling of gravity-wave source parameters to physical processes in a general cli-
mate model

• inclusion of the direct feedback between gravity-wave forces and diurnal variations

• sophisticated description of the wave breaking process

• non-linear interactions between multiple unresolved waves

• deviations from the locally monochromatic wave

An extremely simple gravity-wave source ensemble was used as “toy” configuration
for this study. Only a handful gravity-wave fields with very similar horizontal scales
were allowed to propagate through the tidal background. For improvement, it would be
beneficial to couple the gravity-wave source parameters to the physical processes in a
general climate model. Song and Chun [2005] formulated the theoretical properties of a
spectrum of convectively generated gravity waves. This spectrum was applied by Song
and Chun [2008] within a ray-tracing study and implemented into the American climate
model WACCM. In another study with WACCM, Richter et al. [2010] performed exper-
iments including two different non-orographic gravity-wave source mechanisms within a
Lindzen gravity-wave parameterization. The first was also associated with deep moist
convection, where the gravity waves are excited when the convection parameterization
is active (see also Beres et al. [2005]). The second was a frontal gravity-wave excitation
connected to the frontogenesis function. The overall spatial and temporal structure of
both excitation mechanisms is very intermittent with the first more confined to low lati-
tudes and the latter dominant in mid-latitudes. One interesting question concerning the
gravity wave-tide interaction arises: How does the temporal modulation of gravity-wave
excitation interfere with the tidal waves in the middle atmosphere?

Offline ray-tracing simulation were performed in which the tidal variation was not
influenced by the calculated gravity-wave forces. The background data were taken from
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a HAMMONIA simulation in which the impact of gravity waves had already been para-
metrized with the Hines parameterization. This leads to some inconsistency since the
derived and applied gravity-wave forces differ. Furthermore, it is not clear to what
extent the gravity-wave forces in the complex ray-tracing model will change if the tides
interactively react to them. Hence, it is of great interest to couple the ray-tracing model
RAPAGI to a tidal model, be it linear or non-linear, in order to investigate the effect of
the flow induced by gravity-wave forcing.

One further important simplification made in the current study concerns the param-
eterization of turbulence induced by gravity-wave breaking, which was kept as simple
as possible and described by the Lindzen saturation hypothesis. It is clear that the
breaking process is much more complicated. In a series of studies it was shown that
gravity waves can break even if their amplitudes are substantially below the convective
instability threshold and that the turbulent decay can extract much more energy from
the gravity-wave field than assumed by the saturation assumption [Achatz , 2007, and
references therein]. Besides the large uncertainties concerning the impact of turbulence
on gravity waves, there are already more sophisticated gravity-wave damping schemes
available in the literature [see Marks and Eckermann, 1995, and references therein]. In
future, a more sophisticated turbulence scheme could be implemented in RAPAGI and
applied to global ray simulations. Furthermore, the estimates of the turbulent diffusion
coefficients from the saturation approach may be improper. For that reason, the cal-
culations of diurnal heating rates due to gravity-wave dissipation and heat fluxes were
postponed until a more sophisticated turbulence scheme is implemented.

McLandress [1998] distinguished between monochromatic and spectral gravity-wave
parameterizations. The complex ray-tracing approach falls into the first category. For
a more spectral flavor of ray tracing, one could couple several spectral gravity-wave
components diffusively. Following Medvedev and Klaassen [1995], a nonlinear wave
diffusion can be used in which the influence of other spectral gravity-wave components
can destroy the principal wave field. However, it is not obvious whether the large
amount of spectral information required for the nonlinear damping is computational
feasible within global ray tracing.

In addition, one might think about the study of more complex objects than locally
monochromatic gravity waves. These may result from more realistic gravity-wave source
shapes or from shape-deforming mechanisms (wave focusing, wave reflexion, critical
filtering etc.). Ray tracing might also be useful in that case if it is assumed that the
gravity-wave pattern is composed of a large number of spectral components. The tracing
would be done in a phase space or so-called augmented space [Hayes, 1970; Eckermann
and Marks, 1996; Hertzog et al., 2001] and integration over all spectral information is
required to compute effects on the tides. The wave action can be distributed over phase
space quite irregularly, with splitting and merging of several wave parts possible, but the
phase-space volume occupied by the wave pattern is constant [e.g. Hertzog et al., 2002;
Broutman et al., 2004]. However, even if this method is able to produce finite estimates
of wave action density at a caustic, it still relies on the scale-separation assumption and
breaks down if the scales of certain spectral components become close to the background
scales.

It might be annoying that the number of open questions raised by this study is much
larger than the answers proposed, but this seems to be notoriously the case in scientific
research!
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A. Appendix

A.1. Approximations of the Lagrangian-mean anelastic
dynamics

In the following, the approximation steps which led in section 2.2.3 from the original
set (2.68), (2.69) to the final set (2.70), (2.71) are provided. It is assumed that the
displacement is small compared to the unresolved wave scales and that the displacement
and the wave scales are also small compared to the resolved scales. For vertical wave scale
ĥ, vertical background scale Ĥ and the vertical displacement ζ, the following symbolic
hierarchy is assumed

|ζ| � ĥ� Ĥ . (A.1)

First of all, the Lagrangian-mean momentum equation is repeated:(
∂t + 〈v〉Lw · ∇

)
〈v〉Lw +

〈
2Ωξ × vξ

〉
w︸ ︷︷ ︸

À

= −
〈(
∇φ
)ξ〉

w︸ ︷︷ ︸
Á

+
〈
bξ eξz

〉
w︸ ︷︷ ︸

Â

+
1

ρ̃r
∇ ·
〈

KT ·
(
Fξ + Rξ

t

)〉
w︸ ︷︷ ︸

Ã

,
(A.2)

The four numbered terms are linearized with respect to ξ and then discussed separately.
For À, the angular velocity is expanded to obtain Ωξ = Ω + ξ · ∇Ω. The gradient of Ω
includes two effects: First, the meridional dependence of the components Ωv = Ω sinϕ
and Ωh = Ω cosϕ, the so-called beta-effect, and second, due to the spherical nature
of Earth also the unit vectors change with position, hence also with displacement, and
additional metric terms appear. Both are neglected to arrive at

À ≈
〈

2
(
Ω + ξ · ∇Ω

)
×
(
〈v〉Lw + v`

)〉
w
≈ 2Ω× 〈v〉Lw . (A.3)

From the lifted pressure gradient term Á, important impacts of the subgrid-scale arise:

Á ≈ −〈∇φ+ ξ · ∇∇φ〉w ≈ −∇〈φ〉w −
1

ρ̃r
∇ ·
(
ρ̃r
〈
ξ∇φ′

〉
w

)
, (A.4)

where in the second step the linearized continuity equation (2.63), i.e. ∇ · (ρ̃rξ) = 0,
was used. Note that instead of 〈φ〉Lw the term 〈φ〉w appears here which is in the author’s

personal opinion more convenient. The corresponding Stokes correction 〈φ〉Lw − 〈φ〉w
is negligible at the given order. For the buoyancy, there is a coupling between the
perturbation and the metric which is approximated by

Â ≈
〈(
〈b〉Lw + b`

)(
ez + ξ · ∇ez

)〉
w
≈ 〈b〉Lw ez (A.5)

Lastly, for the frictional stresses (using just Fξ) ,〈
KT · Fξ

〉
w
≈
〈(

(1 +∇ · ξ)1− (∇ξ)T
)
·
(

F + ξ · ∇F
)〉

w
(A.6)
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≈ 〈F〉w +
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(∇ · ξ) F′
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ξF′
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∇ ·
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F′ξ
〉
w

)T
+
〈
ξ∇ · F′

〉
w
, (A.8)

where F = FT was required and the transformation of lifted surface elements (2.60)
was used. In the last line, the two flux-terms are negligible compared to the last term,
as they involve the background scale whereas the last term incorporates wave scales.
Hence, the following approximation might be convenient:

Ã ≈ 1

ρ̃r
∇ ·
(
〈F〉w + 〈Rt〉w +

〈
ξ∇ ·

(
F′ + R′t

)〉
w

)
. (A.9)

The frictional stress tensors F and Rt might be chosen as linear functions of ∇v. Then
〈F〉w and 〈R〉w are linear functions of ∇〈v〉w and not of ∇〈v〉Lw. But 〈v〉Lw are the
prognostic variables of the Lagrangian-mean system and a corresponding reformulation
is desirable. However, it seems to be quite uncritical to also neglect the resulting Stokes
correction within the parameterization of friction. From the above set of approximations
the Lagrangian-mean momentum equation (2.70) derives. The thermodynamic equation
(2.69) is also restated:(

∂t + 〈v〉Lw · ∇
)
〈han〉Lw = −

(
g + 〈b〉Lw

)
〈w〉Lw−

〈
b`w`

〉
w︸ ︷︷ ︸

Ä

− 1

ρ̃r
∇ ·
〈

KT ·
(
qξ + Jξt

) 〉
w︸ ︷︷ ︸

Å

+ 〈ε〉Lw︸︷︷︸
Æ

+ 〈Q〉Lw .
(A.10)

The vertical buoyancy flux is

Ä ≈ −
〈(
b′ + ξ · ∇b

)(
w′ + ξ · ∇w

)〉
w
≈ −

〈
b′w′

〉
w
, (A.11)

where in the last step the terms 〈b′ξ〉w · ∇ 〈w〉w and 〈w′ξ〉w · ∇ 〈b〉w were neglected
because the ratio between background scales and displacement is assumed to be small.
For the heat fluxes in Å the results from Ã can be used as q and J t are tensors of order
one, i.e.

Å ≈ 1

ρ̃r
∇ ·
(
〈q〉w + 〈J t〉w +

〈
ξ∇ ·

(
q′ + J ′t

)〉
w

)
. (A.12)

The rate of dissipation of mechanical energy is approximated by

ρ̃r 〈ε〉Lw ≈ ∇〈v〉w ··
(
〈F〉w + 〈Rt〉w

)
+
〈
∇v′ ··

(
F′ + R′t

)〉
w
, (A.13)

where the impact of the displacement, i.e. the terms ξ · ∇∇v and ξ · ∇(F + Rt), was
neglected. Furthermore, it seems not to be crucial to replace 〈v〉w → 〈v〉Lw in the
mean dissipation rate. Then the Lagrangian-mean enthalpy equation (2.71) results. At
this stage, it is not obvious whether the resulting Lagrangian-mean system consistently
conserves any type of energy and therefore further evaluation is needed to resolve this
issue.
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A.2. Non-dimensionalization of linear gravity-wave dynamics

A.2.1. Linear continuity equation

With the density scale height Hρ = −(∂z ln ρr)
−1, the continuity equation (4.34) is

written as

∇h · u′ +
∂w′

∂z
− w′

Hρ
= 0 . (A.14)

In the following, all non-dimensional variables are indicated with an asterisk. Using the
scales discussed in section 4.3.2, the continuity eq. transforms to

∇∗h · u∗ +
∂w∗

∂z∗
− ε w

∗

H∗ρ
= 0 , (A.15)

where ε = ĥ/Ĥ is the small two-scale ratio and H∗ρ = Hρ/Ĥ.

A.2.2. Linear momentum balance

For the linear momentum balance (4.35), horizontal and vertical dynamics are considered
separately. Using scales listed in the tables 4.2 - 4.4 and discussed in section 4.3.2, the
magnitude of each term is compared to the inertial force. The effects of the spherical
nature of the earth are neglected for the scaling of GW variations. The equations of
linear motion are then

Dtu
′ − 2Ωvv

′ + 2Ωhw
′ = −v′ · ∇u− ∂xφ′ + f ′R,x , (A.16)

Dtv
′ + 2Ωvu

′ = −v′ · ∇v − ∂yφ′ + f ′R,y , (A.17)

Dtw
′ − 2Ωhu

′ = −∂zφ′ + b+ f ′R,z , (A.18)

where Ωh = Ω cosϕ and Ωv = Ω sinϕ are the horizontal and vertical components of the
rotation vector, respectively, and f ′R,x, f ′R,y and f ′R,z are the components of the friction
force

f ′R = (ν + νt)

{
∇2v′ +∇

(
w′

Hρ

)}
+
∂z(ρr(ν + νt))

ρr

(
∂zv

′ +∇w′
)
. (A.19)

The different terms in the equations of linear motion are compared to the inertial forces,
which scale like

|Dtu
′| ∼ |Dtv

′| ∼ ε l̂/t̂2 and |Dtw
′| ∼ ε ĥ/t̂2 , (A.20)

where the mean Strouhal number was set to Srm = ε−1. The local time derivative ∂tu
′

is also dominated by û/t̂. The advection by the horizontal wind is

|u · ∇hu′| ∼ |u · ∇hv′| ∼ Ûû/l̂ = û2/(εl̂) = û/t̂ ∼ |∂tu′| ∼ |∂tv′| , (A.21)

where Û = û/ε and û = εl̂/t̂ was used. Using Ŵ = âBRomÛ, the advection by the
vertical wind is

|w∂zu′| ∼ |w∂zv′| ∼ Ŵû/ĥ = âBRomÛû/ĥ = û/T̂ = εtû/t̂ (A.22)

and therefore at least one order of magnitude smaller than the other terms. The same
is true for the advection of w′. Additionally, for the Coriolis forces

|2Ωvv
′|

|Dtu′|
∼ |2Ωvu

′|
|Dtv′|

∼ Ωt̂ =
1

Row
, (A.23)
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|2Ωhw
′|

|Dtu′|
∼ âΩt̂ =

â

Row
, (A.24)

|2Ωhu
′|

|Dtw′|
∼ â−1 Ωt̂ =

1

âRow
(A.25)

are obtained where the scaling of wave Rossby number Row = (Ω t̂)−1 depends on the
GW regime under consideration. Next, for the force due to background wind gradients,
the vertical shear is distinguished from the horizontal gradients:

|u′ · ∇hu|
|Dtu′|

∼ |u
′ · ∇hv|
|Dtv′|

∼ l̂

L̂
= εx =

âB

â
ε , (A.26)

|w′∂zu|
|Dtu′|

∼ |w
′∂zv|
|Dtv′|

∼ ε , (A.27)

where û ≈ ε Û was used. The scaled pressure gradients behave like

|∂xφ′|
|Dtu′|

∼ |∂yφ
′|

|Dtv′|
∼ 1 , (A.28)

|∂zφ′|
|Dtw′|

∼ 1

â2
(A.29)

and the buoyancy force scales like

|b′|
|Dtw′|

∼ 1

â2
. (A.30)

For the viscous force, the Laplacian of the wind perturbation is the dominant contri-
bution. The other terms depend on the vertical gradients of background density and
viscosity. With the help of the wave Reynolds number Rew = ĥ2/(v̂t̂), the viscous
damping scales like

|(ν + νt)∂zzu
′|

|Dtu′|
∼ |(ν + νt)∂zzw

′|
|Dtw′|

∼ v̂ t̂

ĥ2
=

1

Rew
, (A.31)

|(ν + νt)∇2
h u
′|

|Dtu′|
∼ |(ν + νt)∇2

hw
′|

|Dtw′|
∼ v̂ t̂

l̂2
=

â2

Rew
. (A.32)

For the case of strong turbulent diffusion, e.g. in the mesopause region, the turbulent
viscosity can be in the order of νt ≈ 100 m2/s. In this case, Rew is ≈ 1 for medium-
frequency waves, but ≈ 100 for non-hydrostatic waves. Altogether, the dimensionless
equations of motion are

Du∗

Dt∗
=− εtW ∗

∂u∗

∂z∗
+

2

Row
(v∗ sinϕ− âw∗ cosϕ)

− εxu∗ · ∇∗hU∗ − εw∗
∂U∗

∂z∗
− ∂φ∗

∂x∗
+
f∗R,x
Rew

,

(A.33)

Dv∗

Dt∗
=− εtW ∗

∂v∗

∂z∗
− 2

Row
u∗ sinϕ

− εxu∗ · ∇∗hV ∗ − εw∗
∂V ∗

∂z∗
− ∂φ∗

∂y∗
+
f∗R,y
Rew

,

(A.34)

â2 Dw
∗

Dt∗
=− εtâ2W ∗

∂w∗

∂z∗
+

2 â

Row
u∗ cosϕ− ∂φ∗

∂z∗
+ b∗ + â2

f∗R,z
Rew

, (A.35)
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where the frictional force is

f∗R = (ν∗ + ν∗t )

{
∂2v∗

∂z∗ ∂z∗
+ â2 ∇∗h · (∇∗h v∗)

}
+O (ε) , (A.36)

and D/Dt∗ is the advective derivative with the horizontal background wind (U∗, V ∗).

A.2.3. Linear thermodynamics

The scaling of the linear buoyancy equation (4.36) is investigated in detail. The buoyancy
tendency scales like

|Dtb
′| ∼ b̂

t̂
. (A.37)

The restoring motion due to the background stratification

|w′N2|
|Dtb′|

∼ 1 (A.38)

is the dominant mechanism for GW dynamics. The ratio between the mean and per-
turbation buoyancy scales is

B̂

b̂
= ε−1 (A.39)

where û = ε Û and Û = L̂Ω/Srm with the mean Strouhal number Srm. The advection
of mean buoyancy by horizontal wind perturbations scales like

|u′ · ∇hb|
|Dtb′|

∼ Sr−1
m Ro−1

w = εx , (A.40)

again using Srm = ε−1 and εx = εRo−1
w , whereas terms involving buoyancy advection

by the vertical wind scale like

|w′∂zb|
|Dtb′|

∼ |w
′b/Hθ|
|Dtb′|

∼ Sr−1
m = ε and

|wb′/Hθ|
|Dtb′|

∼ εt
Srm

= ε εt . (A.41)

The heating terms behave like

|gε′/(cpTr)|
|Dtb′|

∼ ε2

Rew
. ,
|gQ′/(cpTr)|
|Dtb′|

∼ 1

He
, (A.42)

|Pr−1(ν + νt)∂zzb
′|

|Dtb′|
∼ 1

Pr Rew
,
|Pr−1(ν + νt)∇2

h b
′|

|Dtb′|
∼ â2

Pr Rew
. (A.43)

The heating number He is the ratio of local enthalpy change to diabatic heating induced
by latent heat release, interaction with solar or terrestrial radiation and other external
heat sources. Therefore, the dimensionless thermodynamic equation is

Db∗

DT ∗
+ w∗(N∗)2 = −εtW ∗

∂b∗

∂z∗
− εx u∗ · ∇∗hB∗

− ε
(
w∗
∂B∗

∂z∗
+
w∗B∗

H∗θ
+ εt

W ∗b∗

H∗θ

)
+
RH∗p
cp

Q∗

He
+

f∗q
Rew Pr

+O
(
ε2
)
, (A.44)

where the convergence of the heat fluxes

f∗q = (ν∗ + ν∗t )

(
∂2b∗

∂z∗ ∂z∗
+ â2 ∇∗h · (∇∗h b∗)

)
+O (ε) (A.45)

and the pressure scale Hp = −∂z ln pr were utilized.
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A.3. Relations between gravity-wave variables

A.3.1. Wave energy and fluxes

In the following, relations between different wave energy contributions are derived. First,
the horizontal wind perturbation û is divided into components parallel to the horizontal
wavenumber vector along eq = kh/kh and parallel to the wave front (orthogonal to
the wavenumber vector) along e⊥ = (−l, k, 0)T /kh. Using eq. (4.71) and (4.72), both
components with included dimensions are

ûq = û · eq = −im
kh

ω̂b̂

N2
, (A.46)

û⊥ = û · e⊥ = −m
kh

f b̂

N2
. (A.47)

Hence, rotation causes motion perpendicular to kh. The kinetic energy associated with
parallel motion is 1

Ekin,q =
ρr
4
|ûq|2 =

ρr
4

m2

k2
h

ω̂2|b̂|2

N4
, (A.48)

with perpendicular motion is

Ekin,⊥ =
ρr
4
|û⊥|2 =

ρr
4

m2

k2
h

f2|b̂|2

N4
, (A.49)

and with vertical motion is

Ekin,v =
ρr
4
|ŵ|2 =

ρr
4

ω̂2|b̂|2

N4
. (A.50)

Therefore, the total kinetic energy

Ekin = Ekin,q + Ekin,⊥ + Ekin,v =
ρr
4

(
ω̂2|k|2 + f2m2

) |b̂|2
k2
hN

4
(A.51)

is, due to the impact of rotation, larger than the available potential energy

Epot =
ρr
4

|b̂|2

N2
, (A.52)

Interestingly, equipartition between kinetic energy due to parallel motion and available
potential energy holds if the kinetic energy due to perpendicular motion is counted with
the available potential energy [Bühler , 2009], i.e.

Ekin,q + Ekin,v = Epot + Ekin,⊥ . (A.53)

Furthermore, in the limit f → 0 kinetic and available potential energy are equal. The
total wave energy is the sum of all energy terms,

Ew =
ρr
2

ω̂2|k|2

k2
hN

4
|b̂|2 . (A.54)

1 The factor 1/4 is easily explained: For instance, if the term
〈
u′2
〉
w
/2 is expanded using u′ =

Re
{
ûeiΘ

}
, one obtains 〈

u′2
〉
w
/2 =

〈
(ûeiΘ + û?e−iΘ)2

〉
w
/8 = |û|2/4
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The pressure flux is responsible for the intrinsic transport of wave energy, since

ρr
〈
φ′u′

〉
w

=
ρr
2
Re
{
φ̂ û?q

}
eq =

ρr
2

(N2 − ω̂2)ω̂

N4kh
|b̂|2eq = ĉghEweq , (A.55)

ρr
〈
φ′w′

〉
w

=
ρr
2
Re
{
φ̂ ŵ?

}
= −ρr

2

(N2 − ω̂2)ω̂

N4m
|b̂|2 = ĉgzEw , (A.56)

with the intrinsic group velocities ĉgh = cgh − uh, ĉgz = cgz and cgh = cg · kh/kh.
Horizontal entropy transport is induced by wind component perpendicular to kh

ρr
〈
b′u′

〉
w

=
ρr
2
Re
{
b̂ û?⊥

}
e⊥ = −ρr

2

mf

N2kh
|b̂|2e⊥ = −mkh

|k|2
fN2

ω̂2
Ew e⊥ (A.57)

whereas the vertical entropy transport is zero

ρr
〈
b′w′

〉
w

= 0 , (A.58)

because no damping of gravity waves was included in the lowest order of the WKB
expansion. The momentum flux tensor is easily rewritten in terms of eq and e⊥ to get

Rw =ρr
〈
v′v′

〉
w

=ρr

(〈
u′2q
〉
w
eqeq +

〈
u′2⊥
〉
w
e⊥e⊥ +

〈
w′2
〉
w
ezez +

〈
u′qw

′〉
w

(eqez + ezeq)

)
. (A.59)

The symmetric parts are connected to the kinetic energies in their respective directions.
The only off-diagonal part is the vertical flux of horizontal momentum

ρr
〈
u′qw

′〉
w

= −ρr
2

mω̂2

N2kh
|b̂|2 = −mkh

|k|2
Ew . (A.60)

For waves affected by rotation it has been discussed in Andrews et al. [1987] that parts
proportional to the entropy flux must be removed from the momentum flux to obtain
the more meaningful Eliassen-Palm flux (EP flux)

FEP = −ρr
(〈
u′qw

′〉
w
− f

〈
b′u′⊥

〉
w
/N2

)
= −ρr

〈
u′qw

′〉
w

(
1− f2

ω̂2

)
. (A.61)

Hence the EP flux carried by gravity waves is less for inertia gravity waves.

A.3.2. Wave action and pseudo-momentum

Two extremely important wave quantities are the wave action density

A =
Ew
ω̂

(A.62)

and the horizontal pseudo-momentum

Ph = khA . (A.63)

The wave action density A is a quadratic measure of wave amplitude. It will be shown
that A is conserved if no wave dissipation is active. The pseudo-momentum Ph can be
exchanged with the mean momentum as if the waves carried that amount of momentum
[McIntyre, 1980]. It is an important quantity for discussing circulation changes due wave
fields in a mean flow [Bühler , 2009].
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The EP flux (A.61) can be rewritten with the help of eq. (4.80) as

FEP = −ĉgzkh
Ew
ω̂

= −Fh , (A.64)

where Fh = cgzPh is the vertical flux of horizontal pseudo-momentum. Therefore, the
EP flux concept, successfully applied to e.g. Rossby wave dynamics, easily translates
to the concept of wave pseudo-momentum. The mean work done by GW displacements
against GW pressure perturbations strongly influences the Lagrangian-mean flow. The
resulting wave stress tensor (see eq. 2.72) is

ρr
〈
ξ∇φ′

〉
w
≈ ρr

2
Re
{
ξ̂ (−ik)φ̂?

}
=
ρr
2
Re
{
v̂ φ̂?

} k
ω̂
, (A.65)

where in the second step û = −iω̂ξ̂ was used. It was shown in eq. (A.55) and (A.56)
that the pressure flux is equal to the intrinsic energy flux for GW packets in the WKB
approximation. Hence the resulting wave stress on the Lagrangian-mean flow is due
mainly to the flux of the pseudo-momentum vector kA, i.e.

ρr
〈
ξ∇φ′

〉
w
≈ ĉgkA (A.66)

In the next section, a prognostic equation for A is derived which determines the evolution
of Ph.

A.4. Conservation of wave action

It was shown by Grimshaw [1975a, b] that the wave energy equation (4.94) with its
sources, i.e. shear and buoyancy production, can be reformulated as a conservation
law for the wave action. It is repeated here with special emphasis on the metric of
the spherical earth which extends the analysis in Cartesian coordinates performed by
Grimshaw [1975a, b]. For inertia-gravity waves, constraints on the background flow are
derived.

First, the mean flow dynamics are reviewed. The horizontal momentum equation is
given by

Dtu+ fez × u = −∇φ+ fh . (A.67)

The effect of wave, turbulent and molecular stresses are collected into fh. For small
mean Rossby numbers Rom � 1, a dominant geostrophic balance between Coriolis and
pressure gradient forces exists. The momentum advection Dtu is incorporated into an
ageostrophic forcing fag = fh −Dtu so that

fez × u = −∇φ+ fag . (A.68)

The term fag is responsible for O (Rom) corrections to the geostrophic mean flow. Using
hydrostatic balance ∂zφ = b, the vertical shear ∂zu can be related to the large-scale
buoyancy gradient ∇b, i.e. the thermal wind relation is

fez × ∂zu = −∇b+ ∂zfag . (A.69)

Applying the curl to eq. (A.68), the divergence of the mean horizontal wind is induced
by the beta effect and the curl of the ageostrophic forces

∇h · u = −vβ
f

+

(
∇h × fag

)
· ez

f
, (A.70)

where β = ∂ϕf/aE . In the following, several steps are performed to systematically
derive a wave action equation.
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1st Step: The buoyancy production ρr 〈b′u′〉w ·∇hb/N2 is reformulated in terms of shear
production.

2nd Step: The horizontal part of the wave stress tensor ρr 〈u′u′〉w is rewritten in terms
of pressure flux and residual terms.

3rd Step: The ray equation for ω̂ is derived and related to the sum of shear and buoy-
ancy production.

Calculations in the 1st Step:
The horizontal entropy flux is perpendicular to the wave direction,

e⊥ · ∇hb = −fe⊥ · (ez × ∂zu) + e⊥ · ∂zfag (A.71)

= −feq · ∂zu+ e⊥ · ∂zfag . (A.72)

Thus, the buoyancy production is

ρr
2
Re
{
ûb̂?
}
· ∇b
N2

= − f

N2

ρr
2
Re
{
û⊥b̂

?
}

(eq · ∂zu) +
ρr

2N2
Re
{
û⊥b̂

?
}(
e⊥ · ∂zfag

)
.

(A.73)

The Eliassen-Palm flux relation (A.61) and its connection to the pseudo-momentum flux
is used to obtain

ρr
〈
u′w′

〉
w
· ∂zu+ ρr

〈
u′b′

〉
w
· ∇hb
N2

=
Ew
ω̂
khĉgz · ∂zu

+ ρr
〈
u′b′

〉
w
·
∂zfag
N2

.

(A.74)

The relation above is quite important as it shows that the exchange of mechanical
energy in background shear occurs through a superposition of vertical flux of horizontal
momentum and horizontal entropy flux. In other words, for gravity waves affected
by rotation the entropy flux partially cancels the momentum flux. Furthermore, the
coupling to ageostrophic background forces builds an additional wave energy source.

Calculations in the 2nd Step:
For the horizontal stress tensor ρr 〈u′u′〉w, the lowest order relation

−iω̂û = −fez × û− ikhφ̂ (A.75)

is used. When û is rewritten as û = ûrot+ûφ with ûrot = −ifez×û/ω̂ and ûφ = khφ̂/ω̂,
for the second term one obtains

ρr
2
Re {ûφû?} ··∇hu =

ρr
2

kh
ω̂
Re
{
φ̂û?

}
··∇hu =

Ew
ω̂
khĉgh ··∇hu , (A.76)

where eq. (A.55) and the intrinsic horizontal group velocity ĉgh were used. The term
ûrot = −if/ω̂(−v̂, û, 0)T contributes to

ρr
2
Re {ûrotû?} ··∇hu =

ρr
2

f

ω̂
Im {ûv̂?} (eλeλ + eϕeϕ) ··∇hu , (A.77)

where Re
{
i|û|2

}
= Re

{
i|v̂|2

}
= 0 and Re {iv̂û?} = −Im {v̂û?} = Im {ûv̂?} were

utilized. With the help of eq. (4.71), (4.76) and (A.54),

ρr
2

f

ω̂
Im {ûv̂?} =

ρr
2

f2m2

k2
hN

4
|b̂|2 =

f2m2

ω̂2|k|2
Ew (A.78)
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is obtained. The diagonal part of∇hu is∇h ·u where the metric terms have been carefully
taken into account. Hence finally,

ρr
〈
u′u′

〉
w
··∇hu =

Ew
ω̂
khĉgh ··∇hu+

f2m2

ω̂2|k|2
Ew∇h · u . (A.79)

Calculations in the 3rd Step:
The intrinsic GW frequency obeys ω̂ = ω − kh · u. Hence, the ray equation for ω̂ is

dtω̂ = dtω − dtkh · u− kh · dtu . (A.80)

For the dtkh-equation, eq. (4.99) with the decomposition (4.100) are used to get

dtkh = −cgi∇hei · k −
∂ω

∂Λn
∇hΛn , (A.81)

where Λn are u, v and f for n = 1, 2, 3, and e1 = eλ and e2 = eϕ. Using (4.104) and
(4.89),

k∇hu+ l∇hv = ∇hu · kh +
tanϕ

aE
(kv − lu) eλ (A.82)

and kĉgϕ = lĉgλ is exploited to obtain

dtkh = −∇hu · kh −
fm2

ω̂|k|2
βeϕ . (A.83)

Therefore, with dtω = kh · ∂tu,

dtω̂ = −khĉg ··∇u+
fm2

ω̂|k|2
βv , (A.84)

in which obviously no metric corrections appear explicitly.

Combination of energy sources
The wave exchanges energy with the background flow via shear and buoyancy produc-
tion,

SE = −ρr
〈
u′v′

〉
w
·· ∇u− ρr

〈
u′b′

〉
w
· ∇hb
N2

. (A.85)

As shown above, the non-dissipative source/sink term SE can be reformulated as

SE = −Ew
ω̂
khĉg ··∇u− ρr

〈
u′b′

〉
w
·
∂zfag
N2

− f2m2

ω̂2|k|2
Ew∇h · u . (A.86)

Using eq. (A.70), the last source term is

− f2m2

ω̂2|k|2
Ew∇h · u =

Ew
ω̂

fm2

ω̂|k|2
(
βv −

(
∇h × fag

)
· ez
)
. (A.87)

All parts are combined together and eq. (A.84) is used, the wave energy source reduces
to

SE =
Ew
ω̂
dtω̂ +

f

ω̂2

m

|k|2
Ew
{
kh
(
e⊥ · ∂zfag

)
−m

(
∇h × fag

)
· ez
}
. (A.88)

In the limit of small mean Rossby number Rom ∼ ε, the energy source due to ageo-
strophic motion is negligible and at O (ε):

SE =
Ew
ω̂
dtω̂ . (A.89)

With A = Ew/ω̂, the conservation of wave action (4.97) is obtained. For inertia-gravity
waves, the scale-separation assumption is problematic when the interaction with diurnal
tides is considered.
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A.5. Conservation of GW angular momentum in a resting,
isothermal basic state

In the following, a resting, isothermal basic state with u = 0 and N = const is consid-
ered. It is further assumed that the GW properties are homogeneous in time and space,
so that ∇ · cg = 0 holds, and the beta-effect is omitted. Then, as discussed above, the
wave action density is constant along a ray (dtA = 0) for non-dissipative wave motion.
In a shallow atmosphere, the GW angular momentum L = r×kA, where r denotes the
position vector from the center of earth, is approximated by

L = aE ez × kA = aE
(
− leλ + keϕ)A . (A.90)

The change of L along the ray is given by

dtL = aE (−dt(leλ) + dt(keϕ)) A . (A.91)

For the first term,

−dt(leλ) = −dtl eλ − l dteλ = −dtl eλ − l ĉg · ∇eλ (A.92)

=
k tanϕ

aE
ĉgλeλ −

l tanϕ

aE
ĉgλeϕ (A.93)

results, and for the second,

dt(keϕ) = dtk eϕ + k dteϕ = dtk eϕ + k ĉg · ∇eϕ (A.94)

=
k tanϕ

aE
ĉgϕeϕ −

k tanϕ

aE
ĉgλeλ , (A.95)

where the ray equations (4.109) and (4.110) as well as the gradients of the unit vectors
(4.104) were used. Therefore,

dtL = aE (kĉgϕ − lĉgλ)
tanϕ

aE
= 0 , (A.96)

where kĉgϕ = lĉgλ, is true for gravity waves. The GW angular momentum is constant
along the rays for gravity waves within a resting, isothermal basic state.

A.6. RAPAGI: the numerical implementation

The RAy parameterization of Gravity-wave Impacts (RAPAGI) is a fast numerical model
for solving the ray tracing equations on a spherical globe. For the direct use of GCM
data, it is favorable to identify the position x of the wave parcel with spherical coor-
dinates λ, ϕ and an altitude ẑ defined as the globally averaged geopotential height on
surfaces of constant vertical hybrid coordinate η. As each change of z along the ray is
expressed as

dtz = ∂tz + (dtλ) ∂λz + (dtϕ) ∂ϕz + (dtẑ) ∂ẑz , (A.97)

the evolution of a ray point is given by

dtλ =
cgx

aE cosϕ
, (A.98)

dtϕ =
cgy
aE

, (A.99)
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dtẑ =
cgz − ∂tz − c · ∇hz

∂ẑz
, (A.100)

where the components of group velocity cg are given in eqns. (4.78)-(4.80). This facili-
tates inter-model communication. The partial derivatives in eqns. (4.108)- (4.111) are
given in a coordinate system with geometric altitude z, while they are usually calculated
from the large-scale flow in generalized coordinates {λ, ϕ, ẑ(η)}. The transformation
between the two

∇hu
∣∣
z

= ∇hu
∣∣
ẑ
−∇hz

∣∣
ẑ

∂ẑu

∂ẑz
, (A.101)

∂zu =
∂ẑu

∂ẑz
, (A.102)

and similar expressions for t were taken into account in the ray-tracing simulations.
The time-integration of eqns. (4.108) - (4.111) was done in two stages. First, an

estimate {ω∗n+1, k
∗
n+1} for time (n + 1)∆t is obtained using the Heun scheme with a

fixed time step of ∆t = 5 min, for which convergence has been verified regarding the
given GW ensemble. Second, an optimization technique is used to adaptively change
all ray properties until the dispersion relation is satisfied. For βi � 1, the corrected
estimates

ωn+1 = ωn + ∆ω (1 + β0) with ∆ω = ω∗n+1 − ωn , (A.103)

ki,n+1 = ki,n + ∆ki (1 + βi) with ∆ki = k∗i,n+1 − ki,n (A.104)

fulfill dispersion relation (4.76). In the optimization step, the functional

G =
1

2

3∑
i=0

β2
i + β̂ (ω(kn+1,Λn+1)− ωn+1) (A.105)

is minimized. The variation of G with respect to βi gives

β0 = β̂∆ω , (A.106)

βi = −β̂cgi,n+1∆ki (A.107)

for i = 1, 2, 3. Inserting (A.106) and (A.107) in the dispersion relation results in a
non-linear equation for the Lagrangian multiplier β̂ which is solved numerically via the
Newton method. Therefore, in the two-stage scheme, the additional information gained
by the ω-equation (4.108) is used to correct numerical errors and stabilize the method.

Each time step, new ray points are injected at ẑB = 20 km and after a warming time of
one day most of the model domain in which GW propagation is possible is filled with ray
points. Ray points are randomly removed when their number exceeds 32 in a grid box of
the large-scale model. All background quantities are interpolated to the ray position via
a linear polygonal interpolation. A distance-weighted interpolation and running median
average is used to obtain smooth GW properties on the large-scale mesh. In particular,
the forcing terms in (4.112) are calculated this way on the mesh and interpolated back
to the ray positions.

For ray integrations, no explicit test of WKB validity is performed. Only rays which
cross the extreme thresholds of 100 km vertical wavelength and 10 days intrinsic period
are removed from the model run. As noted by Sartelet [2003], ray theory performs
remarkably well even if the scale separation assumption is not satisfied.
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Troposphärenforschung, Leipzig


	Zusammenfassung
	List of Figures
	List of Tables
	Notation
	Introduction
	On middle atmosphere dynamics
	Interaction of gravity waves and thermal tides
	On self-consistency in subgrid-scale parameterizations
	Outline

	A hierarchy of flow phenomena
	From compressible to sound-proof dynamics
	Basic compressible flow
	On available energetics of the compressible dynamics
	Discussion of sound-proof approximations
	The anelastic approximation

	On scale-selective filtering of subgrid-scale processes
	Introduction
	On turbulent structures
	On filtering of gravity waves

	Summary

	Overview of diurnal tides
	HAMMONIA model
	Diurnal heating rates
	Diurnal tides
	Discussion
	Summary

	Dynamics of gravity waves
	Discussion of gravity-wave sources
	Propagation of linear gravity waves in a resting, isothermal atmosphere
	Propagation of linear gravity waves in a general moving basic state
	Possible impacts of background wind and stability
	Multiple-scale asymptotics
	Wentzel-Kramers-Brillouin theory for gravity waves
	Gravity-wave propagation and the ray-tracing method

	Eliassen-Palm theorems
	Summary

	Modulation of gravity waves in thermal tides
	Introduction
	Global ray-tracing simulations with RAPAGI
	Gravity-wave ensemble
	Experimental setup

	Gravity-wave frequency and phase-speed modulation
	Motivation
	The mechanism of frequency modulation
	Simple energetics of frequency modulation
	The impact on saturated gravity-wave trains
	Vertical column thinking and phase velocity modulation in realistic flows

	Horizontal propagation and refraction of gravity-wave fields
	Motivation
	Mechanisms of mean horizontal refraction
	The impact on saturated gravity-wave trains
	Horizontal refraction in realistic flows

	Gravity-wave forces on the tide
	Mean gravity-wave forces
	Periodic forces due to wave stresses
	Direct effects of horizontal refraction on the diurnal forcing
	Equivalent Rayleigh friction coefficients

	Summary

	Conclusions and Outlook
	Conclusions
	Outlook

	Appendix
	Approximations of the Lagrangian-mean anelastic dynamics
	Non-dimensionalization of linear gravity-wave dynamics
	Linear continuity equation
	Linear momentum balance
	Linear thermodynamics

	Relations between gravity-wave variables
	Wave energy and fluxes
	Wave action and pseudo-momentum

	Conservation of wave action
	Conservation of GW angular momentum in a resting, isothermal basic state
	RAPAGI: the numerical implementation

	Bibliography

