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Introduction

In the beginning was the big bang. The universe was created and has been
expanding ever since. During its evolution it passed through different stages,
eventually forming our world as we know it today. Just 10−33 seconds after the
big bang particles such as quarks and anti-quarks were formed. The temperature
at this time was about 1025K (1012GeV) which was far too high for compound
objects to exist. Quarks and anti-quarks together with the exchange particles
of their interaction, the gluons, moved freely, building a form of matter which is
known as the quark-gluon plasma.
As the universe continued to expand it became bigger and cooler. Only some 10−5

seconds after its formation the temperature had dropped to 2×1012K (200 MeV).
This allowed the quarks and gluons to bind into composite particles, the hadrons.
Thus the universe went through a phase transition from the quark-gluon-plasma
phase to the hadronic phase. All different kinds of hadrons were created, con-
taining not only the lighter quarks which make up today’s world, but also all
heavier quarks. However, with continuing expansion most of the heavy hadrons
decayed, leaving matter that consisted mainly of the light up- and down-quarks.
The surviving hadrons were the nucleons, i.e. , protons and neutrons made from
three quarks as well as the light mesons, built from a quark and an anti-quark.
The big bang produced quarks and anti-quarks in nearly equal amounts. There-
fore, the number of nucleons was almost identical to that of their anti-particles,
which are built from three anti-quarks. At around 10−4 seconds after the big
bang, when the temperature had fallen to around 1012K (100 MeV), these nucle-
ons and anti-nucleons annihilated each other.
The numbers of particles and anti-particles were, however, apparently not exactly
equal. Had this been the case all nucleons would have been annihilated, leaving
nothing to form today’s universe where it is obvious that nucleons exist.
The production of nucleons and anti-nucleons stopped at this stage of the evo-
lution. The only things to be created at this point were pairs of leptons, e.g.
electrons and positrons. Eventually, these also annihilated each other when the

9



10 Introduction

universe had reached a temperature of 1010K (1 MeV) which was about one sec-
ond later. Again, the numbers of electrons and positrons were not exactly equal,
leading to a surplus of electrons of about one billionth. These are observed today.
Some ten seconds after this the protons and neutrons left over from the annihi-
lation started combining to form the first atomic nuclei. About 25 % of the new
nuclei were 4He, 0.001 % deuterium as well as minor amounts of 3He, lithium and
beryllium. Just five minutes later, the synthesis of nuclei came to an end and the
next few minutes saw the decay of the remaining neutrons.
It took another 397 000 years for the universe to reach a temperature of 3000 K.
At this point the density of radiation reached a level which made it possible for
electrons to combine with nuclei to form the first atoms. Since light does not
interact with atoms to the same extent as with free electrons, radiation could
now propagate freely and the universe became transparent.
In the course of the evolution matter became more and more influenced by grav-
ity. Clusters formed and eventually galaxies, stars and the earth, where today,
about 14 billion years after the big bang, man is wondering where he came from.
What did he find out?

1.1 Theoretical background

The efforts to understand nature have always been governed by the ambition
to find principles explaining observations. The aim has been to come from a
descriptive view of the world to a deductive one. These principles were after all
expressed in mathematical terms, i.e. , objects of observation were identified with
well-defined mathematical objects while certain coherences between these objects
had the status of mathematical axioms. This procedure led to objectivity.

But there was another implication of the quest for general principles that could
be phrased with the paradox sounding clause ”The more you want to describe,
the fewer words you need”. And in fact this turned out to be a characteristic
of physical theories. The first success in this direction was achieved in classical
mechanics, where Newton was able to attribute all phenomena to only three
axioms, known as Newton’s laws. Similarly, it was found that the whole world of
classical electrodynamics can be described by just the four Maxwell’s equations.

However, at the beginning of the 20th century it turned out that these two theo-
ries had not been an exhaustive description of the world. In fact it emerged that
classical mechanics failed to describe processes at very high velocities (close to
the speed of light). Up until then it had not been possible to perform experiments
which tested this region. As a consequence, in 1905 the theory of special rela-
tivity was developed by Albert Einstein. It turned out that classical mechanics
is contained in this theory as the limit of low velocities. The new theory caused
a fundamental change in the pictures of space and time which physicists had,
but was now far more comprehensive. The revolution of the prevalent space-time
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picture was continued by Einstein in his theory of general relativity (1914), where
he was able to describe gravity as a curvature of space-time.
And there was another area where physics could not be explained in the frame-
work of the classical theories: It emerged that at small distances (so that Heisen-
berg’s uncertainty principle gains relevance at around 10−8m) matter adopts wave
properties. This was a fundamental contradiction to the then prevalent picture
that matter can be assigned an exact place in space. On the other hand it
was found that waves behave like particles. Electromagnetic waves, in particu-
lar, whose wave characteristics had been deduced from classical electrodynamics,
appeared as particles in certain arrangements as for example the photo-effect.
The contradiction in this problem was solved by quantum mechanics, developed
by scientists around Max Planck, Niels Bohr, Werner Heisenberg, and Erwin
Schrödinger at the beginning of the 20th century. Quantum mechanics describes
particles in terms of waves. The energy of the particle is identified with the fre-
quency and its momentum is related to the wave length. To extract the original
particle properties from the waves, mathematical operators are introduced for
each of them. This procedure is known as quantization. Again, classical mechan-
ics was comprised in this new theory, but now as the limit of large distances.
In their quest for unification and more general principles, physicists tried to com-
bine quantum mechanics with the theory of special relativity to be able to describe
quantum phenomena at high velocities (meaning high energies in practice). Paul
Dirac, Oskar Benjamin Klein, and Walter Gordon played a major role in this
development.
However, this new relativistic quantum mechanics had a serious shortcoming:
Special relativity allows for the conversion of mass into energy and vice versa,
expressed by the relation E = mc2. In elementary particle physics this means
that the number of particles is not conserved but changes naturally, so that more
than one particle is generally involved. Thus particle physics cannot be treated
in the framework of a one particle-theory like relativistic quantum mechanics.
Even if the energy is not sufficient for particle creation, Heisenberg’s uncertainty
principle, ∆E∆t ≥ h̄, allows for the appearance of particle pairs for a very short
time. A consistent relativistic theory thus has to allow for particle creation and
annihilation.
This demand led to the development of quantum field theories (e.g. [PS95]) where
particles are treated as fields and the quantized variables are the field strengths.
The applicability of quantum field theories is rather general. The particles of the
standard model for example, which will be introduced in detail below, are treated
in three quantum field theories, namely quantum chromodynamics (QCD) which
is the theory of the strong interaction, quantum electrodynamics (QED) that
describes the electromagnetic interactions and furthermore the theory of weak in-
teractions. Also compound particles such as baryons and mesons can be covered
by quantum field theories because they are also small and relativistic. This is
indeed an important point, since later it will be shown that many calculations



12 Introduction

cannot be carried out in the framework of the theories of the actual elementary
particles, in particular in QCD. Therefore alternative theories for compound par-
ticles are often developed.
But quantum field theories are also used outside elementary particle physics. As a
completely different application, quantum field-theoretical methods are also used
in solid state physics where the fields are phonon fields, for example. Let us get
a little more insight into the ideas of quantum field theory in general.

1.2 Quantum field theory and the path integral

quantization

In classical mechanics as well as quantum mechanics the basic quantities of con-
sideration are space and momentum because a given particle can be assigned a
place and a momentum. This is obviously no longer possible if the particle num-
ber is not conserved as in relativistic theories. An alternative is the description
of particles in terms of fields. A field associates a value to a space-time point,
i.e. , it is a function φ(X). For simplicity, only neutral (real-valued) scalar fields
are considered in the following.
It is known from classical field theory that the dynamics of a field can be expressed
by the Lagrange function

L =
∫

d3xL[φ(X), ∂µφ(X)] . (1.1)

The canonical conjugate momentum is then

π(X) =
∂L

∂(∂tφ)
. (1.2)

Thus instead of space and momentum, the fundamental variables are now the
field and the conjugate momentum field.
As in classical field theory the Hamilton function is the Legendre transform of L:

H =
∫

d3xH(π, φ) =
∫

d3x(π∂tφ− L) . (1.3)

The Hamilton function stated here defines a classical field theory. To apply it to
quantum fields one has to quantize the field and the conjugate momentum, i.e. ,
assign operators as

φ(X) −→ φ̂(X)

π(X) −→ π̂(X) , (1.4)

where the field operator has a set of time-dependent eigenstates

φ̂(X)|φ, t〉 = φ(X)|φ, t〉 . (1.5)
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At this point two alternatives for the further procedure exist. The first one is the
so called canonical quantization where commutation relations for the operators
are postulated. These commutation relations account for the impossibility to
measure the field and its momentum at the same time. The other alternative
is path integral quantization which is the method of choice in this work and will
therefore be described in more detail in the following.

Let us start with the quantum mechanical situation. In quantum mechanics po-
sition is the quantized variable (or momentum in momentum space). The idea of
path integration is then to sum up coherently all possible paths in space that a
particle can take to get from one point to some other. As a simple example one
could imagine a particle passing through the famous double slit: There are two
possible ways for the particle to get from one side to the other, namely through
one of the slits. Thus the amplitude for the particle to propagate to the other side
is the coherent sum of the two amplitudes for the particle to pass through each
slit. Summing up coherently means that the phase of the particle’s wave function
is taken into account. The result will be the well-known interference pattern.

In quantum field theory the quantized variable is the field. Again the idea is to
build the coherent sum of different paths. But now the paths are not paths in
position but in values of the field. Thus for a given location the path integral
states the amplitude for the field at a time t to assume a certain value at a
different time t′. This shall be concretized in the following.
With the introduction of operators in (1.4) also the Hamilton function becomes
an operator. This Hamilton operator Ĥ contains the complete information about
the time evolution of the field. If a field is in the state |φ, t〉 at some time t one can
construct the state of the field |φ, t′〉 at a time t′ by applying the time evolution
operator

|φ, t′〉 = eiĤ(t′−t)|φ, t〉 . (1.6)

However, this is just a formal construction of the field at different times. For
physical purposes the interesting question is how the field actually evolves with
time. More precisely one wants to know the probability for a field in the state
|φ, t〉 to evolve into the state |φ′, t′〉, i.e. , the transition amplitude

〈φ′, t′|φ, t〉 = 〈φ′|e−iĤ(t′−t)|φ〉 . (1.7)

This quantity is known as Feynman core.
With the Feynman core the time evolution of any field can be calculated just by
integration 1

φ̂(x′, t′) =
∫

dφ〈φ′, t′|φ, t〉φ̂(x, t) . (1.8)

1In mathematical terms this is a convolution and the Feynman core takes the role of a
Green’s function. In fact one can show in general that, if some cause is linearly connected to
an effect, the effect can be constructed from the cause by convoluting with a Green’s function.
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Figure 1.1: A possible path for the field value at the fixed point xl in space.

To compute this quantity explicitly we discretize space and time so that we can
track the field’s path.
This is done by splitting the time interval of consideration (t, t′) into N small
steps of equal distance ǫ with the intermediate times tn, where n = 0, . . . , N and
t0 = t, t1 = t + ǫ, . . . , tN = t′. Furthermore, space is discretized in M points
xl, where l = 1, . . . ,M . At each of these points relation (1.7) can be applied
separately. For simplicity the field operator is denoted in brief as φ̂ln := φ̂(xl, tn)
in the following. The transition amplitude (1.7) can be written as the product of
the amplitudes at the different points in space

〈φ′, t′|φ, t〉 ≃
M∏

l=1

〈φ′
l, t

′|φl, t〉 . (1.9)

One can now make use of the discretization of time by decomposing the amplitude
〈φ′

l, t
′|φl, t〉 into amplitudes from every time step to the next at a given point in

space as shown in fig.1.1 . This can be achieved by applying the completeness
relation for the eigenstates |φln〉 of the field operator φ̂ln at a given point in space
and time ∫

dφln|φln〉〈φln| = 1 . (1.10)

By inserting these identities into (1.9) the transition amplitude becomes

M∏

l=1

〈φ′
l, t

′|φl, t〉 =
M∏

l=1

∫

dφlN−1 . . .
∫

dφl2

∫

dφl1〈φ′
l0|e−iĤǫ|φlN−1〉 · · ·

×〈φl2|e−iĤǫ|φl1〉〈φl1|e−iĤǫ|φl0〉 . (1.11)

Eventually one is interested in the limit where the number of time steps N be-
comes infinite and the path continuous. It is therefore sufficient to calculate the
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amplitude for infinitesimal adjacent times in a Taylor expansion

〈φln+1|e−iĤǫ|φln〉 = 〈φln+1|1 − iĤǫ|φln〉 + O(ǫ2) . (1.12)

According to (1.11) the transition amplitude is thus the product of the amplitudes
at every time step, integrated over all values the field can adopt at every step.
In other words the field can take different paths through its values, each having
a certain amplitude. The complete amplitude is then the coherent integral over
all possible paths.
For the consideration of discretized paths also the Hamilton operator has to be
discretized. This is achieved by just replacing the spatial integral by a sum

Ĥ =
∫

d3xĤ(π̂, φ̂) −→ Ĥ =
M∑

l=1

∆V Ĥ(π̂l, φ̂l) . (1.13)

The eigenstates of the conjugate field operator π̂ln also obey a completeness re-
lation

∫
dπln
2π

∆V |πln〉〈πln| = 1 , (1.14)

which can be used to calculate the matrix element of the Hamilton operator

〈φln+1|Ĥ(π̂, φ̂)|φln〉 =
∫

dπln
2π

∆V 〈φln+1|πln〉〈πln|Ĥ|φln〉

=
∫

dπln
2π

∆V 〈φln+1|πln〉〈πln|φln〉∆VH(πln, φln).

(1.15)

Here it has been used that the Hamilton operator is a functional of the field
operator φ̂ and the conjugate field operator π̂. Those act on their eigenstates in
the first line of (1.15) so the Hamilton operator can be replaced by the classical
Hamilton density where the eigenvalues are variables. In quantum mechanics it
is known that a momentum eigenstate in space is just a plane wave

〈q|p〉 = eipq . (1.16)

A similar relation holds for the field and its conjugated field:

〈φln|πln〉 = ei∆V πlnφln . (1.17)

With this (1.15) is evaluated and the result is inserted into the transition ampli-
tude of two neighboring time steps (1.12)

〈φln+1|φln〉 =
∫

dπln
2π

∆V ei∆V πln(φln+1−φln) [1 − iǫ∆VH(πln, φln)] + O(ǫ2) .

(1.18)
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For discrete space-time one can now calculate the Feynman core by inserting
(1.18) into (1.11). By using

1 − iǫ∆VH ≃ e−iǫ∆VH (1.19)

for small ǫ, equation (1.9) becomes

〈φ′, t′|φ, t〉 ≃
M∏

l=1

(
N−1∏

n=1

∫

dφln
N−1∏

n=0

∫ dπln
2π

∆V

)

× exp

{

iǫ∆V
N−1∑

n=0

M∑

l=1

[

πln
φln+1 − φln

ǫ
−H(πln, φln)

]}

.

(1.20)

Since this expression is given for a discrete space-time one can identify the time
derivative

φ̇ln =
φln+1 − φln

ǫ
(1.21)

in the exponent. At this point an important simplification can be made if the
Hamilton function only depends on the square of the conjugate field. Then the
momentum integration becomes an ordinary Gaussian integral which can be car-
ried out explicitly. This is done in the following. For clarity only one integral at
a single space-time point is considered.
Let the Hamilton function be of the form

H(π, φ) =
1

2
π2 + H′(φ) . (1.22)

From (1.2) and (1.3) it follows that π = φ̇. Then the transition amplitude from
one time step to the next (compare eqs. (1.18) and (1.20)) is

〈φln+1|e−iĤǫ|φln〉 ≃
∫

dπln
2π

∆V exp
{

iǫ∆V
[

πlnφ̇ln −
1

2
π2
ln −H′(φln)

]}

=
∆V

2π
exp

{

iǫ∆V
[
1

2
φ̇2
ln −H′(φln)

]} ∫ ∞

−∞
dπ′e−

1

2
iǫ∆V π′2

=
(

2πiǫ

∆V

)−1/2

exp
{

iǫ∆V
[
1

2
φ̇2
ln −H′(φln)

]}

, (1.23)

where the standard form of the Gaussian integral has been extracted and then
been integrated. Finally this result is inserted into (1.20) and the continuum
limit is performed:

〈φ′, t′|φ, t〉 = lim
V→∞

lim
M→∞

lim
N→∞

M∏

l=1

N−1∏

n=1

∫

dφln

(
2πiǫ

∆V

)−N/2

× exp

{

iǫ∆V
N−1∑

n=0

M∑

l=1

L(φln, ∂µφln)

}

. (1.24)
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Here the Lagrange density has been introduced according to (1.3). By defining
the abbreviation

∫

Dφ := lim
V→∞

lim
M→∞

lim
N→∞

M∏

l=1

N−1∏

n=1

∫

dφln , (1.25)

(1.24) can be written as

〈φ′, t′|φ, t〉 = N
∫

Dφei
∫

d4XL(φ,∂µφ) . (1.26)

Again the integration runs over all paths with φ(t) = φ and φ(t′) = φ′. The
quantity N is a normalization constant which is undetermined. However, usually
one is only interested in the functional form of the path integral, so the constant is
irrelevant. It drops out when physical quantities are computed (compare (1.39)).
The result (1.26) shows that all possible paths contribute to the transition am-
plitude with the same amount but with a different phase which is given by the
action

I(φ, ∂µφ) =
∫

d4XL(φ, ∂µφ) . (1.27)

When considering macroscopic systems, where I ≫ h̄, the contributions of dif-
ferent neighboring paths will cancel in average. Only if I(φ, ∂µφ) is stationary in
the vicinity of a path this will contribute. This demand is well known from clas-
sical field theory. It is the Hamilton principle which states that the actual path
of a field (in the sense introduced above) is the one where the action becomes
stationary: δI = 0. In quantum systems the phase factor will not necessarily lead
to cancellation, so interference effects occur like those in the double slit system
in quantum mechanics.

Feynman propagators and correlation functions

The Feynman core characterizes the evolution of a given state in time. For
practical purposes a quantity is needed that accounts for the interaction as well
as the creation and annihilation of particle fields. Let us consider the most simple
case: A particle is created at a given point in space time and annihilated at a
different point with ti > tj:

〈0|φ̂(Xi)φ̂(Xj)|0〉 . (1.28)

This quantity is known as the Feynman propagator or two-point correlation func-
tion. It can be calculated within the path integral formalism as follows.
We start with the matrix element of the product of two field operators φ̂(Xi) and
φ̂(Xj) in the space of its eigenstates 〈φ′, t′| and |φ, t〉. As in (1.11) one considers
the discretized path integral

〈φ′
l, t

′|φ̂(xl, ti)φ̂(xl, tj)|φl, t〉 =
∫

dφlN−1 · · ·
∫

dφl2

∫

dφl1〈φ′
lN |φlN−1〉 · · ·
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× 〈φli+1|φ̂(xl, ti)|φli〉 · · · 〈φlj+1|φ̂(xl, tj)|φlj〉
× · · · 〈φl1|φl0〉 . (1.29)

For simplicity only one point in space is shown here. Since the field operators act
on their eigenstates one can replace them by their eigenvalues which contribute
just as a factor. Thus the total path integral is

〈φ′, t′|T [φ̂(Xi)φ̂(Xj)]|φ, t〉 =
∫

Dφφ(Xi)φ(Xj)e
i
∫

d4XL(φ,∂µφ) . (1.30)

Here the time ordering operator T has been introduced because in (1.29) it follows
from the definition of the path integral that ti > tj. The time ordering operator
ensures that the field operator with the later time argument acts to the left state
while the one with the earlier argument acts to the right:

T [φ̂(ti)φ̂(tj)] =

{

φ̂(ti)φ̂(tj) if ti > tj
φ̂(tj)φ̂(ti) if ti < tj .

(1.31)

The vacuum state |0〉, which is required for the Feynman propagator, can be
extracted from the eigenstates of the field operator by decomposition into eigen-
states of the Hamilton operator Ĥ|n〉 = En|n〉 :

|φ, t〉 = eiĤt
∑

n

|n〉〈n|φ, 0〉 =
∑

n

eiEnt|n〉〈n|φ, 0〉 , (1.32)

where the time evolution operator (1.6) has been used. With this relation the
matrix element (1.30) can be rewritten as

〈φ′, t′|T [φ̂(Xi)φ̂(Xj)]|φ, t〉 =
∑

n,n′

e−i(En′ t
′−Ent)〈φ′, 0|n′〉〈n|φ, 0〉

×〈n′|T [φ̂(Xi)φ̂(Xj)]|n〉 . (1.33)

If n = n′ = 0 the second row is obviously the Feynman propagator which now has
to be extracted from this expression. The idea is to let the time go to infinity.
It will turn out that this limit favors the wanted vacuum contribution. Taking
the limit t → ∞ does not help at first because the exponential function with
the imaginary exponent oscillates undamped. However, if one adds an imaginary
component to the time, the exponential function goes to zero asymptotically with
increasing t. With the time coordinates rotated into the imaginary direction,
τ = eiδt and τ ′ = eiδt′, the limit of the matrix element becomes

lim
t′→∞
t→−∞

〈φ′, t′|T [φ̂(Xi)φ̂(Xj)]|φ, t〉 = lim
τ ′→eiδ∞
τ→−eiδ∞

〈φ′, e−iδτ ′|T [φ̂(Xi)φ̂(Xj)]|φ, e−iδτ〉

−→ lim
τ ′→∞
τ→−∞

〈φ′, e−iδτ ′|T [φ̂(Xi)φ̂(Xj)]|φ, e−iδτ〉 .

(1.34)
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The second row is an analytic continuation for δ → 0 which is possible if the
matrix element is analytic in t and t′. This method of rotating the time axis
into the imaginary direction is known as Wick rotation. The angle of rotation
does not play a role, but the task of extracting the vacuum contribution from
the matrix element gets most simple if one chooses it to be δ = π/2. Then the
time gets purely imaginary, i.e. , t = −iτ , where τ is a real number. The matrix
element becomes

〈φ′,−iτ ′|T [φ̂(Xi)φ̂(Xj)]|φ,−iτ〉 =
∑

n,n′

e−(En′τ
′−Enτ)〈φ′, 0|n′〉〈n|φ, 0〉

×〈n′|T [φ̂(Xi)φ̂(Xj)]|n〉 . (1.35)

Unlike in (1.33) the exponential function in this expression does not oscillate
anymore but drops as long as the exponent is negative. The rate of the decline is
given by the energies En. Therefore, the summand with the lowest energy, which
is the ground state, decreases most slowly and dominates for τ → ∞:

〈φ′,−iτ ′|T [φ̂(Xi)φ̂(Xj)]|φ,−iτ〉 → e−E0(τ ′−τ)〈φ′, 0|0〉〈0|φ, 0〉
×〈0|T [φ̂(Xi)φ̂(Xj)]|0〉 . (1.36)

The pre-factor of the Feynman propagator in (1.36) is just the Feynman core in
the limit of infinite times with a rotated time axis:

〈φ′,−iτ ′|φ,−iτ〉 = 〈φ′, 0|e−τ ′ĤeτĤ |φ, 0〉
=

∑

n,n′

〈φ′, 0|n′〉〈n′|e(τ−τ ′)Ĥ |n〉〈n|φ, 0〉

=
∑

n

〈φ′, 0|n〉〈n|φ, 0〉eEn(τ−τ ′) . (1.37)

Thus, the wanted Feynman propagator is the quotient of (1.36) and (1.37) in the
limit of infinite times:

〈0|T [φ̂(Xi)φ̂(Xj)]|0〉 = lim
τ ′→∞
τ→−∞

〈φ′,−iτ ′|T [φ̂(Xi)φ̂(Xj)]|φ,−iτ〉
〈φ′,−iτ ′|φ,−iτ〉 . (1.38)

Performing an analytic continuation back to real times and expressing the matrix
element as well as the Feynman core in terms of path integrals one can write

〈0|T [φ̂(Xi)φ̂(Xj)]|0〉 = lim
t′→∞
t→−∞

∫ Dφφ(Xi)φ(Xj)e
i
∫

d4XL(φ,φ̇)

∫ Dφei
∫

d4XL(φ,φ̇)
. (1.39)

The extension to n-point functions is straightforward. Following the same ideas
as above yields

〈0|T [φ̂(X1) · · · φ̂(Xn)]|0〉 = lim
t′→∞
t→−∞

∫ Dφφ(X1) · · ·φ(Xn)e
i
∫

d4XL(φ,φ̇)

∫ Dφei
∫

d4XL(φ,φ̇)
. (1.40)
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The generating functional

To get a closer insight into the dynamics of quantum fields let us regard the behav-
ior of the transition amplitude in the presence of a disturbance. This disturbance
can be imagined as a classical external field which influences the evolution of the
quantum field. In practice it will appear as an inhomogeneity in the equation
of motion, so the previously homogeneous Lagrange equation becomes inhomo-
geneous. Within the Lagrangian this is achieved by an extra source term of the
form J(X)φ(X). The way of calculating the path integral described above still
holds, so the transition amplitude becomes

〈φ′, t′|φ, t〉J = N
∫

Dφei
∫ t′

t
dt
∫

d3x[L(φ,∂µφ)+Jφ(X)] . (1.41)

Since one is not interested in the detailed effect of the disturbance on the state
but just in the result after the disturbance is over, one considers the limits of
infinite times t′ → +∞ and t → −∞ and assumes the source to be switched on
and off for large times (compare fig. 1.2)

lim
t→±∞

J(t) = 0 . (1.42)

One can then insert a complete set of eigenstates at times t1 and t2 where the
source term is assumed to vanish so (1.41) becomes

〈φ′, t′|φ, t〉J = lim
M→∞

M∏

l=1

∫

dφl2

∫

dφl1〈φ′
l, t

′|φl2〉〈φl2|φl1〉J〈φl1|φ1, t〉 , (1.43)

where again space has been discretized the same way as in the derivation of
the path integral. If one now expands the first and the last matrix element
into eigenstates of the Hamilton operator one can use the same trick as in the
derivation of the two-point function above. One lets time go to infinity after

2

J(t)

t t’t1 t

Figure 1.2: A possible evolution of the disturbing source term with time.

performing a Wick rotation (see (1.34)). Therefore only the vacuum contribution
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survives and one can extract the transition amplitude from the vacuum to the
vacuum, i. e., the probability that the vacuum is not affected by the disturbance

Z[J ] = 〈0|0〉J = lim
M→∞

M∏

l=1

∫

dφl2

∫

dφl1〈0|φl2〉〈φl2|φl1〉J〈φl1|0〉 . (1.44)

In terms of path integrals this is analogous to (1.41)

Z[J ] = 〈0|0〉J = N
∫

Dφe
i
∫

∞

−∞
dt
∫

d3x[L(φ,∂µφ)+Jφ(X)]
. (1.45)

This is the generating functional. The normalization constant N can be de-
termined from the claim that the vacuum should be stable in absence of any
disturbance, i. e., the amplitude should be Z[0] = 1.
The generating functional is of great importance in quantum field theory because
it allows to calculate the n-point functions in a very convenient manner: The n-
point function is just the n-th derivative of the generating functional with respect
to the disturbing source:

〈0|T [φ̂(X1) · · · φ̂(Xn)]|0〉 = (−i)n
δnZ[J ]

δJ(X1) · · · δJ(Xn)

∣
∣
∣
∣
∣
J=0

. (1.46)

The physical value of the n-point function is given at vanishing source J = 0.
The derivative is a functional derivative which is defined as follows:

δ

δJ(X)
J(Y ) = δ(4)(X − Y ) or

δ

δJ(X)

∫

d4Y J(Y )φ(Y ) = φ(X) . (1.47)

If the generating functional is known one can easily calculate all n-point
functions by differentiation. Recall the meaning of the two-point function
〈0|T (φ̂(X1)φ̂(X2))|0〉. In (1.28) it has been stated that it is the Feynman propa-
gator. In the special case that a particle does not interact this can be calculated
exactly.
For illustration consider a free scalar field. Scalar fields are described by a Klein-
Gordon Lagrangian

LKG =
1

2
(∂µφ)2 − 1

2
m2φ2 . (1.48)

The generating functional then reads

Z[J ] =
∫

Dφ exp
{

i
∫

d4X
[
1

2
(∂µφ)2 − 1

2
(m2 − iǫ)φ2 + φJ

]}

. (1.49)

The additional term iǫ provides a Wick rotation to achieve the necessary damping
as discussed below (1.33). For the first term in the exponent one can write

∫

d4X∂µφ∂
µφ = −

∫

d4Xφ∂µ∂
µφ , (1.50)
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which can be easily shown by using partial integration and assuming that the
field vanishes at the boundaries. Thus the generating functional becomes

Z[J ] =
∫

Dφ exp
{

−i
∫

d4X
[
1

2
φ
(

∂µ∂
µ +m2 − iǫ

)

φ− φJ
]}

. (1.51)

One can now decompose the field

φ(X) −→ φ(X) + φ0(X) , (1.52)

where φ0(X) obeys the inhomogenous Klein-Gordon equation

(

∂µ∂
µ +m2 − iǫ

)

φ0(X) = J(X) . (1.53)

The Feynman propagator ∆F (X) is the solution to this equation if J(X) is a
Dirac delta function (e. g. [GR96]). The solution to (1.53) is therefore

φ0(X) = −
∫

d4Y∆F (X − Y )J(Y ) . (1.54)

Mathematically, the Feynman propagator is hence a Green’s function. By using
the fact that

∫

d4Xφ0

(

∂µ∂
µ +m2 − iǫ

)

φ =
∫

d4Xφ
(

∂µ∂
µ +m2 − iǫ

)

φ0 , (1.55)

one can insert the split field (1.52) into (1.51). The exponent of the generating
functional then becomes

∫

d4X
[
1

2
φ
(

∂µ∂
µ +m2 − iǫ

)

φ− φJ
]

−→
∫

d4X
[
1

2
φ
(

∂µ∂
µ +m2 − iǫ

)

φ

+φ
(

∂µ∂
µ +m2 − iǫ

)

φ0 +
1

2
φ0

(

∂µ∂
µ +m2 − iǫ

)

φ0 − φJ − φ0J
]

.

(1.56)

With the Klein-Gordon equation (1.53) some of these terms cancel each other,
leaving only

∫

d4X
[
1

2
φ(∂µ∂

µ +m2 − iǫ)φ− 1

2
φ0J

]

. (1.57)

If one now inserts the general solution (1.54) into this exponent the generating
functional (1.51) becomes

Z[J ] =
∫

Dφ exp
[

− i

2

∫

d4Xφ(∂µ∂
µ +m2 − iǫ)φ

]

× exp
[

− i

2

∫ ∫

d4Xd4Y J(X)∆F (X − Y )J(Y )
]

. (1.58)
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The generating functional now consists of two factors where the first one only
depends on φ and the second one only on the source J . The term including φ is
actually a number which one can call N so the generating functional becomes

Z[J ] = N exp
[

− i

2

∫ ∫

d4Xd4Y J(X)∆F (X − Y )J(Y )
]

. (1.59)

Its second functional derivative in the sense of (1.46) is obviously the Feynman
propagator

i∆F (X − Y ) = (−i)2 δ2Z[J ]

δJ(X)δJ(Y )

∣
∣
∣
∣
∣
J=0

=: G(2)(X, Y ) . (1.60)

Note that for all uneven numbers of derivatives the Green’s functions vanish
because of the appearance of a factor J in front. Thus, the next non-vanishing
Green’s function is the 4-point function

G(4)(X1, X2, X3, X4) := (−i)4 δ4Z[J ]

δJ(X1)δJ(X2)δJ(X3)δJ(X4)

∣
∣
∣
∣
∣
J=0

= (−i)4 [∆F (X1 −X2)∆F (X3 −X4) + ∆F (X1 −X3)∆F (X2 −X4)

+∆F (X1 −X4)∆F (X2 −X3)] . (1.61)

At this point it is useful to introduce Feynman graphs that provide a concise
graphical notation for propagators. One associates a line with each of the Feyn-
man propagators in (1.60) and (1.61). Then the Green’s functions can be depicted
as shown in fig. 1.3. The end points are identified with the space-time points Xi.
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2 3 4

G  (X ,X ) =

Figure 1.3: Feynman diagrams for two- and four-point Green’s functions.

The Feynman graphs of fig. 1.3 show the propagation of one and two particles
between given space-time points, respectively. The fact that three summands
occur in the four-point function means that the two propagating particles are
indistinguishable. In general a 2n-point function will be a sum of products of n
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two-point functions:

G(2n)(X1, . . . , X2n) =
∑

all permutations

G(2)(Xk1, Xk2) · · ·G(2)(Xk2n−1
, Xk2n) ,

(1.62)
where the sum runs over all permutations of the indices xk so that no summand
appears twice. This identity is known as Wick’s theorem. Obviously there is
no new information added by the terms of the four-point interaction compared
to the two-point function. Therefore, these diagrams can be reduced to the
Feynman-propagator G(2)(X1, X2). To avoid these redundant contributions one
can introduce the generating functional for connected Green’s functions W . It is
just the logarithm of the generating functional [Ryd96], i. e.

Z[J ] = eiW [J ] . (1.63)

All connected Green’s functions are calculated as the derivatives of the connected
generating functional with respect to the source:

G(n)
c (X1, . . . , Xn) = in−1 δnW [J ]

δJ(X1) · · · δJ(Xn)

∣
∣
∣
∣
∣
J=0

. (1.64)

In particular the first derivative is the expectation value of the field

〈φ(X)〉 =
δW [J ]

δJ(X)

∣
∣
∣
∣
∣
J=0

≡ φ̂ . (1.65)

At this point one can introduce the effective action. In general this is the Legendre
transform of the generating functional for connected Vertex functions

Γ[φ] = W [J ] −
∫

d4Xφ(X)J(X) . (1.66)

With the effective action the expectation value of the field can be found as the
solution of the stationarity condition

δΓ[φ]

δφ(X)

∣
∣
∣
∣
∣
φ=φ̂

= 0 . (1.67)

Furthermore, the two-point vertex function is

δ2Γ[φ]

δφ(X1)δφ(X2)

∣
∣
∣
∣
∣
φ=φ̂

= −G(X1 −X2) . (1.68)

The above presentation has been relatively simple because only non-interacting
free particles have been considered. However, as soon as interactions are taken
into account the generating functional becomes much more complicated. In gen-
eral it is actually impossible to determine it exactly. Therefore, possibilities to
approximate the generating functional have to be found.
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1.3 Approximation schemes

As an example, consider the most simple case of an interacting theory where a
scalar field only interacts with itself. The Lagrangian is

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − gV (φ) (1.69)

with the potential

V (φ) =
1

4!
φ4 . (1.70)

Because of its potential the theory is called φ4 theory. In the Feynman propagator
not only lines, depicting free propagators as in fig. 1.3, appear now but also
interactions of propagating fields. From the Lagrangian it follows that these
interactions always occur with the fourth power in the fields. Thus one can draw
interactions of propagators as crosses with four legs (see fig. 1.4).
Here, as in the following, we switch to momentum space and thus consider the

P

P2

1

3

4

φ(   )

φ(   )φ(   )

P

P

φ(   )

Figure 1.4: A quartic self-interaction vertex.

Fourier-transformed propagators:

∆F (P ) =
∫

d4XeiP (X−Y )∆F (X − Y ) . (1.71)

At every vertex momentum has to be conserved, so in more complex Feynman
diagrams a vertex is associated with a Dirac delta function:

Vertex = −ig(2π4)δ(4)
(∑

p
)

. (1.72)

The main problem with the introduction of an interaction is that now the path
integral cannot be calculated analytically as in the case of free propagation. How-
ever, one can think of different approximations to the actual value of the integral
which are discussed in the following.

1.3.1 Perturbation expansion

Since the path integral of the free theory is known one can try to separate the
interaction part from the free part of the path integral and approximate the
former by a series expansion.
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The Lagrangian is therefore
L = L0 + Lint (1.73)

and the generating functional (1.45) becomes

Z[J ] = N
∫

Dφ exp
[

i
∫

d4X(L0 + Lint + Jφ)
]

= N
∫

Dφ exp
[

i
∫

d4X(L0 + Jφ)
]

exp
[

−i
∫

d4XgV (φ)
]

. (1.74)

The first part is at most quadratic in the fields while the second part contains all
interactions. One can now expand the second part in a power series and write
the generating functional as

Z[J ] = N
∫

Dφ exp
[

i
∫

d4X(L0 + Jφ)
] ∞∑

l=0

1

l!

[

−i
∫

d4XgV (φ)
]

. (1.75)

Let us take a closer look at this expansion by considering Feynman diagrams.
Obviously it is an expansion in powers of the coupling constant g. It is called
perturbation expansion. It is convergent if the summand is smaller than one.
Vertices as shown in fig. 1.4 connect four legs with each other. In Feynman
propagators (two-point functions) only two end points exist so the four-vertices
can only contribute as loops, where two legs are connected. The most simple form
of a loop is shown in fig. 1.5. This one-loop diagram contains one vertex so it

Figure 1.5: Connecting two legs of a vertex gives a one-loop diagram.

is proportional to the first power of the coupling constant g. Each propagator is
associated with a momentum that is carried by the field. Because of momentum
conservation it has to be the same at the end points of the propagation. However,
the momentum that runs in a loop is not determined. Therefore one has to
integrate over all possible momenta. Thus in momentum space a simple tadpole
loop in a Feynman diagram is associated with

Loop =
∫ d4P

(2π)4
∆F (P ) . (1.76)

The perturbation series of the connected two-point function up to third order
is shown diagrammatically in fig. 1.6 as an example. One can re-organize this
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Figure 1.6: Perturbation series up to third order.

series by introducing the self-energy Σ. This self-energy contains the one-particle
irreducible diagrams without external legs, i. e., those diagrams that do not fall
apart when cutting one line. The new series now sorts the contributions according
to their number of internal lines which are not part of a loop. In each term the
non-loop propagators G0 are written down explicitly and the loops are summed
up in the self-energy. The perturbation series then reads

G(2)
c (P ) = G0(P ) +G0(P )

Σ(P )

i
G0(P ) +G0(P )

Σ(P )

i
G0(P )

Σ(P )

i
G0(P ) + . . .

(1.77)
with the self-energy which is shown in fig. 1.7. Obviously the terms in (1.77)

+
i
1 Σ (P)= + ++

Figure 1.7: The one-particle irreducible loops in the self-energy.

are not of the same order in g anymore. Nevertheless, since all diagrams in the
perturbation series can be expressed as a product of free propagators and the
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self-energy, this expression is the same as in fig. 1.6. The series (1.77) is just a
geometric series that can be calculated in a closed form:

G(2)
c (P ) = G0

(

1 +
Σ(P )

i
G0 +

Σ(P )

i
G0

Σ(P )

i
G0 + · · ·

)

= G0

(

1 − Σ(P )

i
G0

)−1

=
i

P 2 −m2 − Σ(P )
. (1.78)

The perturbation expansion is thus an approximation for two-point functions
where each term is composed of free propagators. With this we can define the
two-point vertex function as

Γ(2)(P ) = P 2 −m2 − Σ(P ) . (1.79)

1.3.2 The loop expansion

A different approximation scheme is the loop expansion which is an expansion in
the number of loops [CW73, Jac74]. In the perturbation expansion the two-point
function was assembled from contributions that have two external legs and all
possible numbers of loops, which were summarized in the self-energy Σ. In the
loop expansion not the two-point function (or a higher order vertex function)
is approximated but the effective action (1.66). We can expand it in powers of
momentum:

Γ[φ] =
∫

d4X
[

−U [φ(X)] +
1

2
(∂µφ)2 Z [φ(X)] + · · ·

]

. (1.80)

If we now assume the field to be constant in space and time

φ(X) = 〈φ〉 = a , (1.81)

all derivative terms in (1.80) vanish and after evaluating the trivial volume inte-
gral one can write

Γ[a] = −ΩU [a] , (1.82)

where Ω is the space-time volume and U the effective potential. The effective
action can also be expanded in powers of the field φ:

Γ[φ] =
∞∑

n=0

1

n!

∫

d4X1 · · ·
∫

d4XnΓ
(n)(X1, . . . , Xn)φ(X1) · · ·φ(Xn) , (1.83)

or in momentum space

Γ[φ] =
∞∑

n=0

1

n!

∫

d4P1 · · ·
∫

d4Pnδ
4 (P1 + · · ·+ Pn) Γ(n) (P1, . . . , Pn) φ̃(P1) · · · φ̃(Pn) .

(1.84)
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Here, Γ(n) is the n-point vertex function. The φ̃ in the above expression constitute
the n external legs. Since the field has been assumed to be constant in space it
is a Dirac delta function in momentum space:

φ̃(P ) =
∫

d4Xe−iPXφ(X) = aδ4(P ) . (1.85)

Inserting this into (1.84) together with (1.82) yields for the effective potential

U [a] = −
∞∑

n=0

1

n!
anΓ(n)(Pi = 0) . (1.86)

One can now introduce a parameter α which multiplies the Lagrange density

L(φ, ∂µφ, α) = α−1L(φ, ∂µφ) . (1.87)

The loop expansion is then equivalent to a power series in this constant α which
can be seen as follows. The power of α, denoted by P in the following, is connected
to the number of internal lines I of a diagram and the number of vertices V by

P = I − V , (1.88)

since the propagator is the inverse of the differential operator occurring in the
Lagrangian and thus carries a factor of α. Furthermore each vertex of course
carries a factor of α−1.
Moreover, the number of loops L in a diagram is

L = I − V + 1 , (1.89)

because the number of loops is equal to the number of internal momenta that is
integrated over. Each internal line contributes an integration over a momentum
but each vertex corresponds to a Dirac delta function that reduces the number of
momentum integrals by one. The +1 is added for the extra delta function that
assures overall momentum conservation. Comparing (1.88) and (1.89) gives

P = L− 1 . (1.90)

Therefore, an expansion in powers of α is equivalent to an expansion in the
number of momentum loops of the form

U [φ] = U (0)[φ] +
∞∑

n=1

U (n)[φ] , (1.91)

where n is the number of loops.
The main advantage of expanding the effective potential instead of the Green’s
function is that, according to (1.86), all n-point vertex functions are considered
up to a certain number of loops. In other words all loop diagrams are equipped
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with all possible numbers of external legs. The sum over these external legs in
(1.86) can be calculated explicitly [CW73].

Let us illustrate the loop expansion for the case that only one loop is taken into
account. The one-loop contribution to the effective potential is [Kug97]

U (1) =
1

2

∫ d4P

(2π)4
lnD−1(P ;φ) . (1.92)

Therefore the effective potential is up to first order

U(φ) = U (0)(φ) +
1

2

∫
d4P

(2π)4
lnD−1(P ;φ) , (1.93)

where the tree-level propagator, i. e., the propagator without any loops, is ac-
cording to (1.68)

D−1(X1, X2;φ) ≡ − δ2U (0)[φ]

δφ(X1)δφ(X2)

∣
∣
∣
∣
∣
φ=φ̂

. (1.94)

1.3.3 The Cornwall-Jackiw-Tomboulis formalism

In the loop expansion the effective action is expanded in numbers of loops. How-
ever, it turns out that many phenomena cannot be described by only considering
lower-order contributions of the loop expansion. In models with spontaneously
broken symmetry, for example, the mass of certain particles becomes imaginary
when calculated in the loop expansion [LR00]. Furthermore, the loop expansion
is not necessarily convergent. Furnstahl et al. showed in 1989 that for the Walecka
model the loop expansion does not converge at all up to two-loop order [FPS89].
Most importantly, the expansion schemes presented above fail at non-zero tem-
perature as will be discussed in section 1.4.
Many of these problems can be solved by a different approximation scheme, the
CJT formalism which was introduced by Cornwall, Jackiw and Tomboulis in
1974 [CJT74] and independently by Luttinger and Ward [LW60] and Baym and
Grinstein [BG77] who called it Φ functional formalism. Here, again the effective
action is approximated, but this formalism now leads to a set of self-consistent
Schwinger-Dyson equations which are solved by the propagators of the consid-
ered particles. These propagators are fully dressed, i.e. , they contain diagrams
of certain classes up to infinite order in loops.
In (1.41) a disturbing source term was introduced into the generating functional
so arbitrary n-point functions could be calculated by taking the nth derivative
with respect to this source (see (1.46)).
In the CJT formalism another source K(X, Y ) is introduced so the generating
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functional becomes 2

Z[J,K] = eW [J,K] (1.95)

=
∫

Dφ exp
{

I[φ] +
∫

X
φ(X)J(X) +

1

2

∫

X,Y
φ(X)K(X, Y )φ(Y )

}

,

where I[φ] =
∫

X L[φ(X), ∂µφ(X)] is the classical action. The integration can be
seen as the normal four-space integration at this point. In the next section we will
expand this formalism to non-zero temperature by replacing the time integration
by an integral over imaginary time. We use a notation that does not distinguish
these cases.
Some approaches, known as two-particle point-irreducible expansion schemes, use
a source K(X) which is local instead of bilocal as here [BM03]. This leads to
a local self-energy where only loop corrections are taken into account which are
independent of the external momentum. The propagators in these schemes there-
fore always describe quasi-particles without a width. Here only bilocal sources
are considered.
As in the loop expansion the expectation value of the field is calculated as

δW [J,K]

δJ(X)
=

1

Z

δZ[J,K]

δJ(X)
≡ φ̂(X) = 〈φ〉 , (1.96)

but furthermore the connected two-point function is now calculated by taking the
derivative with respect to the additional source K:

δW [J,K]

δK(X, Y )
=

1

Z

δZ[J,K]

δK(X, Y )
≡ 1

2

[

G(X, Y ) + φ̂(X)φ̂(Y )
]

, (1.97)

where

G(X, Y ) :=
δ2W [J,K]

δJ(X)δJ(Y )
. (1.98)

The effective action is obtained by eliminating the sources J and K in favor of
the physical quantities φ̂ and G by a double Legendre transformation:

Γ[φ̂, G] = W [J,K] −
∫

X
φ̂(X)J(X)

−1

2

∫

X,Y
φ̂(X)K(X, Y )φ̂(Y ) − 1

2

∫

X,Y
G(X, Y )K(X, Y ) . (1.99)

The stationarity conditions introduced in (1.67) are then

δΓ[φ̂, G]

δφ̂(X)
= −J(X) −

∫

Y
K(X, Y )φ̂(Y ) ,

δΓ[φ̂, G]

δG(X, Y )
= −1

2
K(X, Y ) . (1.100)

2This formalism is at non-zero temperature used in a convention where there is no imaginary
unit in the exponent. We follow this convention in this section. Physics is not affected by this
choice.
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The expectation values of φ̂ and G are defined at vanishing sources so the sta-
tionarity conditions become

δΓ[φ̂, G]

δφ̂(X)

∣
∣
∣
∣
∣
φ̂=ϕ,G=G

= 0 , (1.101)

δΓ[φ̂, G]

δG(X, Y )

∣
∣
∣
∣
∣
φ̂=ϕ,G=G

= 0 . (1.102)

While the first equation is the gap equation for the field, the second one is the
Schwinger-Dyson equation for the propagator. Here ϕ and G are the physical
values of the field and the propagator, respectively. The task is now to find an
explicit expression for the effective action Γ[φ̂, G]. Only the result shall be given
here:

Γ[φ̂, G] = I(φ̂) − 1

2
Tr(lnG−1) − 1

2
Tr(D−1G− 1) + Γ2[φ̂, G] , (1.103)

where D−1 is the inverse tree-level propagator

D−1(X, Y ; φ̂) ≡ − δ2I[φ]

δφ(X)δφ(Y )

∣
∣
∣
∣
∣
φ=φ̂

. (1.104)

The detailed derivation can be found in [CJT74]. The different terms in (1.103)
can be assigned to Feynman graphs with different irreducibility. The classical
action I[φ̂] corresponds to the tree-level diagrams, i.e. , lines without any loops.
The second and third term represent the one-particle irreducible diagrams which
do not fall apart when cutting only one line but do so when cutting two lines.
The last term Γ2 is the sum over all two-particle irreducible (2PI) diagrams
which cannot be separated by cutting two internal lines. In principle this term
also contains all terms with higher irreducibility. As an approximation only some
of these terms are actually taken into account. Γ2 is set up as follows:

• In the classical action I[φ] the field φ is shifted by its vacuum expectation
value φ̂(X), so φ now accounts for the quantum fluctuations.

• The new action I[φ+ φ̂] contains terms of cubic or higher order in φ. Those
build an interaction part of the action Iint[φ, φ̂].

• Γ2[φ̂, G] is now the sum of all two-particle irreducible vacuum diagrams
whose vertices are given by Iint[φ, φ̂].

In principle one can carry on with this and consider terms with even higher
irreducibility (see for example [Car04, Ber04]). However, calculations become
very complex then.
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For constant fields φ̂(X) = φ̂ and homogeneous systems one can, analogously to
(1.80), derive an effective potential

V = −Γ[φ̂, G]

Ω
, (1.105)

where Ω is the space-time volume of the system. Inserting the effective action
(1.103) into this expression yields

V [φ̂, G] = U(φ̂)+
1

2

∫

K
lnG−1(K)+

1

2

∫

K

[

D−1(K; φ̂)G(K) − 1
]

+V2[φ̂, G] (1.106)

where U(φ̂) is the classical potential. The momentum integral at zero temperature
is just

∫

d4K/(2π)4. When temperature is introduced, the energy integral will be
replaced by a Matsubara sum.
The inverse tree-level propagator can be written as

D−1(K; φ̂) = −K2 + U ′′(φ̂) . (1.107)

Also the stationarity conditions (1.101) and (1.102) can be expressed in terms of
the effective potential:

δV [φ̂, G]

δφ̂

∣
∣
∣
∣
∣
φ̂=ϕ,G=G

= 0 ,

δV [φ̂, G]

δG(K)

∣
∣
∣
∣
∣
φ̂=ϕ,G=G

= 0 , (1.108)

where the second is equivalent to

G−1(K) = D−1(K; φ̂) + Π(K) , (1.109)

with the self-energy

Π(K) ≡ 2
δV2[φ̂, G]

δG(K)

∣
∣
∣
∣
∣
φ̂=ϕ,G=G

. (1.110)

The first equation is the field equation which is solved by the expectation value
of the field. The second equation is the Schwinger-Dyson equation. Its solution
is the fully dressed propagator. In general these equations are coupled, i.e. the
field equations are also functions of the propagators and the Schwinger-Dyson
equations are functions of the fields. In practice the solution is found numerically.
One starts with the tree-level propagators and calculates the self-energies from
these. With the self-energies new propagators can be set up which are now dressed
with the diagrams considered in the self-energies. These are used to calculate
new self-energies. In each step the dressing of the propagators is increased by one
level. A solution is found if the results of two iterations do not differ any more.
Physically spoken this means that higher-order contributions become too small
to influence the result.
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The CJT formalism for fermions

The extension of the CJT formalism to fermions is straightforward [CJT74]. Just
replace all factors of 1

2
by −1 in the effective action (1.103) and the effective

potential (1.106). The effective action becomes

Γ[ψ̂, G] = I(ψ̂) + Tr(lnG−1) + Tr(D−1G− 1) + Γ2[ψ̂, G] (1.111)

and the effective potential becomes

V [ψ̂, G] = U [ψ̂] −
∫

K
lnG−1(K) −

∫

K

[

D−1(K; ψ̂]G(K) − 1
]

+ V2[ψ̂, G] (1.112)

accordingly. The stationarity conditions for fermions read

δV [ψ̂, G]

δψ̂

∣
∣
∣
∣
∣
ψ̂=ψ,G=G

= 0 , (1.113)

and the Schwinger-Dyson equation is

G−1(K) = D−1(K; ψ̂) + Σ(K) , (1.114)

with the self-energy

Σ(K) ≡ − δV2[ψ̂, G]

δG(K)

∣
∣
∣
∣
∣
ψ̂=ψ,G=G

. (1.115)

1.4 Quantum field theory at non-zero tempera-

ture

Up to this point, quantum field theory has been formulated without accounting
for temperature. However, the intention of this thesis is the investigation of
particles at non-zero temperature. In this section we present the imaginary time
formalism to implement temperature into the path integral technique.
The thermodynamic properties of a system in equilibrium are usually described
in terms of the density matrix

ρ̂(β) = e−βĤ (1.116)

and the partition function

Z(β) = Trρ(β) =
∫

dφ1〈φ1|e−βĤ|φ1〉 , (1.117)

where Ĥ = Ĥ − µN̂ is the Hamiltonian for a grand canonical ensemble and
Ĥ = Ĥ for a canonical ensemble. Here µ is the chemical potential, N̂ is the
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number operator and β = 1/T is the inverse temperature. The trace operation
in (1.117) can be written as an integration over all values of φ1. Comparing this
partition function to the transition amplitude (1.26)

〈φ′, t|φ, 0〉 = 〈φ′, t|e−iĤt|φ, 0〉 = N
∫

Dφ exp
(

i
∫ t

0
dt
∫

d3xL
)

, (1.118)

one observes a useful similarity. If one identifies

t = −iβ with β =
1

T
(1.119)

the transition amplitude becomes

〈φ′,−iβ|e−βĤ |φ, 0〉 = N
∫

Dφ exp

(

i
∫ −iβ

0
d(−iβ)

∫

d3xL
)

. (1.120)

We observe in (1.117) that 〈φ′,−iβ| = 〈φ, 0| should hold for the identification to
be possible so the field is periodic in imaginary time (anti-periodic for fermions).
With the notation τ = it the partition function is therefore

Z(β) = N
∫

Dφ exp

(

−
∫ β

0
dτ
∫

d3xL
)

. (1.121)

With the help of this identification temperature is introduced into the path in-
tegral formalism by replacing the time variable. An effective potential can be
introduced for homogeneous systems as

V = −T Γ[φ̂, G]

V . (1.122)

We have learned that the propagator is periodic in imaginary time (anti-periodic
for fermions). A Fourier-transformation with respect to the imaginary time there-
fore only involves discrete frequencies:

Gβ(τ) =
1

β

∑

n

e−iωnτGβ(ωn) . (1.123)

Here ωn = nπT with n = 0,±1,±2, . . . are the so-called Matsubara frequencies
[Mat55, Kap89]. For bosons only even frequencies contribute, that is ωn = 2nπT ,
while for fermions only the odd modes contribute ωn = (2n + 1)πT . The sum is
usually called Matsubara sum.
With the imaginary time formalism it is possible to introduce temperature in
a very straightforward way. All expressions maintain their shape, just the time
is replaced by the imaginary time and the energy is expressed in terms of a
Matsubara frequency. The explicit evaluation of these sums will be shown later
when it is done in this work.
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However, the time dependence is abandoned, so only time-independent systems
in equilibrium can be treated in this formalism. For dynamical calculations based
on two-particle effective actions see for example [BS03].
It is worth mentioning that in general the standard perturbation expansion fails
at non-zero temperature [Wei74, BP90a, BP90b] which poses a strong motivation
for the use of resummation techniques. The reason is that the premise for the
convergence of the perturbation expansion is a small coupling constant. At non-
zero temperature, however, the temperature can compensate the small coupling
constant so the convergence breaks down. An example calculation illustrating
this for the simple φ4 theory can be found in [CH98]. The Cornwall-Jackiw-
Tomboulis formalism, used in this work, solves this problem, because it resums
complete classes of diagrams with a certain power in temperature. A simple
application within φ4 theory can be found in [ACP93].

1.5 The standard model

We are now able to describe elementary particles within quantum field theories.
But what particles are there? The current answer to this question is given by
the standard model of elementary particles. The evolution of physics towards
the standard model is another beautiful example of the course to simplicity and
unification. In fact, the idea of fundamental objects was already followed by
Anaximenes of Miletus in ancient Greece (around 850 b.c.) who tried to de-
duce all forms of matter from four elements, namely air, water, earth and fire.
Although his concept was of course wrong, he thereby introduced the idea of el-
ements constituting matter. This notion was followed further on. Real elements,
effectively not divisible chemically, were observed in the following centuries and
in 1869 Dimitri Mendeleev and Lothar Meyer found independently of each other
that these elements show certain systematics when plotted against their atomic
masses in the periodic table. Today the periodic table has 112 entries. How-
ever, these elements appeared not to be elementary. With further insight into
the structure of matter it turned out that elementary particles, the atoms, exist
that make up the different elements.
The knowledge that atoms exist certainly did not provide a further simplification
in itself. There were as many different atoms as there were elements. But with
further investigation the atoms soon revealed their own substructure. It emerged
that all atoms are composed of negatively charged electrons orbiting a nucleus
which consists of positively charged protons and neutral neutrons. Thus it was
possible to think of matter being made up of only three constituents instead of
the 112 elements.
Thorough investigation of protons and neutrons in collision experiments lead to
the insight that they are able to transform into other particles, never before
seen. More and more particles were discovered and in the end hundreds became
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known. This was of course a grave setback for an integrative picture of matter
but it emerged that some of the new particles were not elementary but could be
considered composed from even more elementary particles, the quarks and anti-
quarks.
Again, the attempt for unification was successful, eventually leading to the
present-day picture of matter, the standard model of elementary particles. Table
1.1 gives a survey of particles in the standard model.

Quarks Leptons
mass family name charge spin name charge spin
light up +2/3 1/2 electron -1 1/2

down -1/3 1/2 electron neutrino 0 1/2
medium strange -1/3 1/2 muon -1 1/2

charm +2/3 1/2 muon neutrino 0 1/2
heavy beauty -1/3 1/2 tau -1 1/2

truth +2/3 1/2 tau neutrino 0 1/2

Table 1.1: The three families of elementary particles in the standard model.

Quarks are particles that experience the strong interaction, i.e. , they are hadrons,
while leptons do not interact strongly. Quarks can never appear isolated so they
always form heavier particles. Three quarks assemble a baryon, a proton or
neutron for example, while a quark together with an anti-quark forms a meson.
Leptons are only subject to electromagnetic and the weak interaction.
All these particles and their interactions can be described in quantum field the-
ories. Thus, quantum field theory provides a unified framework that covers all
forms of matter as well as the three interactions electromagnetic, weak and strong.
Only gravity, the fourth interaction, could not yet be expressed in this theory but
strong efforts are already being made to unify the theory of general relativity with
quantum field theory.
In the following the theory of strong interaction which governs the properties and
the behavior of quarks and gluons is briefly presented. It is the theory underlying
the model used in this work. For an introduction to the quantum field theories
of the other interactions see e.g. [HM84] and [PS95].

1.6 Quantum chromodynamics

As mentioned above, the discovery of the proton and the neutron was followed
by the observation of more and more strongly interacting particles. It was the
merit of Murray Gell-Mann to find the new principle underlying this particle zoo
[GM62, GM64]. It arose from symmetry considerations which will be sketched in
the following.
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Let us assume we discover a number of particles in an experiment and ar-
range them according to their quantum numbers hypercharge Y and isospin 3-
component I3 in a diagram. These quantum numbers seem rather artificial but
they can be connected to observable quantities as

Y = B + S (1.124)

where B is the baryon number and S the strangeness as well as

Q = I3 +
Y

2
(1.125)

where Q is the charge. The choice is historical but it exhibits the symmetries in
a very lucid way.
Figure 1.8 shows these diagrams for baryons, baryon resonances and scalar
mesons. Apparently, baryons form an octet, baryon resonances a decuplet and

3

∆− ∆(ddd) 0 ∆+ (uud)(udd) ∆ (uuu)++

Σ (sdd)
*− Σ Σ (suu)*+(sud)

0*

(ssd)* −
ΞΞ (ssu)* 0

Ω (sss)−

Y

I3

κ (ds) +

a (ud)0

κ (us)

0
+

σa0
0

f
0
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n(udd) p(uud)
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(ssu)
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I

Figure 1.8: SU(3)-multiplets of baryons (left) baryon resonances (middle) and scalar

mesons (right).

the scalar mesons form a nonet when plotted in Y − I3 space. All three dia-
grams shown here, as well as all other diagrams of this type which were found
in experiments that time, are multiplets of the group SU(3). The fundamental
representation of this group, that is the smallest multiplet of which all other mul-
tiplets can be assembled, is a triplet, shown in fig. 1.9.
The question arose as to whether these fundamental representations have a phys-

ical meaning, and indeed they have. It was possible to identify them with funda-
mental particles that compose the hadrons, namely the quarks and anti-quarks.
Three types of each were sufficient to form all baryons and mesons known at that
time: the up, down and strange quark as well as their anti-quarks. The family of
quarks was not complete because three more quarks have been discovered since
then (see tab. 1.1). The SU(3) therefore had to be extended to SU(6), allowing
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Figure 1.9: Fundamental quark (left) and anti-quark (right) representation of SU(3).

for a lot of more multiplets and hadronic particles. The fundamental represen-
tations became sixlets of six quarks and anti-quarks respectively. For a deeper
coverage refer to [Gre05], for example.
We have learned that hadrons consist of quarks. What are the properties of
quarks and how do they interact? To answer this question the first approach
could be to fall back on something that is known as for example the theory of
charged particles. Charged particles are described within quantum electrody-
namics (QED) which is the quantum field-theoretical advancement of classical
electrodynamics. However, QED is not capable to describe quarks as will be
shown in the following.
Quarks are fermions with spin 1

2
, so like electrons they should be described by a

Dirac Lagrangian. However, the interaction of quarks cannot be transferred from
QED so easily. Consider the ∆++ resonance in fig. 1.8, for example. Its spin 3/2
and its charge 2 are obtained by combining three up-quarks (compare table 1.1).
Apparently these quarks are indistinguishable and therefore all in the same state
although they are fermions. This obviously contradicts the Pauli principle. The
conclusion is that there has to be another property which distinguishes the three
quarks from each other. This property is called color charge and can adopt the
values red, green and blue. The Lagrangian for quarks therefore has to carry an
extra index counting the color:

L0 = q̄j(iγµ∂µ −m)qj . (1.126)

In QED the interaction between charged particles is motivated by the fundamen-
tal principle of local gauge invariance: It is required that the electron field is
invariant under local U(1) transformations which is an implication of the con-
served electrical charge. The analogous requirement in QCD is the conservation
of color charge which is a local SU(3) symmetry. Thus, the demand is that the
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quark behavior, defined by the Lagrangian (1.126), is invariant under local SU(3)
transformations

q(X) −→ eiαa(X)Taq(X) . (1.127)

In the following it is sufficient to consider the infinitesimal transformation

q(X) −→ (1 + iαa(X)Ta)q(X) ,

∂µq(X) −→ (1 + iαa(X)Ta)∂µq(X) + iTaq(X)∂µαa(X) . (1.128)

Here a summation over a = 1, . . . , 8 is implied. Ta are the eight generators of
SU(3) and αa are the group parameters. Simply inserting the transformed quark
field (1.128) into the Lagrangian (1.126) shows that this is not invariant under
local SU(3) transformations, so in its present form the theory does not fulfill the
SU(3) symmetry.
In QED the symmetry can now be repaired by introducing a gauge field (the
photon) and a covariant derivative. One could try to proceed in an analogous
way in QCD by introducing eight gauge fields Ga

µ that transform like the QED
gauge field

Ga
µ −→ Ga

µ −
1

g
∂µαa (1.129)

and defining a covariant derivative

Dµ = ∂µ + igTaG
a
µ . (1.130)

The Lagrangian would then read

L = q̄(iγµ∂µ −m)q − g(q̄γµTaq)G
a
µ , (1.131)

where g is a coupling constant. However, this expression is still not invariant
under SU(3) transformation because the last term transforms like

(q̄γµTaq) −→ (q̄γµTaq) + iαbq̄γ
µ(TaTb − TbTa)q

= (q̄γµTaq) − fabcαb(q̄γ
µTcq) , (1.132)

where fabc are the SU(3) structure constants. Apparently, the fact that the SU(3)
generators Ta do not commute poses an extra problem compared to the abelian
theory of QED where the U(1) generator is just the unit matrix. Nevertheless,
gauge invariance can be established in QCD as well by modifying the transfor-
mation property of the gauge fields (1.129) as

Ga
µ −→ Ga

µ −
1

g
∂µαa − fabcαbG

c
µ . (1.133)

With this the Lagrangian (1.131) is indeed invariant under SU(3). One just has
to add a gauge invariant kinetic term for the gauge fields to get the complete
description of quarks:

L = q̄(iγµ∂µ −m)q − g(q̄γµTaq)G
a
µ −

1

4
Ga
µνG

µν
a , (1.134)
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where
Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gfabcG

b
µG

c
ν (1.135)

is the field strength tensor. The Ga
µ gauge fields of QCD are called gluons and like

photons they are massless vector particles. In contrast to the photons in QED
the gauge-invariance restoration results in a self-interaction term for the gluons,
i.e. , gluons are not color-charge neutral but interact with each other.

Asymptotic freedom

Due to this gluon self-coupling the interaction between quarks is much more
complicated than the electromagnetic interaction in QED. The difference is most
obvious in a property called running coupling constant. If one considers the in-
teraction of two electrons, for example, QED tells us that this is mediated by the
exchange of a photon. The photon couples to electrons with a coupling constant
which is identified with the charge, i.e. , the constant g appearing in the above
calculation is the electron charge e in QED. However, if one actually measures
the interaction between two electrons the charge appears to be different. So the
measured charge of an electron is different from the constant introduced in the
gauge repairing procedure. It turns out that the reason for this is that the ex-
changed photon is not just a photon but also includes electron-positron creation-
annihilation bubbles which lead to a slight increase of the measured coupling
constant with higher momenta 3. However, it remains small, so a perturbative
expansion is still possible.
The analogon in QCD is the creation of quark anti-quark pairs that modifies the
coupling constant g of the QCD Lagrangian. However, also the self-interaction
of the gluons has to be considered here, leading to a much stronger momentum
dependence. The running coupling constant of QCD is

αs(Q
2) =

4π

(11 − 2
3
nf ) ln(Q2/Λ2)

, (1.136)

where Q is the momentum of the gluons, nf is the number of quark flavors and
Λ is the QCD scale parameter which is determined experimentally. Due to the

3This effect had already been known before QED was developed. The explanation, though,
was different [BD98]: The Dirac equation predicts a continuum of electron states with negative
energy. This implies that all electrons with positive energy should fall to the negative continuum
and emit light. However, the electrons still exist so the conclusion had to be that the negative
continuum is already filled up with electrons (called Dirac sea) so Pauli’s principle restrains
electrons with positive energy from decaying. If now an electron is brought into this Dirac sea
(which essentially fills up the vacuum) it interacts electromagnetically with those occupying
the Dirac sea. Thus its charge is screened partially due to polarization. Therefore, the effective

charge should change if measured very close to the electron. This was indeed observed in the
hydrogen atom where the s-wave states are slightly reduced compared to those with l 6= 0
because they are very close to the nucleus. The term vacuum polarization is still used for the
corresponding QED diagram.
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self-interaction of gluons the running coupling constant of QCD has the opposite
momentum dependence to that of QED, i.e. , with increasing momentum and
smaller distances the coupling gets weaker. This behavior is known as asymp-
totic freedom [GW73b, GW73a]. Furthermore, the momentum dependence is
much more important in QCD because for small momenta and large distances
the coupling constant gets too large for perturbation theory to be applicable.
Perturbative QCD only works at very high momentum transfers (compared to
the scale parameter Λ), i.e. , at very high temperatures or densities.
At low temperatures and densities different approaches have to be employed. Two
main ideas are usually followed. The first one is to solve QCD on a discretized
space-time lattice numerically, i.e. , to calculate the grand partition function ex-
plicitly. This is a very fundamental approach but it requires a huge computing
effort. Furthermore, it is problematic to calculate at non-zero chemical poten-
tials. Only recently some progress has been made in this direction. For a review
refer to [Kar02, LP03, Ris04].
Another way to deal with hadronic matter at low densities and temperatures are
the so-called effective models of which one is applied in this work. These models
exploit the fact that in the regions of interest quarks are well confined in baryons
and mesons. So models can be developed which assume that the interaction
between baryons is mediated by mesons, both having no substructure. The idea
will be explained in more detail in section 1.7.

1.6.1 Phases of nuclear matter

Quantum chromodynamics describe the properties of quarks. It is therefore also
the theory underlying the behavior of hadrons as well as nuclear matter which
are composed of quarks. In fact, hadrons are the only mediator we have to obtain
experimental insight into QCD (e.g. [BGSG99, ZGS+01]). Quarks themselves can
not be measured in principle.
A summary of the bulk properties of nuclear matter is given by its phase diagram
where the temperature is plotted against the chemical potential. Its essential
features are shown in fig. 1.10 in the plane of temperature and chemical potential.
For a free gas at zero temperature the chemical potential can be connected to the
baryon density as

ρi = γi

∫ kFi

0

d3k

(2π)3
= γi

k3
Fi

6π2
, (1.137)

where γi is the isospin degeneracy factor of the respective baryon species and
kFi is the Fermi-momentum which can be calculated with help of the Einstein
theorem as

kFi =
√

µ2 −m2
i . (1.138)

The nuclear ground state is located at a quark chemical potential of µ ≃ 308
MeV and zero temperature. It corresponds to a baryon density of ρB ≃ 0.17 fm−3
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Figure 1.10: Schematic phase diagram of strongly interacting matter.

and a binding energy per nucleon of 16 MeV. The pressure in this state is p =
0 because it is stable. For lower baryon densities one might expect that the
pressure decreases below zero so the system would become mechanically unstable.
However, this does not happen because the baryons form droplets. In a mixture
of droplets and empty space a reduction of density only means that the distance
between the droplets becomes larger while the pressure remains zero. Starting
from a vapor of baryon droplets, increasing the density brings the droplets closer
together until they finally overlap and build an analog to the condensation of
water. This liquid-gas phase transition is of first order and occurs at the ground
state density at T = 0. It extends to a temperature of around 10 MeV where it
ends in a critical point. Physically spoken, with increasing temperature baryons
start to evaporate from the droplets so the vapor phase on the left hand side of
the phase transition line becomes a mixture of free baryons and droplets. At the
critical point the phase boundary disappears and the phase transition becomes
of second order.
The ground state of nuclear matter can be understood as the cancellation of an
attractive and a repulsive force. Thus the phase transition can be reproduced
in models that phenomenologically describe the nuclear force in this way as the
Walecka model [SW86], for example, which will be introduced in detail in section
1.7.1. For the liquid-gas phase transition also refer to chapter 2.
In the previous section it has been shown that the interaction between quarks
weakens at higher momenta and smaller distances, that is at higher temperatures
or densities. Thus, one would expect the confinement between quarks to be
influenced by this leading to a breakup of hadrons. This is indeed what most
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calculations predict. At temperatures of the order of the scale parameter Λ
collisions between hadrons start probing the quark structure. Similarly, at high
densities the wave functions of hadrons begin to overlap. The phase transition
between the hadronic state of matter and the so-called quark-gluon plasma in
which quarks and gluons are no longer bound to hadrons is believed to be of first
order up to a temperature of about 160 MeV. Here it ends in a critical point.
At higher temperatures and lower chemical potentials it is expected to become
of second order or a crossover.
Finally, the region of low temperatures and high chemical potentials should be
mentioned. Here, most quarks are below the fermi surface while the running
coupling constant is small because of the high densities. Therefore, the interaction
of quarks is dominantly single-gluon exchange leading to the formation of Cooper
pairs as in superconductivity in QED. This phase of matter could appear in the
interior of neutron stars but it is unclear if their density is sufficient since the
chemical potential there is only about 500 MeV.

Experiments

In practice the phase diagram of nuclear matter is explored in heavy-ion colli-
sion experiments. The efforts started in Berkeley at energies of Elab = 0.15 − 2
AGeV as well as at the Schwerionen-Synchrotron (SIS) of the Gesellschaft für
Schwerionenforschung (GSI) with Elab = 1 AGeV and the Alternating Gradient
Synchrotron (AGS) at the Brookhaven National Laboratory providing energies
of Elab = 10.6 − 14.5 AGeV. Here temperatures around 100 MeV and chemical
potentials around 250 MeV could be reached. The Super Proton Synchrotron
(SPS) accelerator at CERN with Elab = 40 − 200 AGeV followed.

The most recent experiment is the Relativistic Heavy Ion Collider (RHIC), which
is a collider at Brookhaven that provides center of mass energies of Ecms = 100
AGeV. It is able to probe the high-temperature region at low densities of the phase
diagram. It is expected to reach temperatures of about 170 MeV. A similar aim is
planned for the new Large Hadron Collider (LHC) at CERN. For the exploration
of the high-density region at lower temperatures a new facility at GSI is planned.

1.7 Effective models

As shown above the running coupling constant of QCD becomes large at low tem-
peratures and densities. Thus, a perturbation expansion in orders of the coupling
constant is not convergent. Calculations of strongly interacting matter are there-
fore difficult in these regions. Some approaches have been mentioned in section
1.6. Here the use of effective models shall be reviewed in more detail.
Effective models are employed to model the strong interaction in a way that leads
to observable results, that is to say parameters and interactions relevant in the
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regime under consideration are taken into account. In the most definite way of
driving an effective model is to start with the Lagrangian of QCD and to integrate
out certain degrees of freedom until a model is left that is solvable, at least in an
approximation scheme. A popular example for this is the Nambu-Jona-Lasinio
model (NJL model) which has the same symmetry properties as QCD and de-
scribes quarks with a point-like interaction and a constant coupling strength.
The NJL model has been widely applied for the investigation of quark properties
(e.g. [SMMR01] study the chiral phase transition, in [ZW92] the time evolution
of quarks is investigated using the CJT formalism. An example for an approach
of calculating the quark spectral function at zero temperature similarly to this
thesis is [FLM03b, FLM02].)
However, most effective models cannot be derived from QCD explicitly. A less
stringent but nevertheless very successful way is to regard properties of QCD
as for example its symmetries and construct a Lagrangian that reflects these
properties. This procedure is widely used for hadronic effective models in which
one exploits the fact that the running coupling constant becomes large at large
distances. This means that at low temperatures and densities quarks are well
confined into hadrons which can be viewed as interacting via the exchange of
mesons.
One of the most important features of QCD that enters many effective models
is probably chiral symmetry (see [Koc95] for a pedagogical introduction). It is a
property of QCD at vanishing quark masses. Formally it is the invariance under
vector and axial-vector transformations. In illustrative words chirality can be
best understood by considering helicity which is the projection of the spin onto
the spatial momentum vector. If a particle is massive it propagates with less
than the speed of light and therefore a frame of reference can be found where
the helicity of the particle changes because the momentum changes its sign. If
in contrast the particle is massless it travels with the speed of light and this is
not possible. A theory of massless particles is therefore chirally symmetric. It is
expected that nuclear matter exhibits a phase transition at around T = 160 MeV
where chiral symmetry is restored because the current-quark mass vanishes.
A very popular effective model applied for the investigation of the chiral phase
transition is the linear sigma model (e.g. [GML60, Lev67, Koc95]). This model
incorporates chiral symmetry as a spontaneously broken symmetry which is re-
stored in a phase transition at non-zero temperature and density. In its most
simple form it includes a scalar σ and a pseudo scalar π meson which are chi-
ral partners, which means that their masses become degenerate above the chiral
phase transition [Pet99, LRSB00, RRR03]. The pion is a Goldstone boson which
is massless in the phase of broken symmetry but adopts a non-zero mass in the
restored symmetry phase. Normally, these models also include a small symmetry
breaking term which leads to a small mass of the pion even in the phase of re-
stored symmetry. It accounts for the realistic quark masses which are small but
non-vanishing. Numerous extensions of the linear sigma model are used as well.
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Worth mentioning among many others are the so-called ”chiral σ-ω models” which
include other mesons, in particular the vector ω meson, and baryons [KM, NR76b,
NR76a, MS82, Bog83b, Bog83a, JRK83, SC85, KMPB86, KMP87, BK89]. In the
context of this work these models are particularly interesting because they pose
a promising prospect for further investigations within the techniques developed
here. It has been discussed in [FS93] that although some of these models are
able to reproduce the empirical nuclear matter saturation point they all fail to
describe properties of finite nuclei such as spin-orbit splittings, shell structure and
charge densities. This could, among others, be achieved in [PZS+99, BPZ+02].
As an extension [ZPB+00, ZPS+01] include the SU(3) baryon octet, the baryon
resonance decuplet and different kinds of mesons. The Walecka model used in
this work stated a basis for these model.
Effective models do not necessarily have to be based on chiral symmetry.
Hadronic models are known which describe nuclear interactions in terms of meson
exchange modeling a phenomenological potential. In fact this idea is much older
than the exact theory, QCD, itself. It was originated by Yukawa who was able to
explain the short range of the strong interaction by introducing massive exchange
particles [Yuk35] not considering any substructure. More advanced versions of
such models are widely used today for the description of hadronic matter in the
low-density and momentum regime (e.g. [Wal95]).
A very simple model of this kind in which baryons interact by the exchange of neu-
tral scalar mesons was used by Schiff [Sch51]. It was improved by Johnson, Teller
and Duerr [JT55, Due56] who introduced a scalar as well as a vector meson. It was
possible to describe nuclear saturation and to reproduce the spin-orbit coupling
in finite nuclei with the improved model. These attempts eventually led to the
model of Walecka [Wal74] which was very successful in describing nuclear matter,
finite nuclei and neutron stars and is still used and extended. A more detailed
description will be given below. It should be noted that the coupling constants of
the Walecka model are large so a perturbative expansion is not applicable. Most
calculations for this model as well as its extensions are therefore done in the
so-called mean-field approximation where fermions are treated as single-particle
operators and bosons as classical fields. These calculations become increasingly
valid for higher densities and were very successful in describing nuclear matter,
neutron stars and finite nuclei. A detailed description and review can be found
in [SW86, RRM+86, Rei89, GRT90, Ser92, SNR93, Wal95]. More recent progress
in this direction is described in [FS00, SW97].
Other approaches use scattering data for the description of interactions. Here the
nonrelativistic Schrödinger equation is used with a two-body potential which can
be calculated from nucleon-nucleon interactions or is just obtained phenomenolog-
ically. However, perturbation theory is not convergent in this case, so alternative
ways of modelling the interaction have to be applied. In particular replacing the
bare nucleon-nucleon interaction with the Brückner G-Matrix has turned out to
be successful [BLM54, Gol57]. Certain classes of linked diagrams are resummed
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up to infinite order, here. However, it is not possible to describe the saturation
energy and density for nuclear matter correctly within this ansatz. The reason
is that the nucleon interaction is described in free space not considering effects
from non-zero density. It is possible to reproduce these quantities within an
improved ansatz with a density-dependent interaction, the Density-Dependent
Hartree-Fock (DDHF) theory [Sky59]. This can furthermore describe the ground
state properties of spherical nuclei and gives the correct ordering of single-particle
levels.
The Brückner G-matrix theory has also been extended relativistically. The
Relativistic Brückner-Hartree-Fock theory has been proposed by Shakin et al
[ACPS83]. These authors used the Dirac equation for the description of the be-
havior of a single particle in matter with a scalar and a vector potential. The
model successfully describes nuclear matter saturation properties as well as finite
nuclei (for a review, see [BM96]). However, this approach does not account for
the change of the particle properties in medium.

1.7.1 The Walecka model

The Walecka model was introduced by Walecka et al. in 1974 [Wal74, SW86]
who called it Quantum Hadron Dynamics (QHD I). Originally it had been de-
veloped to describe finite nuclei and nuclear matter and incorporated baryons as
well as scalar and vector mesons. The stability of the nucleus was achieved by
an equilibrium between the attractive force provided by the scalar σ field and
the repulsive force of the vector ω field. There were two free parameters, namely
the coupling constants of the two mesons to the baryons. In the original version,
self-interactions of the mesons were not included.
In this work the Walecka model is used in a modified version where the scalar
mesons couple to themselves in a quartic term to correct the large incompress-
ibility of the original model [BB77]. Therefore, a new parameter λ is introduced.
The Lagrangian of the model is

L = ψ (iγµ∂
µ −mψ − gσσ − gωγ

µωµ)ψ +
1

2
∂µσ∂µσ − 1

2
m2
σσ

2

−λσ4 +
1

2
m2
ωωµω

µ − 1

4
(∂µων − ∂νωµ)(∂

µων − ∂νωµ) . (1.139)

Note that gσ < 0, gω > 0 and λ > 0. In this work I use the values gσ = −7.197,
gω = 7.557 and λ = 35.56. The coupling constants gσ, gω and λ of this model are
large so a perturbative expansion is not applicable.
Usually the mean-field approximation is applied instead. For the use of this
approximation within the Walecka model see [Wal74, SW86, SW97]. Other ex-
amples are [HS81], where pseudo scalar, pseudo vector mesons, and the photon
are considered in addition to σ and ω mesons, to investigate finite spherical nuclei.
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Also self-consistent calculations have been done within the Walecka model. For
example Mishra et al. calculated vacuum polarization effects [MPS+97] and
hadron properties [MPG01] similarly to the first part of this work.

1.8 The intention of this work

In the early universe the temperature was high and the net baryon density was
close to zero. In order to calculate properties of hadrons under these conditions
the correct theory to apply after all would be quantum chromodynamics. How-
ever, if one considers a phase in which hadronic matter has already been formed,
the running coupling constant of QCD is large so perturbation theory is not ap-
plicable (compare section 1.6). On the other hand, the particles can be regarded
as being well separated by large distances so the quark structure is not resolved
and a hadronic picture is sufficient as discussed in section 1.7.
In this work the hadronic framework applied is the Walecka model also known as
quantum hadrodynamics (QHD I) as presented in section 1.7.1.
Within this framework the behavior of hadrons is formulated in terms of a quan-
tum field theory in path integral quantization which has been introduced in sec-
tion 1.2 at zero temperature and has been extended to non-zero temperatures
within the imaginary time formalism in section 1.4.
Nuclear matter calculations at non-zero temperature are very common. How-
ever, they are normally carried out within the mean-field approximation [FS90,
SW86, CW74, Wal95] or at one-loop level in the loop expansion [FS91, HS81]. A
perturbative expansion is in general not convergent at non-zero temperature or
large coupling constants, as discussed in section 1.4. Furthermore, Furnstahl et
al. showed that also the loop expansion does not converge at two-loop order for
the Walecka model [FPS89]. Also lattice calculations are not applicable because
the Walecka model is not an asymptotically free theory.
In this work the method of choice is the Cornwall-Jackiw-Tomboulis (CJT) for-
malism as introduced in section 1.3.3. Here, a set of self-consistent Schwinger-
Dyson equations is derived which is solved by the fully dressed propagators. It
takes into account diagrams of certain types with up to an infinite number of
loops. Some contributions have to be neglected nevertheless, but since certain
classes of diagrams are completely included, every level of approximation is con-
sistent and meaningful as discussed in section 1.3.3. The question of convergence
is replaced by the demand that the Schwinger-Dyson equations are solvable.
Attempts have already been made to apply resummation techniques to nuclear
matter calculations. For example Korpa et al. studied nucleon spectral functions
in nuclear matter at zero temperature [KM93]. They were able to calculate nu-
cleon spectral functions but only assumed the nucleon and the pion propagators
to be dressed self-consistently. All other mesons were included only at mean-field
level. Phat and Anh actually applied the CJT formalism to nuclear matter within
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the Walecka model, albeit at zero temperature [PA97a, PA97b]. But again all
mesons only enter with their free propagators which the authors conclude is even-
tually not sufficient. A non-zero width is not regarded. A similar investigation
was done by Nakano et al. in the so called nuclear Schwinger-Dyson formalism
[NHKK94, NMM+94] at zero temperature and non-zero density, where dressed
meson propagators are taken into account. However, the authors use a decom-
position of the fermion propagator into a free part and a density-dependent part
which simplifies the calculations significantly but also poses the restriction that
the fermions are quasi-particles. If one wants to consider non-zero width effects,
this simplification is not useful.
Another work in this direction was done by Shu and Li who performed nuclear
matter calculations within the CJT formalism at non-zero temperature [SL05].
They also considered the meson propagators to be the free ones and non-zero
width effects were not regarded.
This work attempts to go beyond these approaches by performing calculations in
which the nucleon propagator as well as all meson propagators are fully dressed.
Therefore, self-consistent Schwinger-Dyson equations are set up for the nucleon
and for all mesons. Two levels of approximation are employed. Both take into
account two-particle irreducible diagrams in the effective potential (compare sec-
tion 1.3.3). The first one is the so-called Hartree approximation where the only
regarded two-particle irreducible diagram is the double-bubble diagram for the
σ meson. Here all hadrons behave as quasi-particles, that is they have a well
defined mass and zero decay-width. A similar work was done by Mishra et al.
[MPG01]. In a second step I go beyond this approximation and include sunset
diagrams as well. Here the problem is more complicated because now all hadrons
acquire a non-zero decay width. Thus, a spectral function has to be introduced
that accounts for decays at different energies. Furthermore, decompositions have
to be found that project the Lorentz structure of the vector mesons and the Dirac
structure of the fermions to achieve scalar quantities that can be solved for nu-
merically. The result is a set of six coupled integral equations whose solutions
are the spectral functions of the involved mesons and baryons. The solution is
carried out on a discretized energy-momentum lattice. To avoid problems with
the renormalization of the appearing integrals only the imaginary parts of the
self-energies are taken into account.
Some work for mesonic models has been done in the direction of this thesis. Rup-
pert et al. investigated the broadening of the ρ meson at non-zero temperature
[RR05]. They used a π − ρ model inspired by vector meson dominance and cal-
culated the meson spectral functions within the CJT formalism self-consistently,
similar to this work. An analogous analysis was done in [vHK00] and [RK04],
the latter also including baryons but neglecting anti-baryons and using a non-
relativistic approximation for the meson-baryon coupling.
In addition, self-consistent 2PI resummation schemes have been widely applied
for the investigation of the chiral phase transition within chiral effective models.
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Some of these computations were done on Hartree level [Pet99, LRSB00, RRR03]
while recently Röder et al. went beyond the Hartree approximation by including
sunset diagrams [RRR05]. These authors could therefore also calculate spectral
functions and investigate the effects of non-zero widths within O(N) models.



–II–

The Hartree approximation

As a first step the influence of the most simple two-particle irreducible diagram,
the double-bubble diagram (fig. 2.1, left), is discussed in this chapter. In the
following this approximation is referred to as Hartree approximation.
The Hartree approximation is particularly simple because the Schwinger-Dyson
equations (1.102) can be solved by a simple quasi-particle ansatz where the par-
ticles have well defined masses and no decay widths.
According to the procedure described in section 1.3.3, the first task is to ex-
tract the interaction part of the Walecka Lagrangian (1.139). Following the rules
presented there, one obtains

Lint = ΨgσσΨ + Ψgωγ
µωµΨ + λ(σ4 + 4σ̂σ3) , (2.1)

where the fields have been split into a fluctuation and a vacuum expectation
value. The vacuum expectation value is denoted by a hat on the letter, that
is σ → σ + σ̂ and ωµ → ω̂0. For the ω meson the spatial components cancel
in homogeneous, isotropic matter in the mean-field approximation so that only
the time-component survives. Quartic terms in the fluctuations correspond to a
four-point vertex as shown in the first diagram of fig. 2.1 while cubic terms lead
to three-point vertices as depicted in the other three diagrams.
The Hartree approximation only considers the quartic σ-term of the interaction,
so according to (1.106) in section 1.3.3 the effective potential is

V (σ̂, ω̂) = U(σ̂, ω̂) +
1

2

∫

K
lnG−1

σ +
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2

∫

K

(
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∫
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Ψ − Tr
∫

K

(
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)

+ 3λ
(∫

K
Gσ

)2

. (2.2)

The last term corresponds to the double-bubble diagram. Since taking the deriva-
tive of the potential with respect to a propagator corresponds to cutting a line in
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Figure 2.1: The two-particle irreducible diagrams which are considered in this thesis.

Dashed lines represent σ propagators, wavy lines ω propagators and full lines stand for

fermion propagators.

diagrammatic language, the corresponding diagram in the self-energy is the tad-
pole (fig. 2.2). The factor of three in this term counts the different possibilities
to assemble the double-bubble diagram from a four-point vertex by connecting
the four legs. To obtain this symmetry factor, number the lines meeting at the
four-point vertex with 1 to 4. The three alternatives to build a double-bubble
diagram are to join 1 and 2 as well as 3 and 4, to join 1 and 3, 2 and 4 and finally
one can connect 1 with 4 and 2 with 3.
The inverse tree-level propagators read according to (1.104)

D−1
σ = −(−m2

σ +K2 − 12λσ̂2) ,

D−1
ω = D−1

ω ,

D−1
Ψ = D−1

Ψ + gσσ̂ + gωγ
µω̂µ , (2.3)

where Dω and DΨ are the propagators of the free particles. The tree-level poten-
tial follows from the Lagrangian as

U(σ̂, ω̂) =
1

2
m2
σσ̂

2 + λσ̂4 − 1

2
m2
ωω̂

µω̂µ . (2.4)

With (1.108) one obtains the following Schwinger-Dyson equations:

G−1
σ (K) = D−1

σ (K) + 12λ
∫

P
Gσ(P ) ,

G−1
ω (K) = D−1

ω (K) ,

G−1
Ψ (K) = D−1

Ψ (K) , (2.5)

and the fields are found as the solution of the gap equations

0 = m2
σσ̂ + 4λσ̂3 + 12λσ̂

∫

P
Gσ(P ) − gσ

∫

P
TrGΨ(P ) ,

0 = −m2
ωω̂0 − gω

∫

K
TrGΨ(P )γ0 , (2.6)

where the mean-field approximation has been applied. Thus for the ω meson
only the time-component contributes. Equations (2.5) and (2.6) can be solved
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Πσ (k) =

Figure 2.2: The tadpole-diagram which forms the σ meson self-energy in Hartree-

approximation.

by an ansatz which assumes that the solutions have the general form of the free
propagators but the masses are functions of T and µ. This is possible because the
self-energy of the σ meson in (2.5) does not depend on the external momentum.
It therefore only contributes as a shift to the mass but does not provide a width in
K. One can then solve the resulting equations for the masses. The same ansatz
is used for the solution of the gap-equations (2.6). It is for the inverse σ meson
propagator

G−1
σ (K) = −K2 +M2

σ (2.7)

and for the fermion propagator

G−1
ψ (K) = −γµKµ +Mψ . (2.8)

Effective masses that are functions of temperature and chemical potential are de-
noted by capital letters The ω meson propagator is just the free propagator so its
mass is that of the free particle. Solving these equations requires the calculation
of the Matsubara sums. For the sake of clarity I evaluate the specific terms of
the Schwinger-Dyson equations (2.5) and the field-equations (2.6) separately.

The term
∫

P Gσ
From the ansatz (2.7) the boson propagator reads

Gσ(K) =
1

−K2 +M2
σ

, (2.9)

so the σ loop to calculate reads

∫

P
Gσ(P ) =

∫ d3p

(2π)3
T

∞∑

n=−∞

G(k0 = iωn + µ) . (2.10)

The actual calculation of the Matsubara sum follows a trick explained in [LB00]:
If G(k0) is a meromorphic function of k0 which is regular on the vertical line
Re k0 = µ and decreases faster than k−1

0 for |k0| → ∞ one can express the
Matsubara sum as an integral in the complex plane over a function whose residua
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µ0

C

Figure 2.3: The integration contour for the calculation of Matsubara sums. The dots

mark the poles of the cotangent.

are just the Matsubara frequencies. The integration contour is chosen to pick up
the poles of this function (see fig. 2.3). Since contributions parallel to the real
axis cancel each other one can choose the contour running along vertical lines
from µ+η− i∞ to µ+η+i∞ (C1) and µ−η+i∞ µ−η− i∞ (C2) where η → 0+.
If one is able to calculate this integral it yields the value of the Matsubara sum.
For bosons the wanted function is the hyperbolic cotangent so

T
∞∑

n=−∞

G(k0 = iωn + µ) =
1

2

∫

C1∪C2

dk0

i2π
G(k0) coth

(

β(k0 − µ)

2

)

= −1

2

∑

Res G(k0) coth

(

β(k0 − µ)

2

)

. (2.11)

For the second step the contours have to be closed as semicircles to the left
and the right, respectively. The residua of the propagator are 1/(2E(Mσ)) and
−1/(2E(Mσ)). Since

coth(x) = 1 +
2

e2x − 1
, (2.12)

For the meson field I restrict myself to the case µ = 0. Therefore, the Matsubara
sum reads

T
∞∑

n=−∞

1

−K2 +M2
σ

=
1

E(Mσ)

(

1

exp(E(Mσ)/T ) − 1
+

1

2

)

. (2.13)
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The scalar density Tr
∫

P Gψ
Before the Matsubara sum of this term can be calculated with the simple Ansätze
(2.7) and (2.8) the inverse fermion propagator (2.8) has to be inverted. For the
scalar σ meson the inversion is trivial. For the fermion the inverse propagator is
known from (2.3) to be of the form

D−1 = γµℓ
µ + n, (2.14)

where
ℓ0 = −p0 + gωω̂0 (2.15)

is proportional to γ0,
ℓi = −pi (2.16)

is proportional to γi and
n = mψ + gσσ = Mψ (2.17)

is proportional to the unit matrix. The inverse of this structure is just

(γµℓ
µ + n)−1 = [(γµℓ

µ − n)(γµℓ
µ + n)]−1(γµℓ

µ − n)

=
1

(ℓ2 − n2)
(γµℓ

µ − n) (2.18)

which is therefore the fermion propagator. The trace over this propagator is

Tr(γµℓ
µ + n)−1 =

1

ℓ2 − n2
Tr(ℓ− n11) = −2

4n

ℓ2 − n2

= − 8Mψ

P 2 −M2
ψ

(2.19)

where the factor of two that counts the isospin has been written down explicitly
(The unit-matrix is an 8 × 8 matrix.). An analogous trick as for

∫

P Gσ is now
applied for the calculation of the Matsubara sums [LB00]. For fermions the
function which provides the correct poles in the complex plane is the hyperbolic
tangent. The full expression is

∫

P
Gψ(P ) =

∫
d3p

(2π)3
T

∞∑

n=−∞

Gψ(iT (2n+ 1)π,p) . (2.20)

Omitting the momentum integration one can write

T
∞∑

n=−∞

Gψ(p0 = iωn + µ∗) =
∫

C1∪C2

dp0

i4π
Gψ(p0) tanh

(

β(p0 − µ∗)

2

)

= −1

2

∞∑

n=−∞

Res Gψ(p0) tanh

(

β(p0 − µ∗)

2

)

= −1

2

∞∑

n=−∞

Res Gψ(p0)
eβ(p0−µ∗) − 1

eβ(p0−µ∗) + 1
(2.21)

= −1

2

∞∑

n=−∞

Res Gψ(p0)
(

1

1 + e−β(p0−µ∗)
− 1

1 + eβ(p0−µ∗)

)



56 The Hartree approximation

where the effective chemical potential µ∗ = µ − gωω̂0 has been introduced. As
before ωn are the Matsubara frequencies. The propagator is known from (2.19)
to be

Gψ(p0) = − 8Mψ

P 2 −M2
ψ

. (2.22)

Its residua are

+4
Mψ

√

p2 +M2
ψ

and − 4
Mψ

√

p2 +M2
ψ

, (2.23)

so finally the Matsubara sum is

T
∞∑

n=−∞

Gψ(p0 = iωn+µ
∗) = −2

Mψ
√

p2 +M2
ψ

(n(p0) + n(p0) − n(−p0) − n(−p0)) .

(2.24)
Here n and n denote the distribution functions of fermions and anti-fermions
respectively:

n(p0) =
1

1 + eβ(p0−µ∗)
and n(p0) =

1

1 + eβ(p0+µ∗)
. (2.25)

The fermion density Tr
∫

P γ0Gψ
As in the case of the scalar density above the inverse fermion propagator (2.8) has
to be inverted for the calculation of this term. The procedure has been explained
above but because of the additional γ0 the trace is different. With the definitions
following (2.14) one obtains

Tr(γµℓ
µ + n)−1γ0 =

1

ℓ2 − n2
Tr(γµℓ

µ + n11)γ0

=
1

ℓ2 − n2
Tr(−p0 + gωω̂0)

=
8

ℓ2 − n2
(−p0 + gωω̂0) . (2.26)

The argument of the trace could be reduced in the second line because an odd
number of γ matrices is always traceless and Tr(γiγ0) = 0. Now the same trick
is applied as above. The residua of the propagator

Gψ(p0) = − 8p0

P 2 −M2
ψ

(2.27)

are both −4 so the Matsubara sum finally becomes

Tr
∫

P
γ0 Gψ(p0,p) = −4

(
1

1 + eβ(p0−µ∗)
− 1

1 + eβ(p′
0
+µ∗)

)

= −4 (n(p0) − n(p0)) . (2.28)
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Putting everything together and inserting the Ansätze into (2.5) and (2.6) yields
the equations for the masses and the fields:

M2
σ = m2

σ + 12λ



σ̂2 +
∫ d3p

(2π)3

1

E(Mσ)







1

exp
(
E(Mσ)
T

)

− 1
+

1

2









 ,(2.29)

M2
ω = m2

ω , (2.30)

Mψ = mψ + gσσ̂ , (2.31)

0 = m2
σσ̂ + 4λσ̂3 + 12λσ̂

∫ d3p

(2π)3

1

E(Mσ)







1

exp
(
E(Mσ)
T

)

− 1
+

1

2







+4gσ

∫
d3p

(2π)3

Mψ

E(Mψ)
(n + n− 1) , (2.32)

0 = −m2
ωω̂0 + 4gω

∫
d3p

(2π)3
(n− n) . (2.33)

Under the assumption of spherical symmetry the momentum integrals can be
reduced to one-dimensional integrals. The above set of equations (2.29)–(2.33) is
solved numerically for the masses and the expectation value of the σ field. The
integrands in (2.29) and (2.32) contain additive constants 1

2
and 1. The corre-

sponding integrals are divergent and thus omitted in the calculations. Actually
the divergences would require thorough renormalization as done in [MPG01] but
the effect is expected to be small. It should be kept in mind that this approach is
still approximate and it is not the aim here to bring this rough ansatz to highest
precision.
The parameters of the model were fitted to the properties of infinite nuclear
matter as described in appendix B. I obtained the values gσ = −7.197, gω = 7.557
and λ = 35.56.

2.1 Results in Hartree approximation

Equations (2.29)–(2.33) are solved numerically for the masses and the fields. In
this section the influence of the tadpole diagram on these quantities as well as
the thermodynamical properties of nuclear matter are discussed. The results are
compared to those of the theory on tree-level.
The only contribution of the tadpole-term is the integral term in the equation
for the σ-meson mass (2.29). On tree-level this term is omitted while in Hartree
approximation it is taken into account for the following investigation.
Accordingly, the most obvious difference between tree-level and Hartree-
approximation is observed in the mass of the σ meson. It is up to 15-20 %
higher in Hartree approximation at zero chemical potential than on tree-level as
shown in fig. 2.4. At small temperatures the tadpole diagram does not affect the
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results. With rising T its influence becomes stronger and reduces again at very
high temperatures. This is because also the field equation of the σ meson (2.32)
includes a temperature-dependent term similar to the one emerging from the tad-
pole diagram. However, it does not originate from the two-particle irreducible
part of the potential and is therefore also present on tree-level. The influence of
this term on the σ field increases with higher temperature. Because the σ field
enters the mass equation, the σ mass is influenced as well and the relative effect
of the tadpole diagram is reduced.
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Figure 2.4: The mass of the σ field in Hartree approximation compared to tree-level

approximation. At low temperatures the curves lie on top of each other so only the

grey lines are visible.

The results strongly depend on the chemical potential. Only at zero chemical
potential the influence of the tadpole diagram is significant. At higher µ the
temperature dependence is less pronounced and the correction term has less
impact.
It should be noted that in models where the σ field is the chiral partner of a
pseudoscalar meson, the σ-mass drops with increasing temperature and becomes
degenerate with the mass of the pseudoscalar meson if explicit symmetry break-
ing is absent (e.g. [Pet99, LRSB00, RRR05]). This behavior is a consequence
of the chiral symmetry restoration which is observed in these models. In the
Walecka model, however, the σ meson plays a different role and chiral symmetry
is absent. It turns out that the mass does not drop but rises with temperature.
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The rise is too smooth to be associated with a phase transition.
However, at low temperatures the σ mass rises rapidly with increasing chemical
potential.

Figure 2.5 shows the mass of the fermion as a function of temperature and
chemical potential. Its behavior is directly connected to that of the σ field (see
(2.31)) shown in fig. 2.6. With increasing temperature the mass of the fermion
decreases. This behavior is triggered by the scalar density which is essentially
the sum of the particle and the anti-particle number. A higher scalar density
increases the σ field which on its part lowers the fermion mass. A lower fermion
mass supports the creation of particle-anti-particle pairs which increases the
scalar density. Here the transition is a smooth crossover. If, however, more
baryon species are taken into account it becomes a first-order phase transition
as shown in [WTM+87].
In the direction of the chemical potential the fermion mass drops very quickly
in a narrow range of chemical potentials, as shown in the right-hand panels
of figures 2.5 and 2.6. As above, the influence of the tadpole term is most
pronounced at high temperatures and low chemical potentials. However, the
difference between the two approximations is minor which is plausible because
the tadpole term does not enter the σ-field strength directly but only via the σ
mass. For non-zero chemical potentials the two approximations again differ even
less.
It is a known behavior of the Walecka model that it shows a liquid-gas phase
transition at temperatures below approximately T ≃ 25 MeV (see for example
[MPG01, PSS+97]) which leads to a step in the value of the σ field at around
µ = 923 MeV. The temperatures in my calculation are too high to be in the
region of this transition but the step is suggested here, although smoothed. The
liquid-gas transition is not studied further in this context since the focus of this
thesis lies on the high-temperature region where the influence of the higher-order
diagrams is significant.

2.1.1 Thermodynamic properties

The thermodynamic properties of nuclear matter can be derived from the grand
canonical potential Ω. It is the effective potential (1.106) times the volume V,
evaluated at the physical values of the field and the propagators which are the
solutions of eqns. (2.29)–(2.33).

Ω[σ̂, ω̂0,Gσ,Gω,Gψ] = V [σ̂, ω̂0,Gσ,Gω,Gψ] · V
= V

[
1

2
m2
σσ̂

2 + λσ̂4 − 1

2
m2
ωω̂

2
0 +

1

2

∫

P
lnG−1

σ

+
1

2

∫

P

[

D−1
σ Gσ − 1

]

+
1

2

∫

P
lnG−1

ω − Tr
∫

P
lnG−1

ψ
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Figure 2.5: The mass of the fermion in Hartree approximation (black lines) and on tree-

level (grey lines). At high chemical potentials in the left diagram and low temperatures

in the right one the curves lie on top of each other so only the grey lines are visible.
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Figure 2.6: The σ field in Hartree approximation (black lines) and on tree-level (grey

lines). At high chemical potentials in the left diagram and low temperatures in the

right one the curves lie on top of each other so only the grey lines are visible.
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+3λ
[∫

P
Gσ
]2
]

. (2.34)

Note that the terms containing
∫

P [D−1G − 1] vanish for the fermion and the
ω meson because their full propagator is the tree-level propagator. Beside the
terms whose Matsubara sums were calculated above, two more sums have to be
evaluated here. I show the calculation of each term separately.

The term
∫

P lnG−1
σ

The calculation of the Matsubara sum in
∫

P lnG−1
σ follows an idea from [DJ74].

Assume the sum to be a function of the energy E. Then one can write

v(E) =
∞∑

n=−∞

ln(−p2
0 + p2 +M2

σ) =
∞∑

n=−∞

ln[4π2n2T 2 + E2(Mσ)] , (2.35)

where as usual p0 = iωn = i2nπT . The trick is to consider the first derivative of
this function with respect to the energy

∂v(E)

∂E
=

∞∑

n=−∞

2E

4π2n2T 2 + E2
. (2.36)

It is known that
∞∑

n=1

y

y2 + n2
= − 1

2y
+

1

2
π cothπy , (2.37)

which is of the same form as (2.36) if one identifies y = E/(2πT ). The summation
index enters squared so the negative part of the sum (2.36) gives a factor of two
and the term n = 0 has to be added by hand. Using the relation

coth

(

βE

2

)

=
eβE − 1 + 2

eβE − 1
= 1 +

2

eβE − 1
, (2.38)

the derivative of v(E) is therefore

∂v(E)

∂E
= 2β

(
1

2
+

1

eβE − 1

)

. (2.39)

The original function v(E) with the sum evaluated is now obtained by integrating
over E. The final result is
∫

P
ln(−P 2 +M2

σ) =
∫

d3p

(2π)3

E(Mσ)

2
+
∫

d3p

(2π)3
T ln (1 − exp (−βE)) . (2.40)

The first term on the right-hand side is obviously divergent but it vanishes in all
physical quantities which are derivatives of the grand canonical potential. The
respective term for the vector mesons is calculated analogously but with a factor
of three in front [RG94].
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The term
∫

P (D−1
σ Gσ − 1)

The calculation of this Matsubara sum can be reduced to the case of a single
propagator with an effective mass which has been described above:

1

2

∫

P
(D−1

σ Gσ − 1) =
1

2

∫

P

[

(m2
σ − P 2 + 12λσ̂2)Gσ − 1

]

=
1

2

[∫

P
(m2

σ + 12λσ̂2)Gσ +
∫

P
(−P 2Gσ − 1)

]

=
1

2

[
∫

P
(m2

σ + 12λσ̂2)Gσ +
∫

P

(

− P 2

−P 2 +M2
σ

− 1

)]

=
1

2

∫

P
(−M2

σ +m2
σ + 12λσ̂2)Gσ

=
1

2
(−M2

σ +m2
σ + 12λσ̂2)

∫

P

1

−P 2 +M2
σ

. (2.41)

This Matsubara sum has already been calculated above. The final result is

1

2

∫

P
(D−1

σ Gσ − 1) =
1

2
(−M2

σ +m2
σ + 12λσ̂2)

×
∫

d3p

(2π)3

1

E(Mσ)

(

1

exp(E(Mσ)/T ) − 1
+

1

2

)

.

(2.42)

The term Tr
∫

P lnG−1
ψ (P )

For the calculation of this term I apply the relation

Tr lnD = ln detD . (2.43)

With this one obtains

Tr
∫

P
lnG−1

ψ = Tr
∫

P
ln(−Pµγµ +Mψ)

=
∫

P
ln det(−Pµγµ +Mψ)

= 4
∫

P
ln(−P 2 +Mψ

2)

= 4T
∑

n

∫
d3p

(2π)3
ln(−(iωF

n + µ)2 + E(Mψ)2)

= 2T
∑

n

∫
d3p

(2π)3

[

ln(ωF
n

2
+ (E(Mψ) − µ)2)

+ ln(ωF
n

2
+ (E(Mψ) + µ)2)

]

, (2.44)

where ωFn = (2n+1)πT are the fermionic Matsubara frequencies that enter for the

energy component of the momentum. The energy is E(Mψ) =
√

p2 +Mψ
2. In
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the last step it has been used that the sum runs over positive as well as negative
frequencies. I now apply the general relation

ln(a2 + b2) =
∫ b2

1

1

a2 + Θ2
dΘ2 + ln(1 + a2) (2.45)

on the two terms in the last line of (2.44). With this the Matsubara sum can be
carried out using the general summation formula

∞∑

n=−∞

1

(n− x)(n− y)
=
π(cot πx− cotπy)

y − x
. (2.46)

The summation is performed for the two terms separately so one obtains

∞∑

n=−∞

1

(2n+ 1)2T 2π2 + Θ2
=

1

Θ

(
1

2
− 1

eΘ + 1

)

. (2.47)

Performing the Θ integration and dropping the divergent contributions one ob-
tains

Tr
∫

Q
lnG−1

ψ =

4
∫ d3p

(2π)3
T

[

ln

(

1 + exp

(

−E(Mψ) − µ

T

))

+ ln

(

1 + exp

(

−E(Mψ) + µ

T

))]

.

(2.48)

The grand canonical potential

Putting all terms together we obtain the final result for the grand canonical
potential:

Ω[σ̂, ω̂0,Mσ,Mω,Mψ] = V
{

1

2
m2
σσ̂

2 + λσ̂4 − 1

2
m2
ωω̂

2
0

+
∫

d3p

(2π)3
T ln

(

1 − exp

(

−E(Mσ)

T

))

+
1

2

(

−M2
σ +m2

σ + 12λσ̂2
) ∫ d3p

(2π)3

1

E(Mσ)




1

exp
(
E(Mσ)
T

)

− 1





+3
∫

d3p

(2π)3
T ln

(

1 − exp

(

−E(Mω)

T

))

−4
∫

d3p

(2π)3
T

[

ln

(

1 + exp

(

−E(Mψ) − µ

T

))

+ ln

(

1 + exp

(

−E(Mψ) + µ

T

))]

+ 3λ





∫ d3p

(2π)3

1

E(Mσ)




1

exp
(
E(Mσ)
T

)

− 1









2






, (2.49)
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where E(M) =
√

p2 +M2.
Figure 2.7 shows on the right-hand side the equation of state in terms of pressure
as a function of fermion density in Hartree approximation and on tree-level. The
pressure is derived from the grand canonical potential as

p = −Ω

V . (2.50)

The influence of the tadpole term is only very small. All lines lie on top of each
other for all temperatures and densities. The maximal deviation of around 2-3 %
is observed very low densities and a temperature of 200 MeV which is consistent
with the above observations. The left plot of fig. 2.8 highlights this. It should
be emphasized that in both calculations the quartic self-interaction of the σ field
is present. If one switches off this term by setting the coupling constant λ to
zero one obtains an equation of state that is stiffer in the temperature direction.
That is, the pressure rises more quickly with temperature at a given density as
compared to the case where the self-interaction is present.
Also the entropy density, shown on the right hand side of fig. 2.7, can be derived

from the grand canonical potential as

S = −∂Ω
∂T

. (2.51)

As the pressure it only varies very slightly with the inclusion of the tadpole di-
agram. The maximal difference of around 2 % is again observed at 200 MeV
as shown in fig. 2.8 on the right-hand side. However, if one drops the quar-
tic self-interaction completely, again the temperature dependence becomes more
pronounced. The results agree very well with the findings in [MPG01]. However,
these authors adapt the parameters of their model to a higher incompressibility
which leads to a slightly stiffer equation of state. In the tree-level case they drop
the quartic self-coupling of the σ field completely.
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Figure 2.7: The pressure (left) and the entropy density (right) in Hartree and tree-level

approximation. The differences between the approximations are almost invisible.
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Figure 2.8: The pressure (left) and the entropy density (right) in Hartree and tree-

level approximation at T = 200 MeV. The figure highlights the differences between the

approximations.
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–III–

Beyond the Hartree

approximation

The Hartree approximation presented in the previous chapter leads to a shift
of the particle’s masses but not to a non-zero decay width. This is because
the integrals in the self-energies do not depend on the external momentum and
therefore do not adopt an imaginary part. The situation changes if one takes into
account all diagrams of fig. 2.1. Now the full propagators, which are solutions
of the Schwinger-Dyson equations, acquire non-zero decay widths, so the simple
Ansätze (2.7) and (2.8) are not longer feasible. Instead of effective masses which
are independent of the external momentum now spectral functions have to be
introduced. The calculations become much more complicated here, both analyt-
ically and numerically but on the other hand this approach allows to study the
energy dependence of the decay and therefore discloses a broad field of phenom-
ena.
To keep the effort limited I restrict myself to the imaginary parts of the sunset
diagrams. Considering the real parts as well would lead to serious difficulties
because in contrast to the imaginary parts the real parts contain divergences
that have to be renormalized. Nevertheless, I consider an effective mass for the
fermion and the σ meson on Hartree level.

3.1 General prerequisites

3.1.1 The spectral function

On tree-level or in Hartree approximation one can assign a particle a fixed mass.
It is that of the free particle modified by a real-valued self-energy. The propagator
only contributes at energies where it has poles. For example the boson propagator

G = − 1

k2
0 − k2 −M2 + Π

(3.1)

67
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has poles at k0 = ±
√

k2 +M2 − Π. Plotting the ’strength’ of the propagator
in the energy-momentum plane would therefore show a delta function at these
energies while it is zero everywhere else. It will be discussed later what exactly
the strength is.
The general situation is more complicated because the self-energy can assume an
imaginary part as well. This leads to a non-zero width for the strength of the
propagator in the energy-momentum plane. In order to cover this effect more
precisely, in the following the spectral function or spectral density is introduced.
Consider the advanced and retarded two-point functions

D>(t, t′) = 〈φ̂(t)φ̂(t′)〉β , (3.2)

and
D<(t′, t) = 〈φ̂(t′)φ̂(t)〉β , (3.3)

where t > t′. Here φ̂ is a field operator and the subscript β denotes that the
thermal average is taken as

〈Â〉β =
1

Z(β)
Tr(Âe−βÂ) . (3.4)

Z(β) is defined as in (1.117).
Because of the homogeneity of time the two-point functions only depend on dif-
ferences of times t− t′. I therefore write them in short terms as D>(t) = D>(t, 0)
and D<(t) = D<(t, 0).
The Fourier transform of the two-point functions are

D>(k0) =
∫ ∞

−∞
dteik0tD>(t) (3.5)

and
D<(k0) =

∫ ∞

−∞
dteik0tD<(t) . (3.6)

One can show that physically the upper function corresponds to the mean density
of unoccupied states in momentum space while the lower function is the mean
density of occupied states [Frö01]. Now the spectral function can be defined as

ρ(k0) = D>(k0) −D<(k0) , (3.7)

which gives the total number of states at a certain momentum.
The meaning of the spectral function can be clarified further. Consider the oper-
ator exp(−βĤ). According to section 1.4 this is not only the density matrix but,
following the idea of the imaginary time formalism, it is also the time-evolution
operator in imaginary time direction. One can therefore use it to shift the time
argument of a field:

e−βĤ φ̂(t)eβĤ = φ̂(t+ iβ) . (3.8)
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With the cyclicity of the trace the Kubo-Martin-Schwinger relation (KMS) fol-
lows:

D>(t) = D<(t+ iβ) . (3.9)

Inserting this into the Fourier transform of the retarded propagator (3.6) yields
the relation

D<(k0) =
∫ ∞

−∞
dte−ik0tD>(t− iβ) (3.10)

and inserting the inverse Fourier transform of (3.5) on the right-hand side gives

D<(k0) = D>(−k0) = eβk0D>(k0) . (3.11)

Hereby one can now express the retarded and advanced propagators in terms of
the spectral density:

D>(k0) = (1 + f(k0))ρ(k0) and D<(k0) = f(k0)ρ(k0) , (3.12)

where

f(k0) =
1

eβk0 − 1
(3.13)

is the Bose distribution function.
Above it has been stated in a quite hand-waving way that the propagator has
’strength’ at different momenta and energies whenever the self-energy is complex.
Energy and momentum are not linked by a δ function as for the free field. This
property can be put in more precise words with help of the spectral function.
Let us consider the imaginary time propagator

∆(τ) = 〈T [φ̂(−iτ)φ̂(0)]〉β , (3.14)

where T is the time-ordering operator for imaginary times:

T [φ̂(−iτ1)φ̂(−iτ2)] =

{

φ̂(−iτ1)φ̂(−iτ2) if τ1 > τ2
φ̂(−iτ2)φ̂(−iτ1) if τ2 > τ1 .

(3.15)

One can then define its Fourier transform through

∆(iωn) =
∫ β

0
dτeiωnτ∆(τ) (3.16)

and inversely

∆(τ) = T
∑

n

e−iωnτ∆(iωn) . (3.17)

Here, it has been used that ∆(τ) is periodic as shown in section 1.4. The peri-
odicity makes it sufficient to integrate over a finite temperature interval in (3.16)
and to replace the integral in the inverse transformation (3.17) by a sum over
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discrete energies. The discrete energies ωn are called Matsubara frequencies. For
bosons they take the values

ωn =
2πn

β
. (3.18)

From the definition of ∆(τ) it follows that ∆(τ) = D>(−iτ). With the Fourier
transform (3.5) one can write this as

∆(τ) =
∫

dk0

2π
e−k0τD>(k0) , (3.19)

which can be inserted into (3.16). After expressing D>(k0) in terms of the spectral
function (3.12) and performing the τ integration one obtains

∆(iωn) = −
∫ ∞

−∞

dk0

2π

ρ(k0)

iωn − k0

. (3.20)

This expression clarifies what was meant by ’strength’ above: The spectral func-
tion weights the contributions to the full imaginary-time propagator at each value
of the energy k0. This can be highlighted even further when looking at free parti-
cles. As mentioned above a fixed relation between energy and momentum exists
here, so one would expect the spectral function to be a delta function in energy
direction. In fact the respective function is

ρfree(k0) = 2πsig(k0)δ(k
2
0 − ω2) . (3.21)

Inserting this into (3.20) gives the propagator of the free particle

∆free(iωn) =
1

ω2
n + ω2

. (3.22)

Finally, one can calculate the spectral function from the propagator. Therefore
one defines the retarded propagator as

DR(t) = i〈Θ(t)[φ̂(t), φ̂(0)]〉β . (3.23)

The Θ-function can be expressed as

Θ(y) = i
∫ ∞

−∞

dk′0
2π

e−ik′
0
t

k′0 + iη
, (3.24)

so the retarded propagator becomes

DR(k0) = −
∫ ∞

−∞

dk′0
2π

ρ(k′0)

k0 − k′0 + iη
. (3.25)

where the commutator in (3.23) has been written in terms of the spectral function.
This can be extracted from this expression with help of the Dirac identity

Im

(

1

k0 − k′0 + iη

)

= −iπδ(k0 − k′0). (3.26)

One obtains
ρ(k0) = 2 ImDR(k0) . (3.27)
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The fermionic spectral function

For fermions some differences in the definition of the spectral function occur,
because these obey anti-commutation relations instead of commutation relations
like the bosons. So the advanced and retarded two-point functions are now defined
as

S>ab(t, t
′) = 〈ψa(t)ψb(t′)〉β , (3.28)

as well as
S<ab(t, t

′) = −〈ψb(t′)ψa(t)〉β , (3.29)

respectively, where the indices a and b account for the spinor structure. As above
one can derive the Kubo-Martin-Schwinger relation by applying the evolution
operator in imaginary time exp(−βĤ) :

S>ab(t, t
′) = −S<ab(t+ iβ, t′) . (3.30)

Its Fourier transform is

S>ab(k0) =
∫

dteik0tS>(t, 0) , (3.31)

where t′ = 0 assumes homogeneity of time. For S<ab a similar relation holds. The
spectral function can now again be defined as

ρab(k0) = S>ab(k0) − S<ab(k0) . (3.32)

Observing that analogous to (3.11)

S<ab(k0) = −e−βk0S>ab(k0) , (3.33)

one can express the two-point functions in terms of the spectral function as

S>ab(k0) = (1 − f̃(k0))ρab(k0) and S<ab(k0) = −f̃(k0)ρab(k0) , (3.34)

with the Fermi-distribution function

f̃(k0) =
1

eβk0 + 1
. (3.35)

As for bosons one can derive a spectral representation of the imaginary-time
propagator:

Sab(iωn) = −
∫ ∞

−∞

dk0

2π

ρab(k0)

iωn − k0
(3.36)

with the Matsubara frequencies

ωn =
(2n+ 1)π

β
. (3.37)
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The interpretation as strength of the propagator at different energies k0 holds as
for bosons. Again the spectral function of a free fermion is a delta function

ρfree = 2πsig(k0)(Kµγ
µ +m)δ(K2 −m2) , (3.38)

which yields the free propagator when entered into (3.36):

Sab(iωn) =
m−Kµγ

µ

ω2
n + E2

k

. (3.39)

3.1.2 Projection operators for the vector mesons

The vector meson self-energy is a second-order tensor. To make it accessible for
numerical evaluation one has to find a set of projectors which express it as a
combination of projection tensors with scalar prefactors. The presentation here
follows [Ris04].
We start with defining a projector

Eµν ≡ P µP ν

P 2
, (3.40)

which projects on the subspace parallel to the four-momentum P µ. Furthermore,
one defines a vector which is orthogonal to P µ

Nµ ≡
(

p0p
2

P 2
,
p2

0p

P 2

)

. (3.41)

The respective projector, which projects on a subspace parallel to Nµ, is

Bµν ≡ NµNν

N2
. (3.42)

The other two projectors that are necessary can then be defined as

Cµν ≡ NµP ν + P µNν and Aµν ≡ gµν −Bµν − Eµν . (3.43)

With these four projectors a tensor of second order can be decomposed as

Πµν = ΠaAµν + ΠbBµν + ΠcCµν + ΠeEµν . (3.44)

For calculations it is useful to regard the explicit structure of these projectors.
The projector Aµν only has spatial components while all time components vanish:

A00 = A0i = 0 and Aij = −(δij − p̂ip̂j) . (3.45)

Obviously it projects onto a subspace transverse to the spatial components of P .
I will therefore also use the definition

Πt = −Πa (3.46)
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for the transverse part of the self-energy. The projector Bµν projects on a sub-
space parallel to p:

B00 = −p2

P 2
, B0i = −p0p

i

P 2
and Bij = − p2

0

P 2
p̂ip̂j . (3.47)

In my later calculations I use a compact notation for Bµν which summarizes the
above terms

Bµν = gµν + δij − P µP ν

P 2
− p̂ip̂j . (3.48)

Here the roman indices i and j only run over the spatial components i, j = 1, 2, 3
and quantities indicated by them are zero if one or more of its roman indices are
zero. The index i corresponds to the four-index µ while the index j corresponds
to ν.
The projector Cµν reads in terms of momenta

C00 = 2
p2

0p
2

P 2
, C0i =

|p|p0(p
2
0 + p2)

P 2
p̂i , and Cij = 2

p2
0p

2

P 2
p̂ip̂j , (3.49)

and the Eµν projector is

E00 =
p2

0

P 2
, E0i =

p0|p|
P 2

p̂i , and Eij =
p2

P 2
p̂ip̂j . (3.50)

However, not all of the above projections are physical. Eventually it will turn
out that only two projections have to be considered. To eliminate the unphysical
components Stückelberg’s trick is applied. The idea is to introduce an additional
term into the Proca-Lagrangian for massive vector particles which leads to the
Stückelberg Lagrangian

L = −1

4
FµνF

µν +
1

2
m2
ωωµω

µ − 1

2ξ
(∂µω

µ)2 . (3.51)

In the end ξ will be sent to infinity so the physical situation remains unchanged.
It emerges that certain projections are vanishing. With the modified Lagrangian
one can deduce the modified inverse free propagator in momentum space:

D−1
ω (K) = −(m2

ω −K2)gµν −
(

1 − 1

ξ

)

KµKν , (3.52)

so the inverse full propagator is

G−1µν
ω (K) = D−1

ω (K) + Πµν
ω (K) . (3.53)

I now want to invert the full propagator with help of the tensor decomposition
as presented in [LB00]. Therefore the different projections for the free inverse
propagator are determined, first. The Aµν projection is

(Da
ω)

−1(K) = −1

2
(δij − k̂ik̂j)(D−1

ω )ij(K)

= K2 −m2
ω . (3.54)
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For the Bµν projection one obtains

(Db
ω)

−1(K) =
1

N2

[

(K2 −m2
ω)N

2 −
(

1 − 1

ξ

)

(NµK
µ)2

]

= K2 −m2
ω , (3.55)

and the Cµν projection is

(Dc
ω)

−1(K) =

[

(K2 −m2
ω)NµK

µ − 2

(

1 − 1

ξ

)

NµK
µK2

]

.

= 0 . (3.56)

Finally, the Eµν projection is

(De
ω)

−1(K) = (K2 −m2
ω) −

(

1 − 1

ξ

)

K2

=
K2 − ξm2

ω

ξ
. (3.57)

As shown in [LB00] the inverse of a structure

Xµν = XaAµν +XbBµν +XcCµν +XeEµν (3.58)

is given as
X−1
µν = αAµν + βBµν + γCµν + ηEµν , (3.59)

with

α =
1

Xa
, β =

Xe

δ
, γ = −X

c

δ
, η =

β

δ
(3.60)

and
δ = XbXe −K2N2Xc2 . (3.61)

With this the full propagator becomes

Gωµν(K) =
1

K2 −m2
ω + Πa

ω

Aµν +
1

K2 −m2
ω + Πb

ω −K2N2 Πcω
2

K2−ξm2
ω+Πeω

Bµν

− Πc
ω

(K2 −m2
ω + Πb

ω)(K
2 − ξm2

ω + Πe
ω) −K2N2(Πc

ω)
2
Cµν

+
1

K2 − ξm2
ω + Πe

ω −K2N2 Πcω
2

K2−m2
ω+Πbω

Eµν . (3.62)

One can now eliminate the contributions from the Stückelberg term by sending
ξ −→ ∞. Obviously the Cµν term and the Eµν term vanish and one obtains

Gωµν(K) =
1

K2 −m2
ω + Πa

ω

Aµν +
1

K2 −m2
ω + Πb

ω

Bµν . (3.63)
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With this result I can restrict my later considerations to the Aµν and Bµν pro-
jection. The transverse projection is defined as

Πt(K) =
1

2
(δij − k̂ik̂j)Πij(K) , (3.64)

while the longitudinal projection is

Πℓ(K) = k̂iΠ
ij(K)k̂j . (3.65)

Since in my case the C and E projections vanish the following relations hold for
the A and B projections

Πa(K) = −Πt(K) ,

Πb(K) = −|k|2
K2

(

Π00(K) + 2
k0

|k|Π
0i(K)k̂i +

k2
0

|k|2Πℓ(K)

)

. (3.66)

In this work I assume that Πµν
ω is transverse, that is Πµν

ω Kν = 0.

3.1.3 The Dirac structure of the fermions

The self-energy and the spectral function of the fermions have a Dirac structure
that is they are 4 × 4 matrices. To extract scalar quantities from these one can
expand them into products of γ matrices. There are 16 linearly independent
structures built from γ matrices. In general a Dirac-matrix can therefore be
written as

ρ(K) = 11ρm(k0, |k|) + γ0ρ0(k0, |k|) − (γ · k̂)ρv(k0, |k|)
+σµνKµKνρt(k0, |k|) + γ5ρ̃(K) + (γµγ5)ρ̃µ(K) . (3.67)

However, not all of these structures contribute to the self-energies and spectral
functions in this work. Some of the terms vanish for parity symmetric systems.
The term σµνKµKνρt(K) consists of a symmetric structure KµKν and the anti-
symmetric σµν so the product of both vanishes.
In the following it is shown that terms including γ5 break parity invariance and
therefore do not contribute to my spectral functions. The spectral function is
from its definition

ρψ(K) = 〈ψa(K)ψb(K
′)〉β + 〈ψb(K ′)ψa(K)〉β . (3.68)

Applying a parity transformation to the single field yields

Pψ(t,x)P−1 = ηγ0ψ(t,−x) (3.69)

where η is a phase factor that is a power of the imaginary unit. For the adjoint
field one obtains

Pψ(t,x)P−1 = Pψ†(t,x)P−1γ0 = (Pψ(t,x)P−1)†γ0 = η∗ψ(t,−x)γ0 . (3.70)
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Therefore, the spectral function transforms as

Pρψ(k0,k)P−1 = ηη∗
︸︷︷︸

=1

γ0ρψ(k0,−k)γ0 . (3.71)

One can now insert the respective terms of (3.67) into this to find

γ0γ5ρ̃(k0,k)γ0 = −γ5ρ̃(k0,−k) , (3.72)

because γ5 anti-commutes with γ0. Analogously,

γ0γµγ5ρ̃µ(k0,k)γ0 =

{

−γµγ5ρ̃µ(k0,−k) for µ = 0
+γµγ5ρ̃µ(k0,−k) for µ = 1, 2, 3

. (3.73)

Obviously those parts of the spectral function which include γ5 change their sign
under parity transformation. The spatial terms change their sign because of the
factor k in front. So if I assume that the spectral function is invariant under
parity transformation those terms should not contribute.
If one drops these symmetry breaking terms the structure of the spectral function
becomes considerably simpler:

ρ(K) = 11ρm(|k|) + γ0ρ0(|k|) − (γ · k̂)ρv(|k|) . (3.74)

The single parts of this can be extracted from a given Dirac matrix by applying
the trace operation in the following way (Isospin adds a further factor 1

2
):

ρ0(k0, |k|) =
1

4
Trγ0ρ(K) ,

ρv(k0, |k|) =
1

4
Tr(γ · k̂)ρ(K) ,

ρm(k0, |k|) =
1

4
Trρ(K) . (3.75)

3.2 The self-energies, masses, and fields

In this section I present the self-energies which are obtained if the sunset diagrams
are taken into account within the CJT formalism. First the effective potential is
assembled according to the rules given in section 1.3.3.
Special attention has to be given to the symmetry factors that count the possi-
bilities to connect the vertices in the diagrams. For diagrams containing fermion
lines there is only one way to connect two vertices because the fermion propaga-
tors depend on the direction of the momentum they carry. Thus there is only one
fermion line with incoming and one line with outgoing momentum. A line with
outgoing momentum from one vertex has to be connected to a line with incoming
momentum at the other vertex (compare fig. 3.1).
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Figure 3.1: Vertices containing fermion lines can be connected only in one way.

For the sunset diagram composed of three σ propagators the symmetry factor
is six because there are six different possibilities to connect the lines meeting at
the vertices. To see this imagine two vertices merging three σ lines each. Assume
they are connected via one line. Three lines could be chosen for this first con-
nection so the symmetry factor of this composition is three. At each vertex there
are now two lines left to be connected so there are two possibilities for the second
connection. The last line is fixed then. The overall symmetry factor is therefore
3 · 2 = 6.
Before one can write down the effective potential resulting from the two-particle
irreducible diagrams one has to state how the momenta are running in the dia-
grams. There are different possibilities, the only restraint being that momentum
is conserved at the vertices. Here and in the following K will denote the external
momentum while P and Q stand for momenta which are integrated over. In this
work I assume the momenta to run as shown in fig. 3.2. If all diagrams of fig. 2.1
are taken into account the two-particle irreducible part of the effective potential
therefore becomes

V2[σ̂, Gσ, Gω, Gψ] =
1

2
g2
σTr

∫

P

∫

Q
Gσ(P −Q)Gψ(P )Gψ(Q)

+
1

2
g2
ωTr

∫

P

∫

Q
γµGψ(P )γνGψ(Q)Gωµν(P −Q)

− 3 (4λσ̂)2
∫

P

∫

Q
Gσ(P −Q)Gσ(P )Gσ(Q)

+ 3λ
[∫

P
Gσ(P )

]2

. (3.76)

The first three terms correspond to the sunset diagrams in fig. 2.1 while the last
term is the double-bubble diagram known from the Hartree approximation. With
(1.108) this leads to the following self-energies.
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Q

P

P−Q

Figure 3.2: Distribution of momenta in sunset diagrams.

3.2.1 The self-energy of the σ meson

For the σ meson the self-energy reads

Πσ(K) = 2
δV2[σ̂, Gσ, Gωµν , Gψ]

δGσ(K)

= g2
σTr

∫

Q
Gψ(Q+K)Gψ(Q) − 18 (4λσ̂)2

∫

Q
Gσ(Q+K)Gσ(Q)

+12λ
∫

P
Gσ(P ) . (3.77)

For lucidity this is shown diagrammatically in fig. 3.3. Note that the functional
derivative with respect to the propagator leads to a Dirac delta function whereby
the external momentum K enters the integrands. Furthermore the product rule
has to be applied where two or more σ propagators occur. This leads to an ad-
ditional factor of three in the respective part of the self-energy.
The self-energy (3.77) has a complicated substructure which has to be resolved
before explicit calculations can be carried out. The task is to evaluate the Mat-
subara sums, account for the Dirac substructure of the fermions, and simplify
the momentum integrations as far as possible to keep the numerical effort lim-
ited. Since the last term of (3.77) does not carry an imaginary part it will not be
discussed any further in the following. To keep track of the calculations they are
presented term by term in the following.

The term
∫

Q Gσ(Q+K)Gσ(Q)

The first term presented here is the σ loop sunset term. I start with evaluating
the Matsubara sum and introducing the spectral function for the σ field. The
first step is to express the propagator Gσ in the mixed representation:

Gσ(iω, |k|) =
∫ β

0
dτ exp(iωτ)Gσ(τ, |k|) , (3.78)

that is the Matsubara frequency is replaced by an imaginary time in the argument
of the propagator via a Fourier transformation. With this the respective part of
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+Πσ (k)= +

Figure 3.3: The self-energy of the σ meson in diagrammatic language.

the self-energy becomes

∫

Q
Gσ(Q+K)Gσ(Q) = T

∑

n

∫
d3q

(2π)3
Gσ(i(ωn + ω), |q + k|)Gσ(iωn, |q|)

= T
∑

n

∫
d3q

(2π)3

∫ β

0
dτ
∫ β

0
dτ ′ exp[iωn(τ + τ ′)] exp(iωτ)Gσ(τ, |q + k|)Gσ(τ ′, |q|)

(3.79)

where ω is the Matsubara frequency of the external momentum K. The Matsub-
ara sum can now be evaluated with help of the relation

T
∑

n

exp(iωnτ) =
∑

p

δ(τ − pβ) with p = 0,±1,±2, . . . , (3.80)

applied to the exponential function of (3.79). The result is

∫

Q
Gσ(Q+K)Gσ(Q) =

∫ d3q

(2π)3

∫ β

0
dτ exp(iωτ)Gσ(τ, |q+k|)Gσ(β−τ, |q|) . (3.81)

One can then introduce spectral functions according to (3.19) with (3.12) inserted:

Gσ(τ, |q|) =
∫ ∞

−∞

dℓ

2π
[1 + f(ℓ)] exp(−ℓτ)ρσ(ℓ, |q|) , (3.82)

with the bosonic distribution function

f(ℓ) =
1

eβℓ − 1
. (3.83)

Thus the self-energy becomes

∫

Q
Gσ(Q+K)Gσ(Q) =

∫
d3q

(2π)3

∫ β

0
dτ
∫ ∞

−∞

dℓ1
2π

∫ ∞

−∞

dℓ2
2π

[1 + f(ℓ1)]f(ℓ2)

× exp(−ℓ1τ) exp(ℓ2τ) exp(iωτ)ρσ(ℓ1, |q + k|)ρσ(ℓ2, |q|)

=
∫

d3q

(2π)3

∫ ∞

−∞

dℓ1
2π

∫ ∞

−∞

dℓ2
2π

[1 + f(ℓ1)]f(ℓ2)

×exp[(ℓ2 − ℓ1)β] − 1

iω − ℓ1 + ℓ2
ρσ(ℓ1, |q + k|)ρσ(ℓ2, |q|) . (3.84)
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Here it has been used that (1 + f(ℓ2)) exp(−ℓ2β) = f(ℓ2). In the second step the
τ integration has been carried out explicitly.
The numerical calculation of the self-energies will be performed on a discretized
space-time lattice. This comes along with a huge effort in computing power so it
is desirable to reduce the analytical expressions as much as possible. Here it is in
particular useful to carry out some of the three-dimensional spatial integrations.
This will be shown in the following.
The term under consideration has a momentum dependence of the form

∫ d3q

(2π)3
ρσ(|q + k|)ρσ(|q|) , (3.85)

where all factors that do not depend on the momentum have been omitted. If one
assumes spherical symmetry one can switch to spherical coordinates to obtain
∫

d3q

(2π)3
ρσ(|q + k|)ρσ(|q|) =

1

(2π)3

∫

|q|2d|q|d cos Θdϕρσ(|q + k|)ρσ(|q|) ,

(3.86)
where Θ is the angle between q and k. A proper substitution for the absolute
value |q + k| can be found as follows. The square of this absolute value is

|q + k|2 = q2 + k2 + 2|q||k| cosΘ . (3.87)

With setting ℓ = q + k one finds that

cos Θ =
|ℓ|2 − |q|2 − |k|2

2|k||q| (3.88)

and therefore

d cos Θ =
|ℓ|

|k||q|d|ℓ| . (3.89)

So the integral can be written as
∫ d3q

(2π)3
ρσ(|q + k|)ρσ(|q|) =

1

(2π)2|k|
∫

|q|d|q|
∫

|ℓ|d|ℓ|ρσ(|ℓ|)ρσ(|q|)

×Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|) , (3.90)

where the Θ-function provides the limits of the integral so that the cosine exists
between −1 and 1.
With the Matsubara sum evaluated and the momentum integration simplified
one can now write down the second term in (3.77) in the most explicit form by
assembling everything calculated above:
∫

Q
Gσ(Q+K)Gσ(Q) =

1

(2π)2|k|
∫

|q|d|q|
∫

|ℓ|d|ℓ|
∫ ∞

−∞

dℓ1
2π

∫ ∞

−∞

dℓ2
2π

[1 + f(ℓ1)]f(ℓ2)

×exp[(ℓ2 − ℓ1)β] − 1

iω − ℓ1 + ℓ2
ρσ(ℓ1, |ℓ|)ρσ(ℓ2, |q|)

×Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|) . (3.91)
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The term Tr
∫

Q Gψ(K +Q)Gψ(Q)

The next term to evaluate is Tr
∫

Q Gψ(K +Q)Gψ(Q). Written down explicitly it
reads

Tr
∫

Q
Gψ(K +Q)Gψ(Q) = TTr

∑

n

∫
d3q

(2π)3
Gψ(i(ωF

n + ωB),k + q)Gψ(iωF,q) .

(3.92)
Here ωF indicates that the frequencies are fermionic as in (3.37) while ωB denotes
bosonic Matsubara frequencies of the form (3.18). The external lines of the
self-energy are certainly bosonic because they belong to the σ self-energy. The
internal lines of the loop are fermionic, so the internal Matsubara frequencies
have to be fermionic. The trace runs over Dirac indices which are suppressed in
the following. Again I start with going to the mixed representation

Gψ(iω,q) =
∫ β

0
dτ exp(iωτ)Gψ(τ,q) , (3.93)

which gives

Tr
∫

Q
Gψ(K +Q)Gψ(Q) = Tr

∫
d3q

(2π)3

∫ β

0
dτ
∫ β

0
dτ ′G(τ,q + k)G(τ ′,q)

×T
∑

n

exp[i(ωF
n + ωB)τ ] exp(iωF

nτ
′) . (3.94)

It is possible to carry out one τ integration by using the relation (3.80). How-
ever, above it has been given for bosonic Matsubara-frequencies only, while here
we have a mixture of fermionic and bosonic frequencies. To apply the relation
nevertheless one can rearrange the exponentials of (3.94) in the following way:

T
∑

n

exp[i(ωF
n + ωB)τ ] exp(iωF

nτ
′) = T

∑

n

exp[iωF
n(τ + τ ′) + iωBτ ]

= T
∑

n

exp{i[(2n+ 1)πT (τ + τ ′) + 2πmTτ ]}

= T
∑

n

exp{i[2nπT (τ + τ ′) + 2πmTτ + πT (τ + τ ′)]}

= T
∑

n

exp[iωB
n (τ + τ ′)] exp(iωBτ) exp[iπT (τ + τ ′)] . (3.95)

The new index m counts the external Matsubara-frequencies. Now that the sum
runs over a bosonic frequency the relation (3.80) can be applied with the result

T
∑

n

exp[iωB
n (τ + τ ′)] =

∑

p

δ(τ + τ ′ − pβ) . (3.96)

I can now carry out the τ ′ integral by replacing τ ′ = β − τ because the sum only
contributes for p = 1. The second exponential in the last line of (3.95) remains
untouched but the third one becomes

exp[iπT (τ + β − τ)] = eiπ = −1 . (3.97)
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Therefore, the self-energy reads

Tr
∫

Q
Gψ(K+Q)Gψ(Q) = −T Tr

∫
d3q

(2π)3

∫ β

0
dτ Gψ(τ,k+q)Gψ(β−τ,q) exp(iωBτ) .

(3.98)
Now spectral functions can be introduced according to (3.34) as

Gψ(τ,q) =
∫ ∞

−∞

dℓ

2π
[1 − f̃(ℓ)]ρψ(ℓ,q) exp(−ℓτ) (3.99)

with the fermi distribution function

f̃(ℓ) =
1

eβℓ + 1
. (3.100)

The result is thus

Tr
∫

Q
Gψ(K +Q)Gψ(Q) = −Tr

∫
d3q

(2π)3

∫ β

0
dτ
∫ ∞

−∞

dℓ1
2π

∫ ∞

−∞

dℓ2
2π

[1 − f̃(ℓ1)]f̃(ℓ2)

×ρψ(ℓ1,k + q)ρψ(ℓ2,q) exp[i(ωB − ℓ1 + ℓ2)τ ] .

(3.101)

As before the τ integration can be performed explicitly and one obtains

Tr
∫

Q
Gψ(K +Q)Gψ(Q) = −Tr

∫ d3q

(2π)3

∫ ∞

−∞

dℓ1
2π

∫ ∞

−∞

dℓ2
2π

[1 − f̃(ℓ1)]f̃(ℓ2)

×ρψ(ℓ1,k + q)ρψ(ℓ2,q)
exp[(−ℓ1 + ℓ2)β] − 1

iωB − ℓ1 + ℓ2
.

(3.102)

The next step is to care for the momentum integration. This is a little bit more
complicated than in the above case of the σ loop because the fermion spectral
functions are functions of the momentum itself, not only its absolute value. For-
tunately, the momentum dependence is known explicitly from the decomposition
in γ matrices (3.74). For clarity I only consider the momentum structure of the
term in question

Π(k) = Tr
∫

d3q

(2π)3
ρψ(k + q)ρψ(q) . (3.103)

Inserting the decomposition (3.74) and evaluating the trace gives

Π(k) = 4
∫ d3q

(2π)3

[

ρ0(|k + q|)ρ0(|q|) −
q + k

|q + k| · q̂ρv(|k + q|)ρv(|q|)

+ρm(|k + q|)ρm(|q|)] , (3.104)
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so that the occurring spectral functions are no matrices any longer and only
depend on the absolute value of the momentum. The following rules for the trace
have been used [BRS95] (Note that the isospin adds an additional factor of 1

2
.)

Tr(11) = 4 ,

Tr(odd number of γ) = 0 ,

Tr(γµγν) = 4gµν ,

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) . (3.105)

The integrals in (3.104) can now be integrated term by term. One observes that
the first and the last term are of the same form as the second term in the σ
self-energy (3.77). It was shown below (3.85) how to simplify it.
The second term in (3.104) is treated as follows: First I carry out the inner
product

∫
d3q

(2π)3
ρv(|k + q|)ρv(|q|)

q + k

|q + k| ·
q

|q|

=
∫

d3q

(2π)3
ρv(|k + q|)ρv(|q|)

|q|2 + |k||q| cosΘ(k,q)

|q|
√

|k|2 + |q|2 + 2|k||q| cosΘ(k,q)
.

(3.106)

Again one can switch to spherical coordinates and substitute ℓ = k + q where

|ℓ|2 =
√

|k|2 + |q|2 + |k||q| cosΘ(k,q)

=⇒ cos Θ =
|ℓ|2 − |k|2 − |q|2

2|k||q| (3.107)

and

d cos Θ =
|ℓ|

|k||q|d|ℓ| . (3.108)

With this (3.106) becomes

1

2(2π)2|k|
∫

d|q|
∫

d|ℓ|ρv(|q|)ρv(|ℓ|)(|ℓ|2−|k|2+|q|2)Θ(||k|−|q|| ≤ |ℓ| ≤ |k|+|q|)
(3.109)

where the Θ-function restricts the integrals so that −1 ≤ cos Θ ≤ 1.

Summary of the σ self-energy

Now that all Matsubara sums are evaluated and all momentum integrals are
reduced I can summarize the results and write down the self-energy of the σ
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(K)=Π µν
ω

Figure 3.4: The self-energy of the ω-meson in diagrammatic language.

meson explicitly

Πσ(ω, |k|) = −g2
σ

4

(2π)4|k|
∫ ∞

−∞
dℓ1

∫ ∞

−∞
dℓ2

exp[−(ℓ1 − ℓ2)β] − 1

iω − ℓ1 + ℓ2

[

1 − f̃(ℓ1)
]

f̃(ℓ2)

×
∫

d|q|
∫

d|ℓ|Θ (||k| − |q|| ≤ |ℓ| ≤ |k| + |q|)

×
[

|q||ℓ|ρ0(ℓ1, |ℓ|)ρ0(ℓ2, |q|) −
1

2

(

|ℓ|2 − |k|2 + |q|2
)

ρv(ℓ1, |ℓ|)ρv(ℓ2, |q|)
+|q||ℓ|ρm(ℓ1, |ℓ|)ρm(ℓ2, |q|)]

−18 (4λσ̂)2 1

(2π)4|k|
∫ ∞

−∞
dℓ1

∫ ∞

−∞
dℓ2

exp[−(ℓ1 − ℓ2)β] − 1

iω − ℓ1 + ℓ2
[1 + f(ℓ1)] f(ℓ2)

×
∫

d|q|
∫

d|ℓ|Θ (||k| − |q|| ≤ |ℓ| ≤ |k| + |q|) |q||ℓ|ρσ(ℓ1, |ℓ|)ρσ(ℓ2, |q|)

+
3

π3
λ
∫ ∞

−∞
dℓ (1 + f(ℓ))

∫ ∞

0
d|q||q|2ρσ(ℓ, |q|) .

(3.110)

The last term is the tadpole term which I do not discuss in detail here since it
does not have an imaginary part.

3.2.2 The self-energy of the ω meson

The ω meson self-energy consists of one term, only. It corresponds to the sunset
diagram shown in fig. 3.4. From the Schwinger-Dyson equation it follows as

Πµν
ω (K) = 2

δV2[σ̂, Gσ, Gωµν , Gψ]

δGωµν(K)

= g2
ωTr

∫

Q
γµGψ(K +Q)γνGψ(Q) . (3.111)

The energy structure of this term is the same as that of the sunset diagram of
the σ self-energy. The results can thus be transferred from above. One obtains

Tr
∫

Q
γµGψ(K +Q)γνGψ(Q) = −Tr

∫ d3q

(2π)3

∫ ∞

−∞

dℓ1
2π

∫ ∞

−∞

dℓ2
2π

[1 − f̃(ℓ1)]f̃(ℓ2)
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×γµρψ(ℓ1,k + q)γνρψ(ℓ2,q)
exp[(−ℓ1 + ℓ2)β] − 1

iωB − ℓ1 + ℓ2
.

(3.112)

In the following it is shown how to simplify the momentum integration. The
general form of the momentum dependence, neglecting all factors that are inde-
pendent of momentum, is

Πµν
ω (k) = Tr

∫
d3q

(2π)3
γµρψ(k + q)γνρψ(q) . (3.113)

As before the fermionic spectral functions are Dirac matrices which are decom-
posed according to (3.74). Expanding the product gives terms with different
numbers of γ matrices. When the trace is built all terms with an odd number of
γ matrices vanish. Leaving away these terms the ω self-energy reads

Πµν
ω (k) = Tr

∫
d3q

(2π)3
[γµγ0γ

νγ0ρ0(|k + q|)ρ0(|q|)

−γµγ0γ
νγiq̂iρ0(|k + q|)ρv(|q|) − γµγi

(ki + qi)

|k + q| γ
νγ0ρv(|k + q|)ρ0(|q|)

+γµγi
(ki + qi)

|k + q| γ
νγj q̂jρv(|k + q|)ρv(|q|) + γµγνρm(|k + q|)ρm(|q|)

]

(3.114)

where greek indices run over all four Lorentz components, µ, ν = 0, 1, 2, 3, while
roman indices i and j run over the three spatial components, i, j = 1, 2, 3, only.
The roman indices form the standard inner product. The next step is to evaluate
the traces according to (3.105). The ω self-energy then reads

Πµν
ω (k) =

∫
d3q

(2π)3

[(

2gµ0gν0 − gµν
)

ρ0(|k + q|)ρ0(|q|)

−
(

gµ0gνi + gµigν0
) qi

|q|ρ0(|k + q|)ρv(|q|)

−
(

gµigν0 + gµ0giν
) ki + qi

|k + q|ρv(|k + q|)ρ0(|q|)

+
(

gµigνk − gµνgik + gµkgiν
) ki + qi

|k + q|
qk

|q|ρv(|k + q|)ρv(|q|)

+gµνρm(|k + q|)ρm(|q|)] (3.115)

With this I can now calculate the necessary components of the Πa and Πb pro-
jection.
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The transverse projection

I start with the transverse projection of the ω meson self-energy which is the
negative of the Πa projection. According to (3.64) it is defined as

Πt(K) =
1

2
(δij − k̂ik̂j)Πij

ω (K) . (3.116)

The actual calculation is straightforward. The substitution

cos Θ(k,q) =
|ℓ|2 − |q|2 − |k|2

2|k||q| (3.117)

allows to simplify the integration as above and in the end the final result is

Πt(k0, |k|) = −g2
ω

2

(2π)4|k|
∫ ∞

−∞
dℓ1

∫ ∞

−∞
dℓ2

exp[−(ℓ1 − ℓ2)β] − 1

iω − ℓ1 + ℓ2

[

1 − f̃(ℓ1)
]

f̃(ℓ2)

×
∫

d|q|
∫

d|ℓ|Θ (||k| − |q|| ≤ |ℓ| ≤ |k| + |q|)

×|q||ℓ|
[

2ρ0(ℓ1, |ℓ|)ρ0(ℓ2, |q|) −
1

|ℓ|
(

2|k| cosΘ + 2|q| cos2 Θ
)

×ρv(ℓ1, |ℓ|)ρv(ℓ2, |q|) − 2ρm(ℓ1, |ℓ|)ρm(ℓ2, |q|)] . (3.118)

The longitudinal projection

The longitudinal projection is part of Πb. It is defined as

Πℓ(K) = k̂iΠ
ij
ω (K)k̂j . (3.119)

Again, a straightforward calculation leads to

Πℓ(k0,k) = −g2
ω

4

(2π)4|k|
∫ ∞

−∞
dℓ1

∫ ∞

−∞
dℓ2

exp[−(ℓ1 − ℓ2)β] − 1

iω − ℓ1 + ℓ2

[

1 − f̃(ℓ1)
]

f̃(ℓ2)

×
∫

d|q|
∫

d|ℓ|Θ (||k| − |q|| ≤ |ℓ| ≤ |k| + |q|)

×|q||ℓ|
[

ρ0(ℓ1, |ℓ|)ρ0(ℓ2, |q|) +
1

|ℓ|(−|q| + 2|q| cos2 Θ + |k| cosΘ)

×ρv(ℓ1, |ℓ|)ρv(ℓ2, |q|) − ρm(ℓ1, |ℓ|)ρm(ℓ2, |q|)] , (3.120)

where the same substitution as in (3.117) has been performed.

The Π00
ω component

Another part of the Πb projection is the Π00
ω component of the vector-meson self-

energy. It can be obtained from (3.115) by just inserting the respective indices
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while all calculations are the same as for the above projections. The result is

Π00
ω (k0,k) = −g2

ω

4

(2π)4|k|
∫ ∞

−∞
dℓ1

∫ ∞

−∞
dℓ2

exp[−(ℓ1 − ℓ2)β] − 1

iω − ℓ1 + ℓ2

×
[

1 − f̃(ℓ1)
]

f̃(ℓ2)
∫

d|q|
∫

d|ℓ|Θ (||k| − |q|| ≤ |ℓ| ≤ |k| + |q|)
× [|q||ℓ|ρ0(ℓ1, |ℓ|)ρ0(ℓ2, |q|)
+

1

2

(

|ℓ|2 − |k|2 + |q|2
)

ρv(ℓ1, |ℓ|)ρv(ℓ2|q|)
+|q||ℓ|ρm(ℓ1, |ℓ|)ρm(ℓ2, |q|)] . (3.121)

The component k̂mΠ0m
ω

Finally, the complete Πb projection requires the determination of the term k̂mΠ0m
ω .

Since the calculation is straightforward with the techniques described above, only
the result is given here:

k̂mΠ0m
ω (k0,k) = −g2

ω

2

(2π)4|k|
∫ ∞

−∞
dℓ1

∫ ∞

−∞
dℓ2

exp[−(ℓ1 − ℓ2)β] − 1

iω − ℓ1 + ℓ2

×
[

1 − f̃(ℓ1)
]

f̃(ℓ2)
∫

d|q|
∫

d|ℓ|Θ (||k| − |q|| ≤ |ℓ| ≤ |k| + |q|)

×
[

|ℓ|(|ℓ|2 − |q|2 − |k|2)ρ0(ℓ1, |ℓ|)ρv(ℓ2, |q|)
+|q|(|ℓ|2 − |q|2 + |k|2)ρv(ℓ1, |ℓ|)ρ0(ℓ2, |q|)

]

. (3.122)

3.2.3 The fermion self-energy

The self-energy of the fermions is obtained from the two-particle irreducible part
of the potential (3.76) as

Σψ(k0,k) = −δV2[σ̂, Gσ, Gωµν , Gψ]

δGψ(k0,k)

= −g2
σ

∫

Q
Gσ(K −Q)Gψ(Q) − g2

ω

∫

P
γµGψ(Q)γνGωµν(K −Q) .

(3.123)

Thus there are two sunset diagrams corresponding to loops of the σ and the
ω meson as shown in fig. 3.5. Above the compact notation of a more complex
substructure is given. It should be noted in particular that the fermion self-energy
has a Dirac structure which requires decomposition as shown in (3.74). Again I
treat the two terms separately.
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+Σψ(K)=

Figure 3.5: The self-energy of the fermion in diagrammatic language.

The term
∫

Q Gσ(K −Q)Gψ(Q)

I start with the evaluation of the Matsubara sum

Σ1(K) =
∫

Q
Gσ(K−Q)Gψ(Q) = T

∑

n

∫ d3q

(2π)3
Gσ(i(ωF−ωF

n ), |k−q|)Gψ(iωF
n ,q) .

(3.124)
The momenta K and Q both run on fermion lines so their Matsubara frequencies
are fermionic. The difference K−Q runs on a boson line and in fact its frequency
is bosonic because

ωF − ωF
n = (2m+ 1)πT − (2n+ 1)πT = 2(m− n)πT (3.125)

is an even number where m counts the frequency of the external energy.
As before I introduce the mixed representation

G(iω, |q|) =
∫ β

0
dτ exp(iωτ)G(τ, |q|) (3.126)

to obtain

Σ1(K) = T
∑

n

∫ d3q

(2π)3

∫ β

0
dτ
∫ β

0
dτ ′Gσ(τ, |k − q|)Gψ(τ ′,q)

× exp[i(ωF − ωF
n)τ ] exp(iωF

nτ
′)

= T
∑

n

∫ d3q

(2π)3

∫ β

0
dτ
∫ β

0
dτ ′Gσ(τ, |k − q|)Gψ(τ ′,q)

× exp(iωFτ) exp[iωBn (τ ′ − τ)] exp(iπT (τ ′ − τ))

=
∫

d3q

(2π)3

∫ β

0
dτGσ(τ, |k − q|)Gψ(τ,q) exp(iωFτ) . (3.127)

Here the fermionic Matsubara sum is combined with a bosonic one as in (3.125)
so that relation (3.80) can be applied. Now spectral functions for bosons and
fermions have to be introduced according to (3.12) and (3.34), respectively:

Gσ(τ, |k − q|) =
∫ ∞

−∞

dℓ1
2π

[1 + f(ℓ1)] exp(−ℓ1τ)ρσ(ℓ1, |k− q|) ,

Gψ(τ,q) =
∫ ∞

−∞

dℓ2
2π

[1 − f̃(ℓ2)] exp(−ℓ1τ)ρψ(ℓ2,q) . (3.128)
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The self-energy therefore becomes

Σ1(K) =
∫

d3q

(2π)3

∫ β

0
dτ
∫ ∞

−∞

dℓ1
2π

∫ ∞

−∞

dℓ2
2π

[1 + f(ℓ1)][1 − f̃(ℓ2)]

× exp(−ℓ1τ) exp(−ℓ2τ)ρσ(ℓ1, |k − q|)ρψ(ℓ2,q) . (3.129)

The τ integration can be carried out explicitly and one obtains

Σ1(K) = −
∫

d3q

(2π)3

∫ ∞

−∞

dℓ1
2π

∫ ∞

−∞

dℓ2
2π

[1 + f(ℓ1)][1 − f̃(ℓ2)]

×exp[(−ℓ1 − ℓ2)β] + 1

iωF − ℓ1 − ℓ2
ρσ(ℓ1, |k− q|)ρψ(ℓ2,q) . (3.130)

The next step is to simplify the momentum integration. Therefore I only consider
the momentum structure of the above term which is

Σ1(k) =
∫ d3q

(2π)3
ρσ(|k − q|)ρψ(q) . (3.131)

Note that the fermion spectral function depends on the momentum including its
direction while the σ spectral function only depends on the absolute value of the
momentum. However, the momentum structure of the fermion spectral function
is known explicitly from the decomposition (3.74). I can therefore insert it here

Σ1(k) =
∫

d3q

(2π)3
ρσ(|k − q|)[γ0ρ0(|q|) − γ · q̂ρv(|q|) + ρm(|q|)] . (3.132)

The self-energy of the fermions obviously has a Dirac structure. Since I am in-
terested in the components in the end, at some point the decomposition in this
structure has to be performed. The momentum integration gets considerably eas-
ier when this decomposition is done now. The respective rules were summarized
in (3.75).
First the scalar part is

Σ1m(k) =
1

4
TrΣ1(k) =

∫
d3q

(2π)3
ρσ(|k − q|)ρm(|q|) . (3.133)

The momentum integral of this expression is easily simplified as in the above
cases with the substitution ℓ = k − q after switching to spherical coordinates so
that

cos Θ =
|k|2 + |q|2 − |ℓ|2

2|k||q| (3.134)

and

d cos Θ = − |ℓ|
|k||q|d|ℓ| . (3.135)
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Note the different sign compared to the bosonic case, above. The result is

Σ1m(k) =
1

(2π)2|k|
∫

|q|d|q|
∫

|ℓ|d|ℓ|ρσ(|ℓ|)ρm(|q|)Θ(||k|−|q|| ≤ |ℓ| ≤ |k|+|q|) .

(3.136)
The time part

Σ10(k) =
1

4
Trγ0Σ1(k) =

∫ d3q

(2π)3
ρσ(|k − q|)ρ0(|q|) (3.137)

is treated in an analogous way. With the same substitution as for the scalar part
one obtains

Σ10(k) =
1

(2π)2|k|
∫

|q|d|q|
∫

|ℓ|d|ℓ|ρσ(|ℓ|)ρ0(|q|)Θ(||k|−|q|| ≤ |ℓ| ≤ |k|+|q|) .

(3.138)
Finally I calculate the spatial component as

Σ1v(k) =
1

4
Tr(γ·k̂)Σ1(k) = −1

4
Tr
∫

d3q

(2π)3
ρσ(|k−q|)ρv(q)(γ·k̂)(γ·q̂) . (3.139)

The two scalar products in this expression can be reduced to a cosine because

1

4
Tr[(γ · k̂)(γ · q̂)] =

1

4
Tr[γiγj k̂iq̂j] = gijk̂iq̂j = −(k̂ · q̂) = − cos Θ . (3.140)

Now the same substitution ℓ = k−q as for the other two parts can be performed
and one obtains

Σ1v(k) =
1

(2π)2|k|
∫

|q|d|q|
∫

|ℓ|d|ℓ| cos Θρσ(|ℓ|)ρv(|q|)

×Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|) , (3.141)

where the cosine is given by (3.134).

The term
∫

P γ
µGψ(Q)γνGωµν(K −Q)

The evaluation of the Matsubara sum is exactly the same as for the other term,
shown above. The result is therefore

Σ2(K) =
∫

P
γµGψ(Q)γνGωµν(K −Q)

= T
∑

n

∫
d3q

(2π)3
γµGψ(iωF

n ,q)γνGωµν(i(ωF − ωF
n),k − q)

= −
∫

d3q

(2π)3

∫ ∞

−∞

dℓ1
2π

∫ ∞

−∞

dℓ2
2π

[1 + f(ℓ1)][1 − f̃(ℓ2)]

×exp[(−ℓ1 − ℓ2)β] + 1

iωF − ℓ1 − ℓ2
γµρψ(ℓ2,q)γνρωµν(ℓ1,k − q) .

(3.142)



3.2 The self-energies, masses, and fields 91

For the further calculations the fermion spectral function is decomposed according
to (3.75):

Σ2(K) =
∫

d3q

(2π)3
γµρψ(q)γνρωµν(k − q)

=
∫

d3q

(2π)3
γµ




γ0ρ0(|q|)
︸ ︷︷ ︸

A

−γ · q̂ρv(|q|)
︸ ︷︷ ︸

B

+ 11ρm(|q|)
︸ ︷︷ ︸

C




 γνρωµν(k − q) .

(3.143)

Eventually, I am interested in the different Dirac structures of this expression. As
before it makes sense to do the decomposition first and calculate the momentum
integral afterwards. For the sake of clarity the terms A, B and C in (3.143) are
treated separately in the following.

Term A

I start with term A by decomposing it into the different Dirac structures. Term
A reads

ΣA
2 (k) =

∫
d3q

(2π)3
γµγ0ρ0(|q|)γνρωµν(k − q) . (3.144)

The scalar part, which is proportional to the unit matrix, is zero because three γ
matrices appear under the trace and the trace of an odd number of γ matrices is
zero:

ΣA
2m(k) =

1

4
TrΣA

2 (k) = 0 . (3.145)

Next I evaluate the time part of A which is

ΣA
20(k) =

1

4
Tr γ0ΣA

2 (k)

=
1

4
Tr
∫

d3q

(2π)3
γ0γµγ0γνρ0(|q|)ρωµν(k − q)

=
∫

d3q

(2π)3
ρ0(|q|)

(

2ρ00
ω (k − q) − ρµωµ(k − q)

)

. (3.146)

The two components of the ω spectral density can be reduced to the projections
ρa and ρb by their definition:

ρµν(K) = Aµνρa(k0, |k|) +Bµνρb(k0, |k|)

= (−δij + k̂ik̂j)ρa(k0, |k|) +
(

gµν + δij − KµKν

K2
− k̂ik̂j

)

ρb(k0, |k|)
(3.147)

implying

ρ00(K) =

(

1 − k02

K2

)

ρb(k0, |k|) (3.148)



92 Beyond the Hartree approximation

and
ρµµ(K) = 2ρa(k0, |k|) + ρb(k0, |k|) . (3.149)

Hereby one obtains

ΣA
20(k) =

∫
d3q

(2π)3
ρ0(|q|)

[(

1 − 2
(k0 − q0)

2

(K −Q)2

)

ρb(|k − q|) − 2ρa(|k− q|)
]

.

(3.150)
Note that here the energy components of the momenta k0 and q0 enter from the
ω spectral density in the term proportional to ρb. In my calculation energies are
Matsubara sums which were replaced by ℓ1 = k0−q0 when introducing the spectral
functions in (3.129). Doing this replacement, introducing spherical coordinates
and integrating the angles with the substitution (3.134) the term proportional to
ρb in (3.150) becomes

ΣA
20b(k) =

2

(2π)2|k|
∫

d|q||q|
∫

d|ℓ||ℓ| ℓ21
ℓ21 − |ℓ|2ρ0(|q|)ρb(|ℓ|)

×Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|) . (3.151)

The other terms of (3.150) are integrated with the substitution (3.134) as above.
Putting everything together one obtains for the γ0 part of A

ΣA
20(k) =

1

(2π)2|k|
∫

d|q||q|
∫

d|ℓ||ℓ|ρ0(|q|)
[(

1 − 2ℓ21
ℓ21 − |ℓ|2

)

ρb(|ℓ|) − 2ρa(|ℓ|)
]

×Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|) . (3.152)

Similar considerations can be done for the spatial part of ΣA which is

ΣA
2v(k) =

1

4
Tr(γ · k̂ΣA

2 (k))

=
1

4
Tr(γiγµγ0γν)k̂i

∫
d3q

(2π)3
ρ0(|q|)ρωµν(k − q)

= 2
∫

d3q

(2π)3
k̂iρ0(|q|)ρi0ω (k − q) . (3.153)

From (3.147) it follows that

ρi0ω (K −Q) = −(ki − qi)(k0 − q0)

(K −Q)2
ρb(K −Q) . (3.154)

Using (ki − qi)k̂i = |k| − |q| cosΘ, identifying k0 − q0 = ℓ1 and doing the usual
substitution (3.134) yields

ΣA
2v(k) = − 2

(2π)2|k|
∫

d|q||q|
∫

d|ℓ||ℓ|
[

ℓ1
ℓ21 − |ℓ|2 (|k| − |q| cos Θ)

]

×ρb(|ℓ|)ρ0(|q|)Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|) . (3.155)
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Term B

Next I want to consider term B of (3.143) which reads

ΣB
2 (k) =

∫ d3q

(2π)3
γµγ · q̂ρv(|q|)γνρωµν(k − q) . (3.156)

Again the number of γ matrices is odd so the part proportional to 11 vanishes:

ΣB
2m(k) =

1

4
Tr ΣB

2 (k) = 0 . (3.157)

The part proportional to γ0 is

ΣB
20(k) =

1

4
Tr γ0 ΣB

2 (k)

= 2
∫

d3q

(2π)3
q̂iρv(|q|)ρ0i

ω (k − q)

= − 2

(2π)2|k|
∫

d|q||q|
∫

d|ℓ||ℓ|
[

ℓ1(|k| cosΘ − |q|)
ℓ21 − |ℓ|2

]

×ρb(|ℓ|)ρv(|q|)Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|) , (3.158)

where the calculations are analogous to those of term A.
The last part of B is the spatial component. It is given by

ΣB
2v(k) =

1

4
Tr(γ · k̂)ΣB

2 (k)

=
1

4
Tr(γiγµγjγν)

∫
d3q

(2π)3
k̂iq̂jρv(|q|)ρωµν(k − q)

=
∫

d3q

(2π)3
k̂iq̂jρv(|q|)

[

2ρijω (k − q) − gijρµωµ(k − q)
]

. (3.159)

For the further calculation the tensor decomposition (3.147) is inserted for the ω
spectral density. The product with k̂i and q̂i can then be calculated straightfor-
wardly and one obtains

ΣB
2v(k) =

1

(2π)2|k|
∫

d|q||q|
∫

d|ℓ||ℓ|ρv(|q|)
[

2

|ℓ|2 (|k| − |q| cosΘ)(|k| cosΘ − |q|)ρa(|ℓ|)

+

((

− 2

ℓ21 − |ℓ|2 − 2

|ℓ|

)

(|k| − |q| cos Θ)(|k| cosΘ − |q|)

+ cos Θ) ρb(|ℓ|)]Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|) , (3.160)

where the substitution (3.134) has performed.
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Term C

The last term to consider is term C from (3.143) which is

ΣC
2 (k) =

∫ d3q

(2π)3
γµ11ρm(|q|)γνρωµν(k − q) . (3.161)

Since this term contains two γ matrices, only the scalar component, proportional
to the unit matrix contributes. The time component

ΣC
20(k) =

1

4
Tr γ0 ΣC

2 (k) = 0 , (3.162)

and the space component

ΣC
2v(k) =

1

4
Tr(γ · k)ΣC

2 (k) = 0 (3.163)

vanish. The scalar component is straightforwardly derived as

ΣC
2m(k) =

1

4
Tr ΣC

2 (k)

=
∫

d3q

(2π)3
γµγνρm(|q|)ρωµν(k − q)

=
1

(2π)2|k|
∫

d|q||q|
∫

d|ℓ||ℓ|ρm(|q|)[2ρa(|ℓ|) + ρb(|ℓ|)] , (3.164)

where again the substitution (3.134) has been performed.
Now that all fermion terms have been calculated I can put them together to
obtain the complete fermion self-energies.

Summary of the fermion self-energy

I now summarize all terms calculated above, sorting together those proportional
to the different Dirac structures. Both terms of the self-energy are taken into
account.
The part proportional to γ0 is

Σ0(iω
F,k) =

1

(2π)4|k|
∫

|q|d|q|
∫

|ℓ|d|ℓ|Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|)

×
∫ ∞

−∞
dℓ1

∫ ∞

−∞
dℓ2[1 + f(ℓ1)][1 − f̃(ℓ2)]

exp[(−ℓ1 − ℓ2)β] + 1

iωF − ℓ1 − ℓ2

×
{

g2
σρσ(ℓ1, |ℓ|)ρ0(ℓ2, |q|)

+g2
ω

[(

1 − 2ℓ21
ℓ21 − |ℓ|2

)

ρb(ℓ1, |ℓ|) − 2ρa(ℓ1, |ℓ|)
]

ρ0(ℓ2, |q|)

+2g2
ωρb(ℓ1, |ℓ|)ρv(ℓ2, |q|)

(

ℓ1 (|k| cosΘ − |q|)
ℓ21 − |ℓ|2

)}

,

(3.165)
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where

cos Θ =
|k|2 + |q|2 − |ℓ|2

2|k||ℓ| . (3.166)

The part proportional to the spatial components of the gamma matrices γ is

Σv(iω
F,k) = − 1

(2π)4|k|
∫

|q|d|q|
∫

|ℓ|d|ℓ|Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|)

×
∫ ∞

−∞
dℓ1

∫ ∞

−∞
dℓ2[1 + f(ℓ1)][1 − f̃(ℓ2)]

exp[(−ℓ1 − ℓ2]β) + 1

iωF − ℓ1 − ℓ2

×
{

−g2
σ cos Θρσ(ℓ1, |ℓ|)ρv(ℓ2, |q|)

+g2
ω

[

2

(

ℓ21
ℓ21 − |ℓ|2 (|k| − |q| cosΘ)

)

ρb(ℓ1|ℓ|)ρ0(ℓ2, |q|)

+

[

2

|ℓ|2 (|k| − |q| cosΘ)(|k| cosΘ − |q|)ρa(ℓ1, |ℓ|)

+

(

2

(

− 1

ℓ21 − |ℓ|2 − 1

|ℓ|2
)

(|k| − |q| cosΘ)(|k| cosΘ − |q|) + cos Θ

)

×ρb(ℓ1, |ℓ|)] ρv(ℓ1, |q|)]} . (3.167)

Finally the scalar part which is proportional to the unit matrix is

Σm(iωF,k) =
1

(2π)4|k|
∫

|q|d|q|
∫

|ℓ|d|ℓ|Θ(||k| − |q|| ≤ |ℓ| ≤ |k| + |q|)

×
∫ ∞

−∞
dℓ1

∫ ∞

−∞
dℓ2[1 + f(ℓ1)][1 − f̃(ℓ2)]

exp[(−ℓ1 − ℓ2)β] + 1

iωF − ℓ1 − ℓ2
[

g2
σρσ(ℓ1, |ℓ|)ρm(ℓ2, |q|) + g2

ω [2ρa(ℓ1, |ℓ|) + ρb(ℓ1, |ℓ|)] ρm(ℓ2, |q|)
]

.

(3.168)

3.2.4 The imaginary parts of the self-energies

In all self-energies calculated above the imaginary unit occurs only in the denom-
inator. Therefore, the imaginary part of the self-energies can be calculated with
help of the Dirac identity

Im
(

1

R+ iǫ

)

= −iπδ(R) , (3.169)

where R is a real number. One energy integral breaks down in the imaginary
part because of the delta function.

3.2.5 Self-energies and spectral functions

The above set of equations is self-consistent because the spectral functions are
connected to the full propagators via

ρ(K) = 2 ImG(K) (3.170)
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as shown in (3.27). With the self-energies the inverse of the propagators are

G−1(K) = D−1 + ReΠ(K) + i Im Π(K) (3.171)

where the self-energy consists of a real and an imaginary part. As mentioned
above the treatment of the real part is rather difficult because it contains di-
vergences which have to be renormalized. I therefore restrict myself to the case
where they are set to zero by hand.
To actually calculate the spectral density according to (3.170) it is necessary to
invert the inverse propagator first. This is trivial for bosons but a little more
complicated for fermions. Afterwards the imaginary part is determined.
The bosonic spectral function is obtained straightforwardly as

ρBoson(K) = 2 Im
1

−K2 +m2 + i Im Π(K)

= −2
Im Π(K)

(K2 −m2)2 + Im Π(K)2
. (3.172)

For the fermions I carry out the inversion first. The inverse propagator is

G−1
ψ (K) = −Kµγ

µ +Mψ + i Im Σ(K) [+Re Σ(K)
︸ ︷︷ ︸

:=0

]

= −k0γ
0 + k · γ +Mψ + i

(

Im Σ0γ
0 − Im Σv(k̂ · γ) + Im Σm11

)

,

(3.173)

where the real part is again set to zero. One observes that this expression is of
the form

G−1
ψ = −ℓµγµ + n (3.174)

where

ℓ0 = k0 − i Im Σ0(K) ,

ℓ = k − i Im Σv(K)k̂ ,

n = Mψ + i Im Σm(K) . (3.175)

This structure can be inverted as

Gψ(K) = (−ℓµγµ + n)−1 =






(−ℓµγµ − n)(−ℓµγµ + n)
︸ ︷︷ ︸

(ℓ2−n2)







−1

(−ℓµγµ − n) (3.176)

so the full propagator of the fermions is

Gψ(K) =
−k0γ

0 + k · γ −Mψ + i Im Σ0γ0 − i Im Σv(k̂ · γ) − i Im Σm

(k0 − i Im Σ0)2 − (k − i Im Σvk̂)2 − (Mψ + i Im Σm)2
. (3.177)
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The imaginary part of this can be determined as usual by multiplying the numer-
ator and denominator by the complex conjugated of the denominator. Afterwards
the decomposition into the Dirac structure is performed as in (3.75). The actual
calculation is straightforward but comprises some lengthy expressions so I only
state the results. With the denominator

N :=
(

K2 −M2
ψ − Im Σ2

0 + Im Σ2
v + Im Σ2

m

)2

+4 (|k| ImΣv − k0 Im Σ0 −Mψ Im Σm)2 , (3.178)

the part proportional to γ0 is

1

2
ρ0(K) = ImG0(K)

=
1

N

(

2k0|k| ImΣv − 2k2
0 Im Σ0 − 2Mψk0 Im Σm + k2

0 Im Σ0

−k2 Im Σ0 − Im Σ3
0 + Im Σ0 Im Σ2

v + Im Σ0 Im Σ2
m −M2

ψ Im Σ0

)

.

(3.179)

The γ part turns out to be

1

2
ρv(K) = ImGv(K)

= − 1

N

(

−2k2 Im Σv + 2|k|k0 Im Σ0 + 2|k|Mψ Im Σm − k2
0 Im Σv

+k2 Im Σv + Im Σv Im Σ2
0 − Im Σ3

v − Im Σv Im Σ2
m +M2

ψ Im Σv

)

,

(3.180)

and the part proportional to the unit matrix is

1

2
ρm(K) = ImGm(K)

=
1

N

(

2Mψ|k| ImΣv − 2Mψk0 Im Σ0 − 2M2
ψ Im Σm − k2

0 Im Σm

+k2 Im Σm + Im Σm Im Σ2
0 − Im Σm Im Σ2

v − Im Σ3
m +M2

ψ Im Σm

)

.

(3.181)

Due to this connection the self-energies obviously enter themselves via the spectral
function. The problem is therefore said to be self-consistent. However, there are
some restraints that should be mentioned. In this work only the imaginary parts
of the self-energies are taken into account for reasons of renormalization as well
as computational effort. The complete spectral functions would also contain the
real parts which have been set to zero above.
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3.2.6 Sum rules

For the numerical solution of the above set of integral equations space-time and
energy-momentum space have to be discretized. Sometimes it happens that the
spectral function becomes very narrow with a small width. Then the lattice might
be too coarse to resolve the spectral function and contribution to the propagator
strength gets lost. One can repair the spectral function with help of sum rules
which control whether the spectrum is complete. The sum rules follow directly
from the commutation relations as shown in the following.

Sum rule for the scalar meson

The most simple case is the scalar meson again. To deduce a sum rule consider
the Fourier transform

D>(t) −D<(t) =
∫ ∞

−∞

dk0

2π
e−ik0t (D>(k0) −D<(k0)) . (3.182)

The derivative of this with respect to time is

d

dt
(D>(t) −D<(t)) = −i

∫ ∞

−∞

dk0

2π
k0e

−ik0t (D>(k0) −D<(k0))
︸ ︷︷ ︸

ρ(k0)

, (3.183)

where the spectral function has been identified from its definition (3.7). From
the definition of the two-point functions (3.2) and (3.3) it is known that

D>(t) −D<(t) = 〈[φ̂(t), φ̂(0)]〉β . (3.184)

With the canonical equal-time commutation relation

[

φ̂(t),
d

dt′
φ̂(t′)

]

t′=t

= i (3.185)

the left-hand side of (3.183) can then be written as

d

dt
(D>(t) −D<(t)) =

〈[

d

dt
φ̂(t), φ̂(0)

]〉

β

= −i . (3.186)

Inserting this into (3.183) and taking the limit t→ 0 yields the sum rule

∫ ∞

−∞

dk0

2π
k0ρ(k0) = 1 . (3.187)

It provides a test if the spectral function is complete. Missing contributions can
result from three effects. First, the width of the spectral function might be too
small to be resolved by the lattice spacing. In this case the spectral function



3.2 The self-energies, masses, and fields 99

can be repaired by numerically adding a box function, which is a function that
is constant over a step in the energy lattice, whose strength just repairs the sum
rule. The second violation of the sum rule can result from the fact that I only
consider the imaginary parts of the sunset diagrams when calculating the spectral
functions. Finally, it might happen that the lattice is too small to cover the whole
spectral function. If the width is sufficiently large I correct the spectral function
by an overall factor.

Sum rules for the vector meson

The spectral functions of the vector mesons are projected onto their longitudinal
and transverse direction as shown in section 3.1.2. Both projections have different
sum rules [Pos98]. The canonical commutation relation for massive vector mesons
is

[

ωi(x, t), πj(y, t)
]

= iδijδ3(x − y) (3.188)

with the canonical conjugate field

πi(x, t) =
∂L

∂(∂0ωi)
= ∂0ωi − ∂iω0 = F 0i . (3.189)

where F µν is the field-strength tensor and

L = −1

4
FµνF

µν +
1

2
m2
ωωµω

µ (3.190)

is the Proca Lagrangian. Inserting the Lagrangian into the Euler-Lagrange equa-
tion one finds that

ω0 = − 1

m2
ω

∂iF
i0 . (3.191)

With this expression and the canonical conjugate field (3.189) the time-derivative
of the field can be calculated:

∂0ωi = πi +
1

m2
ω

∂i∂jπ
j . (3.192)

With this the canonical commutation relation (3.188) leads to

[

∂0ωi(t,x), ωj(0, 0)
]

= igijδ3(x) + i
1

m2
ω

∂j∂kg
kiδ3(x) , (3.193)

so according to the definition of D< and D>

d

dt

(

Dij>(t) −Dij<(t)
)

=
〈[

∂0ωi(t), ωj(0)
]〉

β
= igij − i

1

m2
ω

kikj . (3.194)
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As for the scalar mesons above I take the time derivative of the Fourier transform

d

dt

(

Dij>(t) −Dij<(t)
)

= −i
∫ ∞

−∞

dk0

2π
k0e

−ik0t
(

Dij>(k0) −Dij<(k0)
)

︸ ︷︷ ︸

ρij(k0)

(3.195)

and insert (3.194). After calculating the limit t→ 0 one obtains the sum rule

∫ ∞

−∞

dk0

2π
k0ρ

ij(k0) = −gij +
1

m2
ω

kikj . (3.196)

The transverse projector T µν = −Aµν = 1
2
(δij− k̂ik̂j) can now be applied directly

on the above sum rule because it is independent of energy and can therefore be
put under the integral. The sum rule for the transverse projection is thus

∫ ∞

−∞

dk0

2π
k0ρ

t(k0) =
1

2
(δij − k̂ik̂j)

(

−gij +
1

m2
ω

kikj
)

= 1 . (3.197)

For the ρb projection I proceed analogously. From the canonical commutation
relations it follows that

[

∂0ω0(t,x), ω0(0, 0)
]

= − 1

m2
ω

[

∂0ω0(t,x), ∂jF
j0
]

= − 1

m2
ω

[

∂iω
i(t,x), ∂jπ

j(0, 0)
]

= − 1

m2
ω

∂i∂j
[

ωi(t,x), πj(0, 0)
]

= − i

m2
ω

gij∂i∂jδ
3(x) . (3.198)

From the definition of D< and D> one obtains

d

dt

(

D00>(t) −D00<(t)
)

=
〈[

∂0ω0(t), ω0(0)
]〉

β
= −|k|2

m2
ω

. (3.199)

Again, the time derivative of the Fourier transform is

d

dt

(

D00>(t) −D00<(t)
)

= −i
∫ ∞

−∞

dk0

2π
k0e

−ik0t
(

D00>(k0) −D00<(k0)
)

︸ ︷︷ ︸

ρ00(k0)

(3.200)

Inserting (3.199) and calculating the limit t→ 0 yields

∫ ∞

−∞

dk0

2π
k0ρ

00
ω (K) = −|k|2

m2
ω

(3.201)
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If the spectral function is transverse, i.e. , ρµνω Kµ = 0, the time part ρ00
ω can be

connected to the ρb projection as

ρb = −K2

|k|2ρ
00 . (3.202)

Therefore, the above relation (3.201) gives a sum rule for ρb

∫ ∞

−∞

dk0

2π
k0
m2
ω

K2
ρb(k0) = 1 . (3.203)

Sum rules for fermions

Also for the fermions a sum rule can be derived. The derivation is analogous
to the boson case but based on the anti commutation relation instead of the
commutation-relation. As for bosons case I start from the Fourier transform

S>(t) − S<(t) =
∫ ∞

−∞

dk0

2π
e−ik0t (S>(k0) − S<(k0))

︸ ︷︷ ︸

ρψ(k0)

. (3.204)

The left-hand side is by definition

S>ab(t) − S<ab(t) = 〈ψa(t)ψb(0)〉β + 〈ψb(0)ψa(t)〉β
=

〈{

ψa(t), ψ
†
c(0)

}〉

β
γ0
cb

= δacγ
0
cb = γ0

ab , (3.205)

where the anti-commutation relation {ψa(t), ψ†
b(t

′)}|t=t′ = δab has been used.
Inserting this into (3.204) gives

11 =
∫ ∞

−∞

dk0

2π
e−ik0tγ0ρψ(k0) (3.206)

and calculating the trace yields a sum rule if one inserts the decomposition (3.74):

lim
t=0

1

4
Tr
∫ ∞

−∞

dk0

2π
e−ik0tγ0ρψ(k0) =

∫ ∞

−∞

dk0

2π
ρ0(k0) = 1 . (3.207)

Again the limit t → 0 has been performed. Obviously there is a sum rule for
the γ0 component of the fermion spectral function, only. In fact there is no
possibility to control the other contributions but it will turn out in the numerical
calculations that these parts have a width which is sufficiently large to be covered
by the lattice spacing. However, a possible real part is only taken into account
on Hartree level.
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3.2.7 The field equation and the masses

The vertex of the σ sunset diagram contains the expectation value of the σ field
explicitly. It is therefore necessary to determine the value of this field. This is
done by solving the field equation which follows from the potential (2.2) with
the two-particle irreducible contributions (3.76). As in the Hartree case the field
equation is obtained from eq. (1.108). Taking into account all possible contribu-
tions it reads

0 = m2
σσ̂ + 4λσ̂3 + 12λσ̂

∫

Q
Gσ(Q) − gσ

∫

Q
TrGψ(Q)

−6(4λ)2σ̂
∫

P

∫

Q
Gσ(P −Q)Gσ(P )Gσ(Q) = 0 . (3.208)

Those terms containing integrals and Matsubara sums have to be evaluated. The
integral over the σ loop is calculated straightforwardly with the above techniques.
Going to mixed representation and inserting the spectral function as above gives

∫

Q
Gσ(Q) =

2

(2π)2

∫
dℓ

2π

∫

d|q||q|2(1 + f(ℓ))ρσ(ℓ, |q|) . (3.209)

The constant term under the integral is divergent. It is therefore subtracted. Also
the fermion loop can be calculated quickly. The evaluation of the Matsubara sum
and the introduction of the spectral function gives

∫

Q
TrGψ(Q) = Tr

∫ d3q

(2π)3

∫ dℓ

2π
(1 − f̃(ℓ))ρψ(ℓ,q) . (3.210)

Again, the decomposition into the Dirac structure (3.74) has to be performed.
However, if the trace is taken, only the part proportional to the unit-matrix
survives because γ matrices are traceless. The momentum integral can then be
simplified as above to yield

∫

Q
TrGψ(Q) =

8

(2π)2

∫ ∞

−∞

dℓ

2π

∫

d|q||q|2(1 − f̃(ℓ))ρm(ℓ, |q|)

=
8

(2π)2

∫ ∞

0

dℓ

2π

∫

d|q||q|2
(

1 − 2f̃(ℓ)
)

ρm(ℓ, |k|) , (3.211)

where the anti-symmetry of ρm has been used. The constant term in the second
row is divergent and therefore has to be subtracted, so that one finally obtains

∫

Q
TrGψ(Q) = − 16

(2π)2

∫ ∞

0

dℓ

2π

∫

d|q||q|2f̃(ℓ)ρm(ℓ, |k|) . (3.212)

The sunset term of (3.208) bears some problems in its treatment. Because there is
no possibility to calculate any momentum integrals analytically the full expression
contains six integrals. The computational effort of this is too high to include this
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term. However, it turned out that this term is (at T = 200 MeV) by a factor of 104

smaller than the tadpole term. I therefore neglect it in this work. I concentrate
on the influence of the decay widths on the fields and masses, so I calculate
those analogous to the Hartree approximation where the sunset diagrams were
not included.
If the condensate has been calculated by solving the above field equation the
masses of the mesons and the fermions can be determined. Therefor an ansatz
of a propagator with an effective mass (2.7) and (2.8) is made in the Schwinger-
Dyson equations (2.5). These masses are regarded as the effective masses of
the respective particles. However, unlike in Hartree approximation the tadpole
diagram is calculated with the spectral functions. The fermion mass is thus

Mψ = mψ + gσσ (3.213)

and the σ mass is

M2
σ = m2

σ + 12λσ̂2 + 12λ
2

(2π)2

∫
dℓ

2π

∫

d|q||q|2(1 + f(ℓ))ρσ(ℓ, |q|) . (3.214)

The mass of the ω meson is again constant.

3.3 Numerical solution of the self-consistent

equations

To actually determine the spectral functions of the involved fields the coupled
equations for the σ-meson self-energy (3.110), the ω-meson self-energies (3.118)
and (3.120) as well as the fermionic contributions (3.165), (3.167) and (3.168)
have to be solved. The problem is self-consistent as stated above. The spectral
functions are functions of energy and momentum that is integrated over. The
equations are solved on a discretized energy-momentum lattice where self-energies
as well as spectral functions are calculated at each point.
The calculation is done iteratively within the following algorithm:

1. The calculation is initialized with the spectral functions of the free particles
(3.21) for bosons and (3.38) for fermions which are known analytically. The
σ field and the masses are those from the Hartree calculations.

2. The spectral function is inserted into the equations for the imaginary parts
of the self-energies. In this step the momentum and energy integrals are
calculated, which is the most time-consuming task. To minimize the effort
the Θ-function is evaluated beforehand and only permitted momenta are
taken into account (see fig. 3.6).

3. From the imaginary parts of the self-energies determined in step 2 the new
spectral functions are calculated as shown in section 3.2.5.
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Figure 3.6: The hatched region shows the momenta which are integrated over. The

momentum integration is constrained by the Theta function. Note that the size of this

region depends on the external momentum.

4. If a sum rule exists, its fulfillment is checked and if necessary a correction
is made. This holds for the boson spectral functions as well as the γ0 part
of the fermion spectral function. The correction is done either by adding a
δ function at the mass shell or by multiplying the spectral function by an
overall factor.

5. With the resulting spectral functions the σ field and the masses Mψ as well
as Mσ are determined according to section 3.2.7.

6. With the new spectral functions, σ field, and masses the calculation starts
again from step 2.

The algorithm resembles a simple fix-point scheme. Its convergence shows that
the approximation applied is meaningful in the following sense. In the first step
one starts with the tree-level propagators to construct the self-energies. Those
self-energies are therefore built from tree-level propagators. In the next itera-
tion the new propagators enter the self-energies. Those are not tree-level any-
more but contain the dressing of the step before. Convergence of this algorithm
means that the higher-order contributions get smaller and smaller. This itera-
tive procedure has been widely used for self-consistent calculations at non-zero
density and temperature in relativistic (e.g. [MR05, KM93]) and non-relativistic
(e.g. [LEL+00, LLLM02, FLM03a]) approaches with the interactions based on
nucleon-nucleon scattering data.
There are two problems to bear in mind. On the one hand, the lattice spacing
must not be too wide to be able to resolve the peak of the spectral function at
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the mass-shell. On the other hand, the lattice must not be too small in energy-
momentum space because otherwise significant parts of the spectral functions
might be cut off. However, a calculation of more than around 200 × 200 points
would be too time consuming with the computing power currently at hand. It
turned out that for my calculations a total extent of the lattice of 5730 MeV in
energy and momentum direction is reasonable if the temperature is below 200
MeV. For temperatures of 200 MeV and higher a range of 11460 MeV is neces-
sary. Although the final spectral functions are not much broader than at lower
temperatures, it emerged that intermediate states of the calculation are too broad
to fit onto the small lattice. The loss of spectral strength does not happen un-
noticed. If the lattice spacing is too wide and the delta function gets lost, some
spectral functions either show a change of their sign at positive energies or vanish
completely after a certain number of iterations. If, on the other hand, the lattice
range is not sufficient the maxima of some spectral functions cross the lightcone
in the |k|-k0-plane. The number of grid points was 191 × 191 which yields a
lattice spacing of 30 MeV in the calculations below 200 MeV while for the larger
energy-momentum range the lattice spacing is 60 MeV. The correction of the sum
rules has been carried out in the following way: At temperatures below 175 MeV
all corrections were done by adding a delta function at the mass-shell because the
width of the spectral functions was very small. The delta function was realized as
a box function on three lattice points with a height that just corrected the sum
rule. Between T = 175 MeV and T = 200 MeV the γ0 component of the fermion
spectral function has been corrected by an overall factor while the meson spectral
functions were corrected by a delta function. Above T = 200 MeV all sum rules
were corrected by factors. The factors had values between approximately 0.7 and
1.3 . At very high momenta, at the edge of the lattice, the factors became higher
because the spectral function was truncated.
For practical purposes the momentum integral has been split into 32 pieces which
could be calculated in parallel. At the end of each step all parts were put together
and the next iteration step was initialized.
The convergence was checked by calculating the ratio of the spectral function in
two successive iterations. Very good convergence (ratios of 0.99999 to 1.0000)
was achieved in 15 to 20 iteration steps.

3.4 Results in the improved approximation

3.4.1 The masses and the fields

The masses and the σ field are calculated as described in section 3.2.7. The
equations are the same as in Hartree approximation but the integrals over the
propagators are computed with the spectral functions inserted as shown in sec-
tion 3.2.7 instead of the Ansätze with fixed masses. The Hartree results can be
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reproduced if the spectral functions are delta functions at the mass-shell.
The studies presented here therefore show the effects which result from the non-
zero width of the spectral functions as well as from the interaction of fermions
with mesons. It should be noted that, as shown in eq. (3.211), the scalar part of
the fermion spectral function ρm enters the field equation (3.208) while there is no
sum rule for this. Therefore, in principle it could happen that some contribution
to this term of the field equation gets lost by falling between the lattice spacing
or because the real part is neglected for the sunset diagrams. The observations
for ρ0, where the sum rule has to be corrected by around 20 %, suggest that ρm
might be uncertain by a similar amount which would not change the qualitative
findings.
The left part of figure 3.7 shows the σ field as a function of temperature, com-
paring tree-level, Hartree, and the calculation where all diagrams of figure 2.1 are
taken into account (except for the real parts of the sunset diagrams). The latter
will be referred to as improved approximation in the following. The right-hand
part shows the mass of the fermion in the same approximations. Both quantities
are directly correlated via (3.213). One observes a significant influence of the
additional interactions and the non-zero widths. The rise of the field and the de-
crease of the fermion mass are smoother than in the other approximations. The
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Figure 3.7: The left figure shows the σ field in comparison of the Hartree-, tree-level

and the improved approximation. The right diagram shows the same comparison for

the mass of the fermion.

difference compared to tree-level is much more pronounced than in the Hartree
calculations. This is due to the fact that in the Hartree approximation the only
difference compared to tree-level is the additional term in the σ-meson mass



3.4 Results in the improved approximation 107

which emerges from the tadpole diagram. The field equation is influenced only
indirectly because it contains the σ-meson mass. Although the terms which occur
in the improved approximation are the same as in Hartree, all propagators are
now expressed by their spectral functions which also include the sunset diagrams
of figure 2.1 and have a non-zero decay width. It will be shown later in the dis-
cussion of the spectral functions that the widths of the spectral functions increase
with higher temperatures (compare figures 3.11, 3.16 and 3.19). Therefore, the
influence of the non-zero width should increase with temperature as well. To
demonstrate this figure 3.8 shows the two integral terms of the σ field equation
(3.208), individually. The left-hand figure shows the integral over Gσ while the
right-hand side shows the scalar density which is the term proportional to gσ.
Actually, both terms deviate from each other in the different approximations.
The first thing to observe is that the scalar density is bigger than the integral
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Figure 3.8: The two integral terms of the σ field equation. The left-hand figure shows

the integral over Gσ while the right-hand side shows the scalar density which is the

term proportional to gσ.

over Gσ by an order of magnitude. It therefore dominates the behavior of the σ
field and the fermion mass. Indeed it rises much more slowly in the improved
approximation than on Hartree level. The difference between the two resembles
the difference in the σ field and the fermion mass. Physically, a slower decrease of
the fermion mass leads to a suppressed production of particle anti-particle pairs
whereby the scalar density, which is essentially the sum of particle number and
anti-particle number (compare eq. 2.32), rises more slowly. This induces a slower
increase of the scalar field.
Figure 3.9 shows the mass of the σ meson as a function of temperature comparing
tree-level, Hartree approximation, and the improved approximation. Its behavior
is determined by the σ field and the same integral over Gσ which appears in the
field equation. The latter is shown in the left-hand diagram in figure 3.8. This
term emerges from the tadpole diagram. Here the two levels of approximation
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Figure 3.9: Mass of the σ field in the Hartree, tree-level, and the improved approxima-

tion.

show a qualitatively different behavior. In the Hartree approximation it rises
most rapidly between temperatures of 175 MeV and 250 MeV but saturates at
higher temperatures. This explains why the difference compared to tree-level is
most pronounced in this very region and becomes smaller again at higher tem-
peratures. In contrast, in the improved approximation the respective term rises
almost exponentially without reaching saturation within the calculated range of
temperatures. As a result, Hartree and improved approximation first stay close
to each other but diverge at higher temperatures.
The calculations show that the non-zero width indeed changes the results com-
pared to a quasi-particle approach. It significantly smoothens the crossover which
is usually observed in the Walecka model.
Calculations beyond T = 275 MeV are unfortunately not practicable because the
lattice size is restricted by computing power as discussed in section 3.3.
For further studies it might be interesting to investigate the influence of the non-
zero width when more baryons are taken into account. It was shown in [WTM+87]
that a real first-order phase transition is observed in the Walecka model if baryon
resonances are included in the calculation. This is because the scalar density,
which triggers the σ field and thus the fermion mass, is connected to the num-
ber of fermion-anti-fermion pairs. If the number of fermion degrees of freedom
is increased by including more baryon species, the scalar density changes much
more quickly with temperature and therefore also the σ field. It should be inves-
tigated if this phase transition is also softened when non-zero widths are taken
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into account.

3.4.2 The bosonic spectral functions

I now want to show the spectral functions explicitly as they result from the self-
consistent calculations.

The σ meson

Figure 3.10 shows the spectral function of the σ meson at four different temper-
atures. It exhibits a non-trivial structure for ω > |k|, but drops exponentially
for ω < |k| which is shown exemplary in figure 3.12 on the right-hand side. In
the following the lower bounds of the figures are chosen to bring out the other
structures more clearly while the decrease in the space-like region of the energy-
momentum plane is truncated by hand.
The most prominent feature in the spectral function is a pronounced maximum
at the mass-shell which is highest at small momenta and decreases with higher
momenta. Especially at low temperatures it is very sharp and approaches a delta
function. As mentioned in section 3.3 the sum rule is checked at each momentum
and is corrected by adding a delta function at the mass-shell or multiplying an
overall factor, if necessary. The peak gets broader at higher temperatures. Its
width Γ is connected to the imaginary part shown in fig. 3.12 on the left-hand
side by [Wel83]

Γ(ω) = − Im Π(ω)

ω
, (3.215)

evaluated at the mass-shell ω =
√
M2 + k2. It is shown in fig. 3.11 for the σ

meson at different temperatures. The most important thing to observe is the
increase of the decay width with temperature. Another prominent feature of fig-
ure 3.10 is the decay of the σ meson into a baryon anti-baryon pair which occurs
at an energy of two times the baryon mass at k = 0 MeV. It appears as a rapid
increase of the spectral function at the respective energy. At low temperatures
the onset is relatively sharp. With higher temperatures it becomes smeared out,
on the one hand because the effective baryon mass decreases and on the other
hand because the mass-shell peak becomes broader. Eventually the peak and the
decay overlap.
The decay structure itself essentially maintains its shape, however, it becomes
sharper with higher momenta. Together with the mass-shell peak becoming more
narrow a deep trough is formed at high momenta at temperatures around 200
MeV. However, it should mentioned that this structure might be unphysical be-
cause two spectral functions (ρm and ρq) that enter here cannot be corrected by
sum rules. I found that in general a missing correction can lead to such struc-
tures.
The σ meson also couples to itself in the sunset diagram, allowing for a decay
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Figure 3.10: The spectral function of the σ meson at a temperature of T = 100 MeV,

T = 150 MeV, T = 200 MeV and T = 250 MeV.
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Figure 3.11: The decay width of the σ meson as a function of temperature at k = 165

MeV. The width approximately increases exponentially with higher temperatures.
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Figure 3.12: The imaginary part of the self-energy (left-hand side) and the complete

spectral function (right-hand side) of the σ meson at T = 150 MeV.
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of a σ meson into two σ mesons. This decay is visible in the spectral function at
temperatures below or equal 200 MeV. To illustrate this, figure 3.13 shows a cut
through the σ-spectral function at a momentum of k = 165 MeV and different
temperatures. The two-sigma decay is visible at T = 150 MeV and T = 200
MeV as a little step at twice the effective σ-meson mass, which is Mσ = 546
MeV at T = 150 MeV and Mσ = 617 MeV at T = 200 MeV. At higher temper-
atures it becomes covered by the broadening mass-shell peak. The two-fermion
decay is also visible very well at T = 150 MeV, where the effective mass of the
fermion is Mψ = 935 MeV, and at T = 200 MeV with Mψ = 903 MeV. At higher
temperatures this structure also merges with the mass-shell peak because of the
decreasing fermion mass as well as the rising σ-meson mass. The shift of the
mass-shell peak itself and its broadening with rising temperature are also nicely
visible in this figure. Not shown in the figures is the fact that the σ spectral func-
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Figure 3.13: The spectral function of the σ meson at a momentum of k = 165 MeV as

a function of energy at T = 150 MeV, T = 200 MeV and T = 250 MeV. Beside the

mass-shell and the two-baryon decay one can see the two σ-meson decay of the sunset

diagram at an energy of twice the effective σ mass.
tion is anti-symmetric in energy, as are all other bosonic spectral functions. This
can be easily seen in (3.11) together with the definition of the spectral function
(3.7).

The ω meson

Figure 3.14 shows the transverse projection of the ω-meson spectral function.
The most prominent structure is again the mass-shell peak which gets broader
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Figure 3.14: The transverse projection of the spectral function of the ω meson at a

temperature of T = 100 MeV, T = 150 MeV, T = 200 MeV and T = 250 MeV.
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with higher temperatures while the maximum value decreases. Furthermore,
the spectral function clearly shows the onset of the decay into two baryons at
energies of twice their effective mass, a process which corresponds to the sunset
diagram in the self-energy. At low temperature the mass-shell peak and the
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Figure 3.15: The transverse (left) and longitudinal (right) projection of the ω-meson

spectral function at a momentum of k = 495 MeV as a function of energy at T =

150 MeV, T = 200 MeV and T = 250 MeV. The fermion-anti-fermion decay is very

pronounced at the lower two temperatures and merges with the mass-shell peak at

T = 250 MeV.
decay are well separated although the trough between them gets more shallow
at higher momenta. With the peak becoming broader and the effective baryon
mass decreasing at higher temperatures the two structures start to overlap until
the trough vanishes. The situation is highlighted in figure 3.15 which shows a cut
through the transverse and the longitudinal projection of the ω-meson spectral
function at a momentum of k = 495 MeV and three different temperatures. Since
the real parts of the ω-meson self-energies are not taken into account, the mass of
the ω meson does not change. Thus the peak on the mass-shell does not change
its location. The decay maximum flattens a little bit at higher momenta.
The decay width of the transverse as well as the longitudinal projection is shown
in figure 3.16 as a function of temperature at a momentum of k = 765 MeV.
It increases approximately exponentially with rising temperature, but a little
bit faster for the longitudinal projection. Figure 3.17 shows the longitudinal
projection of the ω-meson spectral function ρℓ. As in the other spectral functions
two main structures are visible: a pronounced peak at the mass-shell and the
decay into baryon and anti-baryon. Again the peak gets broader with higher
temperatures while the onset of the decay moves to lower energies. As in the
transverse spectral function the trough gets more shallow at higher momenta but
here it vanishes completely, so that the mass-shell and the decay structure become
indistinguishable. Figure 3.15 shows a cut through ρℓ at different temperatures
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Figure 3.16: The decay width of the transverse and the longitudinal projection of the

ω meson at different temperatures and a momentum of k = 765 MeV. Both widths

approximately increase exponentially with temperature.

on the right-hand side. It very much resembles the transverse projection.

3.4.3 The fermionic spectral functions

The fermionic spectral function is decomposed into three parts with different
Dirac structure. Figure 3.18 shows the part proportional to γ0. Like the bosonic
spectral functions, the fermionic ρ0 shows a sharp peak at the mass-shell. It
becomes broader with higher temperatures as shown in figure 3.19. At the same
time the height of the mass-shell peak is reduced by around 75 %.

Furthermore, a decay structure is visible. It occurs at energies between
ω = 1400 MeV and ω = 1500 MeV which coincides very well with the emission
of a σ meson, which at T = 150 MeV has an effective mass of Mσ = 547 MeV,
by the fermion with an effective mass of Mψ = 935 MeV. The decay is very well
separated at low temperatures. However, with the broadening of the mass-shell
peak this starts to overlap with the decay.
On the other hand, the ω meson with a mass of mω = 782 MeV also couples
to the fermion. This decay occurs at ω ≃ 1700 MeV and forms a little step in
the spectral function at T = 150 MeV. At higher temperatures it is not visible.
The situation is highlighted in figure 3.20 which is a cut through the spectral
function at a momentum of k = 195 MeV for different temperatures. This figure
also shows the shift of the mass-shell peak and its broadening very well.
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Figure 3.17: The longitudinal projection of the spectral function of the ω meson at a

temperature of T = 100 MeV, T = 150 MeV, T = 200 MeV and T = 250 MeV.
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Figure 3.18: The part of the fermionic spectral density which is proportional to γ0 at

a temperature of T = 100 MeV, T = 150 MeV, T = 200 MeV and T = 250 MeV.
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Figure 3.19: The width of the fermion spectral function ρ0 as a function of momentum

at different temperatures and k = 765 MeV.

It should be noted that the γ0 component of the fermion self-energy is
symmetric in energy, in contrast to all other spectral functions calculated here
which are anti-symmetric. This behavior can also be observed in the spectral
function of the free fermion (3.38) where the spatial and the scalar component
are anti-symmetric while the time component is multiplied by k0 and therefore
symmetric.
Figure 3.21 shows the part of the fermion spectral function which is proportional
to the unit matrix. Again a prominent peak is visible on the mass-shell which
gets broader with higher temperatures. Furthermore a decay structure can be
identified which overlaps with the mass-shell peak at higher momenta and higher
temperatures. As for the γ0 component of the spectral function ρ0, this decay
can be associated with the decay of a fermion into a σ meson and a fermion since
it occurs at around ω = 1550 MeV which is just the sum Mσ +Mψ. Also the ω
decay is visible at T = 150 MeV and T = 200 MeV as a little bump at an energy
which is the sum of the effective fermion mass at the respective temperature and
the ω mass of mω = 782 MeV (around ω = 1700 MeV). Figure 3.22 highlights
this in a cut through the spectral function at a momentum of k = 195 MeV.
For ρm no sum rule exists to check whether some contribution falls between the
lattice spacing or misses because the real part has been neglected. However, the
time component ρ0 is corrected by at most 20 %, so that a similar uncertainty
should be expected here.
Finally, figure 3.23 shows the part of the fermion spectral function which is
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Figure 3.20: Cut through the spectral function ρ0 of the fermion at a momentum of

k = 195 MeV. The onset of the σ meson decay is clearly visible between ω = 1400

MeV and ω = 1500 MeV at the lower two temperatures. At higher temperatures this

process only alters the slope a bit. The interaction with the ω meson occurs at around

ω = 1700 MeV as a little step at T = 150 MeV.
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Figure 3.21: The part of the fermionic spectral density which is proportional to the

unit matrix, ρm, at a temperature of T = 100 MeV, T = 150 MeV, T = 200 MeV and

T = 250 MeV.
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Figure 3.22: Cut through the fermion spectral function ρ0 at a momentum of k = 195

MeV. The onset of the decay with the σ meson is clearly visible between ω = 1400

MeV and ω = 1500 MeV. Also the ω decay at around ω = 1700 MeV is visible as a

little step at the lower two temperatures.
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proportional to γi. Again a pronounced peak on the mass-shell and a decay
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Figure 3.23: The part of the fermionic spectral density which is proportional to γi at a

temperature of T = 100 MeV, T = 150 MeV, T = 200 MeV and T = 250 MeV.

structure are visible. The decay and the mass-shell peak merge at high momenta
as well as high temperatures because the mass-shell peak broadens significantly.
At the same time it reduces its height by about 70 %. The decay is highlighted
in figure 3.24 which provides a cut through the spectral function at a momentum
of k = 195 MeV. The shape resembles the cut through ρm. The σ-meson decay
and the ω-meson decay are clearly visible as steps at energies which are the sums
of the respective effective masses. Again there is no sum rule for ρv.
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Figure 3.24: Cut through the fermion spectral function ρv at a momentum of k = 195

MeV. The onset of the decay with the σ meson is clearly visible between ω = 1400

MeV and ω = 1500 MeV. The ω-meson decay occurs at ω = 1720 MeV and moves to

the right together with the fermion mass.
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–IV–

Conclusions and outlook

This work is dedicated to the investigation of nuclear matter at non-zero tem-
peratures within an effective hadronic model based on the Walecka model. It
includes fermions as well as a vector ω meson and a scalar σ meson where for
the latter a quartic self-interaction has been considered. The coupling constants
have been adapted to the saturation properties of infinite nuclear matter.
A set of self-consistent Schwinger-Dyson equations has been set up for all in-
cluded particles within the Cornwall-Jackiw-Tomboulis (CJT) formalism. This
has been expanded to non-zero temperatures via the imaginary time formalism.
Three different stages of approximations have been considered: The tree-level ap-
proximation including no two-particle irreducible loop diagrams at all, the Hartree
approximation which takes into account the double-bubble diagram for the scalar
meson, and finally an improved approximation where in addition two-particle ir-
reducible sunset diagrams for all fields were included (compare figure 2.1). The
tree-level and the Hartree approximation lead to quasi-particle solutions where
all particles have fixed masses which are functions of temperature and chemical
potential but not of the external momentum. In contrast, the improved approx-
imation leads to particles which have a non-zero width in energy and therefore
have to be expressed in terms of spectral functions. The parameters determined
within the Hartree approximation have been used for all calculations, which made
it possible to study the influence of the non-zero width directly.
The Schwinger-Dyson equations are solved by the fully dressed propagators. For
the quasi-particles the self-energies of these propagators are real functions which
account for a shift of the mass. In the improved approximation the solutions are
complex functions in general. However, since the real parts of the sunset dia-
grams require thorough renormalization and a huge computational effort, only
their imaginary parts have been considered in this work. Those define the widths
of the spectral functions. The real parts of the self-energies are taken into account
on Hartree level in all calculations.
On Hartree level the mean-field approximation has been applied, whereby only
the time component of the vector mesons survives and the expectation value of
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the fermion vanishes. The Schwinger-Dyson equations are then a set of coupled
equations which can be solved straightforwardly.
In the improved approximation the vector mesons have to be projected with a
suitable set of projection tensors and the fermions have to be decomposed into
products of γ matrices to account for their Dirac structure. This procedure leads
to a set of six coupled integral equations which are solved for the spectral func-
tions on a discretized energy-momentum lattice in an iterative algorithm. The
algorithm models the dressing of the propagator by inserting the self-energy on
a certain level of approximation into the next iteration and thereby adding the
loop dressing of the previous step. A meaningful approximation therefore leads
to a converging iteration.
The Hartree-level calculations have been done at different temperatures as well as
chemical potentials. It turned out that the difference compared to tree-level rises
with temperature up to a maximum at around T = 200 MeV at zero chemical
potential. At higher chemical potentials the influence of the tadpole diagram is
significantly reduced. The difference between the approximations is most pro-
nounced for the mass of the σ meson where the Hartree value lies above the
tree-level value by around 15 to 20 % (fig. 2.4) because here the tadpole diagram
enters directly. The σ-mass rises with temperature which is a usual feature of the
Walecka model in Hartree approximation.
The influence on the σ-field itself and the mass of the fermion emerged to be
minor (fig. 2.6 and fig. 2.5). Also the thermodynamic properties pressure and en-
tropy density remained virtually unchanged when the tadpole diagram was taken
into account (fig. 2.7).
The improved approximation differs more obviously from the other calculations.
Here, the effect of the non-zero widths leads to a strong deviation in all quantities
under consideration. However, the investigation has been done for zero chemical
potential, only.
The value of the σ field increases with temperature as in the other calculations
but significantly more slowly and at higher temperatures (fig. 3.7). This behavior
can be traced back to the scalar density which is clearly reduced compared to the
Hartree approximation. The mass of the fermion is directly connected to the σ
field and consequently shows the analogous behavior.
Also the mass of the σ meson changes (fig. 3.9). At low and intermediate temper-
atures it stays close to the Hartree result but rises much more slowly at higher
temperatures. This behavior can be attributed to the tadpole term which behaves
qualitatively different when calculated with non-zero widths. While it shows a
saturation in the Hartree approximation it rises almost exponentially over the
whole temperature range in the improved calculation.
Furthermore, the spectral functions of all involved particles have been studied.
They all approximately broaden exponentially with increasing temperature. Be-
sides a peak on the mass-shell, which all spectral functions have in common,
one observes the different decay channels. In the bosonic spectral functions the
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fermion-anti-fermion decay is most pronounced. For the ω meson it is the only
decay to occur. On the other hand, for the σ meson also a two-sigma decay is
possible which indeed can be observed at low temperatures. At higher tempera-
tures it becomes covered by the broadening mass-shell peak.
The fermion spectral functions show the decay into the σ meson and a fermion as
well as into the ω meson and a fermion. Although both structures are eventually
visible the σ decay is much more pronounced than the ω decay.
In all spectral functions the decay structures merge with the mass-shell peaks at
very high temperatures of around T = 250 MeV.
Within this work the techniques have been developed to apply the self-consistent
CJT formalism to the investigation of hadronic matter which includes fermions
together with vector and scalar mesons. All particles adopt non-zero widths
which leads to a significant softening of the rise of the σ-field. It would be an
interesting next step to investigate real phase transitions under the inclusion of
non-zero widths to see if the order of the phase transition possibly changes. In
particular the Walecka model shows a first-order phase transition from massive
fermions to nearly massless ones if more fermionic degrees of freedom are taken
into account [WTM+87]. Potentially, this becomes a cross-over when non-zero
widths are considered.
But also the expansion to models which are closer to QCD is promising. Es-
pecially the investigation of the chiral phase transition within models based on
chiral symmetry should be possible (section 1.7 lists some possible models). It
is an interesting question if this phase transition changes its behavior when the
particles acquire a non-zero width as it is suggested by the findings in this work.
More physical models would also allow for physical predictions of particle pro-
ductions in experiments.
A very straightforward expansion would be the inclusion of non-zero chemical po-
tentials. However, it should be kept in mind that the current calculation already
came close to the limit of computing power. The inclusion of more particles would
certainly increase the computing time. Especially the widening of the spectral
functions constitutes a limit. This is particularly important for calculations where
the σ meson plays the role of the chiral partner of a light Goldstone boson. Here
it is known that the σ meson acquires a huge decay width whereby a lattice of
200 × 200 points might probably not be sufficient. Furthermore, the inclusion of
the real parts of the sunset diagrams should be mentioned as a possible expansion
of this work. It would hereby become possible to investigate the mass shift which
is induced by the sunset diagrams. However, thorough renormalization has then
to be performed.
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–Appendix A–

Conventions

The following conventions have been used in this work:
Four-vectors are denoted by upper case letters:

X = (t,x) (A.1)

are spatial vectors and
P = (ω,p) (A.2)

are momentum vectors. The metric tensor is

gµν =








1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1








. (A.3)

The integrals over space variables are, unless otherwise noted,

∫

X
f(X) =

∫ 1/T

0
dτ
∫

d3xf(τ,x) , (A.4)

and integrals over momentum variables are

∫

K
f(K) = T

∞∑

n=−∞

∫
d3k

(2π)3
f(iωn,k) , (A.5)

where ωn are the Matsubara frequencies ωn = 2nπT for bosons and ωn = (2n +
1)πT for fermions.
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–Appendix B–

Determination of the

parameters

The Walecka model used in this work contains three parameters. These have been
determined by adaption to the properties of nuclear matter at zero temperature
in mean-field approximation.
All thermodynamic quantities can be derived from the grand canonical potential
[FS90]

Ω = −T lnZ (B.1)

where Z = Trρ̂ is the grand canonical partition function and T the temperature.
It is the trace over the statistical density matrix

ρ̂ = exp
[

− 1

T
(Ĥ − µB̂)

]

, (B.2)

where µ is the chemical potential. Here B̂ is the baryon number operator. The
Hamilton operator Ĥ can be deduced from the energy-momentum tensor

Tµν =
∂L

∂(∂νψ)
∂µφ− gµνL , (B.3)

as

Ĥ =
∫

d3xT 00 . (B.4)

In order to calculate T 00 explicitly we insert the Fourier representation of the
baryon field

ψ(x, t) =
∑

s=±1

∫ d3p

(2π)3/2

[

bp,su(k, s)e
i(px−ǫ+t) + d†p,sv(p, s)e

−i(px+ǫ−t)
]

ψ(x, t) =
∑

s=±1

∫ d3p

(2π)3/2

[

b†p,su(k, s)e
−i(px−ǫ+t) + dp,sv(p, s)e

i(px+ǫ−t)
]

(B.5)
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into the energy-momentum tensor and obtain

T 00 =
∑

s=±1

∫
d3p

(2π)3
p0

(

b†b+ d†d (+1)
)

− 1

2
∂µσ∂

µσ +
1

2
m2
σσ

2

+λσ4 − 1

2
m2
ωωµω

µ +
1

4
(∂µων − ∂νωµ)(∂

µων − ∂νωµ) ,

(B.6)

where the divergent part in the first line represents the Dirac sea which is ne-
glected here. The Hamilton operator is now given by (B.4). The partition func-
tion is obtained as the trace over the density matrix (B.2)

Z = Trρ̂ =
∑

nk

〈nk| exp






− 1

T




∑

s,i

p0

(

b†b+ d†d
)

− V
(

1

2
∂µσ∂

µσ +
1

2
m2
σσ

2 + λσ4

−1

2
m2
ωωµω

µ +
1

4
(∂µων − ∂νωµ)(∂

µων − ∂νωµ)
)

− µB̂
]}

|nk〉

= exp
{

1

T
V
[
1

2
∂µσ∂

µσ +
1

2
m2
σσ

2 + λσ4

−1

2
m2
ωωµω

µ +
1

4
(∂µων − ∂νωµ)(∂

µων − ∂νωµ)
]}

×
∏

s,i

(

1 + e−
1

T
(E−µ∗i )

) (

1 + e−
1

T
(E+µ∗)

)

, (B.7)

where the sum over i counts the intrinsic quantum numbers. For the Walecka
model the grand canonical potential is with (B.1)

Ω

V = −1

2
∂µσ∂

µσ +
1

2
m2
σσ

2 + λσ4 − 1

2
m2
ωωµω

µ +
1

4
(∂µων − ∂νωµ)(∂

µων − ∂νωµ)

−Tγ
∑

i,k

[

ln(1 + e−
1

T
(E−µ∗i )) + ln(1 + e−

1

T
(E+µ∗i ))

]

. (B.8)

Here γ is the spin-isospin degeneracy factor. In mean-field approximation at
T = 0 this becomes

Ω

V
∣
∣
∣
∣
T=0

=
1

2
m2
σσ

2 + λσ4 − 1

2
m2
ωω

2
0 +

γ

(2π)3

∑

i

∫

d3k(E(k) − µ∗
i ) (B.9)

as long as E < µ∗.

In the following the definitions S = gσσ, C2
S = g2σ

m2
σ
, C2

V = g2ω
m2
ω

and λ′ = λ
g4σ

are
used.

Binding energy

In general the binding energy is E = Ω/V + TS + µρB, where

S =
∂(Ω/V)

∂T
(B.10)
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is the entropy density. At zero temperature one obtains in a straightforward
calculation for the Walecka model:

E =

(

1

2

S2

C2
S

+ λ′S4 +
1

2
C2
V ρ

2
B

)

+
1

2π2
γ

[

1

4
k3

FE
∗
F +

1

8
Mψ

2kFE
∗
F − 1

8
Mψ

4 ln

(

kF + E∗
F

Mψ

)]

, (B.11)

which is connected to the binding energy per nucleon EB by

EB =
E
ρB

−mΨ . (B.12)

Here E∗ =
√

~k2 +mΨ + S, Mψ = mΨ + S and µ∗ = µ − ρBC
2
V . The Fermi-

momentum kF can be determined via the Einstein theorem as (1.138)

kF =
√

µ∗2 −Mψ
2 . (B.13)

In this work I used a value of EB = −16 MeV for the saturation binding energy.

Baryon density

The baryon density is at zero temperature (compare (1.137))

ρB = γ
k3

F

6π2
, (B.14)

where γ = 4 counts the fermionic spin-isospin degrees of freedom. Here a value
of ρ0 = 0.15891fm−3 for nuclear matter at saturation has been used.

Compressibility

The compressibility is in general [KMN+95]

K = 9ρ0
∂µ

∂ρ

∣
∣
∣
∣
∣
ρ=ρ0

, (B.15)

with µ =
√

k2
F +Mψ + C2

V ρ , where

Mψ = mψ + gσσ = mψ − C2
SρS + C2

Sm
2
ψλ

′ (mψ −Mψ)3

m2
ψ

(B.16)

and ρS is the scalar density. Thus, for the Walecka model one obtains

K = 9ρ0

(

C2
V +

2π2

γkFE
∗
F

− C2
S

Mψ
2

E∗
F

2 g

)

, (B.17)
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where

g =
(

1 +
γ

4π2
C2
Sf + 12λ′C2

SS
2
)−1

, (B.18)

with

f = kFE
∗
F +

2kFMψ
2

E∗
F

− 3Mψ
2 ln

(

kF + E∗
F

Mψ

)

. (B.19)

In this work I used a compressibility of K = 300 MeV, however, this value is
known with relatively low accuracy, only.

Gap equations for the σ field

The field equations can also be derived from the grand canonical potential. They
provide the value of the field, which extremizes the potential:

∂(Ω/V )

∂σ
= 0 . (B.20)

In the Walecka model at zero temperature one obtains in a straightforward cal-
culation

m2
σS + 4λ′C2

Sm
2
σS

3 + C2
Sm

2
σρS = 0 , (B.21)

where

ρS =
γ

4π2
m∗

[

kFE
∗
F −m∗2 ln

(

kF + E∗
F

m∗

)]

. (B.22)

which is the T = 0 limit of the result obtained in the CJT calculation.

Gap-equations for the ω field

Similarly for the ω field one obtains from

∂(Ω/V )

∂ω0
= 0 . (B.23)

in a simple calculation
−m2

ωω̂0 + gωρB = 0 (B.24)

which can be solved for ω̂0 immediately.
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Deutsche Zusammenfassung

Im Alter von 10−5 Sekunden hatte das Universum eine Temperatur von ungefähr
170 MeV. Zu dieser Zeit fanden sich die Quarks, welche bis dahin mit den Gluo-
nen in einem Quark-Gluon-Plasma vorgelegen hatten, zu Hadronen zusammen.
Es entstanden Baryonen aus je drei Quarks und Mesonen aus je einem Quark
und einem Antiquark. Je drei Antiquarks bildeten ein Antibaryon.
Wären im Urknall Quarks und Antiquarks in gleichen Mengen entstanden,
hätten sich nach ungefähr 10−4 Sekunden alle Teilchen mit ihren Antiteilchen
gegenseitig vernichtet, so dass das Universum vollständig wieder zerstrahlt
wäre. Dass dennoch Materie existiert ist ein Hinweis darauf, dass im Urknall
mehr Teilchen als Antiteilchen erzeugt worden sein müssen, oder dass der
anschließende Zerfall nicht für beide gleich abgelaufen ist.
Ein solcher Effekt muss allerdings sehr klein gewesen sein, denn bis heute konnte
er in Experimenten nicht reproduziert werden.
Man darf also davon ausgehen, dass das frühe Universum einerseits sehr heiß
war aber andererseits ein sehr geringe Netto-Baryonendichte hatte, weil die Zahl
der Teilchen ungefähr genauso hoch war wie die Zahl der Antiteilchen. Ziel der
vorliegenden Arbeit ist die Berechnung der Eigenschaften von Hadronen unter
solchen Bedingungen.
Da die Abstände zwischen den Teilchen als groß angesehen werden können, bietet
sich eine Untersuchung auf hadronischer Ebene an, in der die Quarkstruktur
nicht berücksichtigt wird. In dieser Arbeit verwende ich als hadronisches Modell
das Walecka-Modell, auch bekannt als Quanten-Hadro-Dynamik I (QHD I),
welches neben Baryonen ein skalares σ-Feld und ein vektorielles ω-Feld enthält
[Wal74]. Für das skalare Feld wird zusätzlich eine quartische Selbstwechsel-
wirkung einbezogen.
Da die Teilchen sich bei hohen Temperaturen relativistisch verhalten und die
Teilchenzahl nicht erhalten ist, erfolgt die Beschreibung quantenfeldtheoretisch.
Um temperaturabhängige Prozesse untersuchen zu können, muss die Tem-
peratur gesondert eingeführt werden. Dies geschieht auf elegante Weise in
der Pfadintegral-Quantisierung. In der Pfadintegral-Quantisierung wird der

135



136 Deutsche Zusammenfassung

Propagator eines Feldes beschrieben als kohärente Summe aller Wege, die der
Wert des Feldes an einem Raum-Zeit-Punkt zu einem anderen Wert an einem
anderen Raum-Zeit-Punkt nehmen kann. Die zeitliche Entwicklung des Feldes
wird durch die Übergangsamplitude beschrieben. Die Temperatur wird in
den Pfadintegral-Formalismus nun eingeführt, indem man eine Analogie dieser
Übergangsamplitude zur thermodynamischen Zustandsfunktion ausnutzt. Man
beobachtet nämlich, dass der Zeitentwicklungsoperator zur thermodynamischen
Dichtematrix wird, wenn man die Zeit durch eine imaginäre Temperatur t = −i 1

T

ersetzt. Da man die Übergangsamplitude durch ein Pfadintegral beschrieben
hat, kann man nun auch die Zustandsfunktion auf diese Weise ausdrücken. Als
Folge geht allerdings die Zeitabhängigkeit verloren, so dass nur statische Systeme
im thermodynamischen Gleichgewicht mit diesem Imaginärzeitformalismus
beschrieben werden können.
Berechnungen von Kernmaterieeigenschaften bei nicht verschwindenden Tem-
peraturen sind weit verbreitet. Allerdings wurden sie bisher meist in der Mean-
Field-Näherung [FS90, SW86, CW74, Wal95] oder in Ein-Schleifen-Näherung in
der Loop-Expansion [FS91, HS81] durchgeführt. Störungsentwicklungen sind bei
nicht verschwindenden Temperaturen im allgemeinen nicht konvergent, wie in
Abschnitt 1.4 dargelegt.
Wie Furnstahl et al. gezeigt haben, ist im Walecka-Modell auch die Loop-
Expansion, zumindest wenn bis zu zwei Schleifen berücksichtigt werden, nicht
konvergent [FPS89].
In dieser Arbeit verwende ich den Cornwall-Jackiw-Tomboulis-Formalismus
(CJT) für meine Berechnungen. Die Idee ist hier, einen Satz von selbst-
konsistenten Schwinger-Dyson-Gleichungen aufzustellen, deren Lösungen die
vollen Propagatoren der berücksichtigten Teilchen sind. Die Schwinger-Dyson-
Gleichungen werden hierbei über ein effektives Potential ausgedrückt, welches
für die Berechnungen in dieser Arbeit näherungsweise aufgestellt wird. Dia-
grammatisch gesprochen besteht die Näherung darin, dass nur Beiträge bis zu
einer bestimmten Irreduzibilität berücksichtigt werden. In dieser Arbeit sind
dies alle einteilchenirreduziblen und einige zweiteilchenirreduziblen Diagramme
aber keine, die drei- oder mehrteilchenirreduzibel sind.
Der CJT-Formalismus wurde ursprünglich für verschwindende Temperatur
entwickelt und wurde als solcher bereits auf Berechnungen von Kernmaterieeigen-
schaften angewandt. Zum Beispiel verwendeten Phat und Anh das Walecka-
Modell als Rahmen für ihre Untersuchungen [PA97a, PA97b] von Kernmaterie.
Aber auch bei nicht verschwindenden Temperaturen wurden Rechnungen
im CJT-Formalismus durchgeführt. So untersuchten Ruppert et al. die
Verbreiterung des ρ-Mesons in Abhängigkeit von der Temperatur [RR05].
Einige Autoren behandeln den chiralen Phasenübergang im Rahmen dieses
Formalismus, einerseits für Quasiteilchen mit impulsunabhängiger Masse
[Pet99, LRSB00, RRR03] aber anderseits auch unter Berücksichtigung von
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Effekten durch eine nicht verschwindende Zerfallsbreite [RRR05].
Ziel der vorliegenden Arbeit ist die Untersuchung des Einflusses nicht ver-
schwindender Zerfallsbreiten auf die Eigenschaften von Baryonen sowie skalaren
und vektoriellen Mesonen.
Die Untersuchung erfolgt in zwei Schritten. Im ersten Schritt berücksichtige
ich nur ein einziges zweiteilchenirreduzibles Diagramm, nämlich das Double-
Bubble-Diagramm (Zwei-Blasen-Diagramm) für das σ-Meson, welches aus der
quartischen Selbstwechselwirkung resultiert. Hier können die sich ergebenden
Schwinger-Dyson-Gleichungen durch Quasiteilchen-Ansätze gelöst werden, das
heißt, die Massen der Teilchen sind unabhängig vom Impuls und haben keine
Zerfallsbreite. Diese Näherung bezeichne ich im Folgenden als Hartree-Näherung.
Im zweiten Schritt beziehe ich zusätzlich die zweiteilchenirreduziblen Sunset-
Diagramme (Sonnenuntergangsdiagramme) mit ein. Dabei spielen drei
Diagramme eine Rolle. Zum einen ergibt sich aus der Selbstwechselwirkung des
σ-Mesons die Möglichkeit eines Sunset-Diagramms mit drei σ-Propagatoren.
Zum anderen können die Baryonen mit beiden Mesonen wechselwirken, wodurch
sich zwei weitere Sunset-Diagramme ergeben. Diese Näherung wird im Folgen-
den als verbesserte Näherung bezeichnet. Alle in dieser Arbeit verwendeten
Diagramme sind in Abbildung 2.1 dargestellt.
Für den Fall, dass Sunset-Diagramme berücksichtigt werden, lassen die
Schwinger-Dyson-Gleichungen keine Quasiteilchen-Lösung mehr zu, so dass
Spektraldichten eingeführt werden müssen. Ich berücksichtige hier die Realteile
der Selbstenergien weiterhin in Hartree-Näherung und behalte auch die Parame-
ter bei. Hinzu kommen jetzt allerdings Imaginärteile der Selbstenergien, welche
zu nicht verschwindenden Zerfallsbreiten führen. Daher lässt der Vergleich dieser
verbesserten Näherung zur Hartree-Näherung die direkte Untersuchung des
Einflusses der nicht verschwindenden Zerfallsbreiten auf die Eigenschaften der
berücksichtigten Felder zu.
Die verbesserte Näherung bringt einige Komplikationen verglichen mit der
Hartree-Näherung mit sich. Einerseits, weil nun auch das vektorielle ω-Meson
eine Selbstenergie bekommt, die eine Lorentz-Struktur hat und daher tensoriell
zerlegt werden muss. Andererseits aber auch, weil die Lösungen der Schwinger-
Dyson-Gleichungen jetzt keine einfachen Zahlen (nämlich die Massen der
Teilchen) sind, sondern Funktionen von Energie und Impuls, die Spektralfunk-
tionen. Darüber hinaus müssen die Baryonen hinsichtlich ihrer Dirac-Struktur
zerlegt werden.
Die Lösung der Schwinger-Dyson-Gleichungen nach den Spektralfunktionen
wird numerisch auf einem diskretisierten Energie-Impuls-Gitter bewerkstelligt.
Der Lösungsalgorithmus ist eine Iteration, bei welcher die in einem Iterations-
schritt berechneten Spektralfunktionen im nächsten Schritt zu Berechnung der
neuen Spektraldichten eingesetzt werden. Das Ergebnis dieses Vorgehens sind
die vollen Propagatoren. Die Konvergenz des Verfahrens zeigt an, dass die
gewählte Näherung physikalisch sinnvoll ist, weil Konvergenz bedeutet, dass die
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Berücksichtigung höherer Schleifen-Beiträge zum Propagator diesen ab einem
bestimmten Niveau nicht mehr verändern, wie in Abschnitt 3.3 dargestellt.
Wenden wir uns nun zunächst dem Einfluss des Double-Bubble-Diagramms
des σ-Mesons auf die Eigenschaften der Teilchen zu. Die Näherung ohne
das Double-Bubble-Diagramm wird im allgemeinen als Tree-Level-Näherung
(Baumgraphennäherung) bezeichnet.
Der Einfluss des Double-Bubble-Diagramms ist am deutlichsten in der Masse
des σ-Mesons bei verschwindendem chemischen Potential zu erkennen (Abb.
2.4). In Hartree-Näherung ist sie um bis zu 15 bis 20 % größer als in Tree-
Level-Näherung, wobei der Unterschied bei Temperaturen um T = 200 MeV
am stärksten ausgeprägt ist. Bei nicht verschwindenden chemischen Potentialen
fällt der Einfluss des Double-Bubble-Diagramms deutlich geringer aus. Dieses
Ergebnis wird schon dadurch angedeutet, dass der einzige zusätzliche Term,
der in Hartree-Näherung gegenüber der Tree-level-Näherung hinzukommt, in
der Gleichung für die Masse des σ-Mesons steht (Abb. 2.4). Alle anderen
Größen werden nur mittelbar beeinflusst, weil sie von dieser Masse abhängen.
Entsprechend ist der Einfluss des zusätzlichen Terms hier deutlich schwächer
ausgeprägt. Da der zusätzliche Term nicht vom chemischen Potential abhängt,
reduziert sich sein relativer Anteil mit steigendem chemischen Potential. Auf die
thermodynamischen Größen Druck und Entropiedichte hat das Double-Bubble-
Diagramm so gut wie keinen Einfluss (Abb. 2.7). Der Unterschied zwischen den
beiden Näherungen beträgt maximal 2 % (Abb. 2.8).
Das qualitative Verhalten bleibt in Hartree-Näherung gegenüber Tree-Level-
Näherung für alle betrachteten Größen das gleiche. Die Masse des σ-Mesons
steigt mit steigender Temperatur und steigendem chemischen Potential während
die Baryonenmasse (Abb. 2.5) als Folge des steigenden σ-Feldes (Abb. 2.6)
abfällt.
Die verbesserte Näherung hingegen zeigt sehr viel deutlichere Unterschiede zur
Tree-Level-Näherung. Generell lässt sich sagen, dass alle Anstiege und Abfälle
wesentlich langsamer mit steigender Temperatur geschehen als in den beiden
anderen Näherungen. Der Crossover zwischen der Phase schwerer Baryonen und
jener leichter Baryonen wird also stark aufgeweicht (Abb. 3.7). Eine ähnliche
Aufweichung beobachtet man bei der Masse des σ-Mesons (Abb. 3.9). Diese
wurde auch in der Hartree-Näherung schon angedeutet.
Der Unterschied zwischen den Näherungen nimmt mit steigender Temperatur
zu. Interessant ist in diesem Zusammenhang die Betrachtung der Zerfallsbreiten,
welche jetzt, durch Einführen einer Spektralfunktion, explizit berücksichtigt
werden. Für alle Teilchen ergibt sich eine ungefähr exponentielle Verbreiterung
mit zunehmender Temperatur (Abb. 3.11, 3.16 und 3.19). Nimmt man an,
dass die Unterschiede zur Hartree-Näherung durch die nicht verschwindenden
Zerfallsbreiten bedingt sind, passt es gut ins Bild, dass sie mit höheren Tempera-
turen stärker ausgeprägt sind.
Ein weiteres zentrales Resultat dieser Arbeit sind die Spektralfunktionen der
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berücksichtigten Teilchen (Abb. 3.10, 3.14, 3.17, 3.18, 3.21 und 3.23). Die
Spektralfunktionen können als Stärke eines Propagators bei einer bestimmten
Energie und einem bestimmten Impuls interpretiert werden.
Allen betrachteten Spektralfunktionen ist ein scharfes Maximum auf der Massen-
schale gemein. Bei verschwindendem Impuls liegt es genau bei einer Energie, die
der effektiven Masse des Teilchens entspricht und folgt bei höheren Impulsen der
relativistischen Energie-Impuls-Beziehung.
Auch die Zerfälle, welche durch die berücksichtigten Diagramme ermöglicht wer-
den, sind in den Spektralfunktionen zu erkennen. Für das σ-Meson beobachtet
man eine sehr ausgeprägte Zerfallsstruktur in ein Fermion-Antifermion-Paar so
wie, deutlich schwächer und teilweise durch die Spitze auf der Massenschale
verdeckt, den Zerfall in zwei σ-Mesonen, der durch die Selbstwechselwirkung des
σ-Mesons ermöglicht wird (Abb. 3.13).
In den Spektralfunktionen des ω-Mesons ist der Fermion-Antifermion-Zerfall
ebenfalls zu erkennen (Abb. 3.15). Weitere Prozesse gehen hier allerdings nicht
ein.
Für die Fermionen ergeben sich Zerfälle sowohl in ein σ-Meson als auch in
ein ω-Meson. Die σ-Zerfälle sind sehr ausgeprägt, während die ω-Zerfälle nur
schwach zu erkennen sind (Abb. 3.20).
In allen Spektralfunktionen beobachtet man, wie schon oben erwähnt, mit
steigender Temperatur eine signifikante Verbreiterung des Maximums auf der
Massenschale. Dadurch überlagert es die Zerfallsstrukturen. Die Verbrei-
terung des Maximums begrenzt auch die maximale Temperatur, die numerisch
zugänglich ist. Bei Temperaturen jenseits von T = 250 MeV wird die Spek-
tralfunktion zu breit um sich durch ein Gitter von 200 mal 200 Stützstellen
überdecken zu lassen. Mehr Stützstellen würden aber die Rechenzeit zu sehr
vergrößern. Auch der Gitterabstand lässt sich nicht beliebig verbreitern, weil
sonst das scharfe Maximum auf der Massenschale nicht mehr aufgelöst werden
kann.
Eine Fortführung dieser Arbeit ist in verschiedene Richtungen interessant. Nahe-
liegend ist zum Beispiel die Berücksichtigung eines nicht verschwindenden chemi-
schen Potentials. Allerdings werden diese Rechnungen sehr rechenaufwändig
sein, einerseits, weil die zu erwartende Verbreiterung der Spektralfunktionen
ein größeres Gitter erforderlich macht und andererseits, weil die Parameter neu
angepasst werden müssen, wofür die Berechnung der geschlossenen Diagramme
nötig ist. Möglicherweise könnten verbesserte Integrationsroutinen dieses
Problem lösen.
Im untersuchten Modell führte die Einbeziehung nicht verschwindender Zerfalls-
breiten zu einer Abschwächung der Änderungen der Teilcheneigenschaften mit
der Temperatur. Ein interessanter nächster Schritt wäre die Untersuchung echter
Phasenübergänge unter Berücksichtigung nicht verschwindender Zerfallsbreiten.
Zum Beispiel zeigt das Walecka-Modell einen Phasenübergang erster Ordnung
von einer Phase massiver Fermionen in eine Phase nahezu masseloser Fermionen,
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wenn mehr fermionische Freiheitsgrade berücksichtigt werden [WTM+87]. Es
wäre interessant zu sehen, ob dieser Phasenübergang mit nicht verschwindenden
Zerfallsbreiten zu einem Crossover würde.
Eine andere vielversprechende Erweiterung dieser Arbeit wäre die Anwendung
der hier entwickelten Techniken auf chirale Modelle und insbesondere die
Untersuchung des chiralen Phasenübergangs. Auch dessen Verhalten wird
möglicherweise von nicht verschwindenden Zerfallsbreiten beeinflusst.
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meiner, ist sie doch in hohem Maße ein Produkt der vereinten Anstrengung vieler
Menschen. Jeder von ihnen hat auf ganz besondere Weise zu ihrem Gelingen
beigetragen, und das Fehlen jedes einzelnen hätte ein großes Loch in dieser Ar-
beit zurückgelassen. Ich habe also allen Anlass, dankbar zu sein.
Das Loch hätte wohl die ganze Arbeit umfasst, wäre mein Doktorvater
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