
Verificationof IntegerMultipliers on theArithmetic Bit Level

Dominik Stoffel WolfgangKunz
Instituteof ComputerScience,Universityof Frankfurt/Main,Germany

Abstract

Oneof themostsevereshort-comingsof currentlyavailableequiva-
lencecheckersis their inability to verify integermultipliers. In this
paper, we presenta bit level reverse-engineeringtechniquethatcan
beintegratedinto standardequivalencecheckingflows. Wepropose
a Booleanmappingalgorithmthatextractsa network of half adders
from thegatenetlist of anadditioncircuit. Oncethearithmeticbit
level representationof thecircuit is obtained,equivalencechecking
canbeperformedusingsimplearithmeticoperations.Experimental
resultsshow thepromiseof our approach.

1 Intr oduction

In recentyears,implementationverificationby equivalencecheck-
ing has becomewidely accepted. Modern equivalence check-
ers can handlecircuits with hundredsof thousandsof gatesand
have replacedgate-level simulationin many designflows. Equiv-
alencecheckers can perform extremely well if the two designsto
be comparedcontaina high degreeof structuralsimilarity. This
is usually the caseafter a conventional synthesisflow. Similar-
ity meansthat the two circuits contain a lot of internal equiva-
lences[2, 10], also called internal cut points [9]. Techniquesto
exploit thesesimilaritieshave enabledequivalencecheckersto ver-
ify very largecombinationalcircuits ashasbeenshown by several
authors[1, 2, 7, 9, 10, 12]. On theotherhand,if no internalequiv-
alencesexist, modernequivalencecheckers fail andeven for rela-
tively smallexamplesverificationcanbecomeimpossible.

Oneof themainproblemsencounteredwith equivalencechecking
in industrialpracticeis theinability to verify integermultipliers.The
problemoccurswhenan RT-level (register transferlevel) descrip-
tion of a circuit mustbecomparedagainsta gate-level description.
Typically, the latter hasbeengeneratedfrom the former by some
synthesistool andit is thetaskof theequivalencechecker to verify
this synthesisprocess.The equivalencechecker attemptsto solve
theproblemby synthesizinga gate-level modelfrom theRT model
andby comparingthetwo gate-level designs.Unfortunately, this is
boundto fail. Theproblemis thatthegate-level modelgeneratedby
theequivalencechecker will look entirelydifferentcomparedto the
multiplier producedby thesynthesistool. Commercialequivalence
checkersoffer solutionsfor black-boxingmultipliers,however, this
andrelatedsolutionsarecumbersomeandmay easily leadto false
negatives.

Severalapproachesfor multiplier verificationcanbeconsidered.
Word-leveldecisiondiagramslikeBMDs [3] havegreatpromisebe-
causethey canefficiently representintegermultiplication.However,

they requireword-level informationabouta designwhich is often
notavailableanddifficult to extractfrom agivenbit level implemen-
tation.Solutionsbasedonbit level decisiondiagramssuchas[1, 13]
suffer from high complexity andmay lack robustness,even if the
BDDs arenot built for thecircuit outputsdirectly but certainprop-
ertiesof the arithmeticcircuits (e.g. “structuraldependence”[13])
areexploited.

An approachbasedon a standardequivalencecheckingengine
wasproposedby Fujita [5]. Somearithmeticfunctionssuchasmul-
tiplication have specialpropertieswhich canbeexpressedasrecur-
renceequations. For thecircuit to beverified,it is checkedwhether
thecorrespondingrecurrenceequationis valid usinga standardcut-
point basedequivalencecheckingengine. The major drawbackof
this interestingapproachis that for the circuit to be checked, a re-
currenceequationmustexist andit mustbe known. This hampers
automationof theverificationtask.

Reverseengineeringcouldbeconsideredasa verypragmaticap-
proachto multiplier verification.Sincethenumberof possiblearchi-
tecturesfor a multiplier is limited onemay incorporatea varietyof
architecturesin the frontendof theequivalencechecker andrepeat
thecomparisonfor all of them.We have notexperimentedwith this
approachbut we believe that therearemany obstacles.Note, that
even within oneandthesamearchitecture,e.g. a carry-save adder
(CSA)array, therecanbenumerousimplementationstylesthathave
hardlyany similarity in termsof internalequivalences.As anillus-
tration look at the following four waysof multiplying two decimal
numbers.

167 � 239
334
501
1503

39913

167 � 239
1503
501

334
39913

239 � 167
239
1434
1673

39913

239 � 167
1673

1434
239
39913

All four casescanbeimplementedby thesamearchitecturesbut
have no internalequivalencesat all. The adderstageof eachrow
computesthe accumulatedsum of the previous rows. The accu-
mulatedsumvaluesaredifferent in all four variations.We experi-
mentallyverified theabsenceof internalequivalencesby meansof
16x16bit multiplier c6288.Wemodifiedthecircuit by swappingits
operands.Sincemultiplicationis commutative c6288with swapped
operandsmustbeequivalentto theoriginal version.Proving this by
our equivalencechecker [11], however, turnedout to beimpossible.
All internalequivalenceswerelost,exceptfor theonesbelongingto
thepartialproductsin thefirst circuit level.

In this paper, we proposea new approachto verificationof arith-
meticcircuits. It canbeunderstoodasareverseengineeringprocess

1

183

but atamoredetailedlevel thandescribedabove. Weproposeanex-
tractiontechniquewhich decomposesa gatenetlistof anarithmetic
circuit into its smallestarithmeticunits. However, we do not iden-
tify word operationsbut bit operationsandonly considerthe addi-
tion of singlebits. Our extractiontechniquegeneratesanarithmetic
bit level descriptionof thecircuit. Addition at this level is reduced
to additionmodulo2 andgenerationof carrysignals.Thearithmetic
bit level permitsa veryefficient verificationalgorithm.

In generalterms,the proposedapproachcanbe summarizedas
follows:

1. Decomposethetwo combinationalcircuits– wherepossible–
into networks of 1-bit additionprimitives,suchasXOR, half
adder, full adder(arithmeticbit level).

2. Prove equivalenceof correspondingcircuit outputs on the
arithmeticbit level usingcommutative andassociative laws.

2 Verification at the Arithmetic Bit
Level

Arithmeticfunctionsin digital circuits,suchasaddition,subtraction,
multiplicationanddivision, arealwaysimplementedusingaddition
asthebasefunction. Subtractinga number

�
in two’s complement

notationfrom anumber� , for example,is implementedby inverting
all bits of

�
, adding1, andadding � . Also multiplication is based

on addition. Hardwaremultipliersmostoftenarecomposedof two
stages(Fig. 1). In the first stage,the partial productsare gener-
atedfrom thetwo operandvectors,

�
and � . Theway thesepartial

productsaregenerateddependsonwhethersignedor unsignednum-
bersareprocessed,andwhetheror not Boothrecodingis used.The
partial productsarethe inputsto the secondstage,which is an ad-
dition circuit. We will call the inputsto anadditioncircuit primary
addends, in thesequel.Theadditioncircuit addsup theprimaryad-
dendsto producethefinal result, ��� � � � . Theimplementation
of this additioncircuit canbechosenfrom a varietyof architectures
differing in performanceor arearequirements.Most commonim-
plementationsareanarrayof carry-saveadders (CSA)or a Wallace
tree.

Primary
addend

generation circuit
AdditionX

Y
Z = X·Y

Figure1: Basicmultiplier structure

Any combinationalcircuit which performstheadditionof binary
bit vectorssuchasthe additionstagein a multiplier canbe repre-
sentedasa compositionof half andfull adders.A half adderis a
circuit that arithmeticallyaddstwo binary operandsandproduces
two binaryresults,asumandacarrysignal.Figure2 shows thegate
schematicsof a half adder. In thesequel,we will usethehalf adder
symbolshown on theright sideof Figure2.

Note that a full addercanbe assembledfrom threehalf adders.
Figure3 shows a possibleimplementationof a full adderand the

operand sum

carryoperand
carry

sum operand

operand

Figure2: Half adder, schematicsandsymbol

correspondinghalf addernetwork. The third half adder, � , adds
the two carrybits �	� and ��
 of theotherhalf adders,� and
 , and
producesthe full addercarryoutput � . Becausethe two signals� �
and �
 canneverassumethelogic value1 atthesametime,thecarry
outputof thethird half adderproducesa constant0.

Q

R
P

c2
c1

c1

c2

a

b

c

a

c

b

"0"

carry

sumsum

carry

v

w

v

w

Figure3: Full adderdecomposedinto half adders

Oncewe have a representationof anadditioncircuit that is only
composedof half adders,we speakof a half addernetworkor the
arithmetic bit level representationof the circuit. This representa-
tion allows for a very efficient equivalencecheckingprocedure.We
now introducea mathematicalmodelfor thearithmeticbit level and
developthetheoreticalbackgroundof ourverificationprocedure.

Definition 1 An addition graph is a triple ����������������������� .
����������� is a bipartite directedgraph with vertex set � and di-
rectededgeset � . Thevertex set � consistsof threedisjointsubsets,
���! #"%$&"%' . Theverticesin haveexactlytwo immediatepre-
decessors,andare calledsumnodes. Theverticesin ' havenopre-
decessors andare called primaryaddends. Theverticesin $ have
no predecessors andare calledcarrynodes.
� is a relation, ��(���$*)+ ,� and � is a setof Booleanfunctions.
The addition graph is associatedwith a half addernetworkas

follows. Each sumnodeis associatedwith thesumoutputof a half
adderin thenetwork.Each carry nodeis associatedwith thecarry
outputof a half adder. Each primary addendis associatedwith an
inputof thehalf addernetwork.

Two vertices- and � are connectedby a directededge �.-/�0�1� , if
thehalf adderassociatedwith � hasthesignalassociatedwith - as
operand.

For �324$ and 5627 it is �.�8��58�#29� if and only if � and 5
are associatedwith theoutputsignalsof thesamehalf adderin the
network.

With each vertex -:2;� weassociatetheBooleanfunction <>=?2
� in termsof theprimaryaddendsthat is implementedby thesignal
correspondingto - in thehalf addernetwork.

For illustration of this definition, Figure 4 shows the addition
graphof the full adderof Figure3. Note that theprimary addends
andthecarrynodesarethesourcenodesof anadditiongraph,and

2

184

c

c

"0"
1

2

c

a

b

w

u
v

Figure4: Addition graphfor full adder

arealsoreferredto asaddendsin thefollowing. In Figure4,addends
arerepresentedby boxes,sumnodesarerepresentedby circles.The
relationbetweencarryandsumnodesis indicatedby dashedlines.
Nodes - and � aresinksof the additiongraphandcorrespondto
outputs- and � of thehalf addernetwork.

Themodellingof a half adderby two separatenodesin theaddi-
tion graphmay seemawkward. Note, however, that our definition
leadsto a decompositionof thehalf addernetwork into graphenti-
tiessuchthatall but thesourceverticescorrespondto XOR opera-
tions.Therefore,eachsumnodein thegraphcanbeassociatedwith
the summodulo2 of all sourcenodesin its transitive fanin. This
facilitatesthemanipulationof thegraphstructure.

In the following, without lossof generality, we assumethat the
additiongraphis a forestof trees. If the additiongraphobtained
from theoriginalhalf addernetwork doesnothavetreestructure,we
canalwaysgeneratea forestof treesby duplicationof appropriate
graphportionsincludingprimaryaddends.

v

p

q
u

v

p

q
u

r

s

t

t

s

r

Figure5: Addition graphof Lemma1

Lemma 1 Let @ and 5 be theoperandsof a sumnode A in an ad-
dition graph. Further, let A and B betheoperandsof a sumnode - ,
as shownin Figure 5. Let C and D be the carry nodesof A and - ,
respectively. Exchangingoperand @ with operand B doesnotchange
< = anddoesnotchange <FEHG&<�I .

Proof: Function < = doesnot changebecauseadditionmodulo2
is commutative. The function <FEJG9<�I doesnot change,because
�.@ � 58�KGL�0�.@HGM58� � B0�,�7�NB � 5>�OGL�0�NBPGM58� � @Q� . R

Half addernetworksimplementingpracticaladditionstageshave
the specialpropertythat eachaddition tree computesa digit of a
binary encodedinteger. The carry signalsof the addition tree for
digit S all feedinto theadditiontreefor the next digit, SUT�V . This
canbeexploitedwhencheckingtheequivalenceof additiontreesin
practicaladditionnetworks.

Lemma 2 Theoutputfunctionsof twoadditiontreesW and XW (Fig-
ure 6) are equivalentif thefollowingconditionsare true.

1. Thesetsof primary addendsfor W and XW are identical ('FY*�
',ZY).

2. There existsan addition tree such that the setof all carry
nodesbeingaddendsfor W is identicalwith thesetof carries
generatedin . Thesameholdsfor XW andsomeadditiontree
X .

3. Theoutputfunctionsof and X are equivalent.

Proof: If theoutputfunctionsof and X areequivalent,thenthe
summodulo2 of all carriesgeneratedin is equivalentto thesum
modulo2 of all carriesgeneratedin X . This follows from theobser-
vation that canbe transformedinto X by a sequenceof operand
swapsaccordingto Lemma1. W aswell as XW computethemodulo2
sumof theprimaryaddendsandthecarriesof . R

I T

CS

T
~

S
~

CS
~

I TI T
~(addends of S)

T

S
equivalent

(addends of S)
~=

Figure6: Illustrationof Lemma2

Oncewe have a representationof an addition circuit as a half
addernetwork, the equivalencecheckusing Lemma2 is straight-
forward. Note that finding addition tree for addition tree W in
condition2 is trivial in practice,since is locatedin theimmediate
structuralvicinity of W . ThecorrespondencesX with and XW with
W areknown from thegivenequivalencecheckingtask.

Note the recursive natureof Lemma2: the equivalenceof the
outputdigit S (tree W) dependsontheequivalenceof digit S\[]V (tree
). Theterminalcaseof therecursionis digit 0 whereno carry-ins
exist andonly condition1 of the lemmaneedsto be checked. The
total run-time of the equivalencecheckaccordingto Lemma2 is
linear in thenumberof half adderswhich is proportionalto circuit
size.

Anotherpossibilityto verify additioncircuitsonthearithmeticbit
level is to manipulatethe circuits usingthe operationof Lemma1
until bothcircuitshave thesamestructureandcontainenoughinter-
nal equivalencesfor a standardequivalencecheckingprocedureto
besuccessful.

The problemthat remainsto be solved, however, is how to ex-
tract the arithmeticbit level representationfrom the gatenetlist of
anadditioncircuit. This is subjectof thefollowing section.

3 Extracting the Half Adder Network
An additioncircuit canbeimplementedin many differentways.Dif-
ferentarchitectures,e.g. carry-save adderarraysor Wallacetrees,

3

185

exist, aimingatdifferentdesigngoals.Also for thecomponentsand
subcomponentsthereexistsavarietyof implementationchoices.As
an exampleof an adderstagewhich is not constructedfrom cas-
cadedhalf andfull adders,considerthe4-bit carry-lookaheadadder
of Figure7. In orderto speedupcomputationtime,thecarrysignals
in eachoutputconearegeneratedby a speciallogic block.

C
ar

ry
-L

oo
ka

he
ad

Lo
gi

c

s

s

s

s

c0

c

c

c

c c

3

2

1

0

4
4

a

a

a

a

b

b

b

b

1

1

2

2

3

3

a

a

a

a

b

b

b

b

0

0

1

1

2

2

3

3

2

1

3

0

0

Figure7: 4-bit carry-lookaheadadder

It is our goal to extract a half addernetwork thatabstractsfrom
suchimplementationdetails. We seekan extractiontechniquethat
producesasoutputa network of half adderswhich is functionally
equivalentto theimplementation.

3.1 BasicProcedure
Theapproachweproposeis basedonthefollowing assumption:The
predominantoperationatthebit level is thecomputationof exclusive
OR. This logic function is part of every implementationof binary
addition.We useBooleanreasoningtechniques[11] to detectXOR
relationshipsin the original circuit. Guidedby the detectedXORs
weconstructanetwork of half addersasareferencecircuit. Westore
implicationsbetweennodesin theoriginalcircuit andthehalf adder
network. Thestoredimplicationsestablisha mappingbetweenthe
nodesof theoriginalandthereferencecircuit.

Asanexample,considertheimplementationof afull addershown
in Figure8.

Using Booleanreasoningtechniquesit is possibleto prove that
thesignal ^ canbeexpressedastheexclusive OR of signals_ and`
. As a consequence,in thereferencecircuit, we inserta half adder

node A with operands_ and
`

andstoreimplicationsreflectingthe
equivalenceof the sumoutputof thehalf adderandnode ^ . Also,
signalC canbeexpressedastheexclusive OR of ^ and � . We insert
ahalf addernode- with operandŝ and � andstoretheequivalence
of thesumoutputwith signalC .

Now that the half addersA and - exist, it is possibleto express
signal D as an exclusive OR of the carry outputs � � of A and �

of - . Also, we can identify the implication � � �aV3bc�
 �ed
which is equivalentto � � � �
 �4d , for all possibleinput vectorsof
theaddercircuit. Thereforewe inserthalf adder� with operands�	�

a

b

e
q

u
iv

a
le

n
t

e
q

u
iv

a
le

n
t

e
q

u
iv

a
le

n
t

"0"

v
w

x

u

c

c
c

1

2

p

q

Figure8: Full adderimplementationandmappedhalf addernet-
work

and �
 , andwestoretheinformationthatthecarryoutputof thishalf
adderproducesa constant0. We alsostorean equivalencepointer
betweenthesumoutputof � andtheoutput D of theaddercircuit.
Wenow haveacompletemappingof theaddercircuit asahalf adder
network.

Note thatalthoughfunction D implementsthemajority function,
D��7�._+T ` �f�gT6_ ` �L_ ` T6_\��T ` � , of theinputs _ , ` , � andnot an
XOR functionof any of theseoperands,we canstill find a mapping
for this nodeby usingsignalsfrom thereferencecircuit.

WhendetectinganXOR relationshipof the form h#�4_�G ` for
somesignal h in the original circuit, with _ and

`
beingsignalsin

the original or in the referencecircuit, it is actually not sufficient
to insert a half adderwith operands_ and

`
. It could be that an

operandhasto be invertedin order to make the half adderuseful
asanoperandlater. Sincethecorrectoperandphasescannotbede-
terminedby the XOR detection(h��i_+G ` � _+G `), we addnot
only one half adderfor eachXOR found but all four half adders
correspondingto thefour possiblecombinationsof inversionsof the
operands.

The Booleananalysisunderlyingthis procedureis local andof
fairly low complexity. An efficient implementationcanbebasednot
only onimplicationtechniquesbut justaswell ondecisiondiagrams,
SAT solvingor structuralhashing[9].

3.2 Local half adder network extensions

In practicalimplementations,the calculationof sumandcarry sig-
nals may be locally separatedand restructured,e.g. to improve
timing. If suchlocal optimizationshave beenperformed,the ba-
sic procedureof Section3.1 may not alwaysbesufficient to deter-
mineacompletemappingof thecircuit. However, sincetheinternal
nodesof our additiontreesrepresentonly XOR functions,“reverse-
engineering”thesetreesusingcommutativeandassociativetransfor-
mationsis simple.We analyzethecurrentstructureof thereference
circuit andlocally addpromisingnew half adders.Thenwe retry to
maptheunmappednodesusingthenew half addersasoperands.

As anexample,considera circuit computingsomeadditionsac-

4

186

cordingto thehalf addernetwork shown in Figure9. In thisnetwork,

a
b

c

d
"0"

full adder

g
e

f

h

P
Q

R
S

Figure9: Arithmeticbit level representation(example)

function < is theoutputof a chainof half adders.Signal j traverses
threeXOR stagesbeforereaching< . In a practicalimplementation,
it maybeof advantageto compute< by anXOR treeratherthana
chain.Figure10showssuchanimplementation.Also shown arethe
half addersinsertedafterapplyingthebasicproceduredescribedin
Section3.1.Notethatin thisexampleit is notpossibleto expressthe

a
c

f
d
b

g

h

a

c
d

b

CARRY function of full adder
e

Figure10: Implementationof exampleof Fig. 9 with addedrefer-
encecircuitry

carry functionof signal k asanXOR of any two half addersignals
in the referencecircuit. Hence,we fail to completelymapthegate
netlistto a half addernetwork asin Figure9.

If, asin this example,thecomputationof sumandcarry signals
hasbeenlocally separatedandtheXOR treesin thesumhave been
restructured,certaincarry functionscanno longerbe expressedin
termsof theavailablesignalsin thereferencecircuit andcannotbe
mapped.This leadsto “gaps” in theextractednetwork.

In orderto mapsuchgaps,we proceedasfollows. First, for each
gap,we identify its mappedinputs.Then,by a topologicalanalysis
in theextractedhalf addernetwork, we identify thesignalwherethe
sumof theinput functionsis computed.Wethenrestructurethehalf
addernetwork usingcommutative andassociative lawssuchthatthe
operandsneededto map the gap functionsare produced. For ex-
ample,in Figure10, signals_ , ` and l arethe inputsof a gap. We
searchin thehalf addernetwork a signalcomputingthesumof _ , `
and l . By backtracingin theadditiongraph,we determinefor each
input its addends(primaryaddendsandcarrynodes).Then,by for-
ward tracingwe identify thesumnodesummingup theseaddends.
In Figure10, we identify function < which computesthesumof _ ,

`
, � and j . Next, we restructurethe half addernetwork suchthat

an additionchainwith the operands_ , ` and l is obtainedandlo-
cally extendthehalf addernetwork by thisadditionchain.If several
additionchainsarepossible,all of themareinserted.In our exam-
ple, the additionchain is the seriesof half adders� ,
 and � of
Figure9 andcanbeadded(not shown) to thehalf addernetwork of
Figure10. Now, signal k canbeexpressedastheXOR of two carry
signalsin thereferencecircuit, yielding thehalf adder of Figure9
andcompletingthemapping.

3.3 Algorithm

extract half adder network($)m
/* input: $, originalgatenetlist*/
R := n ; /* referencecircuit */

/* STEP1: searchfor XORsin original circuit, $ */
extractionpass($, � , $);
/* STEP2: searchfor XORsin referencecircuit, � */
extractionpass($, � , �);
/* STEP3: completemappingfor yetunmappednodes*/
for all unmappednodesh in $ m

locally extendhalf addernetwork R for h ;o
extractionpass($, � , �);
/* STEP4: find cover */
foreachoutput h of circuit $ m

/* DFSbacktracein half addernetwork */
selecta half adderp mappedon h ;
push p onstack;
while stacknotempty

m
pophalf adderp from stack;mark p ;
foreachoperandq of p m

selecta half adderS mappedon q ;
pushS on stack;oQoQo

remove unmarkedhalf adders;
return R;o

Table1: Algorithm for half addernetwork extraction

Table1 shows thepseudo-codeof theproposedalgorithmfor half
addernetwork extraction. The algorithm consistsof four phases.
Thefirst two phasesconsistof thestepsintroducedin theexample
of Figure8. Thethird phasetargetstheremainingunmappednodes
asdescribedin Section3.2. In eachof thesephases,subroutineex-
traction pass() shown in Table2 is calledwhich performsonepass
over the original circuit, analyzingwhetherXOR relationshipsex-
ist for every nodethat hasnot beenmappedby a half adderyet.
Dependingon the phase,the XOR operandsaresearchedeitherin
the original or in the referencecircuit. Finally, in the last phase,a
backtraceprocedureis startedto collect a setof half addersform-
ing a cover for thegivenadditioncircuit. This cover is usedfor the

5

187

extraction pass($, � , r)m
/* $: original gatenetlist*/
/* � : referencecircuit */
/* r : circuit to chooseXOR operandsfrom */
for all unmappednodesh in $ m

while (exist _K� ` 2sr with h��L_1G `) m
insertcorrespondinghalf adderstJu in R;
storeequivalencesof half addersumswith h ;
marknodesin $ coveredby t u asmapped;o	o

o

Table2: Subroutineperforminga half adderextractionpass

equivalencecheckof Section2.
Note that our procedureis robust also in caseswherethe basic

building blocksarenot half or full adders. Considerthe example
in Figure7. In thefirst phaseof thealgorithmof Table1 we iden-
tify theXORsperformingtheadditions.For eachXOR ahalf adder
is insertedin thereferencecircuit. In thesecondphasewe express
eachof theoutputs� � , �
 , �Fv and �Fw of thecarry-lookaheadlogic as
XORsin termsof carryoutputsof theinsertedhalf adders,complet-
ing themapping.It is interestingto notethattheresultinghalf adder
network is of carry-propagate(“ripple carry”) structure.

4 Verification Framework
The proposedapproachcanbe addedasan additionalheuristicto
existing equivalencecheckingframeworks. Equivalencechecking
is run for given circuits in the usualway until standardtechniques
abort by lack of internal equivalences. If thereare large regions
without internalequivalences,theextractionprocedureof Section3
isactivated,attemptingto generateanarithmeticbit level representa-
tion of thepathologicalregion. This canbesuccessful,if theregion
is indeedan arithmeticblock. If the circuit containsa multiplier,
standardequivalencecheckingwill be successfulin identifying in-
ternalequivalencesfor many nodesin thecircuit, includingthepar-
tial productsof the multiplier. However, it will fail to processthe
subsequentadditioncircuit. After extractingthearithmeticbit level
representationtheverificationcanbecompleted.

In this paper, we focuson verifying the equivalenceof addition
circuits with dissimilar structureas they appearin different mul-
tiplier architectures.Another multiplier architectureparameteris
the useof Booth recoding,which affects not the addition circuit
but the primary addendgenerationstepof Figure1. The multipli-
candis re-encodedto producea smallersetof partial productsto
be accumulatedby the addition circuit. In order to verify multi-
pliers with Booth recodingin a verification framework using the
proposedapproach,it is necessarythat the frontendproducingthe
gate-level descriptionof the specificationgeneratesboth, the non-
Booth-encodedand the Booth-encodedpartial productsbits. The
equivalencechecker will thenexpressthe extractedhalf addersin
whatever partial productshave beenusedin thedesignunderveri-
fication. We have not yet implementedthis in our verificationtool,

thereforethe experimentalresultsof Section5 have beenobtained
for non-Booth-encodedmultipliersonly.

Notethattheproposedextractionprocedurewill fail to extractan
arithmeticbit level descriptionif the multiplier circuit containsan
error. This, however, is easilydetectedby a simulationstepearlier
in theverificationflow. Observe thatmultipliersarehighly random-
patterntestablesothata buggydesignis usuallydetectedby only a
smallnumberof randompatterns.

If it is desirableto representthe arithmeticcircuit by a word-
level decisiondiagram,our approachcan also be of interest. It
wasalreadypointedout in [3, 4, 8] that knowledgeaboutthe sub-
componentsof a multiplier can be very useful in BMD construc-
tion. It seemslikely that the arithmeticbit level representationas
extractedby the procedureof Section3 could be a goodbasisfor
heuristicallyguiding a BMD constructionprocessalong the lines
of [4, 6].

5 Experimental Results

The describedtechniqueshave beenimplementedasa part of the
HANNIBAL [11] tool. Table3 shows theresultsfor extractingthe
half addernetworks for a numberof multiplier circuits. The first
columnshows thecircuit name,thenext threecolumnsshow thebit
widthsof multiplicationoperands,

�
, � , andresult, � , andthelast

columnshows the run time of the algorithm. The CPU timesare
givenin secondsona 450MHz PCrunningLinux.

circuit bit vectorwidths CPUtime
name

� � � (secs.)

mult8x8 8 8 16 3
dw csa8x8 8 8 16 3
dw nbw 8x8 8 8 16 12

mult16x16 16 16 32 40
dw csa16x16 16 16 32 34
dw nbw 16x16 16 16 32 132

c6288 16 16 32 76
c6288nr 16 16 32 56
c6288opt 16 16 32 36

dw csa16x26 16 26 42 98
dw nbw 16x26 16 26 42 156

Table3: Experimentalresultsfor half adderextraction

Circuitsmult8x8andmult16x16are8- and16-bitmultiplierspro-
ducedby a self-writtengeneratorfor multipliers in CSA arrayar-
chitecture.The circuits denotedby prefix dw csaanddw nbw are
multipliersin CSAarrayandWallacetreearchitecture,respectively.
They have beencreatedusinga commercialCAD system(Synop-
sysDesignCompiler). Circuit c6288is the well-known 16x16bit
multiplier from theISCAS-85benchmarkset,circuit c6288nris its
non-redundantversion,andcircuit c6288optis theresultof optimiz-
ing c6288usingSISwith script.rugged.

For all thesearchitectures,the arithmeticbit level could be ex-
tractedwithin shortCPUtimes.Notethatdueto theBooleannature

6

188

of our extractiontechniquethe arithmeticbit level canalsobe ob-
tainedif themultiplier hasbeenbeenoptimizedusingstandardlogic
synthesistechniques.This is illustratedby meansof c6288optand
logic synthesisby SIS.

We verifiedtheequivalencebetweenany pair of multiplierswith
thesameoperandwidthsusingtheequivalencecheckof Lemma2.
After the arithmeticbit level wasextracted,the actualequivalence
checkin all casestook only a fractionof a second.

6 Conclusion
In this paper, we proposea methodfor equivalencecheckingof in-
tegermultipliersbasedon a bit level reverse-engineeringapproach.
Themainchallengeis to efficiently extractanarithmeticbit level de-
scriptionof acircuit from agivengatenetlist.Thepresentedextrac-
tion algorithmshavebeentestedondifferentmultiplier architectures
andprovedvery promising.We arecurrentlyextendingour tool to
differenttypesof primaryaddendssothatBooth-recodedmultipliers
canalsobehandled.Thepresentedapproachcaneasilybeintegrated
into standardequivalencecheckingframeworksandcanincreasethe
robustnessof conventionalequivalencecheckersfor arithmeticcir-
cuits.

7 Acknowledgment
We are grateful to Stefan Höreth and Thomas Rudlof from
SIEMENS,ZT SE 4, for fruitful discussionsandfor providing the
multiplier examplesgeneratedby a commercialsynthesistool.

References
[1] J. R. Bitner, J. Jain,M. S. Abadir, J. A. Abraham,andD. S.

Fussell,“Efficient Algorithmic Circuit VerificationUsing In-
dexedBDDs,” in Proc. Fault Tolerant ComputingSymposium
(FTCS-94), pp.266–275,1994.

[2] D. Brand, “Verification of Large SynthesizedDesigns,” in
Proc. Intl. Conf. on Computer-Aided Design (ICCAD-93),
pp.534–537,1993.

[3] R. Bryant andY. A. Chen,“Verificationof Arithmetic Func-
tionsby Binary MomentDiagrams,” in Proc.DesignAutoma-
tion Conference(DAC-95), pp.535–541,1995.

[4] Y.-A. ChenandJ.-C.Chen,“EquivalenceCheckingof Integer
Multipliers,” in Proc. AsiaandSouthPacific DesignAutoma-
tion Conference(ASPDAC-01), (Yokohama,Japan),2001.

[5] M. Fujita, “Verificationof Arithmetic Circuits by Comparing
Two Similar Circuits,” in Proc. International Conferenceon
ComputerAidedVerification(CAV ’96).

[6] K. Hamaguchi,A. Morita, andS.Yajima,“EfficientConstruc-
tion of BinaryMomentDiagramsfor VerifyingArithmeticCir-
cuits,” in Proc. Internation Conferenceon Computer-Aided
Design(ICCAD-95), pp.78–82,November1995.

[7] J. Jain,R. Mukherjee,andM. Fujita, “AdvancedVerification
TechniquesBasedon Learning,” in Proc. 32nd ACM/IEEE

DesignAutomationConference(DAC-95), pp. 420–426,June
1995.

[8] M. Keim, M. Martin, B. Becker, R. Drechsler, andP. Molitor,
“PolynomialFormalVerificationof Multipliers,” in VLSITest
Symp., pp.150–155,1997.

[9] A. Kühlmannand F. Krohm, “EquivalenceCheckingUsing
Cuts and Heaps,” in Proc. Design Automation Conference
(DAC-97), pp.263–268,Nov. 1997.

[10] W. Kunz, “An Efficient Tool for Logic VerificationBasedon
Recursive Learning,” in Proc. Intl. Conferenceon Computer-
AidedDesign(ICCAD-93), pp.538–543,Nov. 1993.

[11] W. Kunz and D. Stoffel, Reasoningin BooleanNetworks-
Logic Synthesisand Verification Using Testing Techniques.
Boston:Kluwer AcademicPublishers,1997.

[12] Y. Matsunaga,“An Efficient EquivalenceChecker for Com-
binationalCircuits,” in Proc. DesignAutomationConference
(DAC-96), pp.629–634,June1996.

[13] T. Stanion, “Implicit Verification of Structurally Dissimilar
Arithmetic Circuits,” in Proc. International Conference on
ComputerDesign(ICCD-99), pp.46–50,October1999.

7

189

