Verificationof IntegerMultipliers onthe Arithmetic Bit Level

Dominik Stoffel

WolfgangKunz

Instituteof ComputerScienceJniversity of Frankfurt/Main,Germaly

Abstract

Oneof themostserereshort-coming®f currentlyavailableequiva-

lencecheclersis theirinability to verify integer multipliers. In this

paperwe present bit level reverse-engineeringechniquethatcan
beintegratedinto standardequivalencecheckingflows. We propose
aBooleanmappingalgorithmthatextractsa network of half adders
from the gatenetlist of anadditioncircuit. Oncethe arithmeticbit

level representationf the circuit is obtainedequivalencechecking
canbe performedusingsimplearithmeticoperations Experimental
resultsshav the promiseof our approach.

1 Intr oduction

In recentyears,implementationverification by equivalencecheck-
ing has becomewidely accepted. Modern equivalence check-
ers can handlecircuits with hundredsof thousandsf gatesand
have replacedgate-leel simulationin mary designflows. Equiv-
alencecheclers can perform extremely well if the two designsto
be comparedcontaina high degree of structuralsimilarity. This
is usually the caseafter a corventional synthesisflow. Similar-
ity meansthat the two circuits containa lot of internal equiva-
lences[2, 10], also called internal cut points [9]. Techniquesto
exploit thesesimilaritieshave enabledequivalencecheclersto ver-
ify very large combinationakircuits ashasbeenshavn by several
authorg[1, 2,7, 9, 10, 12]. Ontheotherhand,if nointernalequi-
alencesxist, modernequialencecheclersfail andeven for rela-
tively smallexamplesverificationcanbecomempossible.

Oneof themainproblemsencounterewvith equivalencechecking
in industrialpracticeis theinability to verify integermultipliers. The
problemoccurswhenan RT-level (register transferlevel) descrip-
tion of a circuit mustbe comparedagainsta gate-level description.
Typically, the latter hasbeengeneratedrom the former by some
synthesigool andit is the taskof the equivalencechecler to verify
this synthesisprocess. The equivalencechecler attemptsto solve
the problemby synthesizinga gate-leel modelfrom the RT model
andby comparingthetwo gate-leel designs.Unfortunately thisis
boundto fail. The problemis thatthe gate-level modelgeneratedby
theequialencechecler will look entirelydifferentcomparedo the
multiplier producedby the synthesidool. Commercialequivalence
checlersoffer solutionsfor black-boxingmultipliers, however, this
andrelatedsolutionsare cumbersomeandmay easilyleadto false
negatives.

Severalapproachefor multiplier verificationcanbe considered.

\Word-level decisiondiagramslike BMDs [3] have greatpromisebe-
causehey canefficiently represenintegermultiplication. However,

they requireword-level information abouta designwhich is often
notavailableanddifficult to extractfrom agivenbit level implemen-
tation. Solutionsbasedn bit level decisiondiagramssuchas[1, 13]
suffer from high compleity and may lack robustnessgvenif the
BDDs arenot built for the circuit outputsdirectly but certainprop-
ertiesof the arithmeticcircuits (e.g. “structuraldependence[13])
areexploited.

An approachbasedon a standardequivalencecheckingengine
wasproposedy Fujita[5]. Somearithmeticfunctionssuchasmul-
tiplication have specialpropertiesvhich canbe expressedisrecur
renceequations For the circuit to beverified, it is checledwhether
thecorrespondingecurrenceequationis valid usinga standardcut-
point basedequivalencecheckingengine. The major dravback of
this interestingapproachis that for the circuit to be checled, are-
currenceequationmustexist andit mustbe known. This hampers
automatiorof the verificationtask.

Reverseengineeringcould be consideredsa very pragmaticap-
proachto multiplier verification. Sincethe numberof possiblearchi-
tecturesfor a multiplier is limited onemay incorporatea variety of
architecturesn the frontendof the equivalencechecler andrepeat
thecomparisorfor all of them.We have not experimentedvith this
approachbut we believe thatthereare mary obstacles.Note, that
evenwithin oneandthe samearchitectureg.g. a carry-sae adder
(CSA) array therecanbenumerousmplementatiorstylesthathave
hardly ary similarity in termsof internalequivalences As anillus-
trationlook at the following four waysof multiplying two decimal
numbers.

167-239 167-239 239-167 239-167
334 1503 239 1673
501 501 1434 1434
1503 334 1673 239
39913 39913 39913 39913

All four casesanbe implementedy the samearchitecturebut
have no internalequivalencesat all. The adderstageof eachrow
computesthe accumulatedsum of the previous rows. The accu-
mulatedsumvaluesaredifferentin all four variations. We experi-
mentally verified the absencef internalequvalenceshy meansof
16x16bit multiplier c6288.We modifiedthe circuit by swappingits
operandsSincemultiplicationis commutatve c6288with swapped
operandsnustbe equialentto the original version.Proving this by
ourequialencechecler [11], however, turnedoutto beimpossible.
All internalequivalencesverelost, exceptfor theonesbelongingto
thepartial productsin thefirst circuit level.

In this paper we proposea new approacho verificationof arith-
meticcircuits. It canbeunderstoodsareverseengineeringprocess

183

but atamoredetailedevel thandescribedbose. We proposeanex-
tractiontechniquewhich decomposea gatenetlistof anarithmetic
circuit into its smallestarithmeticunits. However, we do not iden-
tify word operationsbut bit operationsandonly considerthe addi-
tion of singlebits. Our extractiontechniquegeneratesnarithmetic
bit level descriptionof the circuit. Addition at this level is reduced
to additionmodulo2 andgeneratiorof carrysignals.Thearithmetic
bit level permitsa very efficient verificationalgorithm.

In generalterms,the proposedapproachcan be summarizecas
follows:

1. Decomposehetwo combinationaktircuits—wherepossible-
into networks of 1-bit additionprimitives,suchas XOR, half
adder full adder(arithmeticbit level).

2. Prove equivalenceof correspondingcircuit outputson the
arithmetichit level usingcommutatve andassociatie laws.

2 Verification at the Arithmetic Bit
Level

Arithmeticfunctionsin digital circuits,suchasaddition,subtraction,
multiplication anddivision, arealwaysimplementedisingaddition
asthebasefunction. Subtractinga numberX in two’s complement
notationfrom anumberY’, for example,is implementedy inverting
all bits of X, addingl, andaddingY". Also multiplicationis based
on addition. Hardware multipliers mostoften arecomposef two
stages(Fig. 1). In the first stage,the partial productsare genef
atedfrom thetwo operandvectors,X andY . Theway thesepartial
productsaregeneratediepend®nwhethersignedor unsignechum-
bersareprocessedandwhetheror not Boothrecodingis used.The
partial productsarethe inputsto the secondstage which is an ad-
dition circuit. We will call theinputsto anadditioncircuit primary
addendsin thesequel.Theadditioncircuit addsup the primary ad-
dendsto producethefinal result,Z = X - Y. Theimplementation
of this additioncircuit canbe choserfrom a variety of architectures
differing in performanceor arearequirements.Most commonim-
plementationgreanarrayof carry-saveaddes (CSA)or aWallace
tree

X I:> Primary E »
addend [— Ad_d'“(_)n :> 7%y
Y [generation [circuit

Figurel: Basicmultiplier structure

Any combinationakircuit which performsthe additionof binary
bit vectorssuchasthe addition stagein a multiplier canbe repre-
sentedas a compositionof half andfull adders.A half adderis a
circuit that arithmeticallyaddstwo binary operandsand produces
two binaryresults,asumandacarrysignal. Figure2 shavs thegate
schematic®f a half adder In the sequelwe will usethe half adder
symbolshavn on theright sideof Figure2.

Note that a full addercanbe assembledrom three half adders.
Figure 3 shavs a possibleimplementationof a full adderandthe

— sum

[} camy

operand — operand —]

D— sum

carry

operand —|

operand —

Figure2: Half adder schematicandsymbol

correspondinchalf addernetwork. The third half adder R, adds
thetwo carrybits ¢; andcy of the otherhalf adders,P and@, and
produceghefull addercarry outputw. Becausehe two signalscy
andcs canneverassumeéhelogic valuel atthesametime, thecarry
outputof thethird half addemproducesa constan®.

Q

Cc
\ sum sum
b j) v c—s v
(o b & R carry
& carry a w
a W nge

Figure3: Full adderdecomposeéhto half adders

Oncewe have a representationf anadditioncircuit thatis only
composeddf half adderswe speakof a half addernetworkor the
arithmetic bit level representationof the circuit. This representa-
tion allows for a very efficient equivalencecheckingprocedure We
now introducea mathematicamodelfor the arithmeticbit level and
developthetheoreticabackgroundf our verificationprocedure.

Definition 1 An addition graph is a triple (G(V,E),R,F).
G(V, E) is a bipartite directedgraph with vertex set V' and di-
rectededege setE. Thevertex setV consistof threedisjointsubsets,
V = SUCUI. Theverticesin S haveexactlytwoimmediatepre-
decessa, andare called sumnodes Theverticesin I haveno pre-
decess@ and are called primary addends Theverticesin C have
no predecessarandare called carrynodes

Risarelation,R C (C x S) andF' is asetof Booleanfunctions.

The addition graph is associatedwith a half adder networkas
follows. Each sumnodeis associatedvith the sumoutputof a half
adderin the network.Eac carry nodeis associatedvith the carry
outputof a half adder Each primary addendis associatedvith an
input of the half addernetwork.

Two verticesv and w are connectedy a directedede (v, w), if
thehalf adderassociatedvith w hasthe signalassociatedvith v as
opernd.

Forc € Cands € Sitis(c,s) € Rif andonlyif ¢ and s
are associatedwvith the outputsignalsof the samehalf adderin the
network.

With ead vertex v € V weassociatehe Booleanfunction f,, €
F in termsof the primary addendghatis implementedby the signal
correspondingo v in the half addernetwork.

For illustration of this definition, Figure 4 shavs the addition
graphof the full adderof Figure 3. Notethatthe primary addends
andthe carry nodesarethe sourcenodesof anadditiongraph,and

184

Lemma 2 Theoutputfunctionsof two additiontreesT” and T (Fig-
ure 6) are equivalentf thefollowing conditionsare true.

1. Thesetsof primary addendgor T and T are identical (I =
Iz).

2. Thee existsan addition tree S sud that the setof all carry
nodesbeingaddenddor T is identical with the setof carries
geneatedin S. Thesameholdsfor T andsomeadditiontree
S.

3. Theoutputfunctionsof S and S are equivalent.

Figure4: Addition graphfor full adder

Proof: If theoutputfunctionsof S and$ areequivalent,thenthe
summodulo? of all carriesgeneratedn S is equivalentto thesum
arealsoreferredto asaddendsn thefollowing. In Figure4, addends modulo2 of all carriesgeneratedn S. This follows from the obser
arerepresentetly boxes,sumnodesarerepresentetly circles. The vationthat S canbe transformednto S by a sequencef operand
relationbetweercarry andsumnodesis indicatedby dashedines. swapsaccordingo Lemmal. T aswell asT computethemodulo2

Nodesv andw are sinks of the additiongraphand correspondo
outputsv andw of the half addemetwork.

Themodellingof a half adderby two separateodesin the addi-
tion graphmay seemawkward. Note, however, that our definition
leadsto a decompositiorof the half addemetwork into graphenti-
tiessuchthatall but the sourceverticescorrespondo XOR opera-
tions. Therefore gachsumnodein the graphcanbeassociateavith
the summodulo 2 of all sourcenodesin its transitive fanin. This
facilitatesthe manipulationof the graphstructure.

In the following, without loss of generality we assumehat the
addition graphis a forestof trees If the addition graphobtained
from theoriginal half addemetwork doesnothave treestructurewe
canalwaysgeneratea forestof treesby duplicationof appropriate
graphportionsincludingprimaryaddends.

Figure5: Addition graphof Lemmal

Lemmal Letr ands betheopemndsof a sumnodew in an ad-
dition graph. Further, let w and¢ bethe opelandsof a sumnodev,
as shownin Figure 5. Let p and ¢ bethe carry nodesof v and v,
respectivelyExcangingoperandr with operand¢ doesnotchange
fv» anddoesnotchane f, @ f,.

Proof: Function f, doesnot changebecausedditionmodulo2
is commutatve. The function f, & f, doesnot change because
(r-s)@((res)-t)=(t-s)@(t@s) 7). o

Half addemetworksimplementingpracticaladditionstageshave
the specialpropertythat eachaddition tree computesa digit of a
binary encodednteger. The carry signalsof the additiontree for
digit ¢ all feedinto the additiontreefor the next digit, 2 + 1. This
canbeexploitedwhencheckingthe equivalenceof additiontreesin
practicaladditionnetworks.

sumof the primaryaddendsindthe carriesof S. m|

I

I+ (addends of S) I+ (addends of S)

Cs

equivalent

Figure6: lllustrationof Lemma?2

Oncewe have a representatiorof an addition circuit as a half
addernetwork, the equivalencecheckusingLemma? is straight-
forward. Note that finding additiontree S for additiontree T in
condition?2 is trivial in practice sinceS is locatedin theimmediate
structuralvicinity of T'. The correspondence$ with S and7" with
T areknown from the givenequivalencecheckingtask.

Note the recursve natureof Lemmaz2: the equivalenceof the
outputdigit 4 (treeT’) depend®n theequivalenceof digit i — 1 (tree
S). Theterminalcaseof therecursionis digit 0 whereno carry-ins
exist andonly condition1 of the lemmaneedsto be checled. The
total run-time of the equivalencecheckaccordingto Lemma2 is
linearin the numberof half adderswhich is proportionalto circuit
size.

Anotherpossibilityto verify additioncircuitsonthearithmeticbit
level is to manipulatethe circuits usingthe operationof Lemmal
until bothcircuitshave the samestructureandcontainenoughinter-
nal equivalencedor a standardequivalencecheckingprocedureto
besuccessful.

The problemthat remainsto be solved, however, is how to ex-
tract the arithmeticbit level representatiofrom the gatenetlist of
anadditioncircuit. Thisis subjectof thefollowing section.

3 Extracting the Half Adder Network

An additioncircuit canbeimplementedn mary differentways. Dif-
ferentarchitecturese.g. carry-s&e adderarraysor Wallacetrees,

185

exist, aimingat differentdesigngoals.Also for the componentand
subcomponentthereexistsavariety of implementatiorchoices As
an example of an adderstagewhich is not constructedrom cas-
cadedhalf andfull addersconsidetthe 4-bit carry-lookahea@dder
of Figure7. In orderto speecdup computatiortime, thecarrysignals
in eachoutputconearegeneratedby a speciallogic block.

Co
307
by, —|
5 8
8 s
a—| 2 a — i D—) s,
b1 C o | bi—
=) R
e
ng ? gz : Dsz
— @)y —
O B
Cs -
a;— as — i D—) S
b, — b, —
[o

Figure7: 4-bit carry-lookahea@dder

It is our goalto extract a half addernetwork thatabstractfrom
suchimplementatiordetails. We seekan extractiontechniquethat
producesas outputa network of half adderswhich is functionally
equialentto theimplementation.

3.1 BasicProcedure

Theapproactwe proposas basednthefollowing assumptionThe
predominanbperatioratthebit level is thecomputatiorof exclusive
OR. This logic function is part of every implementatiorof binary
addition. We useBooleanreasoningechniquegl11] to detectXOR
relationshipdn the original circuit. Guidedby the detectedXORs
we construcnetwork of half addersasareferenceircuit. We store
implicationsbetweemodesn theoriginal circuit andthe half adder
network. The storedimplicationsestablisha mappingbetweerthe
nodesof the original andthereferencecircuit.

As anexample considetheimplementatiorof afull addershavn
in Figure8.

Using Booleanreasoningechniquest is possibleto prove that
the signalz canbe expressedasthe exclusive OR of signalsa and
b. As aconsequencen thereferencecircuit, we inserta half adder
nodew with operands: andb andstoreimplicationsreflectingthe
equivalenceof the sumoutputof the half adderandnodez. Also,
signalp canbeexpresseastheexclusive OR of z andc. We insert
ahalf addemodev with operandg andc andstoretheequialence
of the sumoutputwith signalp.

Now thatthe half addersu andv exist, it is possibleto express
signal ¢ as an exclusive OR of the carry outputsc; of w andcs
of v. Also, we canidentify the implicationc; = 1 — ¢c; = 0
whichis equialentto c; - ¢ = 0, for all possibleinput vectorsof
theaddercircuit. Thereforewe inserthalf adderw with operande;

u *\ w
I '_C
\ 2 \
'—Cl = '_"0
<@
K
> g =
ao e § %
g 3
j> g
X

Figure 8: Full adderimplementatiorand mappedhalf addernet-
work

andcz, andwe storetheinformationthatthecarryoutputof this half

adderproducesa constant0. We alsostorean equivalencepointer
betweenthe sumoutputof w andthe outputq of the addercircuit.

We now have acompletemappingof theaddercircuit asahalf adder
network.

Note thatalthoughfunction ¢ implementsthe majority function,
q = (a+b)c+ ab = ab + ac + be, of theinputsa, b, c andnotan
XOR functionof ary of theseoperandsye canstill find a mapping
for this nodeby usingsignalsfrom thereferenceircuit.

Whendetectingan XOR relationshipof theform y = a @ b for
somesignaly in the original circuit, with a andb beingsignalsin
the original or in the referencecircuit, it is actually not sufficient
to inserta half adderwith operandsz andb. It could be that an
operandhasto be invertedin orderto make the half adderuseful
asanoperandater. Sincethe correctoperandgphasesannotbe de-
terminedby the XOR detection(y = a ® b = @ @ b), we add not
only one half adderfor eachXOR found but all four half adders
correspondingo thefour possiblecombinationf inversionsof the
operands.

The Booleananalysisunderlyingthis procedureis local and of
fairly low compleity. An efficientimplementatiorcanbebasechot
only onimplicationtechniquesut justaswell ondecisiondiagrams,
SAT solvingor structurahashing9].

3.2 Local half adder network extensions

In practicalimplementationsthe calculationof sumandcarry sig-
nals may be locally separatedand restructurede.g. to improve
timing. If suchlocal optimizationshave beenperformed,the ba-
sic procedureof Section3.1 may not always be sufiicient to deter
mineacompletemappingof thecircuit. However, sincetheinternal
nodesof our additiontreesrepresenbnly XOR functions,“reverse-
engineering'thesereesusingcommutatve andassociatie transfor
mationsis simple. We analyzethe currentstructureof the reference
circuit andlocally addpromisingnew half adders.Thenwe retry to
mapthe unmappedodesusingthe new half addersasoperands.
As anexample,considera circuit computingsomeadditionsac-

186

cordingto thehalf addemetwork shavn in Figure9. In thisnetwork,

full adder

Figure9: Arithmetic bit level representatiofexample)

function f is the outputof a chainof half adders Signald traverses
threeXOR stagedeforereachingf. In a practicalimplementation,
it may be of advantageto computef by an XOR treeratherthana
chain.Figurel0shavs suchanimplementationAlso shavn arethe
half addergnsertedafter applyingthe basicproceduredescribedn
Section3.1. Notethatin thisexampleit is notpossibleto expresshe

OQTOQD

oo

Figure10: Implementatiorof exampleof Fig. 9 with addedrefer
encecircuitry

carry function of signalg asan XOR of ary two half addersignals
in the referencecircuit. Hence,we fail to completelymapthe gate
netlistto a half addemetwork asin Figure9.

If, asin this example,the computationof sumandcarry signals
hasbeenlocally separate@ndthe XOR treesin the sumhave been
restructuredgcertaincarry functionscanno longerbe expressedn
termsof the availablesignalsin the referencecircuit andcannotbe
mappedThisleadsto “gaps”in the extractednetwork.

In orderto mapsuchgapswe proceedasfollows. First, for each
gap,we identify its mappednputs. Then,by a topologicalanalysis
in theextractedhalf addemetwork, we identify the signalwherethe
sumof theinputfunctionsis computed We thenrestructurehe half
addemetwork usingcommutatve andassociatie laws suchthatthe
operandseededo map the gap functionsare produced. For ex-
ample,in Figure 10, signalsa, b ande arethe inputsof a gap. We
searchin the half addemetwork a signalcomputingthe sumof a, b
ande. By backtracingn theadditiongraph,we determinefor each
inputits addendgprimaryaddendsandcarry nodes).Then,by for-
ward tracingwe identify the sumnodesummingup theseaddends.
In Figure10, we identify function f which computeghe sumof a,

b, c andd. Next, we restructurethe half addernetwork suchthat
an additionchainwith the operandsz, b ande is obtainedandlo-
cally extendthe half addemetwork by this additionchain.If several
additionchainsarepossible all of themareinserted.In our exam-
ple, the additionchainis the seriesof half addersP, @ and R of
Figure9 andcanbe added(not shavn) to the half addemetwork of
Figure10. Now, signalg canbe expressedisthe XOR of two carry
signalsin thereferenceircuit, yielding the half adderS of Figure9
andcompletingthe mapping.

3.3 Algorithm

extract_half_adder_network(C)

{
/* input: C, original gatenetlist*/
R:=0; /* referenceircuit*/

/* STEP1: searchfor XORsin original circuit, C */
extractionpass(C, R, C);
/* STEP2: searchfor XORsin referencegircuit, R */
extractionpassC, R, R);
/* STEP3: completemappingfor yet unmappediodes*/
for all unmappedodesy in C {

locally extendhalf addemetwork R for y;

extractionpassC, R, R);
/* STEPA4: find cover*/
foreachoutputy of circuit C {
/* DFSbacktracen half addemetwork */
selecta half adderh mappedn y;
pushh onstack;
while stacknotempty{
pophalf adderh from stack;markh;
foreachoperand of h {
selecta half adderi mappecdbno;
pushi on stack;
1
remove unmarled half adders;
return R;

}

Tablel: Algorithm for half addemetwork extraction

Tablel shawvs the pseudo-codef the proposedalgorithmfor half
addernetwork extraction. The algorithm consistsof four phases.
The first two phasesconsistof the stepsintroducedin the example
of Figure8. Thethird phaseargetsthe remainingunmappedodes
asdescribedn Section3.2. In eachof thesephasessubroutineex-
traction_pass() shawvn in Table2 is calledwhich performsonepass
over the original circuit, analyzingwhetherXOR relationshipsex-
ist for every nodethat hasnot beenmappedby a half adderyet.
Dependingon the phase the XOR operandsare searchecitherin
the original or in thereferencecircuit. Finally, in thelastphasea
backtraceprocedurds startedto collecta setof half addersform-
ing a cover for the givenadditioncircuit. This cover is usedfor the

187

extraction_pass(C, R, O)
{
/* C: original gatenetlist*/
/* R: referencezircuit */
/* O: circuitto chooseXOR operandgrom */
for all unmappediodesy in C' {
while (exista,b € Owithy =a @ b) {
insertcorrespondingpalf addersH; in R;
storeequivalencesf half addersumswith y;
marknodesin C coveredby H; asmapped

1
}

Table2: Subroutineperforminga half adderextractionpass

equivalencecheckof Section2.

Note that our procedureis robust alsoin caseswvherethe basic
building blocks are not half or full adders. Considerthe example
in Figure7. In thefirst phaseof the algorithmof Table1 we iden-
tify the XORsperformingthe additions.For eachXOR ahalf adder
is insertedin the referencecircuit. In the secondphasewe express
eachof theoutputses, ¢2, c3 andes of thecarry-lookaheadbgic as
XORsin termsof carryoutputsof theinsertedhalf adderscomplet-
ing themapping.lt is interestingo notethattheresultinghalf adder
network is of carry-propagaté‘ripple carry”) structure.

4 \Verification Framework

The proposedapproachcan be addedas an additionalheuristicto
existing equivalencecheckingframewvorks. Equivalencechecking
is run for given circuitsin the usualway until standardechniques
abort by lack of internal equivalences. If thereare large regions
withoutinternalequialencesthe extractionprocedureof Section3
is activated attemptingo generat@narithmeticbit level representa-
tion of the pathologicakegion. This canbe successfulif theregion
is indeedan arithmeticblock. If the circuit containsa multiplier,
standardequivalencecheckingwill be successfuin identifying in-
ternalequivalencegor mary nodesin thecircuit, includingthe par
tial productsof the multiplier. However, it will fail to processhe
subsequeradditioncircuit. After extractingthe arithmeticbit level
representatiothe verificationcanbe completed.

In this paper we focuson verifying the equivalenceof addition
circuits with dissimilar structureas they appearin different mul-
tiplier architectures. Another multiplier architectureparameteiis
the use of Booth recoding, which affects not the addition circuit
but the primary addendgeneratiorstepof Figure 1. The multipli-
candis re-encodedo producea smallersetof partial productsto
be accumulatedby the addition circuit. In orderto verify multi-
pliers with Booth recodingin a verification framewvork using the
proposedapproachijt is necessaryhatthe frontendproducingthe
gate-level descriptionof the specificationgeneratedoth, the non-
Booth-encodednd the Booth-encodedartial productsbits. The
equivalencechecler will thenexpressthe extractedhalf addersin
whatever partial productshave beenusedin the designunderveri-
fication. We have not yetimplementedhis in our verificationtool,

thereforethe experimentalresultsof Section5 have beenobtained
for non-Booth-encodethultipliersonly.

Notethattheproposedxtractionprocedurewill fail to extractan
arithmeticbit level descriptionif the multiplier circuit containsan
error. This, hawever, is easilydetectedoy a simulationstepearlier
in theverificationflow. Obsene thatmultipliersarehighly random-
patterntestablesothata buggydesignis usuallydetectedcby only a
smallnumberof randompatterns.

If it is desirableto representhe arithmetic circuit by a word-
level decisiondiagram, our approachcan also be of interest. It
wasalreadypointedout in [3, 4, 8] thatknowledgeaboutthe sub-
componentof a multiplier can be very usefulin BMD construc-
tion. It seemdikely that the arithmetichit level representatioras
extractedby the procedureof Section3 could be a good basisfor
heuristicallyguiding a BMD constructionprocessalong the lines
of [4, 6].

5 Experimental Results

The describedtechniqueshave beenimplementedas a part of the
HANNIBAL [11] tool. Table3 shaws theresultsfor extractingthe
half addernetworks for a numberof multiplier circuits. The first
columnshaws the circuit name the next threecolumnsshawv thebit
widths of multiplicationoperandsX, Y, andresult,Z, andthelast
column shaws the run time of the algorithm. The CPU timesare
givenin second®na 450 MHz PCrunningLinux.

circuit bit vectorwidths || CPUtime

name X|y| z (secs.)
mult8x8 8 | 8 16 3
dw_csa8x8 8 8 16 3
dw_nbw_8x8 8 8 16 12
mult16x16 16 | 16 32 40
dw_csal6x16 | 16 | 16 32 34
dw_nbw.16x16 | 16 | 16 | 32 132
c6288 16 | 16 | 32 76
c6288nr 16 | 16 | 32 56
c6288opt 16 | 16 | 32 36
dw_csal6x26 | 16 | 26 42 98
dw_nbw.16x26 | 16 | 26 | 42 156

Table3: Experimentatesultsfor half adderextraction

Circuitsmult8x8andmult16x16are8- and16-bitmultiplierspro-
ducedby a self-writtengeneratorfor multipliers in CSA array ar-
chitecture. The circuits denotedby prefix dw_csaanddw._nbw are
multipliersin CSA arrayandWallacetreearchitecturerespectrely.
They have beencreatedusinga commercialCAD system(Synop-
sys DesignCompiler). Circuit c6288is the well-knavn 16x16 bit
multiplier from the ISCAS-85benchmarlset,circuit c6288nris its
non-redundantersion,andcircuit c6288opis theresultof optimiz-
ing c6288usingSISwith script.rugged

For all thesearchitecturesthe arithmeticbit level could be ex-
tractedwithin shortCPUtimes. Notethatdueto the Booleannature

188

of our extractiontechniguethe arithmeticbit level canalsobe ob-
tainedif themultiplier hasbeenbeenoptimizedusingstandardogic
synthesigechniques.This is illustratedby meansof c6288optand
logic synthesidy SIS.

We verified the equivalencebetweenrary pair of multipliers with
the sameoperandwidths usingthe equivalencecheckof Lemmaz2.
After the arithmeticbit level wasextracted,the actualequivalence
checkin all casegook only afractionof a second.

6 Conclusion

In this paper we proposea methodfor equivalencecheckingof in-
teger multipliers basedon a bit level reverse-engineeringpproach.
Themainchallengeés to efficiently extractanarithmeticbit level de-
scriptionof a circuit from a givengatenetlist. The presentedxtrac-
tion algorithmshave beentestedon differentmultiplier architectures
andproved very promising. We are currently extendingour tool to
differenttypesof primaryaddendsothatBooth-recodednultipliers
canalsobehandled.Thepresente@pproacitaneasilybeintegrated
into standarcequivalencecheckingframevorksandcanincreasehe
robustnesf corventionalequivalencecheclersfor arithmeticcir-
cuits.

7 Acknowledgment

We are grateful to Stefan Horeth and Thomas Rudlof from
SIEMENS,ZT SE 4, for fruitful discussionsndfor providing the
multiplier examplesgeneratedby a commerciakynthesigool.

References

[1] J.R. Bitner, J. Jain,M. S. Abadir, J. A. Abraham,andD. S.
Fussell,“Efficient Algorithmic Circuit Verification Using In-
dexedBDDs; in Proc. Fault Tolerant ComputingSymposium
(FTCS-94) pp.266—-275,1994.

D. Brand, “Verification of Large SynthesizedDesigns, in
Proc. Intl. Conf on ComputerAided Design (ICCAD-93)
pp.534-537,1993.

R. BryantandY. A. Chen,“Verificationof Arithmetic Func-
tionsby Binary MomentDiagrams), in Proc. DesignAutoma-
tion Confeence(DAC-95), pp.535-541,1995.

Y.-A. ChenandJ.-C.Chen,“EquivalenceCheckingof Integer
Multipliers;” in Proc. Asiaand SouthPacific DesignAutoma-
tion Confeence(ASPDAC-01), (YokohamaJapan)2001.

M. Fuijita, “Verification of Arithmetic Circuits by Comparing
Two Similar Circuits! in Proc. International Confeenceon
ComputerAided\erification (CAY '96).

K. HamaguchiA. Morita, andS. Yajima, “Efficient Construc-
tion of Binary MomentDiagramdor Verifying Arithmetic Cir-
cuits} in Proc. Internation Confeence on ComputerAided
Design(ICCAD-95) pp. 78-82,November1995.

J.Jain,R. Mukherjee,and M. Fujita, “AdvancedVerification
TechniguesBasedon Learning; in Proc. 32nd ACM/IEEE

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

189

DesignAutomationConfeence(DAC-95), pp. 420-426 June
1995.

M. Keim, M. Martin, B. Becler, R. DrechslerandP. Molitor,
“Polynomial Formal Verificationof Multipliers,” in VLS| Test
Symp, pp.150-155.1997.

A. Kuihimannand F. Krohm, “EquivalenceCheckingUsing
Cuts and Heaps, in Proc. Design Automation Confeence
(DAC-97), pp. 263—-268Nov. 1997.

W. Kunz, “An Efficient Tool for Logic VerificationBasedon
Recursie Learning, in Proc. Intl. Confeenceon Computer
AidedDesign(ICCAD-93) pp.538-543Nov. 1993.

W. Kunz and D. Stoffel, Reasoningn BooleanNetworks-
Logic Synthesisand \erification Using Testing Techniques
Boston:Kluwer AcademicPublishers1997.

Y. Matsunaga;'An Efficient EquivalenceChecler for Com-
binationalCircuits; in Proc. DesignAutomationConfeence
(DAC-96), pp.629-634,Junel996.

T. Stanion, “Implicit Verification of Structurally Dissimilar
Arithmetic Circuits] in Proc. International Confeence on
ComputeDesign(ICCD-99), pp.46-50,0ctober1999.

