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Chapter 1

Introduction

As systems become more interconnected, there is a growing need for these systems to cooperate.
While basic message interchange (like e-mail or the downloading of files) is already common, the
possibilities of distributed systems within this interconnected world are yet somewhat uncharted. One
reason is the inherent complexity of a distributed system, which makes distributed components much
harder to design, debug and maintain than standalone pieces of software.

But the advantages of a distributed system are too promising to ignore. They offer greater speed by
spreading complex tasks over many computers working in parallel, fault-tolerance by using redundant
servers, or delegation, where a client contacts the server to perform some type of service. The offering
and using of services are of particular interest for the Internet today, where companies are not satisfied
with presenting information on the World Wide Web, but also want to present their services, online,
to the world-wide user community.

Software – easy to use distribution platforms – is needed to make this feasible.
Communication is provided by networks, and it is certainly possible to build distributed systems

with only what the network itself has to offer. However, distribution is much easier to achieve, to
maintain and to extend, if the distribution platform provides an abstraction of the network and allows
a more natural usage of remote components. Chapter 2 presents and evaluates a number of existing
distribution platforms.

A common idea is the middleware approach of introducing a new layer into the program that keeps
the complexity from the developer by hiding as many details of distributed programming as necessary.
To the developer, the middleware presents seemingly local objects, and invocations on the local proxy
cause the necessary data to be transparently sent to the recipient.

One popular example of such middleware is the Common Object Request Broker Architecture
(CORBA), which is part of the Object Management Architecture as specified by the Object Manage-
ment Group. CORBA uses the Object Request Broker as the glue between individual pieces, which is
responsible for directing a client’s method invocation to the appropriate object implementation.

CORBA is already in widespread use, both in education and business. An Object Request Broker
comes built into the popular Netscape Navigator, a freely available hypertext browser for the World
Wide Web with a sizable market share. With CORBA technology on desktops everywhere, the above
scenario of offering world-wide services is at hand, but not yet reality.

While CORBA can indeed hide many details of Client/Server programming from the client, expe-
rience has shown that a much tighter involvement with the Object Request Broker is necessary on the
server side. For this, CORBA uses the concept of object adapters which mediate between the ORB
and the server on how to represent servants to the outside world; servers can choose an object adapter
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CHAPTER 1. INTRODUCTION

that best fulfills its requirements.
This thesis focuses on the Portable Object Adapter, which was recently added to the CORBA

standard to replace the original Basic Object Adapter. The latter proved to be ill-specified and in-
sufficient for many a server’s requirements. However, while the POA’s specification drew from its
authors’ experiences with the BOA’s shortcomings, the POA had not been implemented at the time of
its writing.

The goal of this thesis was to verify that the POA specification is sensible and complete, by
attempting a reference implementation.

An object adapter is not a standalone entity, it is but a part of the architecture and requires an Ob-
ject Request Broker to cooperate with. Rather than reinventing the wheel, the Open Source CORBA
implementation MICO was chosen as platform. MICO was designed to be an extensible ORB; in par-
ticular, it allows for pluggable object adapters. Yet, as the implementation of the POA was begun, no
object adapter existed in MICO but the ones it was originally designed for. Therefore, a side goal was
to see how MICO’s extensibility could cope with an object adapter whose requirements had not been
anticipated.

After presenting and comparing other solutions for distribution in the second chapter, the world
of CORBA is explored in more detail throughout the third chapter.

The fourth chapter takes a look at the server side of CORBA programs, explaining the design
principles of object adapters in general and their realization by the two object adapters that have been
specified by the Object Management Group themselves, the old Basic Object Adapter and the new
Portable Object Adapter. The reasons why the BOA was abandoned will be analyzed, as are the areas
the POA improves upon.

After all the abstract discussion in the previous text, chapter 5 first takes a brief glance at MICO

and its extension mechanisms, and then presents the hands-on experience that was gathered in the
attempt for a complete reference implementation of the POA and the extensions that were required.

The thesis then concludes with a look at the goals presented above, to what extent they have been
achieved, and which areas of the Portable Object Adapter still need improvement. A few examples of
POA-based server programming are included in the appendix.

At the time of writing in June 1999, version 2.2 of the CORBA specification was current, but draft
documents of CORBA 2.3 were available and close to become official. This thesis mainly refers to
CORBA 2.2, with frequent annotations about changes in 2.3 being based on the December 1998 draft.
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Chapter 2

Distributed Systems

2.1 Introduction

The reasons for developing distributed systems are about as manifold as there are definitions for the
term “distributed system” in the first place. The most basic one is that of a collaboration of individual
components that communicate to achieve a common goal, which could cover everything from Unix
shell scripts (where various programs communicate using pipes) to the loose collaborations on the
Internet where hundreds or thousands of users contribute computing power to work on crypto chal-
lenges. Both extremes do not seem so far-fetched when looking at the most popular design strategies
used in distributed systems:

� Parallel processing

� Fault tolerance

� Delegation

� Resource sharing

The first item mentioned here was the historically first, too: when distributing a single task over a
number of processors, parts of the overall task can be computed in parallel to speed up the total pro-
cess. Fault tolerance is relevant in fail-safe systems (e.g. airplanes), and achieved using redundancy:
the same computation is performed multiple times to detect and to safely recover from the failure of
individual nodes. Delegation is the basis of Client/Server systems, where a server performs a par-
ticular service on behalf of the client, like a database retrieval. Resource sharing is a different kind
of delegation, where systems offer their special information or hardware resources, for example a
graphical X11 display, the operation of a robot or numerical computation capabilities.

Parallel processing, fault tolerance and resource sharing specialize the above definition of a “dis-
tributed system” in that they mandate a distribution over interconnected nodes in a network. This is
obvious in the case of parallel processing, which only makes sense when distributing the job over a
number of distinct processors; and redundancy also can only be achieved with physically separate sys-
tems, because the failure of any part of a node makes any of its results suspect. However, delegation
is just as useful on a single computer, as in the Unix shell example.

One central keyword in all definitions of distributed systems is communication. Communication
is necessary to distribute information among the components that make up a distributed system, and
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to collect the partial results of each component in order to compute a total answer to the common goal
mentioned above.

While the term communication can be stretched to the extreme (global variables in a program can
be said to be a means of communication just as well as common disk files or shared memory), the
usual case of distribution over networked nodes requires some sort of network-aware transport.

The need of communication, potentially over a shared resource like a network, introduces a num-
ber of potential problems that a distributed system must be aware of:

Communication Overhead: Transferring data is costly and takes time. Distribution does not make
sense where the time for communication exceeds the amount spent performing computations.
The bandwidth available for communication may be limited and not constant.

Points of failure: Components can fail individually, or communication links may fail.

Security: Communication over a public network could be intercepted, manipulated or interferred
with by a third party.

Synchronization: It may be necessary for a distributed system to wait for a single slow component
before computation can continue.

Just as not all of the advantages apply to a given distributed system, the impact of these potential
problems also depends on the particular system which is to be implemented: while the interception of
data by a hostile attacker might be ignored in a local network, it must be dealt with when private data
needs to be transmitted over the Internet. Depending on the application, the manifold failure points in
communication must be handled specifically. For non-critical systems, or for small systems in a local
network where failure is rare, it may be acceptable for an application to simply crash in the case of
a failure: it will then be the task of the administrator to discover and correct the cause of the failure,
and to restart the application. In other cases, the software must be prepared to recover reliably from a
partial system failure and perhaps use redundant components instead.

The term distribution platform shall be used to describe a generic means of distribution provided
by an operating system, library or language. A distribution platform at least hast to provide primitives
for communication and coordination for use by the programmer to build the distributed system on top
of the platform. It should help a developer to utilize the advantages of a distributed system as easily
as possible while minimizing or at least controlling the potential problems.

A distribution platform has to provide at least three primitives so that implementing a distributed
system becomes feasible: addressing, synchronization and encoding.

Addressing: In order for components of a distributed system to find each other, each must have an
address. Servers must be able to publish their address, and clients must be able to acquire a
server’s address, either by administrative intervention, guessing, or looking it up in a naming
service.

Synchronization: All participating parties must agree on a certain protocol when data may be sent
or received. Common data transfer protocols are messages, request-response or data streams.

Encoding: Defines the format used for transferring data. This could be uninterpreted chunks of octets
or structured data.
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2.2. LOW-LEVEL DISTRIBUTION

A distribution platform can be expected to use abstractions of these primitives to ease development,
for example by automated encoding of complex data. In a synchronized system, the developer is not
involved in issues of timing, nor has to be concerned with the ordering of incoming data. Abstracting
all three issues provides transparency, meaning that the developer does not need to be aware of how
components are located and how data is communicated between them.

Apart from transparency, other key features of distribution platforms are:

Mobility: Components can be fixed to one location, move in an inactive state, or even move while
being active. Mobility can be coarse-grained (servers) or fine-grained (objects). Location se-
lection could be client-controlled, server-controlled or automated, with an appropriate location
selected by load-balancing, network usage or hardware requirements.

Quality of Service: Addresses the non-functional aspects of distribution, e.g. a distributed system’s
control over different data transports (bandwidth limitations, encryption), timing (real-time re-
quirements), or protocols to handle redundancy or error recovery (automated recovery vs. noti-
fication vs. abortion).

Interoperability: Closed systems can live without interoperability, but in a heterogeneous world, it
is useful if the distribution platform is not limited to a particular hardware, operating system or
programming language. It is unlikely that independent clients and servers can agree on identical
hardware and software.

A number of distribution platforms have been developed, some with a specific use like parallel pro-
cessing in mind, others with the intention of a generic platform for distributed applications. A couple
of examples are explored in the following sections, grouped by the level of abstraction provided for
the issues above: low, middle or high.

This categorization can be done by applying the popular Open Systems Interconnection (OSI) Ref-
erence Model [70] to distribution platforms. The OSI model takes a layered approach to networking,
each introducing a level of abstraction. The full model has seven layers, but the lower four, physical,
data link, network and transport, deal with low-level issues such as failure detection and routing and
are of less interest to the application programmer, who is content with secure communication on top
of layer four.

A low-level distribution platform does not abstract any further and allows no more than data
transport. Figure 2.1 shows the upper three layers of the OSI model on top of the transport layer, with
the distributed system built on the top application layer.

Slightly deviating from OSI terminology, a high-level distribution platform can be said to provide
mechanisms naturally built into the programming language, so that locality or remoteness is entirely
transparent.

The two layers in between, again in line with OSI, provide session control, the handling of con-
nection between distributed components, and the presentation layer encodes complex application-
dependent data structures like method parameters into a common format, probably adding data com-
pression or encryption – and this is just what can be expected from middleware.

2.2 Low-Level Distribution

The most basic distribution platforms are no more than communication packages that allow the send-
ing and receiving of raw data between components. Components are contacted at a known location,
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Transport
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Language Integration
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Figure 2.1: The OSI model applied to Distribution Platforms

and data can be exchanged using a predefined protocol. Examples for this kind of distribution are
BSD sockets and PVM.

It is something of an exaggeration to describe sockets as a distribution platform, as this is not true
to their design as a means of exchanging data. Sockets are presented here because of their significance
as a transport for more sophisticated distribution platforms.

PVM, however, is a valid candidate as a distribution platform, if only to demonstrate the limita-
tions of a low-level approach.

2.2.1 Sockets

Sockets [67] were originally introduced in version 4.2 of the BSD Unix operating system, and have
since been added first to other Unix’s, then to other operating systems as well. Today, support for
sockets is ubiquitous and part of both the Single Unix Specification [17] and the upcoming IEEE
P1003.1g Protocol Independent Interfaces standard, part of the POSIX family. They provide a com-
mon programming interface to TCP/IP (Transmission Control Protocol, Internet Protocol [48, 49])
and UDP/IP (User Datagram Protocol [47]), the basis for the Internet and similar networks.

Addressing is done using a host name and a port number, a numerical identifier in the range from
0 to 65535. Components are usually stand-alone processes. Servers (processes that expect incoming
connections) bind themselves to a port, where they can be contacted by clients. Communication can
be connection-oriented (data streams) or connection-less (message based). Multicasting can be used
in local networks, where messages are sent to a group of recipients.

Host names and port numbers must be agreed on by all components of a distributed system. Port
numbers are usually the same on all hosts and can be identified by name, using a database. Well-
known port numbers can be registered with the Internet Assigned Numbers Authority [53], which
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2.2. LOW-LEVEL DISTRIBUTION

thereby provides a primitive naming service.
Data transfer is done on a binary level, as chunks of uninterpreted octets, and recipients must know

how the data is to be read and interpreted. Problems may occur in a heterogeneous environment,
because raw integer and floating-point values may differ depending on programming language and
hardware. Applications concerned with interoperability must take care to convert their data into a
“common format” before sending it, so that it can be changed back into the potentially different native
format on the receiving end. Many existing applications use a string-based protocol, where all data is
encoded as a string.

Sockets present the developer with little help for distributed programming. Addresses are intuitive,
using the Internet host name and a common port number, but no support for synchronization and
encoding exists. The application itself must take care of establishing a protocol and packaging data.

Still, the high availability even in a heterogeneous environment and low cost (no cost if systems
are connected to the Internet or an Intranet anyway) make socket-based programming attractive.

An example of a socket-based distributed system is the world-wide Usenet network. Most hosts on
the Internet run the NNTP (Network News Transport Protocol) service [18], which can be contacted on
the well-known port 119. All participating hosts cooperate in the distribution of messages by sending
incoming news to other directly connected hosts, so that the messages ultimately arrive everywhere.

Classical IP networks can only offer best-effort capabilities in transmitting data, because cable
lines have limited bandwidth and are shared fairly between numerous users, as each datagram is
forwarded on a first-come, first-served basis.

Asynchronous Transfer Mode (ATM) [3] is a new “telecommunications concept” that includes
support for reliable quality of service guarantees over a shared network. Some operating systems
like Linux implement the socket interface over ATM [1], so that sockets can be guaranteed a fixed
bandwidth and latency according to a “User-Network Traffic Contract.”

Many higher-level distribution platforms build upon sockets, and in the generic sense there is no
difference if sockets are implemented over a classical IP network or over ATM, but quality of service
features will in most cases require an ATM basis.

2.2.2 Parallel Virtual Machine

Whereas sockets are basically a means of data transport, the Parallel Virtual Machine (PVM) [11] was
explicitly designed with parallel distributed systems in mind. Its development started in 1989 at Oak
Ridge National Laboratory with the intention of providing an efficient platform for parallel processing,
using multiple workstations rather than supercomputers. Despite its roots in number crunching, PVM
can be used as a universal distribution platform.

A virtual machine is composed of one or more hosts, each running a “PVM Daemon.” Some
of these hosts can by themselves be multiprocessor machines, each processor is then identified as a
node. Components of a distributed system, tasks identified by a unique task identifier (tid), can then
be started on any node. Tasks can then spawn new child tasks by themselves.

Communication among tasks is done by asynchronous messaging and signaling. The sender fills
a message buffer with data and then addresses the buffer to one or more recipients, using their tids.
A message buffer can hold a mixture of basic data: octets, integer values, floating-point values and
strings.

Interoperability is ensured by encoding messages using the External Data Representation standard
[66] to transport messages between hosts. Implementations of PVM first flourished on Unix, but have
also been ported to other operating systems; the two supported programming languages are C and
Fortran.
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Usually, PVM applications are based on a Master-Slave design, in which one master task starts
up a number of slaves and then distributes small pieces of a computation to each of them. The slaves
then operate in parallel, and the master waits to collect the results and to put the pieces together. In the
world of high-performance computing, PVM has become such a success that it has been ported to and
optimized for a wide range of massively parallel computers by their vendors, using their proprietary
means of transferring messages, or even shared memory.

PVM abstracts the network by using task identifiers for addressing and a common data encod-
ing. Message passing is used as synchronization paradigm. But still, components must agree on the
protocol specifying when messages can be sent or received, and must know how to interpret the data
contained in a message.

Although difficult to imagine, generic distributed systems could indeed be built upon PVM, but its
features are too limited and not easy to use. In fact, PVM is a good demonstration of why an abstrac-
tion of a component’s interface and OSI’s presentation layer are needed to provide more transparency
in passing data. The composition of messages is complicated enough as it is, and small changes in the
message format require changing the code of all other components.

2.3 High-Level Distribution

In distribution platforms that provide a high level of abstract distribution, communication mechanisms
are an integral part of the overall system, so that invocations on remote components are transparent,
i.e. indistinguishable from local communication. Two examples are ERLANG [2] and Distributed Oz
[13].

2.3.1 Erlang

ERLANG is a functional programming language for, according to the authors, concurrent, real-time,
fault-tolerant distributed systems. It was developed by Ericsson and the Ellemtel Computer Science
Laboratories for use in Ericsson’s Open Transport Platform, an infrastructure for telephony applica-
tions, and has since been made available to the public.

With its focus on concurrent programming, ERLANG provides lightweight processes that are ex-
ecuted in parallel, similar in notion to threads in other programming languages. The only means of
communication between processes is the sending of messages.

The language makes it especially easy to program event-based systems, and a popular design
choice is to build a concurrent system as a number of communicating finite state machines. This
design aims at implementing particularly reliable systems.

Distribution in ERLANG is realized as a special case of concurrency in that a new process is
spawned on a remote node. Communication with a remote process is no different from talking to
a local process. Since parallelism and messaging are natural mechanisms in ERLANG, distributed
programming looks the same as non-distributed programming.

Special messages are sent by the ERLANG kernel if a remote process exits or fails and thus allows
the developer to react to a failure in a fault-tolerant distributed system. Real-time is only handled
passively, an application can limit the time spent in waiting for a message, but has no control over the
delivery of messages.

With the modern concept of automated code loading, ERLANG programs do not need to be con-
cerned with whether the code they want to execute is actually available on the remote node, as it will
be downloaded automatically by the kernel.

8



2.3. HIGH-LEVEL DISTRIBUTION

State

Class

Record

M

A

P

Site 1 Site 2

Class

Record

A

P

Figure 2.2: Object Mobility in Distributed Oz

ERLANG fully abstracts the network. Addressing is done using process ids, encoding and trans-
ferring a message to a remote process is transparent. The control over quality-of-service and real-time
issues is, in the words of the authors, “soft,” as no guarantees are given. By timestamping messages
and using timeouts, an application can only detect the failure case that a message was not received
in time. Interoperability, however, is limited to ERLANG programs running under the control of the
ERLANG kernel, which must be running on all nodes. A means of integrating code from foreign
programming languages is provided, but requires the reading and writing of messages in ERLANG’s
native data format.

Distributed programming in ERLANG succeeds in a closed environment where the developer has
the choice over all parts of the system and where the software is written from scratch, but as integration
with other common programming languages is not possible, the developer must submit to both the
language and its paradigms.

2.3.2 Distributed Oz

Distributed Oz is an extension to the Oz language developed at the German Research Center for Arti-
ficial Intelligence (Deutsches Forschungszentrum für künstliche Intelligenz, DFKI). Oz is advertised
as a concurrent, “multi-paradigm” programming language and allows object-oriented as well as func-
tional programming.

Like ERLANG, Oz provides an asynchronous messaging mechanism, ports, as a means of commu-
nication between threads, and the step from local messaging to the distributed exchange of messages
is just as short. Synchronous method invocations on objects are realized in a Smalltalk fashion by
sending a message to the object, and could therefore be remote as well.

But instead of using remote method invocations, Distributed Oz uses lightweight object mobility.
If a message referencing an object is sent to a remote site, first a proxy object is created on the remote
end. If a method is invoked on the proxy, it first loads a duplicate of the object’s class record, which
holds the methods’ code, and then transfers the object’s state record, of which only one copy exists.
The state pointer on the originating side is itself then replaced by a proxy.

A manager exists on the site where an object was initially located to keep track of its state record.
Figure 2.2 shows a scenario where an object A has been accessed remotely. The class record exists
on both sites, but the state record is kept on site 2 only. Both sites hold a reference to the manager M,
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and should A be referenced again on site 1, only the state needs to be moved back.
Object mobility is a controversial topic and depends on the situation, specifically, on the size of

the object state compared to the data actually required by the remote site. Additional network traffic is
needed to locate an object before it can be used. Distributed Oz currently does not offer a distinction
between mobile and immobile objects. Oz threads are stationary but are limited to message-based
communication and do not offer an object interface.

2.4 Middleware

Both low-level and high-level approaches of abstracting distribution are limited in their usability.
Low-level distribution platforms like PVM still require the developer to be concerned with many de-
tails of the interaction between components, like the synchronization and the packaging of complex
data into simple transferable chunks. On the other hand, high-level platforms are, more or less by def-
inition, tightly integrated in a particular programming environment and limited to one programming
language. Before a distributed system can be implemented, developers must familiarize themselves
with a new language’s syntax constructs and programming paradigm.

The middleware approach lies in between. The idea is to extend an existing programming lan-
guage by introducing a new layer “in the middle,” between the application and the network, that hides
the complexity of communication and data transfer. To the developer, the invocation of a remote
procedure should appear no different than the invocation of a local one. According to figure 2.1, mid-
dleware provides the distributed system with both a presentation and a session layer, automating the
encoding and transfer of parameters.

Many middleware architectures exist; some in common use today are Remote Procedure Calls
(RPC), the Common Object Request Broker Architecture (CORBA), the Distributed Component Ob-
ject Model (DCOM) and Java Remote Method Invocations (RMI).

Java RMI [14] recycles many of the ideas introduced by RPC and CORBA but is tied to a single
programming language. While being widely deployed today, the interest in RMI fades as CORBA is
becoming a core feature of Java [69]. DCOM [54] is widespread in the Windows world, but propri-
etary in design. A comparison of CORBA and DCOM can be found in [44]. The other two, RPC and
CORBA, are examined in greater detail.

2.4.1 Remote Procedure Call

Remote procedure calls (RPC) were proposed as early as 1975 [73], their history is documented
in [68]. A first implementation appeared from Xerox in 1984 [6]. The following text describes
Sun RPC, released by Sun Microsystems, Inc., which is the implementation in most widespread use
today. A different RPC mechanism is available as part of the Open Software Foundation’s Distributed
Computing Environment (DCE RPC).

RPC allows the the implementation of Client/Server distributed systems: clients can connect to a
remote server and invoke one of the services provided by the server. On both the client and the server
side, the invocation of the remote service appears as a normal procedure call. The client can pass a
number of parameters that are transferred to the server side. The service evaluates the parameters and
returns a result, which is transferred back and returned as result from the remote procedure call.

In order to use remote procedure calls, the collection of services provided by a server program
first has to be described using the RPC Language. Each server is assigned both a name and a unique
program number, and all services are declared with their full parameter lists. The RPC Language
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struct Account {
string name;
unsigned long balance;

};

program ACCOUNT {
version ACC_VERS {
Account deposit (Account, unsigned long);
Account withdraw (Account, unsigned long);
long balance (Account);

} = 1;
} = 0x42424242;

Figure 2.3: Service Interface Description in the RPC Language

provides both simple types like octets or integers, and complex types like structures, enumerations or
sequences.

The rpcgen program then reads an RPC Language file and produces both declarations and code
for the C programming language. A header file contains C type definitions for all the types used in
the RPC Language file, and two source code files containing a client stub and a server stub.

Before invoking services, however, client and server have to find each other using the portmapper
(more recently called rpcbind), which is a permanently running daemon. The rpcgen-generated
server stub code takes care of registering a server with the portmapper upon startup. Clients need to
know a server’s program number as contained in the RPC Language file and the name of the Internet
host the server is running on. They then contact that host’s portmapper, to acquire a client handle,
which then serves as a server reference.

A client program then uses a local procedure call into the client stub, which provides the same
signature1 as the service itself, taking only the client handle as an additional parameter. The client
stub transparently communicates the service’s parameters to the server program by sending an RPC
request. On the server side, this request is extracted by the server stub, which again performs a local
procedure call into the user-provided service implementation. The service’s result is then returned the
same way.

Data is encoded using the External Data Representation [66] standard, the same as in the Parallel
Virtual Machine (see section 2.2.2), ensuring interoperability between different hardware architec-
tures.

RPC demonstrates the important middleware concept of separating interface and implementation.
From the abstract interface declaration, the middleware generates code that aids in distribution by pre-
senting the application with the usual local procedure call semantics and that automates data transfer
and synchronization, performing as the application would expect a local procedure to behave.

Because of its heritage in the Unix environment, rpcgen can only produce stub code for the
C programming language. However, the encoding of parameters is known, and the format for RPC
messages is well-documented [65], so interoperability with different programming languages, or the
implementation over networks other than the original TCP/IP are possible, as demonstrated by PVM.

The Network File System [8] is a successful and widespread example using RPC as distribution

1The signature is the set of all parameter types and the result type.
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platform.
RPC can be used over both TCP and UDP. While the former guarantees exactly-once semantics,2

i.e. the remote procedure is called exactly once, this is not the case with RPC over UDP, where requests
are resent by the client stub after a timeout, and invocations use at-least-once semantics unless the
server activates a duplicate request cache. NFS uses RPC over UDP for increased efficiency and must
therefore use idempotent procedures that can safely be called more than once. A distributed system
that does not want to be concerned with execution semantics and idempotence will obviously choose
the TCP transport.

One crucial limitation of Sun RPC is its procedure-orientation, which enforces a stateless proto-
col. A service cannot identify the client [68] and therefore cannot associate state information with a
transaction. In a stateful protocol, the state would have to be sent back and forth between client and
service as an additional parameter (the Account data in figure 2.3).

Servers can be either single-threaded, where procedure calls on the server side are serialized,
or multi-threaded, where requests are dispatched in parallel. Unfortunately, when asked to produce
thread-safe code, rpcgen assumes multi-threading on the client side, too. In thread-safe code, the
client stubs and services take an additional parameter, so the client-side interface is incompatible with
the single-threaded version.

On the client side, remote procedure calls are always synchronous and block until the service’s
result is received. It is also impossible to mix client and server functionality. While a server can also
act as a client and perform remote procedure calls on its own in order to service a request, a client
program cannot offer services on its own. The cooperation is therefore strictly limited to concrete
service-providers and service-users.

Lastly, services are identified by a number only. This number is chosen in the RPC Language
file and hardcoded by the rpcgen program. The developer usually chooses a program number ar-
bitrarily. If a different server uses, by coincidence, the same program number, clients might address
a completely different server. It is much easier to avoid name clashes in a namespace using human-
readable and descriptive plain-text names.

Despite its shortcomings, RPC is an important member of the middleware family, as it does already
use a separate interface declaration and generated stub code while predating other middleware by half
a decade.

2.4.2 CORBA

The Common Object Request Broker Architecture [63] by the Object Management Group was first
published in 1991. Because CORBA is the focus of this thesis, the entire next chapter is spent on
detailing the Object Request Broker, the central part of the architecture. This section presents the
basic design of CORBA and compares it with RPC as middleware.

The basic idea of CORBA is much the same as it is for RPC. But whereas RPC is based on a proce-
dural language and allows remote procedure calls, CORBA is based on object-oriented programming
and allows remote method invocations on objects. Orfali’s definition of an object [44] is rather short
and vague: “Objects are a blob of intelligence,” expressing that an object provides methods on the
outside, but that the internals of an object are unknown. Cardelli and Wegener [9] are more verbose
and define that a language is object-oriented if and only if it satisfies the following requirements:

� It supports objects that are data abstractions with an interface of named operations and a hidden
local state.

2Under the condition that neither client nor server crash.
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Platform Addressing Synchronization Encoding Mobility Interoperability

Sockets no no no no no
PVM yes no yes no yes
Erlang yes no yes no no
Distributed Oz yes yes yes yes no
RPC no yes yes no yes
CORBA yes yes yes (yes) yes

Table 2.1: Distribution Platform Feature Matrix

� Objects have an associated type [class].

� Types may inherit attributes from supertypes.

It is important to note that the first and last item combined express polymorphism, that an object of
a subtype can substitute an object of its supertype, because all attributes are inherited. The same
properties must be expected from an object-oriented distribution platform and are indeed realized in
CORBA. The first item addresses one of RPC’s weaknesses (see section 2.4.1) by providing stateful
services. Servers contain a number of objects that can be addressed individually, and the services that
operate on objects only need to be implemented once.

Like RPC, CORBA uses a declarative language, the Interface Definition Language (IDL), to de-
scribe an object’s interface. As with RPC, this description is used by an IDL compiler to generate
stubs for the client side and skeletons on the server side. Using this generated code, remote method
invocations look like an invocation on a local object, at least in an object-oriented programming lan-
guage like C++. Also like RPC, the encoding of parameters is hardware-independent, this time called
CDR (Common Data Representation).

CDR differs from XDR in that it allows the data stream to use both big-endian and little-endian
encoding for numerical values, so that no conversion is needed if sender and recipient have the same
endianness, whereas XDR would always encode numbers on both ends if their hardware uses the
“wrong” endianness.

The phrase “Object-oriented RPC” nicely summarizes CORBA’s key ideas, as it was certainly
designed with the experience gathered from RPC in mind. Yet it is an unfair understatement, ignoring
many features and considerations that do not exist in RPC.

Still, CORBA is based on a Client/Server design. Clients handle objects, but the clients do not
need to be objects by themselves: an object-oriented programming language and an object-oriented
distribution platform do not imply object-oriented design as well [7].

Remote method invocations cause a request to be sent from the client to the server, and the client
usually waits synchronously until the reply is received.

The CORBA location forwarding mechanism provides basic support for coarse-grained server
mobility, but a vendor-specific forwarding service (an Implementation Repository) is necessary on the
server side to employ the feature [15].

2.5 Evaluation

Each of the presented distribution platform comes with its own unique approach to distribution. Di-
verse as they are, they have in common that all are in use today, and new distributed applications are
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being implemented with them. As a summary, table 2.1 shows a matrix of the features provided by
each distribution platform:

Addressing: Whether an abstraction of native networking addresses (host name and port number)
exists.

Synchronization: Whether an explicit model of synchronization between the components of a dis-
tributed system is enforced. “No” means that the developer must take care of proper synchro-
nization.

Encoding: Whether a common encoding of the transferred data is used, thereby abstracting the hard-
ware.

Mobility: Whether the distribution platform allows mobile components.

Interoperability: Whether components can interact regardless of their hardware, operating system
or programming language.

Quality of service is not shown for the reason that a distribution platform’s support cannot be measured
with a simple yes or no.

One might argue that the distinction made between high-level distribution platforms and middle-
ware in section 2.1 is fuzzy. It was argued that remoteness in a high-level distribution platform is
transparent, and that seems just as true for client-side stub objects in CORBA.

Certainly, stub objects reach into the application layer. However, with CORBA, the developer is
always well aware of holding no more than a stub object: there is a precise distinction that objects of
a certain type can be either local or remote, but not both. From an academic point of view it might
seem silly to point out the importance of the IDL file: objects whose interface is declared in IDL are
always accessed using remote invocation semantics even if their implementation is local, and objects
whose interface was not declared in IDL can never be remote. The potential remoteness of an object
must be decided on at design time.

On the other hand, the ERLANG or Distributed Oz developer can choose to make an object remote
(or mobile) at implementation time, or even at runtime.

The difference between middleware and high-level distribution becomes more obvious on the
server side. If ERLANG or Distributed Oz were used to implement a Client/Server system in CORBA
fashion, the server program would be the same as if integrated locally with the client. Using CORBA,
the programmer cannot use the same code that would be used in a stand-alone, non-CORBA program,
but the object implementation must inherit from a special skeleton, must follow a language mapping’s
rules for parameter passing, and the server program must negotiate with both the ORB and an object
adapter before it can offer its services.

Server-side programming using middleware is quite different from both local programming and
the server-side programming with a high-level distributed programming language.

The question for the “best” distribution platform is impossible to answer. Certainly using com-
munication packages like sockets is cumbersome, but then, they’re available everywhere and don’t
require third-party software, which can also be considered a plus. And some purists will always argue
that “real performance” can only be achieved by directly using raw IP.

PVM has found its niche despite its shortcomings, and the same is true for high-level languages
such as ERLANG. Despite its advantages, high-level distribution will remain in a niche for as long as
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developers keep sticking to the programming paradigms they are used to, unwilling to commit them-
selves to a new programming language for various reasons: business, unflexibility or performance
concerns.

This is the market exploited by middleware, which allows to use distribution while sticking to the
programming environment which the developer is used to. Middleware might not be the best choice
in an academic sense, but is a “common denominator” with many real-life advantages.
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Chapter 3

Object Request Broker

The Object Management Group (OMG) is a consortium comprised of both companies and institutions,
with more than 700 members. Founded in 1989, the focus of the OMG is the continued work on the
Object Management Architecture (OMA), an open specification of an infrastructure for distributed
objects [62].

The OMG’s approach [40] is unique in that it does not publish products, but specifications which
are based on the experience of its members. When the need for a new specification arises, a Request
for Proposal (RFP) is issued. OMG members can then submit proposals which are discussed in a
forum, improved upon, and finally published or rejected. While votes are taken only from members,
the resulting documents are freely available on the Internet and can be inspected, commented on and
adapted by everyone.

In this process the OMG tries to achieve useful compromises between versatility and complexity.
Solutions that have already been implemented are preferred, to avoid overly academic specifications
that would be hard or impossible to implement. On the other hand, the discussion and peer review
among the many OMG members tries to ensure that such a solution is fit for general use rather than
only solving the problems seen by the submitters themselves.

The basic structure of the Object Management Architecture is shown in figure 3.1. The build-
ing blocks of the OMA are objects belonging to one of four categories: system-oriented object ser-
vices (for example, the Naming Service), horizontal common facilities (like collaboration), vertical
domain-specific interfaces (like architectures for medical applications or air-traffic control systems)
or application-specific interfaces [64].

The key component of the Object Management Architecture is the Object Request Broker, often
called “object bus,” which allows communication among these objects by directing remote method
invocations from client to server.

According to the requirements for a distribution platform as described in section 2.1, means for
addressing, synchronization and encoding must be provided. CORBA uses the middleware approach
as presented in section 2.4.2 employing three main concepts:

Interface Definition: Fundamental to object-oriented programming, a client needs to know an ob-
ject’s public interface, so that it can invoke available methods with the appropriate parameters.
Internal details are private to the object implementation and need not be described or published.
In CORBA, interfaces are described using the Interface Definition Language, and information
about interfaces can be stored in an Interface Repository.

Addressing: A client needs some kind of address so that it knows where to send requests to. This
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Figure 3.1: The Object Management Architecture Reference Model

address must contain enough information to identify one particular servant – a piece of user-
provided code – that the client wants to communicate with. CORBA uses object references to
address an object.

Invocation: A client needs to be able to construct a request which is then transported to the server,
evaluated, and returned. This can be done transparently with stub objects, which are generated
from the interface definition. Invocations on a stub objects cause all parameters to be packaged
into a request which is then transparently sent to the object implementation. Another option
is the usage of the Dynamic Invocation Interface to build requests at runtime, possibly using
runtime type information from the Interface Repository. Both means of invocation provide the
required abstraction for synchronization and encoding.

Orthogonal to all of these three concepts is Interoperability, which, according to section 2.5, refers to
the ability to communicate regardless of programming language, operating system or hardware.

3.1 Interface Definition

The Interface Definition Language (IDL) is used to describe an object’s interface. IDL solely consists
of declarative constructs, foremost of the “interface” keyword used to describe the methods1 exported
by an object and available to the client.

1CORBA refers to object methods as operations, to distinguish them from an object’s attributes, which are but a special
kind of operation. The terms method and operation can be used synonymously.
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interface Account {
exception Overdraft {
unsigned long balance;
unsigned long withdrawal;

};
void deposit (in unsigned long amount);
void withdraw (in unsigned long amount) raises (Overdraft);
long balance ();

readonly attribute string HolderName;
};

interface Bank {
Account create (in string HolderName);

};

Figure 3.2: Simple IDL File

Interfaces are strongly typed, i.e. methods have a specific number of typed parameters and a typed
return value. Parameters also have a direction: “in” parameters are sent from the client to the server,
“out” parameters are received by the client as a result of the invocation, and “inout” parameters first
get passed to the server, where they are potentially modified and then again returned.

Figure 3.2 shows the IDL declaration for an “Account” interface that provides two modifiers to
deposit and withdraw, and one accessor to query the balance.

As mandated by the object-oriented programming model, IDL also provides interface inheritance:
an interface can inherit from one or more base interfaces and can later, in programming, be used
instead of a base type object (polymorphism). Whether the object implementation of a derived object
also inherits the base object’s implementation or re-implements the base interface’s methods is up
to the object implementation itself and not addressed by IDL: interface and implementation are kept
separate.

IDL provides a number of basic numeric and string types. Additional language constructs allow
the declaration of user-specific structured types, like structures, unions and enumerations. Noteworthy
are the two basic data types “any,” which contains a value of arbitrary type, and “object,” which
transports an untyped object reference.

Interface declarations are independent of a programming language. IDL files are then processed
by an IDL compiler to produce the required declarations for the target language. How this is done is
specified by a CORBA language mapping. For C++, two classes are generated: one abstract “skele-
ton” class for the server side to which the programmer must add the object implementation, and one
“stub” class for the client side.

Type information from IDL files can also be kept online in one or more Interface Repositories,
either for the purpose of constructing requests dynamically, or also for introspection purposes. The
interface of the Interface Repository is itself described in IDL; the contents of an Interface Repository
can therefore be accessed through normal CORBA mechanisms.
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IOR:010000000d00000049444c3a42616e6b3a312e30000000000200000000000000
20000000010100000c000000726f73652e6670782e646500a8300000040000004261
6e6b0100000024000000010000000100000001000000140000000100000001000100
000000000901010000000000

Figure 3.3: Stringified Interoperable Object Reference

3.2 Addressing

In order to access a remote object, a client first needs the servant’s address. This information is
contained in object references. While in older revisions the handling of object references was an
implementation detail, they have been standardized in CORBA 2.0 in a successful effort to strive for
interoperability among different ORBs. These Interoperable Object References (IOR) are opaque to
the developer: no information can be extracted from an IOR, and neither can an IOR be composed
from known components.

It is important to note that the lifetime of an object reference is independent of the lifetime of its
server. A servant is not notified of the creation or destruction of its object references (see the “Pacific
Ocean” problem in [15]), and a client does not have a means of checking if the server is running save
by performing an invocation – which will fail if the server is down and cannot be restarted.

Although the knowledge of a running server might be thought important to the clients, this inabil-
ity is quite intentional, as it allows a transparent restart of the server without a client noticing. A server
might be temporarily shut down to conserve resources or for replacement, and later be restarted on
demand. Clients continuously asking “are you asleep yet” would permanently prevent a server from
shutting down.

The information whether a server is still active is useless anyway, as such information would
always be old: during the time it takes to receive the reply, the server could crash or be stopped just
as well.

Even though the Internet is today’s most common CORBA environment, other means of transport
are allowed, too. Object references contain one or more profiles, each one an appropriate identifier to
locate the object’s implementation – the Internet-specific IIOP (Internet Inter-ORB protocol) profile
is but one option.

An object reference with more than one profile can make sense for redundancy purposes (two
profiles can point to mirrored objects on different hosts), for quality of service purposes (one preferred
profile for encrypted transport) or for optimization (one profile for local interprocess transport if the
server is on the same host as the client, and another profile for remote transport).

To learn which information is contained in an object reference, it is useful to write down a formal
definition of an IOR. An IOR

���������
	�������
is a two-tuple with an optional IDL-declared type

�
and a set of profiles

��
. Profiles have different layouts; as an example, an IIOP profile ��������� �

����� ����!"� #$��%&�
can be further decomposed into five components, one fixed IIOP revision number

�
(at

the moment of writing, 1.2), the Internet host name (or dotted decimal IP address)
�

, a TCP port
number

!
that the server is listening on, a server-specific opaque object key

#
and optional “tagged

components”
% 2.

Their opaque nature poses a bootstrap problem for a client, which must acquire an object refer-

2Tagged components can carry manifold additional service information, like the native charset to be used for string
values. They are in itself opaque, their contents defined by a component’s “tag,” which identifies them.
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Repo Id: IDL:Bank:1.0

IIOP Profile
Version: 1.0
Address: inet:rose.fpx.de:12456
Location: iioploc://rose.fpx.de:12456/Bank

Key: 42 61 6e 6b Bank

Multiple Components Profile
Components: Native Codesets:

normal: ISO 8859-1:1987; Latin Alphabet No. 1
wide: ISO/IEC 10646-1:1993; UTF-16

Key: 00 .

Figure 3.4: Contents of the Object Reference shown in Figure 3.3

ence, but cannot compose one by itself. One solution is the exchange of stringified object references,
which are more or less a hex dump of the opaque data. The servant generates an object reference to
itself, and writes its stringification into a file, which can be either on a shared volume or manually
transported to the client using e-mail, networked file transfer or a sneakers network. The client then
reads the file and uses the inverse transformation to receive the original object reference. A sample
stringified IOR is shown in figure 3.3, and figure 3.4 displays the contents of that object reference,
interpreted and made visible using a special iordump tool.

This way of bootstrapping using “unreadable” strings is rather ineffective, especially if not only
one, but many object references must be exchanged. The Naming Service, one of the aforementioned
common object services, has been introduced to reduce this problem. Servers can register their objects
with the Naming Service, where they can be retrieved by the client using a more natural name. Yet
servers and clients still need an object reference to the Naming Service itself.

Unfortunately, this common problem and frequently asked question of bootstrapping has not been
answered satisfactorily until recently. CORBA 2.3 will introduce a new, more “human-readable”
form of object references as part of the Interoperable Naming Service specification [24] that follows
the same syntax as the common Uniform Resource Identifiers of the World Wide Web [5], while being
limited to objects with only IIOP profiles.

As seen in the formal definition above, the minimal IOR consists of three parts: a host name and
a port number as part of the IIOP profile, and a server-selected object key - the version number can be
fixed, and both the type information and the tagged components are optional. So the new scheme for
IIOP-based object references consists of these three parts written in plain text:

iioploc://<hostname:port>/NameService

While this notation is useful and convenient, it already requires careful handling of the object key
by the object adapter, which should allow for sensible object keys as not to thwart this new scheme
with illegible object keys.

An object reference, be it Internet-based or not, need not be final: GIOP (see section 3.4) allows
request forwarding, where an address does not point to the actual servant, but to a forwarding service.
This may be useful if the server may change its location (for example, if it is shut down to save
resources or for replacement and then started again), as long as the forwarding service keeps running.
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In response to frequently used terminology, it should be noted that there are no “persistent” or
“transient” object references, as mentioned in some literature or in Internet discussions. There is only
one kind of object reference, and while they may point to persistent or transient objects,3 this cannot
be determined from the reference without internal knowledge of the server-side ORB. Some ORBs
indeed use specific tags in references to persistent or transient objects and use the information for
internal purposes, but the client does not know.

3.3 Invocation

Once both the interface and the address of an object are known, methods can be invoked and will be
executed remotely. Again, how this is done is up to the language mapping.

In C++, special stubs are generated by the IDL compiler for each interface. These are C++ classes
that export the methods declared in the IDL file. In addition, an instance of a stub, a stub object,
encapsulates a specific object reference.

Whenever a C++ program acquires an object reference, decoded from a stringified object refer-
ence, from the Naming Service or as result from another method invocation, the ORB indeed creates
a stub object. Since a stub object cannot exist without an object reference, and an object reference
rarely exists outside a stub object, these two terms are often used synonymously.

The generated code in the stub takes care of marshalling the method’s parameters into a request
and passes it on to the ORB, which deciphers the object reference and contacts the server. The re-
moteness is transparent to the user program: the invocation looks no different than a normal, local
invocation.

For the server side, a skeleton is generated by the IDL compiler. The user derives from that
skeleton and adds the methods’ implementation; an instance of such an object implementation class
is called servant. The generated skeleton takes care of receiving the request from the ORB, unmar-
shalling the parameters and performing the upcall into the user-provided code. This way, the object
implementation also looks like a “normal” class. The full process is shown in figure 3.5. It shows the
ORB to be a component of its own, which is true in the abstract sense only. Usually, it is implemented
partly in the client and the server – but the user does not have to be aware of such details.

Stubs and skeletons, as described so far, use static type information: the method names and their
parameters must be decided on at compile time, for they are hardwired into the generated code. Al-
ternatively, the Dynamic Invocation Interface (DII) is available on the client side, and the Dynamic
Skeleton Interface (DSI) on the server side. Using the DII, a client can compose a request using
runtime type information, retrieved for example from an Interface Repository. On the server side, a
servant can use the DSI to dissect incoming requests explicitly.

Using the DII on the client side does not require using the DSI on the server side and vice versa.
The requests that are sent by DSI or received by DII do not differ from other requests, as both inter-
faces are used only to perform the work usually done by generated code.

DII and DSI are not only useful for gateways that do not have advance knowledge of the requests
they are supposed to forward. Dynamic invocations can also be used in generic front ends, to invoke
methods for which no generated code is available, and dynamic skeletons can be used, for example,
to support more than one interface with a single servant.

Another feature of the DII is that it allows asynchrony. Invocations through the static interface are
always synchronous, the client blocks until the request is processed and answered by the server. The

3The persistence or transience of an object is an Object Adapter concept and explained in the next chapter.
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Figure 3.5: Performing a CORBA invocation

DII provides methods for sending a request asynchronously, and later for polling or waiting for the
reply.4

On the other hand, static IDL-generated code, apart from being much more comfortable to use,
is likely to be faster in constructing requests than code using the dynamic interfaces, which must
use generic interfaces for marshalling parameters, such as encapsulating each parameter in an Any
value. IDL-generated code, produced by a vendor-specific IDL compiler, can take full advantage of
a vendor-specific Static Invocation Interface (SII) if available, which might be able to marshal data
much more effectively. This smaller request overhead is especially noticeable with large and complex
parameters (such as arrays or sequences) if the server-side computation time is small.

As seen in section 2.2.2, the Parallel Virtual Machine provided asynchronous messaging only –
asynchrony is essential for the implementation of parallel systems. In a Master/Slave system, a master
distributes a number of small tasks to slaves running in parallel, and must then wait asynchronously
for the results to arrive. CORBA Messaging [35], scheduled for CORBA 3.0 [71], will introduce a
new feature called Asynchronous Method Invocations (AMI), which allows asynchronous invocations
based on IDL-generated skeleton code.

4This is not exactly required by the DII specification. A compliant ORB may block after sending the request until the
reply has arrived, thus defying asynchrony.
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3.4 Interoperability

CORBA 2.0 also specifies the General Inter-ORB Protocol (GIOP) as part of its ORB Interoperability
Architecture. It describes the format for requests, replies, and the representation of data types “on
the wire,” when transported from one ORB to another as part of a method invocation. It also takes
into account several low-level issues, such as the format of floating point values, data alignment and
endianness for integral values.

Older versions of CORBA (prior to 2.0) did not address the issue of inter-ORB data transfer, so
that ORB vendors had to invent a data format on their own,5 making inter-vendor communication
impossible.

GIOP is an abstract specification itself, requiring only a reliable (no data loss) bidirectional data
stream, so that messages can be passed among the ORBs. The aforementioned Internet Inter-ORB
Protocol (IIOP) is a specialization of GIOP in that it implements a concrete profile using host name
and port number, and a concrete transport mechanism, TCP/IP.

The Security Service [36] describes, among other security-related issues, an implementation of
GIOP over SSL (Secure Socket Layer) to provide secure, encrypted transport.

Using GIOP, true interoperability is achieved regardless of operating system or hardware. Since
the data stream is agreed on, any programming language that can read and decipher GIOP data can
access or implement CORBA objects. Official language mappings for C, C++, Java, Smalltalk, Ada
and COBOL are part of the specification [28]. Efforts are underway to provide mappings for scripting
languages such as Perl, Tcl or Python. The list of other programming languages that have been used
for CORBA programming is long, including Eiffel, Lisp and Basic. An Intercal mapping is planned
[52].

This kind of transparency and heterogeneity is unique and makes CORBA an interesting choice
as distribution platform.

3.5 Evaluation

After presenting the ideas of CORBA and praising its virtues, it is also important to recognize its
weaknesses, what CORBA cannot do.

Like RPC, CORBA is foremost a Client/Server system, based on a sequential, synchronous request-
response model of communication. Of the four design strategies for distributed systems mentioned in
2.1, CORBA supports only Client/Server delegation and resource sharing.

Parallel processing requires asynchrony, to distribute many tasks to the worker nodes simultane-
ously, and to react upon their results as they become available. This could be achieved, even with
current means, using asynchronous DII, at the cost of having to construct requests manually and using
a polling model to wait for results, or using callbacks and event-based programming [56]. Messaging
[35] will improve in this area, providing asynchronous method invocations and callbacks.

Fault tolerance is not supported either, but can again be simulated using asynchronous DII. An
effort to add fault tolerance by automating the multicast of requests to redundant servers, collecting
and evaluating their responses is presented in [20].

Orthogonal to these three strategies are real-time requirements, such as latency, guaranteed re-
sponse times or precise timing of request delivery. Design considerations for real-time ORBs are
presented in [51]; an RFP about real-time issues has been answered by a joint submission [37] and

5One example is POOP, the “Plain Old Orbix Protocol,” still available in current Orbix versions for backward compati-
bility and, of course, for “increased efficiency.”
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is scheduled for CORBA 3.0. Precise timing will require the mapping of GIOP to a real-time aware
transport mechanism like ATM (see section 2.2.1).

Somewhat dependent on real-time capabilities are data streams for audio or video data, which
also don’t fit into request-response communication. Again, the OMG is discussing possibilities for
integrating real-time data streams.

An approach for a more generic quality of service infrastructure by allowing the negotiation of
user-defined quality of service issues is presented by the Management Architecture for Quality of
Service [4].

It seems fascinating to look into CORBA’s future with its many intentions, considerations and
forthcoming additions, but the feasibility should not be left behind. From looking at the stacks of
paper, the CORBA specification exhibits almost exponential growth. From CORBA 2.0 [27] (July
1995) to CORBA 2.2 [28] (February 1998) alone, the core specification (excluding language mappings
and common services) was extended by six chapters and doubled from 233 to 489 pages. CORBA 2.3
will again bring many extensions and two new chapters; the preliminary specification [30] (December
1998) totals 579 pages.

While these were minor revisions, adding features one at a time, the 3.0 update will be major,
introducing Components, Real-time CORBA, Minimum CORBA, Messaging and Firewalling [23].

Consequently, the Object Request Broker becomes increasingly complex, and the vendor’s task
of keeping an ORB up to date with the specification and to verify its correctness is becoming harder
still. On the user end, the entry into CORBA programming will become more difficult, too, as the
possibilities become harder to choose from. With Components, Objects by Value and interfaces,
CORBA 3.0 will offer three non-orthogonal paradigms for object implementation.

This progress is certainly due to CORBA’s increasing popularity. After CORBA 2.0 ORBs were
readily available, they have been put to use in many different environments from embedded systems to
large-scale parallel architectures. It is under these extreme circumstances that shortcomings surface.

Maybe it would be prudent to limit the growth somewhat, and instead of extending CORBA in all
directions simultaneously, to emphasize and improve upon the abilities that are readily available.

More features also cause the language mappings to grow. Between 2.0 and 2.3, the C++ mapping
doubled from 94 to 174 pages, too, growing more complicated with more special cases to obey – the
mapping of Objects by Value to C++ [31] is, in one simple word, a nightmare. The C++ mapping
is a good candidate for revision from scratch. It still suffers from historical deficiencies in compiler
implementations: before 1995, the preliminary ANSI C++ standard was still a moving target. Not
using the Standard Template Library – decent implementations have not been available back then
– and governed by performance considerations, the mapping contains many shortcuts and different
strategies for passing parameters by value vs. by reference: for example, distinguishing “fixed length”
and “variable length” structures is bound to cause confusion. It would be interesting to see a revised,
straightforward C++ language mapping consequently based on STL containers and classes [22].

The goal to adapt only proven specifications is also not always enforced, and some parts of the
CORBA specification have been found to be ill-designed or impossible to implement. One example is
the Persistent Object State Service [39]. Well after its addition to the set of common object services,
it was found to be “too complex and imprecisely specified” [38], and a new RFP has been issued,
euphemistically proposing to apply the “OMG sunset policy” [40] to the original service.

The Basic Object Adapter has also been a source of confusion because of its design flaws.
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Object Adapters

Using CORBA-based services is rather simple and straightforward: After receiving and translating
the IDL file into the target language, all that is needed is an object reference. Henceforth, methods on
the remote object can be called through the stub object as if they were local.

More thought must be spent on the server-side, where servants are to be provided. Even after
registering the actual program code with the ORB – for example by passing C++ objects – the pro-
grammer will usually want to have a certain control over ORB processing, such as when a method
may be executed. Missing control on the server side is also a frequent complaint about RPC (see
section 2.4.1), where a server is simply expected to run in perpetuity, not having any control over the
execution of incoming requests.

The OMG concluded that an implementation’s requirements are highly dependent on the operating
system, programming language, and environment. For the sake of an example, the needs of a server
representing an object database would be very different from a server providing a printing service.

In order to allow for different possibilities, the handling of actual user code, servants, is decou-
pled from normal ORB processing by the introduction of object adapters. An object adapter serves
as mediator between the ORB and the servant, providing the ORB with a consistent interface for in-
teracting with user code, and being flexible in cooperating with the servant. Different object adapters
could then be provided to suit the various server requirements, and an implementation could choose
between them and select the most appropriate.

Gamma, Helm, Johnson and Vlissides [10] define an object adapter as a design pattern to achieve
a “reusable class that cooperates with unrelated or unforeseen classes.” According to their definition,
an object adapter receives a client’s request and translates it into a request that is understood by the
“adaptee,” the servant. This description matches that of a CORBA object adapter [57] quite well. The
basic task of an object adapter is a simple one of dispatching an incoming request to user code, the
servant.

When an invocation is made, the client-side ORB is responsible for interpreting the object’s pro-
files, for locating the server in which the object is implemented, and for sending a request to that
server. On the server side, the request is received by the ORB, where three steps of dispatching are
necessary:

1. The ORB must find the object adapter that the object is implemented in and pass the request on
to that object adapter.

2. The object adapter must find the servant that implements the object.
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Figure 4.1: Server-side view of the ORB

3. If the servant uses a static skeleton, the request is unpacked by the IDL-generated code and the
desired method is invoked.

But before any of this can happen, the object adapter must first know about the servant. After regis-
tering the servant with the object adapter, an implementation must be able to create and export object
references that address the servant. So beside merely performing invocations, the object adapter must
provide an administrative interface as well. The OMG lists the following white-paper responsibilities
[25] of an object adapter:

� registration of implementations

� mapping object references to the corresponding object implementations

� object and implementation activation and deactivation

� generation and interpretation of object references

� method invocation

� security of interactions

The first five items have already been mentioned; the security of interactions is only historical, as it is
not a server-side issue only. Security must be an integral part of ORB processing and is now addressed
by the Security Service [36] instead.

Figure 4.1 shows the object adapter in relation to the other server-side parts of an ORB. The object
adapter is sandwiched between the ORB core and the object implementation and has to provide three
interfaces: one to the ORB, which consists of a single method to receive an incoming request, one
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interface BOA {
Object create (in ReferenceData id,

in InterfaceDef intf,
in ImplementationDef impl);

void dispose (in Object obj);

ReferenceData get_id (in Object obj);

void change_implementation (in Object obj,
in ImplementationDef impl);

void impl_is_ready (in ImplementationDef impl);
void deactivate_impl (in ImplementationDef impl);
void obj_is_ready (in Object obj,

in ImplementationDef impl);
void deactivate_obj (in Object obj);

};

Figure 4.2: IDL for the Basic Object Adapter

to the user code to pass this request to, either using the Dynamic or Static Skeleton Interface, and
one administrative interface through which an implementation can cause objects to be activated or
deactivated, and can influence the processing of requests.

The most simple object adapter would be no more than a table that maps object keys (the server-
side part of an object reference) to servants. Upon invocation, only a single table lookup would be
necessary, and activation and deactivation of servants would cause insertions and deletions into that
table.

In fact, the Basic Object Adapter (BOA), the first and until recently only object adapter specified
by the OMG, is little more than that. As the name suggests, it does not provide much but basic
functionality, and it was envisioned that a range of further, more specific object adapters would be
added later on.

An object adapter has a certain impact on the programming style to be used, as each brings its
own concepts and enforces a concrete structure for servants that an implementation has to submit to.
Apart from the very generic description above, object adapters do not have a common behavior, but
have to be considered individually.

4.1 Basic Object Adapter

The Basic Object Adapter was introduced with the first version of CORBA in 1991 and has been
largely unchanged since then. Its purpose was to be a simple and generic type of object adapter
that could be used, as the name suggests, for basic purposes. As such, its interface is intentionally
minimalistic, providing a total of 10 methods, conveniently specified in IDL as shown in figure 4.2.

The Basic Object Adapter defines three states that an object can enter during its lifetime: not
existent, inactive, and active. Not surprisingly, an object is initially in the “not existent” state, meaning
that the ORB does not know of the object and that invocations are not possible but rejected with an
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Figure 4.3: Lifecycle for objects using the Basic Object Adapter

appropriate error message.
The “creation” calls an object into being. From that point on, object references can be exported.

Clients can receive object references for inactive objects, but method invocations will be withheld
on the server side by the BOA and block until the object transitions to the active state. After acti-
vation, method invocations received by the ORB core are passed on to the implementation until it is
deactivated again.

The process of object activation and deactivation can happen more than once and is transparent to
the client. A server might wish to disallow upcalls from the ORB for some time while other tasks are
done, or to replace the implementation.

Once an object is not needed anymore, it can be destroyed to return to the not existent state,
causing the BOA to act as if it had never existed. Destruction is final; although the BOA’s interface
would allow for the reincarnation of an object – the creation of a new object that answers to the same
object references as before, this is forbidden by the specification, which said that two creations, even
with the same parameters, will never produce the same object.

Another central concept introduced by the Basic Object Adapter is the “Implementation Reposi-
tory.” Corresponding to the Interface Repository as a database for the abstract declaration of an ob-
ject’s interface, the Implementation Repository was to be a database of program code for an object’s
implementation. As seen before, an IOR contains both a type and an address to an implementation.
The BOA employs this idea; object creation is done by associating an interface with an implementa-
tion using the create method.

The BOA is aware of processes and servers, and is designed to start up new servers by itself if
necessary. One information kept in the Implementation Repository is the activation policy, so termed
because it determines when a new server must be activated in order to serve a request.

Shared Server A shared server may implement many objects of the same or of different type at once.
A shared server is started by the BOA only if it is not already running. Otherwise, the running
server is contacted for incoming requests.

Unshared Server An unshared server implements exactly one object. The activation of an object
causes the starting of a new server.

Server per Method A new server is started for each incoming request.
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Persistent Server A special case of a shared server. Persistent servers, too, can implement many
objects at the same time. However, persistent servers are not started by the BOA, but are to be
started by user code, or by administrative action.

After start-up and initialization, shared servers and persistent servers will call impl_is_ready to
activate all objects they implement, an unshared server calls obj_is_ready instead. Deactivation
is done by calling deactivate_impl and deactivate_obj, respectively.

The actual contents of the Implementation Repository are not specified by the CORBA standard
but must be defined by the ORB implementation. As per the text above, an entry must contain at
least the activation policy and information about a server process (e.g. a path name to an executable
program).

4.1.1 Shortcomings

From the specification, some implementation details can be deduced. Seen from a process-oriented
perspective, the BOA must be realized in two parts. One part must be included in each server to
receive requests and to perform upcalls into the object implementations. The other part has to keep
track of all implementations in the Implementation Repository and to start new servers if necessary.
This second part could be realized either as a permanently running daemon or be integrated in each
client.

It is interesting that some over-enthusiastic literature [44] cannot find fault with the BOA and
coin it a “fairly flexible adapter” [63]. But problems become obvious when actual servers are to
be written according to the specification. As seen in figure 4.2, the create operation is used to
call an object into existence by associating an interface with an implementation. An Implementation
Repository holds information about the server program, but no user code. Once the BOA has started
a new process in order to activate an object, the BOA needs to perform upcalls into user code to
perform invocations – but the BOA does not provide a means of registering servants. Information
about servants cannot be kept in the Implementation Repository itself, for they only exist in a live
server (for example, C++ objects). Already in this very important respect, each ORB vendor must use
proprietary additions to the standard in order to get the BOA to work.

This error is not mended with the simple addition of one or more methods. Rather, the standard did
not even provide a basic structure for server-side programming. While it requires the IDL compiler to
generate skeletons from which an object implementation is to be derived, their inheritance, behavior
and even name are undefined.

More problems arise when considering an object’s lifetime, which can exceed the lifetime of the
server it was created in. Objects may need persistent storage for their internal state while a server is
not running. When a server is started by the BOA, the program cannot determine which objects are to
be restored. Only within a method, during execution of a request, can a program determine the object
reference which is the target of the request1 – at which point it is too late, or rather very inconvenient,
to restore state data.

If an implementation tries to take saving and restoration of objects into its own hands, it is likely
to run into a race condition. There’s no point in time at which the data could be written, because
the transition from the active to the inactive state is instantaneous to the BOA. Before deactivation,
requests are still delivered and state data may change. After calling deactivate_impl, the BOA
may immediately start up a new server before the old server has finished writing its data.

1In the C++ language mapping, the skeleton provides a _this method.
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Once the problems of registration and state restoration are taken care of, a server runs into an-
other omission. After initialization, a server needs to wait for incoming requests, but the specifica-
tion does not define how this is done. Some BOA implementations make impl_is_ready and
obj_is_ready block and wait for requests until deactivate_impl or deactivate_obj is
called. While this decision is sensible, the process of waiting for incoming requests it is not referred
to in the documentation.

In summary, the problems with the BOA are numerous and can be put into three categories.

1. Design omissions that make the BOA specification unfit to work as is:

� The contents of the Implementation Repository are unspecified.
� The layout or name of skeleton classes is unspecified.
� Servant registration is unspecified.
� Request processing is unspecified.

2. Design problems that are not fatal but inconvenient:

� No interface or hooks for saving or restoring object state.
� The distinction of being “active” or “inactive” is too coarse. A third state is needed for

server processing unhindered by incoming requests or the starting of a new implementa-
tion.

� The ties between objects and processes as defined by the activation policy are too limiting.
A server should have more control over when, why and how new servers are to be started.
Unshared and per-method servers are rarely needed.

3. Unadressed issues causing problems in more complex environments:

� Handling of object groups, where a number of similar objects are served by the same user
code.

� Request to thread assignment; in a multithreaded environment, some servers will prefer
multithreading to continue request processing while other lengthy method invocations are
in progress, others are not prepared for multithreading.

While the third category is easily explained by the “basic” nature of the Basic Object Adapter, the
others require fixing by the ORB vendor. However, since these fixes are outside the specification, they
introduce incompatibilities. Portable server programming, so that server code is compatible among
ORB vendors, is impossible, because a program must rely on the vendor’s custom addition to the
standard.

Many vendors have chosen to make usage of the BOA as transparent as possible: registration is
performed in a servant’s constructor, and creation of object references is made transparent by skeletons
inheriting their own object reference. Some vendors have chosen to abandon the Implementation
Repository completely and only provide the persistent activation policy, like ORBacus [41].

This way, the existence of the BOA is mostly hidden from the developer, and calls into the BOA
like impl_is_ready are left over as part of initialization “magic,” unrelated to the original inten-
tion of object adapter programming.
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4.1.2 Solutions

The Basic Object Adapter has failed twice. It was never designed to be a general-purpose object
adapter, but only intended as a first option. The OMG expected more specialized object adapters to
appear over time. Their reasoning was that no all-powerful object adapter was achievable, as each
brings its own design limits, so that object adapters would have to be tailored to specific purposes.

But even in this respect, the BOA did not fulfill its expectations because of its severe design flaws.
The combination of both points did have the unfortunate side effect that since ORB vendors did

have to tamper with the BOA specification to make it work in the first place, they did not finish
with incompatible but still recognizable Basic Object Adapters, but extended their BOA adaptation
with new features as well, like synchronization, threading primitives, or an interface for storage and
restoration of persistent data.

In this the vendors left the intended path of the OMG. The most effective way of dealing with an
insufficient BOA would have been to introduce an object adapter of their own design. Rather, CORBA
was now stuck with many incompatible object adapters that still called themselves “BOA,” but that
did come, apart from the necessary fixes, with individual custom features.

The Object Management Group recognized the impossibility to write portable server code, and as
a result issued the “ORB Portability Enhancement RFP” [25] in June 1995, in parallel to the publica-
tion of the second version of the CORBA standard. It called for ideas on how to improve the situation,
naming four possible solutions:

1. Improvement of the existing BOA specification to eliminate the need for interpretation.

2. Multiple versions of the BOA for different environments (POSIX, Real-Time, Embedded etc.).

3. A new “universal” object adapter.

4. Eliminating the standardization of object adapters .

As a result of this effort, the “ORB Portability Joint Submission” was presented in May 1997 by a
number of OMG member companies, foremost BEA Systems, Inc. This submission, set in stone with
the release of the CORBA 2.2 specification in February 1998, indeed introduced the new, universal
Portable Object Adapter (POA).

The final reasoning of the OMG was that the problems with the BOA were too numerous to be
fixed with minor adjustment, and that any changes would break existing server code that based on
proprietary BOA extensions.

By applying the “sunset policy” and removing the BOA specification entirely, the BOA did after
all become a vendor-specific extension, allowing existing server programs to live on unchanged, but
with the definite tag of being unportable.

The newly introduced Portable Object Adapter was set in its place as the new “one size fits all”
general-purpose object adapter. However, when the ORB Portability Joint Submission was released,
it once again violated the OMG’s policy of adopting only existing technology. While the original RFP
stated that “submitters are expected to have working implementations of their proposed specifications”
at the time of initial submission, the final submission still mentions that only “some prototyping and
detailed design work” had been done, and offers the vague hope that “products based on this design
will be available within the OMG’s timelines.”

When the CORBA 2.2 specification was released, this had not happened.
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Figure 4.4: Many POA instances can exist in a server

4.2 Portable Object Adapter

Compared with the ten pages of BOA specification in CORBA 2.0, the 63 pages for the Portable
Object Adapter are impressive. Indeed it is not a simple replacement as a new “basic” object adapter,
it is rather designed to be universal. Its two foremost design goals are

� Portability. It should be possible to use source code with a different vendor’s ORB without
source changes.

� Flexibility. By providing hooks to control a servant’s life cycle and readiness to receive requests,
the POA should be usable even for servers with exotic requirements. Sensible defaults exist to
make the programming of simple servers as easy as possible.

Again, the POA comes with its own set of concepts. Unlike the BOA, it is not a singleton component
[10]. Many POA instances can exist in a server, organized in a hierarchical structure. The Root POA
is created by the ORB, new POAs can then be created by the user as children of existing ones.

Each POA maintains its own Active Object Map, a table mapping the currently active objects
to servants. Objects are activated within a particular POA instance, and henceforth associated with
“their” POA, identified by a unique Object Id within its namespace.

Synchronization between POAs is achieved by POA Managers, which control the readiness of one
or more POAs to receive requests. Figure 4.4 shows an example of using many POAs: the Root POA
has two children, and the POA named ABC has another child, with which it shares a separate POA
Manager. Servants can be registered with any of the four POAs.

Apart from having control over synchronization, the POA provides many hooks that enable a user
to influence request processing:

� The life cycle of servants can be controlled and monitored by Servant Managers.

� Default Servants can service many objects at once.

� Adapter Activators can be used to create new POAs if necessary.

The following sections will examine the POA’s key concepts more closely.
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4.2.1 Policies

Each POA has its own separate set of policies, which adjust different aspects of a POA’s behavior.
Policies are selected by the user upon POA creation and cannot be changed over its lifetime. Since
objects are associated with a fixed POA instance, some policies can also be said to be that of an
object’s, most obvious with the lifespan policy.

Thread Policy Addresses multithreading issues. Can be set to either “Single Thread” if the servants
are not thread-aware and that requests must be serialized, or to “ORB controlled” if servants are
reentrant and requests can be processed regardless of ongoing invocations.

Lifespan Policy Can be either “transient” or “persistent.” The lifespan of transient objects (i.e. ob-
jects that are registered in a POA with the transient lifespan policy) is limited by the lifespan of
the POA instance they were activated in.2 Once their POA is destroyed, for example as part of
server shutdown, object references to transient objects become permanently invalid. Persistent
objects can outlive their original POA and even their original server. Missing POAs for persis-
tent objects can be recreated, and if their server is shut down, it may be restarted at a later time
and continue serving the object.
The usage of the term “persistency” here is very different from its meaning as a BOA activation
policy. All BOA servers satisfy the POA’s persistent lifespan policy, because servers could be
stopped and restarted.

Object Id Uniqueness Policy Slightly misnamed, “Servant Uniqueness” might be more appropriate,
as it controls whether a single servant can be registered (activated) with the POA more than
once to serve more than one object.

Id Assignment Policy Defines whether Object Ids are generated by the POA, or selected by the user,
for example to associate objects with “human-readable” names or to hold identity information:
if a single servant is registered more than once to serve multiple objects, it could use a user-
selected Object Id (which would be different for multiple activations) at runtime to discriminate
between them.

Servant Retention Policy Normally, when an object is activated, the association between the object
(or rather, Object Id) and the servant is stored in the Active Object Map. This behavior can be
changed if desired, for example if a default servant is prepared to handle requests for newly-
activated objects.

Request Processing Policy Specifies if the POA will only consult its Active Object Map when trying
to serve a request, whether a servant manager is available, or whether the request should be
delegated to a default servant.

Implicit Activation Policy Whether servants can be activated implicitly. Some operations on a ser-
vant require its activation, for example the request of an object reference. Depending on this
policy, performing such an operation on an inactive servant can either cause an error, or trans-
parent activation.

2Note: This was changed in CORBA 2.3. According to CORBA 2.2, a transient object’s lifespan is limited by the
lifespan of its process.
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Certainly, some policies are of more interest than others. The implicit activation policy or the Object
Id uniqueness policy can be considered sweeteners; they do not provide actual behavior but are mere
safeguards against the careless developer. Implicit activation saves but a line of code that would be
necessary with the enforcement of explicit activation.

The Id assignment policy can relieve the developer of the need to generate unique names. While
this feature is also redundant, it is nonetheless useful, as the Object Id is not of interest in many simple
servers, where automated selection of a unique Id saves a lot of unnecessary code.

The other policies are more crucial and will be referred to again in later sections.

4.2.2 POA Managers

One problem with the BOA was that no mechanism existed to synchronize servants, or to control a
servant’s readiness to receive requests: as soon as an object was activated, invocations were performed,
and as soon as it was deactivated, a new server would be started by the BOA.

The POA provides “POA Managers” for this purpose. A POA Manager is a finite state machine
associated with one or more POA instances that can enter one of four states, with state transitions as
shown in figure 4.5.

Active This state indicates normal processing; incoming requests are dispatched to the servant.

Holding Incoming requests are not processed immediately but queued. When the holding state is
left, queued requests are handled according to the new state: e.g. if the active state is entered,
delayed requests are dispatched.

Discarding Requests are discarded, and the client receives a “transient” exception, indicating a tem-
porary failure. Useful for example in real-time environments instead of the holding state, when
the queuing of requests and their delayed handling is not sensible.

Inactive This state is entered prior to the destruction of associated POAs and cannot be left. Incoming
requests are rejected, indicating permanent failure. With the POA Manager in the inactive state,
a server can perform cleanup work, such as storing objects’ persistent state.

36



4.2. PORTABLE OBJECT ADAPTER

Active Object Map

/Accounts

Object Id #1

Object Id #2

Object Id #3

Default Servant

Servant Manager

Servant #1

Servant #2

Servant #3

Manager #1

Figure 4.6: Each POA has its own Active Object Map

For simplicity, it can be said that a POA is active if the POA Manager associated with that particular
POA is in the active state.

By using one POA Manager for more than one POA, for example only one POA Manager for
the complete server, it is possible to control more than one group of objects with a single call, thus
working around possible race conditions if each POA had to switch state individually.

4.2.3 Request Processing

When a request is received by the ORB, it must locate an appropriate object adapter to find the re-
sponsible servant. POAs are identified by name within the namespace of their parent POA; like in a
file system, the full “path name” is needed to locate an object’s POA – obviously, it must be possible
to derive this information from the object reference. One implementation option is that the request
is delivered to the Root POA, which then scans the first part of the path name and then delegates the
request to one of its child POAs. The request is handed down the line until the right POA is reached.

In this respect, the user can already influence the selection process whenever a necessary child
POA is not found. The programmer can implement and register an Adapter Activator that will be
invoked by a parent POA in order to create a non-existing child. This can happen if a server has been,
to save resources, partially deactivated by stopping part of its implementation, or if the server has been
restarted and now reinitializes object adapters and servants on demand.

Creating child POAs cannot happen without user intervention, because the programmer usually
wishes to assign a custom set of policies: if a new POA has to be created but no adapter activator has
been registered with its parent, requests fail.

Within the adapter activator, the user cannot only create further child POAs, but also activate
objects within, possibly by reading state information from disk. This process is transparent to the
client, which does not notice any of this server-side activity.

Once the object’s POA has been found, further processing depends on the POA’s servant retention
policy and its request processing policy. The POA uses the Object Id – which must again be part of
the object reference – to locate the servant.

Figure 4.6 shows the three possibilities that exist to find the responsible servant. In the most
simple case, servants are activated explicitly and entered into the Active Object Map. If a POA has a
servant retention policy of “retain,” this table is consulted first. If an appropriate entry is found, the
request is handed to the registered servant.

If the servant retention policy is “non-retain,” or no matching entry is found in the Active Object
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Servant Default Servant Servant Activator Servant Locator

Object State yes no yes no
Scalability no yes no yes
Virtual Objects no no yes yes
Lifecycle no no yes no

Table 4.1: Design Patterns and different types of Servants

Map, the request processing policy is considered. If its value is “use default servant,” the user can
provide a single default servant that will be used regardless of the request’s Object Id. This allows an
implementation to handle a group of – usually identical – objects with a single servant. This default
servant can use the POA’s context-sensitive introspection methods to query the Object Id of the current
request and behave accordingly.

Default servants provide scalability using the flyweight pattern [10]: the server does not grow with
the number of objects. Rather, the server can produce arbitrary numbers of object references while
the number of active servants is constant.

A database server is an example for the usage of a default servant. Each table would be represented
using a different POA with the table’s same name, and the table’s key value is used as Object Id. This
way, all table rows are objects with their own object reference. Only a single default servant is needed
per table; in an invocation, this default servant would query the request’s Object Id and use it as table
index. By using the DSI, the default servant could even be identical for all database tables, examining
the table structure to select its parameter’s types.

Even more flexibility, albeit of a different kind, is possible if the request processing policy is
set to “use servant manager.” If the POA’s own search for a servant in the Active Object Map is
unsuccessful, it then delegates the task of locating a servant to the user-provided servant manager.
The servant manager can then use intelligence of its own to find or activate a servant.

Like adapter activators for POAs, a servant manager can be used to activate servants on demand
after a partial shutdown or after server restart. The servant manager receives the request’s Object Id
and could use that information to read back the object’s state from persistent storage.

Another interesting feature possible with servant managers are virtual objects, i.e. of object ref-
erences that refer to non-exisent servants. References to virtual objects can be passed to a client; on
the server side, a servant manager is then registered with the POA to incarnate the virtual object on
demand.

An example for this mechanism is a file service. A “Directory” object might provide a method to
return the directory’s contents – a list of files – as a sequence of object references to “file” objects.
It would be inefficient to call all file objects into existence just for the purpose of returning their
references, as only a small part of them would be actually read. Instead, the Directory would create
virtual object references, encoding the file name in the Object Id. Once a file is opened, the file object
would be activated by the servant manager.

Servant managers come in two different flavors with slightly different behavior and terminology,
depending on the servant retention policy. If this policy’s value is “retain,” a servant activator is
asked to incarnate a new servant which will, after the invocation, be entered into the Active Object
Map itself – this would be sensible in the sketched file service example, since the newly incarnated
file object would be needed more than once. If an object is deactivated, either explicitly or because
of server shutdown, the servant activator’s etherealize method is called to get rid of the servant – at
which point the object’s state could be written to persistent storage.
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Figure 4.7: Request Processing within the POA
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If the servant retention policy is “non-retain,” the servant manager would have to be a servant
locator, tasked to locate a servant suitable only for a single invocation. A servant locator supplements
the default servant mechanism in providing a pool of default servants; it is the flyweight factory
according to the flyweight pattern. It can also be used for load balancing, as the example of a print
service shows, in which the print method is directed to the printer with the shortest queue.

Both kinds of a servant manager can also throw a special “forward exception” instead of return-
ing a servant. This exception contains a new object reference to forward the request to, possibly to
an object realized in a different server on another system, employing the GIOP location forwarding
mechanism. Forwarding allows, for example, the implementation of load balancing or redundant ser-
vices: the servant manager would check its replicated servers and forward the request to an available
one.

Another idea, already realized in the K Office Suite, is that of a “Meta Service,” in which a servant
activator checks the request’s Object Id, launches the appropriate server, for example a Web browser
or mail tool, and then forwards the request to the new server [72].

The flowchart in figure 4.7 shows in full how a POA tries to locate a servant according to its
policies. To summarize a developer’s choices, table 4.1 shows a matrix of the different types of
servants and their possible design patterns:

Object State: Manually activated servants and servants managed by a servant activator encapsulate
their own state, whereas default servants must be stateless or store an object’s state externally.

Scalability: For stateless objects, default servants can serve many objects without memory overhead,
and servant locators can dispatch requests to a small number of servants.

Virtual Objects: The idea of virtual objects can be realized by both kinds of servant managers.

Lifecycle: An object’s lifecycle can be monitored by a servant activator.

4.2.4 Persistence

Figure 4.3 showed the lifecycle of objects that used the Basic Object Adapter. The POA adds object
virtuality as a fourth state. A virtual object is not currently associated with a servant; virtual objects
are usually monitored by a servant activator so that they can be activated on demand. The transition
from the virtual to the active state is called incarnation, and the transition from the active to the virtual
state etherealization, corresponding to the methods called in the servant activator. An object is inactive
if its implementation is not running.

The lifecycle of POA-based objects also depends on the POA’s lifespan policy, which can take the
values “transient” or “persistent.” The lifetime of a transient object – an object activated in a POA
with the transient lifespan policy – is bounded by the lifetime of its POA instance: once it is destroyed,
all object references pointing to that POA’s transient objects become invalid. It must not be possible
to either intentionally or unintentionally reactivate a transient object when the same or another server
is started again. The lifecycle of a transient object is shown in figure 4.8. Transient objects cannot
become inactive, because if their server is shut down, they cease to exist and can never become active
again.

On the other hand, persistent objects can, according to definition, outlive their server. It must be
possible to start a server and activate objects that respond to object references exported from an old
server. Their lifecycle is shown in figure 4.9 and differs from the lifecycle of a transient object in that
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Figure 4.8: Lifecycle for transient objects using the POA
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Figure 4.9: Lifecycle for persistent objects using the POA
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a persistent object never fully ceases to exist. If their server is shut down, persistent objects become
inactive, and can be activated again in a new server.

It is certainly possible that an inactive object is not associated with an implementation, or that a
new server does not reactivate an object. In both cases, clients attempting an invocation will receive
an exception and will probably consider the object non-existent, but other clients do not notice, and if
the object is reactivated at any point in time by a later servant, those clients can again perform method
invocations.

Persistent objects have several advantages over transient objects, as it is possible

� to shut down a server to save resources,

� to update an implementation transparently by stopping the old server and starting the new ver-
sion, and

� to recover from a server or system crash.

However, persistent objects need more managing. As described in the previous section, servant man-
agers provide hooks to save and restore object state, which is a necessity with stateful persistent
objects.

The BOA, where all objects satisfied the POA’s definition of persistence, provided the Imple-
mentation Repository for the purpose of on-demand server restart. The POA specification does not
address this issue and deems it to be the vendor’s problem. From the description of the persistent
lifespan policy:

“Administrative action beyond the scope of this specification may be necessary
to inform the ORB’s location service of the creation and eventual termination of
existence of this POA, and optionally to arrange for on-demand activation of a
process implementing this POA.”

An external POA component, like a daemon, is useful for the same reason as with the BOA, to receive
requests while the actual server is not running, to start a new server if necessary or simply to wait until
a new server is started manually, and then to forward the request. Without such a service, requests are
failed with an exception indicating temporary failure while the server is down for replacement.

4.2.5 Language Mapping

Since its interface is specified in IDL, most of the POA’s mapping into a programming language is
automatic. Left open, though, is the servant type, which in IDL is defined as “native” and must
therefore be mapped specifically by each language mapping.

Currently, the two most widely used languages used for CORBA programming are C++ and Java.
This thesis centers on C++ for other reasons, yet a glance into the CORBA 2.2 Java language mapping
[29] shows that the POA’s servant type is not defined there, indeed, that Java’s server-side mapping is
very minimalistic and does not even provide any kind of object adapter.3 By containing a comment
about waiting for the availability of the POA specification, the Java language mapping appears rushed
and out of date.4 This will be fixed in CORBA 2.3 [32].

3In Java, the ORB itself provides connect and disconnect methods for registering servants.
4Interestingly, while the Smalltalk and Ada server-side mappings share the Java mapping’s status, the POA is readily

available in the COBOL mapping.
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The C++ mapping does already contain the necessary mapping rules and definitions, including two
different approaches how servants can be implemented, by inheritance or by delegation, according to
the two forms of the Adapter pattern [10].

A servant is defined as an instance of a C++ class that, directly or indirectly, inherits from the
system class PortableServer::Servant. Using inheritance, the IDL compiler generates a
skeleton class with the same name as the IDL interface prefixed by “POA_.” The user derives from the
skeleton and implements the operations and attributes. With delegation, the IDL compiler generates
a “tie” template; the user then provides a C++ class that implements all operations and attributes,
but does not need to inherit any CORBA classes – a questionable feature, supposedly for easing the
migration of existing code into a CORBA server, where the source code for existing libraries is not
available and their inheritance therefore unchangeable. However, in that case tie classes aren’t of
much help, too, since they require the signature of existing code to match the C++ language mapping,
or manual template specialization.

Examples for the implementation of servants using inheritance or delegation are shown in [59].
The text describes the same problems with delegation and also cannot present reasonable motivation
for delegation either.

Still, some minor complaints remain. One is an omission with respect to implementing derived
interfaces. If an IDL interface Derived inherits interface Base, the inheritance of the generated
skeletons is undefined. Figure 4.10 shows two possible inheritance graphs: on the left, Derived’s
skeleton inherits Base’s skeleton, while it can also be directly derived from the system base class,
as shown on the right side. The important difference to the user is that the first possibility on the left
allows for implementation inheritance by deriving the implementation of Derived from both the
skeleton and the implementation of Base, while the other requires the user to re-implement Base’s
operations in the implementation of Derived. Clearly, the first possibility is more sensible, but no
word is spent on the subject, so a CORBA-compliant ORB implementation could choose the “wrong”
inheritance on the right.

Another uncomfortable issue is that of reference counting. Obviously, a servant must live as long
as it is active and therefore still referenced in a POA’s Active Object Map. Frequently, however,
the user does not want to keep track of a servant and delete it manually after its deactivation. If a
servant manager is not used, it would be more comfortable to have a reference counting mechanism
that deleted servants when the last reference is lost. After a servant’s activation, the user could then
release the reference immediately and forget about it.

In a multithreaded environment, reference counting is essential, because many invocations can be
active at a given time, and a servant must not be deleted while any of them is in progress.

Reference counting for servants did not exist in CORBA 2.2, but will be added to the C++ lan-
guage mapping in 2.3 [31]. The OMG decided on a backwards-compatible solution using a “mix-
in” class. Without special effort, servants are not reference-counted, resulting in the same behav-
ior as in 2.2. To employ reference counting, the user derives a servant class from Portable-
Server::RefCountServantBase.

While being a nice recovery, it is surprising why this mechanism was not already used in CORBA
2.2. To achieve backwards-compatibility, reference counting is now much more complicated as it
could have been. And, since it depends on inheritance, it only works with the inheritance-based
approach, not with delegation.
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Feature Basic Object Adapter Portable Object Adapter

Complete Specification no yes
ORB Synchronization no yes
Scalability no yes
Flexibility no yes
Persistency no yes
Implementation Repository yes no

Table 4.2: Comparison between BOA and POA

4.2.6 Evaluation

The most striking difference between the BOA and the POA is the information they manage. While
the BOA dealt with servers and completely ignored the subject of servants, this approach is turned
upside-down in the POA, which deals with servants but completely ignores the handling of servers
and processes.

However, the POA does solve its primary task, of adapting servants to the ORB and managing
them, very effectively. The complaints with the BOA described in section 4.1.1 are solved: the POA
provides a clear definition of the term “servant,” their activation and deactivation, and the layout
of skeleton classes. In this respect, the specification is complete; no incompatibilities need to be
introduced by vendor’s interpretations. Table 4.2 compares the features of BOA and POA.

Default servants provide scalability, and adapter activators and servant managers allow for much
flexibility. Using these hooks, user code can be involved at many steps during request processing. For
example, servant managers can be used to realize persistency by saving and restoring an object’s state.
POA Managers provide the required means of synchronization with the ORB.

All in all, the POA indeed achieves its goal. Not so much as being “portable,” though. The
unportability of BOA-based server code was only a secondary result of its inadequate specification.
Rather, quoting the Portability Enhancement RFP, the POA succeeds as a universal object adapter.

And yet an incompleteness remains with the persistent lifespan policy. Resulting from the design
decision not to cover the uncomfortable area of server handling, the automated restart of servers is
not addressed as it was with the BOA’s Implementation Repository. While transient objects can be
implemented in a portable manner, incompatibilities may arise again with persistent objects. This
would be particularly annoying, since it is to be expected that many “real life” servers will require
persistence.

The next chapter will show that persistence not necessarily introduces source-level incompatibil-
ities, but TAO, for example, intends to extend the POA interface with methods for registering objects
with an implementation repository.5

Frequently brought forward as a pro-POA argument is that it supports multithreading. It is true
that the POA specification addresses the issue, but the threading policy is coarse and insufficient for
many multithreading requirements. It does not allow user control over threading issues but simply
selects whether servants are or are not thread safe, either serializing requests or dispatching them as
controlled by the ORB on a per-POA basis. Ideally, a “thread manager” would be registered with a
POA to assign requests to threads, either by selecting from a thread pool or by starting new threads.

A small inconvenience from a technical rather than conceptual nature is the implementation of

5The Implementation Repository documentation of version 0.3.23 mentions the additional method create_reference_-
with_virtual_server. It has not been implemented yet.
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adapter activators and servant managers. According to the specification, they follow the same seman-
tics as normal servants. As such, they must be activated, and method invocations are subject to their
POA’s readiness. Apart from allowing embarrassing situations like the need for invoking an adapter
activator and a servant manager in order to incarnate another adapter activator, this can cause problems
if only one POA Manager is used: if the POA Manager is set to the inactive state prior to server shut-
down, objects could not be etherealized, since the servant manager, too, cannot receive requests any
more. While this effect is surprising,6 it is not a bug and can be avoided by the careful programmer.

Handling adapter activators and servant managers as normal objects seems natural, as their in-
terface is specified in IDL. But both take “native” parameters, so automated stub and skeleton code
generation does not work anyway. It would have been less troublesome, if less consequent, to declare
adapter activators and servant managers as “pseudo objects,” like the POA itself.

A few open issues against the POA remain on the OMG Web site [33, 34], but apart from those
mentioned here, they are of a minor technical nature, for example whether the special case of nested
method invocations on the same object would violate the single-thread threading policy.

Of course, the POA is bound by the current limitations of CORBA itself (see section 3.5). It
supports request-response communication, but cannot adapt data streams, and does not provide real-
time features.

The mentioned quirks in the C++ mapping and the remaining open issues will hopefully be re-
solved in a future version of the CORBA standard.

4.3 Other Object Adapters

One object adapter not specified, but hinted at by the CORBA 2.0 specification [27], is the Library
Object Adapter, which was supposed to adapt servants that are not running within their own server,
whose implementation is not an executable program but contained in a library that can be dynamically
linked into client programs:

“This object adapter is primarily used for objects that have library implementa-
tions. It accesses persistent storage in files, and does not support activation or
authentication, since the objects are assumed to be in the clients program.”

Obviously, the motivation was to provide servants that would always be local to the client. Despite
this vague description, library-based servants were actually possible with MICO, but based on the
BOA and a MICO-specific “library” activation policy.

It is not possible to realize the Library Object Adapter’s intention with the POA design. Rather,
Objects by Value will allow objects with a guaranteeable local implementation in CORBA 2.3.

Obsoleted by the POA is the idea of an Object-Oriented Database Adapter, also described by
CORBA 2.0:

“This adapter uses a connection to an object-oriented database to provide access
to the objects stored in it. Since the OODB provides the methods and persistent
storage, objects may be registered implicitly and no state is required in the object
adapter.”

6And usually hard to notice, as failures to invoke a servant manager are to be ignored. Developers would get suspicious
that object state is not saved while everything else continues to work smoothly.
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A concrete implementation for an Object-Oriented Database Adapter is available in Orbix, which
provides an Object Database Adapter Framework. However, the same behavior can now be achieved
with the POA, using default servants and/or virtual objects, as described in section 4.2.3.

Both paragraphs have been removed and do not exist in the CORBA 2.2 specification.
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Chapter 5

Reference Implementation

The previous chapter concluded that the POA design does look sensible. But as already noted, it
had not been implemented at the time of its submission, and so the uncomfortable doubt remained
that it might be hard or impossible to implement. A similar situation had occured with other parts
of CORBA. The Persistent Object State Service, for example was never fully implemented and later
found to be altogether buggy [38]. The goal was therefore to attempt a reference implementation of
the POA in order to verify the specification’s realizability.

Efficiency was to be secondary to a complete implementation, but not to be disregarded.

5.1 MICO

The MICO ORB [21] was used as platform for the reference implementation. MICO is an Open Source
[46] CORBA implementation from the University of Frankfurt, originally designed and implemented
by Arno Puder and Kay Römer. Version 2.2.7 was recently certified for CORBA 2.1 compliance by
the Open Group [45] and therefore provided a solid and stable basis.

One design goal of MICO was to be easily extensible, as detailed in Kay Römer’s thesis [55].
With its microkernel approach, the MICO core provides abstractions for object adapters, transports
and schedulers. By derivation from abstract base classes, new components can be plugged in at
runtime.

The microkernel ORB itself is reduced to the “broking” of requests. After a request is passed to
the ORB from an invocation adapter (like the DII or SII), it simply tries all object adapters and asks
whether they feel responsible for the request (see figure 5.1).

An object adapter is not restricted to adapting local objects: sending a request to a remote server
satisfies the object adapter concept – the location of an appropriate servant – just as well. Conse-
quently, MICO uses IIOP Proxy object adapters to address remote objects on the client side, and an
IIOP Server invocation adapter on the server side (figure 5.2). With this innovative design, the ORB
is not aware of an object’s remoteness – a remote invocation is merely a side effect of passing the
request to the right object adapter.

While IIOP Proxy and IIOP Server implement IIOP, they do not transfer data by themselves, but
use GIOP Connection objects to perform GIOP encoding, and finally use instances of Transport and
TransportServer for unidirectional1 data transfer.

1CORBA 2.3 introduces bidirectional GIOP, so Transport and TransportServer will ultimately have to provide bidirec-
tional data transfer, too.
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Microkernel ORB

Invocation Adapter
Interface

Object Adapter
Interface

Invocation Adapter Object Adapter

Request Broking

Figure 5.1: The MICO microkernel ORB

With this modular approach, the ORB is indeed easily extensible, as each component can be
replaced. A new transport, for example one that compresses GIOP data before sending, can be added
just by subclassing the Transport class and providing methods for reading and writing data.

The interface for object adapters is of particular interest here, as it will be used to add the Portable
Object Adapter. To the MICO core, an object adapter must provide a small interface of three methods:

� Location: on the basis of an object reference, an object adapter must decide whether it can or
cannot serve that object, i.e. if its servant is registered with that object adapter. Since MICO

allows many object adapters to coexist, the ORB needs this location mechanism to choose the
right object adapter in order to dispatch an invocation.

� Invocation: once an object has been located, the ORB asynchronously passes the request to the
object adapter. Once request processing has finished, the object adapter notifies the ORB and
returns the result.

� Cancellation: to cancel a request during execution.

MICO already fully implemented the Basic Object Adapter with all its activation policies, while taking
its own liberties with the specification. A special BOA Daemon was used to contain the Implemen-
tation Repository and to activate implementations on demand. To allow object persistence, object
implementations could overload the method “_save_object()” and later install special restora-
tion objects.

Like other CORBA implementations, MICO decided to make the BOA as invisible as possible;
the BOA was not so much programmed as simply “there somewhere.” As only user-callable meth-
ods, impl_is_ready and friends remained, but more or less stripped of their original meaning, as
they were usually called without any parameters. Server programming with the MICO BOA is de-
scribed extensively in its manual [50]. Optionally, MICO allows to bypass the BOA Daemon and the
Implementation Repository, and to connect clients directly to their servers.

Also realized as object adapters are the OAMediator and POAMediator objects from the BOA
Daemon, which receive requests for persistent objects and forward them to a running server. More on
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Figure 5.2: Remote invocation with a microkernel ORB
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Figure 5.3: Only the Root POA is registered with the MICO ORB

this appears in section 5.4.
Implementing the Portable Object Adapter consisted of four different parts:

� Providing the framework, such as type definitions and base classes for static and dynamic skele-
tons.

� Implementing the POA itself, and registering it through the generic object adapter interface.

� Modifying the IDL code generator to reflect the changes in server-side skeleton classes.

� Support for persistent objects and the on-demand starting of servers.

5.2 Design

Of the many POA instances that can exist in a server, only the Root POA is registered with the ORB
(see figure 5.3). It is made responsible for receiving requests for any POA, inspecting their target
object reference and dispatching them to child POAs as necessary. Since MICO allows for many
object adapters, another design would have been to register each POA instance directly with the ORB.
However, that would pose a problem with non-existent adapters, as a non-existing POA instance does
not mean that the request is undeliverable. Rather, if a POA does not exist, the request must be
delivered to the parent POA, which can then invoke its adapter activator to recreate the missing POA.
Only the Root POA is guaranteed to exist throughout the server’s lifetime – it can be destroyed, but not

52



5.2. DESIGN

be reactivated. By handing requests down from the Root POA along the line of descendants, adapter
activators can be invoked at each step.

As a slight improvement in configurations with deeply nested child POA’s, the Root POA keeps
a map of all existing POAs. For an incoming request, the Root POA checks the request’s object key,
and dispatches the request directly if the responsible POA does exist. Only if the lookup in the global
POA map fails does the Root POA need to dissect the POA name into its components in order to
locate the most specific existing POA among the missing POA’s ancestors.

Once the target POA is found, it proceeds as shown in figure 4.7 to find a servant. Some care
was taken in designing the Active Object Map, so that many active objects can be handled efficiently.
The Active Object Map is a C++ class of its own, actually consisting of two STL maps, one mapping
Object Ids to object records, the other is a multimap mapping servants to object records.2 With STL’s
runtime complexity guarantees, entries can be found with a runtime of

� ������� ! �
either by Object Id

or by servant.
Beside the servant, an object record holds a full object reference, so that, when requested, this

reference can be merely duplicated instead of recomposing it from scratch each time.
Figure 5.4 shows an UML class diagram [42] of the classes used in the reference implementation.

The four classes at the top of the diagram are provided by the ORB. POA is the IDL-generated base
class, ObjectAdapter the abstract base class for MICO object adapters, ORB the ORB core class,
and ORBRequest encapsulates an incoming request. At the bottom, Servant is the base class of
all skeletons.

POA_impl Implements the POA and the ObjectAdapter interfaces, though only the Root POA
is actually registered with the ORB. Each POA keeps an ActiveObjectMap and a number
of InvocationRecords, in case requests must be queued while the POA Manager is in the
holding state. If the POA has the “system id” id assignment policy, it keeps a UniqueIdGen-
erator.

ActiveObjectMap Maintains a list of ObjectRecords, indexed by ObjectId.

ObjectRecord Associates a servant with an object reference; object references are encapsulated in a
POAObjectReference value.

InvocationRecord Associates an incoming request with an object reference.

POAObjectReference Provides methods for the efficient composition and decomposition of an ob-
ject reference (or rather the object key) into its components.

ObjectId An efficient encapsulation of an Object Id, mainly to serve as the key in the Active Object
Map.

POACurrent_impl Implements the PortableServer::Current interface, whose purpose is
to provide context information during a method invocation. Because more than one invocation
may be in progress (nested method invocations), it keeps a stack of CurrentState objects.
The inheritance from the IDL-generated base class is not shown.

CurrentState The currently executing object reference, POA and (indirectly) servant must be avail-
able as context information.

2Object Ids can only be activated once and therefore map to at most one object record. Servants can be activated more
than once (depending on the id uniqueness policy) and therefore map to more than one object record.
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Figure 5.4: Class Diagram for the Portable Object Adapter Implementation
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ImplName/ABC/DEF/ObjName

ORB-provided profiles

www.mico.org:2345

Object Reference

POA-generated Object Key

Object Id

POA Name

Adapter Identification

Server Identification

Figure 5.5: Components of an object reference with a POA-generated Object Key

For the most part, the implementation of the Portable Object Adapter did not hold any surprises. After
deciding on the design and the class layout, putting the precise wording of the specification into code
was for the most part straightforward.

More thinking had to go into the unspecified part of constructing the object key, and into realizing
the missing control over persistent objects and their implementations. Both subjects are detailed in the
following sections, as is the collocation optimization mechanism to reduce the overhead of method
invocations if client and server are in the same process.

The IDL code generation for skeleton classes was taken almost unchanged from the BOA, with
minor adjustments for the inheritance and naming convention: the format of requests and their dis-
patching is the same as before. Without much innovation, the POA skeletons use the same optimiza-
tions that already existed for BOA skeletons to use the Static Skeleton Interface.

5.3 Object Key Generation

Two central tasks of an object adapter are the creation of object references, and later the demultiplex-
ing of a request and delivering it to the right servant. In order to perform the latter, the object adapter
must take care in composing object references so that they contain all information necessary to find
the one and only responsible servant.

First of all, the object reference must contain one or more profiles with information on how to
contact the server; for the IIOP profile, this would be an Internet host name and TCP/IP port number.
However, since an object adapter does not know about profiles or transports, this information must be
provided by the ORB. In MICO, the ORB keeps an ior_template containing all available profiles
but no object key.

The POA then constructs the object key in a way that allows

� identification of the servant,

� identification of the POA instance, and

55



CHAPTER 5. REFERENCE IMPLEMENTATION

� identification of the object adapter.

The first two components have already been mentioned in the abstract description of the POA. The
servant within a POA is identified using its Object Id, and the POA instance is identified using the
“full path name” of the POA, that is, the name of the POA itself and all of its ancestors, up to the Root
POA.

To identify the object adapter, a globally unique identifier (GUID) is used. In a transient POA,
this GUID is generated of the server’s host name, the process’ pid and a numerical timestamp. Host
name and pid are included in this GUID because the object adapters’ location mechanism is also used
to disambiguate between local and remote objects; with only the timestamp, a local POA might also
be held responsible for remote objects, if their POA were created at the same moment in time. The
composition of the GUID is unique among the current object adapters in MICO, the BOA for example
always prefixes its object keys with the three letters “BOA.”

In a persistent POA, a user-provided identifier, the “implementation name,” is used as GUID
instead. The following section deals with persistent objects in detail.

A potential object reference with an IIOP profile and a POA-provided object key is shown in figure
5.5.

The object key is defined as sequence of octets with no internal structure. Special care must there-
fore be taken that the object key can be decomposed unambiguously: the three parts are concatenated,
separated by slashes “/.” Since a user is free to use slashes in the name of a POA instance or in a
user-selected Object Id, these must be “escaped” by the POA in constructing the object key.

The location testing required as part of the MICO object adapter interface can be implemented
efficiently. For this test, the object key does not even need decomposition, the Root POA just compares
the object key’s prefix with the two known GUIDs, one representing all transient POA instances, the
other all persistent POA instances within the server.

The mechanism of using slashes as separators was a late addition. Previously, a null octet was
used. Since neither GUID nor the POA name can contain null characters, this greatly simplified
decomposition of an object key at the cost of their legibility.

This became a concern after the OMG unveiled the preliminary specification of the Interoperable
Naming Service (INS) in October 1998, which finally addresses a client’s bootstrapping problem of
receiving initial references in a portable manner, introducing new, simplified, formats for Interoperable
Object References as already mentioned in section 3.2. Its idea of having URI-style object references
mandates short, legible object keys that can be easily written down, entered by hand, or exchanged
over the phone. Using the new notation, the object reference for the object key shown in figure 5.5
could look like

iioploc://host:1234/ImplName/ABC/DEF/ObjName
provided that the server implementing the object was running on “host”, port 1234.
To achieve even shorter object keys, the POA uses a special case of encoding the object key if

the (user-selected, in the case of a persistent object) GUID, the POA Name and the Object Id are
identical, and “collapses” the three identifiers into one. If, therefore, a persistent object with the
Object Id “NameService” is activated in the POA “NameService,” a direct child of the Root POA in
the server identified by the GUID “NameService,” the complete object key would be NameService,
too.

References to transient objects don’t look nearly as elegant, as the GUID for transient objects is
already large on its own, but then, the new style of object references is most likely to be used for
persistent services, such as the Naming Service3 itself.

3The preliminary INS specification itself confuses the usage of the identifier “NameService” vs. the name “Naming
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The contents of an object key in general are unspecified, subject to the ORB vendor. Having a
specification impose requirements about the object key – according to the INS, the Naming Service
must have an object key of NameService– leads to the interesting situation that it will be impossible
to write a portable implementation of the Naming Service, as each ORB will introduce different
mechanisms to achieve this object key. While this implementation happens to rely on consent with the
programmer alone, who must choose the POA name and the Object Id accordingly, Vishal Kachroo,
a member of the TAO team, once mentioned on the MICO mailing list that his implementation of the
INS would involve a proprietary additional POA method that explicitly sets an object key, bypassing
the usual object key decomposing and dispatching mechanism.4

Consequently, TAO’s Interoperable Naming Service will not compile with MICO, and while
MICO’s implementation will compile with TAO, it will not yield desired results and won’t answer
requests at the expected location.

5.4 Persistence

Transient objects require that object references to objects in a particular server become invalid if that
server is shut down. In other words, the object keys for transient objects must be unique to a server
instance.

This is guaranteed by the composition of the GUID that is used as a prefix for the object key,
which, as seen above, contains the host name, the server process’ PID and a timestamp. Together,
these three components uniquely identify a server. If two instances of the same server are running on
the same host simultaneously, the PID is different, and if a server is shut down and run again, at least
the timestamp (with millisecond resolution) differs. The GUID therefore serves a dual use as adapter
identifier and transient property.

For persistent servers, a different GUID must be used that is reusable across server instances, but
as the POA specification ignores the administrative issues of persistent objects, the how of assigning
such GUIDs is undefined.

As a solution for the MICO POA, the user must use the -POAImplName option on the command
line to set an Implementation Name when starting a server that implements persistent objects – other-
wise, the Invalid Policy exception is thrown when trying to create a POA with the persistent lifespan
policy. This identifier is then used as adapter identifier in the object key. It is the user’s responsibility
for keeping the Implementation Name unique.

Transient objects allow for direct communication between client and server: if the server’s trans-
port end point is disconnected as a result of server shutdown, all the client’s object references into that
server become invalid, and no further communication is possible.

Persistent objects, however, require a mediator [10] that intercepts requests while the server is
off-line, starts up the server on demand, and forwards the request when the server is again ready to
receive them [15]. As mentioned in section 4.2.4, this issue is ignored by the POA specification and
must be solved by the vendor.

Service” several times. The current distinction when to use which is the result of a newsgroup discussion.
4In TAO 0.3.23 (May 25, 1999), the TAO ORB core maintains a table mapping “short” user-selected object

keys to default, POA-selected object keys. An implementation explicitly adds entries into that table using the
_tao_add_to_IOR_tablemethod.
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5.4.1 POA Mediator

For this implementation, it was decided to re-use the already available component of the “BOA Dae-
mon,” which already did much of the same work for the MICO BOA. The BOA Daemon manages the
Implementation Repository, which contains information about available servers and the objects they
implement.

The BOA Daemon contains the “OAMediator” singleton object, and cooperates with the BOA to

� produce object references,

� keep track of active persistent objects,

� synchronize delivery of requests and to

� support object migration into a different server.

Obviously, the most basic requirement is that clients must not communicate with a server directly
but always contact the mediator, which is expected to run permanently, beyond the lifetime of the
persistent object.

This is a problem in the server, where object references are generated as part of object activation.
In the OAMediator design, the BOA does not generate object references on its own, but invokes the
OAMediator, which uses the object key provided by the BOA and its own profiles to produce a new
object’s reference pointing to the OAMediator.

After object activation, OAMediator and BOA follow an elaborate protocol which is described in
section 5.4 of [55], where it is referred to using its historical and still accurate name “BOA Mediator.”

However, the existing OAMediator did not prove sufficient for persistent objects realized through
a POA. It did not provide persistent storage, and it required the registration of all persistent objects.
This would have been a real constraint when taking into account the concept of virtual objects, and
objects realized through a default servant. While such objects do not require resources on the server
side, they would then require an entry in the OAMediator’s tables without ever being able to clean
them up.

Rather than extending the OAMediator, it proved easier to introduce a new “POA Mediator.”
Though it serves much the same purpose, it was implemented with less code than the original by
using a new design and the GIOP location forwarding mechanism, which hadn’t been available to the
OAMediator.

GIOP location forwarding allows to update a client’s object reference with new profiles and con-
veniently matches our mediator’s requirements. After starting a new server, the mediator returns a
forward message to the client, which – transparently to the user code – resends the request to the new
location. Further requests are sent directly to the server and do not need handling by the mediator,
until the server is shut down. This is noticed by the client, which receives a GIOP Close Connection
message and then falls back to contacting the mediator again. The communication overhead induced
by the mediator is kept minimal.

The POA Mediator is also a singleton object, integrated in the “BOA Daemon.” True to the idea
of a microkernel ORB, it is plugged into the ORB as an object adapter: instead of delivering requests
to a local implementation, they are forwarded to the currently running server. Figure 5.6 shows the
architecture of the POA Mediator. The numbered arrows indicate a request’s path to the server:

1. The request is sent to the POA Mediator.
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Figure 5.6: All client requests are routed through the POA Mediator

2. The POA Mediator starts the server and sends a GIOP location forward message back to the
client.

3. The client forwards the request to the server, and uses the new address for all further requests
until the connection is broken.

4. The server processes the request and sends the reply directly to the client.

Information about available servers is kept in the Implementation Repository, which has been ex-
tended with the new, according to BOA terms, poa activation policy. The Implementation Repository
is now shared, and the two mediators must agree on the “ownership” of entries: the POA Mediator
only handles servers with the poa activation policy, and a new rule has been added to the OAMediator
to ignore such entries.

interface POAMediator {
string create_impl (in string svid, in string ior);
void activate_impl (in string svid);
void deactivate_impl (in string svid);

void save_state (in string svid, in StateInf state);
StateInf restore_state (in string svid);

// admin interface
boolean force_activation (in ImplementationDef impl);

};

Figure 5.7: IDL for the POA Mediator
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Figure 5.8: Implementation States according to the POA Mediator

The POA Mediator must arrange to intercept all client-server communication. All object refer-
ences to persistent objects must point to the mediator, so that the server can exit without invalidating
any addresses. Rather than asking the mediator each time, a server and the POA Mediator exchange
their object reference templates (see section 5.3) upon startup, when the server calls the POA Me-
diator’s create_impl method. When creating an object reference in a POA with the persistent
lifespan policy, the POA does not use the local ORB’s template, but the POA Mediator’s: requests
will then be sent to the mediator first.

The mediator then uses the server’s template to construct a forwarding address for incoming re-
quests, by constructing a new object reference from the server’s template and the request’s object
key.

But before that can be done, the correct implementation must be found. The POA Mediator may
be managing many implementations simultaneously and needs a means of directing the request to
the right one. The trick is to require that a server’s Implementation Name must match the name
of the corresponding entry in the Implementation Repository. When a server is started on demand
by the POA Mediator, the necessary -POAImplName command line switch is added automatically.
Because of the way an object key is constructed, this results in the object key being prefixed by the
Implementation Name. All the POA Mediator has to do is to read the object key from the request, and
to use its prefix as an index into the Implementation Repository.

The only information kept by the POA Mediator is a single table, keeping the object reference
templates of currently active servers. By puzzling with the pieces of an object reference, costly com-
munication with the server is avoided. Where the OAMediator had to be informed of object activation
by the BOA, keeping a table associating them with both an Implementation Repository entry and an
active server, the POA Mediator simply does not need to know.

5.4.2 Synchronization

Still, some minor handshaking between a server and the POA Mediator is necessary. The four possible
states an implementation can enter are shown in figure 5.8.

If no server is running, the implementation is inactive. If a new request is delivered to the mediator,
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it consults the Implementation Repository to find the name of an executable file for the implementation
(as deduced from the object key), and uses POSIX process mechanisms to start the new server and
POSIX signals to monitor them. The act of starting the server transitions the implementation to the
started state, in which the mediator does not deliver any requests but keeps them in a queue and waits
for the server to announce its readiness.

Within that state, the server can perform initialization unhindered by incoming requests. The Root
POA calls the mediator to exchange object reference templates and to restore its state information (see
next section), and then allows the user to activate or restore objects.

If the user is finished setting up the server, the Root POA’s POA Manager is transitioned to the
active state. At that time, the POA Mediator is informed that the server is ready, by invoking its
activate_implmethod.

Having waited for that callback, the POA Mediator sets the implementation’s state to active and
begins request delivery, first by draining its queue and then by forwarding requests as soon as they
come in.

This continues until the server shuts itself down by calling the ORB’s shutdown method, either
as the result of a method invocation with the intended side-effect of server shutdown, or of a timeout
within the server, which could decide to stop itself after a period of inactivity. Ultimately, this causes
the Root POA to be destroyed, which calls the mediator’s deactivate_implmethod and returns
the implementation to the inactive state.

A race condition exists upon shutdown. Since the POA Mediator and the server run in parallel,
requests may be delivered during the short time between the initiation of server shutdown and its
unregistration with the POA Mediator, when the ORB still accepts requests after the implementation
has been deactivated. Also, the server could have stopped processing requests some time before
shutdown by setting its POA Managers to the holding or inactive state.

Requests for transient objects are simply failed: the object they’re referring to is ceasing to exist.
However, this is not true for persistent objects, and the server faces a dilemma:

� The POA Mediator has forwarded and already forgotten about the request, the server keeps the
only copy.

� The state of the POA Manager must be obeyed, so the request cannot be delivered to a servant.

� The server is about to exit, invalidating the request’s addresses.

As a solution, the server queues requests during shutdown, even while the POA Manager is in the
inactive state. Only after the Root POA has called the mediator to halt request delivery, these requests
are bounced back to the client using the GIOP forwarding mechanism (see figure 5.9), which forwards
the request to the mediator.

Once the request is again received by the mediator, it determines the implementation to be in the
inactive state and starts a new server. The old server may not have exited yet, so the old and the new
server may run in parallel, but all requests are now directed to the new server.

5.4.3 State Information

Object state and their handling using servant managers has already been mentioned several times.
However, not only persistent objects have state, but also persistent POAs themselves. If a POA has
the “system id” id assignment policy, it must generate unique Object Ids upon each activation. This
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Figure 5.9: Handling of requests during server shutdown
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duty must be fulfilled beyond the server’s lifetime, so that newly activated objects do not get assigned
“old” Object Ids, which would result in a conflict when delivering requests.

For Object Id generation, a POA uses a UniqueId helper class, which is capable of encapsulating
the current Id in a string. When a persistent POA is destroyed, it saves its state, the last-generated
Object Id, in a global map. The Root POA, as part of server initialization or shutdown, stores and
restores this table in the POA Manager, using the save_state and restore_state methods
(see the IDL in figure 5.7).

An alternative would be to generate a unique prefix for Object Ids based, for example, on a times-
tamp. However, this is not as trivial as it seems, because a persistent POA can be created, destroyed
and recreated within a process: a simple timestamp is not sufficient. With the side effect of being able
to use simple Object Ids (a running number), this way of requiring one additional once-in-a-lifetime
communication with the POA Mediator seemed a good compromise.

5.4.4 Usage

As with the extensions for the Interoperable Naming Service, a solution to the persistency question
has been implemented that does not require any vendor-specific source code incompatibilities. The
generic source code presented in [58] will work and produce the expected results without changes.

The only necessary efforts beyond the POA specification are administrative, to run the BOA Dae-
mon and to add an entry to the Implementation Repository.

As a side note, the Implementation Repository also allows for coarse-grained mobility of servers.
If the command to start the server is replaced with a remote shell invocation, the next instance of the
server will be run remotely – and the client will not notice.

But again, we run into a bootstrapping problem, this time on the server side. In order to create
object references and to export them, for example by entering them in the Naming Service, the first
instance of the server has to be started manually, using one of three options:

� Forcing activation of a server using the Implementation Repository’s administrative interface
(imr activate).

� Starting the server on the command line, with the provision of the necessary command-line
options (Implementation Name and the Implementation Repository’s reference).

� Using the MICO Binder [50], which can also cause implementation activation.

If the second option is used, a server could also contact the Implementation Repository on its own –
after all, its interface is specified in IDL – and add an entry for itself. This removes the need for adding
an entry “by hand”, but would introduce an incompatibility, since the layout of the Implementation
Repository is MICO-specific.

It is also possible for a persistent server to run without contacting an Implementation Repository,
but then clients will experience a “transient” exception when they try to send a request while the
server is down. A third possibility is to create an entry in the Implementation Repository that leaves
the implementation’s executable undefined. The POAMediator is then unable to start a new server
on demand, but will queue requests until a new server comes online by administrative action – the
equivalent of the BOA’s persistent activation policy.

It has been mentioned that the BOA Daemon should run permanently. MICO actually allows the
daemon to be stopped and restarted. Upon shutdown, all connected servers are stopped, too, and their
state information is written to a disk file, so that the system can be restored when the daemon is started
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again. However, clients that send a request while the daemon is down will also receive an exception
indicating temporary failure.

5.5 Collocation

Location transparency is one of the corner stones of CORBA. The client is not aware of a servant’s
location, the ORB alone is responsible to read an object reference’s profiles to contact the implemen-
tation. As described in section 3.3, auto-generated stub classes package their parameters in a CORBA
request, which is then transported by the ORB and decoded by the skeleton on the server side.

This is fine for remote invocations, but suboptimal for local invocations, if the servant happens to
be in the same process as the client, be it coincidence or by design. While performance optimizations
might not be necessary for the random case, inefficient handling is annoying if a server knowingly
manipulates local objects through CORBA calls.

An example is the Naming Service, which maintains a tree of “Naming Context” objects. These
must be CORBA objects, since they must be accessible from remote. But if the Root context is asked
to locate a node, it needs to traverse the tree, resulting in unsatisfactory performance if each step
required a CORBA invocation to occur. In the local case, marshalling and unmarshalling parameters
to and from a request seems overly complicated when the data could be used directly.

Effort to circumvent normal ORB request handling is well spent and allows for more scalability,
because the user can easily migrate between efficient local invocations and ORB-mediated remote
invocations.

Most ORBs, including MICO, implement collocation optimizations for BOA-based objects using
the strategy shown in figure 5.10, which shows the inheritance for the stub and skeleton classes for
interface “Account.” By using the same inheritance from CORBA::Object and the same interface
from the common base class Account, stub object and servant can be used interchangeably.

If a client receives an object reference, the ORB checks if the object is local, by comparing the
reference’s profiles with its own object reference template. If this comparison fails, the ORB falls
back to generating a stub object. Otherwise, if the object is indeed local, it contacts the BOA to return
the actual servant. The client cannot distinguish the servant from a stub: the interface matches, and
the method signatures are the same.

The only difference is speed: if the client performs an invocation, the servant is called directly,
thanks to C++’s abstract classes and virtual methods. The ORB is never involved, and no data is
moved around; the location-transparent remote invocation decays to a local procedure call, without
any overhead.

However, this inheritance-based approach is not possible with POA-based objects, for several
reasons:

� The lifetimes of stubs and servants are independent of each other. A servant can be replaced,
and stubs must reflect that change. This is not possible if “stubs” are actually pointers to the
servant.

� Invocations must honor the POA’s threading policy and the state of the POA Manager. It may
be necessary to defer or to fail the request. With the above approach, invocations are always
“delivered” immediately.

� The POA must be involved; for example, the POACurrent object must reflect the invocation,
and the _this member must return the correct value.
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Figure 5.10: Common strategy for Collocation using the BOA

65



CHAPTER 5. REFERENCE IMPLEMENTATION

ServantBase

StaticImplementation StubBase

CORBA::Object

Account

Account_stub

Abstract Base

Stub
POA_Account

Account_stub_clp

Account_impl

Collocation Proxy

Skeleton

Servant

Collocation Classes

Classes
System-Provided

IDL Generated
Classes

Delegation

Inheritance

Server-Side Classes Client-Side Classes

Object Implementation

Figure 5.11: Collocation with the POA requires a Proxy

66



5.5. COLLOCATION

void
Account_stub_clp::deposit( CORBA::ULong amount )
{
// The POA returns NULL here if either object or POA is not active
PortableServer::Servant _serv = _poa->preinvoke (this);

if (_serv) {
// Object and POA are active, try narrowing to skeleton type
POA_Account * _myserv = POA_Account::_narrow (_serv);
if (_myserv) {
// Perform local invocation
_myserv->deposit(amount);
_poa->_postinvoke ();
return;

}
_poa->_postinvoke ();

}

// Object/POA Inactive or the servant is of unex-
pected type (DSI?)
// Fall back to the normal stub and send a request.

Account_stub::deposit(amount);
}

Figure 5.12: Abbreviated Sample code from a Collocation Proxy

Another obstacle raised in CORBA 2.3 is that valuetype parameters may need to be copied. As a
solution, a proxy is introduced to control access to the servant [10]. For each interface, the IDL
compiler creates a collocation proxy (Account_stub_clp in figure 5.11). This class is a stub that
specializes the normal stub class in the case of a collocated servant. Whenever the client acquires
an object reference as the result of a method invocation or ORB operation, the ORB produces a
collocation proxy if the reference is local and if the servant is adapted through a POA.

For the purpose of collocation using the BOA, MICO already provided the skeleton method
in the generic Object Adapter interface to produce the (BOA-based) servant. This part of the Object
Adapter interface was first useless with the POA, but then found to be useful for collocation, as it
made the process of acquiring a collocation proxy transparent to the client.

The collocation proxy uses delegation instead of inheritance to invoke the servant. Before an
invocation is actually performed, the proxy has to cooperate with the servant’s POA to find out if a
direct procedure call can proceed:

1. Make sure the servant’s POA that we refer to has not been destroyed.

2. Check that the POA is in the active state.

3. Ask the POA to retrieve the servant from its Active Object Map.
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4. Verify that the servant is implemented through a static skeleton and not using the DSI.

5. Update the POACurrent settings to reflect the invocation in progress.

Only after the checklist is complete, the proxy can delegate the invocation to the servant, by invoking
the skeleton’s virtual methods. If any of the above steps fails, the collection proxy falls back to the
default stub’s behavior by calling its parent class, where the parameters are marshalled into a CORBA
request and fed to the ORB as usual, guaranteeing correct behavior in all circumstances. An example
of the code generated by the IDL compiler is shown in figure 5.12, abbreviated by the removal of
failure handling for presentation purposes.

Performance measurements for a simple operation show that method invocation through the col-
location proxy is about 40 times faster than an ORB-mediated invocation. This factor would actually
be greater for operations with more complex parameters, because no marshalling needs to be done,
and the complexity of the above steps is constant. However, if the computations performed in the
operation become more complex and exceed the time saving from 200 � s to 5 � s (exemplary values on
the author’s system), the performance impact becomes less significant.

So far, the motivation for collocation has been performance, but collocation proxy classes are
also convenient for locality-constrained objects, where the servant must be in the same process as the
client.

Where not directed by the specification, MICO omits skeleton and stub classes when generating
code for locality-constrained objects like the POA. There is only a single thread of inheritance, and
the servant is called directly. This is not possible for servant managers and adapter activators, which
the specification requires to follow the “usual” semantics, so that users can derive their object imple-
mentation from the skeletons. Yet no stubs and skeletons can be generated: the parameters handled
by servant managers are native and cannot be marshalled.

In the first implementation, hand-written skeleton classes were used that could double as stubs,
exploiting a special exception in the POA’s activation mechanism, but bypassing POA mediation of
method invocation. These were later replaced by code derived from an IDL-generated collocation
proxy, with the inheritance from and delegation to the normal stub – which does not exist – removed.

Valuetypes as introduced by the Objects by Value specification in CORBA 2.3 [30] will present
an additional challenge to the collocation mechanism. The major factor for increased performance in
collocation is that a method’s parameters do not need marshalling but can be used directly. This is
not always possible with valuetypes, since they may be shared: the same valuetype can be referenced
more than once, so that if the valuetype is changed using one reference (a C++ pointer), the other
reference is affected, too. This is not in itself surprising but the same behavior as with normal, remote
objects handled through object references.

But false behavior would result if a shared valuetype is passed as an inout parameter to a colloca-
tion proxy. If the shared valuetype was passed to the servant and there modified, as explicitly allowed
in the C++ mapping [31], the other copy of the valuetype would, as an invalid side effect, change, too.

The collocation proxy must therefore check if valuetypes passed as an inout parameter are shared,
and create a duplicate if so. Not only is the duplication of a valuetype complex in itself, – it frequently
requires marshalling and unmarshalling of the valuetype – but introduces new problems, as valuetypes
can also be shared across parameters. If the same valuetype is used twice as parameter in a method
invocation, the servant must receive a shared parameter, too. An example is shown in figure 5.13,
where the same valuetype is passed both as the first and the second parameter. If the second parameter
needs to be copied in the collocation proxy, the sharing must be detected, and the copy must be passed
as first parameter, too, when invoking the servant.
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// IDL

valuetype Foo { ... };

interface Bar {
Foo Op (in Foo f1, inout Foo f2);

};

// C++

Foo_var f1, f2;
...

f2 = f1;
f1 = barRef->Op (f1.in(), f2.inout());

Figure 5.13: Valuetypes (Objects by Value) can be shared across Parameters.

Parameter sharing is not always as obvious as in this example, as valuetypes can describe complex
graphs, and sharing may occur between nodes of different graphs, between members of other types
like structures or arrays, further masked by inheritance: a base valuetype can be shared with a derived
valuetype.

Code has been added to the IDL generator to make the collocation proxy as smart as possible in
detecting parameter sharing. If the IDL generator decides from a parameter’s signature that either
no or easily detectable parameter sharing can occur, extra code is produced to make copies of shared
parameters as necessary. But if the possibilities become too overwhelming, the IDL compiler gives
up and does not generate a collocation proxy at all.

Because of the many issues involved, the code involved both in the IDL generator and the gener-
ated code is complex and has not yet been fully verified, and maybe it would be sensible to keep the
code small and to skip collocation optimizations altogether where valuetypes are involved.

5.6 Other Implementations

At the time of writing, more than a year after the release of the CORBA 2.2 specification, the Portable
Object Adapter is still not widely available. IONA Technologies, the market leader according to
number of sales, has just released the new major version 3.0 of their Orbix product, still without a
POA. So far, the only two commercial ORBs that claim to come with a POA are ObjectBroker from
BEA Systems and DAIS from PeerLogic. Both are not freely available, and information about them
is scarce.

However, two other Open Source ORBs, ORBit from Redhat Labs and TAO from Washington
University, have evolved a POA implementation in parallel to the one in MICO. Both can be down-
loaded and distributed in source under liberal licenses, so their implementation of the POA could be
examined.

A third candidate for comparison is ORBacus from Object Oriented Concepts, a commercial ORB
that can be downloaded in source for private use.
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The goal of this comparison was not to search and expose minor bugs, but rather to make a
structural comparison of the different design strategies and to see how other ORBs handle the topics
of object key handling, persistence and collocation.

The development of all three ORBs is not finished. While ORBit has not changed over the last
three months, new versions of TAO appear almost weekly, and ORBacus is still in the alpha stage. The
most recent versions as of mid-June 1999 have been downloaded and checked, but the information
presented here could be outdated soon.

5.6.1 ORBit

This ORB from Redhat Labs [43] was available in version 0.4, and it is interesting to look at its history.
ORBit was developed as a basis for the distribution of components in the GNOME desktop project
[12], using some of the same basic ideas as in the KDE project [19]. The KDE project has used MICO

from the beginning, and so did GNOME. However, their developers have been unimpressed with the
performance of MICO and so decided to start writing an ORB of their own.

Being very concerned with performance, the GNOME project does not use C++ but plain C, and
consequently, ORBit provides a C language mapping only.5

ORBit is still a work in progress, and while it has reached maturity in that it can be used to
implement clients and servers, many advanced features are not yet implemented. In the POA im-
plementation, some of the identity mapping operations are missing, as is support for virtual objects,
adapter activators or the POACurrent interface.

The ORBit POA does not encode the full POA name into the object key, but rather a numerical
identifier. A global map then translates this POA Id back to the POA instance. While making for
shorter Object Ids, this will require ORBit to keep state information for old POAs – once adapter
activators are implemented. In the unlikely situation that an implementation routinely creates and
deletes POAs, the internal tables in ORBit will grow, while MICO keeps all information in the clients,
should they decide to keep an object reference.

The lifespan policy is wholly unimplemented, and the way object keys are generated (again using
a numerical identifier that points into an array of Object Ids) does not satisfy either persistency or
transiency.

On the other hand, ORBit does include collocation optimizations, albeit using the BOA-based
approach as shown in figure 5.10. Invocations on a collocated object bypass both ORB and POA.

A striking feature of ORBit is its size of just 10.000 lines of code6 for the ORB core and its
components, including the POA. For users who can live with the C language mapping and without
advanced CORBA features, ORBit is a lean and efficient ORB.

5.6.2 TAO

The tested version of The ACE ORB [61] from Washington University was 0.3.23 from May 22, 1999
and comes with a full-featured POA.

TAO already supports persistent objects, but does not yet allow for on-demand startup of new
servers. The distribution includes a design paper for an Implementation Repository and some prelim-
inary code.

5A C++ language mapping is, according to the ORBit home page, in very early stages of development.
6Comparable numbers are 50.000 for MICO and 60.000 for both TAO and ORBacus.
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A problem of relying on ORB extensions has already been mentioned in section 5.3, where a new
methods was introduced in order to support short and legible object keys for the Interoperable Naming
Service.

The focus of TAO development is its applicability in real-time systems, and TAO’s developers
are spending much thought on algorithms to provide runtime guarantees [51]. The POA does have
to maintain its own data structures like the Active Object Map, which needs to be traversed upon
invocation. As mentioned in section 5.2, the MICO POA uses an STL map to provide an average case
behavior of

� ������� ! �
, which may not be enough for hard real-time applications.

The idea used by TAO is that servers are commonly static, i.e. the number of POAs and active
servants is known beforehand, at design time. TAO uses this knowledge to compute a perfect hashing
function on the expected set of Object Ids to guarantee constant-time lookup in the Active Object
Map. In the skeleton code, again perfect hashing is used in the dispatching of a request to an object
implementation’s method.

Like ORBit, TAO keeps the names of active POA instances in a global map and stores an index
into that table in the object key, but avoids ORBit’s pitfall with adapter activators by additionally
adding the full POA name, in case the POA is inactive.

TAO also implements collocation optimizations using a collocation proxy. However, unlike in
MICO, TAO’s collocation proxies are separate from the normal stub and only forward the method
invocation to the servant [51], and do not determine the servant’s readiness to receive requests. Again,
the ORB and the POA are bypassed. In order to provide correct behavior, the -ORBcollocation
command-line switch can be used to disable collocation optimization altogether – but TAO defaults
to potentially unsafe direct calls.

Unfortunately, TAO uses an alternative C++ mapping, because it still supports old C++ compilers
without exception support.7 In an object implementation, methods take an additional parameter to
carry an exception. While client code could be exchanged between MICO and TAO, the first interop-
erability test with server-side source code failed.

With the necessary changes made, – adding a default parameter to each method in the object
implementation – server code could indeed be ported and ran on the other ORB with the expected
results.

5.6.3 ORBacus

In the evolution of commercial software, some design decisions cannot be reversed for the sake of
backwards compatibility. Over time, it becomes ever more complicated to add new features that
would have been straightforward to implement if old designs could be replaced.

For similar reasons, ORBacus is being largely rewritten to get rid of historic restrictions like an
alternative mapping for C++ compilers without namespaces and the tight integration of the BOA into
the ORB. The latest available version was the 4.0a2 alpha release; the final version 4.0 is promised to
comply to CORBA 2.3.

Already, the POA support seems reasonably complete, no omissions could be found. Missing
is an Implementation Repository; while persistent objects are supported and properly implemented,
their servers must be started manually.

Like ORBit and TAO, ORBacus bypasses ORB and POA in its implementation of collocation opti-
mizations, with the slight improvement that at least the POACurrent interface reflects the invocation
in progress.

7See “Alternative Mappings for C++ Dialects” in the CORBA 2.2 C++ language mapping.
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POA Feature MICO ORBit TAO ORBacus

Basic Features yes (yes) yes yes
INS Support (yes) no (yes) no
Persistence yes no yes yes
Implementation Repository yes no (yes) no
Collocation Optimization yes (yes) (yes) (yes)

Table 5.1: ORB Comparison

No provisions for legible object keys for use with the Interoperable Naming Service exist.
Unlike TAO, ORBacus uses the normal C++ mapping, and so it was possible to exchange both

client and server source code between MICO and ORBacus. The one item that still needed changing
in both client and server source code were the names of IDL-generated include files, which are not
prescribed by the specification and can therefore vary between ORBs.

5.6.4 Comparison

The comparison of ORBit, TAO and ORBacus demonstrates that despite the apparent standardization
of the CORBA platform, each ORB is individual with its own ideas and intentions.

Table 5.1 shows the POA-related features highlighted in this chapter and whether they are real-
ized in the other ORBs. A (yes) in parenthesis means that the feature exists but has not been fully
implemented or requires vendor-specific extensions.

For fairness, it should be added that the table does not list other ORB features like real-time
support or multithreading which are available in other ORBs but not in MICO – but such features are
beyond the scope of this thesis.

5.7 Evaluation

The reference implementation of the POA in MICO has in most areas verified the validity of the POA
specification. The description of the POA’s methods and their behavior is precise with little margin
for error or misinterpretation, and in this respect, server-side interoperability is achieved.

Porting server-side code between ORB implementations is still not fully possible, though. Some
ORBs like TAO continue to support old environments by using an alternate C++ mapping, but even if
the same mapping is used, as in the case of ORBacus, the names of IDL-generated files differ, so that
the include directives at the beginning of each source file need modification. If the names of generated
files could be agreed on, client-side and server-side source code could indeed be transported between
ORBs without any modification.

However, the required source file modifications are trivial compared with the porting of BOA-
based code. The POA not only provides the programmer with a consistent interface, but also with
consistent design, whereas the proprietary extensions that existed for the BOA as often as not required
a complete redesign and rewriting of server code from scratch when being ported to a different ORB.

It is interesting and somewhat ironic that the one missing piece of the POA specification, the
Implementation Repository, was removed with the BOA specification, so vendor-specific extensions
are again required to support persistency.

But a distinction must be made between vendor-specific source-level extensions like additional
methods to the ORB or POA, and vendor-specific administrative action. The latter can be deemed
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acceptable – each vendor should be able to define a custom set of commands and options, as long as
the source code is portable.

It has been demonstrated that persistency and the synchronization of active servers with the Im-
plementation Repository is possible without any source-level changes, but with administrative action
only: The MICO daemon must be run, the implementation must be registered with the IMR, and the
-POAImplName option must be added to a persistent server’s command line.

The Interoperable Naming Service and its requirement of short and legible object keys is bound
to cause more trouble. While the MICO POA takes care to use acceptable object keys by default,
again without any ORB modifications as in TAO, the MICO solution relies on cooperation with the
developer, who must choose the “right” POA names and Object Ids. The developer must rely on the
MICO POA to construct the object key in a foreseeable manner. In this respect, the solution is just as
unportable as TAO’s added ORB method.

It is to be expected that each vendor’s solution for constructing object keys will be different, so
that service implementations that wish to publish an URI-style IOR are again non-portable.

Since both solutions, the generation of object keys or a new ORB method to keep an object key
mapping table, are unlikely to be standardized, one idea would be the introduction of a new standard
“trivial” object adapter. It could use Object Ids directly as the object key, with the sole purpose of
forwarding incoming requests to the proper POA-based object.
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Conclusions

The goal of a reference POA implementation has been achieved, proving the sensibility of the spec-
ification. The MICO POA is, in terms of features and correctness, equivalent or superior to the few
other current POA implementations that have evolved in parallel in other ORBs.

The extensibility of the microkernel ORB has also been demonstrated satisfactorily, as the addition
of the POA did not require any modification of the ORB and could be put to work just by implementing
the generic Object Adapter interface. Modification of the IDL compiler was necessary, but this was
hardly unexpected with the different layout of POA skeleton classes.

The microkernel architecture and its support for multiple object adapters is a unique feature of
MICO, as the comparison with other ORBs shows. The development of ORBit started after CORBA
2.2, and it never had a Basic Object Adapter. Version 0.0.4 of TAO did have a BOA, but it was
abandoned and completely replaced with the POA. ORBacus has had its BOA removed as part of its
transistion process to the new major version. MICO is the only ORB where BOA and POA – among
other, less user-visible, object adapters – coexist. As verified in their source code, none of the other
monolithic ORBs allows more than one object adapter.

The POA was the missing piece for MICO to achieve CORBA 2.2 compliance. Its source code
was contributed to the main distribution in September 1998 for the release of MICO 2.2.0 and was
included in the second version of the MICO book. Some of the more advanced features have been
added in later revisions, notably persistence in 2.2.3 and collocation in 2.2.4. Since then, it has been
widely distributed and put to use; some minor bugs were reported on the mailing list and quickly
fixed. Some enhancements like a more efficient handling of the Active Object Map are also the result
of open discussion.

As a real-life test, the Naming Service, originally contributed by Kai-Uwe Sattler, was rewritten
to use the Portable Object Adapter without any noticable difference of behavior. A new experimental
language mapping for the Tcl scripting language also makes heavy use of the POA. In fact, it provides
scripts with the full POA interface and was used in the testing of the POA implementation. The K
Office Suite, the “killer application” for the K Desktop Environment [19], already exploits the POA’s
advanced features like servant managers and request forwarding.

A lot of BOA-based code remains in MICO, but this is more a feature than a problem. Since BOA
and POA coexist, there is no need to spend effort in replacing the old BOA-based code.

While the decision whether to use the POA or BOA is easy in terms of features, it can be answered
differently in terms of literature. Existing books are still mostly focused on the BOA, and the docu-
mentation that comes with the MICO distribution is no exception. A chapter about POA programming
has been contributed, but is placed less prominently behind the BOA part. Otherwise, the only docu-
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mentation for using the POA has been the specification itself. Only one recent book [16] deals with
the POA.

The source code for the POA is complete, though coming CORBA revisions will most likely bring
minor changes, as CORBA 2.3 does. As this thesis has shown, the POA might endure longer than the
Basic Object Adapter did, which survived for seven years despite its shortcomings. On the other hand,
CORBA now grows faster than it did ever before, and new applications of the CORBA architecture
will probably need new object adapters, too.

The Portable Object Adapter is successful in its own field, for the implementation of servers in
a Client/Server system. Real-time systems, data streaming services, parallel or fault-tolerant systems
all have different requirements, and it is possible that new object adapters can fulfill their needs better
than the POA does.

In the meantime, the POA is central to many new CORBA features. Objects by Value and Messag-
ing both make extensive use of the POA, Objects by Value for supporting interfaces, and Messaging
for callback objects.

CORBA has in the past often suffered from weak and incorrect ORB implementations. The test
suite from the Open Group has only been passed by three ORBs so far, including MICO. However,
the suite covered CORBA 2.1 only, and so the POA has not been verified. It would be interesting to
have a CORBA 2.2 test suite, so that remaining bugs could be detected and expelled, and to ensure
that the POA implementations of different ORBs are indeed compatible.
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Glossary

A.1 Abbreviations

AMI Asynchronous Method Invocation

ANSI American National Standards Institute

API Application Program Interface

ATM Asynchronous Transfer Mode

BOA Basic Object Adapter

BSD Berkeley System Distribution

CDR Common Data Representation

CORBA Common Object Request Broker Architecture

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

DII Dynamic Invocation Interface

DSI Dynamic Skeleton Interface

GIOP General Inter-ORB Protocol

GUID Globally Unique Identifier

IANA Internet Assigned Numbers Authority

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

IFR Interface Repository

IIOP Internet Inter-ORB Protocol

IMR Implementation Repository

INS Interoperable Naming Service

IOR Interoperable Object Reference

IP Internet Protocol

ITU International Telecommunication Union
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MICO MICO is CORBA

NFS Network File System

NNTP Network News Transport Protocol

OBV Objects by Value

OMA Object Management Architecture

OMG Object Management Group

ORB Object Request Broker

OSI Open System Interconnection

PID Process Id

POA Portable Object Adapter

POSIX Portable Operating System Interface

PVM Parallel Virtual Machine

RFC Request For Comments

RFP Request For Proposal

RMI Remote Method Invocation

RPC Remote Procedure Call

SII Static Invocation Interface

SSI Static Skeleton Interface

SSL Secure Socket Layer

STL Standard Template Library

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

X11 X Window System, Version 11

XDR External Data Representation
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A.2 Terminology

Note: For more POA terminology, see chapter 4.2.

Activation The act of associating a type, servant and a user-supplied or generated Object Id in order
to create an object. The servant may be left empty in order to create a new virtual object.

Basic Object Adapter (BOA) The only object adapter specified by CORBA versions up to and in-
cluding 2.1. Removed from the specification in CORBA 2.2.

Client The program that acquires client objects and performs CORBA invocations.

Collocation Proxy A special type of stub used if the servant is in the same process as the client. The
collocation proxy sets up the environment and performs a direct (local) procedure call into the
servant if possible, else it falls back to normal stub behavior of sending a request through the
ORB.

Common Data Representation (CDR) Standardized “on-the-wire” representation for IDL data types,
taking padding and endianness issues into account. Used by the General Inter-ORB Protocol.

Deactivation Removes an object from the active object map. See etherealization. Deactivated objects
become virtual and may be reincarnated at a later point in time.

Dynamic Invocation Interface (DII) A standardized client-side interface for the marshalling of pa-
rameters into a request and invoking methods using run-time type information. Unlike the Static
Invocation Interface, the DII allows for asynchronous method invocations by first sending a re-
quest and then waiting or polling for the result.

Dynamic Skeleton The skeleton class that an object implementation must be derived from if it is to
use the Dynamic Skeleton Interface.

Dynamic Skeleton Interface (DSI) A standardized server-side interface for the unmarshalling of pa-
rameters from a request and retrieval of other request-specific data using run-time type infor-
mation.

Etherealization The act of disassociating a servant from an object, so that only a virtual object re-
mains. Etherealization is triggered by an object’s deactivation. Both terms are somewhat syn-
onymous: an object is deactivated, and the servant is etherealized.

General Inter-ORB Protocol (GIOP) The standardized request-response protocol used to send re-
quests and to exchange control messages between ORBs. Uses Common Data Representation
for the exchange of data and Interoperable Object References for addressing.

IDL Compiler A program that reads descriptions from Interface Definition Language files and pro-
duces type declarations, stubs and skeletons for a target programming language according to
the language mapping.

Internet Inter-ORB Protocol (IIOP) The application of the General Inter-ORB Protocol to TCP/IP.

Implementation In a POSIX environment, an implementation is an executable program. When exe-
cuted, an implementation becomes a server. The term is also frequently used to denote the user
code that, when activated, becomes a servant. This document uses the term object implementa-
tion instead to emphasize the difference.
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Implementation Name A unique name that must be assigned to an implementation if it contains
persistent objects. The Implementation Name is set using the -POAImplName option on the
command line. (MICO-specific)

Implementation Repository (IMR) A database containing information about available implementa-
tions and the objects they implement.

Incarnation The act of associating a virtual object with a servant, usually in a servant activator.

Interface Definition Language (IDL) The language used to describe an object’s interface. This de-
scription is translated by the IDL compiler into a programming language’s type declarations,
stubs and skeletons according to the language mapping.

Interface Repository (IFR) A database containing type information for interfaces, their data struc-
tures, operations and parameters, filled in from IDL files, usually by the IDL compiler. Can be
used by clients or servers to retrieve type information at runtime.

Interoperable Object Reference (IOR) A standardized format for object references.

Language Mapping A language mapping describes how the types and declarations from the IDL
language are expressed and how clients and servants can be implemented in a particular pro-
gramming language.

Marshalling The packaging of a method’s parameters into a request.

Object A CORBA object is an abstract entity with a public interface and internal state. An object
“exists” on the server side; the difference to the term “servant” is that the same servant can
be used to implement many objects at once. Logically, an object is a three-tuple consisting
of a type, a unique Object Id and a servant. Clients do not handle objects, they handle object
references.

Object Adapter The layer that exists on the server side to mediate between the ORB’s request pro-
cessing and the servants’ readiness to receive requests.

Object Id The part of an object key that identifies a particular servant within its object adapter. Can
be either user-selected or assigned by the object adapter itself.

Object Implementation The user-provided implementation code realizing all methods of a specific
interface. In the C++ language mapping, an object implementation is a C++ class that inherits
either from an IDL-generated skeleton or from the Dynamic Skeleton base class. A servant is
an instance of an object implementation.

Object Key The part of an object reference (or more precisely, of a profile) that identifies a particular
object adapter within the server and a servant within that object adapter, using the object Id.

Object Reference The “address” of a specific servant. An object reference contains a type and one
or more profiles. To the user, an object reference is opaque data and cannot be examined or
constructed.

Object Request Broker (ORB) The ORB is basically only the entity that takes requests from a client
and delivers them to a potentially remote servant. Sometimes called the “ORB core,” to distin-
guish this rudimentary task from the other user services also provided by the ORB, such as
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the stringification of object references. The term “ORB” is also frequently used to denote the
sum of all non-user CORBA components, including the object adapters, dynamic invocation
interface etc.

Persistent Object A persistent object has been activated in a POA with the “persistent” lifespan
policy. Persistent objects can outlive the server they were originally created in, so the server
can be stopped and restarted transparently, usually by an Implementation Repository.

Portable Object Adapter (POA) A powerful object adapter introduced in CORBA 2.2.

Profile The part of an object reference that identifies a particular servant, consisting of location in-
formation (in the case of an IIOP, an Internet host name and TCP port number) and the object
key.

Request A request is sent from the client to the server as part of method invocation, encapsulating
the object’s identity (object reference), the method name and the parameters. The request is
dispatched to a servant, and the result is then returned in a reply message.

Servant A servant is an instance of an object implementation. Servants must be activated with an
Object Adapter. After activation, object references can be created for that servant.

Server A server contains one or more servants. In a POSIX environment, a server corresponds to a
separate process.

Skeleton The server-side programming-language code (C++ class) generated for a particular inter-
face by the IDL compiler. Skeletons are abstract, the programmer must derive from the skeleton
and add the methods’ implementation. Instances of a class that derives from skeleton are ser-
vants.

Static Invocation Interface A vendor-specific interface for the marshalling of parameters, employed
by IDL-generated stubs. Proprietary, but usually much faster than the Dynamic Invocation
Interface.

Static Skeleton Interface A vendor-specific interface for the unmarshalling of parameters, employed
by IDL-generated skeletons. Proprietary, but usually much faster than the Dynamic Skeleton
Interface.

Stub The client-side programming-language code (concrete C++ class) generated for a particular
interface by the IDL compiler. Stub objects are instances of a stub.

Stub Object Encapsulates an object reference and incarnates a specific most-derived interface. To the
programming language, it presents the same interface as declared in the IDL file. The code for
stub objects is generated by the IDL compiler. A stub objects’ methods use the Static Invocation
Interface to package its parameters into a CORBA request and causes a remote invocation on
the servant.

Transient Object A transient object is an object that has been activated in a POA with the “transient”
lifespan policy. Its lifespan is bounded by the POA it was activated in, and ceases to exist if its
POA instance is destroyed, for example as part of server shutdown. Note: this definition has
changed in CORBA 2.3; according to CORBA 2.2, a transient object’s lifespan is bounded by
the lifespan of its server process.
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Virtual Object A virtual object has not been incarnated yet. The POA allows to create object ref-
erences to virtual objects. The server could incarnate the object at a later point in time, or on
demand by using a servant manager.
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Examples

The following section is an excerpt of the text contributed to the MICO manual,
containing source code examples of using the POA. Some passages with basic
explanations (policies, terminology) have been omitted to not repeat the text of
the previous chapters. More examples can be found in [16] or [59].

B.1 POA

The Basic Object Adapter provides a bare minimum of functionality to server applications. As a con-
sequence, many ORBs added custom extensions to the BOA to support more complex demands upon
an object adapter, making server implementations incompatible among different ORB vendors. In
CORBA 2.2, the new Portable Object Adapter was introduced. It provides a much-extended interface
that addresses many needs that were wished for, but not available with the original BOA specification.
POA features include:

� Support for transparent activation of objects. Servers can export object references for not-yet-
active servants that will be incarnated on demand.

� Allow a single servant to support many object identities.

� Allow many POAs in a single server, each governed by its own set of policies.

� Delegate requests for non-existent servants either to a default servant, or ask a servant manager
for an appropriate servant.

These features, make the POA much more powerful than the BOA and should fulfill most server
applications’ needs. As an example, object references for some million entries in a database can be
generated, which are all implemented by a single default servant.

B.1.1 Example

As an example, let’s write a simple POA-based server. You can find the full code in the demo/poa/hello-
1 directory in the MICO distribution. Imagine a simple IDL description in the file “hello.idl”:

interface HelloWorld {
void hello ();

};
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The first step is to invoke the IDL to C++ compiler in a way to produce skeleton classes that use
the POA:

idl --poa --no-boa hello.idl

The first option, --poa, turns on code generation for POA-based skeletons. The second option,
--no-boa optionally turns off code generation for the old BOA-based skeletons. Next, we rewrite
the server.

1: // file server.cc
2:
3: #include "hello.h"
4:
5: class HelloWorld_impl : virtual public POA_HelloWorld
6: {
7: public:
8: void hello() { printf ("Hello World!\n"); };
9: };

10:
11:
12: int main( int argc, char *argv[] )
13: {
14: CORBA::ORB_var orb = CORBA::ORB_init (argc, argv, "mico-local-orb");
15: CORBA::Object_var poaobj = orb->resolve_initial_references ("RootPOA");
16: PortableServer::POA_var poa = PortableServer::POA::_narrow (poaobj);
17: PortableServer::POAManager_var mgr = poa->the_POAManager();
18:
19: HelloWorld_impl * servant = new HelloWorld_impl;
20:
21: PortableServer::ObjectId_var oid = poa->activate_object (servant);
22:
23: mgr->activate ();
24: orb->run();
25:
26: poa->destroy (TRUE, TRUE);
27: delete servant;
28: return 0;
29: }

The object implementation does not change much with respect to a BOA-based one, the only dif-
ference is that HelloWorld_impldoes not inherit from the BOA-based skeleton HelloWorld_skel
any more, but from the POA-based skeleton POA_HelloWorld.

In main(), we first initialize the ORB, then we obtain a reference to the Root POA (lines 15–16)
and to its POA Manager (line 17).

Then, we create an instance of our server object. In line 21, the servant is activated. Since the
Root POA has the SYSTEM_ID policy, a unique Object Id is generated automatically and returned.
At this point, clients can use the MICO binder to connect to the HelloWorld object.

However, client invocations upon the HelloWorld object are not yet processed. The Root POA’s
POA Manager is created in the holding state, so in line 23, we transition the POA Manager, and
therefore the Root POA, to the active state. We then enter the ORB’s event loop in 24.

In this example, run() never returns, because we don’t provide a means to shut down the ORB.
If that ever happened, lines 26–27 would first destroy the Root POA. Since that deactivates our active
HelloWorld object, we can then safely delete the servant.
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Since the Root POA has the IMPLICIT_ACTIVATION policy, we can also use several other
methods to activate the servant instead of activate_object(). We could, for example, use
servant_to_reference(), which first implicitly activates the inactive servant and then returns
an object reference pointing to the servant. Or, we could invoke the servant’s inherited _this()
method, which also implicitly activates the servant and returns an object reference.

B.1.2 Using a Servant Manager

While the previous example did introduce the POA, it did not demonstrate any of its abilities – the
example would have been just as simple using the BOA.

As a more complex example, we want to show a server that generates “virtual” object references
that point to non-existent objects. We then provide the POA with a servant manager that incarnates
the objects on demand.

We continue our series of “Account” examples. We provide the implementation for a Bank object
with a single “create” operation that opens a new account. However, the Account object is not put
into existence at that point, we just return a reference that will cause activation of an Account object
when it is first accessed. This text will only show some code fragments; find the full code in the
demo/poa/account-2 directory.

The implementation of the Account object does not differ from before. More interesting is the
implementation of the Bank’s create operation:

Account_ptr
Bank_impl::create ()
{
CORBA::Object_var obj = mypoa->create_reference ("IDL:Account:1.0");
Account_ptr aref = Account::_narrow (obj);
assert (!CORBA::is_nil (aref));
return aref;

}

The create_reference() operation on the POA does not cause an activation to take place.
It only creates a new object reference encapsulating information about the supported interface and a
unique (system-generated) Object Id. This reference is then returned to the client.

Now, when the client invokes an operation on the returned reference, the POA will first search its
Active Object Map, but will find no servant to serve the request. We therefore implement a servant
manager, which will be asked to find an appropriate implementation.

There are two types of servant managers: a Servant Activator activates a new servant, which will
be retained in the POA’s Active Object Map to serve further requests on the same object. A Servant
Locator is used to locate a servant for a single invocation only; the servant will not be retained for
future use. The type of servant manager depends on the POA’s Servant Retention policy.

In our case, we use a servant activator, which will incarnate and activate a new servant whenever
the account is used first. Further operations on the same object reference will use the already active
servant. Since the create_reference() operation uses a unique Object Id each time it is called,
one new servant will be incarnated for each Account.

A servant activator provides two operations, incarnate and etherealize. The former one
is called when a new servant needs to be incarnated to serve a previously unknown Object Id. ethe-
realize is called when the servant is deactivated (for example in POA shutdown) and allows the
servant manager to clean up associated data.
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class AccountManager : public virtual POA_PortableServer::ServantActivator
{ /* declarations */ };

PortableServer::Servant
AccountManager::incarnate (/* params */)
{
return new Account_impl;

}

void
AccountManager::etherealize (PortableServer::Servant serv,

/* many more params */)
{
delete serv;

}

Our servant activator implements the POA_PortableServer::ServantActivator inter-
face. Since servant managers are servants themselves, they must be activated like any other servant
(see below).

The incarnate operation has nothing to do but to create a new Account servant. incarnate
receives the current POA and the requested Object Id as parameters, so it would be possible to perform
special initialization based on the Object Id that is to be served.

etherealize is just as simple, and deletes the servant. In “real life”, the servant manager
would have to make sure that the servant is not in use anywhere else before deleting it. Here, this is
guaranteed by our program logic.

The main() code is a little more extensive than before. Because the Root POA has the USE_-
ACTIVE_OBJECT_MAP_ONLY policy and does not allow a servant manager, we must create our
own POA with the USE_SERVANT_MANAGER policy.

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv, "mico-local-orb");
CORBA::Object_var poaobj = orb->resolve_initial_references ("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow (poaobj);
PortableServer::POAManager_var mgr = poa->the_POAManager();

CORBA::PolicyList pl;
pl.length(1);
pl[0] = poa->
create_request_processing_policy (PortableServer::USE_SERVANT_MANAGER);

PortableServer::POA_var mypoa = poa->create_POA ("MyPOA", mgr, pl);

Note that we use the Root POA’s POA Manager when creating the new POA. This means that
the POA Manager has now control over both POAs, and changing its state affects both POAs. If we
passed NULL as the second parameter to create_POA(), a new POA Manager would have been
created, and we would have to change both POA’s states separately.

We can now register the servant manager.

AccountManager * am = new AccountManager;
PortableServer::ServantManager_var amref = am->_this ();
mypoa->set_servant_manager (amref);

After creating an instance of our servant manager, we obtain an object reference using the inherited
_this() method. This also implicitly activates the servant manager in the Root POA.
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Bank_impl * micocash = new Bank_impl (mypoa);
PortableServer::ObjectId_var oid = poa->activate_object (micocash);
mgr->activate ();
orb->run();

Now the only thing left to do is to activate a Bank object, to change both POAs to the active state,
and to enter the ORB’s event loop.

B.1.3 Persistent Objects

Our previous examples used “transient” objects which cannot outlive the server process they were
created in. If you write a server that activates a servant and export its object reference, and then stop
and re-start the server, clients will receive an exception that their object reference has become invalid.

In many cases it is desirable to have persistent objects. A persistent object has an infinite lifetime,
not bound by the process that implements the object. You can kill and restart the server process,
for example to save resources while it is not needed, or to update the implementation, and the client
objects will not notice as long as the server is running whenever an invocation is performed.

An object is persistent if the servant that implements them is activated in a POA that has the
PERSISTENT lifespan policy.

As an example, we will expand our Bank to create persistent accounts. When the server goes
down, we want to write the account balances to a disk file, and when the server is restarted, the
balances are read back in. To accomplish this, we use a persistent POA to create our accounts in.
Using a servant manager provides us with the necessary hooks to save and restore the state: when
etherealizing an account, the balance is written to disk, and when incarnating an account, we check if
an appropriately named file with a balance exists.

We also make the Bank itself persistent, but use a different POA to activate the Bank in. Of
course, we could use the Accounts’ POA for the Bank, too, but then, our servant manager would have
to discriminate whether it is etherealizing an Account or a Bank: using a different POA comes more
cheaply.

The implementation of the Account object is the same as in the previous examples. The Bank
is basically the same, too. One change is that the create operation has been extended to activate
accounts with a specific Object Id – we will use an Account’s Object Id as the name for the balance
file on disk.

We also add a shutdown operation to the Bank interface, which is supposed to terminate the
server process. This is accomplished simply by calling the ORB’s shutdown method:

void
Bank_impl::shutdown (void)
{
orb->shutdown (TRUE);

}

Invoking shutdown() on the ORB first of all causes the destruction of all object adapters.
Destruction of the Account’s POA next causes all active objects – our accounts – to be etherealized by
invoking the servant manager. Consequently, the servant manager is all we need to save and restore
our state.

One problem is that the servant manager’s etherealize() method receives a Portable-
Server::Servantvalue. However, we need access to the implementation’s type, Account_impl*,
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to query the current balance. Since CORBA does not provide narrowing for servant types, we have to
find a solution on our own. Here, we use an STL map mapping the one to the other:

class Account_impl;
typedef map<PortableServer::Servant,
Account_impl *,
less<PortableServer::Servant> > ServantMap;

ServantMap svmap;

When incarnating an account, we populate this map; when etherealizing the account, we can
retrieve the implementation’s pointer.

PortableServer::Servant
AccountManager::incarnate (/* params */)
{
Account_impl * account = new Account_impl;
CORBA::Long amount = ... // retrieve balance from disk
account->deposit (amount);

svmap[account] = account; // populate map
return account;

}

void
AccountManager::etherealize (PortableServer::Servant serv,

/* many more params */)
{
ServantMap::iterator it = svmap.find (serv);
Account_impl * impl = (*it).second;
... // save balance to disk
svmap.erase (it);
delete serv;

}

Please find the full source code in the demo/poa/account-3 directory.
One little bit of magic is left to do. Persistent POAs need a key, a unique “implementation name”

to identify their objects with. This name must be given using the -POAImplName command line
option:1

./server -POAImplName Bank

Now we have persistent objects, but still have to start up the server by hand. It would be much more
convenient if the server was started automatically. This can be achieved using the MICO Daemon
(micod) (see section 5.4).

For POA-based persistent servers, the implementation repository entry must use the “poa” acti-
vation mode, for example

imr create Bank poa ./server IDL:Bank:1.0

1If you omit this option, you will receive an “Invalid Policy” exception when trying to create a persistent POA.
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The second parameter to imr, Bank, is the same implementation name as above; it must be unique
within the implementation repository. If a persistent POA is in contact with the MICO Daemon, object
references to a persistent object, when exported from the server process, will not point directly to the
server but to the MICO Daemon. Whenever a request is received by micod, it checks if your server
is running. If it is, the request is simply forwarded, else a new server is started.

Usually, the first instance of your server must be started manually for bootstrapping, so that you
have a chance to export object references to your persistent objects. An alternative is to use the MICO
Binder: the IDL:Bank:1.0 in the command line above tells micod that bind() requests for this
repository id can be forwarded to this server – after starting it.

With POA-based persistent objects, you can also take advantage of the “iioploc:” addressing
scheme that is introduced by the Interoperable Naming Service. Instead of using a stringified object
reference, you can use a much simpler, URL-like scheme. The format for an iioploc address is

iioploc://<host>:<port>/<object-key>

host and port are as given with the -ORBIIOPAddr command-line option, and the object key
is composed of the implementation name, the POA name and the Object Id, separated by slashes. So,
if you start a server using

./server -ORBIIOPAddr inet:thishost:1234 -POAImplName MyService

create a persistent POA with the name “MyPOA”, and then activate an object using the “MyOb-
ject” Object Id, you could refer to that object using the IOR

iioploc://thishost:1234/MyService/MyPOA/MyObject

These “iioploc” addresses are understood and translated by the string_to_object()method
and can therefore be used wherever a stringified object reference can be used.

For added convenience, if the implementation name, the POA name and the Object Id are the
same, they are collapsed into a single string. An example for this is the NameService implementation,
which uses the “NameService” implementation name. The root naming context is then activated in
the “NameService” POA using the “NameService” ObjectId. Consequently, the NameService can be
addressed using

iioploc://<host>:<port>/NameService

Please see the Interoperable Naming Service specification for more details.

B.1.4 Reference Counting

With the POA, implementations do not inherit from CORBA::Object. Consequently, memory man-
agement for servants is the user’s responsibility. Eventually, a servant must be deleted with C++’s
delete operator, and a user must know when a servant is safe to be deleted – deleting a servant that
is still known to a POA leads to undesired results.

CORBA 2.3 addresses this problem and introduces reference counting for servants. However,
to maintain compatibility, this feature is optional and must be explicitly activated by the user. This
is done by adding POA_PortableServer::RefCountServantBase as a base class of your
implementation:
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class HelloWorld_impl :
virtual public POA_HelloWorld
virtual public PortableServer::RefCountServantBase

{
...

}

This activates two new operations for your implementation, _add_ref() and _remove_ref().
A newly constructed servant has a reference count of 1, and it is deleted automatically once its refer-
ence count drops to zero. This way, you can, for example, forget about your servant just after it has
been created and activated:

HelloWorld_impl * hw = new HelloWorld_impl;
HelloWorld_var ref = hw->_this(); // implicit activation
hw->_remove_ref ();

During activation, the POA has increased the reference count for the servant, so you can remove
your reference immediately afterwards. The servant will be deleted automatically once the object
is deactivated or the POA is destroyed. Note, however, that once you introduce reference count-
ing, you must keep track of the references yourself: All POA operations that return a servant (i.e.
id_to_servant()will increase the servants’ reference count. The PortableServer::ServantBase_var
class is provided for automated reference counting, acting the same as CORBA::Object_var does
for Objects.
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POA IDL

// -*- c++ -*-

#include <mico/policy.idl>
#include <mico/current.idl>

#pragma prefix "omg.org"

module PortableServer
{

// forward reference

interface POA;

native Servant;
typedef sequence<octet> ObjectId;

exception ForwardRequest {
Object forward_reference;

};

/*
* **************************************************
*
* Policy Interfaces
*
* **************************************************
*/

const CORBA::PolicyType THREAD_POLICY_ID = 16;
const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;
const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;
const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;
const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21;
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL

};

interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

};

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

};

interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;

};

enum IdUniquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

};

interface IdUniquenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

};

interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

};

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

};

interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

};

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

};

interface ServantRetentionPolicy : CORBA::Policy {
readonly attribute ServantRetentionPolicyValue value;

};

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

};

interface RequestProcessingPolicy : CORBA::Policy {
readonly attribute RequestProcessingPolicyValue value;

};

/*
* **************************************************
*
* POAManager interface
*
* **************************************************
*/

interface POAManager {
exception AdapterInactive {};

enum State { HOLDING, ACTIVE, DISCARDING, INACTIVE };

void activate ()
raises (AdapterInactive);

void hold_requests (in boolean wait_for_completion)
raises (AdapterInactive);

void discard_requests (in boolean wait_for_completion)
raises (AdapterInactive);

void deactivate (in boolean etherealize_objects,
in boolean wait_for_completion)

raises (AdapterInactive);

State get_state ();

// begin-mico-extension
void add_managed_poa (in POA managed);
void del_managed_poa (in POA managed);
// end-mico-extension

};
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/*
* **************************************************
*
* AdapterActivator interface
*
* **************************************************
*/

interface AdapterActivator {
boolean unknown_adapter (in POA parent, in string name);

};

/*
* **************************************************
*
* ServantManager interface
*
* **************************************************
*/

interface ServantManager {};

interface ServantActivator : ServantManager {
Servant incarnate (in ObjectId oid,

in POA adapter)
raises (ForwardRequest);

void etherealize (in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

};

interface ServantLocator : ServantManager {
native Cookie;
// typedef string Identifier;

Servant preinvoke (in ObjectId oid,
in POA adapter,
in string operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke (in ObjectId oid,
in POA adapter,
in string operation,
in Cookie the_cookie,
in Servant the_servant);

};

/*
* **************************************************
*
* POA interface
*
* **************************************************
*/

interface POA {
exception AdapterAlreadyExists {};
exception AdapterInactive {};
exception AdapterNonExistent {};
exception InvalidPolicy { unsigned short index; };
exception NoServant {};
exception ObjectAlreadyActive {};
exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

/*
* **************************************************
*
* POA creation and destruction
*
* **************************************************
*/

POA create_POA (in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA (in string adapter_name, in boolean activate_it)
raises (AdapterNonExistent);

void destroy (in boolean etherealize_objects,
in boolean wait_for_completion);

/*
* **************************************************
*
* Factories for Policy objects
*
* **************************************************
*/

ThreadPolicy create_thread_policy
(in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy
(in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy
(in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy
(in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy
(in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy
(in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy
(in RequestProcessingPolicyValue value);

/*
* **************************************************
*
* POA attributes
*
* **************************************************
*/

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;

/*
* **************************************************
*
* ServantManager registration
*
* **************************************************
*/

ServantManager get_servant_manager ()
raises (WrongPolicy);

void set_servant_manager (in ServantManager imgr)
raises (WrongPolicy);

/*
* **************************************************
*
* operations for the USE_DEFAULT_SERVANT policy
*
* **************************************************
*/

Servant get_servant ()
raises (NoServant, WrongPolicy);

void set_servant (in Servant p_servant)
raises (WrongPolicy);

/*
* **************************************************
*
* object activation and deactivation
*
* **************************************************
*/

ObjectId activate_object (in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id (in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive, ObjectAlreadyActive,
WrongPolicy);

void deactivate_object (in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);
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/*
* **************************************************
*
* reference creation operations
*
* **************************************************
*/

// typedef string RepositoryId;

Object create_reference (in string intf)
raises (WrongPolicy);

Object create_reference_with_id (in ObjectId oid,
in string intf)

raises (WrongPolicy);

/*
* **************************************************
*
* Identity mapping operations
*
* **************************************************
*/

ObjectId servant_to_id (in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Object servant_to_reference (in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant (in Object reference)
raises (ObjectNotActive, WrongAdapter, WrongPolicy);

ObjectId reference_to_id (in Object reference)
raises (WrongAdapter, WrongPolicy);

Servant id_to_servant (in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

Object id_to_reference (in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

// begin-mico-extension
Object activate_for_this (in Servant serv);
void poa_manager_callback (in POAManager::State newstate,

in boolean etherealize_objects,
in boolean wait_for_completion);

Servant preinvoke (in Object for_obj);
void postinvoke ();
// end-mico-extension

};

/*
* **************************************************
*
* Current interface
*
* **************************************************
*/

interface Current : CORBA::Current {
exception NoContext {};

POA get_POA ()
raises (NoContext);

ObjectId get_object_id ()
raises (NoContext);

// begin-mico-extension
Object make_ref ();
boolean iscurrent ();
Servant get_serv ();
// end-mico-extension

};
};
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