
Formal Verification of Sequential Circuits
Using Reasoning Techniques

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik
der Johann Wolfgang Goethe – Universität

in Frankfurt am Main

von
Dominik Stoffel

geb. in Xenia, Ohio, USA

Frankfurt am Main, 1999
DF 1

vom Fachbereich Informatik der Johann Wolfgang Goethe-Universität als Dissertation
angenommen.

Dekan: Prof. Dr. Wolfgang Kunz

Gutachter: Prof. Dr. Wolfgang Kunz, Universität Frankfurt
Prof. Dr. Prem Menon, University of Amherst, MA, USA
Prof. Dr. Joachim Wunderlich, Universität Stuttgart

Datum der Disputation: 20.12.1999

Contents

Acknowledgements v

1 Introduction 1
1.1 Design Verification . 2
1.2 Implementation Verification . 3
1.3 Motivation and Thesis Overview . 4

2 Boolean Algebra and Two-Level Circuit Theory 7
2.1 Relations . 7
2.2 Boolean Algebra . 8
2.3 Graphs . 9
2.4 Boolean Functions and their Representations . 10

2.4.1 Implementing Boolean Functions as Switching Circuit 11
2.4.2 Disjunctive Forms . 12
2.4.3 Boolean Networks . 14
2.4.4 Binary Decision Diagrams . 15

3 Reasoning in Multi-Level Networks 19
3.1 Introduction . 19
3.2 Implicant-Based Network Transformations . 22

3.2.1 Implicants in Multi-Level Combinational Networks 23
3.2.2 Network Optimization . 25

3.3 AND/OR Reasoning Graphs . 29
3.3.1 OR search versus AND/OR search . 30
3.3.2 AND/OR enumeration in multi-level circuits 34
3.3.3 AND/OR Reasoning Trees . 40

3.4 Determining Prime Implicants . 45
3.5 D-AND/OR enumeration and Permissible Implicants 48
3.6 Heuristic Multi-Level Optimization . 52

3.6.1 Selecting Implicants . 52
3.6.2 Optimization Procedure . 58
3.6.3 Experimental Results . 60

3.7 Determining a Cover . 65

iii

iv CONTENTS

3.8 Implicant-Based Set Representations . 70
3.8.1 Characteristic Function and Cap Circuit 70
3.8.2 Controllability Don’t Cares and Tap Circuit 72
3.8.3 Synthesis of Set Representations, Stub Circuit 73
3.8.4 Existential Quantification . 78

4 Structural FSM Traversal 81
4.1 Introduction . 81
4.2 Symbolic FSM Traversal . 84
4.3 FSM Traversal by Time Frame Expansion . 86
4.4 A Structural Fixed Point Iteration . 93

5 Equivalence Checking of Sequential Circuits 101
5.1 Introduction . 101
5.2 Approximate Structural FSM Traversal . 104
5.3 Experimental Results . 115

6 Future Work 121
6.1 AND/OR Reasoning Graphs . 121
6.2 Structural FSM Traversal . 122

7 Summary 129

A Proofs of Theorems 133

Acknowledgements

This thesis is the result of a several years lasting project at various locations and institutions. The
major part was conducted while I was with the Max-Planck Fault-Tolerant Computing Group
at the University of Potsdam. During a short but intensive stay at Mentor Graphics Boston
Research Group in Billerica, MA, some of the core ideas for sequential equivalence checking
were developed. During the last one and a half years I have been with the Electronic Design
Automation Group at the University of Frankfurt, finishing this work. At all these locations
there are many people who contributed to this research in various ways and to whom I am very
grateful.

First of all, I am greatly indebted to my supervisor, Prof. Dr. Wolfgang Kunz, who is the head
of the Design Automation Group in Frankfurt. His constant support, encouragement and advice
have been very imporant in the course and for the outcome of this work. Many ideas described
in this thesis were born during the long, intensive and inspiring discussions with Wolfgang.

I am also very grateful to Prof. Dr. Michael Gössel, head of the Max-Planck Fault Tolerant
Computing Group, who has generously supported me in many ways and given me important
advice and suggestions. I have to thank him for the opportunity to work within the excellent
research environment he has provided. Exchanging ideas with the research group and the many
visitors from international research institutions has provided me with important experiences and
input to my work.

A partial funding of this research came from Mentor Graphics’ Boston Research Group in
Billerica, MA, for which I am very grateful. I owe special thanks to Reilly Jacoby and Henry
Cox, for making it possible to visit the group for a few months. Thanks to the great people I have
met there, this visit was both, very productive for my work and also a lot of fun.

The work on AND/OR reasoning graphs is based on earlier research by Wolfgang Kunz and
Prem Menon. I would like to thank Professor Menon for the helpful discussions and feedback he
gave on this subject.

v

vi ACKNOWLEDGEMENTS

Furthermore, I would like to thank all my colleagues in Potsdam and Frankfurt, especially
Stefan Gerber, Martin Cobernuss, Hendrik Hartje, Andrej Morosov, Mitrajit Chatterjee, Petra
Vogel, Manuela Zeitner, Ingmar Neumann and Kolja Sulimma, for the interesting discussions,
fruitful collaborations and the fun we had.

Last, but not least, I am indebted to my parents for their continuous support of my work,
especially to my father for much helpful advice and the time he spent proof-reading this thesis.

Dominik Stoffel Frankfurt am Main, September 9th, 1999

Chapter 1

Introduction

Designing state-of-the art digital electronic circuits is nearly impossible without the use of Com-
puter-Aided Design (CAD) tools. Today’s design tasks involve millions of transistors and only
the – at least partial – automation of the design process has made it possible to successfully cope
with the complexity of modern VLSI (Very Large Scale Integration) circuits. CAD tools help to
specify, synthesize and re-use designs, allow for a modular and hierarchical design architecture
making the design process systematic, and provide means to communicate data between indi-
viduals in large design teams. Especially, the process of optimizing the quality of a design in
terms of performance, power consumption, testability and manufacturing yield is far too time-
consuming and error-prone to be accomplished manually by a human designer. Highly sophis-
ticated automatic synthesis methods have been developed making this step simple. CAD tools
help to reduce the time-to-market of a new product. Due to continuous improvements in circuit
technology the period during which a product is competitive in the market keeps shrinking. It
is therefore extremely important for a manufacturer to develop a product fast in order to regain
the costs of design and fabrication and to make profit. This holds true especially for Application
Specific Integrated Circuits (ASICs) where design costs make up a larger part of the total product
costs than for a generic high-volume production IC (Integrated Circuit).

In addition to a short design time, it is very important that the design is free of errors. Firstly,
it is nearly impossible to repair a chip or a production mask. Secondly, after the mask layout
for a chip has been sent to the silicon foundry, the turnaround time for chip production is several
weeks. If a design error is detected in the fabricated IC, a re-design and re-fabrication becomes
necessary, involving additional cost and time delays. With the given tight cost and time con-
straints, such an iteration is not acceptable. Therefore, a major part of the design resources must
be used for design validation.

The purpose of design validation is to ascertain that the designed circuit functions correctly
and has the properties intended by the designer. There are basically three approaches to design
validation: simulation, emulation and formal verification. Simulation is the most widely em-
ployed technique today. Designers apply input patterns (stimuli) to a software simulation model
of the design and check whether it produces the intended outputs. The patterns may be cho-
sen specifically to expose a certain behaviour or possible logical errors of the design, or may
be created randomly. Large numbers of patterns are simulated to increase the confidence in the

1

2 CHAPTER 1. INTRODUCTION

correctness of the design.
Emulation consists of building a prototype of the circuit for example using programmable

logic such as Field Programmable Gate Arrays (FPGAs). Input stimuli are applied to the pro-
totype at high speeds and the produced output patterns are checked for correctness. Emulation
accelerates simulation so that many more patterns can be evaluated in a given amount of time.
However, even then, the set of simulated patterns usually represents only a small fraction of the
exhaustive set of patterns, and it is always possible to overlook a design error. A well-known
example for this to happen is the bug in Intel’s Pentium processor making world-wide headlines
a few years ago.

Formal verification is an alternative to simulation-based methods. Formally verifying the
correctness of a design means determining by mathematical proof that the design has the desired
function and fulfills the required properties for all possible input patterns. By conducting a
formal proof also those errors (“bugs”) can be found that occur with low probability and which
are hard to detect by simulation. It is common to distinguish between two main application areas
of formal verification techniques, design verification and implementation verification.

1.1 Design Verification

The first phase of a design process is to create an initial circuit model representing the specifica-
tion of the desired functionality. In this conceptual phase, design verification is used to make sure
that the initial model fulfills all requirements and has all the properties intended by the designer.
Design verification cannot only aid in finding bugs in the specification, it can also increase the
designers understanding of the design issues. The designer formulates the properties of the de-
sign to be checked in an appropriate language or formalism. Typical formalisms used are certain
logics such as propositional logic, temporal logic, first-order predicate logic, and also finite-state
automata operating on finite or infinite words. The properties expressed in such a formalism are
checked by an automated method of proof suited for this formalism.

The most successful methods for design verification are model checking (see e.g., [66]) and
language containment (see e.g., [56]). For model checking, the properties to be checked are
expressed in a simplified form of temporal logic defined by Clarke and Emerson [22] called
Computation Tree Logic (CTL). The system to be checked is represented as a so-called Kripke
model which is similar to a finite state machine. Properties are checked by propagating formulas
in the state transition graph of this model until a fixed point is reached. Language containment
methods are based on the theory of � -regular automata. Both the design to be checked and the
properties to be proven are represented as finite automata. The property is verified by proving
that the language of the design automaton is contained in the language of the property automaton.

Although the formalism used for expressing properties is different, the two approaches of
model checking and language containment are not too far apart. The core algorithms employed
are similar and are based on fixed point iterations on state transition graphs. Well-known tools for
model checking are SMV[66] which was developed at Carnegie Mellon University and VIS[9]
from the University of California at Berkeley.

A serious problem in model checking (or language containment) limiting its applicability

1.2. IMPLEMENTATION VERIFICATION 3

in practice is known as the state explosion problem. For example, take the case where some
property is to be checked for all states that a system can possibly assume. Hence, to prove this
property we need to determine the set of all states that can be reached from the set of initial states.
This task is called reachability analysis. It plays a central role in formal verification and involves
the traversal of the complete state transition graph of the system. However, the number of states
of a sequential system, i.e., a system containing memory elements like latches and flip-flops, can
be exponential in the number of these memory elements. Since a representation of the relevant
state sets is needed when performing the fixed point iterations mentioned above, these methods
fail when the memory required for the state set representation is too large. Researchers [26, 66]
have successfully alleviated this problem by introducing implicit representations of state sets
using binary decision diagrams, (BDDs) [14]. BDDs are efficient data structures for representing
Boolean functions in a canonical form. Large sets of states can be represented by constructing the
BDD of the characteristic function of a state set. However, in some cases also BDDs exhibit their
worst-case size behaviour which is also exponential in the number of variables. Therefore, even
with these improvements many industrial-size circuits remain too complex for state-of-the-art
model checking techniques.

1.2 Implementation Verification

While design verification is used to check the technical soundness of a specification, implemen-
tation verification has the task to verify the correctness of the various design steps transforming
the specification into the final implementation. The initial specification is usually given in a
hardware description language such as Verilog or VHDL at the register transfer level (RTL).
Synthesis tools transform this specification into a gate-level model which is then optimized for
performance, power consumption, area, testability etc. After technology mapping and a physical
design phase the layout of the final chip is obtained. For each of these design steps, it must be
verified that the transformations of the circuit model have not changed the specified function.
There are a number of possible scenarios how a design can become incorrect. Firstly, the pro-
grams used for synthesis and optimization may have caused errors. Although the core algorithms
of the CAD tools are correct by construction, the software implementation of these algorithms
may be erroneous. Secondly, errors may be introduced not only by the actual CAD programs but
also by interface software such as data format converters or other software developed by the user.
Thirdly, very often designers make manual changes to the design, especially in the optimization
phase, to improve or re-design certain critical parts of the circuitry generated by the CAD tool.

Implementation verification is performed by checking the functional equivalence of the spec-
ification and the implementation after all modifications. This is the task of an equivalence check-
ing tool. Checking the equivalence of two models

�
and � means to verify that the output

behaviour of
�

and � is the same for all possible inputs (of interest). Equivalence checking is
often repeated several times in order to verify the correctness of circuit modifications along the
design process.

If a design does not exhibit sequential behaviour, i.e., if it does not contain any memory el-
ements such as registers and latches, the logic functions to be verified are purely combinational.

4 CHAPTER 1. INTRODUCTION

In this case, a traditional approach is to represent both circuit models in a canonical (= unique)
form, e.g., using binary decision diagrams and then to check the isomorphism of both repre-
sentations. In many cases, however, we encounter that the logic functions to be checked for
equivalence have BDD representations which are exponential in the number of input variables.
Such BDD blow-up is particularly common in the data path of a design containing barrel shifters,
multipliers or related functions.

Sequential equivalence checking is even more difficult. Since the behaviour of the system
is also dependent on its current state, it is not sufficient to only consider all input stimuli of the
circuits. Additionally, all possible states of the system have to be considered, too. Therefore, it
is necessary to perform a reachability analysis like in model checking in order to obtain the set
of reachable states. Consequently, sequential equivalence checking methods face the same state-
explosion problem as model checking and are applicable only to small and mid-size circuits.

1.3 Motivation and Thesis Overview

State-of-the-art formal methods for hardware verification rely heavily on Boolean techniques to
represent and manipulate Boolean functions. The invention of binary decision diagrams [2, 14]
and related graph representations of Boolean functions has played an important role in achieving
major progress both in model checking and equivalence checking. Boolean function represen-
tations are not only useful to check combinational equivalence of two circuits but are also the
basic instrument to represent and manipulate large state sets when traversing the state space of
a finite state machine (FSM). In particular, there is one property of BDDs which is very helpful
in formal verification. BDDs can represent Boolean functions in a canonical form that is also
compact in many cases. As mentioned, this is immediately useful in combinational equivalence
checking where the equivalence check can be reduced to checking whether or not the BDDs for
the two circuits are identical. Less obviously, canonicity is also a key property when performing
fixed point iterations in model checking. As will be elaborated in later chapters the fixed point
of these iterations is detected by noting that a certain state set being considered does not change
from one iteration to next. Since the state set is represented as a Boolean function the detection
of the fixed point is only guaranteed if the Boolean function is represented in a canonical form.

Unfortunately, there is a high price to be paid for the property of canonicity. Even when us-
ing BDDs, for many Boolean functions the canonical representation grows exponentially with the
number of variables causing the complete failure of the formal verification method. Therefore, it
is tempting to investigate how formal verification methods can operate without the use of canoni-
cal representations of Boolean functions. Dropping the requirement of canonicity, unfortunately,
makes other aspects of formal verification algorithms more complex. So far, only in the domain
of combinational equivalence checking there has been some notable success in developing verifi-
cation techniques that do not require any canonical circuit representations [51, 8]. These methods
employ Boolean reasoning techniques originally developed for the purpose of automatic test pat-
tern generation (ATPG) and operate directly on the structural gate netlist of the circuit. Since
they are capable of making efficient use of structural design properties they are often referred to
as structural techniques. These techniques and their further developments (e.g., [76, 44, 62, 50])

1.3. MOTIVATION AND THESIS OVERVIEW 5

have made combinational equivalence checking feasible for circuits with up to one million gates.
Unfortunately, techniques of this kind are only in its infancy or do not exist at all for the important
tasks of sequential equivalence checking or model checking.

Therefore, this thesis creates a theoretical framework and develops a set of practical tech-
niques for a structural approach to sequential circuit verification.

Chapter 2 reviews some fundamentals of switching theory and introduces the reader into
some terminology being basic to the subject of this thesis.

Chapter 3 introduces the Boolean techniques that form the basic reasoning apparatus for the
formal verification algorithms developed in later chapters. The main contribution of this chapter
is to introduce the notion of an implicant in multi-level combinational circuits and to present a
method how such implicants can be determined. This makes it possible to generalize classical
notions and algorithms for two-level circuits to multi-level circuits. The developed reasoning
techniques are first discussed with circuit optimization as background leading to a unified view
on two-level and multi-level circuit optimization. In the last part of this chapter, these concepts
and algorithms are applied to the problem of set representation as needed in sequential circuit
verification.

Chapter 4 develops a new approach to exploring the state space of a finite state machine called
structural FSM traversal. A new approach is necessary since the Boolean techniques developed
in Chapter 3 are not well-suited for being used in combination with traditional FSM traversal
methods. In particular, in this chapter a structural fixed point iteration for performing reachability
analysis is presented. The convergence behaviour of this fixed point iteration is theoretically
examined by relating it to certain topological properties of the FSM’s state transition graph.

Chapter 5 demonstrates the practical value of the developed theory and algorithms. It in-
troduces an approximation to the exact structural FSM traversal of Chapter 4 and develops an
algorithm for equivalence checking of sequential circuits. It is shown how the drawback of
dealing with non-canonical circuit representations can be overcome by a controlled step-by-step
circuit decomposition algorithm leading to a practical equivalence checking algorithm called
record and play(). Experiments have been conducted to demonstrate the attractiveness of this
approach.

Chapter 6 describes some future directions. It is discussed how the performance of the pro-
posed Boolean reasoning techniques can be further increased and how the structural verification
approach proposed in this thesis can be applied to model checking.

Chapter 7 concludes the thesis with a summary of the main results.
For reasons of better readability the proofs of the theorems in this thesis have been moved to

the appendix.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Boolean Algebra and Two-Level Circuit
Theory

This chapter briefly reviews the basic concepts of switching theory. This summary is not com-
plete; only such topics are considered which are of relevance for the understanding of later chap-
ters. For a more detailed introduction into the theory of switching functions the reader may
refer to a standard text book, e.g., [48], [64] and [33]. A second objective of this chapter is to
familiarize the reader with the symbolic notations used in later chapters of this thesis.

2.1 Relations

In the following, we revisit some basic notions about relations which will be useful throughout
this thesis. Standard notations are used to describe sets and operations on sets.

An ordered pair ��������� is a pair of two elements with an order associated with them. The
Cartesian product of two sets

�
and � , denoted

�
	
� , is the set of all ordered pairs ��������� , such

that ��� �
and �
� � . A subset � of

��	
� is called a binary relation between

�
and � and

we denote ����� to express that element � is related to � by � . Since only binary relations are
considered here, for reasons of brevity we simply speak of relations. In the sequel, we consider
relations between elements of a single set, � , so ����� 	 � .

The following properties of relations are important: A relation � between between the ele-
ments of a set � is called

reflexive if ������������� for all �����
symmetric if �������������
��� ����������� � for all �����!���
antisymmetric if ����������� � and ���"�#�$��� �
�%�&�(')� for all �����!���
transitive if ������������� and ������*+�����
�,� ������*+����� for all �����!� �

A relation � among the elements of a set � that is transitive, reflexive and symmetric is an
equivalence relation. It partitions the set � . A partition is a set of disjoint subsets of � whose
union is � . The subsets are called blocks of the partition or equivalence classes.

A relation � among the elements of a set � that is transitive, reflexive and antisymmetric is
called a partial order. A set � in combination with a partial order is called a partially ordered

7

8 CHAPTER 2. BOOLEAN ALGEBRA AND TWO-LEVEL CIRCUIT THEORY

set. As an example, the reader may think of relation � as the “is less than or equal to” relation to
better understand the following notions. If and only if (iff) � ��� for every element � ��� , then �
is called the least element of � . Similarly, � is said to be the greatest element of � , iff ����� for
all � ��� . Further let

�
be a subset of � . An element � � � is called an upper bound of

�
iff, for

every ��� � , � ��� . It is called a lower bound of
�

iff, for every ��� � , � ��� . An upper bound
� of

�
is defined to be the least upper bound iff ������� for all upper bounds �	� of

�
. Similarly, a

lower bound � of
�

is called the greatest lower bound iff � � ��� for all lower bounds � � of
�

.
The notions of upper and lower bounds become intuitively clear if a partially ordered set

is represented by a Hasse diagram as shown in standard text books. In the Hasse diagram, a
partially ordered set for which a unique least upper bound and a unique greatest lower bound
exists for every pair of elements looks like a grid or lattice.

Definition 2.1 (Lattice) A lattice is a partially ordered set where every pair of elements has a
unique greatest lower bound and a unique lowest upper bound.

It immediately follows from this definition that a lattice has both, a least and a greatest el-
ement. We denote the least element by 0 and the greatest element by 1. Determining the least
upper bound and the greatest lower bound can be viewed as two operations on the elements of the
lattice. The operations consist in assigning the unique lowest upper bound or the unique greatest
upper bound to each ordered pair of elements. These operations, in the following, are called sum
or product, respectively, and are denoted:

��
 � = lowest upper bound ���������
�
�"� = greatest lower bound ���������

2.2 Boolean Algebra

Based on the operations of lowest upper bound (+) and greatest lower bound ��� � introduced in
the previous section, a Boolean algebra can be defined as follows.

Definition 2.2 (Boolean Algebra) A lattice is called a Boolean algebra iff it is complemented
and distributive, i.e., if the lattice fulfills the following two conditions:

distributivity: ��������
 *+� ')���"��
 ���"* and ��
 �����"*+� ' ����
 ����� ����
 *+�
complement: for each element � in the lattice there exists a unique element � such

that ��� �
'�� and ��
 �
'��

Since the complement is unique, determining the complement can be considered a third op-
eration on the elements of the lattice.

We have introduced a Boolean algebra as a special lattice. Another common way to define a
Boolean algebra is to postulate certain properties for a set � and two binary operations ��� � and
��
 � . These properties are known as Huntington’s postulates. They include the existence of a
complement and distributivity as given in Definition 2.2. Further postulates are idempotency,

2.3. GRAPHS 9

commutativity, absorption, associativity and the existence of universal bounds. Note that defin-
ing Boolean algebra by Huntington’s postulates is equivalent to defining it as a complemented
and distributive lattice. In fact, it can be proved that a set � in combination with two operations
��
 � and ��� � is a lattice iff the following laws are fulfilled:

idempotency: ���"�
' ��
 �
' �
commutativity: ���"��' � �"� and ��
 ��')��
 �
absorption: ��
 �
�"��')� and ��������
 ��� ')�
associativity: ������� �"* � ' �����"�����"* and ��
)����
 *+� ' ����
 ���
 *
universal bounds: ��
 � ' � and �
� � ' � and ��� � ')� and ��
 �!' �

Boolean algebra is the fundamental basis for the analysis of digital electronic circuits. In
the 1930s, Shannon [85] showed that the behaviour of switching circuits can be described by
a two-valued Boolean algebra. Such a switching algebra is obtained if we consider a lattice
defined by the set � ' �

�$�	��� and the operations of conjunction (AND), disjunction (OR) and
complementation (NOT). The operation of conjunction is also called product, disjunction can
also be referred to as sum and complementation is often called negation. These operations are
defined in Table 2.1.

� � ���"�
0 0 0
0 1 0
1 0 0
1 1 1

� � ��
 �
0 0 0
0 1 1
1 0 1
1 1 1

� �
0 1
1 0

Table 2.1: Definitions of conjunction (AND), disjunction (OR) and complementation (NOT)

The switching algebra defined by the operations in Table 2.1 is isomorphic to a two-valued
Boolean algebra given by Definition 2.2. Therefore, in the sequel, we will use the terms Boolean
algebra and switching algebra interchangeably.

2.3 Graphs

A graph ����� ���(� is a pair ��� ���(� . � is a set and � is an incidence mapping on � . The elements
of � are called vertices or nodes of the graph and the elements of � are called edges. Each
edge 	 �
� is associated with two nodes �
� ����� ��� being connected by this edge. If the nodes
belonging to an edge are ordered the graph is called directed, otherwise it is called undirected.
In the following we concentrate on directed graphs. In a directed graph, the node ��� of an edge
����� �����+� is the immediate predecessor of ��� , the node ��� is called immediate successor of �
� .

A graph ��� ' ����� ���
� � is called a subgraph of � ' ��� ��� � iff �
����� and ������� . The
number of edges incident to a node �
� is called the degree of ��� . In a directed graph, the outdegree
or fanout of a node refers to the number of its immediate successors. Similarly, the indegree or
fanin is given by the number of its immediate predecessors. A node with indegree 0 is sometimes
called a source, a node with outdegree 0 is called sink of the graph. A loop or self-edge is an

10 CHAPTER 2. BOOLEAN ALGEBRA AND TWO-LEVEL CIRCUIT THEORY

edge with two identical end-points. A walk is an alternating sequence of vertices and edges. A
trail is a walk with distinct edges, and a path is a trail with distinct vertices. A cycle is a closed
walk (i.e., such that the end-point vertices coincide). A graph with no cycles is called an acyclic
graph. A directed graph without cycles is called a directed acyclic graph (DAG). DAGs represent
partially ordered sets. If a DAG has one distinguished node, called root, which does not have
any predecessors, it is called rooted. A directed rooted tree is a DAG such that all nodes other
than the root have exactly one immediate predecessor. The immediate predecessor of a node � in
a directed rooted tree is sometimes called parent of � , the immediate successors of � are called
children of � . A node ��� that has the same parent as a node �
� is called a sibling of ��� . The nodes
without successors are called leaves of the tree. For simplicity, in this thesis we will refer to
directed rooted trees simply as trees.

In a DAG, a node ��� is called successor of a node �
� and ��� is called a predecessor of ��� iff
there is a path from ��� to ��� . The set of all successors for a given node, in some literature, is also
referred to as the transitive fanout of the node. Similarly, the set of all predecessors of a node
are called its transitive fanin. Directed acyclic graphs are often used to describe structural and
functional properties of switching circuits. The functional representations of Sections 2.4 and
3.3 associate Boolean functions with DAGs.

2.4 Boolean Functions and their Representations

Consider a Boolean algebra on a set � and a set of variables ��������� ������� ���	� such that each can
be assigned independently an element of � . We say that the
 variables �����������������
�	� form an

 -dimensional Boolean space � � where each vertex in the space is defined by one of the

�
� � �

combinations of assignments. A mapping � , ��� � ���� � , which uniquely associates every point
of � � with an element of � is called a Boolean function. In most applications it is � ' �

� �	�
� .
The vertices of � � being mapped to 1 are called the ON-set of � and those being mapped to 0
are called the OFF-set of � . Often, Boolean functions are incompletely specified, i.e., for some
vertices in � � we “do not care” to what element of � they are mapped. These vertices form
the so called don’t-care set of � . This is usually denoted by introducing a third element for � ,
denoted � , so that � ' �

� �	� ��� � . Further, we speak of an � -ary Boolean function if each point
in the space is mapped to � elements of � , i.e., we consider a mapping � , ��� � � �� ��� .

Boolean functions are the basis to describe the behaviour of switching circuits. Any method
to optimize or analyze switching circuits relies on manipulating Boolean functions. Therefore,
the efficiency of algorithms for specific problems in computer-aided design (CAD) of circuits
depends highly on an appropriate representation of Boolean functions. In fact, the algorithmic
solution of a given problem and the representation of the involved Boolean functions are inti-
mately related and cannot be considered independently of each other. For simplicity, we speak
of a Boolean representation when we mean the representation of a switching circuit as Boolean
function.

Most commonly, Boolean functions are represented by Boolean expressions or by sets of
Boolean expressions. General Boolean expressions, as opposed to sum-of-product forms (to be
defined) are also called factored forms.

2.4. BOOLEAN FUNCTIONS AND THEIR REPRESENTATIONS 11

Definition 2.3 (Boolean expression) A Boolean expression with the operations of disjunction,
conjunction and negation is recursively defined by:

1. a variable is a Boolean expression,

2. the constants 0 and 1 are Boolean expressions,

3. the complement of a Boolean expression is a Boolean expression,

4. the disjunction of two Boolean expressions is a Boolean expression,

5. the conjunction of two Boolean expressions is a Boolean expression.

A variable of a Boolean function in complemented or uncomplemented form is called a lit-
eral. For example, � and � are expressions containing the same variable, however, they are two
different literals.

2.4.1 Implementing Boolean Functions as Switching Circuit

Switching circuits are constructed by interconnections of electronic gates implementing elemen-
tary Boolean functions like disjunction, conjunction or complementation. Table 2.2 depicts some
standard logic gate types. Gates are electronic devices that produce voltage levels at their outputs

OR � ' ��
 �

AND � ' ���"�
Inverter (NOT) � ' �
XOR � ' ��� ��
 ��� � ' ��� �

NOR � ' ��
 �

NAND � ' ���"�

XNOR � ' ���"��
 ��� � ' ��� �

Table 2.2: Standard digital electronic gates and their symbols

as a function of the voltage levels received at the inputs. These voltage levels are restricted to
two ranges “high” and “low” and are usually associated with the logic values 1 and 0. Boolean
functions can be implemented by an interconnection of electronic gates. If all Boolean func-
tions can be implemented using a given set of gates then the set of gates is called functionally

12 CHAPTER 2. BOOLEAN ALGEBRA AND TWO-LEVEL CIRCUIT THEORY

complete. For example
�
AND, OR, NOT � is functionally complete. Actually, either AND or

OR can be removed from this set without making it incomplete, i.e., either
�
NAND � or

�
NOR � ,

each represents a functionally complete set of gates. Boolean functions can also be expressed
exclusively by AND and XOR if the logic value 1 is available as constant input for the logic
gates. Therefore,

�
1, AND, XOR � is a functionally complete set.

The implementation of a Boolean function by a switching circuit can be derived directly from
the mathematical representation of the function. However, not every Boolean representation is
equally suitable as a basis for a low cost implementation.

2.4.2 Disjunctive Forms

Let � denote a set forming a Boolean algebra. In some literature, the set � is referred to as logic
alphabet and its elements are called logic values. The most naive way to represent a Boolean
function is to list all vertices of the Boolean space as rows in a table and to associate with each
row a logic value. An example of such a truth table is shown in Table 2.3.

� � ��� ��� �
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 2.3: Example of a tabular Boolean representation (truth table)

Since the truth table contains
� � rows for a function with
 variables, Boolean representation

by truth tables is not practical except for very small examples. The following terminology is
useful to describe other representations of Boolean functions. A product term is one of the
following forms: the constant 1, a literal, or a conjunction of literals where no variable appears
more than once. A product term that contains a literal for every variable of a Boolean function
� is called minterm of � . Similarly, a sum term is one of the following forms: the constant 0, a
literal, or a disjunction of literals where no variable appears more than once. A sum term that
contains a literal for every variable in � it is called a maxterm. Minterms and maxterms can be
associated with the rows of a truth table. If a minterm is associated with a row where � is 1 it
is called ON-set minterm, if � is 0 it is called OFF-set minterm. Similarly, we can distinguish
ON-set maxterms and OFF-set maxterms. For the above example, Table 2.4 shows the ON-set
minterms and OFF-set maxterms.

A Boolean function is completely described by a disjunction of all its ON-set minterms or by
a conjunction of all its OFF-set maxterms. In the former case we speak of the disjunctive normal

2.4. BOOLEAN FUNCTIONS AND THEIR REPRESENTATIONS 13

� � ��� ��� � terms
0 0 0 0 � � ' � �
 ����
 ���
0 0 1 1 ��� ' � ��� ��� �����
0 1 0 0 � ��' � �
 ����
 ���
0 1 1 1 � ��' � ������� �����
1 0 0 0 � ��' � �
 ����
 ���
1 0 1 0 ��� ' � �
 ����
 ���
1 1 0 1 � ��' � ������� � ���
1 1 1 0 ����' � �
 ����
 ���

Table 2.4: Minterms and maxterms for a Boolean function

form (DNF) and in the latter we speak of the conjunctive normal form (CNF). In the example of
Table 2.4 the normal forms are:

� ' � ��� ��� ������
 � ������� ������
 � ������� � ��� (DNF)
� '�� � �
 ���
 �����
 � � �
 ���
 �����
 � � �
 ���
 �����
 � � �
 ���
 �����
 � � �
 ���
 ����� (CNF)

These normal forms are unique representations of Boolean functions, i.e., two Boolean func-
tions are equivalent if and only if their normal forms contain the same minterms or maxterms,
respectively. Unique representations of Boolean functions are also called canonical. Although
conjunctive and disjunctive forms are equally important it is usually sufficient to only refer to
one of them when describing notions and algorithms of switching theory. The standard litera-
ture gives preference to the disjunctive form. Therefore, the following considerations will be
restricted to the disjunctive form.

A general Boolean expression can be transformed into its DNF by repeatedly applying Shan-
non’s expansion theorem, given by

� � � ��������� ���	� � ' � � � � � � � ������� ��� ��'�� ������� ���	� �
 � � � � � � ��������� ��� ��' � ������� ���	� �
In short form we write:

� ' � � � � ��� �
 � � � � ���	�

The terms �
� ��� � and �

� ���	�
are often called the positive and negative cofactors of � with respect

to � .
Further, the notion of an implicant is very important in the theory of optimizing switching

functions. An implicant for a function � is a product term � such that � ' � �%� � ' � . A set
of implicants is said to cover (to be a cover for) a function � iff for every minterm � of � , the
set contains an implicant � with � ' � �%� � ' � . An implicant � is called prime if the product
term � is not an implicant anymore if any literal is removed, i.e., there exists no implicant that
covers � and has less literals. A prime implicant of a function � is called essential if it is an
element of every cover of � .

14 CHAPTER 2. BOOLEAN ALGEBRA AND TWO-LEVEL CIRCUIT THEORY

It is common to represent Boolean functions by a disjunction of implicants referred to as sum
of products (SOP). The dual representation is called product-of-sums (POS) which is a conjunc-
tion of implicates. An implicate � of a function � is a sum of literals such that � ' � implies
� '�� .

The sum of all prime implicants and the product of all prime implicates of a Boolean func-
tion � are both canonical representations of a Boolean function � . The sum of all prime im-
plicants of � is sometimes called complete sum or Blake normal form. In contrast, a general
Boolean expression according to Definition 2.3 which is neither a SOP nor a POS is often called
a factored form.

It is often desirable to make a SOP as small as possible. If a SOP only contains prime im-
plicants the SOP is called prime. If the function is not covered anymore if any of the implicants
is removed, the SOP is called irredundant. Note that a prime and irredundant SOP is not a
canonical representation of a Boolean function. There usually exist many possibilities to cover a
Boolean function by a selection of prime implicants. Finding the right selection, i.e., determining
a set of prime implicants that covers the function and leads to minimal cost when implementing
the SOP as an electronic circuit, is the classical problem of two-level minimization. The first
exact solution to this problem has been given by Quine [73] and McCluskey [63] and is known
as the Quine-McCluskey method. For large circuits an exact solution may not be viable. There-
fore, heuristic minimization techniques have been presented as, e.g., in ESPRESSO [11]. These
heuristic methods heavily rely on exploiting properties of unate functions or sub-functions. A
SOP-expression is called unate if each variable appears only in its complemented or uncomple-
mented form, but not both. For example, � ' �$�
 � * is unate but � ' � �
 � * is not. A Boolean
function is called unate, iff there exists a unate SOP-expression for it.

2.4.3 Boolean Networks

A circuit implementation of the forms described in Section 2.4.2 results in two-level circuits,
i.e., any path from the inputs to the outputs of the circuit traverses at most two gates. In general,
smaller circuits can be obtained if no restrictions are made on the number of levels in the circuit.
Such multi-level circuits are usually described by Boolean networks.

Definition 2.4 (Boolean network) A Boolean network is a triple ��� ��� ��� � with the directed
acyclic graph ��� ���(� and a set of Boolean functions, � .

1. The set � � � is a set of nodes without predecessors, called primary inputs, of the Boolean
network. The set �&� � is the set of nodes without successors called primary outputs.
The edges leaving the nodes of � are associated with the input variables of the Boolean
network.

2. The nodes �
� � ����� are associated with Boolean functions �
�!�	� and the edges cor-
respond to variables ��� denoting the functions ��� of the nodes which they are leaving. For
every function ��� in the network there is an edge from � � to ��� if ��� depends on ��� .

2.4. BOOLEAN FUNCTIONS AND THEIR REPRESENTATIONS 15

Boolean networks are a technology-independent description of combinational circuits. In
this thesis we consider circuits being described by gate netlists . The gates are elements of some
library which depends on the available technology and the specific application. A gate netlist
description is a special case of a Boolean network where each gate is associated with a node and
the function of the node is defined by the gate function. In this work we generally assume that the
library consists only of the gate types shown in Table 2.2. AND, OR, NOR, NAND can have an
arbitrary number of inputs, and XOR, XNOR must have exactly two inputs. Note that this choice
of the library corresponds to the usual assumptions in literature and contains the elements of a
typical gate netlist description. Such a restricted Boolean network, in the sequel, will be referred
to as combinational network or combinational circuit or circuit netlist, interchangeably. Further,
avoiding formalism we often denote a node, function and variable in a combinational network
with the same symbol and speak of nodes, functions, variables or signals interchangeably.

Two combinational networks � � and � � are said to have the same structure (denoted by
� ����� �) iff the underlying circuit graphs ��� � ��� � � and ����� ��� ��� are isomorphic.

2.4.4 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are graph representations of Boolean functions. The mo-
tivation to represent Boolean functions by binary decision diagrams is twofold: firstly, certain
types of binary decision diagrams are canonical representations of Boolean functions. This is
important in many applications, especially in formal verification. Secondly, certain algorithmic
problems and manipulations of Boolean functions which have exponential worst case complex-
ity for conventional representations as described in Sections 2.4.2 or 2.4.3, only have polynomial
complexity for BDDs. In particular, this is true for the important satisfiability problem for a
Boolean function, i.e., the problem of determining whether or not a Boolean function can evalu-
ate to the logic value 1. This problem is NP-complete if the function is represented as a product
of sums (conjunctive form), it is a constant time operation if the function is represented by a
BDD.

Binary decision diagrams are special types of branching programs. For more information on
branching programs see, e.g., [94]. It was first suggested by Akers [3] to use binary decision
diagrams as a Boolean representation for solving problems in design automation and particularly
in test generation. This became practical by a refinement of the model and the introduction of
reduced ordered binary decision diagrams (ROBDDs) by Bryant [14]. Bryant also developed the
basic algorithms for Boolean manipulations using ROBDDs.

Ordered binary decision diagrams (OBDDs) as proposed by Bryant [14] can be defined as
follows:

Definition 2.5 (OBDD) An OBDD is a rooted DAG with vertex set � . Each non-leaf vertex has
as attributes a pointer index ���$��� �

� � � ������� ��
 � to an input variable in the set
� ��� ������������� ���	� � ,

and two children low ���$��� high ���$��� � . A leaf vertex � has as an attribute a value value � � ��� � .
For any vertex pair ��� ��*��+����*�� � �

low � � � � high ���$��� , such that no vertex is a leaf, index � � ���
index ��*�� � .

16 CHAPTER 2. BOOLEAN ALGEBRA AND TWO-LEVEL CIRCUIT THEORY

Roughly speaking, an OBDD represents a Boolean function if we associate the steps of a
Shannon expansion with the nodes of the OBDD. This can be defined more precisely as follows:

Definition 2.6 An OBDD with root � denotes a function � � such that:

1. if � is a leaf with value � � � ' � , then � � '�� ,

2. if � is a leaf with value � � � ' � , then � � '�� ,

3. if � is not a leaf and index � � � '�� , then � � ' � � � � low � ���
 � � � � high � ��� .

Example 2.1 As an example we construct an OBDD for function � ')� �#�
 * . Fig-
ure 2.1 shows the corresponding OBDD. As a convention, the child low ���$� is always
attached to the edge leaving � towards the left. The child high � � � is attached to the
edge on the right. We build the OBDD by repeatedly performing Shannon’s expan-
sion. This illustrates the construction rule of OBDDs as given in Definition 2.6. It
should be mentioned however that this is not quite how OBDDs are actually con-
structed for a given circuit description in practical applications.

The root node can be associated with function � . Performing a Shannon expansion
for variable � we obtain the two cofactors * and �
 * . These correspond to the left
and right children of the root node. We now decompose these cofactors by further
applications of Shannon’s expansion and this is continued until constant values 0
and 1 are obtained as cofactors. In an ordered BDD the variables are always picked
in the same order. For function � we have assumed a variable order ����������*+� , i.e.,
according to Definition 2.5 we choose the indices as: index ����� ' � , index ����� ' �

,
index ��*+� '�� .

0 1 0 1 1

index = 1

index = 2

index = 3 f = c f = c

f = b + c

f = ab + c

c c

b

a

Figure 2.1: OBDD for function � ')�
�"��
 *

The OBDD in Figure 2.1 can still be reduced. Only a reduced OBDD (ROBDD) is canonical.
An OBDD is reduced by checking whether the graph contains isomorphic subgraphs.

2.4. BOOLEAN FUNCTIONS AND THEIR REPRESENTATIONS 17

Definition 2.7 Two OBDDs ��' ��� ���(� and � �,' ���
� ����� � are called isomorphic if and only if
there exists a bijective function � � � �� � � such that for all � � � , �����$��� � � :

1. � and �����$� are leaf vertices with the same value, value ���$� ' value � ��� �$� � , or

2. � and �����$� are non-leaf vertices with the same index, index ���$� ' index � �����$� � .
Further it is ��� low � �$� � ' low � ��� �$� � and ��� high ���$� � ' high � �����$� � .

In other words, two OBDDs are isomorphic if there is a one-to-one mapping between all
nodes of the same type such that the children of a node in one OBDD are mapped onto the
children of the corresponding node in the other OBDD.

Example 2.1 (continued) Consider the OBDD in Figure 2.1. It contains isomorphic
subgraphs, namely the subgraphs rooted in node * . By sharing these isomorphic
subgraphs we obtain the reduced OBDD shown in Figure 2.2.

0 1

index = 3

index = 2

index = 1 a

c

b

Figure 2.2: Reduced OBDD of Figure 2.1

Definition 2.8 (ROBDD) An OBDD is called reduced OBDD (ROBDD) if it contains no vertex
� with low ���$� ' high � �$� , nor any nodes � ��� � � � such that the subgraphs rooted in � and � � are
isomorphic.

In an OBDD, every path from the root to one of the leaves corresponds to a combination of
value assignments for the variables of the represented function. If the path leaves a node through
the left edge this means assigning 0 to the corresponding variable, the right edge corresponds
to assigning a 1. If the path terminates in a leaf with value 1 then the set of value assignments
makes the function evaluate to 1, otherwise, for the leaf with value 0 the function is 0. If the
function is not satisfiable then there only exists a leaf with value 0 and the ROBDD consists only
of this node.

ROBDDs are an important Boolean representation facilitating the solution of many problems
in circuit design. However, in order to benefit from this representation it is essential to develop
efficient algorithms to perform operations such as

18 CHAPTER 2. BOOLEAN ALGEBRA AND TWO-LEVEL CIRCUIT THEORY

� apply: given two OBDDs for functions � � and � � , determine an OBDD for the function
that results if a two-input Boolean function like conjunction (AND), disjunction (OR),
antivalence (XOR), etc., is applied to � � and � � .

� compose: given two OBDDs for functions � � and � � , determine an OBDD for function � �
if one variable � � of � � is replaced by function � � .

Table 2.5 shows the complexity of some basic operations on binary decision diagrams as
proposed by Bryant [14]. For a function � its OBDD is denoted by � and the number of vertices
in � is

� � � . The implementation of these operations is based on the if-then-else-operator (ITE-
operator) introduced by Brace [7]. All operations in Table 2.5 can also be expressed in terms of
the ITE-operator. For a more detailed description of these operations see [7].

Operation Complexity
reduce makes OBDD canonical � � � � � �
apply � � ' � � � � � � ��� � � � � � � � � � � � �
restrict � � ' � � � ��������� ��� � ' � ������� ���	� � , � � �

� � ��� ��� � � � �
compose � �� ' � �+� � ������������� ��' � ��������� ���	� � � � � � � � � � � � � � �

Table 2.5: Operations on OBDDs

If an OBDD is to be built for a multi-level combinational network this can be accomplished
using the apply operation. Starting at the primary inputs of the circuit as a first step OBDDs are
built for the circuit nodes adjacent to the primary inputs. Moving towards the primary outputs
using the apply operation, OBDDs are built step by step for the internal circuit nodes until the
primary outputs are reached. Hashing plays an important role in this procedure aiming at building
new OBDDs making maximum use out of previously computed OBDDs. Alternatively, the
compose operation could be used to build an OBDD for a multi-level circuit. In this case, we
have to move backwards from the primary outputs to inputs. Since compose is more complex
than apply, as shown in Table 2.5, the apply operation generally would be preferred.

Variable Ordering is important in making OBDD-based methods efficient. For many practical
functions the ROBDD size is highly sensitive to the variable ordering. Therefore, many heuristics
have been developed to determine and change the variable orderings for OBDDs [61], [36], [43],
[80]. Unfortunately, for some functions like integer multiplication the size of the ROBDD is
exponential in the number of input variables no matter what variable ordering is chosen [14].
Therefore, some circuits like multipliers are not amenable to BDD-based techniques.

Chapter 3

Reasoning in Multi-Level Networks

This chapter develops the Boolean techniques forming the basis for solving the formal verifica-
tion tasks considered in later chapters. We will introduce the concept of implicants in multi-level
networks and describe network transformations that can be obtained based on this concept. A
major part of the chapter is devoted to so-called AND/OR reasoning techniques that allow us to
derive such implicants. It will be described how implicants can be used for network optimization
and for Boolean representations of sets which is important for sequential verification.

3.1 Introduction

Consider the problem of checking the equivalence of two combinational circuits. This gives
us a first impression of some of the difficulties also encountered with sequential equivalence
checking. Studying this problem also demonstrates the need for exploiting structural circuit
properties in formal verification algorithms.

Two combinational circuits
�

and � are called equivalent if they produce the same output
vector for every possible input vector. The traditional approach to prove the equivalence of two
circuit descriptions is to express the function of each circuit in a canonical form and then to
verify that both representations are identical. Graph representations of Boolean functions such
as Reduced Ordered Binary Decision Diagrams (ROBDDs) [14] are presently the most popular
canonical circuit representation. If we have succeeded in representing each output function of
both circuits by an ROBDD equivalence checking reduces to the problem of checking whether or
not the ROBDDs of corresponding output functions in circuit

�
and � are isomorphic. Examples

for approaches of this kind can be found in [35, 61].
The advantage of using such canonical forms is that the equivalence check itself is simple.

The difficulty of verifying the equivalence of two designs is replaced by the difficulty of con-
structing the canonical forms. In many cases, this task can be accomplished very efficiently,
because much research effort has already been put into the development of powerful methods for
constructing and manipulating these representations (e.g., [7, 80]). Specialized data structures
and algorithms have been developed to make verification feasible for certain classes of circuits.
Ordered functional decision diagrams (OFDDs) [46] and ordered Kronecker functional decision

19

20 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

diagrams (OKFDDs) [31] are an attempt towards more compact canonical representations by
allowing also other decomposition types (Reed-Muller, positive and negative Davio).

The disadvantage of using canonical forms, however, is that in certain cases their size com-
plexity exhibits its worst-case exponential behaviour. For a large class of circuits, the size of an
ROBDD is heavily dependent on the order in which the input variables are evaluated. For a cer-
tain variable order, the BDD may be small, for another its size may be exponential in the number
of input variables. Even worse, for another class of circuits (e.g., multipliers), every variable
order yields a BDD of exponential size. This “BDD blow-up” makes it impossible to repre-
sent practical circuits of this category. By designing specialized data structures for certain kinds
of circuits the problem can sometimes be avoided. For example, the verification of arithmetic
circuits which is difficult for BDDs has been effectively approached by the introduction of word-
level decision diagrams such as multi-terminal binary decision diagrams (MTBDDs) [23, 5],
binary moment diagrams (BMDs) [13] and related forms such as EVBDDs [57], *BMDs [13],
K*BMDs [30]. For general-type circuitry, however, it is always possible that constructing a
canonical representation of a circuit function fails due to lack of memory.

In order to overcome these limitations, verification methods [51, 8] were developed using
structural techniques originating in the field of automatic test pattern generation (ATPG, see,
e.g., [1]). These methods operate directly on a gate netlist description of the circuits, which is a
non-canonical representation of its functionality. The equivalence checking problem is expressed
by using a special construction combining the designs under comparison (Fig. 3.1) which was
called miter by Brand [8].

A

x1

x

x

2

n

y

y

y

1

2

m

x1

x

x

2

n

B

y

y

y

1

2

m

x1

x

x

2

n

e

Figure 3.1: Miter

Corresponding inputs of both circuit descriptions are connected. Corresponding output pairs
each feed an XOR (exclusive or) gate. All XOR gates feed a common OR gate which produces
the (only) output function 	 of the miter. The designs are equivalent if there exists no combination
of value assignments at the primary inputs which produces a logic 1 at the output 	 . If there is
such a combination of value assignments, it is called a distinguishing vector or (combinational)

3.1. INTRODUCTION 21

counter example for the two designs. In other words, checking equivalence of the designs means
checking satisfiability of the Boolean function implemented by gate 	 in Fig. 3.1.

Solving satisfiability is a very complex problem. If the circuits are indeed equivalent, the
satisfiability solver must (implicitly) enumerate all possible combinations of value assignments
at the primary inputs in search of a distinguishing vector. This is usually infeasible even for small
designs.

However, the use of a structural representation of the designs allows us to simplify the ver-
ification task by using problem-specific knowledge. In many practical equivalence checking
scenarios, the two designs to be compared have a high degree of structural similarity. The reason
for this is that the two circuit descriptions have been generated in a similar way, or that one has
incrementally evolved from the other. For example, often, a designer introduces manual changes
to the design (called ECs – engineering changes), and the verification task is to check whether
the logic function of the circuit has not changed. Other applications of an equivalence checker
are to verify that the logic functionality of a circuit has been preserved by an incremental trans-
formation as performed by a synthesis tool. These incremental steps usually maintain the overall
circuit structure by preserving many internal subfunctions of the design.

Most modern combinational equivalence checking tools make use of the fact that often two
circuits to be compared are structurally similar. In [51] this is done by identifying implications
between signals in circuit

�
and � . The implications are stored at the respective nodes and are

used in subsequent reasoning steps. In [8] signals in subcircuit
�

are identified which can be
substituted for signals in subcircuit � , while taking into account observability don’t-cares [67].
Storing implications or making physical connections between the two subcircuits install “rea-
soning short cuts” for the satisfiability solver. This makes it possible to break the verification
procedure down into smaller steps, so that the equivalence of subfunctions of the two designs at
a certain level of logic is proved before proceeding to the next level.

Recent works combine OBDD techniques with the use of structural information. The miter
circuit is partitioned based on network cuts at equivalent or potentially equivalent internal signals.
The subcircuits of the partitions are represented by local BDDs. Equivalence is proved by verify-
ing the equivalence of the subcircuits. Examples for approaches of this kind are [76, 44, 62, 50].

For many problems of realistic size the use of structural information is the only way to avoid
the exponential worst-case behaviour of the satisfiability solving algorithms underlying the veri-
fication techniques. By using structural similarities we can make use of the fact that the Boolean
function 	 of the miter circuit is independent of the Boolean functions of the individual designs�

and � . In fact, output 	 implements the characteristic function of the set of distinguishing
vectors of both subcircuits. In the case of combinational equivalence this set is empty so that 	
is equal to constant 0 and the miter circuit is a very complex implementation of this very simple
logic function. It is obvious that the complexity of checking equivalence is more related to the
structure of the representation of the verification problem than to the complexity of the logic
functions implemented by the original designs under comparison. Looking at the miter from a
synthesis perspective, clearly, the goal must be to optimize the miter prior to invoking the satis-
fiability solver [87, 55]. Performing substitutions as in [8] can be seen as a simple optimization
process in this sense. Common subexpressions of designs

�
and � are detected and shared.

Provided the circuits are equivalent eventually every output function of circuit � can be replaced

22 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

by the corresponding output of
�

, making the satisfiability check at 	 trivial.
Substituting equivalent signals, however, provides only a restricted means for optimizing the

miter. In principle, any modern synthesis method can be used for this purpose. In this work, we
consider circuit transformations which are based on the concept of implicants [86] in multi-level
combinational networks. This approach will be described in detail in the following sections.
Since it can exploit structural similarites between designs and finds more general relationships
than mere signal equivalences, it can be seen as a natural extension of the approaches in [51]
and [8]. Furthermore, it naturally permits exploiting observability don’t-care conditions. The
following issues will be adressed in the sequel:

1. The concept of an implicant is basic to two-level circuit theory. How can it be generalized
to have a meaning in multi-level circuits (section 3.2.1)?

2. How can such implicants be used for transforming a multi-level circuit (section 3.2.2)?

3. How can these implicants be calculated (section 3.3)?

3.2 Implicant-Based Network Transformations

This section introduces the concept of an implicant in a multi-level combinational network and
shows how circuit transformations can be performed using this concept. In the context of veri-
fication, implicant-based network transformations can be used for the optimization of the miter
as described in the previous section. It will be shown that arbitrary circuit transformations are
possible.

The conventional notion of an implicant is closely associated with the theory of two-level
logic minimization. Two-level minimization techniques have an impact in all areas where two-
level forms are used as a basic means of representing a logic function. Often, two-level forms are
directly implemented as programmable logic arrays (PLAs) which are used also in macro-cell
VLSI design styles or in most types of programmable logic devices (PLDs).

For the optimization of multi-level circuits, however, the concept of an implicant to-date has
not played a significant role. Instead, in the past a variety of methods have been developed that
view the problem in a different way. The earliest systematic approach is known as functional de-
composition [4, 27, 79]. It has recently found new applications in the synthesis of look-up table
(LUT) based field programmable gate arrays (FPGAs). Among today’s approaches to multi-level
optimization, the techniques pioneered by Brayton et al. [10] have had the greatest impact. They
are based on modeling a multi-level circuit by a graph called a Boolean network as defined in
Definition 2.4 (page 14). The nodes of this graph are either primary inputs and outputs or ar-
bitrary logic functions expressed by variables associated with the direct predecessors of a node.
The optimization operations can be categorized into Boolean and algebraic techniques. The latter
manipulate the local Boolean functions according to the rules of polynomial algebra, neglecting
some properties of Boolean algebra. This sacrifices some optimization quality to the benefit of
deriving a certain set of network transformations very quickly. The functions associated with

3.2. IMPLICANT-BASED NETWORK TRANSFORMATIONS 23

the internal nodes of a Boolean network are typically represented in two-level form. Note how-
ever, that although the Boolean techniques of [10] apply sophisticated two-level minimization
algorithms to individual nodes of a Boolean network, these techniques cannot be understood as
a generalization of the Quine-McCluskey scheme to multi-level circuits.

In the following section we propose a new definition of an implicant that contains the con-
ventional two-level concepts as a special case but generalizes to multi-level circuits so that also
multi-level optimization and verification algorithms can be formulated based on implicants.

3.2.1 Implicants in Multi-Level Combinational Networks

In order to obtain a notion of an implicant being useful in multi-level networks, we only need
a small extension to the classical concept for two-level circuits. We drop the restriction that the
literals of a product term must belong to primary input variables. Instead, we define a literal to
be an arbitrary variable or its complement in a multi-level combinational network (see page 15)
and consider product terms (as defined in Section 2.4.2) being composed out of such literals.

We propose a unified treatment of SOP- and POS-representations. In a multi-level circuit,
which is composed of subsequent stages of sums and products of intermediate network vari-
ables, it is necessary that methods for manipulating intermediate functions give no preference to
either SOP- or POS-type representations. Note that implicants and implicates are closely related
concepts. A sum term, e.g., ���
 *+� , in a POS-type representation of a function � is called an im-
plicate of � . This sum term can be converted into a (negated) product term � using DeMorgan’s
law: ��
 *!' ��� * ' � . Any input vector producing ��' � implies � ' � . We therefore call � a
0-implicant of function � . This allows us to treat both implicants and implicates in the same way
and leads us to the following definition:

Definition 3.1 (Implicant) A 1-implicant (0-implicant) for a given function � in a combina-
tional network � is a product term � such that � assumes the value � � � � for every set of value
assignments at the primary inputs of � for which � assumes the value 1. An implicant for a
function � is a product term which is either a 1-implicant or a 0-implicant of � .

Example 3.1 Consider the multi-level circuit in Figure 3.2. function � is imple-
mented in a classical two-level sum-of-products (SOP) form. It is immediately ob-
vious that � � is a prime implicant of � . Input * is another prime implicant of �

consisting of only a single literal.

If we allow that the literals of the implicants do not have to belong exclusively to
a primary input but can belong to arbitrary nodes of the network, additional prime
implicants can be determined. Note by examining the truth table in Fig. 3.2 that all
combinations of value assignments at the primary inputs � , � and * which produce
� ' � and

� ' � simultaneously, also cause � ' � . Therefore, product � �
is also a

prime 1-implicant of � .

Function � can be viewed as a classical SOP. It is the sum of two (single-literal) 1-
implicants, � and * . It can also be viewed as a product of sums (POS). In this case,

24 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

it is a degenerated one-term “product” of a two-literal sum term, � �
 *+� . Using
DeMorgan’s law, we can rewrite this term as ��� * � . The product term � * is a prime
0-implicant of function � .

Dropping the restriction that literals may only belong to primary inputs, we can
again find more prime implicants. Another prime 1-implicant of � is the single-
literal product term � . Any combination of value assignments at the primary inputs
producing � ' � also produces � ' � .

a p

c
ss

b
r

t t

� � � � � � � ���	�

0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0
0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0
1 0 1 0 1 1 1 1
1 1 0 0 0 0 1 0
1 1 1 0 1 1 1 1

Figure 3.2: Circuit example for multi-level implicants and associated truth table

When minimizing a two-level circuit, the Boolean functions we are concerned with are those
implemented by the primary outputs. Logic functions of internal nodes are not considered in-
dividually. These nodes make up the inverters, product and sum terms of which the output
functions are composed.

When dealing with multi-level circuits, on the other hand, it makes sense to also associate
a logic function with an internal network node. Whereas an internal node in a two-level circuit
can only implement a simple product or sum term, it can implement a complex sub-function in
a multi-level network. An internal node in a multi-level network is commonly viewed as being
embedded in a local environment consisting of the nodes feeding its input variables and the nodes
that have its output function as input.

Depending on its functionality, the environment is not always able to produce all possible
patterns at the inputs of a node. For the set of impossible patterns, the output values produced by
the node are irrelevant. This set is called controllability don’t-care set (CDC) (see, e.g., [67]).

Also, it is possible that the environment does not always make use of the output values pro-
duced by an internal node � . For some input patterns, the output values of � may be irrelevant for
the values of the logic functions at the primary circuit outputs, i.e., for these input patterns none
of the circuit outputs would change its value if we inserted an inverter at � . In this case, � is said
to be unobservable for these inputs. The set of input patterns for which a node � is unobservable
is called observability don’t care set (ODC(y)) [67].

The logic function � implemented by an internal node can be replaced by a different func-
tion � , as long as this replacement is not observable at any primary output of the circuit. This is

3.2. IMPLICANT-BASED NETWORK TRANSFORMATIONS 25

the case if � and � produce different values only for the input patterns in the observability don’t-
care set. A function � that fulfills this requirement is called a permissible function according to
Muroga [68].

Definition 3.2 (Permissible function) In a combinational network a function � is called per-
missible at a node with function � , if the function ��� �%� of the combinational network does not
change when � is replaced by � .

Since we are extending the notion of implicants from two-level circuits to multi-level circuits
it seems wise to also take into account the concepts of observability don’t-cares and permissible
functions. This can be done in the following way. In addition to the implicants of a function �
at a node we can identify implicants of permissible replacement functions � . We require that a
product term � is an implicant of � for only those patterns for which � is observable at a primary
output. For the non-observable input patterns we “don’t care” about the value of the product
term. Such an implicant is called a permissible implicant.

Definition 3.3 (Permissible implicant) For some node � in a combinational network � , a pro-
duct term � of some node variables of � is called a permissible 1-implicant for � , if and only if
the following condition holds:

If ��'�� then � '�� or � is not observable at any primary output of � .

Similarly, � is called a permissible 0-implicant of � , if and only if the following condition holds:

If ��'�� then � '�� or � is not observable at any primary output of � .

A permissible implicant is called prime if there is no permissible implicant that covers it and
has less literals.

Example 3.2 Figure 3.3 shows a multi-level circuit with three inputs and two out-
puts. Consider the internal logic function implemented by node � . It is � ' � *
 � * .
The product term

� ' � � can be expressed in terms of primary input variables as
� ' � ��
 � * . Obviously,

�
is not an implicant of function � . However, it is a permis-

sible implicant of � . This can be easily verified by examining the truth table for this
circuit. Note that for � to be observable at the output of AND gate � , signal � must
be set to � . In all cases where � '�� and � ��'�� , it is also �!'�� .

3.2.2 Network Optimization

This section addresses the issue of how implicants as defined above can be used for transforming
a multi-level circuit with the goal of optimizing it. Since we have generalized the concept of
an implicant from two-level to multi-level circuits in the last section, it seems promising to
investigate whether it is also possible to generalize some algorithmic approaches for two-level
minimization to the multi-level case.

26 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

b

p

c

a

r

q

s

x

y

� � � � � � � � ��� � � �

0 0 0 0 0 1 1 0 0
0 0 1 1 0 1 1 1 1
0 1 0 0 0 0 0 1 0
0 1 1 1 1 0 1 0 0
1 0 0 1 0 0 0 0 1
1 0 1 1 0 0 0 1 1
1 1 0 1 1 0 1 1 0
1 1 1 1 1 0 1 0 0

Figure 3.3: Circuit example for permissible implicants and associated truth table

The first method for minimizing a two-level circuit reported in literature is the Quine-McClus-
key procedure [73, 63]. It is an exact method, and it has been under improvement until today.
Recent advances in exact two-level minimization can be found in [28, 81, 24, 25, 65]. Except
for [65], all exact methods are based on calculating a complete set of prime implicants of the cir-
cuit function and then solving a unate covering problem to find a minimal set of prime implicants
covering the function.

Despite its theoretical importance, an exact minimization approach is not feasible for many
practical circuits, because the number of prime implicants can grow exponentially with the num-
ber of input variables, yielding a huge prime implicant table and making the covering problem
intractable. Heuristic procedures, such as the UC Berkeley tool ESPRESSO [11] avoid calculat-
ing all prime implicants. Instead, they start with an initial set of implicants representing a cover
of the function to be minimized. Then, (in a simplified view), the following steps are iteratively
repeated until no further improvement can be achieved:

1. New (not necessarily prime) implicants of the function are calculated and added to the
cover. (This introduces redundancy to the cover, because the minterms covered by an
added implicant are already covered by other existing implicants).

2. Redundant implicants and literals are removed such that, according to the underlying cost
criterion, an improvement over the previous situation is achieved. (The cover is made
prime and irredundant again).

Example 3.3 Figure 3.4 shows the Karnaugh map for the logic function � '����

� *�
 � ��
 ��* . If we add the implicant ��' � * to the cover of the function, the
implicants � � and � * become redundant (see Fig. 3.5), so that we can remove them
and obtain the simpler representation � ' � ��
 � *
 � * .

The general idea in heuristic two-level minimization is to “stir up” the set of implicants rep-
resenting a function by “throwing in” appropriate new implicants and removing “old” implicants
that become redundant.

How can we use these ideas for heuristic multi-level circuit optimization? The approach to
be proposed here follows the same iterative two-step methodology as in the two-level case. We

3.2. IMPLICANT-BASED NETWORK TRANSFORMATIONS 27

1

1 1

a

b

c

1

1

1

Figure 3.4: Initial cover

new
redundant

1

1 1

a

b

c

1

1

1

Figure 3.5: Cover with added redundant implicant � '���*

introduce new implicants to the cover of a network node and then make it prime and irredundant
again.

How is an implicant � added to the cover of a function � ? In the two-level case of a sum-of-
products form adding an implicant means to form the disjunction of the existing cover � with the
implicant: � � ' �
 � . The new cover is functionally equivalent to the old cover. Analogously,
for a product-of-sums expression, an implicate � is added by forming the conjunction of the
existing cover � with the implicate: � �%' � � � . Again, the new cover � � is equivalent to the old
cover. We can easily extend this to our notion of multi-level network implicants. Distinguishing
between 0- and 1-implicants, we obtain the following lemmas:

Lemma 3.1 Let � be a function associated with a node in a multi-level combinational network.
The disjunction

� � ' �
 �
is equivalent to � if, and only if, � is a 1-implicant of function � according to Def. 3.1.

Proof: obvious

This is easy to see by noting that � � ' �
 ���' � iff � ' � and ��' � . This case is impossible
because � ' � implies � ' � . An analogous lemma holds for 0-implicants:

Lemma 3.2 Let � be a function associated with a node in a multi-level combinational network.
The conjunction

� � ' ��� �
is equivalent to � if, and only if, � is a 0-implicant of function � according to Def. 3.1.

Proof: obvious

The above lemmas provide us with a way of modifying the cover of a function implemented
by a node in a multi-level network. They are our basic instrument in the first step of the heuristic
optimization approach outlined above.

For the second step of removing redundant implicants and literals in a multi-level network
function we make use of the standard technique of ATPG-based redundancy elimination [1]. Re-
dundant signals in a multi-level combinational circuit correspond to untestable stuck-at faults [1].

28 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

The circuit structure can be simplified by replacing a signal � which has an untestable fault, �
stuck-at- � , � � �

� �	�
� , by the constant signal � . Note that ATPG-based redundancy elimination,
when applied to a two-level circuit, is a method to make a cover prime and irredundant.

When removing redundancies we have to be careful about which signals are removed: since
any implicant which is added to the cover of a function is redundant by construction we have
to exclude it from the target fault list. Otherwise, redundancy elimination simply reverses the
addition of the implicants to the cover we have just achieved.

These two steps – adding implicants to the cover of a network node function and removing
redundancies using ATPG – allow us to transform a combinational network. Both steps alter
the network structure, not the function. They produce networks which are structurally different
but functionally equivalent to the original network. An important question coming to mind is
what kinds of transformations can be performed with this methodology. The following theorem
answers this question.

Theorem 3.3 Let ��� be a node in a combinational network � � . Further, let � � be a multi-level
network implicant according to Def. 3.1, such that

1. the transformation of node ��� into � ��� � given by

(a) � ��� � ' ���
 � � if � � is a 1-implicant of ���
(b) � ��� � ' ��� � � � if � � is a 0-implicant of ���

followed by

2. redundancy removal (with appropriate fault list)

generates a combinational network � ��� � . For an arbitrary pair of equivalent combinational net-
works � and ��� there exists a sequence of equivalent combinational networks � � ����� � ������� ����� �
such that � ��� � and ��� ����� .

Proof: see Appendix A, page 133

Theorem 3.3 is based on Theorem 3.1 of [55]. It states that using implicant-based transfor-
mations as described, theoretically all networks implementing a given function can be derived.
Beginning with an arbitrary network structure � implementing the circuit function, there exists
a sequence of transformations composed of the two substeps discussed above, such that a func-
tionally equivalent network �
� with different structure is obtained. For instance, network � may
be a given combinational network and �
� a functionally equivalent network which is optimal
with respect to a given cost function. This means that any circuit transformation as performed by
traditional logic synthesis methods such as functional decomposition, kerneling, division, trans-
duction, etc., can also be described in terms of transformations based on multi-level network
implicants. This illustrates the general nature of the proposed approach and the value of the
proposed notion of implicants in multi-level circuits.

The set of transformations to be performed at an internal network node can be further ex-
tended. To guarantee equivalence of the transformed network to the original network, it is not
necessary to perform only equivalence transformations of internal network nodes. By allowing

3.3. AND/OR REASONING GRAPHS 29

the replacement of an internal function �
� by a permissible function ��� we can exploit additional
degrees of freedom given by observability don’t cares as explained in the previous section. Re-
placing a node function ��� by a permissible function ��� which is not equivalent to ��� has no effect
on the logic functions of the primary outputs, i.e., equivalence of the networks before and after
the transformation is guaranteed. Permissible functions can be created by adding permissible
implicants to the cover of a function as stated in the following two lemmas.

Lemma 3.4 Let � be a function associated with a node in a multi-level combinational network.
The disjunction

�
' �
 �
is a permissible function for � if, and only if, � is a permissible 1-implicant of function � accord-
ing to Def. 3.3.

Proof: obvious

Lemma 3.5 Let � be a function associated with a node in a multi-level combinational network.
The conjunction

� ' ��� �
is a permissible function for � if, and only if, � is a permissible 0-implicant of function � accord-
ing to Def. 3.3.

Proof: obvious

According to Theorem 3.3, arbitrary network modifications can already be obtained without
permissible implicants. However, with permissible implicants less transformation steps may be
necessary because these steps can be “bigger”, hence improving performance and quality of the
optimization method.

Note that Theorem 3.3 only states the existence of a sequence of implicant-based transfor-
mations yielding the desired circuit structure for a given function. It does not, however, tell how
we can find these implicants and which of these implicants have to be used. It is the task of ap-
propriate heuristics to select those implicants which help our goal of optimizing the circuit. Up
to this point, we have only examined how multi-level network implicants can be used to trans-
form a circuit. The following sections will introduce a method to calculate multi-level network
implicants and will also give some hints on the selection of implicants in order to optimize a
circuit.

3.3 AND/OR Reasoning Graphs

This section introduces AND/OR reasoning graphs for determining prime implicants in multi-
level networks [86]. These graphs are a representation of a special kind of search called AND/OR
enumeration which is of very different nature compared to the search techniques conventionally
employed in logic synthesis. This motivates some basic considerations before we return to the
problem of identifying implicants in multi-level networks.

30 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

3.3.1 OR search versus AND/OR search

Every search process can be viewed as a traversal of a directed graph. Standard literature
(e.g., [77]) distinguishes between two basic types of search graphs. In the simpler case to be
considered, the graph is a so-called OR graph. A node in the OR graph represents a possi-
ble move or decision that can be made at the current state of the search process. A solution is
found by traversing the graph following certain strategies guided by some heuristics exploiting
problem-specific knowledge. Typical strategies are known as depth-first search, breadth-first
search or best-first search.

For some problems, however, it is useful to allow graphs with two types of nodes, AND
nodes and OR nodes, that represent a different type of search process. If at a given state of the
search a certain move is made this may lead to several new problems that all have to be solved.
Such AND/OR graphs are the basis for many search methods employed in the field of automatic
theorem proving with predicate logic and are used in proof-by-refutation strategies. For a de-
scription of general problem-solving techniques in computer science and for more information
on the concepts of OR graphs and AND/OR graphs, the reader my refer to a standard text book,
e.g., [77].

In our context we are interested in search techniques for determining implicants of Boolean
functions implemented by multi-level combinational networks. Determining a 1-implicant � for a
Boolean function � means searching for a conjunction of literals (product) such that the function
takes the value 1 if the product is 1. The implicant represents a logical condition for � being
satisfiable. In general, any method that determines implications or implicants is also a method
that solves satisfiability.

In the field of design automation, many methods that solve satisfiability have already been
developed. Most methods rely on exploring the finite Boolean space defined by the set of all
combinations of value assignments at the input variables by some sort of enumeration of this set.

For example, a common search scheme to solve satisfiability or related problems like test
generation is decision tree-based backtracking. In search of a satisfying input vector, decisions
regarding value assignments at input variables are made. If subsequent steps prove that a decision
was wrong, it is reverted and an alternative is chosen. The decision tree keeps track of decisions
and alternatives. At a decision point in the search, any one of the alternatives which leads to
a solution of the problem is sufficient. Therefore, decision tree-based backtracking is an OR
type search and the decision tree itself is an OR graph. The way in which this method explores
the search space is sometimes called implicit enumeration as opposed to explicit enumeration,
because not all possible combinations of value assignments need to be explored.

An example for an explicit enumeration of the search space is Shannon’s expansion of a
Boolean formula. If a function is expanded with respect to every input variable, every combina-
tion of value assignments at the inputs is examined. Representing this exhaustive simulation as a
graph yields a Shannon tree. This tree can be reduced by sharing isomorphic subtrees so that we
obtain a binary decision diagram (BDD). As a method to solve satisfiability, explicit enumeration
is, again, an OR type search. The corresponding graph (Shannon tree, BDD) is an OR graph. In
this case, the graph is also a representation of the Boolean formula for which it was derived.

All these concepts to solve satisfiability and related problems have in common that they can

3.3. AND/OR REASONING GRAPHS 31

be interpreted as OR trees and not as AND/OR trees. To better understand this important point
the difference between OR trees and AND/OR trees is illustrated by the following example.

Example 3.4 Let us consider Robinson Crusoe’s [29] situation after he was ship-
wrecked and washed ashore a small island. Robinson analyzes his situation and
starts thinking how he can leave the island again. We will now follow his reasoning
and show how this leads to the AND/OR tree depicted in Fig. 3.6.

wood on
the island

a ship passes
by some day

things to trade
with natives

get food
from natives

natives on
the island

animals on
the island

hunting

weapon

Robinson Crusoe
leaves the island

able to
make fire

build a boat

food
tools

rescued by a ship

Figure 3.6: Example of AND/OR tree

Robinson can see only two possibilities to leave the island: either he waits for a
ship to pass by and pick him up or he builds a boat himself. From the root node
representing the assumption that Robinson will leave the island there are two edges
each leading to a node representing one of the two possibilities. Since one of the two
possible outcomes is sufficient for him to come back home, the root node is an OR
node. If he decides to build a boat he will need some wood and appropriate tools.
Either prerequisite is not sufficient by itself for making a vessel, therefore, the node
“build a boat” in the AND/OR tree is an AND node with two sucessors, “wood on
the island” and “tools”. (AND nodes are commonly marked by an arc). If, on the
other hand, he waits for a ship to come by some day, he will need food for the wait
and some means for attracting attention when the ship arrives, for example a fire to
send smoke signals. In the AND/OR tree, these necessary conditions are depicted
as successors to an AND node labelled “rescued by a ship”. Also, finding food on
the island is a problem of its own. He sees two possibilities: trade with natives or
go hunting, and one of them must be realized in order to save him from starvation.
Node “food” therefore is an OR node in the AND/OR tree.

32 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

Robinson has analyzed his situation by determining the necessary conditions for
leaving the island. As can be seen, whether he will actually succeed depends on a
number of “variables”. In principle, each of these variables can assume the value
“yes” or “no”, depending on how lucky he is and what kind of island he is on.
Robinson has determined what “values” of these “variables” would be necessary for
different scenarios of leaving the island. Since these requirements do not contradict
each other the situation is not hopeless and he has a chance of leaving.

Of course, in order to decide whether or not he can leave the island it is also possible
to check the “variables” one after the other. This leads to representing the problem
as an OR tree. In Figure 3.7 the corresponding OR tree is depicted. There are
several ways to build an OR tree for the AND/OR tree of Fig. 3.6. The tree shown
in Figure 3.7 is built in analogy to building OBDDs for Boolean functions.

yes no

noyes

no

yes

no
yes

yes no

yes no

noyes

yes no

natives on
the island

able to
make fire

things to trade
with natives

animals on
the island

a ship passes
by some day

wood on
the island

Robinson Crusoe
must stay on the island

Robinson Crusoe
leaves the island

weapon

tools

Figure 3.7: Example of an OR tree for the AND/OR tree of Fig. 3.6

Note that the OR nodes in the OR tree of Figure 3.7 correspond to the OR leaves
of the AND/OR tree of Figure 3.6. The order in which the “variables” appear has a

3.3. AND/OR REASONING GRAPHS 33

strong influence on the size of the tree. It is interesting to observe that, at least in this
example, the structure of the AND/OR tree suggests a good order. The OR nodes in
the OR tree follow the same order in which the leaves of the AND/OR tree appear
from the left to the right. This suggests that analyzing AND/OR trees for Boolean
functions may also lead to useful methods for OBDD variable ordering. However,
in this thesis, this aspect is not further considered.

There is another important reason why AND/OR trees are of interest to us in the field
of design automation. They turn out to be more suitable for systematic reasoning
than OR trees. For example, from the AND/OR tree of Figure 3.6 the following
implication can be derived in a simple way:

(no natives on the island) AND (no weapon) AND (no tools)
�%� (must stay on the island)

In this section it will be explained in detail how such implications can be extracted
from an AND/OR tree. In principle, this implication can also be derived from the
OR tree in Figure 3.7. Note that all paths from the root node to one of the terminal
nodes that pass through the “no” branches of “natives on the island”, “weapon” and
“tools” lead to the terminal node “Robinson Crusoe must stay on the island”. This
may be easy to see in this small example but for larger trees such an analysis becomes
intractable. The problem is that we cannot exclusively consider these three nodes.
We also have to go through nodes “able to make fire”, “animals on the island” and
“wood on the island”. In fact, it does not matter whether there are animals on the
island if Robinson has no weapon. This information is obvious in the AND/OR tree,
however, moving from the top to the bottom in the OR tree we cannot skip the node
“animals on the island” although this node does not have any influence on the result
if Robinson does not have a weapon.

Note that any Boolean expression can be understood as an AND/OR tree. However, such a
general AND/OR tree does not decide whether the implemented Boolean function is satisfiable.
As mentioned, this problem is usually solved by resorting to an OR tree-based enumeration. The
AND/OR trees we present here are produced by a special type of AND/OR enumeration that
decides satisfiability. Solving satisfiability using this type of search requires a totally different
way of stepping through the circuit and its variables compared to conventional backtracking
methods.

The differences between the two searching schemes are of great practical interest in the field
of design automation. As illustrated in the above example, OR search techniques are hard to use
for systematic reasoning. Specifically, for some Boolean statement

�
we would like to derive

some statement � that is true if
�

is true, i.e.,
� � � . Previous representations of Boolean

functions are not well suited for this kind of task. For example, given a statement
�

, a BDD-
based approach cannot derive or imply statement � , it can only check if

� � � is true when
both

�
and � are given. By way of contrast, as will be shown in section 3.4 , AND/OR reasoning

techniques can determine implications and implicants in multi-level networks.

34 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

3.3.2 AND/OR enumeration in multi-level circuits

We now formally introduce the algorithm for AND/OR enumeration in multi-level combinational
networks. Determining multi-level network implicants based on AND/OR enumeration as de-
scribed here is a generalization of recursive learning [53], which is an algorithm for determining
all necessary assignments for single stuck-at fault detection. Besides being of great interest in
the field of automatic test generation, recursive learning has also lead to substantial contributions
in logic synthesis and verification [52, 51, 55].

Both, the method for determining general multi-level network implicants described in this
thesis and the recursive learning procedure are based on the same AND/OR enumeration tech-
nique. Both methods extract information by monitoring this search. Recursive learning finds
assignments which are necessary for exciting a fault and propagating the faulty signal to the cir-
cuit outputs. The method described here extracts implicants for a given node in a multi-level
network from the AND/OR tree corresponding to the search. Actually, the necessary assign-
ments or implications determined by recursive learning can be seen as special cases of network
implicants: they correspond to “product terms” consisting of a single literal. Recursive learning
can therefore be seen as a special case of AND/OR graph-based implicant calculation: it can
find all single-literal implicants of the function implemented by a given network node. This is
commonly referred to as “performing implications” in the testing literature.

AND/OR enumeration is performed by injecting and reversing signal values in a combi-
national network and by evaluating their logical consequences using event-driven implication
techniques. This process is very time-critical and must be implemented very efficiently, for ex-
ample using the sophisticated data structures proposed in [90]. Depending on the problem to be
solved (simulation, satisfiability, test generation etc.), implications are based on different logic
alphabets. The most simple alphabet is � � ' �

� �	��� which is, for example, used for functional
simulation of fault-free circuits. In order to describe the faulty behaviour of a circuit, Roth’s
D-calculus [78] has become widely accepted. In Roth’s notation a signal is assigned the logic
value

�
if it assumes � in the fault-free and � in the faulty circuit. In the opposite case, if the

signal is � in the fault-free and � in the faulty circuit, it is denoted by
�

. For logic values be-
ing equal in the fault-free and faulty cases, namely � or � , the signal value is denoted � or � ,
respectively. With these notations we obtain the logic alphabet � � ' �

� �	� � � � � � and it can
be verified that � � together with the operations of disjunction, conjunction and negation forms
a Boolean algebra. For the algorithmic description of making implications, it is of advantage
to introduce a fifth logic value, � , describing the case where no unique logic value has been
assigned. This value is usually referred to as the don’t care or unknown value. Including � in

� � results in the five-valued logic alphabet � � which to-date forms the basis for many modern
ATPG algorithms. With the above definitions of logic values � , � ,

�
and

�
and the operations

of conjunction, disjunction and negation we obtain the truth values for this five-valued logic as
shown in Table 3.1.

It is interesting to observe that � � and the shown operations do not form a Boolean algebra,
because the associative law is violated. For example,

�
��� �

����� �'�� �
�

� ��� � . The reason is
the insufficient resolution of the don’t care value.

Several logic alphabets with larger sets of values have been developed (e.g., [2, 69]), mostly

3.3. AND/OR REASONING GRAPHS 35

AND � � � � �

� � � � � �
� � � � � �

� � � � � �
�

�
� � �

�
�

�
� � �

�

OR � � � � �

� � � � � �

� � � � � �
� � � � � �

� �
� � �

�
� �

� � �
�

NOT
� �
� �
� �

� �

� �

Table 3.1: AND-, OR- and NOT-operation in 5-valued logic (D-calculus)

for application in test generation. In this thesis, we only consider the logic systems ����' �
� � ��� ,

� � ' �
� �	� ��� � and � � ' �

� � � ����� � � � � , which are the most popular alphabets. The methods
developed in this chapter, however, can also be applied to other logic alphabets. Logic alphabet

� � will be used for so-called D-AND/OR enumeration, to be described in Section 3.5, which
allows to determine permissible implicants according to Definition 3.3.

Making implications in a combinational network means analyzing each gate in order to find
input or output signals whose values can be uniquely determined according to the function of the
gate. In this process, unspecified signals become specified. These terms are defined as follows:

Definition 3.4 For the logic alphabets ��� , � � , � � the values � , � ,
�

and
�

are called fixed or
specified. The logic value � is called unspecified.

Starting from an initial set of specified signals, an implication procedure iteratively analyzes
the gates in a circuit to make other signals specified. (This is best implemented in an event-driven
fashion.) Making direct implications according to [53] means to carry out all such implications
until no further value assignments can be found by locally analyzing each gate. Figure 3.8
shows value assignments in a circuit. After direct implications have been performed, the value
assignments have changed as shown in Fig. 3.9.

D

D

1

0

X

X

X

X

X

Figure 3.8: Signal values before direct im-
plications

D
D

D

1

0
1

0
1

1

Figure 3.9: Signal values after direct impli-
cations

Note that the set of direct implications is a subset of all implications that are possible for
a given set of initial value assignments. Implications which cannot be derived by local gate
function evalation have been termed indirect implications [53]. Figures 3.10 and 3.11 show an
example of an indirect implication proposed by Schulz et al. [83].

36 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

X

X

0X

Figure 3.10: No direct implication possible

X

X

00

Figure 3.11: Signal values after indirect im-
plications

For the formulation of the algorithm and or enumerate(), we need the following definitions
from [53].

Definition 3.5 (Unjustified gate) Given a gate � that has at least one specified input or output
signal and the values at � are logically consistent. Gate � is called unjustified, if there are one
or more unspecified input or output signals of � for which there exists a combination of value
assignments that is logically inconsistent at � . Otherwise, � is called justified.

Note that the notion of unjustified or justified gates only applies to gates with at least one
specified input or output signal. If no signal is specified the gate is termed unspecified. The
special case of an unjustified gate where the gate output is a specified signal is commonly referred
to as unjustified line in test generation literature [1].

Definition 3.6 (Justification) Let � � � � ��������� � � � be some specified input or output signals of an
unjustified gate � and let � ��� �	� ������� � � � be logic values which specify them. The set of signal as-
signments, � ' � � � ' � ��� � ��' �	����������� � � ' �	� � , is called justification for � if the combination
of value assignments in � makes � justified.

Fig. 3.12 depicts three examples of unjustified or justified gates in 3- and 5-valued logic. For
the examples of unjustified gates, all possible justifications are given. Justifications for a gate are
sets of value assignments which can be subsets of one another. This motivates to formulate the
following definition:

Definition 3.7 (Complete set of justifications) Let ��� be a set of � justifications for an unjus-
tified gate � : ��� ' �

� � ��� � ������� ��� � � . If there is at least one justification ��� � ��� for any possible
justification ��� of � such that � ���	�
� , then set ��� is called a complete set of justifications for
gate � .

For a given unjustified gate, the derivation of a complete set of justifications is straightfor-
ward. In the worst case this set consists of all consistent combinations of signal value assignments
representing a justification of the considered gate. Often though, the set can be smaller, as for
the following example.

3.3. AND/OR REASONING GRAPHS 37

unjustified / justified gates justifications

b = 1

a = X
c = X

unjustified, 3-valued logic

� � ' � �
' � ��*�'��
�
� ��' � �
' � ��*�'�� �

a = X

b = D
c = 1

unjustified, 5-valued logic

� � ' � �
' � �
� ��' � �(' ���

a = X
d = 0

c = 0
b = X

justified, 3-valued logic

justified

Figure 3.12: Unjustified gates and justifications

f = 1

a = X
b = X
c = X
d = X
e = X

Figure 3.13: Example for complete set of justifications

38 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

Example 3.5 The following represents a complete set of justifications for the un-
justified gate in Figure 3.13: �&' �

� � ��� � ��� � ��� ����� ��� with � � ' � � ' �
� , � � '� � ' ��� , � � ' � * ' ��� , � � ' ��� ' ��� , � � ' � 	 ' �
� . Note that for example the
justification ��� ' � � ' � � � ' � � does not have to be in � because all assignments
in � � are contained in ��� .

A complete set of justifications represents a minimal set of all possible “cases” of how an
unjustified gate � can become justified. In order to explore all these possibilities, one only needs
to enumerate the justifications in the complete set � � . Every other justification is covered by
at least one justification in ��� . This enumeration of justifications at an unjustified gate is an
important part of the AND/OR search. In the AND/OR graph associated with the search, an
unjustified gate corresponds to an OR node. The successors of this node are AND nodes each
representing a justification for the unjustified gate.

For the enumeration process, it is necessary to keep track of value assignments that lead to
unjustified gates. For this purpose an event list is defined as follows:

Definition 3.8 (event list) Let � ��� � be the set of value assignments � ��' � � for those vari-
ables ��� in a combinational network whose values have been changed by making implications
for a given set of value assignments � . Further, let �(��� � be the set of variable assignments at
the outputs of those unjustified gates which have an input with a variable assignment contained
in � . The set � ��� � '�� � � �����(��� � is called the event list � for � .

In other words, when performing implications for a given set of value assignments � , the
event list � contains all variables whose values have been changed. This includes the output
signals of new unjustified gates. Furthermore, the output signals of old unjustified gates are
included if their status has changed, i.e., if one of their inputs has assumed a different value.

Now we have all concepts necessary to formulate routine and or enumerate(), shown in Ta-
ble 3.2. In recursive learning, this algorithm serves as the basic search mechanism. The “learn-
ing” steps which extract the necessary assignments or indirect implications are performed at the
position indicated by “statements for monitoring the search”. If the search is not evaluated, the
shown “barebone” procedure produces only a single binary-valued result: it determines whether
the given set of value assignments in a combinational network is satisfiable or not.

Theorem 3.6 Routine and or enumerate() is exact.

Exactness means that the consistency or inconsistency of an initial set of value assignments
in a circuit is determined correctly by the algorithm, provided the aborting condition given by a
maximum recursion level rmax is disabled (e.g., by setting � ���

� ' ��� in Table 3.2). The proof for
this theorem is the same as the proof for the completeness of recursive learning, because learning
of implications is not needed for proving that an initial set of value assignments is inconsistent.
The proof for the completeness of recursive learning can be found in, e.g., [53] or [54].

While and or enumerate() provides an interesting algorithmic solution to the satisfiability
problem, its main application is to gain important information about the problem by monitoring
the search process. For this purpose, � ���

�
can be set to a finite positive value, allowing for the

adjustment of the invested computation effort and the amount of information gained.

3.3. AND/OR REASONING GRAPHS 39

/* this procedure operates on a global data structure representing the gate netlist of
the circuit with possibly pre-set value assignments at some of the nodes. � is a new
set of value assignments in the circuit, � is the current level of recursion, initially,
� ��� . � � �

�
is a user-defined aborting criterion */

and or enumerate(� , � , � ���
�
)�

/* determine OR nodes of AND/OR tree */
make all direct implications for � in circuit and
set up a list ��� of unjustified gates in event list �	�
��� ;

if (value assignments are logically inconsistent)
return INCONSISTENT;

/* determine AND nodes of AND/OR tree */
if (��
 �

� �
�
)�

for (each unjustified gate � in � �)�
/* try justifications */
determine set of justifications � ��
for (each justification � ��� � ��)

consistent ��� � and or enumerate(� ��� ����� � � ���
�
);

[����� statements for monitoring the search �����]

/* check logic consistency */
if (consistent � � INCONSISTENT for all �)

return INCONSISTENT;�
�
return CONSISTENT;�

Table 3.2: Routine and or enumerate()

40 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

3.3.3 AND/OR Reasoning Trees

Just as branch-and-bound enumeration is visualized by a decision tree which is an OR-tree,
AND/OR enumeration as given by Table 3.2 can be represented by an AND/OR tree. In this
tree, unjustified gates (Def. 3.5) and implied signal values correspond to OR nodes. Justifica-
tions (Def. 3.6) represent the AND nodes in the AND/OR tree. In general terms, AND nodes
represent some requirements that are either given by the initial set of value assignments or cor-
respond to injected justifications. OR nodes are the logical consequences that result from these
requirements.

Let us look at an example to gain some understanding of how algorithm and or enumerate()
works and how it traverses the corresponding AND/OR tree.

a

b

c

d

f

g

e

v

w

u

y = 1!

Figure 3.14: Example of a combinational circuit with value assignment (� ' �)

Example 3.6 Consider the circuit in Fig. 3.14. We apply and or enumerate() for
an initial situation of value assignments � ' �

� ' �
� . The initial event list is
� ' �

� ' ��� . Node � in the circuit of Fig. 3.14 becomes an unjustified gate (this
is indicated by an exclamation mark) and the complete set of justifications for this
gate is ����' ��� � ' ��� � � 	 ' �
��� . This corresponds to the two AND nodes in
level 1 of the AND/OR tree of Figure 3.15. For each justification direct implications
imply logic signal values and produce new unjustified gates. Every value assignment
forms an OR node in the tree. For ��' � we imply *�' � , ��' � and � ' � ,
where node � becomes a new unjustified gate. This requires new justifications and
the technique continues to enumerate the AND/OR tree as shown in Fig. 3.15 in a
depth-first manner.

More precisely, an AND/OR tree and its construction by the algorithm and or enumerate()
are described by the following definitions:

Definition 3.9 An AND/OR tree is a bipartite rooted directed tree with two disjoint vertex sets,
� AND and � OR. The root node � � is an element of � AND. The terminal node (leaves) of the tree
are elements of � OR. Adjacent nodes belong to different vertex sets. Each node � OR � � OR

has as attribute a variable assignment � ' � , where � is an element of a set of variables

3.3. AND/OR REASONING GRAPHS 41

initial assignments {y=1}

b=1 e=0a=1 e=X!

b=0

w=1 v=1 y=1! f=1

J2={e=1}J1={g=1}

J1={g=1,c=1} J2={g=0,c=0}

g=1 c=1 g=0 c=0

e=1b=1e=0

J1={a=1}

f=1! u=1c=1g=1 e=1 b=0 a=1 f=1 u=1 g=X!
J2={b=1}

J1={e=0,b=1} J2={e=1,b=0}

learning

Level 1

Level 2

Level 3

Level 0

Figure 3.15: AND/OR tree for assignment � '�� in the circuit of Fig. 3.14

� � ��� � ��������� � � � � and � is an element of a set of values � . Each node � AND � � AND has as
attribute a set of variable assignments � ' � � � ' � ��� � � ' �	����������� � � ' � �
� . Furthermore,
each vertex � has as attribute an integer

� � �$� such that

1. The root node � � has
� � � � � ' �

2. OR nodes � OR have the same
�
-values as their immediate (AND) predecessors � pred:

� ��� OR � ' � � � pred �

3. AND nodes � AND with their immediate (OR) predecessors � pred have

� ��� AND � ' � ��� pred �
 �

Definition 3.10 An AND/OR tree with root node � � can be associated with the AND/OR enumer-
ation and or enumerate() of Tab. 3.2 as follows:

1. each AND node � AND belongs to a set � ' � � � ' � ��� � � ' �	��� ����� � � � ' � �
� of variable
assignments at nodes in the combinational network, where this set is given either by the ini-
tial set of variable assignments if � AND ' � � (root node), or by justifications for unjustified
gates if � AND �' � � (intermediate nodes). If a set � turns out to be logically inconsistent,
the corresponding AND node and all its successors are removed from the tree.

42 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

2. each OR node � OR belongs to a variable assignment � ' � at a node in the combinational
network which is required for the logic consistency of the set � associated with the parent
AND node of � OR, i.e., an OR node belongs to a variable assignment in the event list � ��� � .
If � '�� is at the output of an unjustified gate � then � OR has � AND successors, each
belonging to a justification � � � � , with � ' �

���
�
. If � ' � is at the output of a justified

gate then � OR is a leaf of the tree.

Such a tree is called the AND/OR reasoning tree for the initial set of value assignments �
and the given combinational network.

As an application of AND/OR enumeration, let us take a look at the recursive learning al-
gorithm of [53]. It consists of the algorithm and or enumerate() plus some statements which
evaluate the logic value assignments made for each justification of an unjustified gate. In partic-
ular, value assignments which are part of every justification of an unjustified gate are “learned”
to be necessary for the combination of value assignments to which the unjustified gate belongs.
These value assignments are called indirect implications. Viewed in an AND/OR tree, indirect
implications can be identified by finding common OR node successors in all AND sucessors of
an unjustified gate assignment.

Example 3.7 Consider again the circuit of Fig. 3.14 and its corresponding AND/OR
tree depicted in Fig. 3.15. The initial assignment � ' � makes gate � unjustified.
Two justifications are tried,

� � ' ��� and
� 	!'���� , both of which have the assignment

� '�� as a logical consequence. In the AND/OR tree, the AND nodes corresponding
to the justifications both have an OR node labelled � ' � as a successor. “Learning”
corresponds to identifying this assignment as necessary for � ' � and attaching the
OR node to the predecessor of � ' � .

Learning of indirect implications can occur in any recursion level and the value assignments
resulting in the previous level can change the course of subsequent enumeration so that more
logical consequences can be examined faster.

The following important observations about AND/OR enumeration and AND/OR reasoning
graphs can be made examining the above example. The main purpose of AND/OR enumeration
in CAD is not always to prove or disprove satisfiability. Often, like in the application described
in Section 3.4, the goal is to extract valuable information from the enumeration process. This
may include information about the function as well as the structure of the considered circuitry.
A combination of both can lead to effective heuristics for multi-level circuit optimization, as
discussed in Section 3.6. It is important to note that in order to obtain this information, the
AND/OR tree does not need to be traversed exhaustively. In the above example, one level of
recursion is sufficient to identify the indirect implication.

As the example of recursive learning shows, it is possible to evaluate AND/OR graphs with
respect to certain information without actually representing them as data structures in computer
memory. Recursive learning therefore has memory requirements which grow linearily with the
size of the examined circuitry. Of course, it is possible to actually construct the graphs. In doing
so, we can find efficient trade-offs between time and memory.

3.3. AND/OR REASONING GRAPHS 43

While the goal is to apply AND/OR enumeration to multi-level circuits, it is nevertheless
illuminating to examine the behaviour of routine and or enumerate() in two-level circuits. Con-
sider the two-level circuit in Figure 3.16. Figure 3.17 shows the AND/OR graph if the value 0
is assigned to the output � . AND/OR enumeration for the value 0 at the output of a two-level
SOP-type circuit performs a tautology test. The SOP is a tautology if and only if a conflict is
produced by and or enumerate(). As can be noted, the AND/OR tree for a unate SOP is very
simple and has the same structure as the two-level circuit. The root AND node in the AND/OR
tree corresponds to the OR gate in the circuit and the succeeding OR nodes correspond to the
AND gates in the circuit. Obviously, this is because the AND gates represent implicants of func-
tion � and therefore the value assignment � ' � implies OR nodes labelled � ' � , � ' � and� ' � which correspond to these implicants. Since the circuit implements a unate function the
AND/OR tree is finished in the next level. All AND nodes have only one succeeding OR node,
representing a leaf of the tree. This reflects the well-known fact that tautology checking in unate
functions is of polynomial complexity. Node that it is only in this special case that the AND
nodes and OR nodes of the AND/OR tree have direct relationships with the OR gates and AND
gates of the circuit.

d

a
b
c

e

g

i y

h

f
j

Figure 3.16: A two-level circuit for a unate function

Let the AND/OR tree be levelized according to the recursion depth � in and or enumerate(),
then each level consists of a set of AND nodes with their OR successors. The following theorem
holds:

Theorem 3.7 Let � be the output signal of a two-level combinational circuit in SOP form. The
AND/OR tree for the assignment � '�� (tautology test) has only two levels if the SOP expression
is unate.

Proof: see Appendix A, page 135

The fact that the AND/OR tree for a unate SOP has only two levels is also related to the
well-known result that all prime implicants in a unate SOP are essential, i.e., the unate SOP is a
syllogistic formula [12]. If the circuit is not unate, the AND/OR tree has to be continued after
level 1 in order to explore the logic consequences which are not covered by the implicants being
included in the SOP.

44 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

Level 0

Level 1

c=0 b=0 a=0 d=0 e=0 c=0 g=0f=0

J3={g=0}J1={c=0} J2={f=0}

j=0! y=0i=0!

J2={e=0}J1={d=0}J3={a=0}J2={b=0}

h=0!

initial assignments {y=0}

J1={c=0}

Figure 3.17: AND/OR tree for the unate circuit of Figure 3.16

The situation for the non-unate case is illustrated in Figure 3.18 and Figure 3.19, where the
circuit of Figure 3.17 is modified such that it becomes non-unate in variable * .

d

a
b
c

e

g

i y

h

f
j

Figure 3.18: Non-unate circuit

Also in the case of a non-unate circuit, level 0 of the AND/OR tree reflects the implicants
in the SOP. If the circuit is not unate, however, the AND/OR tree continues after level 1. This
is because the justifications at some unjustified line, e.g., ��' � in Figure 3.18, produce events
at other unjustified lines without justifying them. The justification *�' � at gate � produces a
logic 1 at the output of gate

�
. This changes the status at gate

�
and represents an event so that the

unjustified line
� ' � is added to the list of unjustified gates for the next recursion level. As can

be noted, destroying the unateness of variable * by inserting an inverter as shown in Figure 3.18
leads to an AND/OR tree with three levels as shown in Figure 3.19.

3.4. DETERMINING PRIME IMPLICANTS 45

i=0!h=0!

Level 0

Level 1

a=0 b=0

J2={b=0}J1={a=0}

g=0f=0

h=0!

c=1e=0d=0a=0b=0

j=0!

c=0

J2={g=0}J1={f=0}

g=0f=0

j=0! y=0

J3={g=0}J2={f=0}J1={c=1}J2={e=0}J1={d=0}J3={a=0}J2={b=0}J1={c=0}

Level 1

initial assignments {y=0}

Figure 3.19: AND/OR tree for non-unate circuit of Figure 3.18

3.4 Determining Prime Implicants

In the last section it was shown how AND/OR reasoning graphs for a function in a combinational
network are constructed. The main purpose of such a graph, besides solving satisfiability, is to
extract important information about the logic function for which it is built. This section will
show how we can determine from the graphs multi-level network implicants as introduced in
Section 3.2. As explained there, the literals of an implicant of some node � in a multi-level
combinational network can belong to arbitrary other nodes in the network, including those which
are not in the transitive fanin of � .

We extract the implicants from the AND/OR graph by identifying subtrees with certain prop-
erties. The idea we use is the following. Consider a product term � ' � � � � ��� ����� � �

� of �
literals which are each associated with the function of a network node or its complement. If � is
a 1-implicant of node � then the following implication is valid (by Definition 3.1):

� � � ' �"��� � � ��' �"��� ������� � �
� '��"���%� � � '��"�

Using contraposition and DeMorgan’s law we can restate this as:

� � '�� ���%� � � � ' � ��� � � ��' � ��� ������� � �
� '�� � (3.1)

The AND/OR graph constructed for the initial set of assignments � ' �
� '�� � using routine

and or enumerate() contains subgraphs which can be associated with OR-type expressions like

46 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

the right-hand side of the Implication 3.1. These expressions are implied by the initial set of value
assignments so that the above implication holds. The subtrees are called implication subtrees and
are formally defined as follows:

Definition 3.11 (Implication Subtree) An implication subtree (IST) is an AND/OR tree with the
following properties:

1. It is a subtree of an AND/OR reasoning tree.

2. The enumeration tree and its subtree have the same root node.

3. For each AND node included in the subtree, all its siblings in the AND/OR reasoning tree
are also included in the subtree.

An implication subtree has a set of OR nodes as leaves. These leaves correspond to value
assignments which can be interpreted as the right hand side of Implication 3.1. The following
theorem allows to relate the leaves of an IST to an implicant in a multi-level network.

Theorem 3.8 Let � be an arbitrary node in a combinational network and � be the AND/OR
enumeration tree for an initial set of value assignments � ' �

� ' � � . Consider a product term
� ' � � � � � � ����� � �

� where
� � is a literal corresponding to a variable ��� or its complement in the

combinational network. Further, consider an IST of � with a set of leaves, � .
If there is a one-to-one mapping between the literals

� � of � and the elements � ��� ' � � � of �
such that � � ' � if

� � represents the uncomplemented variable �
� and � � ' � if
� � represents the

complemented variable ��� , then � is a 1-implicant of � . Analogously, � is a 0-implicant of � if the
IST is a subtree of the enumeration tree with the initial assignment � ' � '�� .

Proof: see Appendix A, page 135

Theorem 3.8 states the rule for deriving implicants from an AND/OR tree. An implicant is
formed by the conjunction of variables belonging to the leaves of an IST. If a variable at a leaf of
the IST is assigned to 0 then we have to take the uncomplemented variable, if it is assigned to 1
we have to take the complemented variable as a literal in the implicant.

Example 3.8 As an example for a multi-literal implicant derived from an AND/OR
tree consider the circuit for function � ' ��� �
 ��� * in Fig. 3.20. The AND/OR tree
is derived for the initial assignment � ' � . The bold lines indicate an implication
subtree according to Definition 3.11: all successors of the OR node corresponding to
the unjustified gate

�
set to � are included in the tree. For each AND node included,

one OR successor is included. The leaves of the IST are � ' � ��� ' � ������*(' � ��� .
According to Theorem 3.8, this IST represents the implicant � ' � � * . As can be
noted, this implicant is not implemented in the circuit. It is the consensus of the
implicants realized by gates

�
and 	 .

3.4. DETERMINING PRIME IMPLICANTS 47

a

b

c

d

e

f

{f = 0}

{c = 0}{b = 0}{b = 1}{a =0}

f = 0

d = 0! e = 0!

a = 0 b = 1 b = 0c = 0 a = 0 c = 0

Figure 3.20: Example for IST corresponding to multi-literal network implicant

How are prime implicants represented in the AND/OR tree? Note in Definition 3.11 there is
no requirement to include in the IST more than one child of each AND node of the original tree.
In fact, including more than one OR child of any AND node makes the IST non-minimal. Since
this non-minimal IST can contain leaves with new variable assignments not needed to make the
product term an implicant, the corresponding implicant is non-prime.

Definition 3.12 (Minimal Implication Subtree) An IST is called minimal implication subtree
(MIST) if each AND node has exactly one OR child.

Theorem 3.9 Let � be an arbitrary node in a combinational network and � be the AND/OR
reasoning tree for an initial set of value assignments � ' �

� ' � � , ��� �
� � ��� . For every prime

implicant of � there exists a minimal implication subtree (MIST) of � such that the leaves of the
MIST correspond to the literals of the prime implicant as given in Theorem 3.8.

Proof: see Appendix A, page 137

Example 3.9 The AND/OR tree for the initial assignment � ' � in the circuit of
Fig. 3.20 indeed contains MISTs for every prime 1-implicant of function � . Enumer-
ating all MISTs according to Definitions 3.11 and 3.12, one obtains the following
list of network implicants: � ,

�
, 	 , � � (implemented by

�
), � * (represented twice), � *

(implemented by). There are no further prime implicants of � .

Note that not every MIST corresponds to a prime implicant. For a given MIST with a set of
leaves, � , there may be some other MIST with a set of leaves � � such that � ��� � . Obviously,
then, the implicant belonging to the first MIST cannot be prime. Fortunately, by tracing from the
leaves towards the root of the AND/OR tree, it is very easy to check for a given MIST with a set
of leaves, whether a subset of leaves can belong to another MIST.

48 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

3.5 D-AND/OR enumeration and Permissible Implicants

In Section 3.2.2 it was pointed out that it is desirable to not only consider equivalence trans-
formations for modifying the structure of a combinational network. We also want to take into
account observability don’t cares by performing permissible transformations which can be iden-
tified using permissible implicants.

How can we determine permissible implicants? Let OBS � � � ' ODC � � � (see page 24) de-
note the conditions for which node � is observable at a primary output of the circuit. By Defi-
nition 3.3, a permissible 1-implicant � for a node � is given if the following implication holds:
� � ' �"� �%� � ��' �"��� OBS � � � . An implicant is a product of literals, � ' � � � � ����� �

� , associated
with complemented or uncomplemented functions of network nodes. We can write:

� � � ' �"��� � � ��' �"��� ����� � � �
� ' �"����� � � ' �"��� OBS � ���

Using the law of contraposition and DeMorgan’s law, we can restate this as

� � ' � ��� OBS � � ����� � � � '�� � � � � ��'�� � � ����� � � �
� ' � � (3.2)

In order to identify implications according to Implication 3.2 we need an AND/OR enumer-
ation technique that enumerates the logical consequences of a node � being set to 0 and, at the
same time, � being observable at a primary circuit output. The logic conditions, OBS � � � , for �
to be observable at a primary output can, in principle, be calculated using the concept of Boolean
difference, see, e.g., [1].

At this point we must assume that the reader is familiar with the terminology of automatic
test generation (ATPG) for single stuck-at faults in combinational circuits as described, e.g., in
[1, 54]. It is important to observe that basic ATPG notions can be useful to identify permissible
implicants in multi-level circuits. In particular, it turns out that using Roth’s D-calculus, we can
efficiently incorporate observability constraints into our reasoning techniques. In [53] a tech-
nique has been formulated to find all necessary assignments for propagating a fault value to a
primary output. It is based on including fault propagation into the AND/OR reasoning process.
Table 3.3 shows the algorithm D and or enumerate() which can be obtained from routine com-
plete unique sensitization() of [53] by removing all statements to extract necessary assignments.

The algorithm uses the concept of a D-frontier which is a common concept in ATPG tools.
The D-frontier consists of all fault signals, i.e., signals being assigned either

�
or

�
, which are

input signals of logic gates whose output signal is unspecified. The D-frontier indicates how far
the faulty signals have propagated from the fault location towards the primary outputs. Since
only one

�
or

�
is required to be propagated from the fault location to a primary output, the

sensitizations at the elements of the D-frontier correspond to successors of an OR node in the
AND/OR tree traversed by D and or enumerate(). Note that D and or enumerate() makes, in
turn, use of algorithm and or enumerate() presented in Section 3.3.2.

3.5. D-AND/OR ENUMERATION AND PERMISSIBLE IMPLICANTS 49

/* this procedure operates on a global data structure representing the gate netlist of
the circuit with possibly pre-set value assignments at some of the nodes. � is a D-
frontier in the circuit, � is the current level of recursion, initially, � � � . � � �

�
is a

user-defined aborting criterion */

D and or enumerate(� � ,
� , � � �

�
)�

/* sensitizations: every element in the D-frontier corresponds to an OR node
in the D-AND/OR tree */
for (all signals � ��� � �)�

successor signal := � � ;

/* propagate fault signal along adjacent path towards the primary outputs */
� := � ;
while (successor signal has exactly one successor)�

fault value := value of successor signal;
successor signal := successor of successor signal;
if (successor signal is output of inverting gate)

fault value := INV(fault value);
� := ��� � successor signal = fault value

�
;�

consistent ��� � and or enumerate(� � ��� � � � � �
�
);

set up list of new D-frontier � � � � ;
if (X-path check [1] for successor signal fails)

/* there is no path left for fault propagation */
consistent � := INCONSISTENT;

if (��
 �
� �
�

and consistent � � CONSISTENT)
consistent � := D and or enumerate(� � � � �

� � � � �
�
);�

/* check logic consistency */
if (consistent � = INCONSISTENT for all sensitizations �)

return INCONSISTENT;
return CONSISTENT;�

Table 3.3: Routine D and or enumerate()

50 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

Theorem 3.10 Let � be an arbitrary node in a combinational network and � be the D-AND/OR
enumeration tree for the fault � stuck-at-1. Consider a product term ��' � � � � � ������� � �

� where
� � is

a literal corresponding to a variable ��� or its complement in the combinational network. Further,
consider an IST of � with a set of leaves, � , such that in the combinational network the nodes � �
cannot be reached by the fault effect.

If there is a one-to-one mapping between the literals
� � of � and the elements ����'�� � such

that � �(' � if
� � represents the uncomplemented variable �
� , and � �
' � if

� � represents the
complemented variable ��� , the product term � is a permissible 1-implicant of � . Analogously, �
is a permissible 0-implicant of � if the IST is a subtree of the enumeration tree for the fault �
stuck-at-0.

Proof: see Appendix A, page 138

Injecting a fault � stuck-at-1 means making the value assignment � ' �
. This is equivalent

to requiring � � ' � ��� OBS � � � . Analogously, a fault � stuck-at-0 is injected by setting � ' �
. By

identifying MISTs in the D-AND/OR tree, we can determine permissible prime implicants. The
following theorem states an important property of AND/OR trees which makes them attractive
in logic synthesis:

Theorem 3.11 Let � be an arbitrary node in a combinational network and � be the D-AND/OR
enumeration tree for the fault � stuck-at- � , � � � �	� . For every permissible prime implicant at
a node � there exists a minimal implication subtree (MIST) of � such that the leaves of the MIST
correspond to the literals of the prime implicant as given in Theorem 3.10.

Proof: see Appendix A, page 138

Example 3.10 Figure 3.21 shows a circuit for which the D-AND/OR reasoning tree
is built in Figure 3.22. Consider the fault � stuck-at-1. There are two paths along
which this fault can propagate to a primary output. At least one of them has to be
sensitized for fault detection. One path traverses gates � and

�
. Its sensitization yields

the value assignments � � ' �"� and � � ' � � . For the AND/OR tree in Figure 3.22,
this produces the left AND node in level 1 with its successors. The second possibility
is to sensitize the path through � and � resulting in the right portion of the AND/OR
tree. The sensitizations yield value assignments and unjustified lines. These value
assignments are enumerated in the usual way as given by Table 3.3, so that the
AND/OR tree for the stuck-at-1 fault at signal � is as shown in Figure 3.22. Note
that for reasons of simplicity we only consider unjustified gates with specified output
signals, i.e., the gates referred to as unjustified lines in test generation literature, for
inclusion in the AND/OR tree. Although unjustified gates with unspecified outputs
as in the AND/OR tree of Figure 3.15 are necessary for the theoretical completeness
of the enumeration, it is possible to neglect them for most practical purposes [53].
The bold lines in Figure 3.22 indicate a MIST that represents a permissible prime
implicant � ' � � * for node � in the circuit. We will return to this example in the
next section.

3.5. D-AND/OR ENUMERATION AND PERMISSIBLE IMPLICANTS 51

stuck at 1

a

d

c

k

l

j

f

b

e

g

m

n
o p

q

ih

Figure 3.21: Example circuit for permissible implicants

i = 0 f = 0 h = 0 c = 0 n = 0 b = 0 p = 0 o = 0 g = 0 n = 0 e = 0 c = 0 b = 0 j = 0

J2 = {b = 0}J1 = {o = 0}J2 = {b = 0}J1 = {i = 0}

d = 1
j = 0!

sensitize k and l sensitize m and q

initial assignments {a = D} (a stuck at 1}

e = 1

a is D-frontier

p = 0!

Level 0

Level 1

Level 2

Figure 3.22: AND/OR tree for circuit in Figure 3.21 (bold lines mark MIST)

52 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

3.6 Heuristic Multi-Level Optimization

AND/OR reasoning trees, in principle, can generate all permissible prime implicants. Hence,
they can be used to obtain any permissible function for some node in the network expressed in
terms of arbitrary internal variables of the multi-level network. However, there may be a large
number of prime implicants for a given node in the network, especially, if the implicants are
expressed in terms of arbitrary (internal) nodes. Therefore, this section is dedicated to demon-
strate how the topology of the AND/OR trees can be used to determine those implicants that are
particularly promising for optimization.

3.6.1 Selecting Implicants

The motivation for the heuristic given here comes from the observation that there can be subtrees
of an AND/OR enumeration tree with several identical leaves. Several such subtrees together can
form an IST and represent an implicant. This implicant is then composed of less literals than the
IST has leaves, indicating suboptimal circuitry. This suboptimality can informally be explained
as follows. If the function for which the AND/OR tree is built contains an implicant which is
not implemented directly, the effort necessary to derive the implications corresponding to this
implicant is higher than if there existed a direct structural representation of the implicant. In the
latter case, the value assignments corresponding to the literals of the implicant would be direct
successors of an OR node in the first recursion level.

Example 3.11 Consider again the circuit of Figure 3.21 and its AND/OR reasoning
tree of Figure 3.22. The MIST indicated by bold lines which corresponds to the
implicant � ' � * contains two leaves with the value assignment ��' � , and two
leaves with the value assignment * ' � . Therefore, the permissible implicant � is
promising for inclusion in a permissible function at node � .

This heuristic for selecting implicants is directly related to the heuristic for selecting promis-
ing divisors in [52]. There, promising candidates for circuit transformations are indicated by
indirect implications which are derived using recursive learning. Such indirect implications cor-
respond to MISTs with the property that all leaves correspond to a single value assignment. For
example, in Figure 3.15 (page 41) the bold lines mark such a MIST corresponding to the indi-
rect implication � � ' �"� �%� � � ' �"� . A MIST that contains only leaves with a single value
assignment corresponds to a prime implicant consisting of a single literal. As mentioned ear-
lier, recursive learning can be seen as an AND/OR enumeration technique that determines all
single-literal implicants of a given logic function.

Example 3.11 (continued) It is now demonstrated how this permissible implicant
of node � is constructed from the AND/OR tree in Figure 3.22. To avoid storing
the graph we perform repeated AND/OR enumeration. In each pass we extract sub-
trees from the AND/OR tree that have several leaves corresponding to one value
assignment. These subtrees correspond to promising literals included in an impli-
cant. Figure 3.23 shows such a subtree for the assignment *�'�� .

3.6. HEURISTIC MULTI-LEVEL OPTIMIZATION 53

c = 0 c = 0

J1 = {o = 0}J1 = {i = 0}

j = 0!

sensitize k and l sensitize m and q

initial assignments {a = D} (a stuck at 1}

a is D-frontier

p = 0!

Level 0

Level 1

Level 2

Figure 3.23: Literal subtree of AND/OR tree in Figure 3.22 suggests to include * '�� in implicant

Subtrees with identical leaves belonging to literals of an implicant are called literal subtrees
(LSTs) and are defined as follows:

Definition 3.13 A literal subtree (LST) for a variable assignment � ' � , � � �
� �	��� , of a

MIST � is a subtree of � such that

1. it has the same root node as � and

2. it contains all leaves of � with � ' � and contains no other leaves.

Example 3.11 (continued) The subtree shown in Figure 3.23 is an LST for literal * .
The fact that this subtree has more than just one leaf means that * is an “important
contribution” to (the observable part of) the function at node � and that it should
be included in the implicant. An implicant is assembled step by step by identifying
LSTs of large size. In the above example we can proceed as follows. We pick * as
the first “seed” literal in the implicant. In order to capture the part of function � not
covered by * , we now assign * '�� in the circuit and re-enumerate the AND/OR tree.
The resulting AND/OR tree is shown in Figure 3.24.

The resulting AND/OR tree suggests that variable � should be included in the impli-
cant. The subtree for variable � is shown by bold lines in Figure 3.24 and represents
an LST with two leaves. Other LSTs of the tree in 3.24 would have only one leaf.
Note that this LST is also a MIST, because the subtree contains all children of the
non-terminal OR nodes (there is only one in this example), so that � ' � is an im-
plication derived from the new set of value assignments. (Note that this MIST could

54 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

sensitize k and l sensitize m and q

a is D-frontier

d = 1 h = 1 i = 1 b = 0 b = 0 o = 1 n = 1 e = 1

c = 1

initial assignments {a = D, c = 1}

Level 1

Level 0

Figure 3.24: Subtree after assigning * ' � indicates that ��'�� should be included in implicant

also be derived using recursive learning). Once a subtree represents an implication,
the construction is finished and the implicant is complete. We obtain the permissible
implicant � ' � * for node � .

Consider Table 3.4 and Table 3.5 that show the pseudo-code for calculating implicants as
illustrated in the above example.

Table 3.4 describes routine find implicant(). For simplicity, we assume that AND/OR enu-
meration is performed without any consideration of observability. The procedure starts with the
assignment � ' � which yields 1-implicants. (In order to determine 0-implicants, the initial
assignment � ' � must be chosen.) Then, the AND/OR tree is traversed as given in Table 3.5 to
find large LSTs as illustrated in the example. The signals with their assignments are stored in a
list (LST candidate list) and are ordered according to the size of the subtrees. The variable with
the largest LST is chosen as the first variable for the implicant to be created.

If there are several variables with LSTs of the same size we pick the one which belongs to the
smallest MIST. The reason for this heuristic is that we intend to generate implicants with as few
literals as possible because they will require the least area in the circuit. If the MIST belonging to
an LST is very large, we may have to add many more literals to obtain an implicant and therefore
we prefer LSTs that are “almost” as large as the MIST they belong to.

Then, the loop in Table 3.4 adds more variables to the product term until the product term is an
implicant. Each variable added to the product term is selected by the evaluation of the AND/OR
tree in which the previously identified variables are assigned their opposite values. The loop ter-
minates if the current variable and its assignment obtained by and or based variable selection()
represent an implication (single-literal implicant) for the previous situation of value assignments.
This can either be identified during AND/OR enumeration by the same kind of monitoring that
is used to identify necessary assignments in recursive learning or as shown in Table 3.4 where
the loop terminates in the next iteration due to a logic inconsistency.

3.6. HEURISTIC MULTI-LEVEL OPTIMIZATION 55

/* this procedure operates on a global data structure representing the gate netlist of
the circuit, � is a node in the circuit for which implicants are determined, � � �

�
is the

maximum recursion depth for AND/OR enumeration */

find implicant(y, rmax)�
/* LST candidate list, f.LST.leaf count.Vr, f.V.mark list are global variables
and are determined in routine and or based variable selection() */

assign in the circuit y := 0;
mark all gates for all levels;
consistent := and or based variable selection(0, rmax);

if (consistent = INCONSISTENT)
return FALSE; /* y stuck-at-1 is redundant */

select a (f = V) from the LST candidate list with
maximal f.LST leaf count.V r = 0;

if (several candidates have the maximal LST size)
select from those one
with minimal f.MIST leaf count.V r = 0 /* minimal MIST size */

if (V = 0) then x1 := f ; else x1 := � ;
implicant := x1; /* “seed” literal for forming implicant */

i := 1;
loop�

assign in the circuit xi := � � ;
i := i + 1;
for (all elements (g, r) in xi.V i.mark list)

mark gate g for level r;
consistent := and or based variable selection(0, rmax);

if (consistent = INCONSISTENT)
break; /* implicant is complete */

select a (f = V) from the LST candidate list as above;
if (V = 0) then xi := f ; else xi := � ;
implicant := implicant � xi; /* add literal to implicant */�

return implicant;�

Table 3.4: Routine to calculate implicants in a multi-level circuit

56 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

and or based variable selection(S, r, rmax)�
make all direct implications for S in circuit

and set up a list Ur of unjustified gates in eventlist E(S);
if (value assignments are logically inconsistent)

return INCONSISTENT;
else

�
for (every signal f during the implication process)

if (signal f is assigned value V , V � �
� �	���)

f.LST leaf count.V r := f.LST leaf count.V r + 1;
�
if (r � rmax)

�
for (each unjustified gate g in Ur which is marked in level r)

set up list of justifications Cr
g;

if (consistenti = INCONSISTENT for all i)
return INCONSISTENT;

else
�

/* determine subtree sizes of LSTs and MISTs by counting leaves */
n := number of consistent justifications;
for (every signal f touched during implications in level r+1)

�
/* check heuristic criterion to select LST and MIST */
if (f.LST leaf count.V r+1 � f.LST leaf count.V r

or (f.LST leaf count.V r+1 = f.LST leaf count.V r

and n
 f.MIST leaf count.V r+1 ��� � f.MIST leaf count.V r))
�

/* take this LST and MIST */
f.LST leaf count.V r := f.LST leaf count.V r+1;
f.MIST leaf count.V r := n
 f.MIST leaf count.V r+1 ��� ;
/* mark the considered portion of the AND/OR tree */
f.V.mark list :=

� � u � l � � unjustified gate u belongs to an OR node
of the selected MIST in recursion level l � ;

�
f.LST leaf count.V r+1 := 0;
f.MIST leaf count.V r+1 := 0;
if (r = 0)

LST candidate list := LST candidate list �
�
f ' V � ;

�
�

�
return CONSISTENT;

�

Table 3.5: Selecting variables for implicants

3.6. HEURISTIC MULTI-LEVEL OPTIMIZATION 57

Table 3.5 shows how variables are selected by AND/OR enumeration. As can be noted, the
shown algorithm is based on and or enumerate() as shown in Table 3.2. Extensions are made to
monitor the implications found and to set or unset flags for each node in the circuit and for each
recursion level. The idea is to extract implicant variables by “monitoring” the AND/OR enumer-
ation procedure. The additional statements in Table 3.5 show operations that collect information
about the sizes of the LSTs and MISTs by counting the value assignments obtained during the
consistent justifications. Further, by marking the unjustified gates for each recursion level, it is
guaranteed that the next enumeration pass, i.e., the re-enumeration after having made a decision
for a certain literal in find implicant(), only considers a MIST that contains the corresponding
LST. Also, note that the repeated enumeration is accelerated drastically by excluding all unjusti-
fied gates from consideration that have not been marked by the previous AND/OR enumeration
pass.

a

c

b

d
k

h i
j

l

f

e

g

m

n
o p

q

Figure 3.25: Adding permissible implicant � * at signal �

Example 3.11 (continued) Reconsider the circuit of Figure 3.22. The function of
the circuit is given by the following Boolean expressions:

� ' � �
 � ��* �
 � � ' ����
 � *+� �
 � �
� '�� 	
 � ��*�	�
 � � ' ����
 � *+� 	�
 � �

By manipulating the equations, it can be noted that there exists a common kernel,
��
�� * . Minimization can be achieved by sharing this kernel. With the routines of
Table 3.4 and Table 3.5 we obtain the permissible 1-implicant � * as was illustrated
above. Note that the suboptimality of the original circuit is reflected by the exis-
tence of a MIST with several leaves belonging to the same value assignments, ��' �

58 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

a

c

b

d

f

e

g

m

k

j

l

q

p

Figure 3.26: Circuit after redundancy removal

and *�' � . The fact that � * is a permissible 1-implicant of node � means that ac-
cording to Lemma 3.4 of Section 3.2.2 node � can be replaced by the permissible
function �
 � * . This leads to an additional OR gate inserted behind the input � with
one input connected to an AND gate implementing the product ��* . This is shown in
Figure 3.25. The circuit optimization procedure follows the two-step methodology
described in Section 3.2.2. After having added the implicant to the circuit, redun-
dancy elimination is used to simplify it. This results in the circuit structure shown in
Figure 3.26.

As already explained, the optimization in this example can also be obtained by an algebraic
kernel extraction technique [10, 74]. Note, however, that the procedures based on AND/OR trees
and redundancy elimination are capable of performing general Boolean manipulations and are
not restricted to “algebraic” transformations using the terminology of [10].

3.6.2 Optimization Procedure

Table 3.6 summarizes a procedure for circuit optimization. It is a refinement of the general two-
step methodology described in Section 3.2.2. Logic optimization is performed by applying the
described concepts to all nodes in the combinational network. The procedure moves from node
to node. Experiments have shown that the optimization results are only moderately sensitive to
the order in which the circuit nodes are selected, however, best results are generally obtained
by selecting the nodes according to their topological level moving from primary inputs towards
primary outputs. For a selected node the concepts of AND/OR enumeration are used to derive
promising implicants. The candidates found promising are stored in lists and tried one after the
other.

3.6. HEURISTIC MULTI-LEVEL OPTIMIZATION 59

read combinational
network

select a node, y,
in the network

derive "good" implicants
using AND/OR graphs

add implicants to
cover of y

circuit smaller?

restore old network

more
candidate

implicants?

finished, print
combinational
network

more
network nodes

to try?

Redundancy Removal
(accelerated by fault simulation
of updated and stored
deterministic test set)

no

no

no

yes

yes

yes

Table 3.6: Procedure for circuit optimization

60 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

For each implicant the circuit is transformed according to the lemmas given in Section 3.2.2.
After each transformation redundancy elimination is employed. Redundancy identification is
quite a time-consuming process. Some speed-up can be gained by not considering all faults in
the circuit for redundancy identification but to restrict the search for untestable faults to those
areas of the circuit where they are most likely to occur. Experimental results have shown that
untestable faults occur almost always at those lines that are involved in the reasoning process
of deriving the implicants used for the circuit transformations. Thus, after each transformation,
the fault list for redundancy elimination is set up by including both stuck-at faults at only those
signals that were “touched” by the AND/OR enumeration when deriving the current implicant.

To further accelerate the process of redundancy elimination, the deterministic test set is al-
ways maintained for the most recent version of the circuit. After each circuit transformation, this
test set is simulated to quickly discard many faults from further consideration so that only few
faults have to be targeted explicitly by deterministic ATPG. After redundancy elimination has
been completed it is checked whether or not the circuit has become smaller. If it is smaller the
new current circuit is maintained, otherwise the previous version is recovered. This is continued
for all nodes in the network until no more improvements can be found. Several runs can be made
through the circuit varying the recursion depth and the number of candidate implicants tried at
each node in different runs.

3.6.3 Experimental Results

The described methods have been implemented by integrating them into the HANNIBAL tool
system. For efficient fault simulation, HANNIBAL contains the fault simulator FSIM [59]. Logic
transformations are derived by AND/OR reasoning techniques. Our experiments have shown
that circuit transformations using only single-literal implicants have already a high optimization
potential. In many cases, adding a single-literal implicant to the cover of a logic function only
means introducing a single connection from the implicant’s signal source to the gate producing
the function. A multi-literal implicant adds higher costs because an additional gate is needed
to represent the product of the literals. Nevertheless, there are applications where single-literal
implicants alone do not produce satisfactory results. We will show experiments for heuristic area
optimization using single-literal implicants as well as optimization using multi-literal implicants.

Single-Literal Implicants

We compare HANNIBAL with other state-of-the-art optimization tools. For a fair comparison
it is important to remember that several different ways of measuring the area costs are used in
practice. HANNIBAL and RAMBO [32] operate on a gate netlist description and measure the
area in terms of the number of connections. Technology-independent optimization tools like SIS
measure the area in terms of numbers of literals. The difference between these two reflects the
different models of a multi-level circuit. A literal count is used when the circuit is represented
by a general Boolean network (Def. 2.4, page 14). The functions at the individual internal nodes
of the network contribute to the area measure by the number of literals needed to describe the

3.6. HEURISTIC MULTI-LEVEL OPTIMIZATION 61

function. Obviously, the literal count depends on how the individual node functions are repre-
sented. A SOP expression usually uses more literals than a factored form. If the circuit is given
as a gate netlist description, it is common to count connections. A connection is defined to be
a distinct input of a gate having at least two inputs. Inputs to inverters are not counted, because
most optimization techniques disregard the cost of inverters during the main optimization proce-
dure and minimize the number of inverters in a post-processing phase called phase assignment.
Furthermore, neglecting inverters when counting connections is analogous to treating a variable
and its complement equally as one literal when determining the literal count.

For a fair evaluation of our tool, we present the results in terms of both, number of con-
nections and number of literals. For RAMBO and HANNIBAL the number of literals (factored
form) has been obtained by reading the optimized circuits into SIS and post-processing them
such that a technology-independent factored form is obtained. For this purpose we used a SIS
script which performs some standard network manipulations. To count connections for SIS we
map the optimized circuit to a generic library which contains the basic gates that are allowed in
our netlist description. Note that comparing connections or literals may slightly bias the results.
Since RAMBO and HANNIBAL optimize in terms of connections whereas SIS uses literals,
comparing connections can bias the results in favor of HANNIBAL and RAMBO. Comparing
literals gives a certain advantage to SIS. Therefore, for all circuits we always present both area
measures.

In all experiments HANNIBAL passes through the circuit four times performing modifica-
tions of the cover at every internal network node where single-literal implicants can be identified.
The recursion depth is 1 for the first two passes and 2 for the final two passes. We also experi-
mented with greater depths of recursion. It turned out that recursion depth higher than 2 did not
lead to improved optimization results because the same transformation which can be derived by
high recursion depth can usually also be obtained by a sequence of local transformations derived
by small recursion depth. Also, for larger designs a recursion depth of 4 and higher is usually
not affordable in terms of CPU time.

Table 3.7 shows results for SIS-1.2, RAMBO C and HANNIBAL. SIS-1.2 is run using
script.rugged which includes the powerful techniques of [74] and [82]. No pre-optimization is
used to process the circuits in RAMBO and HANNIBAL. As can be noted, for most benchmark
circuits HANNIBAL produces the smallest circuits. This is quite remarkable because it shows
that most circuit manipulations performed by conventional technology-independent multi-level
minimization techniques are covered by the implicant-based transformations described in this
chapter using single-literal implicants. In particular, heuristic guidance by indirect implications
corresponding to single-literal MISTs proved remarkably powerful.

In the next experiment it is examined how much optimization is possible by HANNIBAL if
the circuits are pre-processed by SIS. As shown in Table 3.8 substantial area gains are possible
in many cases. For 7 out of 25 circuits, the gain is more than 20%. Also note that the CPU
times for HANNIBAL are significantly shorter in many cases if the circuits are first run through
a technology-independent minimization.

62 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

Original SIS-1.2 RAMBO HANNIBAL
Name #conn. (#lit.) #conn. (#lit.) #conn. (#lit.) #conn. (#lit.) CPU

h:min:s

c1355 992 (562) 778 (554) 837 (546) 746 (540) 00:01:31
c1908 1059 (769) 708 (535) 784 (551) 696 (511) 00:04:38
c2670 1559 (1023) 1082 (752) 1520 (816) 1064 (701) 00:03:37
c3540 2226 (1658) 1649 (1288) 1810 (1331) 1628 (1221) 01:13:57
c432 296 (270) 247 (205) 271 (207) 207 (181) 00:00:55
c499 368 (562) 776 (554) 837 (546) 348 (540) 00:00:16

c5315 3492 (2425) 2548 (1731) 3201 (1851) 2661 (1779) 00:15:39
c6288 4768 (3315) 4695 (3337) 3834 (3294) 3723 (3252) 00:29:18
c7552 4734 (3087) 3457 (2312) 3385 (2188) 2542 (1826) 00:36:00
c880 640 (433) 594 (413) 643 (410) 578 (400) 00:00:44
9sym 387 (237) 384 (186) 324 (217) 286 (217) 00:03:19
alu2 669 (453) 507 (361) 509 (359) 347 (274) 00:05:29
alu4 1299 (855) 975 (694) 1006 (722) 826 (646) 00:36:40

apex6 1214 (835) 1074 (743) 1327 (759) 1000 (697) 00:03:54
apex7 410 (289) 331 (245) 412 (251) 309 (229) 00:00:24
dalu 3533 (2610) 1364 (979) 2007 (1344) 1710 (1102) 02:10:18
frg2 2244 (2005) 1182 (887) 1734 (1157) 1315 (982) 00:27:35
pair 2795 (1803) 2356 (1602) 2594 (1636) 2155 (1636) 00:15:29
rot 1085 (764) 928 (672) 1093 (662) 834 (633) 00:02:20

term1 773 (456) 235 (170) 363 (248) 208 (149) 00:00:44
ttt2 434 (324) 303 (239) 300 (191) 204 (148) 00:00:26
x1 627 (445) 409 (298) 503 (333) 392 (298) 00:00:58
x3 1589 (1133) 1101 (787) 1547 (985) 1110 (1035) 00:03:59
x4 843 (1607) 512 (380) 777 (449) 583 (400) 00:03:34

Table 3.7: Logic minimization results for HANNIBAL (Sun Sparc 5)

3.6. HEURISTIC MULTI-LEVEL OPTIMIZATION 63

SIS-1.2 SIS-1.2 (script.rugged) +
(script.rugged) HANNIBAL

Name
#conn.(#lit.) #conn.(#lit.)

CPU time

h:min:s

c1355 778(554) 759(543) 00:01:20
c1908 708(535) 690(516) 00:02:38
c2670 1082(752) 1021(773) 00:02:37
c3540 1649(1288) 1571(1144) 00:34:18
c432 247(205) 212(165) 00:00:28
c499 776(554) 763(540) 00:01:26

c5315 2548(1731) 2425(1679) 00:07:16
c6288 4695(3337) 3720(3210) 00:31:28
c7552 3457(2312) 2516(1778) 00:22:24
c880 594(413) 589(416) 00:00:48
9sym 384(186) 227(178) 00:01:49
alu2 507(361) 355(279) 00:04:44
alu4 975(694) 776(596) 00:26:38

apex6 1074(743) 999(687) 00:02:36
apex7 331(245) 294(224) 00:00:14
dalu 1364(979) 1171(735) 00:44:02
frg2 1182(887) 1052(834) 00:05:46
pair 2356(1602) 2149(1509) 00:15:35
rot 928(672) 822(641) 00:01:45

term1 235(170) 183(131) 00:00:10
ttt2 303(219) 225(165) 00:00:24
vda 688(615) 630(566) 00:09:36
x1 409(298) 377(287) 00:00:31
x3 1101(787) 995(758) 00:03:48
x4 512(380) 482(357) 00:00:47

Table 3.8: Results for HANNIBAL after pre-processing with SIS (Sun Sparc 5)

64 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

Multi-Literal Implicants

The AND/OR graph based techniques to identify multi-literal implicants have been applied to
the problem of PLA factorization. This application is interesting because this task cannot be
accomplished in a satisfactory way by only using single-literal implicants.

PLA SIS-1.2 HANNIBAL
factorization (script.rugged)

results single multiple fixed settings best RL
run runs

name # conn. # conn. # conn. # conn. CPU # conn. # conn.
5xp1 369 164 159 79 0:01:58 78 237
9sym 609 320 206 152 0:17:00 83 609
clip 1055 195 187 110 0:10:24 90 520
con1 32 30 30 27 0:00:01 27 30
duke2 995 540 510 416 1:12:33 355 612
e64 2144 253 253 253 0:15:19 253 253

misex1 154 77 77 59 0:00:51 55 81
misex2 206 121 121 121 0:02:47 111 134

o64 195 - - 195 0:00:08 195 195
rd53 176 52 52 36 0:00:42 34 99
sao2 501 192 190 116 0:05:38 108 195
vg2 914 124 124 115 0:03:22 112 141

Table 3.9: Results for multi-literal implicants (Sun SPARC 5)

Table 3.9 shows results for two-level circuits from the MCNC benchmark set which are fac-
torized into a multi-level description. Since our implementation does not accept external don’t-
cares, we only selected examples that are completely specified. The results of HANNIBAL are
compared with SIS-1.2 (using resub -a, simplify -d followed by script.rugged). The area is mea-
sured in terms of connections based on a generic library of the basic gate types. For both tools
we show results for the same fixed settings (single run of script.rugged for SIS) and interactive
use (column “multi-run” for SIS and column “best” for HANNIBAL). Column “RL” shows the
results if only single-literal implicants (recursive learning) are used.

Implicants are determined by repeated enumeration as described in Section 3.6.1 without
actually building the graphs in memory. If the graphs are actually constructed, implicants can
be determined much faster by simple operations on the graph. Future implementations may
investigate appropriate trade-offs between memory and time (see also Chapter 6). An advantage
of the presented AND/OR trees is that they need not be constructed to their full size in order to
be useful. In these experiments, AND/OR trees have been examined only up to a recursion depth
of 3. This, however, proved sufficient to obtain the shown optimization results.

The experimental results confirm our conjecture that topological properties of AND/OR rea-
soning graphs can be used to guide an optimization process. In the examined cases HANNIBAL

3.7. DETERMINING A COVER 65

obtained (sometimes significantly) better optimization results than SIS-1.2. This also remained
true when we ran SIS interactively, repeating script.rugged multiple times.

Our experiments also demonstrate the practical relevance of the theoretical result in Theo-
rem 3.7 (page 43). This is illustrated by the MCNC benchmark circuit o64. This circuit is small,
nevertheless it is impossible to build an OBDD for this circuit. No literal in the circuit descrip-
tion appears in more than one product term (hence the SOP is unate) and all prime implicants
are essential. Therefore, optimization is impossible, either with two-level or with multi-level
optimization techniques. SIS-1.2 runs out of memory in both script.rugged and script.algebraic
after wasting about ten minutes of CPU time in each script. However, since the circuit is unate,
Theorem 3.7 applies. This explains why HANNIBAL has no problem with this example. The
AND/OR reasoning trees for this circuit are of linear size and of trivial structure. No MISTs
exist where several leaves belong to the same value assignment. Therefore, no promising impli-
cants can be generated. The fact that this circuit cannot be further optimized is determined very
quickly by the tool and only little CPU time is spent.

3.7 Determining a Cover

The techniques introduced so far allow us to calculate implicants in multi-level combinational
networks. We have proposed a general network transformation scheme to perform arbitrary
network manipulations and we have studied heuristics that help us to steer the implicant-based
transformations so that they optimize the network.

We do not, however, have a method that performs exact minimization of a multi-level com-
binational circuit. The absence of a structural constraint on the circuit representation as opposed
to the two-level case provides additional degrees of freedom that can be exploited in heuristic
procedures. On the other hand, due to the much greater search space, algorithms for exact multi-
level circuit optimization are of such high complexity that they are not of practical interest. Only
a few exact methods have been reported in the literature. For example, the method proposed by
Lawler [58] extends the Quine-McCluskey [73, 63] method to the multi-level case. The method
minimizes the number of literals in single-output multiple-level networks. It is based on a def-
inition of a multi-level prime implicant, i.e., a multi-level function � expressed in terms of the
primary circuit inputs which implies another function � to be 1. Note that this definition differs
from our definition of a network implicant because literals cannot be internal network nodes, and
implicants are multi-level factored forms. Given a fixed number of gate levels, Lawler’s method
finds implicants and a minimal cover of the circuit function. An ”absolutely minimal” form is
found by trying increasingly large number of levels until an aborting criterion is met and the best
solution found so far is taken. As in the Quine-McCluskey procedure, Lawler’s technique com-
putes prime implicants (based on his definition) and solves a covering problem to find a minimal

 -level representation of a Boolean function.

Although we are not interested in solving the minimization problem for multi-level circuits
exactly, the subproblem of finding a set of prime implicants repesenting a cover of a Boolean
function is of both, theoretical and practical interest. In this section we show how we can solve
a covering problem using AND/OR graphs. This algorithm fits nicely into the set of algorithms

66 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

developed so far and it is useful in the synthesis of structural set representations which will be
introduced in Section 3.8. Interestingly, using AND/OR reasoning techniques, the algorithmic
steps for finding a minimal cover are the same as the steps for finding prime implicants of a
Boolean function. Also, the heuristics used to find “good” implicants for heuristic multi-level
optimization, as discussed in Section 3.6.1, can be reused for a heuristic covering algorithm.
The reason for this analogy results from the fact that sums and products are dual concepts in

p

q

r

P
rim

ar
y

In
pu

ts

P
rim

ar
y

O
ut

pu
ts

m
n

o

l

s

u

t

Figure 3.27: Fragment of multi-level circuit

Boolean algebra. Consider the fragment of a multi-level combinational circuit in Figure 3.27.
The function at node � can be seen as being implemented by a (local) sum of products. OR
gate � is fed by two AND gates � and � representing implicants in a SOP. The function at � is
represented by a cover consisting of these two implicants � and � . On the other hand, the OR
gate � can be seen as the implementation of an implicate contributing to the cover of a POS-type
subcircuit at the AND node � . The cover of the function at � is composed of the implicates �

and � . So, the OR node � serves as a sum term of both, a SOP and a POS.
Using our definition of multi-level network implicants, we say that � and � are 1-implicants

of � . Also, using DeMorgan’s law, the OR node � can be seen as an implementation of the
complement of the product � � ' � which is a 0-implicant of function � .

In addition, � � is a 0-implicant of function � itself. This implicant has an important property:
its complement consists of 1-implicants of � that represent a cover of � . This relationship may
be trivial in this case because it is obvious from the circuit structure, but it can be generalized to
arbitrary 1-implicants.

Theorem 3.12 Let � be a function of a node in a combinational network and ��� ������� � a set
of product terms with literals belonging to complemented or uncomplemented variables of the
network. Let

�
be the disjunction of the product terms:

� ' � �
 �	�
 �����
 � � . Then, � is
functionally equivalent to

�
if, and only if, the � � are 1-implicants of � and

� ' � � �	������� � � is a
0-implicant of � . In this case,

�
is called a 1-cover of � .

Proof: see Appendix A, page 139

3.7. DETERMINING A COVER 67

The literals of the 0-implicant
�

in Theorem 3.12 are all complemented variables belonging
to the prime 1-implicants of the function. The expression

� ' � � �	� ����� � � is unate. This is
related to the well-known fact that the problem of finding a minimal set of implicants covering a
function is a unate covering problem.

The dual form of the above theorem relates a function to its 0-implicants (corresponding to
implicates). It can be formulated in the following way:

Theorem 3.13 Let � be a function of a node in a combinational network and ��� ������� � a set
of product terms with literals belonging to complemented or uncomplemented variables of the
network. Let * be the conjunction of the complements of the product terms: * ' ��� � �	� � ����� � � � .
Then, � is equivalent to * if, and only if, the � � are 0-implicants of � and * is a 1-implicant of � .
In this case,

�
is called a 0-cover of � .

The occurrence of complements in the conjunction of Theorem 3.13 comes from the fact
that our notations are biased towards the SOP form of functional expressions. Instead of defining
implicants (product terms) and implicates (sum terms) we have defined 0- and 1-implicants using
only products. Sum terms have to be converted to products using DeMorgan’s law. Nevertheless,
both types of expressions, conjunctive and disjunctive, can be described in these terms. And the
AND/OR graph-based methods operating on them are the same for both types.

Theorem 3.12 and Theorem 3.13 suggest the following technique for calculating a cover of
the function. Remember that a 1-cover corresponds to a 0-implicant whose literals belong to un-
complemented prime 1-implicants of the function. An AND/OR graph for the initial assignment
� ' � contains ISTs corresponding to 0-implicants of function � . By selecting appropriate ISTs
we can find the 0-implicants which represent a cover. Since we are interested in irredundant
covers, we identify minimal ISTs (MISTs) which correspond to prime 0-implicants.

The following steps determine a 1-cover of a function � at a node in a multi-level combina-
tional network.

1. Calculate a set of prime 1-implicants � ' �
� �����	� ������� ��� � � for function �

(using the techniques in Sections 3.4 and 3.5).

2. Construct AND gates representing these 1-implicants in the circuit.

3. Calculate a set of 0-implicants of � such that the literals belong to the
complemented variables � �����	� ������� ��� � of step 1. Each calculated prime
0-implicant represents an irredundant 1-cover for � .

If in step 3 we calculate all prime 0-implicants of function � , we obtain all irredundant 1-
covers of � which are composed of implicants in the set � . A prime 0-implicant with the least
number of literals corresponds to a minimum cover. The technique to determine a 0-cover of the
function works analogously.

Example 3.12 Figure 3.28 shows a circuit implementing the function � ' ���

��� � �
 * � and the AND/OR graph for an initial assignment � ' � . From the graph, all

68 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

b

a

c

f

g

y

a = 1 c = 0

{g = 0}

y = 0!

initial assignment {y = 0}

{f = 0}

b = 0a = 0

Figure 3.28: Example circuit and AND/OR graph for initial assignment
�
� '�� �

prime 1-implicants of the function in terms of the primary inputs can be determined
using the methods described in Section 3.4. The MISTs in the graph correspond to
the implicants ��' � � , � ')� * , and

� ')� * .

j = bc

i = ac

h = ab

b

a

c

f

g

y

Figure 3.29: Circuit with representation of 1-implicants

Representing these implicants as AND gates yields the circuit structure of Fig-
ure 3.29. Now we construct an AND/OR graph for the initial assignment � ' � in
the new circuit containing the implicant representations. These AND gates can also
become unjustified gates according to Definition 3.5. Therefore, the AND/OR graph
for the new circuit contains additional levels. The AND/OR reasoning explores the
different possibilities for the function to become 1, thereby enumerating all con-
figurations of implicants that cover the function. The AND/OR graph is shown in
Figure 3.30. (For reasons of space, the enumeration of the unjustified line � in re-
cursion level 0 is not depicted.)

The bold lines in the graph mark a MIST corresponding to prime 0-implicant � � .

3.7. DETERMINING A COVER 69

h=0 j=1a=1 c=1 i=1

{h=0} {j=0}

j=0 c=0 a=0 h=1 i=0h=1 a=0 i=0

{h=1} {j=1}

j=1 c=1

i=0 a=0 h=1 i=1 a=1 h=0

initial assignment {y = 1}

a=1 c=1 h=0 i=1
j=X!

g = 1!f = 1!

{j=0} {j=1}

b=1

j=X!h=X!

{i=1}{i=0}

y = 1

{b=1}{a=1}

b=1j=1b=0j=0

Level 0

Level 2

Level 3

Lvl 1

Figure 3.30: AND/OR graph for initial assignment
�
� ' �
� in circuit of Figure 3.29

This 0-implicant corresponds to a minimum cover: � ' � �
 � * . The following
observations can be made.

� The cover can be identified without visiting the complete graph. A maximum
recursion level of 2 and a restriction to one of the two unjustified lines � and �
would be sufficient in this example.

� The 1-cover ISTs in the subgraph rooted at � ' ��� can only be chosen such that
��'�� and � ' � are contained. These correspond to essential prime implicants.
They are part of any cover. (They are part of any cover that can be determined
from the shown subgraph. The subgraph rooted at � ' ��� which is not shown
in the figure has a symmetric structure. No other MISTs exist so that � and �
are indeed essential primes.)

As seen in the example, AND/OR graphs provide an interesting technique to determine a
minimum cover of a function � consisting of prime implicants in multi-level networks as defined
in Section 3.4. The topological analysis of the AND/OR graphs identifying implicants is the
same as the analysis determining the cover. The resulting solution is exact, if the AND/OR
graphs are traversed exhaustively.

Also, AND/OR graphs are very well suited for a heuristic approach to find a minimal cover.
It is not necessary to visit the complete graph in order to find a solution. In the first step of
the procedure outlined above, we do not need to determine all prime 1-implicants (which can
be a number growing exponentially with the number of input variables). We only need a set of
implicants such that a disjunction of all implicants found represents a cover. This is possible
without visiting the complete AND/OR graph for the initial assignment � ' � . In the third step
of the above procedure, we do not need to determine all prime 0-implicants to find a minimal

70 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

cover. Again we can restrict AND/OR reasoning for the initial assignment � ' � to a limited
number of recursion levels.

3.8 Implicant-Based Set Representations

The previous sections have introduced AND/OR reasoning graphs for determining prime im-
plicants in multi-level combinational networks. This concept has allowed us to formulate an
approach to multi-level optimization as a natural generalization of well-known algorithms for
two-level circuits. This is theoretically very appealing, because it permits for the first time the
unified view on two-level and multi-level optimization algorithms. Furthermore, our experimen-
tal results clearly show the practical usefulness of the proposed approach.

The main focus of this thesis, however, is a different application: the verification of sequential
circuits. Remember that the output of sequential systems does not only depend on the current
input but also on the internal state of the system. This internal state is a result of previous inputs
to the system. A large sequential circuit can assume a tremendous amount of internal states.
The states are encoded as binary bit vectors corresponding to signal patterns being stored in the
memory elements of the circuit. Representing large sets of states is one of the main problems in
sequential circuit verification.

In the following sections it will be shown that the concept of an implicant in a multi-level
combinational circuit can also be very useful for implicitly representing large state sets. This
forms the basis for the structural FSM traversal introduced in Chapter 4.

3.8.1 Characteristic Function and Cap Circuit

When using Boolean techniques, sets of bit vectors can be represented using the concept of the
characteristic (Boolean) function [26, 91] of the set. The following definition is taken from [91].

Definition 3.14 (Characteristic Function) Let � be a set and
� � � . The characteristic func-

tion of
�

is the function ����� � � �%� �
� �	��� defined by ��� � �%� ' � if ��� �

, ��� � �%� ' � otherwise.

When considering the state space of a sequential circuit the set � is equal to � � ' �
� �	��� �

and is the set of all
� � combinations of binary value assignments to a vector � of
 Boolean

variables (“bit vector” or “bit pattern”). In Chapter 4 these variables are referred to as “state
variables” and the bit patterns correspond to the “states” of the sequential circuit.

�
is a set of

such states. The characteristic function ��� evaluates to 1 for every state in
�

and to 0 for every
state not in

�
. In other words, the patterns in

�
define the ON-set of function ��� .

Such a representation for a set is convenient, because it is a scalar function of
 variables and
can efficiently be represented and manipulated as a BDD. This concept forms the basis for many
state-of-the-art algorithms used in optimization and verification of sequential systems. In these
applications, large sets (e.g., sets of don’t-care conditions, sets of states, transition relations) are
represented not explicitly but “symbolically” by their characteristic functions. We will discuss
these issues in some more detail in the next chapter.

3.8. IMPLICANT-BASED SET REPRESENTATIONS 71

Since the algorithms developed so far operate on combinational networks, it is worthwhile
investigating how to represent sets of bit vectors in a structural form as gate netlists.

Of course, the characteristic function �
�

of a set
�

of vectors � ' � � ��������������� ���	� � can also
be represented as a combinational network (Figure 3.31). This is called cap circuit in the sequel.
The cap circuit has a single output which is associated with the characteristic function of the

x1

x2

xn

χ
x

"cap circuit"

χ

Figure 3.31: Circuit representation of a characteristic function

set
�

. For every combination of value assignments at the inputs � � representing a vector of the
set the output � assumes the value 1. For every vector not in the set the output � is 0. The cap
circuit implements the ON-set of function �

�
.

How can we use this kind of set representation? Consider, for example, the application of op-
timizing a network under the assumption that don’t care conditions exist for the primary inputs.
The Boolean input space can be divided into two sets of vectors, the care set and its comple-
ment, the don’t care set. We can represent, e.g., the care set by a cap circuit implementing its
characteristic function and attach it to the primary inputs of the network as shown in Figure 3.32.
The output � of the circuit evaluates to 1 whenever an input vector is applied that belongs to the

χ
x

1y

2y

ym

y3

x1

x2

xn

combinational
circuit

C

"cap circuit"

χ = 1!

Figure 3.32: Circuit with don’t-care set represented by cap circuit

care set, and to 0 if the vector belongs to the don’t-care set. When optimizing the network � , we
calculate implicants for internal nodes. In order to take the don’t care conditions into account, we
simply add the assignment � ' � to the initial set of value assignments passed as arguments to
procedure and or enumerate(). Value assignments belonging to the don’t-care input space then
produce a reasoning conflict and are excluded from the implicant calculation. In this way, we
have effectively restricted the reasoning to those areas of the search space corresponding to the
care set.

72 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

3.8.2 Controllability Don’t Cares and Tap Circuit

There is another possibility to structurally represent a set. It does not require an additional value
assignment during AND/OR reasoning and has the advantage that it allows us to exploit structural
circuit properties more easily when performing sequential equivalence checking as we will see
in later chapters.

Consider a circuit with � inputs and
 outputs implementing a function �
�

defined as follows:

Definition 3.15 (Tap function) Let
� � � � be a non-empty set of
 -bit patterns. A function �

� �
� � � �%� �

is called tap function of
�

. A circuit as shown in Figure 3.33 with � input variables
and
 output variables implementing this function is called tap circuit.

t 1
t 2
t 3

t k

τx

"tap circuit"

x1

x2

xn

Figure 3.33: Set representation by the output range of a tap circuit

The set
�

is given by the set of vectors this circuit can produce at its outputs, i.e., it is deter-
mined by the range of the
 -output function �

�
. Note that for the purpose of representing set

�
,

we are actually not interested in the functional relationship between specific input patterns
�

and
the output response � of the tap circuit. We only care about the set of possible output vectors,
that is, the range of tap function �

�
. For a given set of vectors to be represented, arbitrarily many

functions �
�

with an arbitrary number � of input variables can be found that have this set as their
range. Obviously, if there are
 variables forming the output vector � ����������� ���	� � , there always
exists a �

�
with � �
 input variables � � � ������� � �

� � that has the set
�

as its range. The reason
is that there are at the most

� � vectors to be represented, each of which can be the image of a
minterm of �

�
. Therefore, we need a domain of no more than

� � points in the input space of �
�
,

so that � �
 input variables are sufficient.
To see how a tap circuit can be used to represent a set of vectors, consider again the example

of optimizing a combinational circuit exploiting don’t cares. We connect a tap circuit as shown
in Figure 3.34 to the primary inputs of the combinational circuit being optimized. All reasoning

1y

2y

ym

y3

x1

x2

xn

t 1
t 2
t 3

t k

τx

combinational
circuit"tap circuit"

C

Figure 3.34: Circuit with don’t-care set represented by tap circuit

3.8. IMPLICANT-BASED SET REPRESENTATIONS 73

performed in circuit � implicitly uses the don’t-care conditions given by circuit �
�
. Any com-

bination of value assignments at the inputs � � which cannot be produced by �
�

produces a logic
inconsistency. In this case, the don’t care set is represented by the complement set of the range
of �

�
. When deriving implicants for network transformations, no additional value assignments

have to be made to incorporate the don’t-care set into the reasoning.
Note that a tap circuit is a very “natural” representation of a don’t-care set: external don’t

cares in practical circuits often arise from the fact that the surrounding logic cannot produce
certain vectors. This environmental logic in the transitive fanin of a considered logic block
acts as a tap circuit. In multi-level logic optimization, a standard technique is to calculate the
controllability don’t-care set (CDC) of an internal logic block of a circuit which can then be used
to simplify succeeding logic in the transitive fanout of the block. Since the controllability don’t
care set is the complement set of the range of a multi-output function, some approaches indeed
use BDD-based image and range computation techniques to calculate the don’t-care sets. See,
e.g., [67] for an overview of these methods.

3.8.3 Synthesis of Set Representations, Stub Circuit

How are these two types of set representations related to each other? Consider a tap circuit and a
cap circuit, both representing the same set of vectors

�
. The set

�
is equal to both, the range of

the tap function �
�
, and to the ON-set of the characteristic function �

�
. To study the relationship

between both circuits, we connect them such that the outputs of the tap circuit are the inputs of
the cap circuit as shown in Figure 3.35.

t 1
t 2
t 3

t k

τx

"tap circuit"

x1

x2

xn

χ
x

"cap circuit"

χ = 1

Figure 3.35: Tap and cap circuit representing the same set, combined

Obviously, since the characteristic function evaluates to 1 for every pattern being an element
of the set

�
, and the tap circuit produces only patterns from

�
, the output � in Figure 3.35

is constant 1. (A practical example for such a construction is the miter circuit introduced in
Section 3.1. The two designs under comparsion with their inputs connected form the tap circuit.
The two sets of outputs form the vector � , and the output 	 of the XOR tree is associated with
the complement of the characteristic function �

�
. For equivalent designs, ��' 	 is constant 1).

The
 -output function �
�

and the single output function �
�

have an interesting relationship:

Lemma 3.14 Consider a function �
�

with
 primary outputs � � and a range set
�

for the output
vectors, a corresponding function �

�
of
 primary inputs � � which represents the characteristic

function of the set
�

, and a product term � of � literals corresponding to complemented or
uncomplemented variables � � . Every such product term which is a prime 0-implicant of �

�

74 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

corresponds to one prime 0- or 1-implicant of each of the � outputs � � of �
�

appearing in � .
Analogously, every product term which is a 0- or 1-implicant of an output � � of �

�
corresponds

to a 0-implicant of �
�
.

Proof: see Appendix A, page 140

The rule for converting a 0-implicant � of �
�

into an implicant � of an output � � of �
�

can
be extracted from the the above proof. The output � � appears as literal

� � the product term � in
complemented or uncomplemented form. The implicant � of � � is obtained by simply removing
the literal

� � from the product term � , i.e., it is
� ��� � ' � . If

� � ' � � then � is a 0-implicant of � � .
If

� � ' � � then � is a 1-implicant of � � . For example, if � ')� � * is a 0-implicant of �
�

then � � is
a 1-implicant of * , � * is a 0-implicant of � and � * is a 0-implicant of � .

This immediately leads to possible techniques for synthesizing one set representation from
the other. If we have a tap circuit, we can calculate all prime 0-implicants and all prime 1-
implicants of every primary output function of the tap function �

�
. Each of these implicants is

converted into a 0-implicant of the characteristic function, and added to the OFF set of �
�
. We

obtain a two-level POS-type description for the cap circuit which can be minimized or factorized
into a multi-level circuit.

The opposite conversion is more difficult. We have the characteristic function �
�

of a set
�

and would like to find a tap function �
�

repesenting the same set
�

. Similarly as above, we are
able to calculate all 0-implicants of �

�
and convert them to 0- or 1-implicants for outputs of �

�
.

However, these implicants are product terms whose literals correspond to other primary outputs.
To construct a tap circuit, we need to find a functional representation between an auxiliary input
vector

�
and the output vector � such that the derived implicant relationships among the output

variables exist. The number of possible functions �
�

is unlimited, because we may allow an
arbitrarily large number of input variables and find a function that has set

�
as its range. To

narrow the search space, we add some additional constraints in our definition of a tap function �
�
.

Definition 3.16 (Stub function) Let
� � � � be the set of
 -bit patterns which can be produced

at a vector of variables, � . The function �
� � � ��� �%� � � is a special tap function for

�
with the

following properties
a) �

� � � � ' � if � � �

b) �
� � � � ' � with � � �

if � �� �

and is called a stub function of
�

. A circuit with
 input variables and
 output variables
implementing this function is called stub circuit.

A stub function is a special case of a tap function. It has the same number of input variables
as output variables. A stub circuit implementing this function works as a “pattern sieve”. Every
pattern applied at the inputs which is in the set

�
to be represented goes through unchanged.

Every pattern which is not in the set
�

is modified such that a pattern from
�

appears at the
outputs of the stub circuit. Thus, the stub function �

�
maps the OFF set of the characteristic

function �
�

onto its ON-set.
Corresponding input variables and output variables of a stub circuit have a similar meaning,

because for all patterns in
�

an output � � has the same value as its corresponding input
� � . For

3.8. IMPLICANT-BASED SET REPRESENTATIONS 75

patterns not in
�

, at least one output � � must have a different value than its corresponding input
� � .

To create such a behaviour, we can use the 0-implicants of the characteristic function which are
0- or 1-implicants for output variables � � . Whenever a pattern is applied to the stub circuit which
is not in the set

�
, some implicant of some output � � is “activated” such that � � has the opposite

value as
� � . The corresponding bit in the pattern is complemented by the implicant. This is the

basic mechanism of the procedure shown in Table 3.10. However, special care must be taken
such that the patterns obtained by this bit complementation do belong to the set

�
.

synth stub(x, �
�
)�

/* x is a vector of n variables xi */
/* �

�
is a characteristic function on x representing a non-empty set A */

initialize C as a circuit with n inputs named ti and n outputs named xi,
with corresponding inputs and outputs connected: xi = ti;

determine a set S of prime 0-implicants representing a cover of �
�
;

p := 1; /* product term describing mapping subspace */

for i := 1 to n�
if (p � xi is a 0-implicant of �

�
)

li := xi;
else

li := xi;

I := the set of all prime implicants from S
which represent prime 1-implicants of li:

convert implicants in � to implicants of xi;
modify � by adding these implicants to the function of xi;

S := S � I;
p := p � li;

�
redundancy removal in C;
return C;

�

Table 3.10: Synthesizing a stub circuit from a characteristic function

The procedure synth stub() works in the following way. The arguments passed to the proce-
dure are a vector of variables, � , and a characteristic function, �

�
, of a non-empty set

�
. (Note

76 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

that an empty set cannot be represented by a stub circuit). Let us call the patterns in
�

correct pat-
terns, and the patterns not in

�
wrong patterns. The procedure returns a circuit � implementing

a stub function �
�

for
�

.
The stub circuit � is initialized with
 inputs and
 outputs such that each output � � imple-

ments the identity function of its corresponding input
� � . From the characteristic function �

�
a set

of prime implicants � covering the 0-minterms is determined. These implicants are converted to
implicants for the primary outputs � � of � . In case �

�
is represented by a cap circuit, the methods

described in section 3.7 can be used to determine a cover.
The for loop considers one output variable after the other. For each variable � � , either all

prime 0-implicants of � � or all prime 1-implicants of � � are determined and implemented. Con-
sider the case where the 1-implicants of � � are determined and added to the function of � � .
Whenever a wrong pattern is applied to the stub circuit that has � � ' � , it either belongs to a
prime 1-implicant of � � or it belongs to an implicant that is independent of � � . In the former
case, the 1-implicant forces the output � � to become 1. In the latter case, the pattern cannot be
corrected using variable � � . It has to be corrected by one or more of the remaining variables.
Therefore, the implicants implemented for the remaining variables are expressed in terms of the
current output variables � � (and not the auxiliary input variables

� �). This is an important detail
which is crucial for the correctness of the stub function.

In each step of the for loop, the wrong patterns in a certain subspace of the Boolean input
space of �

�
are mapped to a remaining mapping space which becomes smaller with every it-

eration. In each step, it must be guaranteed that there still exist 1-minterms (correct patterns)
in the remaining mapping space to which the wrong patterns can be mapped. This is checked
using a product term � that describes the mapping subspace remaining after each iteration. If the
subspace to which wrong patterns are to be mapped contains no 1-minterms the product � � � �
must be a 0-implicant of �

�
. (Note that in this case the product � � � � cannot be a 0-implicant

either, otherwise � itself would be a 0-implicant of �
�
which means that the check in the previous

iteration � � � ��� had returned a wrong result).
Whenever a 0-implicant � in the cover � is implemented, all wrong patterns that belong to �

are corrected. The order in which these implicants are implemented as 0- or 1-implicants of the
primary outputs � � of the stub circuit guarantees that the patterns produced by the circuit are
correct even if several bits are complemented.

Note that depending on the 0-cover � determined from �
�

it is possible that the resulting stub
circuit contains redundancies which can be removed before returning the result. The following
example illustrates how a stub circuit can be generated from a characteristic function �

�
using

procedure synth stub() of Table 3.10.

Example 3.13 Consider the characteristic function �
�

of the following set of values
for the vector � ' ����������*"� � � : � ' �

� � � �$� � ��� �$� � ��� � �	��� � �$�	��� ��� � . Figure 3.36
shows a Karnaugh map of �

�
. The prime 0-implicants of �

�
are: � � , � * , � � , � * ,

� � , * � . The implicants � ' � � � , � * , � � � represent a cover of �
�

as illustrated in
Figure 3.36.

In the for loop, we start with variable � . We check whether it is impossible to derive
1-implicants, i.e., whether the subspace to which wrong patterns would be mapped

3.8. IMPLICANT-BASED SET REPRESENTATIONS 77

d

c

a

b

0

2

5

9 1213

15

7

11 14

6

4

3

1

10

8

0

0

0

0 0

0 0

0

0 00

111

1

1

Figure 3.36: Characteristic function �
�

and a 0-cover

contains no 1-minterms of �
�
. This is done by testing whether � � � ' ��� � ' � is

a 0-implicant of �
�
. This is not the case, so we may derive the prime 1-implicants

of � . The only prime 1-implicant found is * . (It corresponds to the 0-implicant ��*
of �

�
, encircled in Figure 3.37). We implement this implicant, remove it from the

list � and set the product term describing the remaining mapping space to � ' �
(shaded grey in Figure 3.37).

d

c

a

b

0

2

5

9 1213

15

7

11 14

6

4

3

1

10

8

0

0

0

0 0

0 0

0

0 00

111

1

1

Figure 3.37: Prime 1-implicant of � : *

d

c

a

b

0

2

5

9 1213

15

7

11 14

6

4

3

1

10

8

0

0

0

0 0

0 0

0

0 00

111

1

1

Figure 3.38: Prime 0-implicant of � : �
We continue with variable � . Again we check whether it is possible to implement
prime 1-implicants by testing whether � �+��')� � corresponds to a 0-implicant of �

�
.

This time there are indeed no 1-minterms of �
�

in this subspace. Therefore, we have
to use the prime 0-implicants of � . From � we obtain the implicant � as indicated in
Figure 3.38. The remaining mapping subspace is described by � ' � � (shaded grey
in the figure).

The next variable is * . The product � � * ' � � * is not a 0-implicant of �
�
, so we

may determine prime 1-implicants of * . However, there are none. (* has only 0-
implicants: � , � , �). We need not implement any implicant, hence any value at the
* -input of the final stub circuit propagates unchanged to the * -output. The remaining
mapping subspace is set to � ')� � * .

78 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

d

c

a

b

0

2

5

9 1213

15

7

11 14

6

4

3

1

10

8

0

0

0

0 0

0 0

0

0 00

111

1

1

Figure 3.39: No prime 1-implicants of *

d

c

a

b

0

2

5

9 1213

15

7

11 14

6

4

3

1

10

8

0

0

0

0 0

0 0

0

0 00

111

1

1

Figure 3.40: Prime 0-implicant of
�
: �

For the last variable,
�
, the product ���

� '�� �+* � is a 0-implicant of �
�
, so that we need

to derive 0-implicants of
�
. There is only one implicant left in � : � is a 0-implicant

of
�
. We implement this implicant. The final stub cicuit is shown in Figure 3.41.

t a

t b
t c

t d

a

b

c

d

Figure 3.41: Stub circuit derived for characteristic function of Figure 3.36

3.8.4 Existential Quantification

Using procedure synth stub() we can calculate a stub circuit from a characteristic function �
�
.

This allows us to synthesize a stub circuit from a cap circuit such that both represent the same set
of patterns,

�
. In addition, we are now also capable of synthesizing a stub circuit from an arbi-

trary tap circuit, using the concept of a characteristic function. This is very interesting, because
it allows us to reduce the complexity of a set representation. Consider a tap circuit representing
a set

� � � � which has � inputs with ���
 . Since we are not interested in the functional
relationship between input patterns and output patterns but merely in the question which patterns
exist in

�
and which do not, generating a stub circuit with
 inputs helps us to get rid of unneeded

information and to significantly reduce the complexity of our set representation. In some sense,
this operation can be understood as a way of performing existential quantification, which is a
fundamental operation in conventional image computation and FSM traversal algorithms.

When performing this existential quantification using procedure synth stub(), we actually do
not need to explicitly represent the characteristic function of the range of the tap circuit. All 0-
implicants of �

�
can be determined as 0- or 1-implicants of the primary outputs of the tap circuit

according to Lemma 3.14 (page 73). In the pseudo-code of the procedure, � is not required to

3.8. IMPLICANT-BASED SET REPRESENTATIONS 79

be a minimal cover of the 0-minterms of �
�

(although a non-minimal cover produces a larger
stub circuit than a minimal one). A cover can be obtained by determining all 0-implicants or all
1-implicants of each primary output � � . This can be done on-the-fly when iterating through the

 primary output variables in algorithm synth stub().

t 1
t 2
t 3

t k

τx

"tap circuit"

x1

x2

xn

t 1
t 2
t 3

t k

τx

"tap circuit"

x
σ

x1

x2

xn

1c

2c

nc "stub circuit"

cut line

decompose

Figure 3.42: Existential quantification by decomposition and cut

Consider the tap circuit in Figure 3.42. When generating the stub circuit �
�

as described
above, the concatenation of both, the tap circuit and a stub circuit representing the range of the tap
circuit yields a circuit that is equivalent to the original circuit. The tap circuit shown at the top of
Figure 3.42 is equivalent to the circuit represented by the dashed box shown at the bottom. When
the stub circuit is being derived using procedure synth stub(), adding implicants to the functions
of the outputs � � is a transformation preserving equivalence of the combined circuitry. Therefore,
the synthesis of the stub circuit can also be seen as a functional decomposition of the tap circuit
into the two components shown. Then, cutting through the circuit along the indicated cut line
between the components performs the existential quantification operation. The functionality of
the original tap circuit is lost. Only the range of the circuit remains, represented by the stub
circuit.

This structural approach to existential quantification plays an important role in the structural
FSM traversal to be described in the next chapter. For an example of existential quantification
based on the above decomposition and cut, see Example 4.2 in Section 4.4 (page 93).

80 CHAPTER 3. REASONING IN MULTI-LEVEL NETWORKS

Chapter 4

Structural FSM Traversal

The research described in this thesis has the goal of setting up a framework for formal verification
of sequential circuits which is based on structural techniques rather than conventional symbolic
techniques. The key problem in sequential verification is reachability analysis which is associ-
ated with a traversal of the state transition graph of a finite state machine. This chapter treats
the questions of how structural approaches to reachability analysis and FSM traversal can be
formulated and how the notions and concepts describing conventional techniques for sequential
verification are related to the concepts of structural FSM traversal.

The chapter begins with an examination of the problem of checking the equivalence of two
sequential circuits, which is a typical application of FSM traversal. It introduces the basic idea
for a sequential equivalence checking algorithm based on a time frame expansion of the product
machine. (This algorithm will be further developed in Chapter 5). The nature of the underlying
FSM traversal will be analyzed theoretically, and, based on this analysis, an exact algorithm
for structural FSM traversal will be formulated making use of the implicant-based synthesis
techniques developed in the previous chapter.

4.1 Introduction

In the introduction to Chapter 3 it was explained how structural techniques like implicant-based
network optimization can be effectively applied to combinational equivalence checking using
a so-called miter circuit. The question arises of how these techniques can be extended to be
applicable to the verification of sequential circuits.

A sequential circuit is composed of memory elements such as latches and registers and com-
binational circuitry implementing state transition and output functions. We model a sequential
circuit by a Finite State Machine (FSM). A finite state machine � is described by a 6-tuple
� ' � � � � ����� � � ��� ���,� where � is the input alphabet, � is the set of states, � ��� 	 � �%� � is the
next-state function, � � is a set of initial states, � is the output alphabet and � � � 	 � �%� � is
the output function. For simplicity we restrict our discussion to a single initial state � � ' �

�
� � .

However, a set � � containing several initial states can be treated in a similar way.
A sequential circuit implementing such a finite state machine has a set of (primary) inputs � ,

81

82 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

a set of (present) state variables � which are fed by registers, a set of next-state variables �

providing the input of the registers and a set of (primary) output variables � .
We use the following notion of equivalence. Two sequential circuits

�
and � are considered

equivalent if their reset states are equivalent. This means that both machines produce the same
output values for every possible input sequence if they both start in their respective initial states.
In this thesis we assume that either the initial state (or a set of initial states) is known for each
machine, or an initializing sequence is given to bring the circuit into a well-defined state after
power-up.

Based on the concept of reset equivalence, we can reformulate the sequential equivalence
checking problem using a miter construction as introduced for combinational equivalence check-
ing in Chapter 3. Figure 4.1 shows a miter circuit constructed for two sequential circuits

�

and � . Just like in the combinational miter of Figure 3.1, corresponding inputs of the designs
are connected and corresponding outputs are checked by a comparator with output 	 . In standard

t

t

B

e

A

x

s

s

x

x

y

z

y

z

Figure 4.1: Miter circuit of designs
�

and �

literature [39], this construction is called product machine for equivalence checking of the two
FSMs

�
and � . The name emphasizes that the state set � of the composed machine is given by

the product � '
� � 	 ��� of the state sets � � and ��� of the individual machines.
Our goal is to use the combinational techniques developed in Chapter 3 for this product

machine. The idea is to use a time frame expansion model of the product machine in order to
be able to consider transformations across register boundaries. We expand the sequential miter
into time frames by breaking up all feedback loops and by replicating the combinational logic
for each clock cyle being considered, as shown in Figure 4.2. Each time frame is a copy of the
combinational logic implementing the transition function �$��� ��� � and output function � ��� ��� � of
the FSM. The circuit structure obtained by this time frame expansion is a purely combinational
structure called iterative circuit array or miter array. There are no storage elements. Instead, the
values of the state variables of the product machine at different points in time are associated with
signal values in different time frames of the iterative circuit array.

In this construction it becomes more obvious why the sequential equivalence checking prob-
lem is much harder than combinational equivalence checking. To prove that the designs are

4.1. INTRODUCTION 83

t+1 t+2

t+2t+1

t

t

t+1

t+1t+1

t+1
t+1

t+2t+2

t+2 t+2

t

t

t

t
t

t

t

t
t

t+2

t+2

t+2
t+2

t+2t+1

t+1

t+1
t+1

0? 0?0?

z t-1

z t-1

t

t t+1

t+1 t+2

t+2 t+3

t+3

z z

zz

x x

xx

x

x

x

s

y x

s

yx

s

y

z

s

y

z

A

s

y

s

y

BB

A

B

A

Figure 4.2: Iterative circuit array of product machine for equivalence checking (“miter array”)

equivalent, we have to show that output 	 is 0 in every time frame for
� ' �$�	� � � � � ������� after the

machines have been initialized, for any sequence of input values � � . We start our combinational
comparison at

� '�� by assigning the values of the initial state to the state variables and forward
imply the constant values. The circuit array can then be simplified by removing all constant
nodes. We can now traverse the iterative circuit array by combinational techniques that in each
time frame check whether or not a constant 0 is obtained at the output of the comparator.

The Boolean functions associated with the state variables between time frames in the miter
array represent the states of the product machine at a specific point in time for a given input
sequence. When moving from time frame to time frame to check the validity of 	�' � we are
exploring the state space of the product machine. Since the number of states in the machine is
finite we can stop this procedure after a finite number of time frames when we are sure that all
possible states have been considered. However, without any additional concepts we can stop only
after we have traversed

� � time frames where
 is the number of state variables of the product
machine. This is impractical for all but the smallest designs. Fortunately, often the sequential
depth of finite state machines is much smaller and all legal states can be reached after a relatively
small number of clock cycles for many practical circuits. Additionally, the number of reachable
states in the product machine of two designs

�
and � is usually much smaller than the total

number of states in the state space � '&� � 	 ��� . Obviously, we can finish the verification
process at a time

�
fix if we know at

�
fix that no states of the product machine are reachable in later

time frames that have not been reached before. How such a point in time
�

fix can be determined
will be the subject of Section 4.3.

Reachability analysis, i.e., determining the set of states � which are reachable from a given
set of initial states � � is a fundamental problem in formal verification of sequential systems. A
given property has to be checked for all states that can possibly occur in a system. For example,
in sequential equivalence checking the property to be verified is the comparator output 	 being 0
in all states reachable from the initial states. Reachability analysis requires traversing the state

84 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

transition graph of an FSM, this is also called FSM traversal. Before discussing how FSM traver-
sal can be performed using an iterative circuit array, we take a look at the standard techniques
which to-date are based on the use of binary decision diagrams.

4.2 Symbolic FSM Traversal

For the purpose of calculating the set of states reachable from a set of initial states, we can neglect
the output function � of the FSM. It is sufficient to consider the so-called finite state transition
structure (FST) corresponding to the FSM given by

� ' � �,��� ����� � � � .
Viewed in terms of the state transition graph (STG) of the FST, the task of reachability

analysis is to determine all nodes (states) to which a path starting at nodes in � � (initial states)
exists. In standard (BDD-based) verification methods this task is usually accomplished by a
breadth-first search starting at the initial states, as shown in Table 4.1. The procedure computes

reachable state set(� , S0)�
t := 0;
Rt := S0; /* initial state set */
loop�

Rt+1 := Rt � img(� , Rt);
if (Rt+1 = Rt) /* fixed point reached */

break;
t := t + 1;

�
return Rt;

�

Table 4.1: Forward FSM traversal using breadth-first search

the set of reachable states using image computations. The image of a set of states � is the set
of next states for each state in � considering all possible transitions for all possible inputs to the
machine as given by the next state function � . Viewed in the state transition graph, the image
of a set of nodes � is the set of immediate successors of all nodes in � . Beginning with the set
of initial states, � ' � � , the state set � is iteratively augmented by the set of all its immediate
successor states using the image operation. This process is repeated until the set � represents a
fixed point under the image given by � .

In BDD-based verification methods, see, e.g., [26, 91, 15], sets are represented implicitly
using characteristic functions (see Definition 3.14 on page 70) which are in turn represented as
BDDs. Using this approach large sets of states can be represented and manipulated simultane-
ously and implicitly. Also, sets of state transitions can be represented in this manner. A BDD is

4.2. SYMBOLIC FSM TRAVERSAL 85

used to represent the characteristic function of a transition relation. An element of the represented
set is a triple � � ��� � � � representing a single transition in the FST from state � to state � under the
input � as given by the transition function � . The characteristic function of the transition relation
is defined by

� ��� ��� � � � '
� � ��
� � � � ��� � � � ��� ��� � �

where
 is the number of state variables. It evaluates to 1 for every triple ��� ��� � � � that represents
a valid state transition in the FST. Using the transition relation we can now calculate the symbolic
image of a set of states � . By forming the conjunction of the characteristic function � ��� � of � and
the transition relation we obtain a function � ��� ��� � � � that evaluates to 1 for every triple ��� ��� � � �
that represents a valid state transition in the FST from a state in the set � :

� � � ��� � � � ' � ��� ��� � ��� ��� � � �
We are, however, not interested in the functional relationship between states in � and their

successor states. We need a characteristic function of only the vectors � that are members of
valid transitions described by � ��� ��� � � � . This can be obtained using a Boolean operation called
existential quantification. Given a function of � variables � � ��� ������� ��� � � , the existential quan-
tification of � with respect to � � is �

��� � ' � � ��� �	�
 � � ��� � �
where � � ��� �	� and � � ��� � � denote the negative and positive cofactors of � with respect to � � . Given
this operator, we can now formulate image computation based on characteristic functions by

� � � � '
�
�
�
� � ��� ��� � ��� ��� � � �

Here, � � � � denotes the characteristic function of the image of a set of states, � , which in turn is
represented by � ��� � .

Existential quantification can be efficiently implemented as a BDD operator, so that the for-
ward FSM traversal in Table 4.1 can be executed completely symbolically. By performing the
existential quantification on the BDD representing � ��� ��� � � � as given above, the abstracted vari-
ables are removed from the BDD which can significantly reduce its complexity. Although huge
numbers of states can be represented and manipulated using BDDs, for many larger finite state
machines reachability analysis cannot be completed because of complexity reasons. The major
problems are peak BDD sizes during image computation and the size of the BDDs representing
the reachable state sets. Several improvements address these problems in different ways. Find-
ing a good variable ordering ([45, 80]) improves the efficiency of the BDD representations in
order to increase the size of the problems that can be handled. Targeting reachability analysis,
in many works divide-and-conquer approaches are used which decompose, partition or reencode
the FSM, the set of reached states or the transition relation (e.g., [19, 17, 18]). A complementary
approach is to use state space approximations on designs which are too large for an exact reach-
ability analysis (e.g., [21, 75]). Despite all improvements made in the past, for many circuits of
practical size reachability analysis still remains a severe problem. This has motivated our search
for alternative forms of representation and algorithms.

86 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

4.3 FSM Traversal by Time Frame Expansion

In this section we examine how the state transition graph of a finite state machine is traversed
using a time frame expansion as shown in Figure 4.2. When speaking of the states reached by a
time frame expansion model of an FSM, we mean the set of vectors that can be produced by the
iterative circuit array at the state vector � � of a given time frame

�
. In the FSM being modelled as

circuit array this set of reachable states � � � � corresponds to the set of states which the machine
can assume when considering all possible input sequences of length

�
.

Definition 4.1 (Reachable state set) The set of all states, � � � � , being possible in an FSM at a
specific time

�
after initialization is called reachable state set at time

�
.

Note that � � � � contains only the states that are reachable exactly at time
�
. This is different

from the understanding of the reachable state set � � in conventional FSM traversal, e.g., as used
in Table 4.1. There, � � refers to all states that can be reached at some time

� � , with
� � � �

.
Obviously, the sets of states that can be produced by the iterative circuit array of Figure 4.2 at
the state variables � � � � � � � � � � � � ������� are the sets of reachable states � � � ����� � �
 �"����� � �
 � ��������� ,
respectively. Since this time series � � � � differs from the sequence of sets � � of a conventional
FSM traversal, it is of interest to examine the nature of this series. The questions we are interested
in and which will be answered in this section are:

� How is the state transition graph of an FSM traversed by the sequence of sets, � � � � ?
� What is the convergence behaviour of � � � � ?
� How can a point in time,

�
fix, be determined for which it is guaranteed that all states reach-

able from the initial state have been visited?

The main difference between this FSM traversal and a conventional FSM traversal is the fact
that after the set of new states � � �
 �"� has been calculated in each iteration (given by a new
time frame) no union is formed with the set of states reached so far. In order to find out how the
state transition graph is traversed by the time series � � � � and how its convergence behaviour is
related to the convergence behaviour of conventional FSM traversal, it is necessary to analyze
the structure of the state transition graph (STG).

The STG is a directed graph ����� ��� � with a set of vertices, � , corresponding to the states of
the FSM and a set of edges, � . � is a relation on � . Each edge � � � � � � � is directed from a
state � �
� to a state � ��� and signifies a possible state transition. The edges can be labelled
with sets of input vectors for which the transition takes place.

Definition 4.2 (Reachability Relation) For a state transition graph � ��� ���(� the reachability
relation � is defined as follows: � � � � ��� � if there is a path from state � , � � � to state � , � � �
(“ � can be reached from � ”), or if � ' � .

It is convenient to define this relation to be reflexive. Firstly, the set of states reachable from
some initial state � � contains � � also in the case that the initial state � � does not have an explicit

4.3. FSM TRAVERSAL BY TIME FRAME EXPANSION 87

self-edge in the state transition graph. Secondly, the reachability relation can be used as a weak
ordering of the state set � . A weak ordering relation � is a relation which is reflexive and
transitive. By considering only state pairs which are mutually reachable from each other (i.e., by
selecting the “symmetric elements” of �), we can define strong connectivity between states.

Definition 4.3 (Strong Connectivity) Given the reachability relation � , the strong connectivity
relation � is defined by: ��� � � ��������� ��� � � ��� � ��� � � �"��� �

State pairs ��� � � � which are elements of � are called strongly connected.

This relation � induces a partition of the state set � into equivalence classes. Each equiv-
alence class consisting of more than one state has the the property that each of its states is
reachable by any other state in the class. The equivalence classes are therefore called strongly
connected components (SCCs) of the state transition graph. Note that this name can be somewhat
misleading in the special case that an equivalence class contains only a single state which does
not have a self-edge. Using this partition induced by the relation � we can define a new graph
with the SCCs as vertices:

Definition 4.4 (SCC Graph) The SCC graph ��� ������������� of a state transition graph ����� ��� � is
defined as follows:

1. ��� is the set of equivalence classes of the partition induced by the strong connectivity
relation � of ����� ���(� . The classes are called strongly connected components (SCCs) of
the STG.

2. ��� is defined such that there is a directed edge � �	��� �
��� � ��� between two distinct SCCs
�
� and �
� if there exists an edge from an arbitrary state in �	� to an arbitrary state in ��� .

The edge relation ��� of the SCC graph is anti-symmetric. If there is a directed edge from an
SCC �
� to an SCC �
� then there cannot be any back-edge from �	� to �
� , because otherwise they
would have to be in the same SCC. Hence, the SCC graph must be acyclic. The edge relation ���
of the SCC graph is a partial order among the set of SCCs, ��� . The sinks of the SCC graph are
commonly referred to as terminal strongly connected components (TSCCs).

The SCC graph allows to decompose the state transition graph of a finite state machine into
its “cyclic” parts. The states lying on cycles in the state transition graph determine the “long-run”
or “steady-state” behaviour of the machine, because the machine can be in these states arbitrarily
often. This allows the FSM to respond to infinitely long input sequences, even though the total
number of possible states is finite.

The question we are interested in is: what is the long-run behaviour of the set of reachable
states � � � � ? Intuitively, since the FSM has a finite set of states, and its next-state behaviour is
deterministic, the time series � � � � must at some point in time enter a stationary behaviour. Either
there will be a single final set ��� or � � � � will periodically cycle through a set of state sets.

For analyzing the evolution of the reachable state set � � � � over time, it is helpful to imagine
� � � � as a set of states in the state transition graph with a special mark that is passed on to
successor states in the next time step. Consider a set of marked states, � � � � , at time

�
. One time

88 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

step later, at
�
 � , these states pass their marks on to all of their immediate successor states. Their

own mark is erased, unless they receive a new one from an immediate predecessor state. Now,
all marked states form the reachable state set � � �
 �"� . As we proceed in time, the states in the
STG become repeatedly marked and unmarked as described. If � � � � converges to a final set � � ,
this set corresponds to a pattern of marks which beginning at a certain time

�
fix does not change

any more, i.e., it becomes a static pattern. If � � � � exhibits a periodic long-term behaviour, this
corresponds to periodically repeating patterns of marks in the STG, beginning at a certain time
�

fix. As we will see, whether we have an aperiodic or a periodic behaviour is determined by the
structure of the SCC graph and certain SCCs in it.

For the closer analysis of the SCC graph we need the following recursive definition:

Definition 4.5 (Recurrent State) A state in the state transition graph � is called recurrent state
if it lies on a cycle in � , or if it has a predecessor which is a recurrent state.

Recurrent states are contained in the reachable state set � � � � infinitely often, and they appear
periodically. This is easy to see for recurrent states which are lying on a cycle (called cycle
states in the sequel), by observing the � � � � –marks they are sending and receiving. The length
of the cycle determines how many time steps it takes until a mark that has been sent out by a
state returns back to it and is sent again. This time is called the state’s period of recurrence and
it is equal to the length of the cycle. However, there are also states which are not involved in a
cycle but are nevertheless recurrent. Such states are reachable from cycle states, and therefore
they receive, with some delay, all � � � � –marks which the cycle states send out. We say, a state
inherits the recurrence periods of the states from which it can be reached. Note that in a particular
run of the machine, a recurrent state that is not a cycle state can occur only once. However, for
different runs of the machine it may occur at different times. The reachable state set � � � � contains
information about all possible runs of the machine. Therefore, a recurrent but non-cycle state is
an element of � � � � periodically just like a “true” cycle state.

Definition 4.6 (Transient State) A state which is not recurrent is a transient state.

Transient states are not reachable by recurrent states, they can be found “upstream” in the
SCC graph. They occur only once in the reachable state set � � � � . Transient states are only
possible if the initial state of the FSM is a transient state. They are usually part of the initialization
process for the machine and do not belong to the normal mode of operation.

Note that our definitions of recurrent and transient states differ from literature concerned
with a probabilistic analysis of finite state machines such as [37, 38]. The objective there is
to determine the long-run probability for an FSM to be in a certain state. In that context, for
example, a state is defined transient if there is a non-zero probability that the FSM will not return
to it. Our definition requires that it is impossible to return to a transient state. In case there is
a possibility that the FSM returns to a state, we call it a recurrent state, because it will be an
element of the reachable state set, even if the probability for this to happen may be zero.

Since transient states occur only once, they cannot be part of the reachable state set in the
fixed point we are seeking. So we can focus the analysis of our FSM traversal solely on the recur-
rent states. Transient states do not have a recurrence period, however, they are represented in the

4.3. FSM TRAVERSAL BY TIME FRAME EXPANSION 89

SCC graph as individual vertices. Therefore, when speaking of strongly connected components
in the sequel, we refer to SCCs containing recurrent states.

As discussed above, a recurrent state may inherit recurrence periods from its predecessor
states. It also has periods of recurrence associated with the cycles on which it is located. The
following lemma tells us how these different recurrences interact.

Lemma 4.1 Consider an arbitrary state � lying on a cycle of the state transition graph of
length � . Furthermore, let � have a recurrence period � . Then, after a finite number of time
steps, state � also has a recurrence period � � which is the greatest common divisor of � and � .

Proof: see Appendix A, page 140

It can be shown [89] that the time
�

� � � � � it takes until � occurs every � � time steps is upper-
bounded by the least common multiple of � and � .

The recurrence period � in the lemma may be inherited from a predecessor state. Or it may
be due to another cycle of length � that state � is lying on. We can apply Lemma 4.1 successively
to all pairs of periods � and � that a state has due to period inheritance and the cycles in which it
is involved. This leads us to an interesting lemma for the states of an SCC:

Lemma 4.2 After a finite transition time, the smallest recurrence period, � SCC, is the same for all
states in an SCC. This period � SCC is given by the greatest common divisor of all cycle lengths
in the SCC and of all recurrence periods for states in the SCC that have been inherited from
predecessor states outside the SCC.

Proof: see Appendix A, page 141

If we view again the set of reachable states, � � � � , as a set of states in the STG carrying a
mark, then this lemma says that after a sufficient amount of time each state in an SCC will be
marked periodically. If the period is, for example, � SCC ' � , then, a state will be marked in
every fifth time step and will be unmarked during the remaining four time steps. Since at every
time step at least one state of the SCC is marked, we can partition the states in the SCC into
equivalence classes of simultaneously marked states:

Lemma 4.3 The set of states of an SCC with a recurrence period � SCC can be partitioned into
� SCC disjoint subsets � � with � � �

� �	� ��� � � �"� � SCC � ��� � , such that � � ' � �
�

SCC
 � � � SCC
 � � ,
for all integers ��� � .

Proof: follows immediately from Lemma 4.2

This is an interesting first result. Let us consider the special case of a finite state machine
that has all its states including the initial state within one strongly connected component. Such
systems are sometimes called non-decomposable sequential systems, because the SCC graph of
their state transition graph consists of only a single vertex. In this case, the set of reachable
states, � � � � , converges to a series of final sets � � that oscillate with a period � SCC related to the
structure of the STG.

90 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

It is possible, however, that � SCC is equal to 1, in which case there is only a single final set
�
�

into which � � � � converges. This is the aperiodic behaviour mentioned in the beginning of
this section. In fact, such a behaviour is very common in FSMs describing practical systems.
A “degenerated” period of one time step is the direct result of a state in the SCC which has a
self-edge, or of cycles with lengths whose greatest common divisor is 1.

One way of obtaining a non-decomposable system is by modelling the process of initializa-
tion within the FSM description. The FSM can then be put into its initial state by applying a
special input sequence called initializing or synchronizing sequence.

Definition 4.7 A synchronizing sequence of a finite state machine � is an input sequence that
brings � to a known state �

�
regardless of the initial state or the output sequence. The state �

�
is called synchronization state of � .

If a finite state machine has a synchronizing sequence, then the synchronization state �
�

and
all states reachable from it must be located within one terminal strongly connected component
(TSCC). The reason is that from all states reachable from �

�
the machine can be put back into

�
�

by applying the synchronizing sequence. In other words, �
�

is reachable from all states which
are reachable from �

�
. Hence, machines with synchronizing sequences are non-decomposable.

In the special case of a non-decomposable system, the basic definitions of transient and re-
current states of an FSM and those of a Markov chain are equivalent. Therefore, the following
lemma which was originally derived in [38] for homogeneous discrete-parameter Markov chains
with a finite state space can also be formulated in this context.

Lemma 4.4 If a finite state machine has a synchronizing sequence, then the fixed point recur-
rence period of all its states is 1.

Proof: see Appendix A, page 141

Lemma 4.5 If a finite state machine has a synchronizing sequence of length
�

and if
�

is the
sequential depth of the machine, then it takes at most

�

�

time steps until all states of the
machine are in � � � � and have a recurrence period of 1.

Proof: see Appendix A, page 141

Note that the sequential depth of a finite state machine is given by the longest path among
all shortest paths from the initial state to all nodes in the state transition graph of the FSM. In
conventional symbolic FSM traversal, the sequential depth is equal to the number of iterations
needed to reach the fixed point.

Although most finite state machines encountered in practice actually fall into the category of
non-decomposable systems [70], it is generally possible that the SCC graph contains more than
one SCC. Also, the initial state does not have to be a recurrent state. We therefore need to discuss
the general case of an arbitrarily structured SCC graph.

If the SCC graph of a state transition graph has more than one SCC vertex, then different
recurrence periods arise in different regions of the graph. These periods are inherited along the

4.3. FSM TRAVERSAL BY TIME FRAME EXPANSION 91

directed edges between the SCCs. Each period inherited through an incoming edge of an SCC
“interferes” with the cycle lengths in the SCC according to Lemma 4.2. The periods leaving the
SCC can never be greater than the periods coming in, because the greatest common divisor of
a set of numbers is never greater than the numbers themselves. In fact, the period of recurrence
of an SCC is always an integer multiple of the periods of its (transitive) successor SCCs. This
means that the largest periods of recurrence are found in the “earliest” SCCs after initialization
of the FSM. We call them entry SCCs (ESCCs).

Definition 4.8 (Entry SCC) An SCC in the state transition graph which is entered by initializa-
tion or reached exclusively via transient states after initialization is called entry SCC (ESCC).

Note that an entry SCC need not necessarily be a source of the SCC graph. Only if the initial
state is a recurrent state there is a unique entry SCC which is also the source of the acyclic SCC
graph. If, however, the initial state is a transient state, then there can be several entry SCCs.

Example 4.1 Figure 4.3 shows an example of such a state transition graph.

S1

S3

S4

S2

initial state

DC

B

A

I

J

K

L

H

E

G

F

� � � � � � �
0

� � � —
1

�
��� � � —

2
�
� ���$� � � —

3
� � ��� � � ��� � —

4
�

���������$� � � —
5

�
� ��� ��� � � ��� � �

�
6

� � ����� � ���$� � � � �
7

�
� ��� ��� � � ��� � � �

8
�
� � � � � ���$� � � � �

9
� � ��� ��� � � ��� � � �

10
�

������� � ��� � � � � �
11

�
� ��� ��� � � ��� � �

�
12

� � ����� � ���$� � � � �
13

�
� ��� ��� � � ��� � � �

...

Figure 4.3: A state transition graph and the first values of its reachable state set � � � �
This STG is composed of four SCCs: � � ' � � � , � ��' �

��� � � � � , � ��' � � ������� � � �
and � ��' � �,��� ����� � � . ��� is an SCC without cycles. It contains only the initial state�

which is a transient state. � � and � � are entry SCCs according to Definition 4.8.
� � is a terminal SCC.

92 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

Also shown in Figure 4.3 are the first values of the time series of the reachable state
set, � � � � . The initial state is contained in � � � � only once for

� ' � . The remaining
states are recurrent, and we can easily verify that Lemma 4.1 and Lemma 4.2 are
correct. In SCC � � there is a unique cycle of length 3. Therefore, the states � , �
and

�
are contained in � � � � alternately every three time steps. In SCC � � there are

several cycles whose lengths all are multiples of 2. Hence, the states in � � recur in
� � � � in two alternating sets,

� �,� � � and
�
�$� � � . The SCC � � contains only one cycle

of length 4. However, the recurrence period of its states is 2. The reason for this is
that whenever state � (of SCC � �) is in � � � � , state � will be in � � �
���� , one time
step later. State � inherits state � ’s recurrence period. The greatest common divisor
of the inherited period of

�
and the cycle length of

�
is
�
.

Obviously, after a sufficient amount of time (
� ' �), all recurrence “interferences”

have taken place and a stationary oscillation has evolved. In this example, there are
six different values for the set of reachable states, � � � � , which are repeated in the
same order with a period of six time steps. These six sets together form a cover of
the set of all recurrent states.

Theorem 4.6 Let
�

be the set of all recurrent states of a finite state machine. There always
exists a cover

�
�
� � � � ��� � � �������	��� of

�
with ��� � ��� , and there is a time � � �

fix
�	�

, such that

� � �
fix

 � �
 � � ' ��� � � �
 � � � � � �

� is equal to the least common multiple of the recurrence periods of the entry SCCs of the
FSM. � is called fixed point oscillation period.

Proof: see Appendix A, page 142

In our example of Figure 4.3 there are two entry SCCs, � � and � � , with periods ���!' � and
� � ' �

. The least common multiple of these two numbers is � '�
 . This is the fixed point
oscillation period of the reachable state set that we have found also empirically for this state
transition graph.

It is interesting to note that for the fixed point oscillation period only the ESCCs of the state
transition graph are relevant. All other SCCs including the TSCCs (unless they are, at the same
time, ESCCs) do not influence the oscillation period � . (It should be noted, however, that the
cycle lengths of non-entry SCCs determine how long it takes until the fixed point is reached.)
This observation again points out the difference between a possibilistic state space analysis such
as the characterization of the time series � � � � , and a probabilistic state space analysis [38], where
the terminal SCCs play the important role in the analysis.

Theorem 4.6 justifies the formulation of a structural FSM traversal based on a time frame
expansion of a finite state machine. By considering the states that can be produced by the state
vectors � � of the iterative circuit array we are able to traverse the state transition graph of the
machine, visiting all states reachable from the set of initial states. For most practical systems
(e.g., systems with synchronous resets or initializing sequences), the set of reachable states grows
monotonically from time frame to time frame and the fixed point of the iteration consists of a
single set, � � . For these systems, the number of iterations needed to reach the fixed point is only
slightly larger (by the length of the initializing sequence) than in conventional FSM traversal.

4.4. A STRUCTURAL FIXED POINT ITERATION 93

4.4 A Structural Fixed Point Iteration

In order to formulate an FSM traversal algorithm based on a time frame expansion of the finite
state transition structure, we need a method to determine that we have reached the fixed point
of the expansion. The iterative circuit array represents the set of reachable states, � � � � , in a
non-canonical and implicit form. Consider a segment of the array of

�
time frames starting at

� ' � . The set � � � � corresponds to the range of the
 -output function implemented by this
combinational circuit. At the fixed point (

� � �
fix) it is � � � � '
� � �
 �!� , with � being the fixed

point oscillation period of the FSM according to Theorem 4.6. This means that the expansion
into � �
 �!� time frames results in a combinational network implementing a function with the
same range as the expansion into only

�
time frames.

Note that in BDD-based FSM traversal it is easy to recognize the fixed point, because sets of
states and their images under the transition function are stored canonically as BDDs. The BDDs
representing � � and � � � � in Table 4.1 simply have to be checked for isomorphism to detect the
fixed point.

In our case of structural representations of the sets � � � � and � � �
 �!� by time frame expan-
sions of lengths

�
and � �
 �!� , respectively, this simple check is not possible. In addition, our

structural representations for the reachable state sets can become very large if the number of time
frames in the circuit array is high. Note that an iterative circuit array of � time frames contains
the complete functional information relating input sequences of length � to the resulting states
of the FSM. The information we are interested in, however, is only what states are possible, not
how they can be produced in the machine. We are only interested in the range of the
 -output
function � � implemented by an iterative circuit array of length � . Therefore, this array can be seen
as a combinational circuit functioning as a tap circuit as introduced in Section 3.8.2 for the set
of vectors � � . Using the decomposition introduced in Section 3.8.4 we can perform a structural
form of existential quantification that gives us a representation of � � � � which is independent of
the sets of input variables � � ��� � ������� ��� � �	� . This greatly simplifies the set representation, and,
most importantly, it allows us to detect the fixed point. If � � � � and � � �
 �!� are equal, it must
be possible to decompose the miter arrays of length

�
and of length � �
 � � such that identi-

cal stub circuits are produced in both cases. This means that the fixed point check amounts to
checking the identity of the decomposition steps used for the existential quantifications. In other
words, if � � � � and � � �
 �!� are equal, it must be possible to derive the same implicants for a
state variable � ��� � (expressed in terms of the other state variables) as for the corresponding state
variable � � � � � � just � time frames later. If redundancies are removed in procedure synth stub()
of Table 3.10, it must be possible to remove the corresponding redundancies also in the stub
circuit � time frames later. In practical implementations, such as record and play() introduced
in Chapter 5, an instruction queue can be used for the purpose of storing the decomposition steps
in a well-defined way. Figure 4.4 shows the flowchart of the structural FSM traversal algorithm
using these concepts.

Example 4.2 Consider the two circuits of Figure 4.5. For both circuits the structural
netlist representation and the state transition graph are given. The state transition
graph for the upper circuit has been “unfolded” so that both states, 0 and 1 appear

94 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

START
at t=0

STUB : set of constant signals
corresponding to initial state

0

t := t + 1;
attach time frame to STUB t-1

is there a T > 0, such
that for each i = 0, 1, ..., T-1 the
decomposition steps producing

STUB are the same as t-i

t-T-ifor STUB ?

cut off circuitry in front
of STUB t

decompose circuit array such
that STUB is createdt

reached fixed point,
t := t - T

yes

no

fix

Figure 4.4: Algorithm for Structural FSM Traversal

4.4. A STRUCTURAL FIXED POINT ITERATION 95

00 01 10 11

0

1

0

1

initial state

0 01 1

0/0 0/1 0/0 0/1

1/0 1/1 1/0 1/1

initial state

0/0 0/1 0/0 0/1

1/0 1/1 1/0 1/1

0

1

r

x

s

x

q

Figure 4.5: Example for two equivalent FSMs

twice. This makes it easier to see that the two machines are equivalent. (For reasons
of clarity the output logic has been omitted. The shown circuitry implements the
finite state transition structure of the FSMs.)

The two circuits are combined to form a product machine which is expanded into
an iterative circuit array until time

� ' � . The resulting circuit array is shown in
Figure 4.6. Note that the circuit array has been simplified by assigning the initial
state � � ' � � � � �

� � � � � '&� � � �$� � � to the state variables � , � and � in the first time
frame and by removing all constant nodes that result from the forward implications
from the initial state. Not all states are reachable at a specific time. Table 4.2 lists
the combinations of value assignments that are possible at the state variables for a
specific

�
. The reader may verify that these sets are reachable by examining the

states � �$� �"� �"� states � ��� �"� �"� states � ��� �"� �"� states � �$� � � � �
reachable at

� ' � reachable at
� ' � reachable at

� ' �
reachable at

� '��
000 000 000 000

101 101 101
010 010

111

Table 4.2: Reachable state sets � � � � of product machine for
� '��$�	� � � � �

state transition graphs of Figure 4.5. Note that the state variables � � � � � � � � ��� in the

96 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

0

1
2

3

2

2

2

3

3

3

0

1

0

1

0

1

0

1

0

1

0

1

r

s

q

x

r

s

q

x

x

Figure 4.6: Iterative circuit array of product machine for circuits of Figure 4.5 until
� '��

iterative circuit array of Figure 4.6 can only assume the values as listed in Table 4.2
for

� ' � . Hence, the stub circuit that will now be constructed must exclude all other
combinations of value assignments.

The circuit array of Figure 4.6 is the tap circuit on which structural existential quan-
tification as described in Section 3.8.4 of Chapter 3 is to be performed. The char-
acteristic function � � representing the range of the 3-bit function � of the circuit
array is considered only implicitly. During execution of the algorithm synth stub()
as defined in Table 3.10 the 0-implicants of � � are calculated on-the-fly as 0- or
1-implicants of state variables in terms of other state variables.

The procedure synth stub() starts by examining state variable � � and calculates all 1-
implicants of � � . Figure 4.7 shows the AND/OR graph for the corresponding initial
assignment

� � � ' � � . The bold lines in the graph mark a MIST corresponding to
the only prime 1-implicant, � � , that can be expressed in terms of � � , � � and � � . (This
implicant corresponds to the 0-implicant � � � � of the characteristic function � �). The
1-implicant of � � is implemented and added to the cover of � � using an OR gate.

Next, state variable � � is examined. Examining the AND/OR graph for � �!'�� (not
shown) yields no 1-implicants. The cover of � � remains unmodified. For the last
state variable, � � , the 1-implicant � � is identified. It is implemented and added to the
cover of � � . Before returning, procedure synth stub() performs redundancy removal
within the created stub circuit. As shown in Figure 4.8, one input of an OR gate is
found redundant stuck-at-0 and can be removed.

Note that the output functions implemented by the iterative circuit array combined
with the stub circuit are functionally equivalent with the original outputs of the array.
The existential quantification is completed by cutting through the inputs of the stub
circuit. The set of reachable states, � � � � , is now represented in a compact way by

4.4. A STRUCTURAL FIXED POINT ITERATION 97

3x =1

x =0x =0 r =0r =0 r =0s =0 s =0x =0x =0

{x =1}{x =0} {x =0} {x =1}2 222

{x =0}3

3{q =0}

q =0!2

3

q =1!2

{x =1}

3x =0

q =0!3

x =1x =1 r =1 r =1 x =1 s =1 r =1 x =1 r =12 3 312 2 2 3 312 2s =0 s =0 2 3 312 2 2 3 312 2s =0 r =0 s =1 s =0

Figure 4.7: AND/OR graph representing 1-implicant of variable � �

0

1
2

3

2

2

2

3

3

3

3

3

3

s-a-0
redundant

stub circuit

0

1

0

1

0

1

0

1

0

1

0

1

r

s

q

x

r

s

q

x

x

q

r

s

Figure 4.8: Adding implicants to create stub circuit

98 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

the resulting stub circuit which does no longer depend on input variables of earlier
time frames but only on the auxiliary variables

�
� ,

�
� ,

� � .
In this example, the reachable state set reaches its fixed point at

� ' � . The set � � � �
is the final set of states and the recurrence period is 1. We can detect the fixed point
by proving that the same transformations that yielded the stub circuit for

� ' � are
possible also for

� ' � . Therefore, we represent the set of states at
� '�� by the stub

circuit obtained by decomposition and cut of the miter array for
� ' � . We attach a

new time frame to the stub circuit as shown in Figure 4.9.

3

3

3
4

4

4

4
t q

t r

t s

stub circuit

0

1

0

1

0

1

q

r

s
s

r

q

x

Figure 4.9: Iterative circuit array until
� ' � after existential quantification

If the set of reachable states � � � � is the same as � � � � we can determine the same
implicants for the state variables as in the time frame before. Performing procedure
and or enumerate() for an initial assignment � � ' � yields the AND/OR graph of
Figure 4.10. The bold lines mark a MIST which indeed corresponds to the prime
1-implicant � � for ��� , as was � � for � � . Also for the other state variables the same
implicants can be determined as one time frame before (not shown). The resulting
stub circuit has an identical structure as the previous one. We can conclude that we
have reached the structural fixed point.

Using this stub circuit representation of the reachable state set we can now check
certain properties being subject of a given verification task. For example, consider
checking the equivalence of the two circuits of Figure 4.5. As can be observed in
the state transition graphs, the outputs of the FSMs are given by the state variables
� and � , respectively. The equivalence of � and � is immediately obvious from the
stub circuit itself.

4.4. A STRUCTURAL FIXED POINT ITERATION 99

q =0 s =0 s =0 q =1 s =1 s =0
33 4 3 3 4

{x =1}

q =0!

{q =0}

{x =0}4 4

4

4

Figure 4.10: AND/OR graph for initial assignment � ��' �

100 CHAPTER 4. STRUCTURAL FSM TRAVERSAL

Chapter 5

Equivalence Checking of Sequential
Circuits

This chapter presents how structural FSM traversal as developed in the previous chapter can be
applied to equivalence checking of sequential circuits. Although conventional state encoding
techniques are used only rarely in today’s design compilers, the state encoding of a given circuit
is often modified through structural modifications of the design. For example, designers often
improve the performance of their design by changing the pipelining at the RTL level. Similarly,
at the gate level, retiming, i.e., the relocation of registers, becomes increasingly important in the
industrial design process. However, there is great concern among designers because to date no
techniques exist that can verify circuits of realistic size after such transformations. Therefore
we focus on the problem of verifying circuits after synthesis with retiming and show that the
structural FSM traversal presented in the previous chapter offers a promising solution to this
problem.

5.1 Introduction

There are several notions of equivalence proposed in the literature. The most widely used con-
cept is that of reset equivalence. It is assumed that designated initial states (or sets of initial
states) for the two circuits under comparison exist together with a method (e.g., an external reset
line) to bring each machine into a designated initial state. Checking design equivalence then
amounts to checking the equivalence of the initial states. A similar notion proposed by Pixley is
sequential hardware equivalence [70], which models the initialization process within the FSM
descriptions of the designs. For each circuit, an input sequence (or a set of input sequences)
exists which drives the circuit into a desired start state (which may be one in a set of desired start
states). The output behaviour of the circuits during initialization is disregarded when checking
equivalence. Only the post-synchronization behaviour is considered. There are also other no-
tions of equivalence which are not considered in this work as, e.g., safe replaceability [71] and
3-valued equivalence [42].

Checking the equivalence of the initial states of two finite state machines is a classical ap-

101

102 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

plication of reachability analysis. As described in the introductory section of Chapter 4, the
problem is typically modeled by building a product machine (depicted again for convenience in
Figure 5.1). The two components

�
and � of the product machine have the same set of primary

t

t

B

e

A

x

s

s

x

x

y

z

y

z

Figure 5.1: Product machine of designs
�

and � (sequential “miter”)

inputs. Their corresponding outputs feed a comparator producing a single output 	 . The com-
bined states of the FSMs

�
and � form the product states of the product machine. The initial

state of the product machine is given by the concatenation of the individual intial states of
�

and � . The designs are equivalent if the product machine produces 	 '�� for all inputs and all its
reachable states. If there is a reachable state of the product machine for which 	!'�� is possible,
the sequence of input patterns driving the product machine into this state is called a distinguish-
ing sequence or (sequential) counter example of the designs

�
and � . Actually, equivalence

checking is typically not separated into the two steps of calculating the complete set of reachable
states of the product machine and then checking equivalence for every state. Instead, the equiv-
alence check is embedded into the breadth-first algorithm for FSM traversal [39] as shown in
Table 5.1. During traversal of the product machine, all newly reached states are checked to find
an input � from the input alphabet � for which the comparator output 	 (implementing the output
function � of the product machine) produces a 1. If such a state is found, the procedure returns
immediately. It is then possible to invoke a backtrace procedure from this differentiating state to
the initial state to find a distinguishing sequence.

As mentioned before, the standard techniques [26, 91, 15] represent the state sets and the
transition functions or relations symbolically using BDDs. There are many techniques to im-
prove general reachability analysis [45, 21, 75, 19, 17, 18] and to make it less vulnerable to state
explosion. Several works also specifically target the problems that arise due to the special nature
of verification problems. In [40] it is pointed out that BDD variables which are functionally de-
pendent on other BDD variables are a common cause for BDD blow-up in verification. In [92]
this idea is used for the verification of FSMs with similar state encodings by detecting function-
ally dependent state variables automatically. In [72], reencoding of the states of the FSMs under
comparison is used with the goal of making the state encodings more similar.

5.1. INTRODUCTION 103

check equivalence(� ,
�
, I, S0)�

t := 0;
Rt := S0; /* initial state set */
loop�

Rt+1 := Rt � img(� , Rt);
N := Rt+1 � Rt /* new states found */
foreach s � N

foreach i � I
if (� (s,i) = 1) /* check output e of sequential miter */

return INEQUIVALENT;
if (Rt+1 = Rt) /* fixed point reached */

break;
t := t + 1;

�
return EQUIVALENT;

�

Table 5.1: Sequential equivalence checking using forward FSM traversal

Other approaches to sequential equivalence checking are based on automatic theorem prov-
ing, such as [49]. These approaches are attractive because of their general formulation of the
problem. However, in their general form they do not have the ability to exploit domain-specific
knowledge causing them to fail for larger circuit examples.

If only combinational synthesis transformations have been used on a sequential circuit, the
state encoding of the transformed circuit is the same as that of the original circuit and the equiva-
lence of both can be verified using only combinational techniques. Before it is possible to invoke
the combinational verifier, however, the register correspondences between the two designs un-
der comparison need to be known. If they are not given, a common approach for automatically
deriving the state variable correspondences (or “latch mapping”) is to use an inductive filtering
process which gradually splits the set of storage elements into equivalence classes until a fixed
point is reached [34, 41, 92, 16]. In [93], such a filtering process is combined with retiming steps
to be applied to circuits which have been submitted to retiming. The method tries increasingly
large values of forward retimings in order to find as many equivalent variables as possible. The
equivalence of the designs is then proven by combinational BDD-based equivalence checking,
avoiding a traversal of the state transition graph of the product machine.

All these methods do not exploit structural similarities between the designs other than those
given by similar state encodings. Huang et al [41, 42] explored structural techniques based on
sequential ATPG. Internal equivalence pairs are used by representing them as constraints to be
used during backward justification. However, for their approach to be efficient it is also required

104 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

that the designs under comparison contain a large number of equivalent state variables. Similar
to the latch mapping approaches described above, the procedure in [41, 42] starts with a set of
candidate pairs for equivalent state variables and performs a step-wise elimination of the wrong
candidates. It is assumed that simple relationships exist between state variables which can be
obtained by simulation. This is promising for circuits with very similar encodings but may fail
in other cases. Therefore, we take a different approach based on the structural FSM traversal
developed in Chapter 4. The resulting algorithm leads to a natural way of exploiting structural
similarites between designs but does not rely on the equivalence of state variables.

5.2 Approximate Structural FSM Traversal

Our practical implementation [88] is an approximation of the structural FSM traversal algorithm
of Section 4.4. Actually, the decomposition used to perform existential quantification for creating
a stub circuit is not carried out by determining all 1-implicants or all 0-implicants of each state
variable in terms of the other state variables as shown in Example 4.2 (page 93). Instead, we
perform implicant-based transformations at all nodes in the circuit. This makes efficient use of
structural similarites between the designs under comparison. By “merging” the logic between
different parts of the product machine we compress important information about the reachability
of states into a relatively small area near the next state variables of the last time frame.

A2A1A0

s B,1 s B,2

s A,2sz A,0 z A,1 z A,2

z B,2z 1,B

s A,0

s B,0

0B

x 2x x 10

1B 2B

x 2x 1

A,1

initial state
assign

"merge frontier"

Figure 5.2: Time frame merging by sharing of logic

Consider Figure 5.2. The verification procedure is based on performing implicant-based logic
transformations as developed in Chapter 3. We speak of the “merge frontier” denoting a set of
gates that identifies a border line between the circuitry that is shared between the two machines�

and � and the separate circuitry for each machine. This is schematically shown in Figure 5.2.
In our practical method, the circuitry around the merge frontier is an approximation for the exact

5.2. APPROXIMATE STRUCTURAL FSM TRAVERSAL 105

stub circuit as introduced in Section 3.8.3 and Section 4.4. The approximate stub circuit has as
inputs the merged signals of the merge frontier and as outputs the state variables � � � � and � � � � . It
maps every vector of value assignments possible at the merge variables onto state vectors of the
product machine which represent equivalent states of machines

�
and � .

As described in Section 4.4 we detect a fixed point by noting that the decomposition steps to
create a stub circuit repeat with a certain period. Motivated by the theoretical results about the
recurrence periods of � � � � as developed in Section 4.3, for the time being, we assume that this
period is 1. In our practical procedure, the main goal is to identify in a give time frame a set of
circuit transformations between the nodes of machine

�
and the nodes of machine � being valid

also in future time frames. The basic instrument to find such a set is an instruction queue � � that
contains a set of instructions for circuit transformations at some time

�
. The instruction queue

is processed in a first-in-first-out manner. Circuit transformations at time
�

are stored in � � in
the order in which they have been performed. This operation is called record . In the next time
frame, at

�
 � , we try to make maximum use of the instructions recorded previously and for each
recorded circuit transformation we check whether or not it is still valid at time

�
�� . Only if
it is invalid it is removed from the instruction queue, otherwise the transformation is performed
also at

�
�� . This process of reusing the stored instructions is referred to as play . If the circuit
transformations in the instruction queue are not sufficient to establish the equivalence of the
output signals at time

�
 � additional transformations are identified and recorded.
By recording and playing, the instruction queue is improved in each time frame. Finally, an

instruction queue is created that remains valid also in later time frames and which fulfills the
task of proving the equivalence of the circuit outputs. Now, it must be shown that this instruc-
tion queue is also valid in all future time frames. For this induction the cutting procedure which
performs existential quantification on the representation of the reachable state set, � � � � , is very
important. The merge frontier heuristically indicates the inputs of the stub circuit that has been
created by the circuit transformations. If the stub circuit is exact, the signals of the merge fron-
tier correspond to the variables * � in the decomposition shown in Figure 3.42 in Section 3.8.4.
Generally, though, by cutting through the circuit array at the merge frontier, we only approxi-
mate the reachable state set of the product machine. The stub circuit created mainly excludes
those states that are impossible because reachable states of the individual machines cannot occur
simultaneously and hence do not constitute a reachable product state. We neglect, however, that
some product states are unreachable because the states of the individual designs themselves are
unreachable. This may result in so-called false negatives, i.e., the circuits are incorrectly deter-
mined to be inequivalent. Often, this problem can be cured by keeping additional levels of logic,
called stub levels, in front of the merge frontier. In this way, the resulting stub circuit includes
more information about the reachability of states of the individual designs. This will be further
discussed below.

If an appropriate cut has been found and the instruction queue can be played a sufficient
number of times, the combinational structure in the circuit array repeats periodically. We say
that our procedure has reached a “structural fixed point”. This completes the verification process.
The procedure will now be described in more detail.

Figure 5.3 shows the proposed algorithm for FSM equivalence checking that is a practical
refinement of the general procedure described in Figure 4.4 on page 94. The pseudo-code for

106 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

t := t + 1;
attach new time frame;

introduce constant nodes

forward imply constant values;

s := z ;

for constant state variables in s ;t

t-1t

eliminate constant nodes and deter-
mine constant state variables in z ;t

(worked, T) := record&play();

worked?

mark all gates belonging to
time frames before t;

t_induction := t + T;

t_induction := ;

combinational ATPG
at primary outputs

are primary outputs
at time t equivalent?

sequential backward
justification to generate
distinguishing sequence

Aborted

t = t_induction? any gates marked?

t_induction := t_induction + T;

machines are
equivalent

cut off all logic in the transitive fanin
of M with topological distance from
M of stub_levels or more;

t

t

t_indt_induction < ?
no yes

yes

no

abort

yes

no

yes

no

no

yes

T_max := user-defined;
stub_levels := user-defined;

START

t_induction:= ;
t := 0;

determine merge frontier M ;t

Figure 5.3: Sequential equivalence checking algorithm

5.2. APPROXIMATE STRUCTURAL FSM TRAVERSAL 107

/* Routine operates on a global data structure for the current miter array with present state
variables s and next state variables z. It has t, t induction and T max of Figure 5.3 as global
variables */
record and play()�

if (t induction � �) /* trying induction */
PLAY :=

�
Qt-T � ;

else /* check old queues to find fixed point */
PLAY :=

�
Qi

�
i � � t-1, t-2, ����� , t-T max � and si = st � ;

worked := false;
for (each Qi � PLAY)�

worked := true;
Qt := � ;
for (each instruction � �!� Qi)�

verify whether or not circuit transformation � � is
valid in current time frame;

if (valid)�
execute � � (perform circuit transformation);
Qt := Qt �

� � � � ; /* put in queue */
�
else worked := false;

�
if (worked = true)�

T := t-i;
break;

�
else reverse all transformations made for Qt;

�
if (worked = false)�

Qt := � ;
for (each node in circuit array)�

identify implicant-based circuit transformation � ;
if (� reduces literal count of circuit array)�

perform transformation � ;
Qt := Qt �

� � � ; /* put in queue */
�

�
�

return (worked, T);
�

Table 5.2: Procedure record and play()

108 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

the algorithm record and play() is given in Table 5.2. The various steps of the algorithm are
illustrated in detail by the following example.

Example 5.1 The variables stub levels and T max must be defined by the user as
will be discussed later. At the beginning of each iteration a new time frame is at-
tached to the current circuit array. Initially, the circuit array is empty. Whenever a
new time frame is attached we assign constant values of the state variables to the
corresponding nodes in the circuit array and simplify the logic accordingly. Initially,
the constant values are given by the initial state. These constant values may propa-
gate to the next state variables. Consider Figure 5.4. For both machines we are given

yA

yB

b

d

ig

a

c

j

a

b

f

e k

Figure 5.4: Circuit examples with initial states � � � � '
� � � � '��

an initial state of 0 for all registers. This leads to the situation shown in the left part
of Figure 5.5. A constant value of 0 has propagated to the next state vector and it is

approximative stub

e0

yA,0

B, 0y

0

0

0 t tQ = {(substitute g by e)}

e

g

y

y

k = X

i = X

ba

0

0

A,0

B, 0

0

0

1j = 0

1

1

00

k = X

ba

1j = 0

1

1

00

00

i = X

Figure 5.5: Circuit array in first iteration

� � '�� . This value will be propagated further when the next time frame is attached.

After the time frame has been attached the algorithm optimizes the logic to facil-
itate equivalence checking at the outputs in this and subsequent time frames. The

5.2. APPROXIMATE STRUCTURAL FSM TRAVERSAL 109

current implementation determines only single-literal implicants (implications) to
identify node substitutions similarly like in many combinational equivalence check-
ers. These transformations are performed in a controlled way by an instruction queue
in order to detect a fixed point. For each time frame we store a set of instructions � �

that keeps exact records of all transformations performed in that time frame. Rou-
tine record and play() has the task to select one of the previous instruction queues
and to determine for the selected queue whether or not the recorded circuit trans-
formations are still valid in the current time frame. If this is not the case another
instruction queue is tried. Trying a large number of instruction queues can be time-
consuming, therefore the user-defined parameter T max is used to restrict the search
to the last T max instruction queues. If no instruction queue is found that can be
played successfully new circuit transformations are identified and stored in the in-
struction queue. In this example, no previous instruction queues exist. The circuit is
optimized as shown in the right part of Figure 5.5 and the performed transformations
are stored in � � .
Next, it is checked whether the primary outputs in the current time frame are equiva-
lent. If this is not the case, the circuits are not equivalent and a backward justification
process like in conventional ATPG tools is invoked to calculate a distinguishing se-
quence.

The algorithm now determines whether previously processed portions of the circuit
array can be cut off. Note that the algorithm only performs local transformations in
the circuit array. For this reason it usually does not affect the performed circuit trans-
formations if we cut off previously processed circuitry in a sufficiently large distance
from the area currently processed. A heuristic procedure based on retiming [60] de-
termines the “merge frontier”. This is accomplished by moving the registers at the
end of the last time frame backwards until they are located in fanout branches such
that different branches of the same fanout stem feed registers of different machines.
The corresponding fanout stems represent the nodes of the merge frontier.

Note that retiming is only used as a heuristic to identify the merge frontier. We could
just as well have formulated a “tracing procedure” that traces from the state variables
backward through the circuit until merge points have been identified according to
some rules. There is no need for retiming in the sense of re-encoding the circuit. We
only use this terminology because it concisely describes the proposed heuristic of
identifying the merge frontier.

The cut through the circuit array is located in the transitive fanin of the merge fron-
tier. This determines the approximate stub circuit. In principle, false negatives can
occur as a result of this approximation. In practice this can often be avoided by leav-
ing a sufficient number of logic levels in front of the merge frontier. This number
of logic levels is called stub levels in Figure 5.3 and is a user-defined parameter.
Typical values are between 0 and 5.

Consider again the right portion of Figure 5.5. We only consider the registers that

110 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

are not assigned a constant value and are still physically present in the circuit array.
These are the registers at � � and �
� . Note that � � stems from machine

�
and ��� from

machine � . They are located in fanout branches of the same fanout stem, hence
	 � belongs to the merge frontier, which here does not have any other nodes. In
the example, we assume stub levels = 0. Therefore, the circuit array can be cut at
signal 	 � and a new time frame is attached. The result is shown in the left portion
of Figure 5.6. The newly introduced variable at the cut line is called � . The fanout

t t1Q = {(substitute d by c)}

c

e

a b

g

y

y

k = X

j = X

i = X

1 1

B.1

A,1

1

1 2

2

21

s

c

e

g

d

y

y

k = X

 j = X

i = X

1

1 2

2

21

1

A,1

B.1

b1 1a

s

Figure 5.6: Circuit array in second iteration before and after merging

system of � and the constant signal
� � constitute our approximation of the stub circuit

for the reachable state set � � � � as indicated in Figure 5.5.

After a new time frame has been appended it is always checked whether a previous
instruction queue can be played. As given by the definition of the set named PLAY
in procedure record and play() an instruction queue can only be played if it was
recorded with the same constant values at the state variables as are given in the
current time frame. Here, no instruction queue can be played. New transformations
are recorded in � � as shown in the right portion of Figure 5.6. As a result of the
optimization it is trivial to determine the equivalence of the primary outputs. Next, a
merge frontier is determined as shown in the right portion of Figure 5.6. Assuming
stub levels = 0 we cut the circuit array at the stems of these fanout systems. This
does not result in any removal of logic.

A new time frame is attached as shown in Figure 5.7 and a new instruction queue
must be recorded. The transformations lead to the circuit array as shown in Fig-
ure 5.8. We determine a new merge frontier suggesting a cut at signal � � . The next it-
eration leads to the circuit array of Figure 5.9. Just like in the previous time frame no
constant values exist at the state variables and it is determined in record and play()
that the instruction queue ��� can be played. Actually, all recorded transformations
turn out to be valid in the current time frame so that the circuit of Figure 5.10 results.

5.2. APPROXIMATE STRUCTURAL FSM TRAVERSAL 111

c

e

a

c

e

ab b

s
f

g

d
g

y

y

2 211

1

1

2

1

y

y

A,1

B,1

3

3

A,2

B.2

2

2

2

32

k = X

 j = X

i = X

Figure 5.7: Circuit array in third iteration before merging

2 t-1 tQ = { (substitute g by f) , (substitute d by t-1Q = { (substitute g by f) , (substitute d by c)}t

c

e

a

c

e

ab b

s
f

g

1 1

1

1

2

y

y

y

y

A,1

B,1

2 2

2

2 3

3

32

A,2

B.2

k = X

j = X

i = X

Figure 5.8: Circuit array in third iteration after merging

112 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

yA,2

yB,2

c

e

a

c

e k

ab b2 2

2

2

s
f

33

3

3

j4

4

3

g

3

3

d

i4

g2

y

yB.3

A,3

Figure 5.9: Circuit array in fourth iteration before merging

Q2 worked

yA,2

yB,2

yA,3

yB.3

c

e

a

c

e k

ab b2 2

2

2

s
f

33

3

3

j4

4

3

g3 i4

Figure 5.10: Circuit array in fourth iteration after merging

5.2. APPROXIMATE STRUCTURAL FSM TRAVERSAL 113

If an instruction queue has been played successfully the algorithm enters the in-
duction mode. This is done by setting variable t induction to t + T where T is the
number of cycles since the successful instruction queue has been recorded. In most
practical cases, this is the most recently recorded instruction queue so that T = 1.
Furthermore, to ensure the correctness of the induction all gates belonging to time
frames prior to the current time frame are marked. The algorithm continues the it-
eration and in each new time frame the instruction queue recorded at time t - T is
played. This is done until all queues of a period have been played. Remember that
all gates of previous time frames were marked when the induction mode was started.
We continue to play the instruction queues until all marked gates have disappeared
as a result of the cutting procedure. At this point, it is guaranteed that the combina-
tional structures generated in the circuit array will repeat periodically and hence, a
structural fixed point of the iteration is reached.

Note that this method is not restricted to a single initial state. If a set of initial states is
used additional circuitry must be attached in front of the first time frame that represents the
given set of initial states. In other words, a stub circuit must be created representing the set
of initial states that feeds the first time frame. If an initializing sequence is given the above
iteration has to be modified slightly. Instead of assigning an initial state at the state variables, the
values of the initializing sequence are assigned to the primary inputs for each iteration. During
the application of the initializing sequence the equivalence check at the outputs is switched off
unless the designer wants to check the equivalence of the machines also during the initialization
process [71].

Since the record and play() procedure only calculates an approximate solution to the decom-
position problem described in Section 4.4 the resulting stub circuit represents a superset of � � � � ,
i.e., more states may be considered than are actually reachable. As mentioned earlier, this can
lead to false negatives. However, since a complete symbolic state traversal is impossible for
most large designs, the same information about unreachable states and local don’t-cares that has
been used by the synthesis tool when transforming design

�
into design � usually can also be

compressed into the stub circuit using local transformations. Furthermore, the fact that we may
consider more states than are actually reachable can have a very beneficial effect. With an ap-
proximate decomposition the fixed point can often be reached much faster than with the exact
solution.

Example 5.2 As an example for the acceleration of FSM traversal due to over-
approximation of the reachable state set, consider the product machine for equiv-
alence checking of two versions

�
and � of an
 -bit binary up-counter. The counter

has an enable input named � . Figure 5.11 shows one time frame of the corresponding
product finite state transition structure.

After expanding the product FST twice, assigning the initial state � �$������� � �$� � � to the
state variables ��� ���	��������� ��������� � � � ���	� ������� ��� ����� � � of the first time frame and merg-
ing all logic, we obtain the circuit of Figure 5.12, which is a tap circuit representing
the set of reachable states � � � � of the product FST. The state vector of the product

114 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

a

a

a
2,t

1,t

0,t

b

b

b
2,t

1,t

0,t

b

b

b

b

2,t+1

1,t+1

0,t+1

B

a

a

a

a

2,t+1

1,t+1

0,t+1

A

x
t

b
n-1, t+1

a
n-1, t+1

n-1, t

n-1, t

Figure 5.11: Block diagram of one time frame of product FST

B B

x0 x1

b

b

b
2,0

1,0

0,0

n-1,0b

b

b

b
2,1

1,1

0,1

bn-1,1 = 0

= 0

= 0

= 0

b

b

b
2,2

1,2

0,2

bn-1,2 = 0

= 0
b

b

b
2,2

1,2

0,2

bn-1,2 = 0

= 0

= 0n-1,2a= 0n-1,2a

= 02,2a= 02,2a

approximative stub

= 0

= 0

= 0

= 0

1,2

0,2

a

a

time frame 1 time frame 2

Figure 5.12: Expansion into 2 time frames and merging all logic

5.3. EXPERIMENTAL RESULTS 115

FST is ��� ���	��������� ��������� � � � ���	��������� ��� � ��� � � and the set of reachable states � � � � con-
tains three elements:

(0, ����� , 0,0,0, 0, ����� , 0,0,0)
(0, ����� , 0,0,1, 0, ����� , 0,0,1)
(0, ����� , 0,1,0, 0, ����� , 0,1,0)

The merge frontier in Figure 5.12 is given by the fanout points corresponding to
the signals � � � � and ��� � � as well as to the constant signals � ���	� � ���	����� ��� � � � and the
constant signals � � �	� � � �	����� ��� � � � which are all constant 0. This merge frontier marks
the inputs of the approximate stub circuit.

After cutting at the merge frontier, the remaining stub circuit represents the following
set of states:

(0, ����� , 0,0,0, 0, ����� , 0,0,0)
(0, ����� , 0,0,1, 0, ����� , 0,0,1)
(0, ����� , 0,1,0, 0, ����� , 0,1,0)
(0, ����� , 0,1,1, 0, ����� , 0,1,1)

The stub circuit represents 4 states because it has two independent input variables.
The represented set of states corresponds to an expansion of the product FST into 3
(rather than 2) time frames. We have over-approximated the reachable state set � � � �
for

� ' �
of the product FST. Note that this approximation does not add unreachable

states to the state set of the product FST. The shown over-approximation is possible
in every time frame. Therefore, for this example of an
 -bit binary counter hav-
ing � ' � � states, the structural FSM traversal can be completed in ����� � � '

steps. By way of contrast, conventional forward FSM traversal needs � steps, if no
approximation techniques are used.

In general, if a design � was derived from a design
�

by logic synthesis which did not
optimize with respect to the set of reachable states, the described approximation does not lead to
false negatives.

In Example 5.2, it was possible to identify equivalent state variables. For this special case,
methods like [41, 42] can also be useful as a preprocessing phase to our approach. If equivalent
state variables can be determined then the corresponding substitutions can be added to the in-
struction queue for every time frame so that a fixed point is reached much faster. For example, in
the special case where all state variables are known to be equivalent the problem is combinational
and our technique would produce a “working” instruction queue after only one iteration.

5.3 Experimental Results

As pointed out earlier, state encoding techniques are used rarely in commercial synthesis tools,
but the state encoding of circuits can change in practice because of structural modifications of the

116 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

netlist including retiming. At the RTL level, changes in the pipelining often lead to repositioning
of registers which has a similar effect as retiming on the gate-level. An important application
of the proposed approach is to verify circuits after synthesis including retiming and related tech-
niques.

A prototype of the described approach has been incorporated into the HANNIBAL package.
The technique was evaluated by verifying circuits of the ISCAS89 benchmark set against the
optimized and retimed circuits. The circuits were optimized by kernel extraction (using fx in
SIS [84]). After optimization retiming is performed (using retime in SIS). The resulting circuits
were verified against the original ones. For the original circuits we assumed an initial state of 0
for all registers.

A difficulty in our experimental evaluation comes from the fact that for larger circuits SIS
cannot compute the initial state after retiming, because it uses symbolic FSM traversal for this
task. Therefore, we developed a simple retiming algorithm that moves all registers as far as
possible into forward direction. The new initial state can simply be calculated by forward im-
plications of the old initial state. In this way, we ensured that the encoding for all optimized
circuits differs drastically from the encoding of the unoptimized original circuits and no simple
relationships exist between state variables.

Table 5.3 shows some statistics about the benchmark circuits before and after synthesis and
retiming. As can be seen, in most cases the number of latches differs greatly for the original and
the transformed versions of each circuit. This greatly influences the performance of a standard
reachability analysis as it is implemented in UC Berkeley formal verification tool VIS [9]. The
command compute reach in VIS uses BDD-based FSM traversal to calculate the set of reachable
states. It can be successfully applied only to the smaller benchmark circuits including S1238. For
the larger circuits, the state explosion problem is encountered. The BDD of the set of states or
intermediate BDDs in image computation blow up, so that the traversal has to be aborted. (For
example, to the best of our knowledge, circuit S1423 has never been completely traversed to this
date).

Table 5.4 shows some statistics about the state transition graph and standard FSM traversal
for the original and the transformed circuits. In most cases the number of states is not altered
by the synthesis and retiming steps applied to the circuits. Exceptions are S344, S349, S820,
S832 and S953. Except for S820 and S832 the sequential depth of the state transition graphs
is not altered, either. However, the fact that the encoding of states is changed has a drastical
effect on the BDD size representing the reachable state sets. In most cases, the BDDs become
significantly larger if the number of latches increases. The last column of Table 5.4 shows how
many iterations were needed for record and play() to reach the fixed point when traversing the
product machine composed of the original and the transformed circuits. This column clearly
shows the beneficial effect which the approximation discussed in Example 5.2 (page 113) has on
performance. Extreme cases are the circuits S420 and S838 which exhibit a counting behaviour.
Standard FSM traversal has to iterate through all 65536 states of circuit S420 before completion.
The resulting BDD consists of only the terminal node labelled ‘1’. However, together with the
altered state encoding after synthesis and retiming, it was not possible to complete reachability
analysis for the transformed S420 within 1 hour of CPU time on a 450 MHz AMD K6-2 machine
running Linux. The same holds for S838. Without approximations, this circuit can be traversed

5.3. EXPERIMENTAL RESULTS 117

latches
Circuit # inputs # outputs orig. transf.

s208 10 1 8 46
s298 3 6 14 42
s344 9 11 15 42
s349 9 11 15 42
s382 3 6 21 57
s386 7 7 6 78
s420 18 1 16 96
s444 3 6 21 58
s510 19 7 6 118
s526 3 6 21 75
s635 2 1 32 95
s641 35 24 19 19
s713 35 23 19 19
s820 18 19 5 185
s832 18 19 5 192
s838 34 1 32 196
s953 16 23 29 121

s1196 14 14 18 30
s1238 14 14 18 31
s1423 17 5 74 245
s5378 35 49 179 411
bs1512 29 21 57 258
bs3271 26 14 116 194
bs3330 40 73 132 270
bs3384 43 26 183 585
bs4863 49 16 104 430
bs6669 83 55 239 411

Table 5.3: Circuit statistics of original and transformed circuits

118 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

compute reach compute reach record and play()
(VIS-1.3) (VIS-1.3) (HANNIBAL)

for original circuit for transformed circuit for product machine
Circuit # states BDD sequ. # states BDD sequ. # iterations

reached size depth reached size depth til fixed point

s208 256 1 255 256 3639 255 15
s298 218 76 18 218 751 18 10
s344 2625 991 6 2385 11203 6 9
s349 2625 995 6 2385 10674 6 9
s382 8865 152 150 8865 4449 150 16
s386 13 8 7 13 828 7 9
s420 65536 1 65535 time-out 27
s444 8865 224 150 8865 4592 150 16
s510 47 8 46 47 3227 46 12
s526 8868 275 150 8868 8171 150 21
s635 time-out time-out 37
s641 1544 136 6 1544 133 6 9
s713 1544 136 6 1544 134 6 9
s820 25 10 10 16 43273 8 17
s832 25 10 10 16 47539 8 16
s838 time-out time-out 51
s953 504 549 10 716 25607 10 11

s1196 2616 1044 2 2616 2745 2 6
s1238 2616 1405 2 2616 2542 2 6
s1423 out of memory out of memory 14
s1512 out of memory out of memory 16
s3271 out of memory out of memory 19
s3330 out of memory out of memory 9
s3384 out of memory out of memory 17
s4863 out of memory out of memory 8
s5378 out of memory out of memory 36
s6669 out of memory out of memory 11

Table 5.4: STG statistics

5.3. EXPERIMENTAL RESULTS 119

neither in the original nor in the transformed version. With its 34 latches, � ��� � �	� �
�

iterations are
needed for a complete traversal of the FSM. This was not possible within the chosen time limit of
1 hour. Using the approximations given by the record and play() procedure, approximate FSM
traversal needs far less iterations. The number of iterations needed to traverse a counter grows
linearly with the number of latches.

Table 5.5 shows the experimental results for sequential equivalence checking based on the
approximate structural FSM traversal given by routine record and play(). These experiments
were performed on a SUN Sparc 5 with 96 MBytes main memory. Note that in [41, 42] a different
notion of equivalence is used and no results are shown for circuits that are both optimized and
retimed. Therefore we compare our techniques only with the conventional verification approach
by symbolic FSM traversal. The results for the command seq verify in VIS-1.3 are shown in the
right column of Table 5.5. The results show the feasibility and great potential of the proposed
approach to verify circuits after synthesis and retiming. With our technique, the verification could
be completed within acceptable CPU times for many cases where the conventional approach
failed.

120 CHAPTER 5. EQUIVALENCE CHECKING OF SEQUENTIAL CIRCUITS

Circuit record and play() seq verify
(HANNIBAL) (VIS-1.3)

Name # iterations CPU time CPU time
till fixed point h:min:sec h:min:sec

s208 15 0:00:08 0:00:04
s298 10 0:00:09 0:00:03
s344 9 0:00:11 0:00:12
s349 9 0:00:11 0:00:12
s382 16 0:00:17 0:01:55
s386 9 0:00:48 0:00:03
s420 27 0:00:43 unable
s444 16 0:00:18 0:01:59
s510 12 0:00:35 0:00:26
s526 21 0:00:35 0:01:35
s635 37 0:01:32 unable
s641 9 0:00:12 0:00:04
s713 9 0:00:12 0:00:03
s820 17 0:36:50 unable
s832 16 0:26:37 unable
s838 51 0:08:13 unable
s953 11 0:01:09 unable

s1196 6 0:00:40 0:00:10
s1238 6 0:00:46 0:00:11
s1423 14 0:03:31 unable
s1512 16 0:04:09 unable
s3271 19 0:21:17 unable
s3330 9 0:11:33 unable
s3384 17 0:31:24 unable
s4863 8 0:36:52 unable
s5378 36 0:55:23 unable
s6669 11 0:47:15 unable

Table 5.5: Verification of optimized and retimed circuits

Chapter 6

Future Work

The techniques explored in this thesis have concentrated on two major issues: firstly, setting
up a framework of reasoning techniques which can be applied in synthesis-based verification
methods, and secondly, developing the foundations of a structural approach to FSM traversal
which is the key problem in formal verification of sequential systems. In both areas there is a
lot of room for further development. The following sections outline ideas for future research in
some domains.

6.1 AND/OR Reasoning Graphs

The classical OR-type variable enumeration technique can be represented as a Shannon tree.
Often, a Shannon tree can be significantly reduced in size by sharing isomorphic subtrees so
that a binary decision diagram is obtained. It is interesting to investigate whether such a “BDD
effect” can also occur for AND/OR trees. The following example shows how an AND/OR tree
can be reduced by sharing of isomorphic subtrees.

Example 6.1 Consider the circuit in Figure 6.1 The AND/OR tree for the initial

a

y

f

d

eb

c

Figure 6.1: Circuit example for sharing isomorphic AND/OR subtrees

assignment � ' � can be constructed using routine and or enumerate() of Table 3.2.
If isomorphic subtrees are shared we obtain the AND/OR graph of Figure 6.2.

121

122 CHAPTER 6. FUTURE WORK

initial assignments {y=0}

d=0 e=0 f=0 y=0

a=1 c=1 b=1 b=0 c=0 a=0

Figure 6.2: AND/OR graph for circuit in Figure 6.1

In general it is desirable to share isomorphic subtrees. So far we have only extracted infor-
mation from AND/OR trees by enumerating them. If the AND/OR trees are actually built and
reduced as shown in the example, a significant amount of enumeration may be saved. Similarly,
just as OBDDs provide substantially more power than exhaustive simulation it can be expected
that appropriate trade-offs between time and memory (using hashing and cacheing techniques)
can further improve the performance of AND/OR graph-based methods.

Besides hashing of isomorphic subtrees there exist many other possibilities to improve the
efficiency of the AND/OR search. Similar concepts as have been developed by [20] for branch-
and-bound methods can also be used to improve the efficiency of AND/OR search. Future work
may investigate this with particular focus on finding appropriate trade-offs between time and
memory.

6.2 Structural FSM Traversal

We have introduced structural FSM traversal as a fixed point iteration of circuit transformations
yielding a structural representation of reachable state sets of sequential circuits. A goal of future
research is to apply the developed techniques to the field of model checking. A number of
problems need to be addressed.

1. Modeling properties

The properties to be examined by a model checker need to be formulated in some language.

6.2. STRUCTURAL FSM TRAVERSAL 123

If structural techniques are to be used, it must be explored how properties can be translated
into a form which fits well with the proposed approach to FSM traversal.

For checking combinational properties, i.e., properties that are not a function of time, it is
close at hand to use representations as introduced in Section 3.8. A cap circuit can be used
to represent a certain relationship between signal values in the design. The cap function
evaluates to 1 for every combination of signal values that fulfills a given property. A cap
circuit can also be used for the formulation of certain class of properties often called safety
properties. Safety properties correspond to conditions that must be true in every reachable
state. Sequential equivalence is an instance of such a property, which is formulated for a
product machine of two designs

�
and � to be compared.

For checking sequential properties, i.e., properties that include the notion of time, struc-
tural representations of these properties have to be developed. A possible approach related
to traditional language containment techniques [56] is the use of finite automata as a rep-
resentation of the properties to be checked.

Example 6.2 Consider a sequential circuit controlling some resource such as
memory or access to a bus (Figure 6.3). Whenever the controller receives an

... ...

Automaton

Control
Circuit

λ

...

...

... ...

...

...

(request) R

A (acknowledge)
(other inputs)

(other outputs)

R

A
Property

Figure 6.3: Circuit with property automaton

external request in form of a logic 1 at its input � , it issues an acknowledge
signal

�
in the next clock cycle. The property to be checked is whether this

is always the case. This property is formulated as a finite automaton as shown
in Figure 6.4. The automaton outputs a logic 1 in the states indicated by dou-
ble circles. State S3 is reached if the property is invalidated (rejecting state).
The output value � of the automaton in this state is 0. The automaton is im-
plemented as a sequential circuit and attached to the controller circuit as shown
in Figure 6.3. The two sequential circuits together form a product machine.
Checking the property amounts to checking whether the output � is always 1.

Future work needs to examine how to adequately formulate properties in this fashion and

124 CHAPTER 6. FUTURE WORK

S1

S2

S3
request was not
acknowledged
(rejection state)

check for immediate
acknowledge (A=1)

R=0

R=1 A=1

A=0

wait for request (R=1)

Figure 6.4: State transition graph of property automaton

how such a structural model checking methodology compares with traditional symbolic
model checking as well as bounded model checking [6].

2. Approximations

As can be seen in the above example, the product machine formed by combining a de-
sign under check and the properties to be analyzed are of different nature compared to a
product machine for sequential equivalence checking. The latter usually contains many
signal relationships between the two sub-circuits representing the designs to be compared
because of structural similarities. This is not necessarily true for the former case. The ap-
proximation we have used in record and play() for sequential equivalence checking may
not work for model checking. On the other hand, as can also be observed in the example, it
can be expected that a property typically checks only selected aspects of a design. Besides
the obvious reductions possible due to signals which are irrelevant to the considered prop-
erty (like unmonitored outputs), it is necessary to explore how the product machine can
be further simplified without affecting the correctness of the verification result. Just like
in traditional model checking and language containment approaches, model reduction and
abstraction techniques also play a central role in a structual approach to model checking.

3. Exact structural FSM traversal

For product machines that cannot be further reduced, it may be necessary to conduct a
reachability analysis that is exact because the property to be checked may be invalid for
all unreachable states. For these cases, we need to develop practical techniques for syn-
thesizing an exact stub circuit. The exact method which was described in Section 4.4 is
based on calculating a 0-cover of the characteristic function �

�
of the reachable state set.

The prime implicants in this cover are expressed by the state variables. For determining

6.2. STRUCTURAL FSM TRAVERSAL 125

these implicants, AND/OR reasoning needs to be performed to sufficiently deep recursion
levels such that all possible implications from a state variable to the other state variables
are considered. In practice, this may lead to unacceptable computation times already for
mid-size circuits.

Instead of calculating the stub circuit in one step starting at the outputs of the tap circuit
(the iterative circuit array), it is more efficient to begin at the primary inputs and construct
the stub circuit level by level using successive cuts through the tap circuit. Each cut cor-
responds to an intermediate set of variables � for which an intermediate stub circuit is
calculated. This methodology is similar to conventional cut-based range or don’t-care set
computations (see, e.g., [67, pp. 384–389]).

Example 6.3 Consider the logic network of Figure 6.5. (It is an example from
[67]). Instead of calculating implicants of the output variables

�
and 	 imme-

d

e

x

x

x

x
c

b

a

1

2

3

4

1 2 3

Figure 6.5: Cuts in network of Example 6.3

diately by constructing AND/OR graphs, we place successive cuts through the
network as indictated by 1, 2 and 3. For each cut, an intermediate stub circuit
is calculated.

Cut 1 is given by the variables
� � ��������� ��� . Obviously, for each variable no

implicants in terms of other cut variables can be found. The stub circuit is
created by cutting the XOR gate off and leaving signal � as a primary input.

Cut 2 is given by the variables
� ��������� � � . The impossible patterns at this set of

variables are (0,1,0) and (0,1,1). They can be represented by � as a 0-implicant
of � . The corresponding stub circuit is shown in Figure 6.6.

The variables of cut 3 are
� �"�#*�� . Again, no implicants can be found for these

variables in terms of each other. This leads to the stub circuit shown in Fig-
ure 6.7.

In each step, the circuit is transformed into a circuit with a different input-output
behaviour but with the same set of output vectors. The last cut is given by the
output variables

�
and 	 . Pattern (1,0) is the only impossible pattern. It can be

126 CHAPTER 6. FUTURE WORK

d

e
x

c

4

b

a

a’

stub circuit

Figure 6.6: Stub circuit for cut 2

d

e

stub circuit

b’

c’

Figure 6.7: Stub circuit for cut 3

d

e

d’

e’

stub circuit

Figure 6.8: Stub circuit for network outputs

6.2. STRUCTURAL FSM TRAVERSAL 127

represented by
�

as a 1-implicant for 	 . The corresponding stub circuit is given
in Figure 6.8.

The shown stub circuit calculation is based on a network traversal which strictly iterates
the steps of propagating a cut frontier, calculating an intermediate stub for the frontier
and performing existential quantification by cutting. We can view equivalence-preserving
transformations (as the implicant-based transformations described in Chapter 3) and exis-
tential quantification by cutting as special instances of range-preserving circuit transfor-
mations. An interesting topic for research would be to develop a less strict framework of
local range-preserving circuit transformations aiming at the efficiency of a non-canonical
set representation. As an example, reconsider the stub circuit in Figure 4.9 of Example 4.2
(page 98). The OR gate in this stub circuit can be cut off and replaced by a primary input
without altering the range of the stub circuit. A research goal for a stub synthesis frame-
work could be to develop heuristics exploiting situations of this kind. Implicant-based
transformations have to be selected such that large portions of logic can be cut off, thus
minimizing the stub circuit representation.

128 CHAPTER 6. FUTURE WORK

Chapter 7

Summary

This thesis has explored how structural techniques can be applied to the problem of formal verifi-
cation for sequential circuits. Algorithms for formal verification which operate on non-canonical
gate netlist representations of digital circuits have certain advantages over the traditional tech-
niques based on canonical representations as BDDs. They allow to exploit problem-specific
knowledge because they can take into account structural properties of the designs being ana-
lyzed. This allows us to break the problem down into sub-problems which are (hopefully) easier
to be solved. However, in the past, the main application of such structural techniques was in the
field of combinational equivalence checking. One reason for this is that the behaviour of a se-
quential system does not only depend on its inputs but also on its internal states, and no concepts
had been developed to-date allowing structural methods to deal with large sets of states.

An important goal of this research was therefore to develop structural, non-canonical forms of
representing the reachable states of a finite state machine and to develop methods for reachability
analysis based on such representations. In order to reach this goal, two steps were taken. Firstly, a
framework for manipulating Boolean functions represented as gate netlists has been established.
Secondly, using this framework, a structural method for FSM traversal was developed serving as
the basis for an equivalence checking algorithm for sequential circuits.

The framework for manipulating Boolean functions represented as multi-level combinational
networks is based on a new concept of an implicant in a multi-level network and on an AND/OR-
type enumeration technique which allows us to derive such implicants. This concept extends the
classical notion of an implicant in two-level circuits to the multi-level case. Using this notion,
arbitrary transformations in multi-level combinational networks can be performed.

The multi-level network implicants can be determined from AND/OR reasoning graphs,
which are associated with an AND/OR reasoning technique operating directly on the gate netlist
description of a multi-level circuit. This reasoning technique has the important property that it is
complete, i.e. the associated AND/OR trees contain all prime implicants of a Boolean function
at an arbitrary node in a combinational circuit. In other words, AND/OR graphs constructed
for a network function serve as a representation of this function. A great advantage over BDDs
is that AND/OR graphs, besides representing the logic function, also represent some structural
properties of the analyzed circuitry. This permits to develop heuristics that are specially tailored
for certain applications such as logic optimization or verification.

129

130 CHAPTER 7. SUMMARY

Another advantage which is especially useful for logic optimization is the fact that the pro-
posed AND/OR enumeration scheme is not restricted to the use of a specific logic alphabet such
as � � ' �

� �	� ��� � . By using Roth’s D-calculus based on � � ' �
� �	� ��� � � � � � permissible im-

plicants can be determined. Transformations based on permissible implicants exploit observabil-
ity don’t-care conditions in logic synthesis by creating permissible functions at internal network
nodes.

In order to evaluate the new structural framework for manipulating Boolean functions rep-
resented as gate netlists, several experiments with implicant-based optimization of multi-level
circuits were performed. The results show that implicant-based circuit transformations lead to
significantly better optimization results than traditional synthesis techniques.

Next, based on the proposed structural methods for Boolean function manipulation, tech-
niques for representing and manipulating the set of states of a sequential circuit have been devel-
oped. The concept of a “stub circuit” was introduced which implicitly represents a set of state
vectors as the range of a multi-output function given as a gate netlist. The stub circuit is the
result of an existential quantification operation which is obtained by functional decomposition
using implicant-based netlist transformations and a network cutting procedure.

Using this existential quantification operation, a new structural FSM traversal algorithm was
formulated which performs a fixed point iteration on the set of reachable states represented by the
stub circuit. The proposed approach performs a reachability analysis of the states of a sequential
circuit. It operates on gate netlists and naturally allows to incorporate structural properties of a
design under consideration into the reasoning. Therefore, structural FSM traversal is an interest-
ing alternative to traditional symbolic FSM traversal, especially in those applications of formal
verification, where structural properties can be exploited.

Structural FSM traversal was applied to the problem of sequential equivalence checking.
Here, structural similarities between the designs to be compared can effectively reduce the com-
plexity of the verification task. The FSM to be traversed is a special product machine called
sequential miter. The special structural properties of this product machine have made it possible
to formulate an approximate algorithm for structural FSM traversal, called record and play().
This algorithm uses an approximation on the reachable state set represented by the stub cir-
cuit which is very beneficial for performance. Instead of calculating the stub circuit using
the exact algorithm, implicant-based transformations directly using structural design similari-
ties are performed. These transformations, together with existential quantification implemented
by the cutting procedure, lead to an over-approximation of the reachable state set. By this over-
approximation, only such unreachable product states are added to the set of states represented
by the stub circuit which are unreachable at the current point in time but which are nevertheless
equivalent. Therefore, more product states are added to the set of reachable states sometimes
leading to drastic acceleration of the traversal, i.e. the fixed point is reached in much fewer steps.

The algorithm record and play() was applied to the problem of checking the equivalence of
a circuit with its optimized and retimed version. Retiming is a form of sequential circuit op-
timization which can radically alter the state encoding of a circuit. Traditional FSM traversal
techniques often fail because the BDDs needed to represent the reachable state set and the transi-
tion relation of the product machine become too large. Experiments were conducted to evaluate
the performance of record and play() on a standard set of sequential benchmark circuits. The

131

algorithm was capable of proving the equivalence of optimized and retimed circuits with their
original versions, some of which (to our knowledge) have never before been verified using tra-
ditional techniques like symbolic FSM traversal. The experimental results are very promising.
Future research will therefore explore how structural FSM traversal can be applied to model
checking.

132 CHAPTER 7. SUMMARY

Appendix A

Proofs of Theorems

Theorem 3.3 (Page 28) Let ��� be a node in a combinational network � � . Further, let � � be a
multi-level network implicant according to Def. 3.1, such that

1. the transformation of node ��� into � ��� � given by

(a) � ��� � ' ���
 � � if � � is a 1-implicant of ���
(b) � ��� � ' ��� � � � if � � is a 0-implicant of ���

followed by

2. redundancy removal (with appropriate fault list)

generates a combinational network � ��� � . For an arbitrary pair of equivalent combinational net-
works � and ��� there exists a sequence of equivalent combinational networks � � ����� � ������� ����� �
such that � ��� � and ��� ����� .

Proof:

The proof is along the lines of the proof of Theorem 3.1 of [55]. Switching alge-
bra is isomorphic to two-valued Boolean algebra. A combinational network can be
mapped onto a set of interdependent Boolean formulae. Each signal in the network
corresponds to a variable in a formula. Each gate corresponds to a Boolean oper-
ation (disjunction, conjunction, negation). The proof is based on the fact that for
any Boolean formula one can obtain any equivalent formula by applying the laws
of Boolean algebra. We show that for each of these laws there exist corresponding
network transformations as described in the theorem.

Note that each of the two sub-steps in the transformation of Theorem 3.3 can be
considered a legal transformation for itself. For each direction of the following laws,
we show the corresponding network transformation. Since each law comes in two
forms dual to each other, we show the proof only for one of them.

1. Idempotency: ��
 � ')� , ���"�(' �
Let ����')��
 � . Redundancy elimination yields �
� � � ')� .

133

134 APPENDIX A. PROOFS OF THEOREMS

Let � � ' � . We choose � ��')� which is a 1-implicant of ��� . Changing the cover
of ��� yields ��� � � ' ��
 � .

2. Commutativity: ��
 ��')��
 � , ������')�����
These laws are fulfilled by construction (definition) of primitive AND- and
OR-gates.

3. Associativity: ��
)����
 *+� ' ����
 ���
 * , �
����� �"*+� ' �����������"*
Let ��� ' � �$��� � *+� . We choose � � ' * , which is a 0-implicant of ��� . Changing
the cover of ��� yields ����� � '&� � ���
� * � � * . Redundancy elimination yields
� ��� � '����
�"�+���"* .
Proof is analogous for opposite direction.

4. Absorption: ��������
 �+� ' � , ��
)���
�"��� ' �
Let ����')�
������
 ��� . Redundancy elimination yields ����� � '�� .
Let � � ' � . We choose � � ' ��
 � which is a 0-implicant of ��� . Changing the
cover of ��� yields ����� � '���� ����
 ��� .

5. Distributivity: �
������
 *+� '����"��
 ����* , ��
 �����"*+� ' ����
 ����� ����
 *+� .
Let ����')� �����
 *+� . We choose � ��'�� � � which is a 1-implicant of ��� . Changing
the cover of ��� yields ����� � ' ��� ���
 * �
 �
� � . Redundancy elimination yields
���"��
 ����* .
Let ����')�����
 ���+* . We choose � ��' � which is a 0-implicant of ��� . Changing
the cover of ��� yields ��� � � ' ����� ��
 ���"* ��� � . Redundancy elimination yields
����
 *+���"� .

6. Universal bounds: �
 �
'�� , ���"�('�� , ��
 �
'�� , � ���
')�
Let ����'��
 � . Redundancy elimination yields ����� � ' � .
Let ����'�� . We choose � ��' � which is a 1-implicant of ��� . Changing the cover
of ��� yields ��� � � ' �
 � .
Let ����'������ . Redundancy elimination yields �
� � � ' � .
Let ����' � . We choose � �%' � which is a 0-implicant of ��� . Changing the cover
of ��� yields ��� � � ' ���"� .

7. Unary operation: ��� �
' � , ��
 �
' �
Let ����')�
� � . Redundancy elimination yields �
��� � '�� .
Let ��� ' � . We choose � � ' � � � which is a 1-implicant of ��� . Changing the
cover of ��� yields ����� � ' ��

� � � . Redundancy elimination with carefully
selected fault list yields ��� � � ' �
� � .

In order to complete the proof it must be shown that the two-step methodology given
in the theorem also allows arbitrary sharing of logic. This follows easily from the
following construction. Let � be the original network and ��� be the target network.
Further, let � � ����� denote a network that has tree structure and results from � if all

135

sharing of logic is removed by duplication. Similarly, let ���� ����� denote the tree ver-
sion of the target network. Consider the following construction: Remove all sharing
of logic between the different output cones of the original network so that we ob-
tain � � ��� � . It is easy to derive � � � ��� using the given transformation scheme. Let �
be some internal fanout point and assume it is the output of an AND gate with in-
put signals � and � . By choosing an implicant � ' � � , adding this implicant and
performing redundancy elimination with an appropriate fault list, the fanout point is
moved to the inputs of the AND gate. For other gate types the procedure is analo-
gous. This process is repeated until no more internal fanout points exist and � � �����
has been obtained. After all sharing of logic has been removed, each output cone
is isomorphic to a Boolean expression that can be manipulated arbitrarily as shown
using the above axioms. Therefore, it is also possible to obtain the network � �� �����
using the given transformation. The target network ��� results if the duplicated logic
is removed. This can be accomplished if equivalent nodes are substituted. If node �
is to be substituted by � � this can be accomplished by selecting � ' � � and perform-
ing the given transformation. This process can be repeated for well-selected nodes
in ���� ����� until network ��� is reached.

�

Theorem 3.7 (Page 43) Let � be the output signal of a two-level combinational circuit in SOP
form. The AND/OR tree for the assignment � ' � (tautology test) has only two levels if the SOP
expression is unate.

Proof:

After the value assignment � '�� , the output signals of the implicants in the SOP be-
come unjustified lines. The justifications for the unjustified lines reach the primary
inputs. The implications from the justifications may cause events at other implicants
(unjustified lines). However, since the SOP is unate, the implications from the justi-
fications will produce values that justify these unjustified lines so that no new AND
nodes can be created.

�

Theorem 3.8 (Page 46) Let � be an arbitrary node in a combinational network and � be the
AND/OR enumeration tree for an initial set of value assignments � ' �

� ' � � . Consider
a product term �)' � � � � ��� ����� � �

� where
� � is a literal corresponding to a variable �
� or its

complement in the combinational network. Further, consider an IST of � with a set of leaves, � .
If there is a one-to-one mapping between the literals

� � of � and the elements � ��� ' � � � of �
such that � � ' � if

� � represents the uncomplemented variable �
� and � � ' � if
� � represents the

complemented variable ��� , then � is a 1-implicant of � . Analogously, � is a 0-implicant of � if the
IST is a subtree of the enumeration tree with the initial assignment � ' � '�� .

136 APPENDIX A. PROOFS OF THEOREMS

Proof:

The theorem is “obvious” due to the structure of the AND/OR tree. Nevertheless,
for reasons of completeness it is proved formally by noting that the AND/OR tree is
isomorphic to a Boolean expression of the recursive form described below.

Let
 be the level index associated with the nodes of the AND/OR tree and � and �
be Boolean expressions associated with the OR nodes and AND nodes such that the� � � � are the children of the � � � � and the � � � � � � are the children of the � � � � :

� � � ��' �
�
� � � � (A.1)

� � � ��'
��� ���� � � � � � � � for non-terminal nodes

� for terminal nodes if leaf corresponds to � '��
� for terminal nodes if leaf corresponds to � '��

(A.2)

By recursively applying Equations A.1 and A.2 to all levels
 we obtain a Boolean
expression � � � � with

� ' �)�%� � � � � ' � (A.3)

The proof is by induction:

Consider an implication subtree (IST) of the AND/OR enumeration tree for the ini-
tial value assignment � ' �

� '�� � .

1. Let
 ' � be the level index of the leaves of the IST. Take the leaves of the
IST, ��� � � . For all leaves we set �	� � ��' � . This means that the product term

�

formed by the leaves of the IST as given in the theorem evaluates to 1. Then,
since in the IST there exists at least one OR child of each AND node, for every
�
� � � there exists a ��� � � such that ��� � ��' � .

2. Assumption:
for every � � � � there exists a � � � � child such that � � � ��'�� .

3. Then, for all � ���	� � � it is � � �	� � ��' � .
Proof:
given the above assumption,
from Eq. A.1: for every � � � � in the IST it is � � � �%'�� ,
for a given � � � � all its siblings are also included and are 0, and
with Eq. A.2: for every � ���	� � � in the IST it is � ���	� � ��'�� ,
from Eq. A.1: for every � ���	� � � in the IST it is � � �	� � � ' � .

137

By induction we conclude that the Boolean expression � � � � belonging to the IST
becomes � if the product term

�
formed as given in the theorem evaluates to 1, i.e.,

� '�� ��� � � � � ' � (A.4)

By contraposition of Eq. A.3 we conclude with Eq. A.4 that
� ' � �%� � '�� , hence

�
is a 1-implicant of � .

The proof for a 0-implicant is analogous.
�

Theorem 3.9 (Page 47) Let � be an arbitrary node in a combinational network and � be the
AND/OR reasoning tree for an initial set of value assignments � ' �

� ' � � , � � �
�$�	��� . For

every prime implicant of � there exists a minimal implication subtree (MIST) of � such that the
leaves of the MIST correspond to the literals of the prime implicant as given in Theorem 3.8.

Proof:

Recursive learning [53], which monitors the search performed by the algorithm
and or enumerate(), has been proved to be complete: it can determine all logic
implications including the indirect implications of � ' � . Viewed in an AND/OR
tree, indirect implications correspond to an IST as defined in Definition 3.11 such
that the IST has leaves labelled with identical value assignments. Since recursive
learning is complete, every single-literal implicant can be associated with an IST of
the AND/OR tree for the initial set of value assignments � .

The theorem is now proved for a prime 1-implicant using the following construction.
Suppose there is a product term � ' � � � � � ������� � �

� where the literals
� � correspond to

variables in the combinational network in either complemented or uncomplemented
form. Further, the combinational network is modified as follows. We add an AND
gate with the output signal ��� as a new primary output of the combinational net-
work. The inputs of the AND gate are the variables of the combinational network
corresponding to the literals in � . Inverters are added for those variables whose com-
plements correspond to the literal. In other words, we implement the product term
� as an additional output of the combinational network. From the correctness and
completeness of recursive learning and the definition of an implicant it follows that
the assignment � ' � implies ����' � if and only if � is a 1-implicant of � . (By
contraposition: ��� ' ���%� � ' �). Hence, � is a 1-implicant if and only if for the
above construction there exists an IST with leaves each labelled with the identical
value assignment ��� '�� . To prove the theorem, we show that in absence of this con-
struction an IST with leaves corresponding to the literals in � exists if in presence of
the construction an IST exists with identical leaves labelled ��� ' � .
Note that in presence of the construction, the leaves of the IST must have siblings in
the original AND/OR enumeration tree that correspond to the variables of � . This is

138 APPENDIX A. PROOFS OF THEOREMS

guaranteed because ���(' � can only be implied from one of the inputs of the AND
gate. Hence, each leaf ���!'�� of the IST must have a sibling in the original tree cor-
responding to a literal (variable) in the implicant. Therefore, we can identify an IST
of the original tree which only contains literals of the implicant as leaves. Since � is
a prime implicant, all literals of � must be contained int the IST as leaves. The proof
of the theorem is completed by observing that for any IST we can obtain a MIST as
a subtree of the IST. The MIST is also an IST and hence its leaves must correspond
to an implicant. Since the considered implicant is prime the MIST obtained from the
IST must still correspond to the same implicant � .

�

Theorem 3.10 (Page 50) Let � be an arbitrary node in a combinational network and � be the
D-AND/OR enumeration tree for the fault � stuck-at-1. Consider a product term � ' � � � � � �
����� � �

� where
� � is a literal corresponding to a variable �
� or its complement in the combinational

network. Further, consider an IST of � with a set of leaves, � , such that in the combinational
network the nodes ��� cannot be reached by the fault effect.

If there is a one-to-one mapping between the literals
� � of � and the elements ����'�� � such

that � �(' � if
� � represents the uncomplemented variable �
� , and � �
' � if

� � represents the
complemented variable ��� , the product term � is a permissible 1-implicant of � . Analogously, �
is a permissible 0-implicant of � if the IST is a subtree of the enumeration tree for the fault �
stuck-at-0.

Proof:

The proof is analogous to that of Theorem 3.8. Equations A.1, A.2 and A.4 are still
valid, because the terminal nodes �	� � � are solely composed of variables which cannot
be reached by the fault effect and thus can only take values � � �

� �	�
� . The Boolean
expression of Eq. A.3 needs to be extended towards

� � '�� ��� � � observable at a primary output ���%� � � � � '��

Its contraposition states that if the Boolean expression evaluates to � � � � '�� , � is not
observable at any primary output or � must be 1. We can therefore conclude that if
� evaluates to 1, � is 1 or not observable. Hence, � is a permissible 1-implicant of � .
The proof for permissible 0-implicants is analogous.

�

Theorem 3.11 (Page 50) Let � be an arbitrary node in a combinational network and � be the
D-AND/OR enumeration tree for the fault � stuck-at- � , � � � � � . For every permissible prime
implicant at a node � there exists a minimal implication subtree (MIST) of � such that the leaves
of the MIST correspond to the literals of the prime implicant as given in Theorem 3.10.

139

Proof:

The following is along the lines of the proof for Theorem 3.11. The two algorithms
make all implications() and complete unique sensitization() being part of the recur-
sive learning procedure [53] can identify all necessary assignments for single stuck-
at fault detection at a node � in a combinational network. These correspond to per-
missible single-literal implicants of � . This is accomplished by recursively check-
ing whether all consistent justifications and sensitizations contain the same implied
value assignments. Viewed in the AND/OR tree these indirect implications of fault
injection correspond to an IST as defined in Definition 3.11 such that the IST has
leaves labelled with identical value assignments. Since recursive learning is com-
plete, every permissible single-literal implicant can be associated with an IST of the
D-AND/OR enumeration tree for the initial set of value assignments � .

The theorem is now proved for a permissible prime 1-implicant using the following
construction. Suppose there is a product term � ' � � � � ��� ����� � �

� where the literals
� � correspond to variabels in the combinational network in either complemented or
uncomplemented form. Further, the combinational network is modified as follows.
We add an AND gate with the output signal � � as a new primary output of the combi-
national network. The inputs of the AND gate are the variables of the combinational
network corresponding to the literals in � . Inverters are added for those variables
whose complements correspond to the literal. In other words, we implement the
product term � as an additional output of the combinational network. From the cor-
rectness and completeness of recursive learning and the definition of an implicant
it follows that the assignment � ' � and the requirement that � be observable im-
plies ����' � if and only if � is a permissible 1-implicant of � . (By contraposition:
� ���!'��"���%� � � '�� � � not observable �). Hence, � is a permissible 1-implicant if
and only if for the above construction there exists an IST with leaves each labelled
with the identical value assignment ��� ' � . It remains to be shown that in absence
of this construction an IST with leaves corresponding to the literals in � exists if in
presence of the construction an IST exists with identical leaves labelled � � ' � . This
can be proved in the same way as in the proof of Theorem 3.9.

�

Theorem 3.12 (Page 66) Let � be a function of a node in a combinational network and ��� ����� � �
a set of product terms with literals belonging to complemented or uncomplemented variables of
the network. Let

�
be the disjunction of the product terms:

� ' � �
��	��
 �����
�� � . Then, � is
functionally equivalent to

�
if, and only if, the � � are 1-implicants of � and

� ' � � �	������� � � is a
0-implicant of � . In this case,

�
is called a 1-cover of � .

Proof:

“ �%� ”:
� and

�
are functionally equivalent iff � � '�� ���,� � � '�� � and � � '��"���%� � � '

�"� .

140 APPENDIX A. PROOFS OF THEOREMS

1. Proof for � � '�� ����� � � ' � � :
This is true because

�
is a 0-implicant of � .

2. Proof for � � '�������� � � ' ��� :
If
� ' � then at least one of the � � in the disjunction must be 1. The � � are

1-implicants and therefore, � ' � also.

“ � � ”:
If � is functionally equivalent to

�
, then it follows directly from

� ' � �
��	�
 �����
�� �
that the � � are 1-implicants of � and that

�
is a 0-implicant of � .

�

Lemma 3.14 (Page 73) Consider a function �
�

with
 primary outputs � � and a range set
�

for the output vectors, a corresponding function �
�

of
 primary inputs � � which represents
the characteristic function of the set

�
, and a product term � of � literals corresponding to

complemented or uncomplemented variables � � . Every such product term which is a prime 0-
implicant of �

�
corresponds to one prime 0- or 1-implicant of each of the � outputs � � of �

�
appearing in � . Analogously, every product term which is a 0- or 1-implicant of an output � � of
�
�

corresponds to a 0-implicant of �
�
.

Proof:

Let ��' � � � � � � ����� � �
� be a product term consisting of � literals. Each literal corresponds

to a complemented or uncomplemented variable � � which is a primary output of �
�

and a primary input of �
�
. If � is a 0-implicant of the characteristic function �

�
then there exists no combination of value assignments in the combined circuitry of
Figure 3.35 such that � ' � , because no vector yielding � ' � can be produced
by �

�
. Consider now a product term � that is obtained by removing any single one

of the literals,
� � , from � , such that � '���� � � . Because � is a prime implicant of �

�
,

� is not an implicant of �
�
. Any combination of value assignments that makes � ' �

yields
� ��' � , because otherwise � would be 1 which is impossible. This means

that � is a 0-implicant of literal
� � . If

� � represents an uncomplemented variable � � ,
then � is a 0-implicant of � � . If

� � represents a complemented variabe � � , then � is a
1-implicant of � � . This holds for all � literals of � .

The reverse relationship given in the lemma is shown analogously.
�

Lemma 4.1 (Page 89) Consider an arbitrary state � lying on a cycle of the state transition graph
of length � . Furthermore, let � have a recurrence period � . Then, after a finite number of time
steps, state � also has a recurrence period � � which is the greatest common divisor of � and � .

Proof:

Let
� �

be the first time that � is in the reachable state set. Then, � � � � � �
 ��� �

 � � � ,
for all integers � � � because of given periodicity � , and for all integers
 � �

141

because of cycle length � . Let � be the set of integers � , � ' � � � � ' � ���

 � � .
Set � is (obviously) closed under addition, i.e., for all �	� � � � � � it is � � �
 � ����� � .
For � � � � � the following number-theoretic result holds (see e.g. [47], Theorem
1.4.1): A set of positive integers that is closed under addition contains all but a finite
number of multiples of its greatest common divisor. Since � contains only multiples
of � and � , the greatest common divisor of all positive integers in � is the greatest
common divisor, � � , of � and � . Because there is only a limited number of multiples
of � � which are not in � there is a

�
� � � � � � � such that

� ' � � � � for all times
� � �

� � � � � .
�

Lemma 4.2 (Page 89) After a finite transition time, the smallest recurrence period, � SCC, is
the same for all states in an SCC. This period � SCC is given by the greatest common divisor of
all cycle lengths in the SCC and of all recurrence periods for states in the SCC that have been
inherited from predecessor states outside the SCC.

Proof:

All states in an SCC are reachable from all other states in the SCC. Hence, every
state inherits all recurrence periods that develop according to Lemma 4.1, including
a smallest one which is the greatest common divisor of all of them.

�

Lemma 4.4 (Page 90) If a finite state machine has a synchronizing sequence, then the fixed point
recurrence period of all its states is 1.

Proof:

Let
�

be the length of the synchronizing sequence. If the FSM is synchronizable,
there is a walk of length

�
from each state � to a given state �

�
. In particular, there is

a closed walk � � � � � � ��� � � � ��� �	� � � � � of length
�
. If

� ' � the greatest common divisor
of all cycles in the SCC is 1. If

�

� � there is also a cycle of length
�

 � : Consider

state � � reachable from �
�

in one step. Since there exists a synchronizing sequence
of length

�
there is a walk from � � to �

�
of length

�
. Appending this walk with one

step from �
�

to � closes the cycle of length
�

 � . The greatest common divisor of

�

and
�

 � is 1. Hence, by Lemma 4.2 the fixed point recurrence period of all states is

1, also.
�

Lemma 4.5 (Page 90) If a finite state machine has a synchronizing sequence of length
�

and if
�

is the sequential depth of the machine, then it takes at most
�

�

time steps until all states of the
machine are in � � � � and have a recurrence period of 1.

142 APPENDIX A. PROOFS OF THEOREMS

Proof:

The synchronization state �
�

is reachable in
�
time steps from every state of the FSM,

including itself. Hence, state �
�

is an element of � � � � for every
� � �

, i.e., from this
time on it has a recurrence period of 1. Every other state in the STG is reachable
from �

�
in at most

�
time steps. Therefore, it takes at most

�
time steps until all states

have inherited the recurrence period 1 from �
�
.

�

Theorem 4.6 (Page 92) Let
�

be the set of all recurrent states of a finite state machine. There
always exists a cover

�
�
� � � � ��� � � �������	��� of

�
with ��� � ���

, and there is a time � � �
fix

� �
,

such that
� � �

fix

 � �
 � � ' ��� � � �
 � � � � � �
� is equal to the least common multiple of the recurrence periods of the entry SCCs of the

FSM. � is called fixed point oscillation period.

Proof:

Let � be the recurrence period of an entry SCC � . Let � be the set of states of
the entry SCC and all succeeding SCCs. All states in � inherit � , so the recurrence
period � of any state in � must be a proper divisor of � . According to Lemma 4.3,
the set of ESCC states, � , can be partitioned into � disjoint subsets. Let � � � � be
the union of such a subset with states from succeeding SCCs such that � � contains
all states of � occurring simultaneously in the reachable state set � � � � . Obviously,
states with a period � � � will be in � ' � � � distinct subsets � � . This means that
the � � represent a cover of � : � '�� � � � . The subsets � � of the cover describe all
possible combinations of states in � which can be in � � � � simultaneously.

Without loss of generality, we consider an STG with two entry SCCs ��� and � � ,
having recurrence periods � � and �	� , respectively. Let ��� be the set of states in � �
and all its successor SCCs. Let � � be the set of states in � � and all its successor
SCCs.

There exists a cover of � � : ����' � � � � � � consisting of � � subsets of ��� , and a
cover of � � : � � ' � � � � � � consisting of �	� subsets of � � . The subsets � � � � of
the cover describe all possible combinations of states in � � which occur in � � � �
simultaneously. The subsets � � � � of the cover describe all possible combinations of
states in � � which occur simultaneously in � � � � . Let us pick one set � � � � and one
set � � � � such that both sets occur simultaneously in � � � � . � � � � will reoccur after � �
time steps, � � � � will reoccur after ��� time steps. The number of time steps it takes
until both reoccur simultaneously is equal to � , the least common multiple of ��� and
�	� . Therefore, there are � different combinations � � ' � � � � � � � � � , � � � � � in
which subsets of the cover of ��� and subsets of the cover of � � occur simultaneously
in � � � � . The states in ��� occur in � �

�
� � � � � combinations, the states in � � occur

in � �
�
�	� � � � combinations. Hence, the � � cover all recurrent states of the STG.

143

The generalization of this argument from two ESCCs to
 ESCCs with recurrence
periods � � ���	����� � � � � � is straightforward.

�

144 APPENDIX A. PROOFS OF THEOREMS

Bibliography

[1] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Testing and Testable Design.
Piscataway, New Jersey: IEEE Press, 1994.

[2] S. B. Akers, “A Logic System for Fault Test Generation,” IEEE Transactions on Computers,
vol. C-25, pp. 620–630, June 1976.

[3] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Computers, vol. C-27,
pp. 509–516, June 1978.

[4] R. L. Ashenhurst, “The Decomposition of Switching Functions,” in Proc. of an Intl. Sym-
posium on the Theory of Switching held at Comp. Lab. of Harvard University, pp. 74–116,
1959.

[5] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi, “Al-
gebraic Decision Diagrams and their Application,” in Proc. Intl. Conference on Computer-
Aided Design (ICCAD-93), pp. 188–191, 1993.

[6] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model Checking using
SAT Procedures instead of BDDs,” in Proc. Intl. Design Automation Conference (DAC-99),
pp. 317–320, June 1999.

[7] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Implementation of a BDD Package,”
in Proc. Design Automation Conference (DAC-90), (Orlando, FL), pp. 40–45, June 1990.

[8] D. Brand, “Verification of Large Synthesized Designs,” in Proc. Intl. Conf. on Computer-
Aided Design (ICCAD-93), pp. 534–537, 1993.

[9] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T.
Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary,
T. R. Shiple, G. Swamy, and T. Villa, “VIS: A system for Verification and Synthesis,” in
Proc. of the 8th Intl. Conference on Computer-Aided Verification, Springer Lecture Notes
in Computer Science (R. Alur and T. Henzinger, eds.), vol. 1102, (New Brunswick, NJ),
pp. 428–432, July 1996.

[10] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, “MIS: Multi-Level
Interactive Logic Optimization System,” IEEE Transactions on Computer-Aided Design,
vol. 6, pp. 1062–1081, Nov. 1987.

145

146 BIBLIOGRAPHY

[11] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli, Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[12] F. M. Brown, Boolean Reasoning (The Logic of Boolean Equations). Kluwer Academic
Publishers, 1990.

[13] R. Bryant and Y. A. Chen, “Verification of Arithmetic Functions by Binary Moment Dia-
grams,” in Proc. Design Automation Conference (DAC-95), pp. 535–541, 1995.

[14] R. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE Transac-
tions on Computers, vol. 35, pp. 677–691, August 1986.

[15] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential Circuit Verification
using Symbolic Model Checking,” in Proc. Intl. Design Automation Conference (DAC-90),
pp. 46–51, June 1990.

[16] J. R. Burch and V. Singhal, “Robust Latch Mapping for Combinational Equivalence Check-
ing,” in Proc. Intl. Conference on Computer-Aided Design (ICCAD-98), 1998.

[17] G. Cabodi, P. Camurati, L. Lavagno, E. Macii, M. Poncino, S. Quer, and E. Sentovich, “En-
hancing FSM Traversal by Temporary Re-Encoding,” in Proc. Intl. Conference on Com-
puter Design (ICCD-96), 1996.

[18] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer, “Disjunctive Partitioning and Partial
Iterative Squaring: an effective approach for symbolic traversal of large circuits,” in Proc.
Design Automation Conference (DAC-97), (Anaheim, CA), pp. 728–733, 1007.

[19] G. Cabodi, P. Camurati, and S. Quer, “Improved Reachability Analysis of Large Finite
State Machines,” in Proc. Intl. Conf. on Computer-Aided Design (ICCAD-96), pp. 354–
360, November 1996.

[20] X. Chen and M. Bushnell, Efficient Branch and Bound Search with Application to
Computer-Aided Design. Boston, MA: Kluwer Academic Publishers, 1996.

[21] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi, “A Structural Approach for
State Space Decomposition for Approximate Reachability Analysis,” in Proc. Intl. Confer-
ence on Computer Design (ICCD-94), pp. 236–239, 1994.

[22] E. M. Clarke and E. Emerson, “Synthesis of synchronization skeletons for branching time
temporal logic,” Lecture Notes in Computer Science, vol. 131, 1981.

[23] E. M. Clarke, M. Fujita, P. McGeer, K. L. McMillan, J. Yang, and X. Zhao, “Multi-Terminal
Binary Decision Diagrams: an Efficient Data Structure for Matrix Representation,” in Proc.
Intl. Workshop on Logic Synthesis, pp. (P6a) 1–15, 1993.

[24] O. Coudert and J. Madre, “Implicit and Incremental Computation of Primes and Essential
Primes of Boolean Functions,” in Proc. Design Automation Conference (DAC-92), pp. 36–
39, 1992.

BIBLIOGRAPHY 147

[25] O. Coudert, J. Madre, and H. Fraisse, “A New Viewpoint on Two-Level Logic Minimiza-
tion,” in Proc. Design Automation Conference (DAC-93), pp. 625–630, 1993.

[26] O. Coudert, C. Berthet, and J.-C. Madre, “Verification of Synchronous Sequential Machines
Based on Symbolic Execution,” Lecture Notes on Computer Science, vol. 407, pp. 365–373,
June 1989.

[27] H. A. Curtis, “A Generalized Tree Circuit,” Journal of the Association of Computing Ma-
chinery, pp. 484–496, August 1961.

[28] M. Dagenais, V. Agarwal, and N. Rumin, “McBOOLE: A New Procedure for Exact Logic
Minimization,” IEEE Transactions on CAD, vol. CAD-5, pp. 229–232, January 1986.

[29] D. Defoe, The Life and Adventures of Robinson Crusoe. Edinburgh: Cadell, Davies, Strand
and Blackwood, 1820.

[30] R. Drechsler, B. Becker, and S. Ruppertz, “K*BMDs: A New Data Structure for Verifica-
tion,” in Proc. European Design & Test Conference, pp. 2–8, 1996.

[31] R. Drechsler, B. Becker, A. Sarabi, M. Theobald, and M. Perkowski, “Efficient Representa-
tion and Manipulation of Switching Functions Based on Ordered Kronecker Functional De-
cision Diagrams,” in Proc. Design Automation Conference (DAC-94), pp. 415–419, 1994.

[32] L. A. Entrena and K. T. Cheng, “Sequential Logic Optimization by Redundancy Addition
and Removal,” in Proc. Intl. Conference on Computer-Aided Design (ICCAD-93), pp. 310–
315, November 1993.

[33] E. Fabricius, Modern Digital Design and Switching Theory. CRC Press, 1992.

[34] T. Filkorn, Symbolische Methoden für die Verifikation endlicher Zustandssysteme. PhD
thesis, Institut für Informatik der Technischen Universität München, 1992.

[35] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and improvements of Boolean Compar-
ison Method Based on Binary Decision Diagrams,” in Proc. Intl. Conference on Computer-
Aided Design, (Santa Clara, CA), pp. 2–5, November 1988.

[36] M. Fujita, Y. Matsunaga, and T. Kakuda, “On Variable Ordering of Binary Decision Di-
agrams for the Application of Multi-Level Logic Synthesis,” in Proc. European Design
Automation Conference (EDAC-91), pp. 50–54, March 1991.

[37] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi, “Probabilistic Analysis of Large Fi-
nite State Machines,” in Proc. 31st ACM/IEEE Design Automation Conference (DAC-94),
pp. 270–275, 1994.

[38] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi, “Markovian Analysis of Large Finite
State Machines,” IEEE Transactions on Computer-Aided Design, vol. 15, pp. 1479–1493,
Dec. 1996.

148 BIBLIOGRAPHY

[39] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms. Boston:
Kluwer Academic Publishers, 1996.

[40] A. J. Hu and D. L. Dill, “Reducing BDD Size by Exploiting Functional Dependencies,” in
Proc. 30th ACM/IEEE Design Automation Conference (DAC-92), pp. 522–525, 1992.

[41] S. Huang, K. Cheng, K. Chen, and U. Gläser, “An ATPG-Based Framework for Verifying
Sequential Equivalence,” in Proc. Intl. Test Conference (ITC-96), 1996.

[42] S. Huang, K. Cheng, K. Chen, and U. Gläser, “On Verifying the Correctness of Retimed
Circuits,” in Proc. Great Lakes Symposium on VLSI, 1996.

[43] N. Ishiura, H. Sawada, and S. Yajima, “Minimization of Binary Decision Diagrams Based
on Exchanges of Variables,” in Proc. Intl. Conference on Computer-Aided Design (ICCAD-
91), pp. 472–475, 1991.

[44] J. Jain, R. Mukherjee, and M. Fujita, “Advanced Verification Techniques Based on Learn-
ing,” in Proc. 32nd ACM/IEEE Design Automation Conference (DAC-95), pp. 420–426,
June 1995.

[45] S.-W. Jeong, B. Plessier, G. D. Hachtel, and F. Somenzi, “Variable Ordering for FSM
Traversal,” in Proc. Intl. Workshop on Logic Synthesis, (MCNC, Research Triangle Park,
NC), May 1991.

[46] U. Kebschull, E. Schubert, and W. Rostenstiel, “Multi-Level Logic Based on Func-
tional Decision Diagrams,” in Proc. European Design Automation Conference (EDAC-92),
pp. 43–47, 1992.

[47] J. G. Kemeny and J. L. Snell, Finite Markov Chains. New York: Springer-Verlag, 1976.

[48] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, 1978.

[49] T. Kropf and H. Wunderlich, “A Common Approach to Test Generation and Hardware
Verification Based on Temporal Logic,” in Proc. Intl. Test Conference (ITC-91), pp. 57–66,
1991.

[50] A. Kühlmann and F. Krohm, “Equivalence Checking Using Cuts and Heaps,” in Proc. De-
sign Automation Conference (DAC-97), pp. 263–268, Nov. 1997.

[51] W. Kunz, “An Efficient Tool for Logic Verification Based on Recursive Learning,” in Proc.
Intl. Conference on Computer-Aided Design (ICCAD-93), pp. 538–543, Nov. 1993.

[52] W. Kunz and P. Menon, “Multi-Level Logic Optimization by Implication Analysis,” in
Proc. Intl. Conf. on Computer-Aided Design (ICCAD-94), San Jose, pp. 6–13, November
1994.

BIBLIOGRAPHY 149

[53] W. Kunz and D. Pradhan, “Recursive Learning: A New Implication Technique for Efficient
Solutions to CAD Problems: Test, Verification and Optimization,” IEEE Transactions on
Computer-Aided Design, vol. 13, pp. 1143–1158, Sep. 1994.

[54] W. Kunz and D. Stoffel, Reasoning in Boolean Networks - Logic Synthesis and Verification
Using Testing Techniques. Boston: Kluwer Academic Publishers, 1997.

[55] W. Kunz, D. Stoffel, and P. Menon, “Multi-Level Logic Optimization and Equiva-
lence Checking by Implication Analysis,” IEEE Transactions on Computer-Aided Design,
vol. 16, pp. 266–281, March 1997.

[56] R. P. Kurshan, Computer-Aided Verification of Coordinating Processes — The Automata-
Theoretic Approach. Princeton, New Jersey: Princeton University Press, 1994.

[57] Y. T. Lai and S. Sastry, “Edge-Valued Binary Decision Diagrams for Multi-Level Hierar-
chical Verification,” in Proc. Design Automation Conference (DAC-95), pp. 254–260, 1995.

[58] E. L. Lawler, “An Approach to Multilevel Boolean Minimization,” Journal of the ACM,
vol. 11, pp. 283–295, July 1964.

[59] H. K. Lee and D. S. Ha, “An Efficient Forward Fault Simulation Algorithm Based on the
Parallel Pattern Single Fault Propagation,” in Proc. Intl. Test Conference (ITC-91), pp. 946–
955, October 1991.

[60] C. Leiserson and J. Saxe, “Retiming Synchronous Circuitry,” Algorithmica, vol. 6, pp. 5–
35, 1991.

[61] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Logic Verification using
Binary Decision Diagrams in a Logic Synthesis Environment,” in Proc. Intl. Conference on
Computer-Aided Design (ICCAD-88), pp. 6–9, November 1988.

[62] Y. Matsunaga, “An Efficient Equivalence Checker for Combinational Circuits,” in Proc.
Design Automation Conference (DAC-96), pp. 629–634, June 1996.

[63] E. McCluskey, “Minimization of Boolean Functions,” Bell System Technical Journal,
vol. 35, pp. 1417–1444, 1956.

[64] E. McCluskey, Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall, 1986.

[65] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincentelli, “ESPRESSO-
SIGNATURES: A New Exact Minimizer for Logic Functions,” in Proc. Design Automation
Conference (DAC-93), pp. 618–621, 1993.

[66] K. McMillan, Symbolic Model Checking. Boston: Kluwer Academic Publishers, 1993.

[67] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

150 BIBLIOGRAPHY

[68] S. Muroga et al., “The Transduction Method – Design of Logic Networks Based on Permis-
sible Functions,” IEEE Transactions on Computers, vol. C-38, pp. 1404–1424, Oct. 1989.

[69] P. Muth, “A Nine-Valued Logic Model for Test Generation,” IEEE Transactions on Com-
puters, vol. C-25, pp. 630–636, June 1976.

[70] C. Pixley, “A Theory and Implementation of Sequential Hardware Equivalence,” IEEE
Transactions on Computer-Aided Design, vol. 11, pp. 1469–1478, Dec. 1992.

[71] C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton, “Multi-level Synthesis for Safe-
Replaceability,” in Proc. Intl. Conference on Computer-Aided Design (ICCAD-94),
pp. 442–449, 1994.

[72] S. Quer, G. Cabodi, P. Camurati, L. Lavagno, E. Sentovich, and R. K. Brayton, “Incremen-
tal Re-Encoding for Symbolic Traversal of Product Machines,” in Proc. European Design
Automation Conference (EDAC-96), 1996.

[73] W. Quine, “The Problem of Simplifying Truth Functions,” American Mathematical
Monthly, vol. 59, pp. 521–531, 1952.

[74] J. Rajski and J. Vasudevamurthy, “Testability Preserving Transformations in Multi-Level
Logic Synthesis,” in Proc. Intl. Test Conference (ITC-90), pp. 265–273, 1990.

[75] K. Ravi and F. Somenzi, “High Density Reachability Analysis,” in Proc. Intl. Conference
on Computer-Aided Design (ICCAD-95), pp. 154–158, 1995.

[76] S. Reddy, W. Kunz, and D. Pradhan, “A Novel Verification Framework Combining Struc-
tural and OBDD Methods in a Synthesis Environment,” in Proc. Design Automation Con-
ference (DAC-95), pp. 414–419, June 1995.

[77] E. Rich, Artificial Intelligence. McGraw-Hill, 1983.

[78] J. P. Roth, “Diagnosis of Automata Failures: A Calculus and a Method,” IBM Journal of
Research and Development, vol. 10, pp. 278–291, July 1966.

[79] J. P. Roth and R. M. Karp, “Minimization over Boolean Graphs,” IBM Journal of Research
and Development, vol. 10, pp. 278–291, July 1966.

[80] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams,” in Proc.
Intl. Conference on Computer-Aided Design (ICCAD-91), pp. 42–47, 1993.

[81] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued Minimization for PLA Op-
timization,” IEEE Transactions on Computer-Aided Design, vol. CAD-6, pp. 727–750,
September 1987.

[82] H. Savoj, R. K. Brayton, and H. Touati, “Extracting Local Don’t-Cares for Network Opti-
mization,” in Proc. Intl. Conference on Computer-Aided Design (ICCAD-91), pp. 514–517,
November 1991.

BIBLIOGRAPHY 151

[83] M. Schulz, E. Trischler, and T. Sarfert, “SOCRATES: A Highly efficient automatic test
pattern generation system,” in Proc. Intl. Test Conference (ITC-87), pp. 1016–1026, 1987.

[84] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS: A System for Sequential
Circuit Synthesis,” Tech. Rep. Memorandum No. UCB/ERL M92/41, Electronics Research
Laboratory, University of California at Berlekey, 1992.

[85] C. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Transactions AIEE,
vol. 57, pp. 713–723, 1938.

[86] D. Stoffel and W. Kunz, “AND/OR Reasoning Graphs for Determining Prime Implicants in
Multi-level Combinational Networks,” in Proc. Asia and South Pacific Design Automation
Conference (ASPDAC-97), pp. 529–538, January 1997.

[87] D. Stoffel and W. Kunz, “Logic Equivalence Checking by Optimization Techniques,” in
Proc. International Workshop on Computer-Aided Design, Test, and Evaluation for De-
pendability, (Peking, China), pp. 85–90, July 1996.

[88] D. Stoffel and W. Kunz, “Record & Play: A Structural Fixed Point Iteration for Sequential
Circuit Verification,” in Proc. Intl. Conference on Computer-Aided Design (ICCAD-97),
pp. 394–399, Nov 1997.

[89] D. Stoffel and W. Kunz, “Structural FSM Traversal — Theory and a Practical Algorithm,”
Tech. Rep. 005/1997, Dept. of Computer Science, Universit of Potsdam, Germany, Nov.
1997.

[90] P. Tafertshofer, A. Ganz, and M. Henftling, “A SAT-Based Implication Engine for Efficient
ATPG, Equivalence Checking, and Optimization of Netlists,” in Proc. of the Intl. Confer-
ence on Computer-Aided Design (ICCAD-97), pp. 648–655, November 1997.

[91] H. J. Touati, H. Savoj, B. Lin, and R. K. Brayton, “Implicit State Enumeration of Finite
State Machines using BDDs,” in Proc. of the Intl. Conference on Computer-Aided Design
(ICCAD-90), pp. 130–133, 1990.

[92] C. van Eijk, Formal Methods for the Verification of Digital Circuits. PhD thesis, Eindhoven
University of Technology, 1997.

[93] C. van Eijk, “Sequential Equivalence Checking without State Space Traversal,” in Proc.
Conference on Design, Automation and Test in Europe (DATE-98), (Paris, France), pp. 618–
623, March 1998.

[94] I. Wegener, The Complexity of Boolean Functions. Stuttgart: B. G. Teubner, 1987.

152 BIBLIOGRAPHY

Curriculum Vitae

Dominik Stoffel, born April 2nd, 1966, in Xenia, OH, USA

1972 – 1975 Elementary School Sulz am Eck

1975 – 1978 Hermann-Hesse-Gymnasium Calw (Junior High School)

1978 – 1979 Junior High School, Wappinger Falls, NY, USA

1979 – 1982 Otto-Hahn-Gymnasium Furtwangen (Senior High School)

1982 – 1985 Fürstenberg-Gymnasium Donaueschingen (Senior High School)

26/6/85 Abitur (graduation from high school)

1985 – 1992 Undergraduate/graduate studies in Electrical Engineering at the Uni-
versity of Karlsruhe, Germany.

5/89 – 8/89 Summer internship with Johnson Controls, Inc., Milwaukee, WI,
USA. Development of an LPCVD system for producing silicon ni-
tride films to be used in silicon microsensors.

4/92 – 6/93 Project work and master’s thesis at FZI Research Center for Informa-
tion Technologies at the University of Karlsruhe, Dept. for Micro-
computer Technology (head: Prof. Dr. Klaus Bender). Development
of a testing tool for distributed intelligent microsystems.

23/12/92 Graduation from university with the academic degree of Diplom-
Ingenieur in Electrical Engineering.

8/93 – 9/94 Employment with Mercedes-Benz, Sindelfingen. Development of
testing equipment for automotive electronics.

10/94 – 5/98 Ph.D. student and research assistant with Max Planck Fault Tolerant
Computing Group (since 1/98 part of the Dept. of Computer Science,
head: Prof. Dr. Michael Gössel) at the University of Potsdam.

since 6/98 Ph.D. student and research assistant with Prof. Dr. Wolfgang Kunz,
Design Automation Group, Dept. of Computer Science, University
of Frankfurt, Germany. Research topics: Computer-Aided Design
(CAD) for VLSI circuits, logic synthesis and formal hardware verifi-
cation.

