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developed to reliably identify synchronous spiking activity in a large 
number of simultaneously recorded neurons (more than 100; Pipa 
et al., 2008, source code available at http://www.NeuroXidence.com). 
NeuroXidence does not fall prey to the false detection of neuronal 
synchrony due to properties of the data, such as auto-correlations, 
strong auto-structure in the spiking activity, or changes in the spik-
ing rate over time and across trials.

Reliably detecting neuronal synchrony, however, is not suf-
ficient for claiming that neuronal synchronization is indeed rel-
evant for neuronal information processing. To test the relevance 
of synchronous neuronal firing for information processing in the 
brain, one has to investigate if the presence and strength of syn-
chronous firing are correlated to the state of the neuronal system 
or to the behavior and the task of the experimental subject (Baker 
and Gerstein, 2001). To test whether the strength of synchronous 
activity varies across different factors, i.e., different experimental 
conditions, we present a new bi- and multivariate extension of 
the original univariate method, NeuroXidence, which originally 
tested whether synchronous activity occurs beyond chance for a 
single experimental condition (Pipa et al., 2008). For a given spik-
ing pattern, this extension enables one to compare the amount 
and strength of synchronous firing across different factors, in a 
way that is robust against the rate changes of individual neurons 
and the rate covariation of groups of neurons and that considers 
the full auto-structure as well as any trial-by-trial variability. Pipa 
and Munk (2011) have applied this extension, for the first time, 
to detect modulations of synchronous firing of cells in the ventral 
prefrontal cortex, across task conditions, stimuli, and behaviors 
of an awake monkey performing a short-term memory paradigm.

The basic premise behind the bi- and multivariate extension of 
NeuroXidence is the determination of the frequency of a certain 
joint-spike-event (JSE), defined as a specific firing pattern, for each 
trial and for each experimental/behavioral factor. To account for the 

1 IntroductIon
Synchronous neuronal spiking has been proposed as a code that 
carries, groups, or binds information (von der Malsburg, 1981; 
Victor and Purpura, 1996; Fetz, 1997; Singer et al., 1997; Singer, 
1999; Pillow et al., 2008; Uhlhaas et al., 2009); supports information 
processing and selection (Fries et al., 2001, 2002; Womelsdorf and 
Fries, 2007); and maintains and recollects information for short-
term memory (Compte et al., 2000; Miller et al., 2003). However, 
even though this synchrony-coding hypothesis has been investi-
gated intensively for the last two decades, its actual role and impor-
tance are still controversially debated. One of the reasons for this 
ongoing debate has been the lack of tools to identify synchronous 
activity and to decipher its relative importance compared to com-
plementary features of neuronal spiking, such as the firing rate 
(Barlow, 1972; Bialek et al., 1991; Bialek and Rieke, 1992; Shadlen 
and Newsome, 1994, 1998; Brody, 1999; Oram et al., 1999; Baker 
and Lemon, 2000; Nakahara and Amari, 2002). A second reason for 
the continuing debate is that one must be able to demonstrate that 
synchronous activity is indeed involved in information processing.

Recently, however, very important steps have been taken to 
address these two points. In order to identify relevant synchronous 
spiking activity, recently developed tools enable the tracking of the 
temporal modulation of neuronal synchronization (Brown et al., 
1998, 2004; Grün et al., 1999, 2002a,b, 2003; Martignon et al., 2000; 
Aertsen et al., 2001; Kuhn et al., 2003; Kass et al., 2005; Truccolo 
et al., 2005; Schneider et al., 2006) and the comparison of this tem-
poral modulation to the modulations of other properties of neu-
ronal firing, such as the firing rate (Riehle et al., 1997; Pipa et al., 
2007). The use of these tools allows one to demonstrate that the 
synchronization of spiking activity is often tightly linked to relevant 
temporal periods of an experiment, which indicates that neuronal 
synchronization is correlated with processes that underlie neuronal 
information processing. In 2008, the method NeuroXidence was 
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stochasticity of spike times, a JSE is defined by a model pattern of 
precise spike times and a millisecond-scale temporal window, which 
accounts for the maximal uncertainty around each of these exact spike 
times (Figure 1). Surrogate data, derived by jittering each individual 
spike train in the original data, is used to estimate the frequencies of 
chance JSEs under the H

0
 assumption that neurons are not coupled 

on a fine temporal time scale. For each trial and each experimental/
behavioral factor, the differences in the frequencies of JSEs between 
the original and the surrogate data sets are computed. Finally, bi- and 
multi-variate NeuroXidence tests whether the mean or median of the 
frequencies of JSEs is significantly different across factors.

2 MaterIals and Methods
In order to determine the relationship between the frequency of a cer-
tain JSE and the state of the neuronal system, the bi- and multi-variate 
NeuroXidence contains two main steps: detection and comparison.

The detection step identifies the frequency of JSEs in the original 
and surrogate data sets. The comparison step tests whether the fre-
quencies of a particular JSE, which are estimated in the detection step, 
vary across different experimental/behavioral factors. Here, the null 
hypothesis H

0
 states that the precise timing of neuronal firing is irrel-

evant to the state of the neuronal system. The alternative hypothesis 
(H

1
) assumes that there are more (or less) coordinated firing events 

according to different conditions of the system. Therefore, different 
statistical tests (t-test, Mann–Whitney U test, etc.) are applied to the 
frequencies of JSEs from different factors to test the null hypothesis.

2.1 detectIon of Jses
In order to detect JSEs in simultaneously recorded spike trains, we 
define two time-scale parameters, t

c
 and t

r
. The time scale of syn-

chronous firing determines the parameter t
c
, which ranges between 

1 and 10 ms and defines the expected systematic precision of a JSE. 
Time scale t

c
 is, therefore, equivalent to the maximal deviation of 

the individual spikes in the assumed model pattern (Figure 1). 
The parameter t

r
 defines the lower bound of the rate modulation 

and is distinguishably slower than t
c
 by a factor of h, which ranges 

from 2 to 5. Next, surrogate data sets are generated by jittering the 
original individual spike trains by a random interval t

t, n
 (t indexes 

the trials, n indexes the neurons), which is determined by either 
a uniform or Gaussian distribution. The extent of the jittering is 
on the slow time scale t

r
, which destroys any fine temporal cross-

structure between the spike trains that is less than t
r
, but maintains 

the auto-structure and other features of each individual spike train.
We define the identity of a JSE by the set of neurons that exhibits 

the coordinated firing, and we refer to this set of neurons as a joint-
spike pattern (JS-pattern). Here we distinguish the complexity of a 
JSE (Shadlen and Newsome, 1994), which is defined by the number 
of neurons participating in the spike pattern, from the order of cor-
relation (Singer et al., 1997; Shadlen and Newsome, 1998; Singer, 
1999), which is defined by the number of neurons that are directly 
coupled and are the primary cause of the coordinated firing. Due 
to an excess or lack of one or more chance events, the order is not 
necessarily the same as the complexity.

Between the original and the surrogate data sets, we compute the 
difference in the raw counts of how many times a specific JS-pattern 
k appears in trial t of experimental/behavioral factor j. This dif-
ference is expressed as
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JS-pattern k = 1,2, …,K; surrogate s = 1,2, …,S; and experimen-
tal/behavioral factor j = 1,2, …., M.

2.2 coMparIson of Jses across dIfferent factors
There exists an underlying distribution of frequencies of JSEs, 
Φj

k ,  for each specific JS-pattern k and experimental/behavioral 
factor j. Under the bivariate condition, we wish to compare the 
distributions for factors j = 1, 2. For each factor j, we approximate 
the distribution Φj

k  with the set of mean frequencies defined by 
equation (1) taken across all trials t, ∆ ∆ ∆ ∆F f f fk k k

T
k

j j j j= { , , , }., , ,1 2 …  
To test whether the frequencies of JSEs are different across factors, 
we define a test statistic that is the difference in frequencies of 
JSEs across the two factors,
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Figure 1 | Detection of synchronized firing patterns. (A,B) Numerals 1–3 
stand for three neurons or three neuronal populations. The right sub-panel 
shows the spike trains. Synchronized spikes (marked in green) are defined as 
joint-spike-events (JSE). (A) The three units are not coupled, so the spike 
trains exhibit synchronized spikes that occur at the chance level (indicated by 
dashed green lines). (B) A third-order coupling between three units. (C) A 
schematic description of a JSE. Spikes, which are defined as belonging to the 
same JSE, share overlapping regions within the maximally allowed jitter (tc). 
Modified from a previously published figure (Pipa et al., 2008).
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In order to study the effect of rate covariation on the estimation 
of JSEs, two scenarios are used to generate the rate profile for each 
Poisson model.

Scenario I: Two simulated Poisson models exhibit rate covaria-
tion, such that the rate profiles of the two simulated data sets are 
identical.

Scenario II: Two simulated Poisson models exhibit no rate cova-
riation, such that the rate profiles of the two simulated data sets 
are different. For example, the mean firing rate of one simulated 
data set is chosen as 15 spikes/s, while the other changes from 7 
to 90 spikes/s.

For both scenarios, bivariate NeuroXidence is applied to detect an 
excess or lack of JSEs between the two sets of model data (Figures 2 
and 3). Based on the parameter analysis and Appendix 6 recom-
mendations from the original NeuroXidence publication by Pipa 
et al. (2008), the standard parameters for both scenarios include 
a sliding window with a duration of l = 200 ms, T = 50 trials, a 
mean spike rate of 15 spikes/s, and h equals 5. Scenario I utilizes 
20 surrogates samples, and 15 different combinations of param-
eters are derived for the model data by taking all combinations 
of the number of trials (T = 20, 50, 100) and the covarying mean 
spiking rates (r

1
 = r

2
= 7, 10, 30, 60, 90 spikes/s). Scenario II uses 

1 surrogate sample, and 15 different parameter combinations are 
derived by varying the number of trials (T = 20, 50, 100) and the 
second mean spiking rate (r

1
 = 15, r

2
 = 7, 10, 30, 60, 90 spikes/s). 

In both scenarios, the simulated data sets are generated in order to 
determine the false-positive rate for JS-patterns of complexities 2–6.

In both scenario I and II, in order to compute the false-positive 
rate, eight simulated spike trains are generated for each condition, 
which are taken to be signals from eight channels. The number 
of JS-patterns for each condition is defined by combinations of 
the different spike trains. In this case, there are 247 JS-patterns, 
including all second-order to eighth-order JS-patterns. By compar-
ing the occurrence frequencies of these 247 JS-patterns across two 
conditions with a selected test level, some of the JS-patterns shows 
a significant difference between the two conditions. After gathering 
this information for JS-patterns of the same complexity, one can 
determine the false-positive rate for each complexity of JS-pattern. 
This procedure is repeated 200 times resulting in the final percentile 
plots for scenarios I and II (Figures 2 and 3).

In both scenarios, none of the results from the model data 
sets for any of the parameter combinations exceed the chance 
level, for either a test level of 5% (Figures 2A,B and 3A,B) or 1% 
(Figures 2C,D and 3C,D), according to both t-tests (Figures 2A,C 
and 3A,C) and Mann–Whitney U tests (Figures 2B,D and 3B,D). 
The false-positive rates are much smaller for the high-complexity 
JS-patterns compared to the rates for low-complexity JS-patterns. 
When there is no rate-covariation between two conditions, as in 
scenario II, increasing the number of surrogates above 1 leads to 
a biased estimate of the excess or lack of JSEs due to the skewness 
of the distribution of JSEs. Setting S = 20 for non-covarying rates 
results in a false-positive rate that is above the chance level (data 
not shown). Therefore, if there is no rate-covariation between two 
conditions, the surrogate number should be set to 1 to ensure a 
reasonable false-positive rate. By properly adjusting the  number 

When ∆Θt bi
k
,  is not zero, there is an excess in the frequency of 

occurrence of JS-pattern k for trial t in one experimental/behav-
ioral factor or the other. The statistical significance of the differ-
ences in the means or medians of the sampled distributions ∆Θbi

k  
is evaluated by t-test or Mann–Whitney U test, respectively. To 
account for distributions that might have different variances, the  
Behrens–Fisher t-test is applied instead of the normal Student’s 
t-test. All future references to t-tests in this manuscript refer to 
t-tests with unequal variances.

In analogy with the bivariate condition, under the multivariate 
condition the underlying distribution of frequencies of JSEs Φj

k  
is approximated by forming the sets ∆F k

j .  The statistical signifi-
cance of the differences in the means and medians of the sam-
pled distributions Φj

k  across factors is evaluated by analysis of 
variance (ANOVA) or a Kruskal–Wallis one-way test, respectively. 
To account for distributions that might have different variances, 
the Kruskal–Wallis one-way test is highly recommended over an 
ANOVA. In some simulations, we apply an ANOVA test during 
the method calibration in order to verify whether or not the test 
will fail.

Finally, after gathering all of the significance levels for each 
JS-pattern k, one can evaluate which factor plays the most impor-
tant role in modulating the strength of synchronous firing.

3 results
We demonstrate the robustness and sensitivity of this bi- and multi-
variate extension of NeuroXidence in two stages. We first present 
results for the bivariate case that tests the modulation of spike–spike 
synchronization across exactly two conditions or factors. Secondly, 
we examine the multivariate case, which tests for modulations of 
spike–spike synchronization across more than two conditions.

3.1 part I: BIvarIate neuroXIdence
We establish the robustness of the bivariate method, by showing 
false-positive rates estimated for different spike-train models. Next, 
we reveal the sensitivity and test power of the presented method 
and discuss the detectability of sub-patterns and supra-patterns of 
synchronized neuronal ensembles. In the last step, we demonstrate 
the robustness of the method when applied to simulated spike 
trains that contain various properties, which often occur in real 
neuronal firing activities, such as rate covariations, and regular 
or bursty firing.

3.1.1 False positives for two stationary processes
Two simulated data sets are generated for the bivariate case. 
The generation of simulated data is described in detail in Pipa 
et al. (2008), but we provide a brief description here. Each of the 
two simulated data sets contains eight neurons, and each spike 
train is generated by an independent and homogeneous Poisson 
process. Such spike trains are generated for each of the two 
experimental conditions being examined. For each condition, 
we apply NeuroXidence to detect the occurrence frequencies of 
JSEs for each JS-pattern and for S surrogates. Next, the test level 
is set for comparing the corrected frequencies of JSEs across the 
two experimental conditions. Therefore, NeuroXidence yields 
an estimate of whether or not JS-patterns show a significant 
difference across the two conditions.
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Figure 2 | Scenario i: Percentage of false-positives estimated by 
bivariate NeuroXidence in the detection of JS-patterns of complexity 2 
to 6 between two models with covarying firing rates. A comparison of (A) 
the means and (B) the medians for a test level of 5%, and a comparison of 
(C) the means and (D) the medians for a test level of 1%. t-Tests are used to 
compare the means, and Mann–Whitney U tests are used to test the 

medians. The standard set of parameters for scenario I is defined by 50 trials 
(T), a mean spike rate of 15 spikes/s (r), 20 surrogates samples (S), and h 
equal to 5. From the standard parameter set, 15 different combinations of 
parameters are derived by using all combinations of the number of trials 
(T = 20, 50, 100) and the mean covarying spiking rates (r1 = r2 = 7, 10, 30, 60, 
90 spikes/s).
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Figure 3 | Scenario ii: Percentage of false-positives estimated by 
bivariate NeuroXidence in the detection of JS-patterns of complexity 2 
to 6 between two models with different firing rates. A comparison of (A) 
the means and (B) the medians for a test level of 5%, and a comparison of 
(C) the means and (D) the medians for a test level of 1%. t-Tests are used to 
compare the means, and Mann–Whitney U tests are used to test the 

medians. The standard set of parameters for scenario II is defined by 50 trials 
(T), a mean spike rate of 15 spikes/s (r), one surrogate sample (S), and h equal 
to 5. From the standard parameter set, 15 different combinations of 
parameters are derived by using all combinations of the number of trials 
(T = 20, 50, 100) and the second mean spiking rate (r1 = 15, r2 = 7, 10, 30, 60, 
90 spikes/s).
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The standard parameter set is chosen as 50 trials (T), a  background 
spike rate of 15 spikes/s (r), 20 surrogates (S), and h equals 5. To 
study how the test power of bivariate NeuroXidence is affected by 
the number of trials (T = 20, 50, 100), the background spike rates 
(r

1
 = r

2
 = 10, 15, 30, 60, 90 spikes/s), and the number of surrogates 

(S = 1, 20, 50), each parameter is varied in turn. The test power is 
derived for JS-patterns of complexity 2–6, with a test level set to 
5%. It is clear in Figure 4 that an increase in the number of trials 
leads to an increase of the test power, as exhibited by the leftward 
shift and increase in steepness of the curves. With an increase in the 
background rate, more JSEs are required to achieve a high test power, 
as demonstrated by the rightward shift and decrease in steepness 
of the curves. However, for higher complexity patterns, this effect 
is reduced. For lower complexity patterns, a larger number of sur-
rogates (for example, S = 20) is required to reliably detect the excess 

of  surrogates in this way, bivariate NeuroXidence provides a 
 conservative method for detecting the excess or lack of JSEs between 
two groups of neurons, no matter whether rate-covariations exist 
between the groups or not.

3.1.2 Test power for two stationary processes
To assess the test power of bivariate NeuroXidence, one simulated 
data set is generated by a single-interaction process based on a 
Poisson process (Fries et al., 2001), while the other is generated by 
an independent and homogenous Poisson process. Each data set 
contains eight simultaneous spike trains. For the single-interaction 
process, correlated spike trains were characterized by a background 
rate, which corresponds to the independent spiking of neurons, 
and by a JSE rate, which defines the expected frequency of the 
JS-pattern of interest.
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3.1.4  False positives for a non-stationary process
In order to study how non-stationarity might affect the ability of 
bivariate NeuroXidence to detect differences in JSE frequencies 
between two conditions, two simulated data sets are generated by 
the same non-stationary processes. Different processes are used 
to generate the data in 11 separate periods, each 2 s in length, in 
order to model some common features that are observed in real 
data sets, such as random spiking modeled by an inhomogene-
ous and independent Poisson process (period 1), regular spiking 
modeled by a g-process (period 2), low rates (period 3, 4), rate 
modulation (periods 5–10), latency co-variation of rate responses 
across neurons (periods 8, 10), and trial-by-trial variability of firing 
rates (period 11; Figure 6). Each of the simulated data sets contains 
50 trials of 18 simultaneous spike trains and are used to calculate 
percentages of false positives of JSEs.

Bivariate NeuroXidence is applied to the simulated data sets 
with a sliding window of length 800 ms. The null hypothesis (H

0
) 

is defined as there being no difference in the occurrence frequen-
cies of JSEs between two conditions for complexities 2 to 6. Based 
on the results of hypothesis tests for each occurring JS-pattern, we 
derive the percentage of JS-patterns that show significantly different 
occurrence frequencies between the two conditions. In order to 
make comparisons across complexities, the number of significant 
JS-patterns for each complexity value is normalized by the total 
number of JS-patterns for the corresponding complexity.

of JSEs between the two conditions, while for higher complexity 
patterns, the number of surrogates has no effect on the test power. 
Thus, S = 1 is a reasonable choice for higher complexity JS-patterns.

3.1.3 Sub- and supra-patterns of induced JS-patterns
To study the different occurrence frequencies of sub- and supra-
patterns between two conditions, a single-interaction process and 
an independent and homogenous Poisson process were used to 
generate two simulated data sets. Each data set contained 50 tri-
als of eight simultaneous spike trains. The JS-patterns induced by 
the single-interaction process are called mother-patterns. Bivariate 
NeuroXidence is then applied to evaluate the occurrence frequen-
cies between the two conditions of any JS-patterns caused by 
mother-patterns.

For mother-patterns with a complexity greater than 2, sub- 
patterns are expected to be detected. However, if the mother-pat-
tern is the only reason for the existence of sub-patterns, then the 
test power of the sub-patterns should decrease as the complexity 
of the sub-patterns decreases. Supra-patterns are also induced by 
a mother-pattern, but these are generated by the occurrence of 
spikes from additional neurons, which by chance coincide with the 
mother-pattern. Thus, the occurrence frequency of supra-patterns 
is at most that of the mother-pattern. Moreover, the test power of 
supra-patterns is expected to decrease as the complexity of the 
supra-patterns increases (Figure 5).
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Figure 5 | Test power of bivariate NeuroXidence for an induced mother-
pattern and its sub- and supra-patterns. Two simulated data sets were generated 
as two different conditions. Each sub-figure shows the gray-coded test power of a 
certain mother-pattern, all sub-patterns of lower complexities, and all supra-patterns 

of higher complexities. The excess rate of JSEs in one condition, which corresponds 
to the mother-pattern, is given on the x-axis. The standard parameters were chosen 
as T = 50 trials, background spike rate r = 15 spikes/s, S = 20 surrogates, and h = 5. 
(A–D) Shows the variations of mother-patterns with complexity 2–7.
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3.2 part II: MultIvarIate neuroXIdence
Next we present results demonstrating the robustness and sensi-
tivity of the multivariate version of the new method for testing 
modulations of spike–spike synchronization across more than 
two experimental conditions. We start with results demonstrating 
the robustness of this new multivariate NeuroXidence, by show-
ing false-positive rates estimated for different spike-train models. 
Lastly, we demonstrate the sensitivity and test power of the pre-
sented method.

3.2.1 False positives for stationary processes
Six simulated data sets are generated to represent six different con-
ditions, where each data set contains eight neurons, and each spike 
train is generated by an independent and homogenous Poisson 

The simulated spike trains for the two conditions are generated by 
the same non-stationary processes for all of the time periods, which 
means that H

0
 should not be rejected, or, put another way, any excess or 

lack of JSEs between the two conditions should stay under the chance 
level. The actual-false-positive rate, which is the percentage of false 
rejections of H

0
 (Bialek and Rieke, 1992), is clearly below test level 

(5%) for all complexities and throughout all sliding windows, during 
all of the periods (Figure 6D). Therefore, bivariate NeuroXidence 
is a conservative way to detect the excess or lack of JSEs between 
two conditions for non-stationary processes. The false-positive rates 
are not affected by low rates, rate modulation, latency variability, or 
trial-to-trial rate changes. Moreover, different processes (g-process, 
Poisson process), which are used to generate the spike trains, do not 
cause extra false positives to be detected by bivariate NeuroXidence.
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Figure 6 | False-positives for two non-stationary processes evaluated by 
bivariate NeuroXidence. Two simulated data sets are generated and each 
consists of 50 trials of 18 simultaneous spike trains. (A) Two simulated data sets 
consist of 11 periods, each 2 s in length. Each period is modeled by different 
features, which are used to generate the spike trains. An inhomogeneous and 
independent Poisson process was used as a standard model, and three additional 
features were added as modifications. Feature a (period 11) describes the 
changing rates across trials and neurons, such that neurons 1–9 were modeled by 
a homogenous Poisson process with a background rate of 15 spikes/s, while the 
rates of neurons 10–18 changed from trial-to-trial from 15 to 30 spikes/s. Feature b 
(periods 8, 10) indicates latency covariations, where the latency for each trial, for all 

of the neurons, varies by a random amount between 0 and 100 ms. Feature c 
(periods 2, 4, 7) represents inhomogeneous gamma processes, with shape factor 
g = 7, instead of Poisson processes. (B) The peristimulus time histogram (PSTH) 
displays the rate profile of the non-stationary processes. During period 5, the spike 
rate is modulated from 5 to 50 spikes/s with a Gaussian shape with s = 250 ms, 
and during periods 6, 7, and 8, st = 50 ms. The spike rates in periods 9 and 10 were 
modulated from 5 to 30 spikes/s by a step function. (C) The number of individual 
JS-patterns of complexities 2–6 that were detected in each sliding window 
(tc = 5 ms, “SW” = sliding window = 800 ms). (D) The percentage of JS-patterns 
that show significantly different occurrence frequencies between the two 
conditions (test level 5%).
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100) and the second through sixth mean spiking rates (r
1
 = 15, 

r
2
 = r

3
 = r

4
 = r

5
 = r

6
 = 7, 10, 30, 60, 90 spikes/s). In both scenarios, 

the simulated data sets are generated in order to determine the 
false-positive rate for JS-patterns of complexities 2–6.

In both scenarios, none of the results from the model data sets for 
any of the parameter combinations exceed the chance level, for either 
a test level of 5% (Figures 7A,B and 8A,B) or 1% (Figures 7C,D and 
8C,D) according to both ANOVAs (Figures 7A,C and 8A,C) and 
Kruskal–Wallis tests (Figures 7B,D and 8B,D). The false-positive 
rate decreases with the increase of the number of surrogates. As is 
the case for bivariate NeuroXidence, when the surrogate number is 
set to 1, multivariate NeuroXidence provides a conservative method 
for detecting the excess or lack of JSEs among six groups of neurons, 
no matter whether rate-covariations exist among the groups or not.

3.2.2 Test power for the multivariate case
To assess the test power of multivariate NeuroXidence, one simulated 
data set is generated by a single-interaction process based on a Poisson 
process (Fries et al., 2001), while five other data sets are generated by 
independent and homogenous Poisson processes. Each data set con-
tains eight simultaneous spike trains. For the single-interaction process, 
correlated spike trains were characterized by a background rate, which 
corresponds to the independent spiking of neurons, and by a JSE rate, 
which defines the expected frequency of the JS-pattern of interest.

processes. Multivariate NeuroXidence is then applied to evaluate 
the false positives due to an excess or lack of JSEs among these six 
conditions. Two scenarios are applied to generate the rate profiles 
of the Poisson spike trains for all of the conditions.

Scenario I: Six simulated Poisson models exhibit rate covaria-
tion, such that the rate profiles of the six simulated data sets 
are identical.

Scenario II: Six simulated Poisson models exhibit partial rate 
covariation, such that the rate profile of one simulated data set 
is chosen differently from the other five, which covary.

For both scenarios, multivariate NeuroXidence is applied to 
six simulated data sets to detect an excess or lack of JSEs among 
the six sets of model data (Figures 7 and 8). As with the bivariate 
analysis, the standard parameters for both scenarios include a slid-
ing window with a duration of l = 200 ms, T = 50 trials, a mean 
spike rate r = 15 spikes/s, and h = 5. Scenario I utilizes S = 20 sur-
rogates samples, and eight different combinations of parameters 
are derived for the model data by varying, in turn, the number 
of trials (T = 20, 50, 100) and the mean spiking rates (r

1
 = r

2
 =  

r
3
 = r

4
 = r

5
 = r

6
 = 7, 10, 30, 60, 90 spikes/s). Scenario II uses S = 1 

surrogate sample, and eight different combinations of parameters 
are derived by varying, in turn, the number of trials (T = 20, 50, 
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Figure 7 | Scenario i: Percentage of false-positives estimated by 
multivariate NeuroXidence in the detection of JS-patterns of 
complexity 2 to 6 among six models with covarying firing rates. A 
comparison of (A) the means and (B) the medians for a test level of 5%, and 
a comparison of (C) the means and (D) the medians for a test level of 1%. 
ANOVAs are used to compare the means, and Kruskal–Wallis U tests are 

used to test the medians. The standard set of parameters is defined by 50 
trials (T), a mean spike rate of 15 spikes/s (r), 20 surrogates samples (S), and 
h equals 5. From the standard parameter set, eight different combinations of 
parameters were derived by varying, in turn, the number of trials (T = 20, 50, 
100) and the mean spiking rates (r1 = r2 = r3 = r4 = r5 = r6 = 7, 10, 30, 60, 
90 spikes/s).
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lack of JSEs across different experimental or behavioral factors. This 
new variation of NeuroXidence considers the full auto- structure 
of each spike train and the trial-to-trial variability; moreover, 
these extensions correct for the effects of rate-covariation among 
groups of neurons, low firing rates, fast rate modulation, regular 
spiking defined by a g-process, and latency co-variation of rate 
responses across neurons. After calibrating bi- and multi-variate 
NeuroXidence on simulated data sets, the new extension reliably 
detects an excess or lack of JSEs due to different experimental or 
behavioral factors, for both stationary and non-stationary pro-
cesses. Moreover, this extension to NeuroXidence maintains a high 
sensitivity for detecting different modulations of the JSEs.

The procedure for applying bi- and multi-variate NeuroXidence 
consists of two main parts: detection of the JSEs, whose occurrence 
frequencies are above the chance level; and comparison of the fre-
quency of JSEs across different experimental/behavioral factors. The 
latter finds the relationship between the strength of synchronous 
firing and the neuronal system state. In order to achieve this goal, 
different statistical tests are applied to the simulated data sets at each 
step of the procedure. The statistical test applied during the detection 
step is described in the original NeuroXidence article (Pipa et al., 
2008), which focuses on the distinction between the chance level 
of coordinate firing and the underlying synchronous firing events. 
Because different features of spike trains, such as the  auto-structure 

The standard parameter set is chosen as 50 trials (T), a background 
spike rate of 15 spikes/s (r), and h equals 5. Six parameter sets are used 
to study how the test power of multivariate NeuroXidence is affected 
by the number of trials (T = 20, 50, 100) and the number of surrogates 
(S = 1, 20). The test power is derived for JS-patterns of complexity 2–6, 
with a test level set to 5%. It is clear in Figure 9 that an increase in the 
number of trials leads to an increase of the test power, as exhibited by 
the leftward shift and increase in steepness of the curves. When the 
number of surrogates changes from 20 to 1, the detection of extra 
JSEs for either higher or lower complexity values shows only subtle 
changes, which means multivariate NeuroXidence is sensitive enough 
to detect small differences in the JSE frequencies for each JS-pattern, 
among several conditions. Therefore, the number of surrogates can be 
set to 1 without harming the test power of multivariate NeuroXidence.

4 dIscussIon
NeuroXidence reliably and robustly detects synchronous firing 
patterns, beyond those expected by chance, for the univariate case 
(Pipa et al., 2008). However, the originally proposed procedure is 
not  suitable for comparing the modulation of synchronous firing 
strength across experimental or behavioral factors, nor is it robust 
against features that might induce false positives to such an esti-
mate. Here we have extended NeuroXidence to analyze bi- and 
multi-variate cases, which enables a comparison of an excess or 
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Figure 8 | Scenario ii: Percentage of false-positives estimated by 
multivariate NeuroXidence in the detection of JS-patterns of complexity 2 
to 6 among six models with partially covarying firing rates. A comparison 
of (A) the means and (B) the medians for a test level of 5%, and a comparison 
of (C) the means and (D) the medians for a test level of 1%. ANOVAs are used 
to compare the means, and Kruskal–Wallis U tests are used to test the 

medians. The standard set of parameters is defined by 50 trials (T), a mean 
spike rate of 15 spikes/s (r), one surrogate sample (S), and h equals 5. From the 
standard parameter set, eight different combinations of parameters were 
derived by varying, in turn, the number of trials (T = 20, 50, 100) and the second 
through sixth mean spiking rates (r1 = 15, r2 = r3 = r4 = r5 = r6 = 7, 10, 30, 60, 
90 spikes/s).

Wu et al. NeuroXidence

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 14 | 9

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


 surrogates need to be generated to estimate the frequencies of JSEs 
that are expected by chance. This parameter is the most important 
one, when the mean firing rate is not the same for different conditions.

Based on equation (1), surrogate data sets are generated by jit-
tering the original spike trains to estimate the chance level of fre-
quencies of JSEs [expressed as 1

1S s
S

t s
kf sur∑ = , , ( )j ]. The amount of 

jitter applied to the original spike train is defined by t
r
. However, 

the distribution of the frequencies of JSEs in the S surrogate data 
sets is not symmetrical. The skewness of the distribution, which will 
decrease as the mean firing rate increase, leads to a biased estimate of 
the underlying synchronous firing events. Therefore, by setting the 
number of surrogates to 1, both bi- and multi-variate NeuroXidence 
are able to maintain a high test power and low false-positive rate, 
thereby ensuring a non-biased estimate of the JSEs for each factor.

Based on the test power of simulated data sets, an average of 
2 JSEs/s difference in the occurrence frequencies of JSEs, among 
several conditions, can be detected with bi- and multi-variate 

of each spike train, the rate-covariation among groups of neurons, 
the low firing rate, etc., might effect an estimate of the rate of coor-
dinated firing events, the chance level for coordinated firing is esti-
mated directly from the surrogate data sets. The statistical test in 
the comparison step focuses on the different frequencies of the JSEs, 
which result from different experimental/behavioral factors. In order 
to evaluate the differences, we compare the occurrence frequency of 
the same JS-pattern k, for each trial t, across the different factors j. 
Different statistical tests (t-tests, Mann–Whitney U tests, ANOVAs, 
and Kruskal–Wallis one-way tests) are applied to evaluate whether 
coordinated firing events are the same across conditions or not.

There are three important parameters for bi- and multi-variate 
NeuroXidence: the time scale t

c
, the time scale t

r
, and the surrogate 

number S. The first time scale, t
c
, defines the precision of synchronous 

events to be within the 1- to 10-ms range. The second time scale, t
r
, 

establishes the lower bound of rate covariations, and it is defined 
to be h times slower than t

c
. The parameter S defines how many 
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Figure 9 | Test power of multivariate NeuroXidence in relation to the 
number of trials (T ) and the number of surrogates (S). One simulated data 
set was modeled as a single-interaction process based on a Poisson process, 
while the other five simulated data sets were generated by independent and 
homogenous Poisson processes. Rows 1–4 show the test-power dependencies 

on the complexities of the analyzed JS-patterns with complexities from 2 to 5. 
(A1–A4) variations in the number of trials T with the number of surrogates 
S = 20, and (B1–B4) variations in the number of trials T with the number of 
surrogates S = 1, from a standard parameter set (T = 50 trials, background spike 
rate of r = 15 spikes/s, and h = 5.
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across different experimental or behavioral factors. After being cali-
brated on simulated data sets, the extension exhibits its reliable and 
robust detection of synchronous firing patterns across different condi-
tions, for both stationary and non-stationary processes. Thus, bi- and 
multi-variate NeuroXidence provides a new approach for evaluating 
different strengths of synchronous firing across experimental data sets.
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NeuroXidence. Given more trials and more conditions, the test 
power surpasses 90% when the JSE rate is as low as 0.6 JSEs/s. In 
general, the conservative and sensitive properties of bi- and multi-
variate NeuroXidence ensure that any differences in the modula-
tion of synchronous firing strength, among several experimental 
or behavioral factors, can be reliably detected.

5 conclusIon
Expanding upon the previously published univariate NeuroXidence 
method (Pipa et al., 2008), here we present bi- and multi-variate 
NeuroXidence, which is designed to detect the lack or excess of JSEs 
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