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Abstract

Spatial interpolation of rain gauge data is important in forcing of hydrological simula-
tions or evaluation of weather predictions, for example. The spatial density of available
data sites is often changing with time. This paper investigates the application of sta-
tistical distance, like one minus common variance of time series, between data sites5

instead of geographical distance in interpolation. Here, as a typical representative of in-
terpolation methods the inverse distance weighting interpolation is applied and the test
data is daily precipitation observed in Austria. Choosing statistical distance instead of
geographical distance in interpolation of an actually available coarse observation net-
work yields more robust interpolation results at sites of a denser network with actually10

lacking observations. The performance enhancement is in or close to mountainous
terrain. This has the potential to parsimoniously densify the currently available obser-
vation network. Additionally, the success further motivates search for conceptual rain-
orography interaction models as components of spatial rain interpolation algorithms in
mountainous terrain.15

1. Introduction

Precipitation maps with daily or better resolution are necessary for investigation of the
climatology of extreme events (e.g. Skoda et al., 2003; Palecki et al., 2005), as input in
hydrological modeling (e.g. Singh and Frevert, 2002a,b), or in evaluation of numerical
weather prediction models (e.g. Beck and Ahrens, 2005), for example. Depending on20

application the maps have to be available close to real-time (e.g. in detection of flood
generating processes) or it is possible to wait some time and gather as much rain
observation data as possible (e.g. in climatology).

The back-bone of these maps are rain gauge data since the reliability of remote
sensing data (e.g. by weather radar or satellite) is not high enough (e.g. Young et al.,25

1999; Ciach et al., 2000; Adler et al., 2001). A challenge in mapping is the tempo-
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ral variation of spatial coverage of available rain gauges. For example, the monthly
monitoring product of the Global Precipitation Climatology Centre (http://gpcc.dwd.de)
is based on about 6000 stations available in near real-time. A second product, the
so-called full product, is based on 40 000 stations in the late 1980s but based on only
about 20 000 stations in the year 2000. Another example of time-delay in data avail-5

ability is a daily precipitation atlas by Rubel (1996) with gridspacing of a few tens of
kilometers for the Baltic sea and its drainage basin (area: 1.7e6 km2). Rubel (1996) is
based on about 400 stations and its update by Rubel and Hantel (2001) is based on a
10-times denser station network.

Auer et al. (2005) developed a homogenized dataset of long series of monthly pre-10

cipitation at 192 station sites in the European Alps and their surroundings. But the
average site-to-site distance increases backwards in time from 61 km in the second
half of the 20th century to 74 km in the late 19th century and up to about 200 km in
the early 19th century. Relative series homogenization relies on significant common
variability between neighbored site series assumed to be expressible as common vari-15

ance R2 with R the linear correlation coefficient. Auer et al. (2005) chose a threshold
of R2=0.5 and thus relative homogenization is not possible in the early 19th century
following Scheifinger et al. (2003) who estimated a network density of about 1/100 km
to have the necessary common variance in the greater Alpine region.

For daily precipitation Scheifinger et al. (2003) recommended an average distance20

of 40 km or better in relative series homogenization. Therefore, likewise dense obser-
vation networks for mapping of daily data are wished, but, of course, are not available
in most regions at most times. Nevertheless, mapping is done since (a) a low-quality
map is better than nothing and (b) the necessary station density is reduced by smooth-
ing: mapping or regionalization is interpolation of point data (the rain gauge orifices of25

∼1000 cm2 are small compared to the mapping scale, thus the observation sites are
considered to be points in good approximation) and spatial averaging or smoothing of
the interpolated point data. This leads to precipitation fields with spatial gridspacing
and cell support of, for example, a few tens of kilometers.

1895

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1893/hessd-2-1893_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1893/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1893–1923, 2005

Distance in spatial
interpolation of daily

rain gauge data

B. Ahrens

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

This paper discusses the point data interpolation part of mapping only. The separate
problem of support change by averaging is not discussed. Another challenge not to be
discussed here is the correction of rain gauge data for systematic errors which can be
due to wind-induced or evaporation loss (Rubel and Hantel, 1999).

For illustrational purposes we apply the Inverse Distance Weighting interpolation5

(IDW) method. IDW assigns weights to neighboring observed values based on distance
to the interpolation location and the interpolated value is the weighted average of the
observations. IDW is applied in many precipitation mapping methods (e.g. Rudolf and
Rubel, 2005; Frei and Schär, 1998) often enhanced with add-ons like declustering and
directional grouping of stations, or empirical adjustments in respect to orography (Daly10

et al., 1994). The IDW method is an example of a deterministic interpolation method.
Statistical interpolation methods like Kriging are optimal in a statistical sense, but not
robust in data sparse regions. A successful application of a statistical interpolation
method is presented in Rubel and Hantel (2001).

The IDW method is an implementation of Tobler’s first law of geography (Tobler,15

1970): all things are related, but nearby things are more related than distant things.
Generally, in spatial interpolation the distance is measured by the geographic distance.
The idea of this paper is to use the statistical distance between precipitation time series
at the interpolation site and actually available observation sites as distance measure
in the IDW method. It shall be shown that this is a parsimonious and robust method20

to in-fill a coarse network of actually available observations by using information of a
denser network that is not available for the interesting time period.

2. Data

For evaluation of precipitation interpolation methods assuming different mean observ-
ing station distances a dense reference network of precipitation stations is necessary.25

In this investigation a data set of about 900 stations with long daily time series (in the
period 1971 to 2002) has been available for Austria (total area is 84 000 km2) as pro-
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vided by the Hydrographisches Zentralbüro, Vienna (delivery date: February 2005).
Austria is a country in Central Europe with 62% covered by the Austrian Alps and only
32% below 500 m, cf. Fig. 1, and thus interpolation is done in complex mountainous
terrain.

The chosen year for the interpolation experiments is 1999. All stations with missing5

data in 1999 and not at least twenty years of data are erased from the data set and the
investigations are done with the remaining 710 station time series. This set of stations
is named ALL in the following.

In the set ALL the mean next station inter-distance is 6.7 km, but the stations are not
regularly distributed within the domain of investigation, i.e. Austria. They are clustered10

around Vienna in the north-east of the domain and in the main Alpine valley floors
(Fig. 2). The irregularity is also illustrated in Fig. 1 which compares the orographic
height distribution with distributions of station heights. The lower altitudes are relatively
better represented by stations than higher elevations.

In the interpolation experiments we applied subsets of ALL stations with 25, 50, and15

150 members as observing stations and subsets of the remaining stations with 300
members as evaluating stations. We draw the subsets in a fashion that approximately
maximizes the next station geographic inter-distance. One station of the minimum
distance pair is erased until the wished number of observing and subsequently of eval-
uating stations is left. Table 1 gives minimum, mean, and maximum geographic dis-20

tance and next neighbor common variance R2. The mean R2 increases with number
of stations as expected and consequently the mean interpolation performance should
increase. It is noteworthy that for all station sets there are sites which are statistically
far from all the others, i.e. R2<0.5.

The chosen regularizing sub-sampling leads to declustering of the considered station25

sets, but as Fig. 1 illustrates the elevation distribution of the stations is only slightly
improved. It should be kept in mind that typical station networks are clustered and
thus the effective number of stations in mapping is smaller than the nominal number
of stations. We did experiments with random sub-sampling which lead to decreasing

1897

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1893/hessd-2-1893_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1893/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1893–1923, 2005

Distance in spatial
interpolation of daily

rain gauge data

B. Ahrens

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

interpolation performance, but this will not be discussed further.
In climatological mapping of precipitation in mountainous terrain a precipitation-

elevation relationship is often successfully considered (cf. Sevruk, 1997). This ele-
vation dependence is illustrated in Fig. 3 for yearly data. It is also illustrated that such
a dependence is less obvious at shorter time scales because of the large scatter of the5

daily precipitation values. This will be discussed in some more detail in the following
section.

3. Interpolation method

The Inverse power of Distance Weighted interpolation (IDW) is applied. In standard
IDW the interpolated value is estimated by a weighted mean of the observations and10

the weights are proportional to a negative power of geographical distances dα be-
tween the point of interpolation and the considered observation points. Typically, not
all observations Pα are considered in estimation of the interpolating value P0 but only n
neighboring with

P0 =

∑n
α=1 Pαwα∑n
α=1 wα

(1)
15

and the weights

wα =
1

dλ
α

(2)

The power λ of distance has to be chosen appropriately depending on the interpolated
variable. Spatially smoother variables show larger spatial dependence and thus like
smaller values of λ than spatially rougher fields. Generally, it is assumed that the20

separation of close-by observations increases faster than linear with station distance
and often a power λ of two is assumed.

1898

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1893/hessd-2-1893_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1893/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1893–1923, 2005

Distance in spatial
interpolation of daily

rain gauge data

B. Ahrens

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

If only the next neighbor is considered (i.e. n=1) IDW collapses to the next neighbor
or Thiessen method. As Blöschl and Grayson (2001) elaborated, IDW generates spu-
rious artefacts in case of highly variable quantities and irregularly spaced data sites.
This is typical for observed precipitation data. Thus, in practical implementations the
IDW is complemented by empirical methods like directional grouping of stations and5

exclusion of stations if shadowed by closer stations (Shepard, 1984). These artefacts
are not important in our experiments because of the applied regularizing sub-sampling
of the available stations. IDW interpolation applying geographical distance is named
d -IDW in the following.

Besides geographical distance additional empirical relationships can be imple-10

mented. One example is regression with orography (Daly et al., 1994). Adopting this
regression is crucial in development of climatological precipitation maps but of less im-
portance in daily maps as Fig. 3 indicates. But this example illustrates that besides
horizontal distance also vertical distance, slope of orography, observation positioning
at the wind- or leeward slope, distance from the range crests etc. should be considered15

(Smith, 1979). Unfortunately, implementations of adequate empirical relations of that
type are difficult (Smith, 2003; Barros and Lettenmaier, 1994). A simple station sep-
aration measure is wanted which takes the complexity of rain-terrain interaction into
account.

Here, we assume that long time series of precipitation are available at the observa-20

tion sites and the interpolation sites. Thus, it is easy to replace geographical distance
by some type of statistical distance between data series. A proper statistical station
distance implicitly considers rain-terrain interaction through experience. One useful
class of statistical measures obviously are cross-correlation type measures like 1−R2.
The drawback of this measure of proximity is that differences in the mean between25

neighboring series are not considered. Therefore, we apply as an alternative statistical
measure of separation the semi-mean squared difference (i.e. basically the Euclidian
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distance)

γ0α =
1

2T

T∑
t=1

(Pt0 − Ptα)2 (3)

between the time series of length T . Only days t with precipitation at both observa-
tion sites 0 and α are considered. This measure quantifies random and systematic
differences between the time series.5

If γ is applied in IDW the proximity of stations is replaced with the proximity of data
series. The resulting interpolation method is named γ-IDW in the following.

Application of d - or γ-IDW yields different interpolation values since geographical
close-by stations can observe relatively distant precipitation time series and vice versa.
This is shown in Fig. 4. Tobler’s law is valid in a mean sense, but for single evaluating10

stations the next geographical neighbor might not be the next neighbor measured by
the γ-distance (exemplified by two station’s γ-vectors marked red and blue in the fig-
ure). Therefore, application of the γs instead of the ds changes the selection of the n
next neighbors and their relative importance in the interpolated value.

The factor 1/2 in the definition of γ is not important here, but chosen to illuminate15

that the scattergram shown in Fig. 4 would be the empirical semi-variogram in case of
Kriging with a climatological semi-variogram like in Rubel and Hantel (2001). Addition-
ally, it shall be mentioned that it is equally easy to apply a Kriging variant instead of
IDW for the interpolation experiments discussed here.

Figure 5 indicates the spatial and statistical representativeness of the observing sta-20

tions of set 50. Shown are the averaged inverse distances to the neighboring 24 eval-
uating station sites (i.e. about to neighbored evaluating sites to which the observing
stations are applied to in interpolation with n=4). The geographical representativeness
of the stations scatter but is not systematically dependent on station elevation. This
confirms that the regularizing sub-setting has been successful. The statistical repre-25

sentativeness decreases with station elevation on average. Since this is not respected
by geographical distance weighting and since mean observed precipitation increases
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with height it is expected that precipitation will be tendencially overestimated in the
Alpine area by interpolation with d -IDW. Additionally, n might be chosen larger or the
exponents λ chosen smaller in the eastern lowlands of Austria than in the Alpine area
in an optimized d -IDW interpolation setup to compensate the varying data representa-
tiveness (not tested here).5

As mentioned above the γs also measure systematic differences in time series which
may be due to elevation dependence of precipitation in orography, mountain shadowing
effects, or horizontal trends in the precipitation field, for example. These systematic
differences are not measured by the centered semi-mean squared difference

γ′
0α =

1
2T

T∑
t=1

((Pt0 −m0) − (Ptα −mα))2 (4)
10

with m the time series means.
The effects of systematic differences on statistical distances are shown in Fig. 6.

The relative effect (γ′−γ)/γ over geographical distance is given for four classes of
station elevation differences. For geographically nearby stations the importance of
systematic differences is increasing with station elevation difference. On average the15

effect of systematic difference between nearby stations with almost no vertical elevation
difference is below 1%. This effect is about 7% for stations with about 1000 m vertical
distance. This is consistent with Haiden and Stadlbacher (2002). They found for the
same data an elevation dependence of yearly precipitation amounts up to 20% per
1000 m height difference if they restricted their evaluation to station pairs with horizontal20

distances smaller than ten kilometers.
With increasing horizontal distance the height difference gets less important. For

d≤100 km trends due to shadowing effects in complex terrain might be important and
the remaining height correlation shown in Fig. 6 might be due to a shadowing proba-
bility that is increasing with larger station height differences. For even larger horizontal25

distances a pronounced east-west gradient in Austrian precipitation sums (cf. Fig. 8)
might explain the increasing differences between γ and γ′. The vertical difference de-
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pendence is probably artificial since the relative frequency of orographic heights differs
substantially between eastern and western Austria. Here, we present possible reasons
of systematic effects only without further discussion, but their existence motivates the
usage of γ instead of γ′ or R2 as the statistical distance measure. In either interpolation
method these trends have to be considered adequately.5

The γ-IDW can be applied only at interpolation sites with long time series of pre-
cipitation observations. At non-observation sites a mixed method could be thought of.
The n next neighbors are determined by geographical distance. For the neighbors long
precipitation time series are available and thus their d and γ inter-distances can be
determined. With this information a simple approximation for statistical distances of10

the interpolation site to the next neighbors can be derived. Geometrical selection com-
bined with approximated statistical distances and thus approximated statistical weights
generates an interpolation method that is slightly better than d -IDW but shall not be
further discussed here. The performance gain is small indicating that orogenic modifi-
cations on statistical distance are non-homogeneous and anisotropic in space.15

4. Results

As already noted the interpolation experiments are done with the observing station
data sets of size 25, 50, and 150 for the year 1999. Always 300 evaluating station sites
are the considered interpolation points and thus evaluating data is available. Figure 7
compares the results of d - and γ-IDW interpolation. In this example the number of20

observing stations is 50 and next-neighbor interpolation, i.e. n = 1, is applied. It is
shown that often the next neighbor and thus the interpolation value differ between the
two approaches. In next-neighbor γ-IDW interpolation even two stations (Mitterfeldalm
(1665 m MSL) and Filzmoos (1060 m MSL) circled in Fig. 7) are not considered in inter-
polation. The spatial representativeness of these stations is relatively small and thus25

the observations at these stations are statistically useless for next-neighbor interpola-
tion.
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The interpolation results are compared to the evaluating observations with simple
statistics like relative bias B=(mean(I)−mean(O))/mean(O) with I a set of interpolated
values and O the corresponding set of evaluating observations at the interpolation
sites, linear correlation R(I, O), the ratio of standard deviations σ(I)/σ(O), and effi-
ciency E=1−mean((I−O)2)/σ2(O)=1−MSE (I, O)/σ2(O). The spatial average of time5

series biases is denoted by Bt. and the temporal average of biases between daily pre-
cipitation fields is denoted B.s. The dot indicates the finally averaged dimension. The
same notation is applied to the averaged correlations, standard deviations and efficien-
cies. In case of a perfect interpolation the values of the bias statistics are identical zero
and the other statistics’ values are one.10

Table 2 shows mean results of the evaluation. As expected the correlation of inter-
polated values with evaluating data increases with the number of observing stations.
Improvement of bias is not that obvious. Changes in the exponent λ have a smaller
impact, but are not unimportant. The evaluation indicates that in d -IDW an exponent
smaller than two performs best in the yearly average. More important is the number15

n of considered observation neighbors. In case of 50 observing stations four-neighbor
interpolation is better than next-neighbor interpolation but there is no relevant improve-
ment in taking eight neighbors and even slight decrease in interpolation performance if
sixteen neighbors are taken. A similar number of neighbors are optimal in case of 25
or 150 observing stations.20

The γ-IDW interpolation is better in correlation and efficiency but seems to be worse
in bias. In d -interpolation there is a more pronounced spatial compensation of er-
rors. Underestimation, for example close to the southern Austrian border (cf. Fig. 8),
is compensated by a tendency for overestimation in central Alpine areas by geograph-
ical interpolation. This is due to overestimation of representativeness of high-elevation25

observations (cf. Fig. 5). The tendency for underestimation in γ-interpolation can be
avoided if the statistical distances are estimated after logarithmic transformation of the
time series (cf. experiment ln in Table 2). This effectively reduces the positive skewness
of the intensity distribution of daily precipitation. The skewness of the precipitation dis-
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tribution is an important problem common to all interpolation methods, but shall not be
discussed further in the present context.

Figure 8 shows the relative biases of the interpolating time series with next-neighbor
d - or γ-distance interpolation. The spatial averages of these biases are given in Ta-
ble 2 by experiment 50/2/1/− to 4 and −2, respectively. Obviously, relative biases in5

d -IDW interpolation are larger in mountainous terrain than in the lowlands (the same
is valid for correlation and efficiency errors, not shown). In mountainous terrain the
scatter in relative biases is smaller with γ- instead of d -interpolation and thus perfor-
mance of γ-interpolation is better. This can also be seen in Fig. 9. This figure shows
interpolated precipitation sums in comparison with observed sums of 1999 in a west-10

east transection with areal support of 350 to 370 km northing. Results with next- and
four-neighbors interpolation are compared. Again the tendencies of over- and underes-
timation of geographical or statistical distance interpolation are visible. The tendency
of smaller values of statistical interpolation yields smaller standard deviations. Sub-
jectively interpolation with n=4 leads to better results, but obviously also to smoother,15

variability vastly underestimating fields.
The smaller scatter in bias, correlation and efficiency by γ-IDW is also shown by the

histograms in Fig. 10. These histograms give statistics values applying n = 4 interpo-
lation. The statistical distance interpolation is more robust than geographical distance
interpolation. Extreme overestimates of daily means are avoided. Correlations are20

shifted to higher values and the number of days with spatial R2≤0.5 and small or even
useless (E≤0) efficiencies are significantly reduced.

Obviously, time series performance is better than spatial performance. This is due
to the scales of the data. The temporal support of the data is daily. The spatial support
of the observations (∼1000 cm2) is very small in comparison (Orlanski, 1975). This25

explains the better performance of interpolation in terms of time series than of spatial
field comparisons. As a consequence the spatial results are more sensitive to the
chosen interpolation method.

Most interpolation methods are smoothing operations which reduce field variability.
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This is visualized in the Taylor (2001)-diagram shown in Fig. 11. For example, next-
neighbor d -interpolation overestimates temporal and spatial variability in comparison
with the evaluating observations. But, with n = 2, 4 etc. variability is more and more
underestimated. This effect is more important for spatial than temporal variability be-
cause of the relatively smaller spatial interpolation support scale. The traces of crosses5

in the diagram are convex showing that there is an optimum number of neighbors to be
considered in interpolation. If in the envisaged application the field correlation is more
important than field variability then a number of four neighbors is well chosen in case
of 50 observing stations. The optimum depends on the interpolation setup: number of
stations, power of distance, spatial and temporal variability of the natural precipitation10

field etc. The impact on smoothing of the power λ of the distance and de-skewing in γ-
IDW are also shown in Fig. 11. With increasing λ the effective number of observations
decreases and variability of the interpolating values increases. De-skewing in γ esti-
mation slightly improves variability, correlation and thus (as is proven in Taylor, 2001)
centered root-mean-square error RMSE ′.15

As discussed earlier there are systematic differences between station time series
due to vertical or horizontal trends. In the interpolation experiments on a daily data
basis these systematic effects are generally small in comparison to interpolation errors
as is shown by application of γ′ instead of γ distances (cf. experiment γ′ in Table 2).
This says that on average the relative importance of vertical dependence of precipita-20

tion rates is small in comparison with interpolation errors in our setup. Of course, in
some areas or applications the vertical dependence is important. Additionally, these
systematic effects get more important with increasing interpolation performance, for ex-
ample because of increasing temporal support of interpolation time slices (i.e. monthly
or yearly precipitation fields instead of daily fields).25

Seasonal stratification of precipitation events in γ-estimation and -interpolation yields
the expected results. Table 2 gives interpolation results if only summer or winter six-
month data are considered (experiments Su and Wi). Spatial field correlations and
efficiencies are better in winter than in summer. In Austria the winter precipitation is less
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intensive and less heterogeneous in the mean than summer precipitation. The more
stochastic character of convective summer rain reduces the spatial representativeness
of data. Nonetheless, the temporal correlation differences are small.

Interestingly, the temporal efficiencies are even better in summer than in winter.
The MSEs of the interpolated time series are smaller in winter (d : 7.6 (mm/d)2 and5

γ: 5.9 (mm/d)2) than in summer (d : 17.9 (mm/d)2 and γ: 15.9 (mm/d)2). But, if the
MSEs are normalized with observed time series mean variance (22 and 66 (mm/d)2 in
winter and summer, respectively) then summer interpolation performs better than win-
ter interpolation in terms of time series comparison. In either case, summer or winter,
γ-IDW performs better than d -IDW with performance gain more pronounced in win-10

ter because of higher stationarity of spatial patterns because of frontal interaction with
orography.

We tried also stratification of precipitation days with a mean wind direction classifica-
tion for the lower atmospheric levels in the Eastern Alps (Steinacker, 1990). This even
slightly reduces overall performance in γ interpolation. The small-scale γ-distances15

are not highly dependent on large-scale wind direction. Additionally, the size of spe-
cific wind direction classes is small even in the available thirty-year data sets and thus
estimation of stratified γs is not robust.

5. Conclusions

Spatial interpolation of daily rain gauge data with Inverse Distance Weighting (IDW)20

at locations with available precipitation time series has been investigated. It has
been shown that the application of a statistical distance measure between neighbored
precipitation time series instead of geographical distances between station locations
slightly improves averaged interpolation performance. The main advantage is that sta-
tistical distance IDW is more robust especially in or close to mountainous terrain where25

complex rain-orography interaction is important that is implicitly considered in the sta-
tistical distance. This performance gain in mountainous terrain illustrates the potential
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of simple but necessarily spatially highly resolving models of rain-orography interaction.
The statistical distance could also be applied in geostatistical interpolation. For ex-

ample, in Kriging interpolation n next neighbors are typically considered in estimation.
These n neighbors could easily be selected by statistical distance. More sophisticated
approaches could be thought of. For example, Kriging could be applied after mapping5

station locations with statistical distances instead of geographical distances by metric
multidimensional scaling (Sammon JR., 1969).

Implementation of IDW interpolation with statistical distance is easily done if the
necessary time series are available at the interpolation sites. An example of application
might be daily precipitation mapping in Austria. Operationally about 150 rain gauges10

with daily or better resolution are available to the Austrian national weather service.
Following Weilguni (2003) about 950 additional rain gauges with daily measurements
are operated in Austria by the hydrological service, hydropower agencies etc. These
additional stations are not available in near real-time, but their statistical information
could be applied easily within the statistical IDW. This would be a parsimonious and15

robust procedure for using all available rain gauge data in densification of the point
data network that could be appropriately upscaled in precipitation mapping.
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Table 1. Statistics of the geographic distances of the considered station sets and statistics of
the common variance R2 of daily precipitation series.

set distance (km) R2 (%)
min mean max min mean max

ALL/710 1 7 21 40 73 97
25 43 54 69 28 41 53
50 29 36 53 29 50 69
150 16 20 37 41 61 77
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Table 2. Mean evaluation results of interpolation experiments. The table gives the spatial mean
of relative time series biases Bt., the temporal mean of spatial biases is B.s, and the related
correlation coefficients Rt. and R.s and efficiencies. All values are given in percent and thus the
values of Bs would be 0 and all other values would be 100 in case of perfect interpolation.

Exp. Bt. B.s Rt. R.s Et. E.s
set,λ, n, − d /γ d /γ d /γ d /γ d /γ d /γ

25,2,4,− 1/−5 0/−7 84/85 56/60 67/71 22/33
50,2,4,− 4/−3 1/−7 87/88 62/65 73/76 32/42
150,2,4,− 1/−2 −1/−5 91/91 70/72 80/82 45/52

50,1,4,− 4/−2 1/−8 88/88 62/64 73/76 35/40
50,3,4,− 4/−3 2/−7 87/88 61/65 71/76 26/41

50,2,1,− 4/−2 4/−6 83/84 57/60 59/65 1/19
50,2,8,− 4/−3 1/−8 88/88 63/65 74/76 35/42
50,2,16,− 5/−5 1/−11 88/87 62/65 73/73 36/39

50,2,4,ln −/ 2 −/ 0 −/88 −/65 −/75 −/40
50,2,4,γ′ −/−3 −/−8 −/88 −/65 −/76 −/42
50,2,4,Wi 9/−5 0/−10 87/88 65/70 65/74 40/48
50,2,4,Su 2/−1 2/−6 87/88 60/61 73/76 25/36
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Fig. 1. Height distributions of the Austrian orography, of all considered rain gauges, and of a
subset of 50 gauges on an approximately regular spatial grid.
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Fig. 2. Rain gauge locations of set ALL (bullets) considered in the present investigation and
measured values (bullet colors) for 19 August 1999. The orography is indicated by grey shading
(light-grey: elevations above 800 m MSL, and dark-grey: elevations above 1500 m MSL). The
main Austrian watersheds are indicated by black isolines.
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Fig. 3. Height dependence of precipitation observed by all stations for the year 1999 and the
day 19 August 1999.
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Fig. 4. Statistical distance γ for all evaluation-observation pairs. Here, 50 observing stations
are assumed. The γs for two stations (cf. the stations marked by colored arrows in Fig. 7) are
highlighted by colored symbols.
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Fig. 5. Relative representativeness in geographical (black bullets) and γ-statistical (red circles)
distance of the observing stations of set 50. The solid black and dashed red lines are local
polynomial regression fits to the bullets and circles, respectively.
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Fig. 6. Relative importance of systematic differences between pairs of precipitation time series
over geographical distance between the series sites. The black dots show the relative impor-
tance for station pairs with a vertical elevation difference of less than 50 m (only every 5th dot is
drawn). The black circles show mean relative importances for geographical distance classes.
The same is shown by the other colored symbols but for different vertical elevation difference
classes.
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Fig. 7. IDW interpolation of data measured at 50 observing stations for 19 August 1999. The
color of the bullets at the station sites (marked with +) show the observed values. These are a
subset of the observations shown in Fig. 2. The squares indicate the interpolation points with
the outline color giving the interpolation results by standard next-neighbor geographical IDW
and the filling color giving next-neighbor γ-IDW results. The arrows point to the interpolation
stations highlighted in Fig. 4. The circles mark observing stations not considered in next-
neighbor γ-interpolation.
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Fig. 8. As Fig. 7 but showing precipitation sums for the year 1999 at 50 observation sites and
relative biases at the evaluation sites. The vertical bars indicate relative biases for the 1999
interpolation experiments. The inlet shows the height of a bar with 100% positive bias. Black
gives biases with geographical and red with statistical distance next-neighbor interpolation.
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Fig. 9. Year 1999 sums of observed and interpolated precipitation at sites in a west-east tran-
section with areal extent between 350 and 370 km northing. Grey symbols show the observed
values, black symbols the interpolated values with geographical distance interpolation and red
symbols with statistical distance interpolation, respectively. The upper panel applies n=1, i.e.
next-neighbor, and the lower panel applies n=4 neighbors in interpolation. The transection
means µ and standard deviations σ are given too.
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Fig. 10. Histograms of spatially (upper row) and temporally (lower row) averaged statistics.
The solid red histograms show the evaluation results for γ- and the hatched black histograms
for the d -distance interpolation with set 50, n=4, and γ=2.
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Fig. 11. Taylor (2001)-diagram showing evaluation results with observation set 50 but different
interpolation setups. Black “+” and red “x” show the dependency on n with n=1, 2, 4, 8, 16 for
d - and γ-interpolation, respectively, and γ=2. The green “x” show results with γ-interpolation
and n=4 and γ=1, 3, 4. The blue “x” show results for experiment ln. The group of symbols
indicating better correlations and centered RMSE ′s are from time series comparisons and the
other group indicate spatial field comparisons.
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