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Kurzfassung

Theoretische Modelle von in der Natur existierenden komplizierten Systemen erlauben es, Hypo-

thesen zun̈achst nicht am realen System, sondern an einem Modell zu testen. Im Vergleich zur

Durchführung von realen Experimenten haben diese theoretischen Experimente die Vorteile einer

totalen Kontrolle von Messfehlern und verursachen oftmals um Größenordnungen geringere Kosten.

Das realistische System kann nicht komplett durch theoretischein silico Modelle beschrieben wer-

den, denn diese vereinfachen Systemeigenschaften, um eine theoretische Behandlungüberhaupt erst

zu erm̈oglichen. Dadurch ergibt sich jedoch die Möglichkeit, die im System relevanten Mechanismen

zu identifizieren.

Viele Modelle benutzen Kontinuumsbeschreibungen von Konstituenteneigenschaften, um das System

mit ordinären oder partiellen Differentialgleichungen zu beschreiben. Im Gebiet der Gewebemodel-

le erfreuen sich gerade im Hinblick auf einen eventuell monoklonalen Ursprung von Krankheiten

wie Krebs agentenbasierte Ansätze großer Beliebtheit, denn in diesen Modellansätzen wird jede Zel-

le individuell im Modell repr̈asentiert und somit lassen sich die Nachkommen einer einzelnen Zelle

individuell verfolgen. Im Hinblick auf die großen Zellzahlen in höheren Organismen werden agenten-

basierte Modelle ben̈otigt, welche mit vergleichsweise geringen numerischen Aufwand gelöst werden

können. Ein bekannter Ansatz besteht darin, die räumliche Dynamik der Zellen auf einem Gitter zu

modellieren, indem eine Zelle durch einen oder, für höhere geẅunschte Aufl̈osungen, auch durch

mehrere Gitterpunkte approximiert wird. Der Zustand der Zellen auf dem Gitterändert sich durch

lokale Wechselwirkungsregeln. Diese Ansätze f̈uhren allerdings oft zu numerischen Gitterartefakten,

welche durch stochastische Wechselwirkungsregeln reduziert werden können. Die Verbindung von

Modellparametern mit messbaren Observablen wird dadurch jedoch nochmals erschwert. In Hinsicht

auf die Bewertung der Ergebnisse von darauf basierenden Modellen taucht auch die Frage auf, ob die

intrinsische gitterbasierte Repräsentation die Ergebnisse eventuell verfälscht. Diese Frage kann nur

mit Modellen beantwortet werden, welche diese Näherung aufgeben.

Die vorliegende Arbeit f̈uhrt numerische Methoden für die Konstruktion von gitterfreien Modellen

zellularen Gewebes ein. Um die Anwendbarkeit zu demonstrieren, werden sie auf verschiedene biolo-

gische Modellsysteme angewandt und auch teilweise mit kontinuumsbasierten Methoden verglichen.

Unter der Annahme von kontaktvermittelten Zell-Zell-Wechselwirkungen kann mit Zuhilfenahme der

Nachbarschaftstopologie die Zahl der zu betrachtenden Wechselwirkungen deutlich reduziert wer-

den. Die regul̈are Delaunay-Triangulation stellt dabei eine Methode dar, solche Topologien effizient

zu erstellen: Das Objekt wird durch eine Kugel repräsentiert, deren Nachbarschaft mit anderen Ob-

jekten (Kugeln) durch die Delaunay-Triangulation definiert ist. Objekte, welche in der Triangulation
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nicht verbunden sind, haben auch keinen Kontakt untereinander und die entsprechenden Kontakt-

wechselwirkungen m̈ussen nicht berücksichtigt werden. Zur Delaunay-Triangulation kann, analog

zur Wigner-Seitz-Zelle, geometrisch eine duale Konstruktion, die Voronoi-Zerlegung, eingeführt wer-

den. Diese duale Konstruktion ermöglicht es auch, geometrische Korrekturen des Zellvolumens bei

mehrfachen̈Uberlapps zu berechnen. Die Modellierung von lebendem Gewebe stellt jedoch deutlich

erḧohte Anforderungen an die benutzte Delaunay-Triangulation: Die Zellbewegung erfordert die Un-

tersẗutzung kinetischer Punktmengen, und Prozesse wie Zellteilung und Zelltod korrespondieren mit

dem Einf̈ugen bzw. Entfernen von Kugeln aus der Triangulation. Eine Triangulation, welche dies si-

multan leistet, wurde im Rahmen dieser Arbeit erstmals erstellt: In dieser Implementation wird die

Änderung der Nachbarschaftstopologie durch eine Folge von elementaren topologischen Transfor-

mationen repr̈asentiert. Gleichfalls werden in der vorliegenden Arbeit verwendete Algorithmen zum

Einfügen bzw. Entfernen von Objekten diskutiert. Von besonderem Interesse ist hierbei ein neuarti-

ges Kriterium zur Berechnung der maximalen Schrittweite, welches in den kinetischen Algorithmen

Anwendung findet. Die durchschnittliche algorithmische Komplexität der Kontakt-Erkennung durch

die Delaunay-Triangulation ist dominant bestimmt durch den verwendeten kinetischen Algorithmus

und skaliert damit linear mit der Zahl der betrachteten Objekte für realistische Modellapplikationen.

Da die Dynamik von Zell-Zell-Kontakten nicht genau verstanden ist, wird ein für unbelebte Materie

etabliertes Kontaktmodell (JKR-Modell) diskutiert und für seine Anwendbarkeit auf Gewebesimu-

lationen modifiziert. Dies beinhaltet die Erweiterung durch dissipative und stochastische Kräfte. Im

Gegensatz zur Langevin-Gleichung wird jedoch auch Zell-Zell-Reibung und Reibung mit stationären

Randbedingungen mit einbezogen, so dass die Bewegungsgleichungen erheblich komplexer werden.

In derüberd̈ampften N̈aherungmẍ ≈ 0 können diese auf die Form

A(t)ẋ(t) = b(t)

gebracht werden, wobei der Vektorb(t) sowohl konservative als auch stochastische Wechselwirkun-

gen, und die MatrixA(t) die dissipativen Kr̈afte entḧalt. Da die MatrixA(t) dünn besetzt und für

physiologische Parameter auch positiv definit ist, können iterative Methoden wie die der konjugierten

Gradienten benutzt werden, um das System nachẋ(t) und, nach zeitlicher Integration mit adaptiver

Schrittweite, somit nach der zellularen Kinetikx(t) aufzul̈osen.

Die Übertragung von Informationen aller Art im Gewebe wird jedoch nicht nur durch Kontaktwech-

selwirkungen, sondern auch durch diffundierende Substanzen bewerkstelligt. Im einfachsten Fall han-

delt es sich z. B. um die Diffusion von N̈ahrstoffen. Aufgrund des riesigen Größenunterschieds

zwischen einzelnen Molekülen und Zellen k̈onnen diffundierende Signal- und N̈ahrstoffe durch
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Reaktions-Diffusions-Gleichungen der Form

∂u
∂t

= ∇ [D(x, t)∇u(x, t)] + Q(x, t)

hinreichend beschrieben werden. Dabei beschreibtu(x, t) die r̈aumlich und zeitlich heterogene Dy-

namik des diffundierenden Faktors,D(x, t) den im Allgemeinen von den lokalen Bedingungen

abḧangigen effektiven Diffusionskoeffizient undQ(r, t) die lokale Aufnahme- bzw. Produktionsra-

te des diffundierenden Faktors. Die diskretisierte Version solcher partieller Differentialgleichungen

lässt sich auf einer Rechteck-Diskretisierung durch denÜbergang von Differentialquotienten zu Dif-

ferenzenquotienten erhalten und führt auf die L̈osung d̈unnbesetzter Gleichungssysteme mit speziel-

ler band-diagonaler Struktur. Diese Arbeit diskutiert verschiedene numerische Methoden zur Lösung

dieser Gleichungen, welche im Rahmen der Modellkonstruktion erstellt und verglichen wurden. Das

beinhaltet sowohl L̈osungen f̈ur das volle zeitabḧangige System als auch die Lösung im Gleichge-

wicht, d. h. f̈ur ∂u
∂t ≈ 0. Um eine konsistente Verbindung mit gitterfreien agentenbasierten Model-

len herzustellen, werden die lokalen Konzentrationen an den Zellzentren durch lineare Interpolation

zwischen den Gitterpunkten berechnet. Dieses Vorgehen kann nur angewendet werden, wenn die Git-

terkonstante des Diskretisierungsgitters auf Bereiche oberhalb der typischen Zellgröße eingeschränkt

ist.

Der Zellzyklus wird im Modell durch interne diskrete Zustände der Agenten repräsentiert, d. h. in

Abhängigkeit des internen Zustandes verändern die Agenten ihre Eigenschaften. Das Modell unter-

scheidet dabei zwischen M-Phase, G1-Phase, S/G2-Phase und einer G0-Phase,̈uber deren Dauer die

Gesamtzellzykluszeit gesteuert wird. Zusätzlich k̈onnen die Modellagenten nekrotisieren, was im Mo-

dell durch ein Ende der N̈ahrstoffaufnahme und eine – verzögerte – Entfernung der Agenten aus der

Simulation realisiert wird. An einzelnen biologischen Systemen wird das Modell weiter spezifiziert.

Multizelluläre Tumorspḧaroide sindin vitro Systeme von unsterblichen Zell-Linien, welche in dreidi-

mensionaler Kultur spḧarische Zellpopulationen formen. Aufgrund des Nährstoffmangels im Inneren

der Spḧaroide bildet sich in der Regel eine typische, durch Schichten bestimmte Struktur heraus:

Ein nekrotischer Kern ist umgeben von einer nichtproliferierenden Zellschicht, welche wiederum von

eineräußeren Schicht proliferierender Zellen umgeben ist. Eine solche Struktur findet man auch in

vielen avaskularen Tumorenin vivo, weshalb multizellul̈are Tumorspḧaroide ein beliebtes experi-

mentelles Modellsystem darstellen, um z. B. den Effekt von Chemotherapeutika unter realistischeren

Bedingungen zu testen. Das Wachstum der Tumorsphäroide folgt anf̈anglich dem erwarteten expo-

nentiellen Verlauf, flacht dann jedoch ab und für einige Zell-Linien wird sogar eine Sättigung beob-

achtet. Diese Abweichung vom exponentiellen Wachstum ist jedoch nicht allein durch die Verarmung

an N̈ahrstoffen bedingt, sondern auch durch andere Faktoren. In dieser Arbeit wird gleichfalls der
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Beitrag durch die Kontaktinhibition der Zellteilung untersucht. Durch Variieren der experimentell

nicht oder nur schwer erreichbaren Modellparameter kann die Abweichung zwischen Modellvorher-

sage und experimentellen Messungen im Sinne einesχ2-Fits minimiert werden. Die so erhaltenen

Modellparameter stellen eine Modellvorhersage dar.

Um das Wachstum dieser Sphäroide im Modell zu untersuchen, werden in einem agentenbasierten

und einem kontinuumsbasierten Modell die Prozesse der Nekrose und Kontaktinhibition als verlang-

samende Faktoren in der Wachstumsdynamik der Sphäroide diskutiert. Dabei wird das kontinuums-

basierte Modell so analog wie m̈oglich zum agentenbasierten Modell konstruiert. Als nekroseindu-

zierend werden zwei diffundierende N̈ahrstoffe betrachtet, Sauerstoff und Glukose, was die simultane

Lösung der beiden Reaktions-Diffusionsgleichungen impliziert. Mit einem einfachen Ansatzüber

die Abḧangigkeit der Nekrose von den lokalen Nährstoffkonzentrationen gelingt es, mit ansonsten

gleichen Parametern vier Wachstumskurven bei verschiedenen Nährstoffkonzentrationen modellun-

abḧangig zu reproduzieren. Das agentenbasierte Modell hat den Vorteil der Auflösung des Zellzyklus

und der besseren Beschreibung der Zellkinetik, welche im Kontinuumsmodell durch einen nicht-

linearen (positiven) Diffusionsterm charakterisiert ist. Zudem liegt die betrachtete Systemgröße von

105 . . . 106 Zellen an der Grenze des mit agentenbasierten Modellen berechenbaren, was starke Verein-

fachungen der Bewegungsgleichungen erfordert. Beide Modelle approximieren die experimentellen

Wachstumskurven mit annähernd gleicher Qualität, so dass auf dieser Ebene keine Diskriminierung

zwischen den Modellen m̈oglich ist. Auf der Ebene der morphologischen Daten, d. h. der Größe

des nekrotischen Kerns und der anderen Schichten, ist aber sehr wohl eine Modelldiskriminierung

möglich. Das agentenbasierte Modell erlaubt zudem eine Saturation des Wachstums, was im speziel-

len konstruierten kontinuumsbasierten Ansatz nicht möglich ist.

Um einem realistischen Modell für das Tumorwachstumin vivonäherzukommen, wird das agentenba-

sierte Modell auf die Beschreibung der Epidermis angepasst. Diese ist ein mehrschichtiges verhornen-

des Plattenepithelgewebe und bildet die obere Schicht der menschlichen Haut. Die vorherrschenden

Zelltypen sind Keratinozyten, Melanozyten, Merkel-Zellen und Langerhans-Zellen. Die Epidermis

lässt sich histologisch in mehrere Schichten unterteilen. Das aus nur einer Zellschicht bestehende

stratum germinativumgrenzt direkt an die Basalmembran. Hier teilen sich Keratinozyten, von denen

ein Teil in der Basalschicht verbleibt, der andere Teil jedoch die Basalschicht verlässt und zumstra-

tum corneumaufsteigt. Ẅahrend dieser Passage durchlaufen die Keratinozyten mehrere Zellteilungen

und einen Differenzierungsprozess, welcher sich auch histologisch verschiedenen Schichten zuord-

nen l̈asst. Dieser Prozess besteht in einer speziellen Form des Zelltodes, der Kornifizierung (auch

anoikis) genannt wird: Das Zytoplasma verliert Wasser, die Zellen verflachen sich und formen polari-

sierte Bindungen. Schließlich lösen sich diese Bindungen an der Oberfläche auf und die kornifizierten
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Keratinozyten verlieren den Kontakt. Es ist bekannt, dass die Struktur desstratum corneumeine wir-

kungsvolle Barriere f̈ur viele diffundierende Substanzen darstellt. Die Melanozyten befinden sich im

Normalfall an der Basalschicht. Krebsartig entartete Melanozyten können ein Melanom bilden.

Im Modell wird nur zwischen drei Zelltypen mit verschiedenen Eigenschaften unterschieden: Kerati-

nozyten, deren Stammzellen in der Basalschicht und Melanozyten. Mit verschiedenen Eigenschaften

der korrespondierenden Agenten können die Effekte verschiedener Parameter im Modell auf die Ko-

existenz von verschiedenen Zelltypen untersucht werden. Die kleinere betrachtete Systemgröße von

103 . . . 104 Zellen erm̈oglicht es indes, die Bewegungsgleichungen ohne weitere Näherungen zu be-

handeln. Im Modell wird eine moderierende (verlangsamende) Funktion von großen extrazellularen

Wasserkonzentrationen auf die Proliferationsrate der Keratinozyten und deren Stammzellen angenom-

men. Da erst durch den Aufbau eines schützendenstratum corneumder Verlust von Wasser durch die

Hautoberfl̈ache einged̈ammt wird, hat das Abtragen dieser Schicht im Modell die Folge einer prolife-

rativen Antwort. Diese wird z. B. auch in tape-stripping Experimenten beobachtet. Allerdings können

mit dem Modell keinerlei Aussagen̈uber die Art des moderierenden Faktors gemacht werden, denn

auch andere diffundierende Faktoren ẅurden zu formal identischen Modellgleichungen führen.

In der vorliegenden Arbeit wird auch der Einfluss einer variierenden Adhäsion von Melanozyten

zur Basalmembran auf das Wachstum vonin silico Melanomen untersucht. Diese Frage ist stark

verbunden mit dem Verḧaltnis der Proliferationsraten von Melanozyten und Keratinozyten im Modell.

Es stellt sich heraus, dass in einigen Bereichen des Parameterraumes stochastische Störungen einen

sehr großen Einfluss haben können, zum einen durch die Variation der Anfangsbedingungen für das

Tumorwachstum, zum anderen aber auch auf das Wachstum des Melanoms selbst.

Die Übertragbarkeit der Modellresultate auf reale Systeme hängt stark von der G̈ultigkeit der ver-

wendeten N̈aherungen und der Relevanz der untersuchten Mechanismen ab. Die Schwachpunkte

der verwendeten Modelle werden daher in der Arbeit diskutiert, um eine sinnvolle Einordnung zu

ermöglichen. F̈ur weitere Untersuchungen werden Verbesserungsvorschläge gemacht und einige ex-

perimentelle Signaturen hervorgehoben, welche in Experimenten falsifiziert werden können. Diese

Arbeit schließt mit einer kritischen Betrachtung der verwendeten numerischen Algorithmen, Modelle

und der Philosophie. Die selbst entwickelten bzw. selbst implementierten Algorithmen wurden ver-

schiedenen numerischen Tests unterworfen, was im Anhang ausführlicher erl̈autert wird.

In experimenteller Hinsicht unterstreichen die Resultate die Notwendigkeit eines klar definierten ex-

perimentellen Modellsystems, an welchem Modelle falsifiziert und unbekannte Modellparameter fi-

xiert werden k̈onnen. In theoretischer Hinsicht bergen agentenbasierte gitterfreie Methoden das Po-

tential, Artefakte von gitter- bzw. kontinuumsbasierten Ansätzen aufzudecken.



vi

Abstract

Different numerical approaches and algorithms arising in the context of modelling of cellular tissue

evolution are discussed in this thesis. Being suited in particular to off-lattice agent-based models, the

numerical tool of three-dimensional weighted kinetic and dynamic Delaunay triangulations is intro-

duced and discussed for its applicability to adjacency detection. As there exists no implementation

of a code that incorporates all necessary features for tissue modelling, algorithms for incremental

insertion or deletion of points in Delaunay triangulations and the restoration of the Delaunay prop-

erty for triangulations of moving point sets are introduced. In addition, the numerical solution of

reaction-diffusion equations and their connection to agent-based cell tissue simulations is discussed.

In order to demonstrate the applicability of the numerical algorithms, biological problems are studied

for different model systems:

For multicellular tumour spheroids, the weighted Delaunay triangulation provides a great advantage

for adjacency detection, but due to the large cell numbers the model used for the cell-cell interaction

has to be simplified to allow for a numerical solution. The agent-based model reproduces macroscopic

experimental signatures, but some parameters cannot be fixed with the data available. A much simpler,

but in key properties analogous, continuum model based on reaction-diffusion equations is likewise

capable of reproducing the experimental data. Both modelling approaches make differing predictions

on non-quantified experimental signatures.

In the case of the epidermis, a smaller system is considered which enables a more complete treatment

of the equations of motion. In particular, a control mechanism of cell proliferation is analysed. Simple

assumptions suffice to explain the flow equilibrium observed in the epidermis. In addition, the effect

of adhesion on the survival chances of cancerous cells is studied. For some regions in parameter

space, stochastic effects may completely alter the outcome.

The findings stress the need of establishing a defined experimental model to fix the unknown model

parameters and to rule out further models.
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Chapter 1

Motivation

1.1 The Benefit of Theoretical Models

Models are theoretical representations of phenomena.

This infers that they are formal representations of human beliefs.

Since – in contrast to the realistic system – theoretical models can be controlled completely, they

provide a favourable alternative to the realistic system for testing hypotheses.

In some parts of science one has the ability to establish experimental models: Simplified and well-

understood systems that are designed to resemble more complicated systems. In contrast, this thesis

will deal with theoretical models, in particular with certain mathematical models in biology.

Usually, a mathematical model is defined by a set of variables, that describe the state of the system, a

set of equations, that establish relations between the variables, and a set of parameters, that allow to

vary the relations between the variables in a discrete or continuous way.

There is some concensus about how mathematical models can be classified (compare subsection 2.1).

These classes of models are usually not disjoint:

• Deterministic modelsalways yield the same results if restarted with the same initial conditions,

whereasstochastic modelswill produce a different outcome.

• Dynamic modelsdo account for the full time evolution of a system, whereasstatic models

only account for a single state, for example the long-time limit.

• Technically, mathematical models can as well be divided intolinear models that use linear

differential equations to describe the evolution of their variables andnonlinear modelswhere

nonlinear equations are applied.

1
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In addition, models can be distinguished by the degree to which they use available information on

the system. Some systems for example consist of many constituents with similar properties, where

it is impossible and sometimes unnecessary to model every constituent separately. In other systems

however, the properties of individual constituents may be very important and accordingly, the degree

to which this is reflected in the model varies strongly. In some cases, models can be considerably

simplified by averaging over individual properties. For example, in thermodynamics one is not in-

terested in the specific momentum or position of every single particle, but rather in the evolution of

average quantities. For many systems in physics this model simplification has been very successful.

However, it must be said that fundamental prerequisites of this procedure – indistinguishability of

the constituents and large constituent numbers – are not always given in cell tissues, where to a first

approximation cells can be viewed as the smallest functional unit. In such systems, a too extensive

averaging of constituent properties may lead to the destruction of important properties. In the class

of agent-based models, where every constituent is represented individually, the main model simpli-

fication is the simplification of individual properties. The large amount of information that can be

produced by agent-based models is paid for by strong computational requirements. However, the

goal of understanding such systems is well worth the effort:

The current hypotheses on cancer evolution for example, point to a monoclonal origin of this disease

[1]. Especially in the initial stages of tumour growthin vivo, the individual properties of the tumour

cells play an important role, as in this stage the fate of a single cell may determine life or death.

In addition, models that solely represent cells by average quantities have sometimes difficulties to

explain simple processes such as cell sorting or cell movement. Here, agent-based models can be

used to reveal the shortcomings in the averaging approach and thereby contribute to an improvement

of over-simplifying models. For example, the kinetics of the cellular distribution is often modelled

by a mere diffusion approach, which is only valid in the limit of low cellular density and passive

cell motion. If the cell density is large, the elastic and adhesive cell properties dominate the cellular

kinetics.

A model is much easier controlled than the original experimental system. For example, in mathemat-

ical models, the experiments can be set up with much less effort and the system can be prepared to

defined initial states. The experimental error is under control and in addition, usually the solution is

obtained much faster than with real experiments. These advantages have led to a widespread appli-

cation of mathematical modelling in nearly all fields of natural sciences. Provided, the mathematical

model does not contain intrinsic logic errors or errors within its solution, significant progress can be

achieved in the following way:

• The most important results can be established by using a mathematical model that fails to
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predict experimental data correctly even though in its design all currently available knowledge

has been included. This outcome leads to refinement of theories and finally to progress, if an

improved theory is in agreement with the experiment. Thus, in this way a model can be used as

a tool to find human misconceptions. In on-going iterations of comparing simulation outcomes

to experimental results, a model is improved by including new underlying mechanisms. On

the contrary, a model that is in full agreement with the experiment does not contribute at all to

understanding the underlying mechanisms, since the knowledge that has been included in the

design process has not been falsified and no new information about underlying mechanisms has

been gained.

• Nevertheless, even in cases where mathematical models reproduce experimental data with suf-

ficient accuracy, further knowledge can be gained. In this stage, models can be used to establish

reasonable estimates of parameters. In addition, the model can be used as a tool to reveal errors

in experimental setups.

The existence of unexpected and nontrivial behaviour arising in complex systems made of simple

constituents is calledEmergence. This term is popularly circumscribed by “the whole lot is more

than just the sum of its constituents”. The evolution of cellular tissues is currently hardly understood.

It is not clear whether this can be attributed to the missing knowledge about its constituents or to

missing effects arising from Emergence.

1.2 Goals of this study

This work is aimed at constructing and improving mathematical models to understand the evolution

of cellular systems, in particular tissues:

1. Currently, to a large extent technical aspects determine the limits of modelling. Therefore,

special focus should be laid on the details of the used numerical approaches. This includes the

development of software for the solution of partial differential equations as well as for specific

large ordinary systems.

2. In order to have the possibility of revealing shortcomings of averaged modelling approaches,

agent-based models should be constructed. To go beyond the widely-used lattice approaches,

an off-lattice model is favoured. This would normally increase the computational complexity

by orders of magnitude. Therefore, the weighted Delaunay triangulation shall be discussed as

a tool to detect cellular adjacencies. This requires the implementation of such a triangulation
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as independent software that provides – unlike the present triangulation software [2] – efficient

functions for cellular movement, proliferation and cell death simultaneously.

3. The numerical methods must be tested and cross-checked to exclude numerical or conceptual

artifacts as far as possible.

4. For different cellular systems, mathematical models – based on established mechanisms – have

to be constructed. This includes the application of agent-based modelling to tumour growth as

well as a comparison to a corresponding continuum model. In addition, modelling approaches

to epidermal tissue shall be discussed.

1.3 Conventions& Notation

The Einstein sum convention will be generally used in this thesis, if confusion is not possible: Indices

occurring twice within a term are summed up automatically with the limits on the summation indices

arising from the context. Whenever confusion is possible, indices denoting Cartesian coordinates are

denoted by Greek letters, whereas indices denoting elements of other vectors will be given as Latin

letters.

If referenced as a whole, vectors are denoted in bold symbols, whereas vertices – if supplemented with

weights – will be denoted bold with hats. The nabla operator∇ is understood as a vector containing

the derivatives with respect to the Cartesian coordinates.

An overview of the used symbols and abbreviations can be found on page 167. Definitions in the text

will be denoted in bold letters.

CPU times given refer to a 1.533 GHz AMD Athlon processor with 1 GByte of RAM. The source

code has been compiled using the GNU g++ compiler (version 3.3) with compiler optimisation set.



Chapter 2

Introduction

2.1 Mathematical models in biology

Mathematical models can be classified as indicated in figure 2.1. Models where the state of the system

is entirely characterized by using continuous variables are termedcontinuum models. Usually, their

evolution is characterized by partial differential equations (termeddensity dynamics) or ordinary

differential equations (termedpopulation dynamics) that yield a continuous solution. In the other

group, the internal state of the system is at least partly characterized bydiscrete variables. If some

of these variables are discretised on a lattice, the model belongs to the class ofcellular automata1,

whereas inoff-lattice modelsnone of the state variables is discretised on a lattice. In the context

of tissue modelling, both of the latter sub-classes have representatives that base their dynamics on

the boundary of a cell (see e. g. the Potts model [5] for cellular automata or [6] for an off-lattice

counterpart) or on its centre (see e. g. regular cellular automata [7] or off-lattice models [8]), where

the centre-based models usually use less degrees of freedom.

A quite complete review of continuum models – both based on population or on density dynamics can

be found in [9, 10]. Among these, probably the study of population models has the longest history.

Inspired by observations in daily life, Leonardo of Pisa (called Fibonacci later on) as early as 1202 set

up a model to predict the population dynamics of rabbits. If one starts with a single immature pair of

rabbits, the number of rabbit pairs in his model is given by a sequence of numbers that later became

known as the Fibonacci sequence [9].

More realistic population models (incorporating the effect of growth saturation for limited resources)

have been set up in the 19th century. For example, the logistic growth equation was set up in 1838 by

1There exist other definitions of cellular automata [3, 4].

5
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centre−dynamics

discrete representation

centre−dynamics

boundary

dynamics

dynamics
boundary

tissue models

continuum representation

cellular
automata

models
off−lattice

dynamics
density

dynamics
population

Figure 2.1: Hierarchy of mathematical models in biology. Different classification schemes can be
applied and hybrid forms exist. Dashed lines indicate correspondence via simplifications, whereas
solid lines indicate subsets. Relative heights indicate varying degrees of computational complexity.
Representatives of the models indicated red are discussed in this thesis.
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Malthus

dN
dt

= rN(t)

[
1− N(t)

K

]
, (2.1)

whereN(t) is the number of individuals at timet, r is their proliferation rate, andK is the carrying

capacity of the particular environment. The above equation is widely used to make predictions for

population numbers.

In medicine, an additional growth law has found wide-spread application. It is given by the Gompertz

equation published in 1825 [11] as a demographic model

dN
dt

= αexp(−βt) N(t) = β ln

[
N∞

N(t)

]
N(t) , (2.2)

where (withN∞ = N0 exp{α/β}) the relative growth rate depends on time (or the population number)

itself. The Gompertz equation has the solution

NGOMP(t) = N0 exp

{
α

β

[
1− e−βt

]}
, (2.3)

which can be derived by separation of variables. Interestingly, the Gompertz model fits the growth

processes of many populations, individuals, and even the growth of many avascular tumours remark-

ably well [12, 13, 14, 15].

The population dynamics model (2.1) has been extended by Fisher [16] and Kolmogoroff [17] in 1937

to incorporate the spatial distribution by combining it with the diffusion equation

∂n
∂t

= D∇2n(x, t) + rn(x, t)
[
1− n(x, t)

K

]
, (2.4)

wheren(x, t) describes the population density, andD is a diffusion constant that effectively includes

the mobility2 of the individuals.

Since in the last century computational techniques have evolved significantly, nowadays more com-

plete models are in use. In some of these models, individuals are not described in an approximate

way as by continuum approaches, but as individual agents. However, in contrast to early approaches

such as the one by Fibonacci, they are capable of incorporating many interacting agents. In the late

1940s John von Neumann introduced the concept of cellular automata [18].

In [19] cellular automata are characterized as “(discrete) models of spatiotemporal dynamical sys-

tems, namely discrete in time, space and state space”. The most famous cellular automaton has been

2The term motility will be used as referring to active cell movement, whereas mobility does not result from individual

action. For specific cases, random motility may as well be described by the diffusion equation.
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introduced in 1970 by John Horton Conway with what was termed “Game of Life” [20]. This cellular

automaton produces complicated patterns emerging from simple interaction rules. Stephen Wolfram

[3] and Andreas Deutsch [4] give reviews of cellular automata. For cell tissues, the concept of cel-

lular automata can be applied to centre-based models, where every lattice site is assigned to a single

cell (see e. g. [7] for a model on tumour growth) or to boundary-based models, where a single cell

can be distributed on several lattice nodes [5]. For many practical applications however, it is quite

complicated to draw connections from physically measurable quantities to the parameters of cellular

automata. In addition, many cellular automata have to cope with lattice artifacts and the stochas-

tic counter-strategies often employed make this connection even more difficult. For this reason, the

off-lattice models have been developed, for an overview see e. g. [21]. In these models, the cells

do not reside on a lattice, but arbitrary coordinates are allowed. In addition, they do not interact by

automaton rules, but via physically motivated interactions. These models can be subdivided in centre-

based models (e. g. Voronoi tessellations [22, 23]) or models that describe the dynamics of the cell

membrane [6, 24] as well.

2.2 Construction of an off-lattice model

For off-lattice agent-based models of cellular tissue, the calculation of cell-cell interactions will con-

tribute significantly to the computational time. A simple problem that may arise within this context is

the calculation of a measure for contact area.

A reasonable estimate of this quantity may for example be given by the circle uniquely defined by

the intersection of two non-identical spheres. If one uses no means of accelerating the adjacency

detection amongst a set ofN spheres, the corresponding calculation time will scale quadratically

with the number of spheres. If the inter-spherical adjacency topology however is already known, for

every sphere only a subset of other spheres has to be tested. The Delaunay triangulation is a tool

well-suited for calculating and storing the adjacency relations within a set of spheres (see figure 2.2).

Here, the Delaunay triangulation will be used as a numerical tool that has the potential of aiding in

decreasing the runtime of off-lattice agent-based simulations. There exist efficient libraries provid-

ing support for two-dimensional Delaunay triangulations. In addition, there are libraries constructing

three-dimensional Delaunay triangulations for a given set of spheres [2]. Though these libraries sup-

port insertion and removal of spheres (also termeddynamic) in the system, the use of these functions

for moving spheres [25] is inefficient [26] (compare appendix A.1). Within the context of collision

detection [27], more efficient routines are applied to a set of moving spheres, but these algorithms do

not support the removal of spheres (purelykinetic algorithms). This however is an essential property
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Figure 2.2: Numerical advantage of the Delaunay triangulation for the detection of adjacencies.
The naive calculation time of sphere-sphere contact (black) would scale quadratically in time. If a
valid Delaunay triangulation is provided, the inter-spherical contacts can be calculated in linear and
substantially shorter times (red). If one considers more thanO

(
103

)
spheres, then even time neces-

sary for Delaunay construction (green) is shorter than naive calculation of inter-spherical contact.
However, as during the time-course of agent-based simulations the cell positions will change in a
continuous way, the intercellular adjacencies will do likewise. The time to restore the Delaunay
property in a triangulation in which the spheres have moved by 10% of their average distance is
given in blue. Therefore, the calculation time to maintain a kinetic Delaunay triangulation and
compute the intercellular contact surfaces (blue and red) is still orders of magnitude smaller than
in the naive approach if more thanO

(
103

)
spheres are considered.
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necessary for the modelling of cellular tissues. Since currently no library simultaneously supporting

insertion, removal and movement of spheres is provided [25], a numerical implementation of such

a triangulation that is suitable for adjacency detection [26] will be described within this thesis. In

the following section it will be discussed, how to create and maintain Delaunay triangulations. In

addition, further advantages of the Delaunay triangulation will be illuminated.

The remaining sections in this introducing chapter will describe further necessary ingredients of an

intrinsically consistent modelling approach towards cellular tissues.

2.3 Kinetic and Dynamic Delaunay triangulations

2.3.1 Definitions

As Delaunay triangulations are – at least for their two-dimensional representation – a well covered

topic in the literature, the reader is referred to textbooks such as e. g. [28] that cover all fundamental

definitions and properties of Delaunay triangulations. In this chapter, only the definitions necessary

for this thesis will be given.

In accordance with the notation in the literature [29, 30] the termvertex (or point) denotes a posi-

tion in d-dimensional space. Furthermore, the termweighted vertexdenotes a point supplemented

with a weight. An-simplex in Rd with n ≤ d is the convex hull of a setT of n + 1 affinely inde-

pendent vertices, which reduces in the three-dimensional case to tetrahedra (3-simplices), triangles

(2-simplices), edges (1-simplices) and vertices (0-simplices). Then, everyn-simplex has a uniquely

definedn-circumsphere.

These (n < d)-simplicesσU – formed by the convex hull of a subsetU ⊂ T – will be calledfacesof T.

Since in this section a three-dimensional realisation will be discussed, the corresponding 3-simplices

will be shortly denoted by the termsimplex.

A collection of simplicesK is called asimplicial complex if [29]:

• The faces of every simplex inK are also inK (the set is closed),

• If σT ∈ K andσT′ ∈ K , thenσT ∩ σT′ = σT∩T′. (The intersection of two simplices is at most a

face of both, the simplices are “disjoint”.)

In numerical calculations with kinetic vertices the above criterion can be destroyed: A vertex might

move inside another simplex thus yielding twon-simplices whose intersection is again ann-simplex.

This situation will be referred to as aninvalid triangulation . On the contrary, a valid triangulation is

defined as follows [29]:
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If S is a finite set of points inRd, then a simplicial complexK is called avalid triangulation of S if

• each vertex ofK is in S,

• the underlying space ofK is conv(S).

The number of simplices containing a particular vertex as endpoint will be denoted by thedegreeof

this vertex in a triangulation. Furthermore, the terms tetrahedralization and triangulation will be used

synonymously in three dimensions.

2.3.2 Elementary Topological Transformations

To an existing triangulation inR3 several elementary topological transformations – also calledflips –

can be applied, of which a detailed discussion can be found in e. g. [29, 31]. These transformations

do not change the position of vertices. In contrast, they change the triangulation topology. They rely

on Radon’s theorem [29, 32] (see figure 2.3 for a three-dimensional illustration):

Let X be a set ofd + 2 points inRd. Then a partitionX = X1∪ X2 with X1∩ X2 = ∅ exists

such that conv(X1) ∩ conv(X2) , ∅.

The radon partition is unique if the setX is in general position– meaning that every subset ofX with

at mostd + 1 elements is affinely independent. In three dimensions this simply means that

• no two points are identical,

• no three points lie on a common line,

• no four points lie on a common plane.

In this thesis however, this definition of “general position” is extended by the further property that no

d + 1 points may lie on a common sphere [30, 33].

From the Radon partition inR3 one finds that there are four possible ways of triangulating five points

in three dimensions, two for every partition in figure 2.3. The elementary flips transform between

these possible triangulations without changing the vertex positions.

For the case of figure 2.3 left panel the two possible flips are shown in figure 2.4. The flip changing

the triangulation from 1 to 4 simplices corresponds to adding a vertex to an existing triangulation.

Note however, that in practice the inverse transformation may not always be applicable, since the

configuration of one vertex (E in figure 2.4) being the endpoint of exactly four simplices (as is the
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Figure 2.3: Illustration of the Radon partition in three dimensions. There exist two possible parti-
tions into two sets (marked blue and red) of the 5 pointsA, B,C, D, E in three dimensions such that
their convex hulls (marked with dashed lines) intersect.Left: In (a) the pointE (blue) lies within
the simplex formed by (A, B,C, D). Right: In (b) none of the vertices lies within the simplex
formed by the other ones.

4 to 1

1 to 4

A

B
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D

E

(a) (b)

D
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Figure 2.4: Possible triangulation of five points in three dimensions (insertion case).
The vertex E has been marked blue and edges that are invisible from all directions
have been drawn with dashed lines. In the case (a) one has exactly four simplices:
(A, B,C, E), (A, B, D, E), (A,C, D, E), (B,C, D, E), whereas in picture (b) the unconnected ver-
tex E lies within the simplex (A, B,C, D). Switching between the two configuration corresponds
to adding (1→ 4) the vertexE to an existing triangulation or deleting it (4→ 1), respectively.
Note that for these operations to be possible, the pointE must lie within the simplex (A, B,C, D).
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case in figure 2.4 left panel) is rarely ever present in a triangulation. In addition, in three dimensions

there exist polyhedra (for example Schönhardts polyhedron [34]) that do not admit a decomposition

into simplices having only the polyhedral boundary points as endpoints. Additional points (called

Steiner points) need to be introduced to obtain a tetrahedralization of these polyhedra [35]. These

problems complicate the deletion of vertices from three-dimensional triangulations [36].

The second partition in figure 2.3 right panel requires a more careful evaluation (see figure 2.5). The

(a) (b)

A B C

D

E

2 to 3

3 to 2
A B C

D

E

Figure 2.5: Possible triangulation of five points in three dimensions (connection case). In (a) there
are two simplices: (A, B,C, D), (A, B,C, E), sharing the common triangle (A, B,C), whereas pic-
ture (b) consists of three simplices (A, B, D, E), (B,C, D, E), (C, A, D, E). The simplices have
been taken apart for clarity and the dotted lines have been drawn to connect the identical points
(drawn in like colours). Edges invisible from all directions have been drawn with dashed lines.
Note that the flips can only be performed, if the polyhedron (A, B,C, D, E) is convex, since other-
wise the flips will result in overlaps with additional neighbouring simplices (not shown here).

flip 2 → 3 replaces two simplices by three simplices and thereby automatically creates a connection

between previously unconnected vertices. In adjacency detection, this corresponds to establishing

a neighbourship relation. The flip 3→ 2 reverses the operation. Note that these flips can only be

performed if the polyhedron formed by the five points inR3 is convex, otherwise the operation would

yield overlapping simplices in the triangulation. The convexity of (A, B,C, D, E) in figure 2.5 can

be tested by checking if for every edgeA, B andB,C andC, A there exists a hyperplane which has

the remaining three points (D, E, A/B/C) on the same side [29, 30, 37], which becomes evident in

figure 2.3 right panel. In the following, the different flip operations will be shortly denoted by the

transformation operatorsF14, F41, F23, andF32.
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2.3.3 The Delaunay Criterion

Every tetrahedron (v1, v2, v3, v4) in R3 has a uniquely defined circumsphere, if the four verticesvi are

in general position. Then, the position and radius of the circumsphere can be derived from the four

sphere equations

(m− vi)
2 = R2

m i = 1, . . . , 4 , (2.5)

wherem defines the position andRm defines the radius of the sphere (see figure 2.7 left panel). This

gives rise to the central definition of this section:

TheDelaunay triangulation is a triangulation where all the simplices satisfy theEmpty-

Circumsphere-Criterion , that no vertex of the triangulation may lie inside the circum-

spheres of the triangulation simplices.

Thus, the Delaunay triangulation is uniquely defined if the vertices fulfil the extended general position

assumption [33] (see figure 2.6).

Figure 2.6: Example of a two-dimensional Delaunay triangulation. Vertices (red) are connected
to simplices that fulfil the Delaunay criterion. In this example, there are two locations where
a different triangulation (dashed lines) would also fulfil the Delaunay criterion, as the extended
general position assumption is not fulfilled: In these locations, four points reside on the same
circle (green).
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The Delaunay criterion can be extended towards a more general concept: By extending the Euclidean

distance measure to vertices with weights, one defines the orthogonal distance betweenx̂ = (x, ωx)

and ŷ = (y, ωy) as

π(x̂, ŷ) = (x − y)2 − ωx − ωy , (2.6)

which sacrifices positive definiteness. For positive weightsωx > 0 these vertices can be associ-

ated with balls situated atx having the radiusRx =
√
ωx. Two weighted verticeŝx and ŷ are

then calledorthogonal if π(x̂, ŷ) = 0 in equation (2.6). Consequently, theorthosphere of a set

of n weighted vertices is defined as the set of all weighted points being orthogonal to alln ver-

tices. For example, in three dimensions the orthosphere (m⊥,R2
m⊥) of the four weighted vertices

v̂1 = (v1,R2
1), v̂2 = (v2,R2

2), v̂3 = (v3,R2
3), v̂4 = (v4,R2

4) is defined by the four equations

(m⊥ − vi)
2 = R2

m⊥ + R2
i . (2.7)

Naturally, for equal weightsRi = Rsphere, this definition reduces to the normal circumsphere criterion

(2.5) with R2
m = R2

m⊥ + R2
sphere. The naming “orthogonal” results from the fact that the orthosphere

intersects the spheres associated with the vertices perpendicularly (see figure 2.7 right panel). Conse-

quently, the extended criterion reads:

Theregular Delaunay triangulation is a triangulation where all the simplices satisfy the

Empty-Orthosphere-Criterion , implying that no weighted vertex of the triangulation

may lie inside the orthospheres of the triangulation simplices.

The simplest method to determine whether a weighted vertexV lies outside or inside the circum-

sphere/orthosphere of a simplex (A, B,C, D) is to solve the associated four sphere equations (2.5) or

(2.7) in the weighted case. However, this problem can be solved more efficiently by adding one more

dimension [27, 30, 32, 38]. In this ansatz, the coordinates inRn are projected onto a paraboloid in

Rn+1 via

Â = (A;ωA) = (A1, . . . ,An;ωA)→ A+ =

A1, . . . ,An,
∑

i

A2
i − ωA

 . (2.8)

In the three-dimensional case, the four pointsA+, B+,C+, D+ thus define a hyperplane inR4. If E is

within the circumsphere of (A, B,C, D), thenE+ will be below this hyperplane inR4 and above other-

wise. Consequently, the in-circumsphere-criterion inR3 reduces to a simple orientation computation

in R4, as is illustrated for a one-dimensional example in figure 2.8.
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Figure 2.7: Two-dimensional illustration of circumspheres and orthospheres.Left: Circumsphere
(dashed blue) of a 2-simplex inR2. Right: Orthosphere (dashed blue) resulting from the same
vertices, supplemented with different positive weightsωi = R2

i (green circles). The orthosphere
intersects perpendicularly with the vertex spheres.

By virtue of this lifting transformation one finds [27]

in ortho sphere[(̂A, B̂, Ĉ, D̂), Ê] = oriented(A+, B+,C+, D+, E+)

= sign

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ax Ay Az A2
x + A2

y + A2
z − ωA 1

Bx By Bz B2
x + B2

y + B2
z − ωB 1

Cx Cy Cz C2
x + C2

y + C2
z − ωC 1

Dx Dy Dz D2
x + D2

y + D2
z − ωD 1

Ex Ey Ez E2
x + E2

y + E2
z − ωE 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.9)

= sign

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ax − Ex Ay − Ey Az− Ez (A2
x + A2

y + A2
z − ωA) − (E2

x + E2
y + E2

z − ωE)

Bx − Ex By − Ey Bz− Ez (B2
x + B2

y + B2
z − ωB) − (E2

x + E2
y + E2

z − ωE)

Cx − Ex Cy − Ey Cz− Ez (C2
x + C2

y + C2
z − ωC) − (E2

x + E2
y + E2

z − ωE)

Dx − Ex Dy − Ey Dz− Ez (D2
x + D2

y + D2
z − ωD) − (E2

x + E2
y + E2

z − ωE)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where a positive sign is to be taken as an affirmative answer, if the simplex (A, B,C, D) is positively

oriented in three dimensions.

Obviously, for numerical implementations, the error induced by numerical inaccuracy will become

important if the determinants in (2.9) are close to zero. Therefore, the exact arithmetics as proposed

by [39] had been extended to a form supporting weights [40], which has been used within this thesis

(see appendix A).

The lifting transformation therefore gives rise to a different viewpoint of Delaunay triangulations: An

n-dimensional Delaunay triangulation is determined by the boundary of the convex hull of the lifted
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Figure 2.8: Illustration of the lifting transformation in one dimension.Left: Reduction of the
insphere criterion in one spatial dimension to an orientation computation in two dimensions. All
points are projected onto a paraboloid in two dimensions. Then, the question whetherVi (green
border-less points) is within the circumsphere (brown line) of the (P1,P2) (red border-less points)
is equivalent to asking whether (P+

1 ,P
+
2 ,V

+
i ) is positively oriented (blue triangles).Right: For

power-weighted triangulations, the weights (indicated by the coloured bars on thex-axis) shift the
vertices off the paraboloid by the squared radius (exemplified for the vertexP1 only). This example
demonstrates that a weighted vertex may lie within the normal circumsphere of a simplex, but not
within its orthosphere. For this example, neitherV1 nor V2 lie within the weighted circumsphere
of (P1,P2).



18 CHAPTER 2. INTRODUCTION

vertices inn + 1 dimensions.

Within this thesis, the following definition of adjacency will be used: Two vertices are calledadjacent

if they are endpoints of the same simplex (i. e., if they are connected in the Delaunay triangulation)

and two simplices are adjacent if they share a common face. Natural adjacency for a set of spheres

is defined by the weighted Delaunay triangulation and the involved vertices/simplices will be called

(mutual)neighbours.

2.3.4 Implementation and Data Structure

Unlike in two dimensions, where a constant number of vertices implies a constant number of simplices

[28] – regardless of their relative position, in three-dimensional kinetic triangulations the number of

simplices will change even for constant numbers of moving vertices. Therefore, kinetic triangulations

in three dimensions will require efficient support for insertion and deletion of simplices. Furthermore,

since in addition the number of vertices is allowed to change for dynamic triangulations, the same

holds true for the vertices. A list provides efficient access for both operations.

The main elements of a vertex are a position and a weight

V̂ = (double x,double y,double z,doubleω) . (2.10)

Within the numerical implementation, for efficiency reasons a vertex as well contains vectors of ad-

jacent neighbour vertices and adjacent simplices, that are dynamically updated. Since the informa-

tion of the triangulation is completely stored within the vertices, it would normally suffice to store

the simplices as pointers on four vertices. However, the walking strategy employed for point loca-

tion (compare subsection 2.3.7) requires for efficient access that simplex-simplex-adjacency is stored

within the simplices as well [41]. Therefore, in this implementation a simplex in addition contains

information on its neighbours

S =
(
V̂

ptr
1 , V̂

ptr
2 , V̂

ptr
3 , V̂

ptr
4 ,Sptr

1,opp,Sptr
2,opp,Sptr

3,opp,Sptr
4,opp

)
, (2.11)

whereSptr
i,opp denotes a pointer to the adjacent simplex opposite to vertexV̂ i. Furthermore, for effi-

ciency the simplices contain a placeholder for a point denoting its weighted centre and a set of flags

denoting the Delaunay status of its faces to avoid superfluous calculations of the Delaunay property.

Note, that in order to avoid many orientation calculations, the used implementation automatically

constructs its simplices in a positively-oriented way.

The triangulation has been implemented in the object-oriented programming language C++ [42] as

an independent class that is capable of triangulating balls. These balls can be connected with in

principle arbitrary objects, which opens a wide range of applications: The triangulation may be used
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for adjacency/collision detection of cells, grains, atoms or other objects that can be approximated

by a spherical shape. In the context of this thesis, these objects are biological cells of an off-lattice

agent-based simulation.

In addition, the class provides test functions, calculations of (weighted) Voronoi volumes and contact

surfaces, etc.

2.3.5 Delaunay Maintenance for kinetic vertices

Within the context of adjacency detection between a number of moving agents, any triangulation will

have to cope with the fact that adjacencies may change. Reconstruction of the triangulation using the

incremental construction (see subsection 2.3.6) would be a method with a poor algorithmic scaling.

If only a small subset of vertices is moving, a simple method handling them would be to delete

them at their old position and to perform an insertion at the new position [25, 43], which necessarily

requires insertion (subsection 2.3.6) and deletion (subsection 2.3.8) to be implemented first. Since

these operations would involve too many simplices, a more efficient approach has been chosen here:

Evidently, in the case of moving vertices the Delaunay criterion may be violated, i. e., after the vertices

have moved one may end up with a triangulation where some vertices reside within the (weighted)

circumspheres of the simplices. Even worse, if the vertices move too far, e. g. if one vertex moves

inside another simplex, the triangulation will become invalid (contain overlapping simplices), com-

pare subsection 2.3.1 and figure 2.9 right panel. In the present implementation, this must be avoided

by either computing a safe maximum stepsize [26] (see subsection 2.3.8) or by simply keeping the

displacements safely small. Within this thesis, the first approach has been chosen.

Therefore, the problem to be solved is that after vertex movement one is left with a valid triangulation

which possibly violates the Delaunay criterion.

Reconstructing the whole triangulation is usually not an option for large data sets. The elementary

topological transformations in subsection 2.3.2 however can be exploited to restore the Delaunay

criterion. Since neither vertices will be added nor deleted in this subsection it is evident that the flips

F14 andF41 are not necessary. This however will be different for for weighted triangulations, as vertex

movement might lead to trivial (unconnected) vertices that are not endpoints to any simplices. In

this thesis, such cases are not considered, since they correspond to physically unrealisable situations

anyway: If the sphere associated with a vertex is not completely covered by the spheres of other

vertices (realistic case), the vertex will be connected in the triangulation [27]. If only two spheres

are involved, this would correspond to a small sphere that is completely covered by a larger one.

Consequently, the transformations 2→ 3 and 3→ 2 will suffice to transform the given triangulation



20 CHAPTER 2. INTRODUCTION

into a Delaunay triangulation [27, 29, 30]. Note that the application has to ensure that the vertex

trajectories satisfy the above conditions (for a possible solution see subsection 2.5.2). With a glance

at figure 2.5 one can see that indeedF23 effectively creates a neighbourship connection, whereas the

flip F32 destroys it. Therefore, routines have been implemented to check either the complete list of

simplices or only a small subset for violations of the Delaunay criterion. The simple data structure

enables a convenient calculation of the flip criteria in three dimensions. The main advantage of the

flip algorithm is that it is – in average – linear in the number of simplices, which is linear with the

number of vertices in most practical applications. The list of simplices is iterated through to check

every simplex (calledactive simplexin this context) for flipping-possibilities with its neighbours (the

passive simplices). Thus, for every simplexS in the list the following tests (in the given order) are

performed

1. The operationF23 is performed onS and its passive neighbour simplexNi (i = 1,2,3,4) if

• the neighbour pair (S,Ni) violates the Delaunay criterion, i. e., the opposing vertex of the

neighbourNi lies within the circumsphere ofS (andvice versa3) and

• the five points in the union of the two simplices lie on the boundary of the convex hull of

the associated polyhedron.

The first condition implies the invalidation of the Delaunay criterion, and the second condition

is necessary to ensure for convexity of the simplex pair. Technically, it suffices in the last

criterion to check whether for all edges of the common triangle [without loss of generality

(SA,SB,SC)] there exists a hyperplane containing the edge that has the simplices (SA,SB,SC,SD)

and (SA,SB,SC, Ni
opp) on the same side [29, 30] (see figure 2.9 left panel).

2. If no flip F23 has been performed, the algorithm checks the neighbouring simplex triples for

F32. The operationF32 is performed onS and its neighboursNi , N j if

• the simplicesNi andNj are mutual neighbours and

• the neighbour pairs (S,Ni), (S,N j) and (Ni ,N j) mutually4 violate the Delaunay criterion.

Note that in three dimension the first condition already ensures for convexity of the set of five

points.

3Note that Delaunay invalidity of (S,Ni) automatically implies Delaunay invalidity of (Ni ,S), since an algebraically

equivalent determinant has to be computed.
4Due to algebraic equivalence it suffices to calculate the violation of the Delaunay criterion just once.
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3. If a flip operation has been performed, the new simplices must be inserted at the end of the list

of simplices to be checked again. In contrast, if neither the operationsF23 norF32 have been

performed, it could either be the case that the simplexS is Delaunay-valid (which is the normal

case) or that aF23 operation has been impossible due to a non-convex point configuration. At

this stage, such non-convex configurations are detected and following a practitioners approach

the corresponding active simplex is spliced to the end of the list.

The algorithm terminates as the end of the list of simplices is reached. Afterwards either all simplices

fulfil the Delaunay property or in rare cases it is possible that the algorithm ends up with a non-

flippable configuration. In this case, the Delaunay property is recovered by complete reconstruction.

Figure 2.9: Three-dimensional non-flippable and invalid triangulations of five points. Edges that
are invisible from all directions have been drawn with dashed lines.Left: For one edge (green)
of the common triangle (blue) there exists no hyperplane having both simplices on the same side.
Therefore, the configuration cannot be transformed by flips without changing the occupied volume:
If an F23 operation would be performed, overlaps with neighbouring simplices (not shown here)
would result.Right: If for kinetic vertices the step-size is not limited, a vertex (blue) may move
into another simplex. As in the data structure simplices are realised as references on vertices, this
results in an invalid triangulation (dashed lines).

Recall however, that for these flips to be possible, all simplices must be disjoint (the intersection of

two simplices may at most be a triangle), i. e., the triangulation must be valid (compare figure 2.9).

The flips as introduced here however only relate to valid triangulations and do not change the volume

occupied by the simplices. Therefore, they cannot be used to recover from such a situation [27]. By

computing a maximum stepsize for the vertex kinetics, such situations can be avoided (compare sub-

section 2.3.8). It is the task of the application using the module to ensure for that. Note that – though

internally all vertex movements are performed in an asynchronous manner – the implementation sup-

ports a synchronous update of vertex movements for external applications.
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2.3.6 Incremental Delaunay Construction

In Delaunay triangulations the insertion of one new vertex can change the whole triangulation, but

this only holds true for some extreme vertex configurations [28]. In practice, the effect of adding a

new vertex to a Delaunay triangulation will nearly always be local.

A valid Delaunay triangulation withn vertices can be supplemented with a new vertex lying within

its convex hull by the following algorithm (see figure 2.10):

1: Identify all invalid simplices in the triangulation.

{These contain the new vertex within their circumsphere.}
2: Collect the external faces of the invalid simplices.

{Those are the triangles facing valid simplices.}
3: Replace the invalid simplices by new ones formed via combining the external faces with the new

vertex.

Evidently, the validity of the simplices not contained in the list defined by step 1 of the algorithm

will not be harmed, as only one vertex is added. In addition, the circumspheres (orthospheres) of the

created simplices (third step) cannot contain vertices of the external faces, since these lie exactly on

the orthospheres. Note however, that for weighted triangulations vertices might be disconnected by

this procedure, if they are not part of the external faces but belong to the list of invalid simplices.

Here, such cases can be detected and the vertex can be rejected, before any changes are performed.

In addition, for weighted triangulations the simplex containing the new vertex within its convex hull

is not necessarily invalid, since its orthosphere does not generally contain the complete simplex,

compare figure 2.7. If no orthosphere contains the new vertex, then this case corresponds to the case

of a vertex unconnected to the triangulation – the vertex is trivial and would therefore be unconnected

in the triangulation.

In the case of vertex acceptance the result of this procedure is a Delaunay triangulation withn + 1

vertices. Note that for the above-mentioned extreme cases the list of invalid simplices would contain

all simplices of the triangulation.

This incremental algorithm is calledBowyer-Watson Algorithm [44, 45]. Once all the invalid sim-

plices have been found, its computational cost is very low (linear with the total number of invalid

simplices). At first, it actually suffices to find the one simplex which contains the new vertex within

its convex hull – the remaining simplices can be found by iteratively checking all neighbours for

violating the Delaunay criterion with the new vertex (compare figure 2.10).

The algorithm shown in figure 2.10 is slightly different from theGreen-Sibson Algorithm [44],

which needs the simplex containing the new vertex as an input. Then the elementary topological
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Figure 2.10: Two-dimensional illustration of the Bowyer-Watson algorithm. In this example, a
new vertex (large red point) is inserted into an existing triangulation (not all simplices are shown).
Most of the simplices remain valid (shaded region), but 3 simplices (dashed lines) contain the new
vertex within their circumspheres (dotted lines). These are replaced by 5 new simplices (solid
lines) formed by the new vertex and the external faces (lines in two dimensions). The resulting
triangulation automatically fulfils the Delaunay criterion.

transformationF14 (see figure 2.4) is performed with this simplex and the resulting triangulation (that

possibly violates the Delaunay criterion) is transformed to a Delaunay triangulation by performing

F23 andF32 flips (figure 2.5), until all simplices fulfil the Delaunay property (see subsection 2.3.5).

These construction algorithms differ from the face expansion approach [40], where the triangulation

is constructed starting from a single vertex by expanding the faces of the previous triangulation with

unconnected vertices. The face expansion ansatz has a non-favourable scaling, but displays a fast

performance for small vertex numbers.

The initial triangulation can be represented by an artificial large simplex which contains all the data

to be triangulated within its convex hull. Therefore, the convex hull of the points to be triangulated is

contained within the artificial simplex, i. e., the boundary of the convex hull of the total triangulation

is static. In the framework of kinetic proximity structures this has the advantage that one does not

have the problem of maintaining the convex hull of moving points. The initial simplex must therefore

be large enough to contain the data within its insphere throughout the full time evolution of the

simulation5.

5One choice for such an initial simplex is a CH4 configuration, where the carbon atom resides at the origin and the

four hydrogen atoms are the endpoints of the artificial simplex.
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2.3.7 Localisation of Simplices

The incremental insertion algorithm requires an initial simplex that contains the new vertex within its

(weighted) circumsphere. Such a simplex can be found by locating the simplex that contains the new

vertex within its convex hull. Many implementations of Delaunay triangulations perform a walk in

the triangulation, for an overview of different walking strategies see e. g. [46]. Note that points can

be located by using the triangulation construction history (e. g. using the so-called history dag [47] or

Delaunay tree [44]) as well. However, within this thesis kinetic triangulations will be used, where the

length of a history stack could not be controlled.

Therefore, a stochastic visibility walk [46] to locate a simplex containing a point will be discussed.

Starting with an arbitrary initial simplexA and a new vertex̂v to be inserted in the triangulation, in

the normal visibility walk one of the four neighbour simplices ofA is chosen using the following

criterion:

1: for all four verticesâi=1,2,3,4 of the simplexA check with the new vertex̂v:

Are the verticeŝai andv̂ on different sides of the plane defined by the other three verticesâ j,i?

{An equivalent question is: Are the vertices mutually invisible if the plane is non-transparent?}
2: if yesthen

3: Jump to the simplex opposite toai.

4: end if

5: If no neighbour simplex is found, the vertexv is contained within the simplexA {and the destina-

tion is thus reached} or the walk has left the triangulation.

For a valid triangulation, the walk can only leave the triangulation if the new vertex lies outside the

convex hull, which has been excluded by assumption.

Obviously, the algorithm can take different pathways (see figure 2.11) since there may be more than

one neighbour fulfilling the criterion. Which path is actually chosen, depends on the order of testing

the four vertices of the simplices. Due to numerical roundoff errors the normal visibility walk –

that does not contain any stochastic elements – may loop when triangulating regular lattices (such as

cubic, . . . ) that violate the general position assumption. Such situations can be avoided by using the

stochastic visibility walk, where the order of the vertices to be checked is randomised. The stochastic

visibility walk terminates with unit probability [46].

The complexity of the walk is directly proportional to the length of the path – measured in units of

traversed simplices. Forn uniformly distributed vertices for example, the average total number of

simplices will grow linearly (n) with the number of vertices, whereas one can expect the average

distance between two arbitrarily selected simplices to grow liken1/3. Once the invalid simplex has
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been found, the average remaining complexity for the incremental insertion will be in average constant

(in n). Therefore, one can expect the overall theoretical complexity to behave likeαn4/3 + βn for

uniformly distributed points (compare appendix A.1) and in higher dimensionsd asαn1+1/d + βn [26,

48]. The algorithms with the best known scaling have an expected complexity ofO (
n logn

)
[29, 33],
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Figure 2.11: Two-dimensional illustration of the stochastic visibility walk. Not all simplices are
shown. Starting from the hatched initial simplex, the algorithm finds a way towards the invalid
cross-hatched simplex that contains the new vertex (large point). As indicated by the smaller
coloured points, the algorithm may take different pathways towards its destination, if the stochastic
version is chosen. The time necessary for the walk algorithm is proportional to the number of
traversed simplices.

but for the purposes of kinetic triangulations the incremental construction algorithm is needed just

once and therefore its actual performance is not dominantly important.

Obviously, the efficiency of the algorithm strongly depends on a good choice of the starting simplex.

The method can therefore be improved by checking whether the new vertex lies within a certain

subregion which means preprocessing, or it can be sped up by initially using larger stepsizes, e. g. by

using several triangulations of subsets of vertices [49]. Alternatively, one can choose the closest vertex

out of a random subset of the triangulation to find a good starting simplex [50]. The last method does

not require the maintenance of an additional triangulation in the case of kinetic vertices. In many

practical simulations, some neighbourship relations may already be known when building the initial

triangulation. The implementation in this thesis expects the vertices to be included in order, such that
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successive vertices are very close to each other in the final triangulation and therefore chooses the

starting simplex in the walk algorithm as being the last simplex created if no other guess is given.

Especially for processes as cell proliferation, the choice of a starting simplex is evident: New cells

can be created by cell division, which corresponds to the insertion of a new vertex close to an existing

one. Consequently, one always has a nearly perfect guess for the starting simplex in these cases.

2.3.8 Incremental Vertex deletion

In many problems (e. g. mesh generation) the deletion of vertices from a Delaunay triangulation is

not of great importance, since there is no great advantage other than a negligible gain in efficiency.

However, if the triangulation is used for example for proximity structures or data interpolation, vertex

deletion may become important. Within the context of this thesis, vertex deletion corresponds to the

removal of agents from the system – usually as a consequence of cell death.

Several algorithms have been developed to manage the deletion of vertices in two dimensions

[51, 52, 53]. There exist some fundamental differences between the two-dimensional and the higher-

dimensional case. Simply removing a vertex together with its incident simplices leaves a star-shaped

hole in the triangulation, which is not necessarily convex. Unlike in the two-dimensional case, where

a star-shaped polygon always admits a triangulation which can be transformed by flips into the De-

launay triangulation [51, 52] in three dimensions a general star-shaped polyhedron may not admit a

tetrahedralization without insertion of artificial points. The simplest example for such a polyhedron

is Scḧonhardt’s polyhedron [34], reported among others in [36, 54]. However, it has been proven in

[55] that the holes emerging in unconstrained Delaunay triangulations via removal of vertices with

their incident simplices will always possess a tetrahedralization6.

Another approach for deletion is given in [56], where the triangulation construction history is used to

reconstruct the triangulation without the corresponding vertex. For the same reasoning as before, this

approach is not favourable for kinetic triangulations.

Deletion via Vertex-Merging

The basic idea of this approach is to move the corresponding vertex towards its nearest neighbour

in several steps, each followed by a sequence of flipsF23 andF32 restoring the Delaunay property,

until the simplices between the two vertices are very flat and can be removed from the triangulation

6This does not generally hold true for constrained Delaunay triangulations [36], i. e., triangulations where the boundary

of the convex hull is fixed to a given (not necessarily convex) shape.
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without harming its validity [26]. Thus, the problem of vertex deletion is mapped to the problem of

Delaunay maintenance for kinetic vertices. Figure 2.12 illustrates the idea of the algorithm.

Figure 2.12: Two-dimensional illustration of vertex deletion from a Delaunay triangulation (not
all simplices are shown).Left: The vertex to be deleted (green point) is moved in several steps
followed by flips restoring the Delaunay property towards its closest neighbour (blue point), until
the inner simplices (shaded region) can be safely deleted. The area within which the green vertex
can move without invalidating the triangulation is marked in light grey.Right: Afterwards, the
two vertices are simply merged and the remaining opposing simplices are connected as neighbours
(green dashed lines). This corresponds to the last step and therefore the Delaunay criterion is
finally restored by using flips.

The main questions to be answered all reduce to the problem of the stepsize. How far can a vertex

vi be moved into a certain direction∆ without invalidating the triangulation, i. e., without creating

overlapping simplices? Such overlapping simplices can be created if the vertexvi penetrates one of

the planes defined by the opposite faces of its incident simplices (compare figure 2.12 left panel).

If overlapping simplices occur, the orientation of at least one of the simplices incident tovi will

change. Consequently, one can derive a stepsize criterion by demanding that the orientation of the

simplices incident tovi does not change sign. One can define the pseudo-orientation of a simplex

Si = (A(i), B(i),C(i), D(i)) as follows:

V(i)
0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A(i)
x A(i)

y A(i)
z 1

B(i)
x B(i)

y B(i)
z 1

C(i)
x C(i)

y C(i)
z 1

D(i)
x D(i)

y D(i)
z 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

A(i)
x − B(i)

x B(i)
x −C(i)

x B(i)
x − D(i)

x

A(i)
y − B(i)

y B(i)
y −C(i)

y B(i)
y − D(i)

y

A(i)
z − B(i)

z B(i)
z −C(i)

z B(i)
z − D(i)

z

∣∣∣∣∣∣∣∣∣∣
, (2.12)
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where after the second equality the terms have been reordered, such that the vertex to be moved –

without loss of generalityA – is in the first column. In fact, this is – up to a factor of 1/6 – the

signed volume of the simplexSi. Now suppose thatA is moved along the direction of∆, i. e.,

A → A′ = A + λ∆ with λ > 0 and∆ = (∆x,∆y,∆z). For the algorithm the vector∆ will point to the

next neighbour ofA. Then the new pseudo-orientation is obtained via

V(i)
1 = V(i)

0 + λ

∣∣∣∣∣∣∣∣∣∣

∆x B(i)
x −C(i)

x B(i)
x − D(i)

x

∆y B(i)
y −C(i)

y B(i)
y − D(i)

y

∆z B(i)
z −C(i)

z B(i)
z − D(i)

z

∣∣∣∣∣∣∣∣∣∣
. (2.13)

If the orientation of the simplexSi = (Ai , Bi ,Ci ,Di) is not allowed to change, this produces a constraint

onλ

λ ≤ λmax
i =

∣∣∣∣
(
V(i)

0

)∣∣∣∣

abs

∣∣∣∣∣∣∣∣∣∣

∆x B(i)
x −C(i)

x B(i)
x − D(i)

x

∆y B(i)
y −C(i)

y B(i)
y − D(i)

y

∆z B(i)
z −C(i)

z B(i)
z − D(i)

z

∣∣∣∣∣∣∣∣∣∣

. (2.14)

In order to secure the validity of the triangulation, this check has to be performed for all simplices

incident to the moving vertexA, i. e., with

λ ≤ λmax = min
Sk : A∈Sk

λmax
k (2.15)

one has an overall measure of the maximum step size ofA in the direction of∆. If λmax > 1,

then the vertex can simply be moved along the complete path (∆x,∆y,∆z) without invalidating the

triangulation, whereas ifλmax < 1 the vertexA can only be moved by a fractionα∆ : α < λmax. Note

that technically, the determinants in equation (2.14) can be rewritten as the orientation of a virtual

simplex, such that adaptive precision arithmetics [39] can be applied in the control of the step-sizes.

If one definesA′ to be the nearest neighbour ofA, these vertices will in three dimensions have at least

three simplices in common, if they do not reside directly on the boundary of the convex hull of the

triangulation. A subset of the simplices incident toA can be defined as the set of all simplices that

are incident toA, but not toA′. For these, one can define the quantityλREST in analogy toλ via

λmax
REST = min

Sk : A∈Sk ∧ A′<Sk

λk . (2.16)

The simplices incident to bothA and A′ will change their orientation in the last step, since their

volume vanishes whenA and A′ merge. However, since these simplices are deleted anyway, their

orientation does not need to be maintained within this last step. The orientation of the simplices
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incident toA but notA′ (described byλmax
REST) however, needs to be maintained, since these simplices

will not be deleted afterwards. Therefore, the quantityλmax
REST should be the criterion for the last vertex

step, whereasλmax accounts for the maximum length of the previous steps.

The algorithm for deleting a vertexA can be summarized as follows:

1: Find the nearest neighbour vertex ofA.

2: repeat

3: set∆ = A′ − A,

4: determineλmax = min
Sk : A∈Sk

λk,

5: determineλmax
REST = min

Sk : A∈Sk ∧ A′<Sk

λk,

6: if λmax
REST≤ 1.0 then

7: moveA→ A + αλmax∆ with α < 1,

8: update the simplices surroundingA with flips to restore Delaunay property

9: end if

10: until λmax
REST> 1.0,

11: delete the simplices incident to bothA andA′,

12: replaceA by A′ in all simplices surroundingA,

13: set the correct neighbourship relations in these simplices,

14: update the simplices incident toA′ with flips.

A problem can be posed by rounding errors in equation (2.14): If the numerator becomes very small

– i. e., if one has simplices with an extremely small volume or very skinny simplices, thenλ may

tend to assume very small values. Rounding errors are then likely to happen. This problem can be

weakened by using exact arithmetics [57] when computing (2.14).

Deletion via partial Re-Triangulation

The previous algorithm relies on the method of moving vertices and needs many operations (flips) un-

til the simplices can finally be deleted from the triangulation. More important, the numerical rounding

errors may pose a problem for realistic applications. Therefore, for the applications within this thesis

a different approach – as presented in [58] – has been chosen. This approach can be summarized as

follows:

1: delete the corresponding vertex,

2: collect the external faces of its incident simplices,

3: delete the incident simplices,

4: recompute the local Delaunay triangulation – constrained by the external faces.
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Note that in the case discussed here, the constrained Delaunay triangulation can always be computed

without adding artificial vertices, since the constraining faces fulfil the Delaunay property [55].

The CPU time necessary for the successive deletion of 5000 vertices with the partial re-triangulation

method is with 1.0 s slightly smaller than the 1.2 s [26] necessary for deletion of the same number via

vertex-merging.

2.3.9 The Geometric Dual

The most general Voronoi tessellation (sometimes called Dirichlet tessellation, too) of a set of gener-

ators{ci} in Rd is defined as a partition of space into regionsVi:

Vi = {x ∈ Rn : P(x, ci) ≤ P(x, cj) ∀ j , i} , (2.17)

whereP(x, ci) is a distance measure betweenx andci.

In the simplest case of unweighted Voronoi tessellations this weight function reduces to the normal

euclidian distanceP(x, ci) = |x − ci |. In other words, the normal Voronoi cell around the generator

ci contains all points inRd that are closer toci than to any other generatorc j. Voronoi tessellations

can be constructed like the well-known Wigner-Seitz cell in solid state physics [59], but fortunately

there are much more efficient ways to construct the Voronoi tessellation. Note that this partition is

– unlike the Delaunay triangulation – always uniquely defined even for point sets that do not fulfil

the extended general position assumption. Voronoi tessellations have many interesting applications

in practice [28], since they can be used to describe influence regions.

For weighted points{ĉi} = {(ci , ωi)}, the orthogonal distance measure as defined in equation (2.6) will

be used with unweighted pointsx to define the weighted Voronoi cell – sometimes called Laguerre

cell [27] or radical plane construction [60]:

Vi = {x ∈ Rn : (x − ci)
2 − ωi ≤

(
x − cj

)2 − ω j ∀ j , i} . (2.18)

In two dimensions, (weighted) Voronoi cells are convex polygons (see figure 2.13). In addition, the

boundaries of these polygons are perpendicular to the connection lines between the generators. This

finding generalises to arbitrary dimensions: The boundaries between twod-dimensional Voronoi re-

gionsVi andVj as defined in (2.18) reduce to the equation for a (d−1)-hyperplane, since the quadratic

contributions cancel. In addition, the corresponding hyperplane will be perpendicular to the line con-

necting two neighbouring Voronoi generators. Therefore, per definition the Voronoi cells around those

generatorsZ i that are situated on the boundary of the convex hull of the point set{Z1, Z2, . . . , Zn} will

extend to infinity and thus will have an infinite volume.
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In three dimensions, the intersection of two boundary-planes defines a boundary line and the inter-

section of three boundary-planes defines a corner of the three-dimensional Voronoi/Laguerre cell. If

one supplements the three equations defining a Voronoi corner

(x − c1)
2 − ω1 = (x − c2)

2 − ω2 ,

(x − c2)
2 − ω2 = (x − c3)

2 − ω3 ,

(x − c3)
2 − ω3 = (x − c4)

2 − ω4 (2.19)

by the definition of a weight belonging to the corner pointω = (x − c1)2 − ω1 , one can (with using

thatωi = R2
i ) show that the system of the resulting four equations is equivalent to the system (2.7). By

identifying x = mandω = R2
m⊥, the fundamental duality between Voronoi tessellations and weighted

Delaunay triangulations is revealed:

If the Voronoi generators are equal to the Delaunay vertices, the corners of the (weighted)

Voronoi regions are the centres of the Delaunay-simplex circumspheres (orthospheres).

This finding holds true in any dimension, for a two-dimensional illustration see figure 2.13. Conse-

quently, two Voronoi generators sharing a common boundary of the Voronoi regions will be connected

in the dual Delaunay triangulation. Disconnected vertices in the triangulation correspond to empty

Voronoi regions. Thus, it becomes visible that a vertex that is not completely covered by the spheres

of other vertices will always be connected in the weighted Delaunay triangulation: The associated

sphere contains at least one point that is not contained in the spheres of other vertices. This point will

belong to the associated Laguerre region [27], which is therefore non-empty.

In this work, the geometric duality with the Delaunay triangulation will be exploited by generating

the Delaunay triangulation and computing the dual only if necessary.

The introduction of influence regions extends the definition of proximity between vertices: Two ver-

tices aredirect neighbours (in the sense that their influence regions touch) if they share a common

face in their Voronoi diagram or – equivalently – if they are direct neighbours in the dual Delaunay

triangulation (see figures 2.13 and 2.14 right panel).

Further possible choices for weight functions can be found in [28, 61], but these do not have the

advantage of planar contact surfaces. This thesis is restricted to the weights as introduced. In addition,

this particular choice has the advantage that the Laguerre tessellation or its geometric dual – the

weighted Delaunay triangulation – is suitable for contact detection between differently sized spheres

[27].

Within the framework of growth models [31], off-lattice tissue simulations [6, 23, 24, 62] and the so-

lution of partial differential equations on irregular grids [63, 64], not only the neighbourship relations
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Figure 2.13: Duality between Delaunay triangulations and Voronoi tessellations.Left: The blue
region denotes the normal Voronoi cell belonging to the central generator (red points). The centres
of the circumcircles (dotted lines) mark the corners of the Voronoi cells. Note that the Voronoi
contact surface between two generators does not necessarily intersect the connection lines between
the generators (leftmost point).Right: Same point configuration as left, but here a weight (wi = R2

i ,
radii of the large coloured disks) is introduced. Still, the duality between weighted Delaunay
triangulations and weighted Voronoi tessellations holds: The centers of the orthospheres (dotted
lines) mark the corners of the weighted Voronoi cell (blue polygon). The orthospheres intersect
perpendicularly with the weight circles.

in the Delaunay triangulation but in addition the corresponding Voronoi cell volumes as well as the

contact surface between two Voronoi cells will become important.

In the used implementation, the Voronoi contact surfacesAVOR
i j are calculated as fol-

lows:

1: Pre-compute the centers of the orthospheres of all simplices in the triangulation.

{This increases efficiency by avoiding superfluous calculations if the Voronoi contact areas of

adjacent cells are to be calculated.}
2: For the contact polygon constituted ofN weighted centresci of the simplices incident to both

neighbouring vertices, define the central point via

z =
1
N

N∑

i=1

ci . (2.20)

{Recall that the connection line between two neighbouring vertices may not always intersect with

the Voronoi contact surface, compare figure 2.13.}
3: Subdivide the polygonal Voronoi contact region into triangles incident toz and sum their areas.
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Figure 2.14: Relation of spherical and Voronoi contact surfaces in two and three dimensions.Top
left: In a two-dimensional representation, the position of the Voronoi contact surface (lines) is
identical with the position of the spherical contact surface (further spheres shaping the Voronoi
cells are not shown here). The set intersection of sphere and Voronoi volumes is indicated in
darker colours.Bottom left: In a three-dimensional configuration the position of the Voronoi
contact surface (grey) coincides with the position of the sphere overlap surface. The position of
further spheres shaping the three-dimensional Voronoi cells is indicated by the green points.Right:
This can be exploited to yield an improved contact surface estimate in dense systems consisting of
differently-sized spheres (two-dimensional illustration), where multiple sphere overlaps can occur.
The set intersection of sphere and Voronoi volume is indicated green.



34 CHAPTER 2. INTRODUCTION

The total volume of the Voronoi cell is then calculated similarly from the contact surfacesAVOR
i j

VVOR
i =

∑

j∈NN(i)

1
3

AVOR
i j hj , (2.21)

wherehj represents the distance of the contact surface with neighbourj from the centre point of the

Laguerre cell, which is calculated by the arithmetic average of the corner points as well.

The above calculation will fail at the boundary of the triangulation. However, as the boundary is given

by an artificial simplex, it will never be referenced in practice.

The numerical complexity of the volume computation is linear with the number of simplices sur-

rounding the vertex, whereas the complexity of contact surface calculation between two generators

grows linear with the number of simplices incident to both generators. Such algorithms have been

tested using a Monte-Carlo simulation.

2.4 The Finite-Differencing Scheme

2.4.1 Spatial discretisation

Though the analytical solutions of partial differential equations (PDEs) are differentiable, their nu-

merical representation will be discrete in both time and space. Within the finite-difference-approach,

the spatial discretisation can be performed as follows: The computational domain under considera-

tion is divided into disjoint volume elementsVi. Within these volume elements, one locally defines

spatially averaged quantities via

ui(t) =
1
Vi

∫

Vi

u(x, t) dx, (2.22)

whereu(x, t) denotes the quantity which is described by the PDE. The spatial derivatives occurring in

the PDE can then be transformed into finite differences, i. e.,

∂u(x, t)
∂x

∣∣∣∣∣
∂Vi∩∂Vi′

→ ui′(t) − ui(t)
|xi′ − xi |

xi′ − xi

|xi′ − xi | , (2.23)

wherexi denotes centers of the volume elementVi. Higher-order derivatives can be discretised in

this way as well. For rectangular lattices, symmetry properties can be used to improve spatial accu-

racy. For other discretisations, Gauss’s theorem can be employed on the volume elements to reduce

the order of the derivatives. The general effect of this spatial averaging is that the original PDE is

transformed into a system of coupled ordinary differential equations (ODEs). This system is – after

discretisingui in time, if necessary – transformed into an algebraic linear system, which can be solved
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by iterative methods (compare e. g. appendix B). For the examples of reaction-diffusion equations

(RDEs) and continuum mechanics, the discretisation procedure will be performed explicitly in the

following sections.

2.4.2 Reaction-Diffusion Equations

Reaction-diffusion equations (RDEs) are PDEs of the general form

∂u
∂t

= ∇ [D(x, t)∇u(x, t)] + Q(x, t) , (2.24)

whereu(x, t) describes the local concentration of a soluble substance (or the local temperature),D(x, t)

the local diffusion measure (or thermal conductivity), andQ(x, t) stands for a reaction term (or a heat

source/sink). Note that the diffusion measureD(x, t) is not necessarily a scalar [65], though within this

thesis only scalar diffusion will be considered. For example, within the context of tissue modelling,

u(x, t) may represent the local concentration of nutrient, whereas the sink termQ(x, t) is associated

with the nutrient consumption by the cells.

If the reaction volumesVI do not change in time, one can average equation (2.24) as described in

equation (2.22) to obtain (using Gauss’s theorem)

∂uI

∂t
=

1
VI

	

∂VI

D(x, t)∇u(x, t) · d f + QI (t) , (2.25)

where for rectangular lattices in three dimensions the indexI = {i, j, k} is a triple of indices, each

denoting the spatial position in one dimension. The algebraic structure of the numerical discretisation

depends on the specific geometry under consideration. For some specific examples the modes of

discretisation are given below:

• If one uses the Voronoi (Laguerre) tessellation [63] (compare equation (2.18) in sub-

subsection 2.3.9) as the definition of volume elementsVI , equation (2.25) reduces to

∂uI

∂t
=

1
VI

∑

J∈NN(I )

AIJ

|xI − xJ|(uJ − uI )DIJ + QI , (2.26)

whereVI is the volume of the Voronoi (Laguerre) cellI , andJ ∈ NN(I ) denote the next neigh-

bours of cellI with generatorxI arising from the (weighted) Delaunay triangulation. Conse-

quently, the termsAIJ denote the contact area of the adjacent Voronoi (Laguerre) regionsI and

J. Linear interpolation on the connection lines between the generators ofI andJ yields for the

diffusion coefficient

DIJ = DJ,I =
1
2

DI

[
1 +

ωJ − ωI

(xJ − xI )2

]
+

1
2

DJ

[
1− ωJ − ωI

(xJ − xI )2

]
(2.27)
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at the position of the Voronoi boundary defined by equation (2.18). This reduces to the simple

arithmetic average in case of equal weightsωI = ωJ.

• For problems with spherical symmetry, the system (2.25) reduces to an effectively one-

dimensional system, which can for constant lattice spacings∆r be discretised on concentric

shells [66] as

∂ui

∂t
=

1
Vi

[
Ai,i+1

∆r
(ui+1 − ui)

1
2

(Di + Di+1) − Ai,i−1

∆r
(ui − ui−1)

1
2

(Di + Di−1)

]

+Qi(t) , (2.28)

Ai,i±1 = 4π [R0 + (i ± 1/2) ∆r]2 ,

Vi =
4π
3

[
(R0 + i∆r + ∆r/2)3 − (R0 + i∆r − ∆r/2)3

]

=
4π
3

[
3(R0 + i∆r)2 ∆r + ∆r3/4

]
, (2.29)

whereAi,i±1 denote the contact surface between shellsi and i ± 1 andVi the volume of thei th

shell, respectively. The termR0 denotes the smallest radius of the volume under consideration,

i. e., it is set to zero for most applications.

• For the simplest and most common case of rectangular grids in three dimensions with lattice

constants∆x, ∆y, ∆z one can improve the accuracy by directly discretising (2.24)

∂ui, j,k

∂t
= +

(
Di+1, j,k − Di−1, j,k

) (
ui+1, j,k − ui−1, j,k

)

4∆x2
+ Di, j,k

ui+1, j,k − 2ui, j,k + ui−1, j,k

∆x2

+

(
Di, j+1,k − Di, j−1,k

) (
ui, j+1,k − ui, j−1,k

)

4∆y2
+ Di, j,k

ui, j+1,k − 2ui, j,k + ui, j−1,k

∆y2

+

(
Di, j,k+1 − Di, j,k−1

) (
ui, j,k+1 − ui, j,k−1

)

4∆z2
+ Di, j,k

ui, j,k+1 − 2ui, j,k + ui, j,k−1

∆z2

+Qi, j,k , (2.30)

which is second-order accurate7 in space [67]. The above equation is only valid for the volume

elements not residing on the boundary of the reaction volume. There, the boundary conditions

(for example Dirichlet or von-Neumann) have to be discretised independently.

7The discretisation of the second derivatives can be derived by using a virtual grid with halved lattice constants.
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The general handling of equations (2.26), (2.28) and (2.30) differs in the way how their right-hand-

side is discretised. All these equations can be written as

∂uI

∂t
= LuI + QI (t) , (2.31)

whereL is a linear operator describing the geometry and diffusional properties of the system. Dis-

cretisation in time is introduced by

∂uI

∂t
→ un+1

I − un
I

∆t
, (2.32)

with un+1
I = uI (t + ∆t) andun

I = uI (t). This definition is symmetric aroundt + ∆t/2. Depending on at

which time the right hand side is evaluated, one distinguishes between three numerical schemes:

1. The simplest possibility is an explicit scheme (Forward-Time-Centred-Space, FTCS), which is

realised by evaluating the right hand side at timet, i. e.,

un+1
I = {1 + ∆tLn}un

I + ∆tQn
I , (2.33)

which has the advantage that the solutionu(t + ∆t) can be readily obtained fromu(t) with-

out necessitating matrix inversion. However, already for constant diffusion coefficients a von-

Neumann stability analysis [68] on rectangular grids shows that this solution scheme becomes

numerically unstable if

D∆t
∆x2

+
D∆t
∆y2

+
D∆t
∆z2
≥ 1

2
, (2.34)

a constraint which is known asCourant-condition. Numerical instability implies that the nu-

merical errors will increase exponentially in time, which is a serious limitations for practical

applications. As the Courant condition involves both spatial (∆x) and temporal (∆t) resolutions,

one can either decrease the timestep or decrease the spatial resolution to obtain correct numer-

ical solutions with the FTCS method. In addition, it is evident from (2.33) that the solution is

only first order accurate in time.

2. Numerical stability can be recovered if one applies a fully implicit scheme (Backward-Time-

Centred-Space, BTCS), i. e., by evaluating the right hand side of (2.31) at timet + ∆t one

yields

{
1 − ∆tLn+1

}
un+1

I = un
J + ∆tQn+1

J , (2.35)
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which is still only first order accurate in time. However, one can show by von-Neumann stability

analysis, that this scheme is unconditionally stable, i. e., timesteps larger than allowed by the

Courant condition do not lead to an exponential increase of the numerical errors. Note that the

existence ofL on the left hand side necessitates the inversion of a sparsely populated matrix.

3. The best choice is to combine the advantages of explicit and implicit methods by a simple

average, i. e.,

{
1 − ∆t

2
Ln+1

}
un+1

I =

{
1 +

∆t
2
Ln

}
un

I +
∆t
2

(
Qn

I + Qn+1
I

)
, (2.36)

which is a sparsely populated linear system that can be solved forun+1
I by knowledge ofun

I , Qn
I ,

andQn+1
I . This method is known as theCrank-Nicholson scheme[68] and by von-Neumann

stability analysis [68] one can show for the free diffusion case that it is unconditionally stable.

In addition, it is second order accurate in time, since here both the left and right-hand sides

are centred at timetn + ∆t/2. The resulting system is tri-diagonal in one dimension, which

enables a fast and simple algorithmic matrix inversion. This however does not hold true in

higher dimensions. In this case, approaches such as operator splitting [68] can help to reduce

sparse matrices to several tri-diagonal ones. For the example of two dimensions, the way how

to employ thealternating-direction implicit method (ADI) is demonstrated explicitly in [68].

The basic idea is to divide each timestep into several sub-steps. Within each sub-step, a single

dimension is treated implicitly, whereas the other dimensions are treated explicitly. In two

dimensions, this procedure preserves unconditional stability, whereas in three dimensions the

updating scheme from [68] can be generalised withL = Lx + Ly + Lz to (with reaction terms

omitted)

{
1 − ∆t

3
Ln+1/3

x

}
un+1/3

i, j,k =

{
1 +

∆t
3
Ln

y +
∆t
3
Ln

z

}
un

i, j,k ,

{
1 − ∆t

3
Ln+2/3

y

}
un+2/3

i, j,k =

{
1 +

∆t
3
Ln+1/3

x +
∆t
3
Ln+1/3

z

}
un+1/3

i, j,k ,

{
1 − ∆t

3
Ln+1

y

}
un+1

i, j,k =

{
1 +

∆t
3
Ln+2/3

x +
∆t
3
Ln+2/3

y

}
un+2/3

i, j,k , (2.37)

which replaces a sparse system by three tri-diagonal ones. Unfortunately, the above splitting

scheme sacrifices numerical stability atD∆t/∆x2 ≥ 1/2 (see appendix C.1.1). Therefore, the

full sparse system (2.36) has been solved directly. Numerically, this has been achieved by the

iterative biconjugate gradient method (compare appendix B.2).
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The FTCS scheme and the ADI as well as the full CNS scheme have been implemented and tested

(see appendix C.1.1).

If one is only interested in steady-state values of the numerical solution of equation (2.24), i. e., in the

case

∂u
∂t

= ∇ [D(x, t)∇u(x, t)] + Q(x, t) ≈ 0 , (2.38)

the problem effectively reduces to a Poissonian one

∇ [D(x)∇u(x)] = −Q(x) or LuI = −QI . (2.39)

Three numerical methods for obtaining the solution of the above equation have been implemented

and tested (see appendix C.1.1):

1. The by far most efficient method – both in computational time and numerical accuracy – is

a rapid method based on the Fast Fourier Transform (FFT) that has been extended from a 2-

dimensional example in [68] to three dimensions. However, it can only be applied if

• the diffusion coefficient is constant and

• the computational domain is rectangular.

It is based on the idea of Fourier-expanding both the solution and the reaction rates (compare

appendix C.1.1). Thereby, equation (2.39) is reduced into a diagonal algebraic system for the

Fourier coefficients, which can be solved immediately. By using the inverse Fourier transform,

the solution is obtained. This procedure is sped up extremely for large numbers of grid nodesN

by using FFT, which has an improved complexity ofN logN versusN2 for the normal Fourier

transform [68]. As a small drawback, the use of the FFT restricts the number of grid points in

every dimension toNgrid
i = 2n + 1 with n ∈ {1,2,3, . . .}.

2. A further efficient method that can handle variable diffusion coefficients is the Multigrid method

that has been extended from an example in [69] to non-constant diffusion coefficients. It still

requires that

• the computational domain is rectangular.

The scheme as implemented uses Gauss-Seidel relaxation [68] and increases convergence by

averaging the solution from finer grids to coarser grids, solving the system exactly on the coars-

est grid, and finally interpolating from the coarse grids down to the fine grid again. For the sim-

ple averaging and interpolation chosen here, this approach restricts the number of grid points
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in every dimension as before toNgrid
i = 2n + 1. For simplicity, this procedure of averaging

and interpolating has only been performed once from the finest grid down to the coarsest grid

and up again. Since this procedure resembles the shape of the latter V, this scheme is called

V-cycle-multigrid [68]. The V-cycle method has good performance only when the initial guess

for the solution is close to the analytic solution.

3. The above methods are still restricted to rectangular geometries. Other simple geometries can

in principle be realised by the Multigrid method and even using a rapid method if a system

of eigenfunctions is known, but in order to have one tool generally handling different geome-

tries, the linear system arising from (2.39) has been solved iteratively by a biconjugate gradient

method as provided in [68] with the routinelinbcg (compare appendix B.2). This approach

allows for

• varying diffusion coefficients,

• varying geometries,

• arbitrary grid resolutions in every dimension,

• arbitrary boundary conditions.

2.4.3 Continuum Mechanics in solids

The discrete element method can as well be applied to more complicated equations, which will be

demonstrated in this subsection. The elastic parameters of this theory can be used for an approximate

description of cellular compressibility later on.

Linear elastic solids that are constrained by boundary forces obey – in equilibrium – the following

equations [70]

∂βσαβ = f α : x ∈ V ,

nβσαβ = pα : x ∈ ∂V , (2.40)

where thef α denote force volume densities that act in the interior of the solid (such as e. g. gravity or

forces induced by thermal elongation) andpα denote the force surface densities acting at the boundary

of the solid – parametrised by the components of the normal vectorsnβ. For small deformations, the

symmetric stress tensorσαβ is assumed to be linearly related with the strain tensor [70]

σαβ =
E

1 + ν

(
Uαβ +

ν

1− 2ν
Uσσδαβ

)
, (2.41)

Uαβ =
1
2

(
∂Uα

∂xβ
+
∂Uβ

∂xα

)
. (2.42)
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The quantityUα describes theα-component of the local deformation vector from the equilibrium

value (where one has neither boundary nor any internal forces), whereas the elastic properties of the

solid are characterized by the quantitiesE andν. The Young modulusE is generally defined as the

ratio of stress versus strain and describes by how much a piece of material deforms in the direction of

a forceF⊥ acting perpendicularly to the boundary of the material

E
∆L
L

=
F⊥
A
, (2.43)

compare also appendix C.1.3. As the strain∆L/L is dimensionless,E has the dimension of pressure.

Typical values range from kPa (cells) over GPa (wood, bone) to 200 GPa (steel). However, solids

subject to external forces do usually not only express longitudinal deformations, but also transversal

ones. The ratio of the deformation in transversal versus the deformation in longitudinal direction

is described by the Poisson modulusν. For no transversal deformation one hasν = 0, but most

realistic solid materials have Poisson moduli between 0 and 0.5: bone hasν = 0.32 [71], steel has

ν = 0.33. The case ofν = 0.5 corresponds to an incompressible medium (compare appendix C.1.3).

By inserting the above definitions into (2.40) one obtains a PDE for every component ofU

1
2

(
∂Uα

∂xβ
+
∂Uβ

∂xα

)
∂

∂xβ

( E
1 + ν

)
+
∂Uσ

∂xσ
∂

∂xα

(
νE

(1 + ν)(1− 2ν)

)

+
E

2(1+ ν)
∂2Uα

∂xβ∂xβ
+

E
2(1+ ν)(1− 2ν)

∂2Uσ

∂xσ∂xα
= f α x ∈ V ,

E
2(1+ ν)

(
∂Uα

∂xβ
+
∂Uβ

∂xα

)
nβ +

Eν
(1 + ν)(1− 2ν)

∂Uσ

∂xσ
nα = pα x ∈ ∂V , (2.44)

where the fractions of the elastic coefficients in the first line are often called Lame coefficients [72].

Using the short-hand notation

f1(E, ν) =
E(1− ν)

(1 + ν)(1− 2ν)
,

f2(E, ν) =
Eν

(1 + ν)(1− 2ν)
,

g(E, ν) =
E

2(1+ ν)
, (2.45)

and by sorting the terms in (2.44) by the order of the derivatives, one obtains (with sums worked out
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explicitly)

 f1 (∂α)2
+ g

∑

β,α

(
∂β

)2
+ (∂α f1) ∂

α +
∑

β,α

(
∂βg

)
∂β

 Uα

+
∑

β,α

{
1
2

( f1 + f2) ∂
α∂β +

(
∂βg

)
∂α + (∂α f2) ∂

β

}
Uβ = f α x ∈ V ,

 f1n
α∂α + g

∑

β,α

nβ∂β
 Uα +

∑

β,α

{
gnβ∂α + f2n

α∂β
}
Uβ = pα x ∈ ∂V . (2.46)

In three dimensions, where on a rectangular lattice with lattice constants∆x, ∆y, and∆z, the local de-

formationUα is discretised on volume elementsVi jk asUα
i jk , the partial derivatives can be represented

inside the volume as

∂Uα

∂x
→

Uα
i+1, j,k − Uα

i−1, j,k

2∆x
,

∂2Uα

∂x2
→

Uα
i+1, j,k − 2Uα

i, j,k + Uα
i−1, j,k

∆x2
, (2.47)

∂2Uα

∂x∂y
→

Uα
i+1, j+1,k + Uα

i−1, j−1,k − Uα
i+1, j−1,k − Uα

i−1, j+1,k

4∆x∆y
, (2.48)

and likewise for the other directions. The existence of mixed derivatives implies that the diagonal

neighbours in a rectangular lattice contribute as well. In addition, at the boundary of the volume, the

derivatives cannot be expressed in a centred way. Instead, the derivative can only be computed using

the allowed interval (within the reaction volume), see figure 2.15 left panel. Thus, the PDEs (2.44)

are transformed forN lattice sites into an algebraic system

AU = f (2.49)

of dimension 3N×3N, where terms withUα
i jk in (2.47) contribute to the diagonal entries ofA (compare

appendix B.3). If the boundary conditions are properly set (thus allowing a solution), this linear

system can be solved with the iterative biconjugate gradient method as provided with the routine

linbcg in [68] (compare appendix B). In three dimensions, the derivatives lead to a maximum of

22 off-diagonal entries, compare figure 2.15 right panel. At the boundaries, one would formally

obtain 14 off-diagonal entries from equation (2.46) and no entries on the diagonal. However, in aid

of the diagonal entries, the number of off-diagonal matrix elements on the boundary is reduced, since

depending on the position of the volume element on the boundary at least one direction is constrained

such that the derivatives cannot be expressed in a centred way.
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Figure 2.15: Discretisation of derivatives for a rectangular lattice.Left: Derivatives for points
in red can be centred in any direction, whereas for points in green one direction is constrained in
this two-dimensional illustration. For points in blue, both directions are constrained. Dashed lines
indicate the volume elements, within which averaging is performed, whereas the solid lines denote
the boundary of the computational domain. Mixed second derivatives lead to connections with the
diagonal neighbours (arrows with dark colours, requires Moore neighbourhood), whereas first and
second derivatives with respect to a single variable only require the adjacent cells to interact (ar-
rows with light colours, von-Neumann neighbourhood). With increasing grid resolution, arbitrary
shapes can be approximated (yellow point).Right: In three dimensions, one obtains from equation
(2.46) up to 22 references to the next neighbours. Here, only a cross-section perpendicular to the
directionα is shown. For the second derivatives ofUα one has to access the 6 direct neighbours
once (not shown). Then, the mixed second derivatives ofUβ,α require 8 references to the diagonal
neighbours (green points). Finally, the first derivatives ofUβ,α require 8 references to the direct
neighbours (blue points).

2.5 Cellular Interactions

2.5.1 Mechanical Cellular Properties

Many cellular constituents (see figure 2.16) contribute to the mechanical properties of the cell. Ad-

hesive properties are mediated by the receptor and ligand molecules distributed on the cell surface

[73], whereas the repulsive features arise from the combined action of nucleus, cytoplasm, and cell

membrane [74]. Obviously, the cell is a complicated multi-component system. According to [75], the

mechanics of the cytoplasm can be approximately described by viscoplastic gel properties on larger

scales. Via the cytoskeleton the cell nucleus is connected to the cell membrane as well. These con-

stituents yield the rigid cell structure at equilibrium. The cell membrane can presumably be described

as elastic for small deformations.

2.5.2 Contact Models

In view of the sophisticated cell composition, models with a small number of parameters have only

been able so far to approximate the cellular behaviour in a simple way [8, 76, 77]. The dynamics

of solids in contact is a difficult problem, as already the local geometry at the contact region will

strongly influence the involved forces. Most models applied in practice are not motivated by underly-
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Figure 2.16: Sketch of a typical eucaryotic cell [75]. Adhesion is mediated by receptor and ligand
molecules distributed on the cell surface. Actin filaments effectively increase the viscosity of the
cytoplasm, whereas microtubules connect the cell membrane with the viscoelastic nucleus.

ing assumptions on the material properties but rather mimic the realistic behaviour. In principle, these

contact models all fulfil two basic conditions:

1. They exhibit strong repulsive forces for large overlaps and

2. they have a bound state for small overlaps.

For example, the Lennard-Jones potential

V(x) = Ax−α + Bx−β , (2.50)

wherex denotes the distance, has been successfully applied in physics to model the interactions of

atoms [78]. AsA, B, α, andβ are parameters, the Lennard-Jones model has enough intrinsic freedom

to approximate even the interaction of macroscopic systems such as e. g. grains [27].

Viscous and plasticity effects can be incorporated by constructing a model from mechanical ana-

logues: In this approach, simple mechanical elements such as the dashpot and the spring (see fig-

ure 2.17), are connected to a mechanical network. These diagrams define a set of linear ODEs, which

can be solved to obtain the solution as a function of time. Thus, it is possible to incorporate vis-

cous (Kelvin element) and viscoplastic (Maxwell element) effects in cellular contact interactions, see

e. g. [79, 80]. These models however require a large set of parameters and facing the large uncertainty

about inner-cellular elastic or dampening constants they must be used as fit models since currently

these parameters cannot be measured independently.
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Figure 2.17: Basic elements of mechanical networks.Left: A Maxwell element consists of a
dashpot and a spring in series, which leads to viscoplastic behaviour: After external forces have
acted, the system does not necessarily relax to its initial position.Right: In contrast, for a Kelvin
element these are connected in parallel, which only leads to viscous behaviour: The system will
always relax to the same equilibrium position. By using more complicated circuits, a good agree-
ment with rheologic measurements can be achieved.

Another approach would be to derive the elastic and viscous constants of a mechanical network from

a microscopic model of the cell. If one only considers the contribution of the cytoskeleton, a popular

ansatz is the explanation of cellular properties by tensegrity structures [81, 82] – an acronym derived

from “tensional integrity”. Such structures can be envisioned as a combination of rigid elements

(usually bars) that are connected by elastic cables, where pressure and tension cooperate to stabilise

them. A complete model involving all these elements for every cell would exceed the capabilities of

multicellular simulations.

Here, another approach to treat the adhesive and elastic interactions will be followed: Based on the as-

sumption that cells can be approximated by a uniform and isotropic material, the theory of continuum

mechanics – compare subsection 2.4.3 – can be applied. Note, that here the additional constraint of

only small relative deformation enters. In this case, the elastic equilibrium forces between two solids

i and j in contact (compare also figure 2.19) can be derived from equation (2.40) using the method

of Greens functions: Assuming that the contact surface between the spheres is situated in thez = 0

plane, one has [70]

Uα(x, y) =

"
Gαβ(x− x′, y− y′)pβ(x′, y′) dx′ dy′ , (2.51)

wherepβ(x′, y′) denotes the pressure field acting on the contact surface andGαβ is the Greens function.

Due to the given symmetry, only thezz-component of the Greens function

Gzz(x, y) =
1− ν2

πE
1√

x2 + y2
(2.52)

is of interest. The above Greens function is derived from the solution of the equilibrium equations

(2.44) in the simplified case of a homogeneously elastic medium (characterized byE andν) filling the

halfspacez < 0 subject to the point-like forceFz(x, y) = F0δ(x)δ(y) [70]. In the present case one has
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to consider two objects with different elastic properties and thus, one obtains the relative deformations

U i/ j
z (x, y) =

1− ν2
i/ j

πEi/ j

"
pz(x′, y′)√

(x− x′)2 + (y− y′)2
dx′ dy′ , (2.53)

whereEi/ j andνi/ j denote the Young modulus and the Poisson modulus of the solids, respectively. If

only forces normal to the contact regions act, the surface of contact will be flat. If in addition the origin

of the coordinate system is placed in the centre of the contact region and if the local deformations are

not too large, the deformation field at the contact surface can be approximated by an ellipsoidal

parametrisation. Consequently, the relation

B1x2 + B2y
2 + U i

z(x, y) + U j
z(x, y) = hi j , (2.54)

wherehi j denotes the overall indentation due to the load, must hold throughout the contact region

(compare figure 2.19 left panel). The constantsB1/2 are related to the radii of curvature of the surfaces

in contact [70, 83]. Comparing the resulting integral equation for the unknown pressure distribution

1
π


1− ν2

i

Ei
+

1− ν2
j

E j


"

pz(x′, y′)√
(x− x′)2 + (y− y′)2

dx′ dy′ = hi j − B1x2 − B2y
2 (2.55)

with the mathematical identity

"

(x′/a)2+(y′/b)2≤1

√√
1−

(
x′
a

)2 −
(

y′
b

)2

(x− x′)2 + (y− y′)2
dx′ dy′ =

πab
2

∞∫

0

[
1− x2

a2+t − y2

b2+t

]
√

(a2 + t)(b2 + t)t
dt , (2.56)

one finds that both right hand sides are quadratic forms inx andy. Consequently, a solution for the

integral equation is given by the pressure distribution

pz(x, y) =
3
2

Fel

πab

√
1−

( x
a

)2

−
(y
b

)2

, (2.57)

where the normalisation constant results from integration over the ellipsoidal contact surface. From

the mathematical identity, this choice of the pressure distribution is certainly not unique, but it leads

to the unique analytical solution of the system (2.40). In the special case of two spheres in contact

with (unperturbed) radiiRi andRj the contact ellipse becomes circular and one obtains

B1 = B2 =
1
2

(
1
Ri

+
1
Rj

)
=

1
2Ri j

, (2.58)

whereRi j is the effective curvature. Thus, one finally derives from comparing the coefficients for the

total repulsive elastic Hertz force

FHertz = R1/2
i j Ki j h

3/2
i j . (2.59)
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The elastic properties are combined in the coefficientKi j , which has the dimension of pressure

1
Ki j

=
3
4


1− ν2

i

Ei
+

1− ν2
j

E j

 . (2.60)

This contact problem had initially been solved by Heinrich Hertz in 1882 [84] and does not include

effects of adhesion. Note that it can be applied to a sphere in contact with a plane as well by setting

one radius to infinity.

In [85] Johnson, Kendall and Roberts (JKR) showed that the contact radiusai j is enlarged (in com-

parison to the Hertz contact problem) in presence of adhesive forces. They introduced an apparent

Hertz loadFapp, and a corresponding apparent Hertz indentationhapp, which would yield the same

contact radiusai j in the purely elastic Hertz model. For adhesive spheres however, the contact radius

ai j will already occur at indentationshi j smaller thanhapp
i j . In [85] it is assumed that this correction

arises from an additional pressure distribution

pad(x, y) =
Fad

2πa2
i j

1−
x2 + y2

a2
i j


−1/2

, (2.61)

which results in a constant displacement over the contact area for the Boussinesq problem [83], but

corresponds to a negative adhesive total forceFad < 0. The normalisation constant is calculated

analogously to equation (2.57). Thus, the combined pressure is positive (repulsive) at the centre of

the contact region but becomes negative (tensile) at the boundary. This implies the enlargement of

contact radius in JKR theory in comparison with purely elastic Hertz contact and has been observed

using optical interferometry [85]. Then, the total stored elastic energy as well as the mechanical

potential energy of the load applied can be calculated. If one additionally assumes that the surface

energy is uniformly distributed on the contact surface, one obtains

Uadh = −πεi j a
2
i j (2.62)

with the energy densityεi j denoting the combined free surface energy density of both spheres. From

minimizing the total energy one then finds in equilibrium an equation connecting the realistic contact

surface radiusai j with the net JKR-force between the two spheresi and j [83, 85, 86]

a3
i j =

Ri j

Ki j

(
FJKR

i j + 3πεi j Ri j +

√
6πεi jRi j FJKR

i j + (3πεi j Ri j )2
)

(2.63)

and for the corresponding indentation

hi j =
a2

i j

Ri j
− 2

3

√
6πεi j ai j

Ki j
. (2.64)
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The JKR theory has been verified experimentally for materials such as rubber and is used within the

context of cell-cell interaction [75] as well. It is known to fit the behaviour of strongly adhesive

materials very well [83]. One obtains for the JKR force in dependence of the contact radius

FJKR
i j =

Ki j a3
i j

Ri j
−

√
6πεi j Ki j a3

i j . (2.65)

For numerical purposes a direct load-displacement relationship would be more favourable, since the

indentationhi j is much simpler to calculate than the actual contact radiusai j . In addition, there are pa-

rameter regimes, where equation (2.64) admits two solutionsai j for a given indentation. This becomes

obvious if one defines the functionsg1(a) = −hi j + a2
i j/Ri j andg2(a) = (2/3)

√
6πεi j ai j/Ki j , and exam-

ines their intersections in dependence onhi j (see figure 2.18 left panel). Numerically, the two roots of

equation (2.64) in the delicate ambiguity case can be found using a defined algorithm: For negative

virtual overlapshi j , two valuesamin/max
i j can be found for which the functionf (a) = g2(a) − g1(a) is

negative by settingf (amin/max
i j ) = hi j . In addition, one can show that the functionf (a) has a positive

maximum in this regime atamean
i j . With the knowledge of two existent roots, the bisection method

[67] can be used on the intervals
[
amin

i j ,amean
i j

]
and

[
amean

i j ,amax
i j

]
. A major problem however is that these

solutions correspond to formation and disruption of contact. Therefore, the time-evolution of cell-cell

distance determines which branch is of interest and would thus have to be tracked for every individual

cell pair.

Note that the JKR model does not include viscous effects, these will be added independently in sub-

section 2.5.4.

For relatively small adhesion however, i. e.,εi j/(Ki jRi j ) � 1, one can simplify equation (2.64) by

neglecting the second term on the right hand side. This yields

ai j ≈
√

hi j Ri j , (2.66)

or

AJKR
i j ≈ πhi j Ri j (2.67)

for the JKR contact surface, respectively. Equation (2.66) can be inserted into equation (2.63) to

obtain an approximate load-displacement relation for the JKR force

FJKR
i j ≈

Ki jR
2
i j

(
hi j

Ri j

)3/2

−
√

6πεi j Ki j R3
i j

(
hi j

Ri j

)3/4 , (2.68)

compare figure 2.18 right panel. This expression will be used as the JKR-force further-on.
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Figure 2.18: Ambiguity of the full JKR model. The figures refer toRi j = 2.5 µm. Left: The
functionsg1(a) (coloured) andg2(a) (black) have been plotted versusa. For clarity, all other indices
have been dropped. Values ofa at the intersections (marked by the ellipses) of both functions are
roots of equation (2.64). If the indentationh (negative intersection ofg1(a) with the ordinate axis)

is smaller than the minimum valuehmin = −3R1/3
i j

[
πεi j/(6Ki j )

]2/3
, no solution can be found (red).

If hi j = hmin, one has one solution witha∗ =
[
πεi j R2

i j/(6K)
]1/3

(green), and ifhmin < hi j ≤ 0, two
solutions can be found (blue). For positivehi j , one always has only one solution (orange). The
region of two solutions forεi j = 0.0001µN µm−1 is marked by the brown dashed lines at 0 and
−hmin. Note that for small adhesion (dashed black curve), the solution of (2.64) and the solution
of the approximate equation (2.66) (orange intersection with the lower horizontal line) are close
together.Right: Full and approximate JKR forces versus the virtual overlaphi j . The ambiguity of
the JKR model (red line, region marked by vertical dashed lines) in the case of negative overlaps
corresponds to the formation or loss of contact.
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The JKR-force is negative (adhesive) for small virtual overlaps and becomes positive (repulsive) for

larger overlaps. In figure 2.18 right panel it is visible that in the full model, there is even interaction

for negative overlaps. This property is neglected in the approximate version. Note that the minimum

JKR force (maximum adhesive force) is – independently on the approximation used – given by

Fadh
i j = −3

2
πεi jRi j , (2.69)

which is independent of the elastic properties and thus allows an estimate ofεi j from cell-binding-

rupture experiments such as e. g. [87, 88]. For the the approximate model, an interaction potential

can be defined withdi j =
∣∣∣xi − x j

∣∣∣ via

FJKR
i j = −∂VJKR

∂di j
= +

∂VJKR

∂hi j
=

1
Ri j

∂VJKR

∂hi j/Ri j
, (2.70)

where the corresponding potential is given by

VJKR
i j

(
hi j/Ri j

)
=

2
5

Ki j R
3
i j

(
hi j

Ri j

)5/2

− 4
7

√
6πεi j Ki j R5

i j

(
hi j

Ri j

)7/4

, (2.71)

as is illustrated in figure 2.19. The quantityhi j/Ri j describes the relative position of both spheres. It

is related with the orthogonal sphere distance for the spheresr̂ i = (r i ,R2
i ) and r̂ j = (r j ,R2

j ) in equation

(2.6) via

π( r̂ i , r̂ j) =

(
hi j

Ri j

)2

R2
i j − 2

(
hi j

Ri j
− 1

)
RiRj , (2.72)

compare figure 2.20 left panel. In contrast to the Lennard-Jones potential (2.50), the JKR model has

been derived from underlying physical assumptions, i. e., its parametersE andν can in principle be

determined from independent experiments.

The normal JKR-theory as introduced above has several shortcomings.

1. It neglects the polarized structure of the cytoskeleton [76], since it is based on the assumptions

of a homogeneous elastic solid. To incorporate these effects into a more realistic theoretical

model, one would have to consider a multi-component system, which is currently out of reach

for multicellular simulations.

2. As its underlying theory [70] is only valid for small deformationshi j/Ri j � 1, equation (2.63)

will be subject to the same constraints. Since a complete sphere overlap has never been observed

in reality, in the simulations where strong forces occur (e. g. due to additional constraints [89]),

a modified interaction potentialV(x) = f (x)VJKR(x) has been used with

f (x) =


(xd−xm)2

(xd−2xm)(xd−x) − x
xd−2xm

: xm ≤ x ≤ xd

1 : else
, (2.73)
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Figure 2.19: Illustration of the JKR interaction model.Top left: Two spheres in contact can
approximately be described with the JKR-potential (right). The virtual sphere overlaphi j is equiv-
alent to the displacement of the spheres under load and can be calculated viahi j = Ri +Rj−

∣∣∣xi − x j

∣∣∣.
Bottom left: Illustration adapted from [85]. In real-world scenarios, the spheres will evidently de-
form. Due to short-ranged adhesive forces, the pressure distribution at the contact surface is only
positive in the centre, whereas it becomes negative at the boundaries. This leads to an enlargement
of JKR contact surfaces (contact radiusa1) in comparison to pure Hertz theory (contact radius
a0). Right: The existence of adhesive forces gives rise to bound states (minimum at dashed lines).
Their position and depth strongly depends on the parametersεi j andKi j . Note that the potential
does not diverge athi j/Ri j = 2 + 2min{Ri ,Rj}/max{Ri ,Rj} (complete overlap). The curves on the
right have been computed using the following (physiological) valuesKi j = 1000 Pa,Ri j = 2.5 µm.
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Figure 2.20: Sphere overlaps and modification of the JKR-potential.Left: Meaning of the di-
mensionless sphere distancehi j/Ri j . For clarity, the indices have been dropped, i. e., all quantities
refer to two specific spheresi and j. For vanishing overlap, one obtainshi j/Ri j = 0, whereas
for the case when the smaller sphere is placed exactly on the boundary of the larger one one
hashi j/Ri j = 1 + Rmin/Rmax with Rmin = min{Ri ,Rj} andRmax = max{Ri ,Rj}. In this regime,
JKR theory is not valid anymore. Matching has been performed athi j/Ri j = 1, where one has
π( r̂ i , r̂ j) = R2

i j . Right: For this reason, the JKR interaction (solid curves) has been supplemented
with a pole at complete sphere overlap (dotted curves). In the physiological regime, the JKR po-
tential is unchanged. Parameters have been chosen as in figure 2.19.

which is differentiable continuous atx = xm and diverges atx = xd. As matching pointxm = 1

and as point for divergencexd = 2 + 2Rmin/Rmax (minimum and maximum radius) have been

chosen (compare figure 2.20).

3. The original result (2.63) has been derived as a pure two-body interaction [85], which is as well

the case for its purely elastic precursor [70, 84]. However, for many adhering spheres already

for small individual deformations additional forces will come into play, since

• the spheres are pre-stressed and

• the circular contact regions may overlap.

This will critically depend on the current adjacency topology which makes an analytical ap-

proach infeasible. A simple manifestation of this fact is that also for incompressible cells

(ν = 1/2) the cell volume is not conserved for multiple overlaps. For numerical ease and

due to missing estimates in this thesis the following (practitioners) approach has been chosen:

Below the target cell volumeVtarget
i/ j the cell experiences additional – isotropic – forces due to
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compression of the cytoplasm. Then, the resulting additional repulsive force can be written as

Fcomp
i j = Ai j


Ei

3(1− 2νi)

1− Vi

Vtarget
i

 +
E j

3(1− 2ν j)

1−
Vj

Vtarget
j


 , (2.74)

whereVi/ j denote the current cellular volumes (compare subsection 2.5.3).

4. Whereas the used forces do only depend on the relative cellular positions, a more realistic

scenario would have to include hysteresis effects, as adhesive intercellular bonds form after

contact. Within some of the simulations, this has been modelled by makingεi j time-dependent,

i. e.,

εi j (t) =
ε0

2

[
Crec

i (t)Clig
j (t) + Clig

i (t)Crec
j (t)

]
, (2.75)

where the 0≤ Crec/lig
i/ j (t) ≤ 1 represent the normalised receptor or ligand densities on the cell

membranes, respectively, andε0 is the maximum adhesion energy.

5. The JKR-model neglects dampening forces that will evidently occur in realistic systems

[90, 91]. As in the case of the Kelvin element, these will simply be added separately (com-

pare subsection 2.5.4). In the derivation of the JKR model it has been assumed that only forces

perpendicular to the contact surface act. However, cell-cell friction will lead to shear deforma-

tion, which is neglected here.

Clearly, the JKR-model does not correctly represent the mechanics of the cytoskeleton. For normal

cellular deformations, one might expect other than purely elastic responses for larger time-scales,

since the cytoskeleton in general reorganises [75]. These effects may be incorporated by using me-

chanical networks such as in [92]. However, for such a model, the underlying parameters should be

derived either from experiments or motivated from microscopic properties of the cytoskeleton. Thus,

the modified JKR ansatz presented here should be interpreted as a simple approximation for elastic

and adhesive forces in a multi-component system only exhibiting key properties such as divergence

at complete cellular overlaps, an adhesive bound state for small overlaps, modified interactions for

multi-particle overlaps, and possibly time-dependent elastic and adhesive parameters.

2.5.3 Cell volume

In order to be consistent with the spherical cell shape, the volume of a free cell of radiusRi is directly

deduced from the cell radius. For bound cells, the cell volume is corrected by subtracting the volumes
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of the spherical segments [67] occupied by the neighbouring cells via

Vi =
4π
3

R3
i −

π

3

∑

j∈NN(i)

h2
j

(
3Ri − hj

)
, (2.76)

wherehj denotes the height of the spherical segment occupied by neighbour cellj such that one has

hi j = hi + h j. One should be aware that this volume correction represents an approximation:

If there are multiple overlaps of the virtual (undeformed) cell boundaries, the occupied subtraction

volume will be over-estimated. By the example in figure 2.14 right panel this is illustrated in two

dimensions, where volume is represented by area and multiple virtual overlaps exist. Multiple virtual

overlaps may exist in three dimensions as well. In fact, the volume as defined above can become neg-

ative for extreme (non-physiological) configurations. Even the non-overlapping Voronoi tessellation

does not yield a correct estimate of the cell volume, since the Voronoi volume is not bounded for cells

residing on the convex hull of the cell population, compare equation (2.18). There, and also in regions

where the cellular packing is not dense, the Voronoi tessellation volumes obviously overestimates the

actual cell volume.

A way to combine both the limits of densely and sparsely populated cell tissues consistently within

a single concept would be to define the cell volume as the set intersection of the (weighted) Voronoi

cell volume and the sphere volume via

Vcell
i =

{
x ∈ R3 : (x − r i)

2 − R2
i ≤

(
x − r j

)2 − R2
j ∀ j ∈ NN(i) ∧ (x − r i)

2 ≤ R2
i

}
, (2.77)

compare figure 2.14. This concept has not yet been realised in the numerical implementation. How-

ever, even the above definition has a significant shortcoming, if combined with the JKR model: The

cell boundary defined by equation (2.77) is not consistent with the boundary following from the JKR

model: Though the position of the contact area is the same in the JKR model and in equation (2.77),

the size of the contact areas is different. This is due to the cell deformation in the JKR model. In con-

sequence, this would lead to a wrong estimate of the cell volume. For numerical calculations, a second

obstacle is given by the relatively tedious calculation of the volume in (2.77): The actual subtraction

volume that is occupied by neighbouring cells has to be calculated from the occupied steradian. This

value in turn can be obtained from the geometry of spherical triangles using the L’Huilier equations

[67], which involve many trigonometric functions implying a computationally expensive evaluation

(compare e. g. [60] for a related problem).

Therefore, for the simulations in this thesis where the cell volume is of importance, it has been deter-

mined from equation (2.76).
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2.5.4 Equations of Motion

For N cells with positionsxi(t) and radiiRi subject to cell-cell as well as cell-medium and cell-

substrate interactions, the equations of motion arising from the intercellular forces can in the reference

frame of motionless medium and boundaries be summarized as [79]

mi ẍ
α
i = Fα

i +
∑

j∈NN(i)

Fα
i j −

∑

β

γ
αβ
i +

∑

J∈NB(i)

Γ
αβ
iJ

 ẋβi −
∑

j∈NN(i)

∑

β

γ
αβ
i j

(
ẋβi − ẋβj

)
, (2.78)

whereα, β ∈ {0,1,2} denote the Cartesian coordinates andi, j ∈ {0,1, . . . ,N − 1} the cellular indices.

The termingNN(i) denotes all cells having contact with celli – a set containing these cells with

direct contact can be provided by the Delaunay triangulation module introduced in section 2.3. In

contrast,NB(i) denotes the boundaries in contact with celli. Since for most problems few and

static boundary conditions will be given, these are hard-wired in the computer code for every specific

problem individually.

One should note that above equation will in general have to be accompanied by an equation describ-

ing the torque [27, 93], which is only taken into account effectively here by the energy dissipation via

drag forces. With the strong cellular bindings existent in tissue, torque could only lead to macroscop-

ically spinning tissues. However, since most tissues are attached firmly to static boundaries, torque is

neglected here.

The first termFα
i on the right-hand side of (2.78) includes deterministic and stochastic forces on a

single cell (for example crawling forces on a substrate and stochastic forces due to random colli-

sions with molecules), whereas the second term
∑

j∈NN(i)

Fα
i j includes the intercellular two-body forces

(e. g. JKR-force or random intercellular forces). The third term


∑

β

γ
αβ
i +

∑

β

∑

J∈NB(i)

Γ
αβ
iJ

 ẋβi incorpo-

rates cell-medium as well as cell-boundary friction. Finally, the fourth term
∑

j∈NN(i)

∑

β

γ
αβ
i j

(
ẋβi − ẋβj

)

includes cell-cell friction.

A usual choice for cell-medium friction is the well-known Stokes-relation

γ
αβ
i = 6πηRiδ

αβ , (2.79)

which is to a good approximation valid for drag forces on a sphere in a fluid with viscosityη [94].
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The friction coefficients and two-body forces fulfil the following conditions:

γ
αβ
i j = γ

αβ
ji ,

Fα
i j = −Fα

ji : (Newton’s third axiom),

γ
αβ
i j = γ

βα
i j ,

γ
αβ
i = γ

βα
i : (isotropy),

γ
αβ
ii = 0 : (no self-friction). (2.80)

The drag forces expressed by the friction coefficients may be divided in perpendicular drag forces

(acting in the direction of the connection line) and tangential (shear) drag forces. The perpendicular

drag forces are predominantly determined by the dampening properties of the cytoskeleton, whereas

the tangential drag forces result from the breaking of cell-cell bindings due to movements tangential

to the contact surface [76]. If for the cell-cell interaction a purely elastic model (without dampening)

is assumed, the perpendicular drag forces should vanish. Assuming that the intercellular drag forces

are proportional to the effective contact area between two cellsi and j

Aeff
i j = Ai j

1
2

[
Crec

i (t)Clig
j (t) + Clig

i (t)Crec
j (t)

]
(2.81)

and to the tangential projection of the velocity differences, the friction coefficients take the form

γ
αβ
i j = Aeff

i j

(
γ‖Pαβi j,‖ + γ⊥Pαβi j,⊥

) (
1− δi j

)
,

Γ
αβ
iJ = AiJ

(
γ‖PαβiJ,‖ + γ⊥PαβiJ,⊥

)
, (2.82)

with the intercellular tangential and perpendicular projectors

Pαβi j,‖ = δαβ − nαi j n
β
i j , Pαβi j,⊥ = nαi j n

β
i j , (2.83)

and the cell-boundary projectors

PαβiJ,‖ = δαβ − nαiJnβiJ , PαβiJ,⊥ = nαiJnβiJ . (2.84)

In the above projection operators,ni j represents the normal vector pointing from celli towards cell

j (compare figure 2.21), whereasniJ denotes the normal vector of the boundaryJ at the contact

point with cell i. Therefore, their action on any vectora projects the vector into its tangential or

perpendicular part

nT
i j ·

(
Pi j,‖a

)
= 0 , nT

i j ·
(
Pi j,⊥a

)
= ni j · a . (2.85)

The projection operators (2.83) automatically obey the symmetries demanded in equation (2.80) on

the friction coefficients.
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Figure 2.21: Two-dimensional illustration of intercellular drag forces. The differential velocities
between two cellsi and j (green) in contact may give rise to different drag forces, one proportional
to the tangential part of the velocity difference (brown) and one proportional to the perpendicular
part (blue).

Cells nearly always move in highly dissipative environments. This has the (in view of the numerical

solution fortunate) consequence that the cellular movement is highly overdamped [92, 95, 96]. In the

overdamped approximation (mẍ ≈ 0), equation (2.78) can be cast into the following form,

∑

k,β



γ
αβ
k +

∑

j

γ
αβ
k j +

∑

J

Γ
αβ
kJ

 δik − γαβik

 ẋβk = Fα
i +

∑

j

Fα
i j . (2.86)

From the properties of the friction coefficients it is evident, that the above linear system is symmetric

and in addition diagonally dominant as long asγααi +
∑

J

ΓααiJ > 0 ∀i, α, which holds true if the

viscosityη in equation (2.79) does not vanish, as all diagonal entries in the projection operators (2.83)

and (2.84) are positive. In addition, it should be noted that the system will under normal circumstances

be sparsely populated, since the friction coefficients vanish for all cells not being in direct contact.

An iterative method such as the method of conjugate gradients – compare appendix B.2 – can be

used to find the solution of equation (2.86). Technically, one will be interested in the positions at

time t + ∆t starting from knowledge of the positions at timet. The new positions can be obtained

by discretising the time derivative viȧx = [x(t + ∆t) − x(t)]/∆t and using the method of conjugate

gradients to solve forx(t + ∆t). Note however, that the stochastic forces may depend on the timestep

size∆t (see appendix C.2.3).

So far the cellular radii have been assumed to be constant. If one simply uses time-dependent radii

[77] – as is done within this thesis – one assumes that the cellular ability to grow is not directly
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affected by other processes, i. e., the direct back-reaction of the force distribution on cell growth is

neglected.

An example including cell-cell and cell-boundary friction is illustrated in figure 2.22. Indeed, for

this special example all non-isotropic friction coefficients vanish exceptγαβ03, γ
αβ
04, γ

αβ
23, γ

αβ
34,Γ

αβ
0 ,Γ

αβ
4 .

Consequently, for this example the system (2.86) would assume the form

Figure 2.22: Two-dimensional example for the calculation of drag forces. The dotted lines de-
note the weighted Delaunay triangulation of the set of spheres. Only spheres with cell-cell contact
(overlap, marked green) will contribute to intercellular friction (constants marked in blue). Con-
tacts with external boundaries (overlap, marked orange) will contribute to cell-boundary friction.
Spheres that are not connected in the Delaunay triangulation will not overlap, whereas the inverse
conclusion is not valid.
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(2.87)

where in three dimensions the symbolsF i and xi denote vectors inR3 andγij , γi, andΓi denote

3 × 3 matrices. The symbolO denotes identically vanishing matrices. This system is sparsely pop-

ulated8, which is a great advantage for iterative methods, since the number of necessary multiplica-

tions scales with the number of non-zero matrix entries – provided a sparse storage scheme (compare

8Note that the degree of sparseness will increase further for larger systems, as the average number of off-diagonal

neighbours will become independent on the system size.
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appendix B.1) is used. For the applicability of iterative schemes such as the method of conjugate

gradients it is more important that the system is symmetric and irreducibly diagonally dominated as

long asγααi + Γ
αβ
i > 0 ∀ i, α. This suffices to guarantee the positive definiteness required by

the conjugate gradient algorithm, since any matrixA = (A)i j , which is symmetric (i. e.,Ai j = Aji ),

irreducibly diagonally dominant (i. e.,|Aii | ≥ ∑
j,i

∣∣∣Ai j

∣∣∣ and for onek one has|Akk| > ∑
j,k

∣∣∣Ak j

∣∣∣), and

has only positive diagonal entries (Aii > 0) is always positive definite:

A symmetric matrix can be diagonalised using an orthogonal transformation, which implies real

eigenvalues. Using diagonal dominance and the positiveness of all diagonal entries, one has

Aii ≥
∑

j,i

∣∣∣Ai j

∣∣∣ ∀i , (2.88)

where one can use the Gerschgorin circle theorem to deduce that all eigenvalues of the matrixA are

non-negative. In addition, the determinant will not vanish. This implies that the eigenvalues are all

positive, which is equivalent to positive definiteness.

2.5.5 The cell cycle

Without representations of internal cellular states, the model would merely calculate the mechanical

interaction between a number of adhesive and elastic spheres. Comparisons with experimental data

should be as simple as possible. Therefore, the position in the cell cycle has been characterized by

a discrete variable, which determines the actions of the cellular agents. Within the models discussed

in this thesis, the following internal states are distinguished: G1-phase, S/G2-phase, M-phase, G0-

phase, necrotic, cornified. The states of the cell cycle are illustrated in figure 2.23. It is assumed

that during G1-phase, the cell volume grows at a constant raterV, i. e., the radius increases according

to Ṙ =
(
4πR2

)−1
rV, until the cell reaches its final mitotic radiusR(m). The volume growth raterV is

deduced by assuming that the cellular volume doubles during G1-phase

rV =
2π

(
R(m)

)3

3τG1

, (2.89)

whereτG1 can be deduced from the minimum observed cycle timeτmin and the durations of the S/G2-

phase and the M-phase. Afterwards, no further cell growth is performed. At the end of the G1-phase,

a checkpointing mechanism is performed where the cell can switch into G0-phase. The nature of this

checkpointing mechanism has been chosen depending on the current application within this thesis.

Possible choices include:

• the actual cellular compression [76],
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Figure 2.23: Agent-based model realisation of the cell cycle. During cell division, cells reside
in the M-phase forτ(m). Afterwards, the cell volume increases at a constant rate in the G1-phase,
until the pre-mitotic radiusR(m) has been reached. At the end of the G1-phase, the cell can either
continue the cell cycle or enter the G0-phase, if the necessary conditions are fulfilled – here ex-
emplified by the critical valueTcrit. The S/G2-phase lasts for a timeτS/G2, after which mitosis is
initiated deterministically. The necrotic state (not shown) can be entered at all times in the cell
cycle.

• the cellular tension [77],

• the local nutrient supply,

• the local concentration of toxic substances etc.

After this checkpoint, the cell can either enter the G0-phase or the S/G2-phase. During the S-phase,

the DNA for the new cell division is synthesised, whereas during G2-phase the quality of the produced

DNA is controlled. As this thesis deals with the distribution of cellular tissues on a more macroscopic

level, within the current implementation the S-phase and G2-phase are not distinguished. At the be-

ginning of the phase the individual phase duration is determined using a normally-distributed random

number generator [97] with a given mean and width. After this individual time has passed, the cells

deterministically enter mitosis.

At the beginning of the mitotic phase – which lasts for about half an hour for most cell types – a mother

cell divides and is replaced by two daughter cells. As a modelling assumption, the initial direction of

mitosis can either be chosen randomly [77] (see subsection 2.5.6) or also oriented [76]. For isotropic

tissues such as multicellular tumour spheroids (MTS), the first assumption led to acceptable tissue

morphology, whereas for oriented tissues, an initial orientation of mitosis due to polarized cells might

be expected. Afterwards, the daughter cells are left to their initially dominating repulsive forces
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(2.68). As in the S/G2-phase the individual duration of the M-phase is determined using a normally-

distributed random number generator. The daughter cells enter the G1-phase thus closing the cell

cycle. Note that this model does not differentiate between the internal phases of mitosis such as

interphase, prophase, pro-metaphase, metaphase, anaphase, and telophase.

During G0-phase, the chosen critical parameter (e. g. cellular volume, tension, etc.) is monitored.

Cells then re-enter the cell cycle where they left it if the conditions that led to entrance into the G0-

phase are relaxed. Similar to the S/G2-phase no growth is performed. Therefore, within this agent-

based model, the difference between the S/G2-phase and the G0-phase is that the duration of the

first is determined by the normally distributed individual time that can be derived from experiments,

whereas for the duration of the latter the temporal evolution of the critical mechanism chosen for

G0-induction is the determining factor. Consequently, if the critical mechanism is limited space, the

cells in G0-phase can serve as a reservoir of cells ready to start proliferating as soon as there becomes

enough space available, which is common to many wound-healing models [76]. In chapters 3 and 4

two different critical mechanisms will be specified.

Intuitively, cells enter necrosis at any time as soon as for example the nutrient concentration at the

cellular position falls below a critical threshold. Within this thesis, different mechanisms for the

induction of necrosis will be discussed (see subsection 3.4.1). Naturally, necrotic cells do not con-

sume any nutrients. In addition, they do decay and expel their content into the surroundings [98].

In the model this fact is simply represented by removing these cells from the simulation (compare

subsection 3.2).

Note that the stochastic elements involved in the dynamics of the discrete cellular states are the di-

rection of mitosis and the durations of the M-phase and S/G2-phase. If applied, the first is required

by the local assumption of isotropy, whereas the latter is required by the fact that proliferating cells

having a common progenitor desynchronise rather quickly (usually after about 5 generations [99]):

For these small systems ofO
(
25

)
cells mechanisms such as nutrient depletion or contact inhibition

cannot explain the desynchronisation. It is an empirical fact that times observed in macroscopic bi-

ological systems underly significant stochastic deviations. Therefore, these stochastic elements have

been inserted in the durations of the cell cycle stations.

2.5.6 Proliferation

Within the model, a cell will divide deterministically when the end of the S/G2 phase has been

reached. As discussed before, the initial direction of mitosis can be chosen randomly from a uni-

form distribution on the unit sphere [97]. Note however, that since within dense tissue the cellular
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movement during the M-phase is not only determined by the mitotic partners but by the surrounding

cells as well, the effective direction of mitosis may generally change during M-phase. The radii of

the daughter cells are decreasedR(d) = R(m)2−1/3 to ensure conservation of the target volume during

M-phase and the daughter cells are placed at the distanced0
i j = 2R(m)(1− 2−1/3) to ensure that in this

first discontinuous step the daughter cells do not leave the region occupied by the mother cell (see

figure 2.24). From a numerical point of view, this has the advantage that the surrounding cells are

not immediately disturbed by the mitotic cells. It should be kept in mind that in reality mitosis is a

more continuous process. Furthermore, depending whether one has a symmetric (e. g. in MTS, see

chapter 3) or an asymmetric cell division (e. g. in the basal layer of the epidermis, see chapter 4), the

daughter cells either have the same or a different cell type as the mother cell, respectively. One should

dij

Figure 2.24: Cell configuration during mitosis.Left: At cell division, the radii of the daughter
cellsR(d) (solid circles) are smaller than the radius of the mother cellR(m) (dashed circle) to ensure
conservation of the target volume during M-phase. For symmetric cell division, both daughter
cells have the same cell type, whereas for asymmetric cell division cell types differ. The region
of possible contact loss with further neighbours (not shown) is marked in light grey.Right: The
resulting repulsive forces drive the cells apart quickly. An adaptive timestep control ensures that
the daughter cells do not lose contact with each other during M-phase. Note that the initial direction
of mitosis will in general change due to interactions with additional neighbouring cells (not shown
here). Further intercellular contact may be lost with cells residing perpendicular to the direction of
mitosis.

be aware that at this stage the forces derived from a physically-motivated elastic/adhesive model such

as e. g. the JKR-model (2.68) cannot represent the actual mitotic separation forces, since for the con-

siderable initial overlaph = R(m)(25/3− 2) = R(d)(4− 24/3), these elastic theories have been applied far

beyond their region of validity (compare section 2.5.2). The chosen procedure represents a trade-off

between a good agreement with reality and model simplicity. To increase agreement with realistic

mitosis, it would be possible to set up a more accurate model of cell division that includes conserva-

tion of the actual cell volume during bell-shape mitosis. This however would imply the introduction

of a new dynamic theory which is not backed by quantitative experimental evidence.
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It is visible in figure 2.24 left panel that in the initial step of mitosis, the contact to neighbour cells

(residing off the mitotic axis) may at least temporarily be lost. In dense tissue, such contacts will be

re-established, as the local topology will change to relax mechanical tensions. There is experimen-

tal evidence that for EMT6/Ro tumour spheroids, cell-cell contacts may be lost during mitosis [100].

Consequently, the potential loss of neighbours during mitosis might be regarded a physiological prop-

erty of the model.

With the simple model chosen, it must be kept in mind that with a fixed timestep width, the strong

initial separation forces could lead to instantaneous separation of the daughter cells in the numerical

solution. This technical problem is avoided by an adaptive timestep, which must be applied in the

numerical solution of equation (2.86). This timestep is chosen small enough, such that a defined

maximum spatial stepsize is not exceeded. Even with an adaptive timestep, the initial separation of

mitosis will still happen on a timescale shorter than in reality. One should keep in mind that the

relative shortness of the M-phase in comparison with the complete cell cycle leads to a small fraction

of cells being in the M-phase at a given time. Therefore, one can expect the consequences of this

simplifying assumption to be relatively small.

2.5.7 Model application

For biological applications, the model as introduced in the previous subsections is not specific enough.

Though it is intrinsically consistent, it does not grasp the variety for example of different cell types.

Therefore, the model properties proposed in this section should be interpreted as a basic framework,

upon which further approximations (to enable a computational treatment) and specifications (to ap-

proach a biological model system) can be applied. The more specific models applied in the following

chapters refer to this section as the basic model. Consequently, the basic limitations of the presented

model apply to the discussion in the following chapters as well.

It is evident that agent-based models relying on an intrinsic spherical cell shape do not reflect the

variety of cellular shapes in reality. This does not have to restrict the model to applications, where the

unperturbed cell shape is approximately spherical. In addition, one can consider biological problems

where one can suspect that cell shape and functional mechanisms under consideration are not causally

connected.
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Chapter 3

Multicellular Tumour Spheroids

Having the currently widely-accepted hypothesis of monoclonal origin of cancer in mind [101], agent-

based models evidently bear an advantage in comparison to continuum approaches, since they allow

to track the fate of individual cells. In addition to the cellular automaton approach applied usually

[7, 102], an off-lattice approach allows for continuous cell positions [103, 89]. In these models,

the extent to which cellular interactions have to be replaced by effective rules is smaller than in

corresponding cellular automata. Consequently, the model parameters for physical interactions can –

in principle – be directly measured in independent experiments. The drawback of agent-based – and

in particular off-lattice agent-based – models is their enormous computational complexity. Therefore,

they should not be preferred generally but only after a detailed examination of their use in the chosen

application. In this chapter, two modelling concepts (off-lattice agent-based and continuum) will be

applied to experimental data on multicellular tumour spheroids (MTS). Unlike sometimes done for

continuum models that link the instantaneous cell distribution to the corresponding nutrient levels

[104, 105], the cellular population density will be treated as a dynamic parameter. In addition, both

the distributions of the oxygen and glucose concentrations will be analysed simultaneously.

3.1 Limitations on cell growth

Healthy cells in eucaryots do not follow the exponential growth law, which is expressed in other or-

ganisms such as bacteria in presence of favourable growth conditions. Instead, fully-differentiated

cells usually do not proliferate at all. The large cell numbers encountered in our organism are pro-

duced by populations of asymmetrically-dividing stemcells. There exist many control mechanisms

that ensure that differentiated cells do not proliferate. For example, the endings of the chromosomes

65



66 CHAPTER 3. MULTICELLULAR TUMOUR SPHEROIDS

are protected by telomeres. These telomeres lead to an upper bound on the number of cell divisions,

since in differentiating cells they are shortened with every division. In absence of the telomere pro-

tection, complete failure of the DNA transcription is implied and thus the proliferation cycle is halted.

The resulting theoretical boundary for cell proliferation has been estimated to be about 50 cell divi-

sions [101]. However, for cells with a diameter of 10µm and the specific density of water, this would

still correspond to 590 kg of cell mass! Clinically manifest and stationary tumours are much smaller

which implies that further control mechanisms – leading to loss of cancerous cells – must be at work:

It is known that after the initial malignant mutation, many tumour cells are not able to complete the

cell cycle [101]. However, some immortal tumour cell lines seem to divide indefinitely – at least they

exceed the theoretical boundary of 50 cell divisions by far. Consequently, not only the primary con-

trol mechanisms but in addition the shortening of the telomere endings must be severely disturbed in

these cell lines. A corresponding enzyme – telomerase – has been discovered in stemcells and some

immortal tumour cell lines. The immortality of tumour cells would normally lead to an exponential

growth law. Within culture of solid tumours however, this exponential growth law is observed only

initially:

1. In two-dimensional (monolayer) culture, proliferation of cells in the interior becomes inhibited

– though these are adequately supported with nutrients. Cells situated at a free boundary of the

population will always have enough space and nutrients to follow the normal course of the cell

cycle. If there is not enough space available, cells cease to proliferate – a phenomenon termed

contact inhibition [76, 106]. In unconstrained populations then only a subpopulation continues

to proliferate, which leads to polynomial growth only [77].

2. In three-dimensional spheroid culture, the cells in the interior of the spheroid cannot be sup-

ported adequately with nutrients. Here, the process of contact inhibition is cooperating with

the lack of nutrients emerging in the interior of the cell population [107]. Usually, this lack of

nutrients causes cells to undergo apoptosis or necrosis – processes that differ in many aspects

[98] but in terms of population dynamics result in the same outcome: cell death. Hence, cell

growth is limited further and even complete saturation of spheroid growth has been observed

[108].

The final stages of spheroid growth exhibit a typical pattern in the cross-sections: A core consisting

of mainly necrotic cells is surrounded by a viable layer of quiescent (non-proliferating) cells, which

in turn is surrounded by a layer of proliferating cells [14] (see figure 3.1). This general appearance is

found for many avascularin vivo tumours as well. For many medical applications, MTS constitute a

popular experimental model system, since they are closely mimicking avascular tumours within living
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tissues [109, 110]. This opens the possibility to test the effect of e. g. chemotherapeutic agents under

conditions close to thein vivosystem.
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Figure 3.1: Typical morphology ofin vitro [14] andin silico [66, 77] MTS.Left: Cross-Section
through a three-dimensional MTS, taken from [14]. The inner necrotic core is surrounded by a
layer of quiescent cells, which in turn is surrounded by a layer of viable cells – the bar represents
250 µm. Middle: This qualitative picture can be reproduced in an agent-based model [77], cal-
culated for 0.28 mM oxygen and 16.5 mM glucose concentrations, and cell diameters of 10µm.
Right: In a continuum model [66] cellular dynamics is represented by partial differential equa-
tions. For different modelling assumptions (black and red), the radial distribution of cell densities
yields the same qualitative picture (dashed curves mark viable cell densities, whereas dotted curves
denote necrotic cells).

Even such a simple experimental model represents a highly-coupled system of many involved factors:

As there are evident differences in object sizes –O (µm) for cells,O (nm) for nutrient molecules –

and nutrient molecules do not move actively, the dynamics of the nutrients can be well-described

by RDEs using effective diffusion coefficients and reaction rates [66, 103, 105, 111]. The dynamics

of the cellular movement however is not fully understood at present. Agent-based models provide

many possibilities to test hypotheses on cellular kinetics and the cell numbers observed in EMT6/Ro

spheroids (in the order of 105 . . . 106 cells [107]) are at the feasibility limit of current agent-based

models.

3.2 An agent-based approach : Model details

3.2.1 Dynamics of cells

Within agent-based approaches to cell tissue, every cell is interpreted as a separate entity interacting

with its neighbours. For the calculation of the dynamics of these entities, the model has been built on
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the basic description given in subsections 2.5.4, 2.5.5, and 2.5.6. In addition, owing to the large cell

numbers encountered in MTS, the following simplifications/specifications have been performed [77]:

1. Intercellular friction has been assumed to be small in comparison to cell-matrix friction, i. e.,

with the assumptionγαβi j ≈ 0 the equations of motion (2.86) become diagonal in the absence of

boundaries. Note that for systems ofO
(
106

)
cells the solution of the complete system would

become virtually impossible in reasonable time by using the method of conjugate gradients

(compare figure B.2 in the appendix for at most 40000 cells). However, in order to preserve

the fact that cells having many bounds to their next neighbours will experience stronger drag

forces than free-floating cells, the diagonal entries in the dampening matrix have been modified

according to

γ
αβ
i = δαβ

6πηRi + γmax
∑

j∈NN(i)

1
2

(
1− F i · ni j

|F i |
)

Ai j (t)

2

(
crec

i clig
j + clig

i crec
j

) , (3.1)

where the first term represents the usual Stokes friction terms (withRi denoting the radius of

cell i), andAi j (t) denotes the contact surface between cellsi and j. The model parameterγmax

determines the degree of intercellular friction. With this choice, movements leading to cell

separation are suppressed strongest, whereas for movements of cells towards each other one

has no additional friction. Note that despite the occurrence ofδαβ this is not an isotropic choice,

since the net force on a single cellF i =
∑

j∈NN(i)
F i j directly contributes to the calculation of the

friction coefficient. This is in direct contradiction with with equations (2.86), as there the net

differential velocity determines the magnitude of the drag forces.

2. As a contact model a simple linear combination of the purely repulsive Hertz model [70, 84]

and an adhesive contribution scaling linearly with the effective contact surface has been chosen

Fi j = +
h3/2

i j (t)

3
4

(
1−ν2

i

Ei
+

1−ν2
j

E j

) √
1

Ri (t)
+ 1

Rj (t)

− f adAi j (t)

2

(
crec

i clig
j + clig

i crec
j

)
, (3.2)

where the first term is as well yielded from the JKR-model (2.63) in the special case of vanishing

contact surface energyεi j = 0, and the second term is the simplest possible choice motivated

by the assumption that the adhesive forces are proportional to the effective contact surface. The

force is positive (repulsive) for large virtual overlaps, and negative (attractive) for small virtual

overlapshi j .
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3. For the calculation of the intercellular contact surfaces the pure sphere contact area may yield

a wrong estimate of actual contact surfaces (compare subsection 2.3.9). Therefore, as an im-

proved measure for intercellular contact, the minimum of the sphere and the Voronoi contact

surfaces has been chosen to calculate the intercellular contact surfaces in equations (3.2) and

(3.1)

Ai j = min
{
ASphere

i j ,AVoronoi
i j

}
. (3.3)

This yields reasonable estimates for intercellular contact surfaces both in the low-density and

the high-density limit (compare subsection 2.5.3).

4. The possible cellular states are given by M-phase, G1-phase, S/G2-phase, G0-phase, and

necrotic. No distinction between necrosis and apoptosis has been made.

5. In the agent-based model [77], the criterion for entering G0-phase has been chosen to be the

sum of the normal tensions Tcrit, whereas in some other applications [89] the free cell volume

as defined in subsection 2.5.3 has been chosen. Both choices result in the common effect

that in overcrowded regions cell growth will be halted. Whether cell sense the acting normal

tensions or whether they sense their admitted volume should be discriminated in microscopic

experiments.

With using these approximations, the system (2.86) becomes diagonal, i. e., if no additional boundary

conditions are imposed, one has

ṙαi =
Fα

i

γααi

=

∑
j∈NN(i)

Fα
i j

6πηRi + γmax
∑

j∈NN(i)

1
2

(
1− F i ·ni j∣∣∣∣F i

∣∣∣∣

)
Ai j (t)

2

(
crec

i clig
j + clig

i crec
j

) . (3.4)

In general, the force terms may contain additional random forces. Thereby, both passive cell move-

ments (resulting from Brownian motion) and random active cell movements will contribute. For the

chosen example of EMT6/Ro tumour cells, only passive random motion (compare appendix C.2.3)

has been assumed. Via the Stokes-Einstein relation

D =
kBT
6πηR

(3.5)

the diffusion constant for passive random motion can be estimated. The corresponding diffusion

constants lead to rather small cellular displacements. Nevertheless, at the boundary of growing tumour

spheroids this might lead to separation of cells on the proliferating front. However, it has turned
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out during the simulations that after some time the proliferation-driven tumour front will generally

overtake cells that have separated due to random movements. In addition, it turned out that the

stochastic nature contained in the mitotic direction and the duration of the cell cycle obviously suffices

to yield isotropic tumour spheroids. Therefore, the agent-based simulations on tumour spheroids have

been performed without explicit stochastic forces, unless otherwise noted.

3.2.2 Nutrient consumption and Cell Death

The nutrient uptake rates can in principle depend on the cell type, the local concentration of both

nutrients, the existence of internal cellular nutrient reservoirs and many other factors. However, few

information about the dependence on determining factors is known: Many rates in the literature [104,

112] are average values given in units of mol per seconds and volume of tissue, since these data

are obtained from whole cell populations without regard to the individual cell size, position in the

cell cycle and other factors. There is evidence for a dependence of the nutrient uptake rates on the

local nutrient concentration [113]. For example, when dealing with a single nutrient, quite often a

Michaelis-Menten-like concentration-dependent nutrient uptake rate

rnut =
rmaxunut

u1/2 + unut
(3.6)

is assumed [99, 111, 114, 115]. This however means the introduction of a further parameter that may

be difficult to fix depending on the data available. The values obtained foru1/2 in the literature for

oxygen-dependent proliferation ([116],u1/2 = 0.0083 mM) point into the direction that the oxygen

consumption rates are within the range of saturation for the data in [107], since in the agent-based

simulations [77] the local oxygen concentration has always been considerably larger (≥ 0.04 mM

throughout the spheroid volume). For simplicity, constant cellular oxygen and glucose uptake rates

have been assumed for non-necrotic cells in the present model.

Depending on the cell type and on the local nutrient concentrations cells undergo apoptosis and/or

necrosis when subject to nutrient depletion [107]. For simplification, in this application necrosis has

been chosen as the dominant pathway to cell death and the effects of apoptosis have been neglected,

though there is experimental evidence that these processes are linked with each other [98]. Necrotic

cells tend to decay, thereby expelling their content.In vivo this leads to processes such as inflamma-

tion, whereas inin vitro experiments their content is passed into the fluid phase: The pressure of this

fluid phase is assumed to be equilibrated at all times throughout this thesis, therefore its existence does

have no further consequences than the removal of necrotic cells. These are removed randomly from

the simulation with a raternecr. The effect of apoptosis in the simulation would be similar, though

apoptotic cells do not break apart like necrotic cells but shrink and afterwards dissolve into small
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apoptotic bodies [117]. Thus, for the overall outcome of the total growth curve inin vitro systems

– where macrophages lysing these apoptotic bodies are not included – insignificant changes can be

expected by including apoptosis into the model.

With the computer simulation model, different hypotheses on which critical parameters may influence

the onset of necrosis can be tested: First, the possibility that there exist critical concentrations for the

two nutrients separately has been tested. However, in this case either the glucose or oxygen con-

centration dominantly limit the cell population dynamics. This does not reproduce the experimental

data, since low oxygen and large glucose concentrations can result in similar population dynamics as

large oxygen and low glucose concentrations [107] and when both nutrients are kept at the minimum

values, the overall growth dynamics is even more suppressed. Therefore, both nutrients have to be

considered to be limiting in the special cases. This is further underlined by the fact that the growth

curves for one of the nutrient concentrations being kept constant depend strongly on the concentra-

tion of the other nutrient. In addition, there could be other processes such as necrotic waste material

inducing apoptosis and/or necrosis [7, 105], which will not be considered here. The simplest ansatz

fulfilling this condition is the product of both nutrient concentrations as a critical parameter.

Here, only the case ofin vitro (avascular) tumour growth is considered and therefore it is assumed

that the transport of nutrients is performed passively by diffusion. The diffusion through tumour tissue

and through the culture medium is described by RDEs

∂uox/gluc

∂t
= ∇

[
Dox/gluc(x; t)∇uox/gluc(x, t)

]
− rox/gluc(x; t) , (3.7)

whereuox/gluc(x, t) describes the local oxygen or glucose concentration,Dox/gluc(x; t) the local effective

oxygen or glucose diffusion coefficient (which depends implicitly on time via the cellular positions)

androx/gluc(x; t) the local oxygen or glucose consumption rate. Though formally equation (3.7) admits

negative nutrient concentrations (even at low concentrations negative sink terms may in principle

exist), this can never happen in reality (provided the timestep is not too large): Cells will enter necrosis

(thereby stopping nutrient consumption) if the local nutrient concentrations become too small. As

the reaction rates depend on the cellular viability, they become implicitly dependent on the nutrient

concentrations (see subsection 2.5.5).

Since the diffusion coefficients of oxygen and glucose are 6 orders of magnitude larger than typ-

ical motilities obtained for random cellular movement, the pseudo-steady-state approximation has

been applied for the RDEs of the nutrients [104, 111, 115, 118]. This included the recalcula-

tion of the nutrient concentrations from the time-dependent cellular positions at fixed timesteps of

∆t = 500 s in the steady-state approximation. The pseudo-steady-state approximation is justified for

timesteps∆tnut
>∼ 500 s, because the associated diffusion lengthLD =

√
6D∆tnut for ∆tnut = 500 s
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and the smallest occurring diffusion coefficient (glucose in tissue) is with 560µm larger than the

largest spheroid radius (380µm) observed during the agent-based simulations. This implies that

after ∆tnut, the steady-state will be nearly reached (if not already present from the beginning, com-

pare appendix C.2.3). However, this argument does not consider that during the time∆tnut, the cell

position and number changes. The error contribution arising from the cellular mobility can be ne-

glected, since cellular movement is much slower than diffusion of nutrients in this example. An upper

bound on the error contribution arising from cell proliferation can be estimated as follows: Since for

large tumour spheroids cell division is desynchronised, the number of created cells will behave as

∆N/N ≈ (∆tnut/τmin), if growth retardation effects like contact inhibition are absent (worst case esti-

mate). With constant cellular nutrient uptake rates, this ratio directly translates to the change of the

sink termsrox/gluc(x; t) in equation (3.7). Consequently, the time∆tnut should be chosen considerably

smaller than the characteristic length of the cell cycle as well (compare table 3.1 on page 89).

As the numerical discretisation of (3.7) will be discrete on a rectangular lattice (see subsection 2.4.2)

and the cellular positions are continuous, tri-linear interpolation has been used to determine the local

nutrient concentration at the position of a cell

u [ r(t), t] = u000(1− λx)(1− λy)(1− λz)

+u100λx(1− λy)(1− λz) + u010(1− λx)λy(1− λz) + u001(1− λx)(1− λy)λz

+u110λxλy(1− λz) + u101λx(1− λy)λz + u011(1− λx)λyλz + u111λxλyλz , (3.8)

where the time-dependentui jk(t) denote the concentration on the lattice nodes of the cuboid contain-

ing r and the implicitly time-dependentλx/y/z [ r(t)] denote the normalised coordinates relative to the

cuboid front left bottom corner. Likewise, the cellular reaction rates – given in mol cell−1 s−1 – are

distributed amongst the eight corners of the cuboid after being renormalised by the cuboid volume.

Note that tri-linear interpolation yields a continuous, but not a continuously differentiable function.

In order to describe processes such as some forms of chemotaxis [7, 119, 120], where cells sense con-

centration gradients without temporal integration of the local signal [121, 122], a higher-order spline

must be used that is continuously differentiable.
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3.3 A continuum modelling approach : Model details

3.3.1 Dynamics of Cells and Nutrients

A continuum model that is closely related to the agent-based model discussed previously can be given

by the following partial differential equations of the RDE type [66]

∂Cox

∂t
= ∇ [Dox(r; t)∇Cox(r, t)] − λoxCvb(r, t) ,

∂Cgl

∂t
= ∇

[
Dgl(r; t)∇Cgl(r, t)

]
− λglCvb(r, t) ,

∂Cvb

∂t
= ∇ [Dcell(r; t)∇Cvb(r, t)] + α [Cnc,Cvb] Cvb(r, t) − β

[
Cox,Cgl

]
Cvb(r, t) ,

∂Cnc

∂t
= ∇ [Dcell(r; t)∇Cnc(r, t)] + β

[
Cox,Cgl

]
Cvb(r, t) − γCnc(r, t) , (3.9)

whereCox(r, t),Cgl(r, t),Cvb(r, t),Cnc(r, t) represent the concentrations of oxygen and glucose, and the

densities of viable and necrotic cells, respectively. The coefficientsDox/gl(r; t) represent the effective

diffusivities of oxygen and glucose. As in real tissue the presence of cells and extracellular matrix

significantly changes the effective diffusion coefficients for the nutrients [65] (compare table 3.1 on

page 89) – this has been incorporated into the model by assuming the simple linearised relationship

Dox/gl [Cnc + Cvb] =


DH2O

ox/gl − Cnc+Cvb

Cthresh

(
DH2O

ox/gl − Dtissue
ox/gl

)
: Cnc + Cvb < Cthresh

Dtissue
ox/gl : else

(3.10)

whereDH2O
ox/gl andDtissue

ox/gl are the measured diffusivities in water and tissue, respectively, and the cellular

threshold concentration is just the inverse cell volumeCthresh = 0.74/Vcell, where the correction fac-

tor 0.74 arises from the maximum cell packing density that could be achieved with the agent-based

model of section 3.2 if hard spheres are considered. The choice of a linear dependence on the cel-

lular density is the simplest dependence that approximates theoretical investigations [123, 124] for

heterogeneous media. Therefore, the diffusivities for oxygen and glucose become implicitly space

and time-dependent, as the populations of necrotic and viable cells evolve. Many authors in the lit-

erature use non-variable diffusion constants for the dynamics of nutrients. For small molecules such

as oxygen, this approach is well justified but for glucose, the diffusion coefficients within water and

tissue may vary by nearly one order of magnitude (compare table 3.1 on page 89). Note that in the

agent-based approach, intermediate values for the diffusion coefficient are not included. However,

in the numerical discretisation, also in the agent-based approach the solution is obtained by linearly

interpolating the diffusion coefficients between neighbouring volume elements (see subsection 2.4.2).
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The cellular diffusion coefficient Dcell is a rough measure for describing cellular mobility: For ex-

ample, when starting from mass balance equations of the form∂C
∂t + ∇(vC) = R(r, t), whereC is a

concentration,v denotes the flux velocity andR(r, t) the local net production rate [125], one recovers

the law of diffusion by assuming that the velocity is directly proportional to the gradient of concen-

trationv = −D∇C. In a simple ansatz the diffusion coefficient may be influenced by the total cellular

densityCvb + Cnc. In analogy to a model for animal dispersion [9], the relationship

Dcell[Cvb + Cnc] = D0
cell

(Cvb + Cnc

Cthresh

)m

(3.11)

has been chosen here, wherem ≥ 0 is assumed. In casem > 0 the above choice ensures that

the net diffusion coefficient will increase if the cellular concentration exceeds the dense packing (thus

effectively modelling intercellular repulsion) and that it will decrease if the total cellular concentration

is very small (approaching intercellular adhesion). Naturally, form = 0 the normal diffusion constant

is recovered. Note however that the above choice fails to correctly reproduce adhesion: It is – in

contrast to other theoretical approaches [115, 126, 127] – positive definite which implies that the flux

is always directed towards regions of lower concentrations.

With equations (3.9) it is tacitly assumed that the nutrient uptake rates of viable cells are independent

of the cellular status and the local nutrient concentrations and hence, the constantsλox/gl should be

interpreted as cellular nutrient uptake rates that have been averaged over the whole ensemble of cells

present in a MTS. The coefficientα [Cnc,Cvb] denotes the cellular proliferation rate. To compare with

the agent-based model, it should reflect at least the phenomenon of contact inhibition. One of the

simplest functional dependencies fulfilling this requirement is given by the continuous function

α [Cnc,Cvb] = α [Cnc + Cvb] =



αmax : Cnc + Cvb ≤ Cthresh

αmax
Ccrit−(Cnc+Cvb)

Ccrit−Cthresh : Cthresh< Cnc + Cvb ≤ Ccrit

0 : else

, (3.12)

whereαmax is the largest cellular proliferation rate for the chosen cell type (compare table 3.1 on

page 89). Note that this is different than in the agent-based approach, where the sum of the normal

tensionTcrit was considered as the quiescence-inducing factor. The constantCcrit can be related to

agent-based models [76]: The criterion that cells can proliferate only if they are not compressed by

more than a factorKcrit < 1 is equivalent to defining

Ccrit =
Cthresh

Kcrit
, (3.13)

where 0< Kcrit < 1 is a free parameter which denotes the compression factor below which cells are

contact-inhibited. Note that in contrast to other approaches, where the compression only decreases the
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global growth rate indirectly by effectively transporting cells from overcrowded regions into regions

with a net negative growth rate [125, 126, 128], here the compression directly acts on the proliferation

rate.

In order to account for the emergence of a necrotic core, the transition from the viable cell state to

the necrotic cell state should be determined by the local concentrations of nutrients. In order to be

consistent with the agent-based attempt and following the arguments in subsection 3.2.2, the local

product of both concentrations has been chosen as the critical parameter inducing necrosis:

β
[
Cox,Cgl

]
= β

[
Cox ·Cgl

]
=


βmax : Cox ·Cgl ≤ Pcrit

0 : else
, (3.14)

whereβmax is a maximum transition rate andPcrit denotes the minimum nutrient concentration product

to sustain cellular life functions without triggering necrosis or apoptosis. Note that it is assumed

that necrosis is a faster process than cell proliferation, which implies thatβmax > αmax should hold.

More important, for necrosis to be able to effectively reduce the cell number, the inequality must

hold strictly, since for cell concentrations below the threshold levelCthresh the effective death rate in

necrosis-inducing regions is determined byβmax− αmax. Assuming a necrosis duration of roughly 3

hours [129] and a minimum cell doubling time of 15 hours [107] one would obtainβmax ≈ 6.5·10−5 s−1

versusαmax ≈ 1.3 · 10−5 s−1. As in the agent-based model (compare subsection 3.2.2), the pressure

of the fluid phase is assumed to be equilibrated and therefore the removal of necrotic cells results

into the sink termγCnc for the necrotic cell population, withγ being the necrosis removal rate. In

order to enable comparisons with the agent-based approach, the value ofγ has been chosen identically

(compare table 3.1 on page 89 and the discussion in subsection 3.4.4).

3.3.2 Solution of the model equations

Since the coefficientsα andβ in (3.9) depend on the concentrations themselves, it is obvious that

even form = 0 the model equations constitute a nonlinear system which may give rise to nontrivial

dynamics. Some model parameters – compare table 3.1 on page 89 – can be used as fit parameters for

experimental MTS data. This is especially interesting for the nutrient uptake ratesλgl andλox and the

critical compressionKcrit, since these parameters can hardly be accessed directly in experiments. In

addition, different hypotheses on the functional dependence ofα andβ as well asm can in principle

be tested to be in accordance with experimental data.

Since mostin vitro tumour spheroids are approximately spherical [14, 110, 130], spherical symmetry

has been assumed in all equations, which simplifies the numerical solution of equations (3.9) consid-

erably. It is possible however, to extract simple characteristics of the model analytically from direct
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examination of equations (3.9): The only back-reaction of the nutrients to the population of viable

cells is mediated via the death rateβ. Since in (3.14) a non-continuous dependence has been assumed,

the dynamics of the viable cellsCvb will decouple from the nutrient concentrations in spatiotemporal

domains whereβ = 0. In accordance with the (ideal) experiment, one will usually start with initial

conditions, where there is an identically vanishing population of necrotic cells, a very localised dis-

tribution of viable cells, and nutrients in abundance. In this regime, the death rateβ will vanish. In

case ofm = 0 and approximating the Laplace operator for large radii, the equation for the viable cells

can then be rewritten as

∂Cvb

∂t∗
=
∂2Cvb

∂r2
+ f [Cvb] , (3.15)

with t∗ = D0
cellt and f [Cvb] =

(
α[Cvb]/D0

cell

)
Cvb. Since f [Cvb = 0] = 0 and f [Cvb = Ccrit] = 0,

above equation will asymptotically exhibit travelling wave solutions (see [9] and references therein)

for large radii with velocityv = 2D0
cell

√
f ′(0) = 2

√
αmaxD0

cell, which is reproduced in the numerical

solution (see figure 3.2). Note that this wave velocity is obtained as well if cell death is admitted: The

death rateβ will not contribute to the velocity of the advancing wave front because there the nutrient

levels are comparably large. Instead, it will lead to a temporally-exponential decrease of the viable

cell density within regions through which the wave has passed.

In case ofm > 0 the situation is more difficult: Considering the dynamics of viable cells in the same

regime (α = αmax andβ = 0) one obtains (under radial symmetry and for large radii) in travelling-

wave coordinates [9, 111, 131] an ordinary nonlinear differential equation

D0
cellαmax

v2

( Cvb

Cthresh

)m−1 [
C′′vbCvb + mC′vbC

′
vb

]
+ Cthresh(Cvb′ + Cvb) = 0 , (3.16)

whereC′ denotes differentiation with respect to the travelling wave coordinatez = αmax
v (r − vt). Equa-

tion (3.16) has no obvious analytical solution. The general structure however suggests that in the

vicinity of m = 0 no singularities occur and therefore one can expect that the solutions will exhibit a

continuous transition. This is well reflected in the numerical solution (figure 3.2): Form> 0 a travel-

ling wave is found as well, but the wave front is steeper and the apparent wave velocity is decreased

considerably.

The existence of a travelling wave solution with constant amplitude and width already implies that

the system (3.9) will not exhibit a steady-state in terms of the number of viable cells

Nvb(t) = 4π
∫

r
r2Cvb(r, t) dr , (3.17)

since the radial volume element would still lead to polynomial growth.
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Figure 3.2: Travelling waves in the continuum approach [66]. The concentration of viable cells
resembles travelling waves – here calculated for situations where the cellular dynamics decouples
from the existence of nutrients (βmax = 0) with αmax = 1.28 · 10−5 s−1, D0

cell = 0.001µm2 s−1, and
Kcrit = 0.9. Curves advancing from left to right represent densities of viable cells after 4.63 days,
9.26 days, 13.89 days, 18.52 days, and 23.15 days. Form = 0 (bold black lines), the asymptotic
analytical wave velocity is 19.6 µm day−1 [9], which is found in the numerical solution as well.
It can be shown by a stability analysis of (3.16) that the concentration must reach the critical cell
densityCcrit, that has been marked together with the threshold cell densityCthresh< Ccrit by dashed
horizontal lines. Form = 2 (dashed red lines), the apparent wave velocity of the numerical solution
decreases considerably tov ≈ 9 µm day−1. In addition, the cells tend to aggregate leading to more
localised distributions, which is reflected by the steeper decaying cell front.
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For the numerical solution, a sphere with radius of 500µm – divided into 100 concentric shells of

constant thickness∆r – and Dirichlet boundary conditions for all populations has been considered

(for the details of the numerical discretisation see subsection 2.4.2 or [66]). The choice of Dirichlet

boundary conditions for the nutrient concentrations is motivated by the experiment [107], where the

measured nutrient concentrations outside the spheroids remained approximately constant between the

periodic refills of nutrient. Dirichlet boundary conditions for the cell populations emerge naturally in a

multiphase approach [115] as well. However, with the stationary boundaries employed here, it should

be verified that the assumption of vanishing Dirichlet boundary conditions for the cell populations

does not make a difference to no-flux von-Neumann boundary conditions in the observed time-range

of 25 days, i. e., essentially that the cell population does not interact with the boundary. This ap-

proximation is only valid for the small cellular diffusion coefficient, since larger diffusion coefficients

lead to an increased velocity of the advancing tumour front. As already argued in subsection 3.2.2,

the pseudo-steady-state approximation (compare appendix C.1.2) has been applied for the RDEs of

the nutrients. The volume integral (3.17) of all densities yields the total cell numbers for viable and

necrotic cell populations or the total number of glucose and oxygen molecules in the reaction volume,

respectively. This opens the possibility of comparison with an experimental signature.

3.4 Results

Some parameters have been fixed from values from independent experiments (see subsection 3.4.4)

and based on observations on MTS with EMT6/Ro cells [107], several computer simulations with the

agent-based and the continuum model have been performed. The difference to experimental growth

curves has been minimized by applying a deterministic multi-dimensional fitting procedure [68] to the

models (see appendix C.3), but owing to the long runtime of the agent-based model, this procedure

was only successful for the continuum approach. Following the assumption that whole spheroid

populations were grown from single tumour cells (monoclonality of spheroids), all simulations have

been started with a single cell in a localised (stepwise) distribution, such that the density was non-

vanishing in the innermost volume compartment only. Note that within the continuum approach, this

over-extrapolation of continuum theory to few initial cells did not lead to significant errors for the

chosen discretisation, as these initial deviations from the agent-based approach were small, compare

figure 3.3. From the culturing conditions described in [107] it is not clear whether the spheroids

started from single cells. In fact, it is highly probable that tumour cells already aggregated before

spheroid formation. Nevertheless, this would mainly correspond to a shift in time – as can be verified

in the models – since the initial conditions can still be safely assumed to exclude processes such as
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contact inhibition or nutrient depletion. Using the models from sections 3.2 and 3.3, growth curves

have been calculated for different nutrient concentrations and different hypotheses on nutrient uptake,

necrosis induction, and cellular mobility. The simulations have been compared with four series of

experimental data, where four different combinations of oxygen and glucose concentrations have been

investigated. Naturally, within one set of simulations all parameters but the nutrient concentrations

have been kept fixed. The fitting procedure has been started from different parameter sets and the best

minimum has been kept.

3.4.1 Population Dynamics

The overall cell number is a parameter which can be quantified experimentally by either indirectly cal-

culating cell numbers from observed tissue volumes or directly by extensive automated cell-counting.

In [107] the cell number has been determined directly for moderate cell numbers and different con-

centrations of oxygen and glucose. Qualitatively, one can see that for all the simulations the initial

exponential growth phase soon enters a crossover to a polynomial growth. Within the model this

crossover is due to two distinct mechanisms – contact inhibition and nutrient depletion – which lead

to the similar outcome that after a certain time dominantly the spheroid surface will contribute to the

proliferation, i. e.,

dN
dt

= αN2/3 , (3.18)

which has the polynomial solutionN(t) = N0

[
1 + βt + β2t2/3 + β3t3/27

]
with β = α/N1/3

0 . Apart

from the fact that necrosis is evidently more likely when nutrients are rare, the mechanisms cannot be

clearly distinguished with a glance at the total growth curves in figure 3.3.

The total cell numbers in figure 3.3 demonstrate that the assumption of the nutrient concentration

product being a critical candidate for necrosis suffices to explain experimental data within the level of

their own uncertainty. This is independent of the model chosen and thus can be considered a robust

feature. Unfortunately, no error bars are given in [107] and the experimental data scatter consider-

ably even on a logarithmic scale. The visual difference between agent-based and continuum models

reflects beyond inherent model differences also the fact that due to the long runtime the automated

minimization procedure (compare appendix C.3) can be applied to agent-based models with limited

success only. In addition, it is found that for the continuum model the possibility of leavingmas a fit

parameter does not significantly improve the quality of the fit. The corresponding differences become

visible in other experimental signature such as the spheroid morphology (compare figure 3.6). Note

that none of the model approaches displays a saturation of growth. However, such a saturation is not

clearly indicated by the quantified experimental data as well.
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Figure 3.3: Number of viable cells per spheroid [66, 77] for different nutrient concentrations.
Comparison of the agent-based model (top row) and different versions of the continuum model
(bottom row) to experimental data (symbols, read off from [107]). Nutrient concentrations corre-
spond to the conditions in the experiment. The simulations (solid lines) have been started with a
single cell (or the closest realisable cell distribution in the continuum case). For small cell num-
bers, the discreteness of the agent-based model is visible by the initial discontinuities in the cell
numbers. For the continuum model, dashed lines (visible for low nutrients) indicate the special
variant withm = 0, whereas for the solid linesmhas been varied as a fit parameter.
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Since the mechanism of contact inhibition leads to cells resting in G0 rather than cells entering necro-

sis the differences can be analysed in the cell cycle distribution in figure 3.4 (compare also figure 3.6

for the PDE model). In figure 3.4 it is evident that for 0.07 mM oxygen and 0.8 mM glucose concen-

trations (upper left panel) the nutrient starvation is the dominant limiting factor to cell cycle inhibition,

since there are nearly no cells in G0-phase and the majority of cells is necrotic. In the case of nutri-

ent abundance (0.28 mM oxygen and 16.5 mM glucose, figure 3.4 lower right panel) however, the

majority of cells resides in G0-phase during days 6-23, which is an indication for contact inhibition

being the dominant reason for the crossover, as is also assumed in other models [76]. This is as well

confirmed by the cross-sections of the computer simulated tumour spheroids (figure 3.5). Though

in the case of nutrient abundance necrosis sets in much later, the number of necrotic cells rises at a

much stronger slope and it is to be expected that necrosis will displace the contact inhibition as the

major cause for surface-dominated growth after 25 days (with overall roughly 5· 105 cells involved,

the simulations become very extensive and memory-consuming). Such a displacement of dominating

mechanisms is already visible for some intermediate nutrient concentrations. For example, in the case

of 0.07 mM oxygen and 16.5 mM glucose concentrations (figure 3.4 top right panel) the number of

cells in G0-phase first rises to reach its maximum after 10 days and afterwards decays in combination

with a strong rise in necrotic cells. Such a behaviour is not observed in the regime of large oxygen and

low glucose concentrations, where necrosis and contact inhibition set in simultaneously and nutrient

starvation is the main limiting factor (figure 3.4 bottom left panel). This is due to the considerably

decreased glucose diffusion coefficient in tumour tissue, whereas the diffusion coefficient of oxygen is

nearly the same in tissue and water. Consequently, the already low glucose concentration of 0.8 mM

at the boundary drops rapidly when the number of tumour cells increases, since new glucose supply

diffuses very slow from the outside.

The reduced PDE model does not resolve the internal states of the cell cycle. However, in figure 3.6

it is visible that for low nutrient concentrations contact inhibition is not existent, whereas for large

nutrient concentrations contact inhibition dominates necrosis as the cause for growth retardation. This

is in qualitative agreement with the agent-based approach. However, in contrast to the agent-based

model, the PDE model hardly differentiates between cases where only one nutrient is limited.

3.4.2 Tumour Spheroid Morphology

To estimate the quality of a mathematical model one has to find experimentally accessible parameters.

This is especially difficult when thinking about tissue morphology, since very often the patterns are

hard to quantify in terms of numbers. It is evident that the spherically-symmetric continuum model
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Figure 3.4: Cell cycle distributions for agent-basedin silico MTS [77]. Depending on the external
nutrient concentrations, significant differences mark the dominance of different mechanisms to
limit the cell cycle. The nutrient concentrations have been chosen as follows:Top left: 0.07 mM
oxygen, 0.8 mM glucose,Top right : 0.07 mM oxygen, 16.5 mM glucose,Bottom left: 0.28 mM
oxygen, 0.8 mM glucose,Bottom right : 0.28 mM oxygen, 16.5 mM glucose. Fits to the regions
of exponential growth (dashed lines) – marked by the complete absence of necrotic and quiescent
cells – reproduce the shortest observed cycle time within statistical fluctuations depending on the
random number generator seed. The initial oscillations in the sub-populations in the cell cycle
stem from the fact that the cells divide synchronously at the beginning. Their frequency is the
inverse cell cycle time. After each cell division, the daughter cells draw new duration times for the
S/G2-phase and the M-phase from a normal distribution (compare table 3.1 on page 89), which
leads to a dampening of the oscillations and finally to complete desynchronisation of cell division.
The occurrence of contact inhibition or necrosis increases the dampening effect, since the advance
through the cell cycle is disturbed. In the case of few nutrients (top left), contact inhibition does
not play a role as there are no quiescent cells.
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will produce nothing but spherically-symmetric morphologies. However, further parameters such as

spheroid size, thickness of the viable rim etc. can still vary. Qualitatively, the typical spheroid mor-

phology (proliferating rim, quiescent layer, necrotic core) is well reproduced in the case of nutrient

abundance by both models (figures 3.5 and 3.6). In addition, both models predict that in the case of

nutrient starvation there is virtually no layer of quiescent cells, as contact inhibition is not of impor-

tance in this scenario. Note however, that this would be different if quiescence is induced by nutrient

limitations: In this case, the necrotic core would always be surrounded by a layer of quiescent cells.

For both models it is evident that the size of the layers depends on the boundary concentrations. In

addition, it depends on the nutrient consumption rates and diffusivities of oxygen and glucose within

the tumour tissue.

Due to the removal of necrotic cells with rateγnecr, the cellular density within the necrotic core is

considerably decreased in comparison to the viable layers in both the agent-based model (figure 3.5)

and in the continuum model (figure 3.6). In the agent-based model, this is reflected in the decline of

the cell tensions in the necrotic core (bottom row of figure 3.5). For different situations, namely inin

vivo tumours, sometimes large pressures of the fluid phase in the necrotic core have been observed

(private communication with Prof. Dr. Peter Walden, Charité Berlin). This is neglected in the current

model, since the pressure of the fluid phase is assumed to be equilibrated.

Note that in the spheroid cross-sections (figure 3.5) it is evident that – if oxygen and/or glucose are

limited – a relatively small number of cells with constant nutrient uptake rates suffices to drop the

nutrient levels under the critical threshold thus leading to the onset of necrosis and the absence of a

layer of quiescent cells in the end of the simulations (compare figure 3.4). This would be different

for a model with concentration or cell-cycle dependent nutrient uptake rates. In the first case the

absolute value of the nutrient concentration gradients would be decreased thus giving rise to a broader

viable layer which – in turn – could allow for the existence of a quiescent layer. In the second

case the intermediate emergence of cellular quiescence would as well decrease the absolute value

of the nutrient concentration gradient towards the necrotic core, which would prolong and possibly

stabilise the existence of a quiescent layer also for nutrient-depleted configurations. Therefore, in

order to distinguish between nutrient uptake models, the tumour spheroid morphology is an important

criterion, whereas the simple total growth curve is not sufficient to make quantitative predictions about

the mechanisms at work.

Interestingly, the spheroids in figure 3.5 are fairly round, especially for the case where nutrients are

provided in abundance. This is due to the stochastic nature of the mitotic direction which forces initial

differences to average out after some time. The general growth characteristics is hardly sensitive to

the specific order of the stochastic events (different instantiations can be created by restarting the code
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with equal parameters but different seed values for the random number generator) – the growth curves

initially display slight differences but recombine soon (data not shown). This is in agreement with

many spheroids observed in the experiment [107] and in other computer simulations [103]. However,

the spheroids are less spherical for extreme nutrient depletion, since firstly the small cell number

yields less stochastic events that contribute to the averaging and secondly the emergence of localised

holes in the necrotic core is not counterbalanced by a strong mainly isotropic proliferative pressure

from the proliferating rim – as is the case for large nutrient concentrations. The deviations from the

spherical form as sometimes observed in experiments [98, 110] can have the additional reason that

in the experiments the spheroids might be heteroclonal while all cells in the simulation are assumed

to be monoclonal: A spheroid developing from genetically differing subpopulations might display

anisotropic growth.

Figure 3.5: Cross-sections ofin silico MTS in the agent-based model [77]. The cross-sections
correspond to the configurations after 23 days. Nutrient concentrations from left to right are given
by 0.07 mM oxygen with 0.8 mM glucose, 0.07 mM oxygen with 16.5 mM glucose, 0.28 mM
oxygen with 0.8 mM glucose, and 0.28 mM oxygen with 16.5 mM glucose. The spheroid sizes
are indicated in figure 3.6 as well.Top row: Shown is the cellular status (necrotic cells painted
grey, quiescent cells yellow, mitotic cells in red, cells in G1-phase green, and cells in S/G2-phase
blue, respectively).Bottom row: Displayed is the cellular tensionTcrit (free cells in blue, strongly
compressed cells in red). The removal of necrotic cells in the necrotic core leads to a relaxation of
the cell tensions in the model.

For the agent-based model, there are considerable size differences between spheroids with nutrients
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in abundance and spheroids with low nutrient levels. This is in good qualitative agreement with ex-

perimental data. To this degree, this behaviour is not found by all variants of the continuum approach.

For example, form = 0 the velocity of the travelling wave solely depends on the cellular diffusion

coefficient and the maximum proliferation rate (compare figure 3.2) and therefore it is equal between

test runs with different nutrient concentrations. Consequently, form = 0 the calculated spheroids

have the same macroscopic size for all nutrient concentrations, as is confirmed in figure 3.6: Half

of the maximum spheroid cell density is reached at a radius of 350µm – regardless of the nutrient

concentration. In this model ansatz, the differences in the overall cell number result from the local

density amplitude only. The assumptionm = 0 is therefore in direct contradiction with (unquanti-

fied morphologic) experimental data and the corresponding agent-based approach. One might expect

from figure 3.2 that if one allows for a variable diffusion exponentm> 0 in the continuum model, the

effective velocity of the travelling waves should decrease considerably. However, in figure 3.6 this is

not the case except in the case of poor nutrient support: In this case the spheroid grows to a radius

of 300 µm, whereas in case of nutrient abundance the spheroid front can be found at 380µm. In

cases where only one nutrient is limited, the spheroids are negligibly smaller with roughly 370µm.

In this respect one should keep in mind that neitherm nor the cellular diffusion constantD0
cell have

been fixed in this scenario. Therefore, in order to fit the overall cell numbers to experimental data,

the cellular diffusion constant must necessarily increase: The local cellular density is bound byCcrit

and the only way to harbour enough cells within the tumour spheroid is to increase the velocity of

the propagating wave. Consequently, it does not come as a surprise, that the macroscopic spheroid

sizes in the scenarios where the threshold concentrationCthresh is reached do not differ very much.

The difference becomes manifest only in the case of nutrient starvation, where contact inhibition does

not play a role at all. Here the resulting size differences of the spheroids reproduce the results of the

agent-based model (figure 3.5) much better. Still, it must be said that the spheroid size differences

in the agent-based model have not been fitted directly to experimental data, for which a quantifica-

tion of these morphologic parameters would be necessary. A possible improvement resulting from

the choice ofm > 0 is the more sharply-pronounced transition at the spheroid boundary, since this

agrees much better with experimental observations and the agent-based model (compare figure 3.1

left panel). However, it should be kept in mind that the procedure of obtaining the cross-sections of

spheroids is rather invasive, as for example their fixation results in a shrinkage of 10-20 % [107]. One

may speculate that cells only bound loosely to the spheroid may be removed by fixation.

In case of nutrient starvation, the cellular concentrations of both models never reach densities that

might induce contact inhibition and the only mechanism inhibiting cellular growth is necrosis (com-

pare figures 3.4, 3.5 and 3.6). In all other test configurations, the cellular density of the continuum
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model (figure 3.6) locally exceeds the threshold concentrationCthresh. Cells residing within regions,

where the cellular concentration lies aboveCthresh, have a decreased proliferation rate and are there-

fore interpreted as quiescent within this continuum model. Consequently, both contact inhibition and

necrosis play an important role in all other scenarios. The first initially dominates if nutrients are

provided in abundance, whereas the latter dominates if nutrients are rare. Note that the difference

in comparison with the previous definition of quiescence in the agent-based model (subsection 3.2)

consists of two facts: Firstly, here a different – volume-related as in [76] – criterion for quiescence

has been chosen. Secondly, in contrast to the agent-based model definition this criterion is continu-

ous, i. e., proliferation is only diminished betweenCthreshandCcrit. Consequently, one may question

whether this model feature correctly represents contact inhibition: If in the continuum approach the

dependence is made discontinuous by settingCthresh = Ccrit then – provided initially the cell den-

sity is always belowCthresh– one will not observe cellular densities aboveCthresh, since even a slight

overpopulation results in a vanishing growth term and is worn away by diffusion or death terms.

Consequently, one would not encounter contact-inhibited cells in the continuum model at all in this

case.

Within the time frame of the experiment and the given nutrient concentrations, the model will always

predict the emergence of a necrotic core as soon as a sufficient number of cells has developed. As

quiescent cells consume nutrients as well within this model, it can be expected that the number of

quiescent cells will always be outgrown by necrotic cells after some time. Note that the present con-

tinuum model poorly differentiates between the scenarios where only one of the nutrients is restricted:

For both scenarios, a thin contact-inhibited layer followed by a large necrotic core is predicted. In

contrast, in the agent-based model, contact inhibition is more pronounced when glucose is provided

in abundance and oxygen is restricted in comparison to the case where more oxygen than glucose is

provided. So far however, the quantitative experimental signature is too poor to differentiate between

the models in this aspect.

3.4.3 Distribution of nutrients

The stoichiometry of the clean combustion of glucose: C6H12O6+6O2→ 6H2O+6CO2 would require

the molar nutrient uptake rate of oxygen to be 6 times the molar glucose uptake rate. However,

for tumour tissue this cannot be the case as it is well-known that in the direct vicinity of tumours

the concentration of lactic acid increases considerably which is a direct evidence for the incomplete

combustion of glucose.

Since the evolution of the nutrients is coupled to the cellular distribution, the concentration of nutrients
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Figure 3.6: Cell densities for different nutrient concentrations in the PDE model [66]. Results refer
to the distributions after 23 days. The black bold lines denote simulations where the exponentmhas
simultaneously been determined as a fit parameter, whereas the red thin lines represent simulations
with m = 0. The cellular threshold concentrationCthreshhas been marked by the horizontal dashed
orange line. Within each panel, the two vertical dashed green lines denote the approximate size
of the necrotic core (left line) and the complete spheroid (right line) in the agent-based model
(compare figure 3.5), which has been estimated using the largest distance of a necrotic or viable
cell from the spheroid centre, respectively.Top Left: Cellular concentrations for 0.07 mM oxygen
and 0.8 mM glucose concentrations. As the concentrations never reachCthresh, contact inhibition
does not play a role within this scenario.Top Right: Cellular concentrations for 0.07 mM oxygen
and 16.5 mM glucose concentrations. A thin layer of partially contact-inhibited cells emerges.
Bottom Left: This is similar for 0.28 mM oxygen and 0.8 mM glucose concentrations.Bottom
Right: Cellular concentrations for 0.28 mM oxygen and 16.5 mM glucose concentrations. The
spheroid exhibits a thick layer of contact-inhibited cells.
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will fall wherever viable cells consume nutrients (figure 3.7). The distribution of nutrients has been

calculated with the pseudo-steady-state approximation (compare appendix C.1.2), which enforces the

immediate reaction of the nutrient concentration to the cellular positions. The region of steepest

concentration descent coincides with the localisation of viable cells, i. e., with the sink terms. This

relation is found in both models and for both nutrients. Due to the larger diffusion coefficients of

oxygen, the gradients of the oxygen concentration tend to be smaller (not shown). Form = 0 the

qualitative appearance in the PDE model hardly changes: Due to the slightly increased glucose uptake

rates (see table 3.1 on page 89) the baselines are a bit lower than in figure 3.7.
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Figure 3.7: Plot of the glucose and oxygen distributions.Left: In the continuum model with
radial symmetry, the glucose concentration has been calculated for 0.28 mM oxygen and 16.5
mM glucose boundary concentrations andm being determined as fit parameter. During tumour
growth, the concentration of glucose drops as soon as the density of viable cells reaches significant
concentrations. The region of steepest descent coincides with the travelling localisation of viable
cells (rescaled population density shown after 23 days, thin full line).Right: This is similar in
the agent-based model (after 23 days, same boundary conditions, numbers denoteµm), where the
oxygen concentration displays spherical symmetry (transparent isosurface at 0.1 mM) for large
spheroids as well.

3.4.4 Parameter Sensitivity

The growth curves shown in figure 3.3 have been calculated using the parameters in table 3.1 on page

89. Generally, one can say that in order to correctly fit the global cellular growth curves, a necrotic

core always emerges. The emergence of a necrotic core is not an intrinsic ingredient of the models

– there are local minima in the parameter space that did not exhibit a necrotic core in the observed

time range, but these parameters did not fit the data with acceptable quality. Therefore, it is a robust
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parameter value [66] value [77] remark

mitotic phaseτ(m) - (1.0± 0.25) h [132]

S/G2-phaseτS/G2 - (5.0± 2.0) h [132]

cell elastic modulusE - 1000 Pa [133]

cell Poisson numberν - 0.5 [134]

adhesive coefficient f ad - 1.0 · 10−4 µN µm−2 [88]

ECM viscosityη - 5 · 10−3 kg µm−1s−1 [76]

adhesive frictionγmax - 0.1 kgµm−2s−1 [76]

oxygen diffusivity DH20
ox 2440.0 µm2s−1 2440.0 µm2s−1 [135]

oxygen diffusivity Dtiss
ox 1750.0 µm2s−1 1750.0 µm2s−1 [136, 137]

glucose diffusivity DH2O
gl 691.0 µm2s−1 691.0 µm2s−1

glucose diffusivity Dtiss
gl 105.0 µm2s−1 105.0 µm2s−1 [138]

cell proliferation αmax = 1.28 · 10−5 s−1 τmin = (15.0± 2.0) h [100, 107, 113]

threshold densityCthresh 1.41 · 10−3 µm−3 Rcell = 5 µm

necrosis removal rateγ 2.0 ·10−6s−1 2.0 ·10−6s−1

contact inhibition criterion Kcrit = (0.64± 0.28) (0.69) Tcrit = 600 Pa [76, 106], fit

oxygen uptake rateλox (21.9± 5.1) (20.0) amol cell−1s−1 20.0 amol cell−1s−1 [113, 139], fit

glucose uptake rateλgl (34.0± 9.3) (40.0) amol cell−1s−1 95.0 amol cell−1s−1 [112, 113, 139], fit

nutrient productPcrit (0.040± 0.003) (0.045) mM2 0.025 mM2 fit

exponentm (0.73± 0.37) (0.0) – fit (fixed)

cell diffusion constantD0
cell (2.7± 1.4) (0.9) · 10−3 µm2 s−1 (1.0 · 10−4 µm2s−1) [76, 77, 120], fit

necrosis rateβmax (11.3± 7.7) (7.9) · 10−5 s−1 – fit

Table 3.1: Best fit parameters for agent-based and continuum models of MTS. Model parameters
that have reproduced the best fit to experimental growth curves in figure 3.3. The first section
contains parameters exclusively used in the agent-based model, the second section parameters used
in both models, and the last section parameters used in the continuum model. The uncertainties in
the first column have been estimated by calculating the projection of the hyperellipsoids of constant
∆χ2 (subjectively defined by an increase ofχ2 by 5% for acceptable fit quality) to the parameter
axes. For the values in the first column in parenthesis, the exponentm has been fixed tom = 0.
If widths are given, the values correspond to one standard deviation. Note that the cellular radius
of 5 µm as assumed in the agent-based model directly corresponds to the value used forCthresh

if maximum cellular packing density of 74% is assumed. Similarly, the minimum cycle time and
the maximum proliferation rate are inter-related. Citations in the right column contain evidence
supporting the particular choice of parameters. For detailed explanations see the text.
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feature – independent of the choice of the model and can be considered a qualitative prediction. The

model is not equally sensitive to changes of the parameters:

Since parameters of the agent-based model such as the length of the M-phaseτ(m) and the S/G2-phase

τ(S/G2) do not directly affect the overall cycle timeτmin, but the length of the G1-phase in this model

and thereby the growth velocity of single cells, their overall effect on the total population dynamics

is rather small. Instead, these parameters control the relative distribution of cells in the cell cycle.

In addition, their widths combine to a normal distribution of the effective cycle time and thereby

control the dampening of the oscillations in figure 3.4 in absence of contact inhibition or nutrient

depletion. For a reliable estimate of these parameters an analysis of the cell cycle distribution would

be necessary.

The elastic and adhesive parameters of EMT6/Ro tumour cells might differ from those relevant in

the agent-based simulation, where incompressibility has been assumed with choosingν = 0.5. For

example, assuming reduced Poisson ratiosν ≈ 0.3 and cell elasticities ofE ≈ 750 Pa [76, 116], one

may obtain deviations in the elastic forces in (3.2) in the range of up to 50 percent. The adhesive

constantf ad is a rather unknown parameter as well. It can can be estimated from the elastic constants

by comparing the visual appearance of cell doublets (see e. g. [88]) with the equilibrium distance

resulting from equation (3.2). As with all biological systems, considerable variance even within

single cell types can be expected [116, 133, 134, 140]. However, with moderate changes in these

parameters, the growth characteristics for the overall cell number does not vary strongly: With the

given friction parameters, the cellular tensions relax on a shorter timescale than the cell cycle time

(compare equation (3.2) and figure C.7 in the appendix).

The combined viscosity of the extracellular matrixη chosen here corresponds to that of viscous honey,

whereas the typical surface-related friction coefficientγmax has been estimated in [76] from indepen-

dent experiments [141]. As with the adhesive and elastic parameters, these friction parameters deter-

mine the relaxation time for cellular interaction. As long as these relaxation times are much smaller

than the cell cycle time, little influence can be expected.

The diffusion coefficients of the nutrientsDtiss/H20
ox/gluc evidently influence the nutrient distribution. Within

physiological windows [136, 138] however, the model is robust against changes of these parameters.

Note that the diffusion coefficient for oxygen is nearly the same in tissue and water. For the continuum

approach it turned out that the assumption of a spatially uniform oxygen diffusivity hardly made a dif-

ference in comparison to varying oxygen diffusivity [66]. Therefore, the approximation of assuming

a constant oxygen diffusivity [111, 115] is well justified. This does not hold true for glucose, as can

be expected from the large differences of the diffusion constants in water and tissue.

The proliferation rate of the continuum model is related to the shortest cycle time of the agent-based
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approach via ln 2= αmaxτmin. In [107] an initial cycle time of 17 h has been obtained using a Gompertz

fit [compare equation (2.2)] to the spheroid volume. This fit had been applied to already existing small

spheroids that may exhibit growth retardation effects. Therefore, it does not come as a surprise that

the cell doubling times obtained from [113] range between 13 and 17 hours. Naturally, the initial

evolution of the cell numbers (figure 3.3) critically depends on the cycle time. Note that the deviation

given forτmin results from the quadratically added standard deviations ofτ(m) andτS/G2. In the model,

it is necessary for the desynchronisation of proliferation.

Similarly, the threshold densityCthreshand the free cell radiusRare inter-related (see subsection 3.3).

In the continuum model however, a dense packing has been assumed by including the correction

factor 0.74 into the definition ofCthresh, which does not have to be realised neither in reality nor in

the agent-based model. The consequences of such a misestimate are inter-related with the contact

inhibition parameters (see below).

The removal rate of necrotic cellsγ has been fixed to the same value for both models here. If – in

the agent-based model – adhesion (f ad) is not much stronger than the value given, this rate mainly

determines the density of the necrotic core. Since the fit is done to the number of viable cells and

since these are only weakly coupled to the density of necrotic cells, its quality is hardly sensitive toγ

over several orders of magnitude. This is illustrated by the bottom row in figure 3.5, where the tension

in the necrotic core is relaxed due to removal of necrotic cells. For very strong intercellular adhesion

however, where growth saturation may actually be obtained within the agent-based model (compare

subsection 3.4.5), this parameter determines the total size of the necrotic core and thus the size of the

whole spheroid as well. In addition, if the parameter is set to vanish, no necrotic cells will be removed

and one can expect intercellular tensions to persist within the necrotic core.

In both models, the contact inhibition (represented by the critical compressionKcrit in the continuum

case or the critical normal tensionTcrit in the agent-based approach) strongly influences the growth

curve when nutrients are supplied in abundance. The value that is obtained as fit parameter in the

agent-based model is considerably larger than that which one would obtain from the corresponding

normal tension of an isotropically compressed sphere viaσn = E/[3(1− 2ν)](∆V/V) (with E = 750

Pa,ν = 0.33, and∆V/V = 0.1 in [76]). Since a different cell type is considered here, these model

parameters cannot be compared directly. In part, the discrepancy between the agent-based models in

this thesis and the one presented in [76] may be due to the Voronoi surface correction in equation (3.3)

– surfaces tend to be smaller than the sphere surfaces used in [76] – which leads to generally larger

normal tensions. However, the continuum model points to stronger cell growth (∆V/V ≈ 0.35> 0.1)

than in [76] as well. As argued before, the dense packing might neither be realised in realistic MTS

[107] nor in the agent-based model. Still, when combining the compression of the continuum model



92 CHAPTER 3. MULTICELLULAR TUMOUR SPHEROIDS

with the elastic parameters of [76], one obtains an inhibition tension ofO (250 Pa), which is much

closer to the value ofKcrit in the agent-based model than to the corresponding isotropic compression as

defined above. Finally, in the original experimental investigation [106], a much larger cell tolerance

than in [76] regarding compression is obtained for a different cell type. One should keep in mind

that both the continuum model and the agent-based model in the overdamped approximation do not

correctly describe the distribution of pressure. For strongly compressed tissue, it will rather obey a

wave equation involving secondary time derivatives.

The fit to the growth curves is very sensitive toλgl, λox, andPcrit. Though these parameters have

the same order of magnitude for both models, the glucose uptake rateλgl is by a factor of 2 to 3

smaller in the continuum model. It is not surprising, that a smaller glucose uptake rate than in the

agent-based model must come with an increased nutrient thresholdPcrit to fit the experimental data.

However, the continuum model – started with the parameters of the agent-based model – does not

produce a fit of similar quality (data not shown). The difference may be a consequence of the different

cell density distribution in both models, which is due to the replacement of cellular adhesion and

repulsion by an effective diffusion coefficient. A clean combustion of glucose would require the ratio

of oxygen and glucose uptake rates to be around 6 : 1 – in the agent-based model this is actually

contradicted with ratios of about 1: 5. In the continuum model, this surprising effect is still existent,

but less pronounced with a ratio of 1 : 2. However, it is well known that tumour cells do not cleanly

combust glucose thereby leading to acidification of the tumour environment. Experimental estimates

concerning a different cell line point to a ratio of 1 : 1 [112], whereas [139] reports a ratio of 1 :

4 for EMT6/Ro cells. Generally, uptake rates of both oxygen and glucose will depend on the local

nutrient concentration and thereby indirectly on the EMT6/Ro spheroid size under consideration.

The absolute value of the cellular glucose consumption rateλgl compares with experimental data on

EMT6/Ro spheroids [139] – whereλgl = 156± 53 amol/(cell s) (n=6) have been measured – and

with other tumour cell lines [130]. Wehrleet al. [139] report the original experimental uptake rates

in [142] to be in the range ofλgl = 90 amol/(cell s). These values support the glucose uptake rate

found in the agent-based model. A value for the consumption of oxygen is given in [139], where

λox = 40 amol/(cell s) is reported. Generally, the late stages of spheroid growth depend critically

on the nutrient-related parameters. In summary, the resulting parameters for nutrient uptake rates are

well within the range observed in the literature [114, 118], but some considerable variances within the

literature exist. Apart from the fact that often different cell lines are analysed, the additional problem

exists that the values in the literature are usually volume-related uptake rates that have been fitted to

experimental data. Equally important however, is the strong dependence of nutrient uptake rates on

further conditions such as nutrient concentration, position in the cell cycle, metabolite concentration
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etc.

In the continuum model, the quality of the fit to the overall cell number can be increased slightly by

varying the exponentm as a fit parameter. However, the model is very sensitive to the cellular diffu-

sion constant via the cell density distribution:D0
cell is automatically tuned to obtain a similar apparent

wave velocity (regardless of the value ofm), which manifests itself in a threefoldD0
cell for m = 0.73 in

comparison tom = 0. This underlines the sensitivity of the fitting procedure (compare appendix C.3).

By determining these mobility parameters with an independent experiment, and by fixing the rather

approximate parameters for mechanical cell interaction in the agent-based model one would have a

possibility of model falsification. This however should rely on a well-defined experimental model.

The fact that the resulting diffusion constants are more than one order of magnitude larger than the

typical diffusion constants from stochastic forces in the agent-based model should come as no sur-

prise, as cellular movement in the agent-based model is dominated by elastic and adhesive interaction

forces, whereas in the continuum model random cellular movements account for all cell mobility.

The necrosis transition rateβmax mainly determines the spatial width of the region where viable and

necrotic cells coexist and has little impact on the produced cell number over several orders of magni-

tude. Therefore, the fact that the derived necrosis transition rateβmax – implying transition durations

of roughly 2 hours – is well within the expected range must be interpreted as a direct consequence

of choosing this value as a starting position for the fitting procedure rather than a prediction of the

model.

Since the movement-related parametersm andD0
cell are used in (3.11) to mimic elastic and adhesive

cellular properties, one can state that the agent-based model has an advantage in this respect, since it

inherently incorporates parameters with a physical meaning. However, the existence of a continuum

model with similar results proves, that on this macroscopic scale (by comparing the total cell num-

bers) a discrimination is possible neither between the PDE models of constant and varying diffusivity

nor between continuum and agent-based models. In the present example of MTS, in addition the

morphology must be compared. This is only possible if it is given in quantitative form, i. e., reliable

measurements including error estimates of relative sizes of the quiescent layer, the necrotic core and

the proliferating rim under well-defined initial conditions.

3.4.5 Saturation of growth

A complete saturation of the cell number or spheroid size – as observed in [107] and others [108]

– cannot be reproduced in the computer simulations with the parameters in table 3.1 on page 89.

The large scatter of the data in the case of nutrient depletion (figure 3.3 left panel) does not exhibit
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a clear saturation within 25 days, which is not reached in the other configurations anyway. For the

explanation of a growth saturation the nature of the additional mechanism remains controversial. For

example, in [108] an effective movement of cells towards the necrotic core has been observed leading

to the assumption of a chemotactic signal secreted by necrotic cells. The corresponding computer

simulations in [7] did lead to saturation. Here, a simpler hypothesis may be tested:

In the spheroid cross section (figure 3.5), macroscopic holes are visible within the necrotic core –

created by the removal of necrotic cells from the simulation. Once such a hole is established, it even

tends to grow, since the intercellular adhesion is of short range only. An increase of the adhesive

normal forces could inevitably couple the proliferating ring to the necrotic core which finally leads

to growth saturation: In such a system, the volume loss generated by removing necrotic cells with

rateγ must be balanced by a movement of proliferating or quiescent cells from the outer layers into

the necrotic core. Consequently, the cell density will then not exhibit fluctuations, which results in a

spatially uniform distribution of cell tensions in the necrotic core. In addition, the outward component

of the proliferative pressure on the outer layer is counterbalanced by the increased cellular adhesion

as well. Then a growth saturation is inevitable: As in the late stages of spheroid growth the cellular

birth rate can be assumed to be proportional to the spheroid surfaceRbirth ≈ αN2/3 and the rate of cell

removal is proportional to the number of necrotic cells residing in the centre, the total cell number

can be described by

dN
dt

= αN2/3(t) − β
[
N(t) − γN2/3(t)

]
(3.19)

with α, β, γ being positive constants. Via combining the terms withN2/3 one can see that above

equation resembles the growth law of Bertalanffy [12]. The solution of this equation reaches the

steady stateN∞ =
(
α
β

+ γ
)3

, which is stable forβ > 0. Therefore, in this regime the nutrient depletion

is the dominant factor limiting tumour spheroid growth.

It turned out that an increase of adhesive normal forces by a factor of 3 tof ad = 0.0003 µN/µm2

suffices to close the visible holes completely and led to growth saturation in the observed time range.

This may be due to displaced equilibrium distances resulting from equation (3.2), which induce mul-

tiple virtual overlaps at intercellular contact regions. Thereby, the removal of a single necrotic cell

may significantly influence the surrounding cells. A lower bound for the equilibrium distance can be

obtained by using the virtual spherical contact surfaceAsphere
i j occurring in equation (3.2). Then, for

the two spheres with radiiRi/ j the equilibrium distancedeq
i j can be derived by usinghi j = Ri + Rj − di j

and

Asphere
i j =

π

2

R2
i + R2

j −
1
2

d2
i j

1−
(
R2

j − R2
i

)2

d4
i j



 (3.20)
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in equation (3.2). The equilibrium distance has to obey

Ki j

f ad
i j

=
π

2

√
Ri + Rj

[
R2

i + R2
j +

(
R2

i −R2
j

)2

2
(
deq

i j

)2 − 1
2

(
deq

i j

)2
]

√
RiRj

(
Ri + Rj − deq

i j

)3/2
, (3.21)

which can be solved numerically fordeq
i j (see figure 3.8 left panel). Note that the actual equilibrium
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Figure 3.8: Lower bounds on the equilibrium distance for selected parameters.Left: For all
f ad > 0, there exists a lower bound on the equilibrium distance. Horizontal dashed lines correspond
to contact distances (Ri + Rj), whereas vertical dotted lines correspond to the values off ad =

0.0003µN/µm2 (left line) and f ad = 0.0001µN/µm2 (right line) that were used in the simulations.
All other parameters have been chosen as in table 3.1 on page 89. Note that for the left dotted line,
the lower bound on the equilibrium sphere distance is smaller than the sphere radii. However, since
the contact surface in equation (3.2) is improved using a Voronoi estimate, the actual distances will
be larger.Right: For extreme cases, removal of a vertex may establish sphere-sphere contact of
two vertices that had not been in contact before.

sphere distance will mostly be larger than the lower bound given in figure 3.8 left panel, since the

smaller Voronoi contact surface for dense packings could also be simulated by a smaller value of

f ad. Nevertheless, large overlaps will exist that enable a quick formation of cell-cell contact as in the

right panel of the same figure. Since the model is based on the intrinsic spherical shape, such large

virtual overlaps may seem unphysiological. At least, they extrapolate the intercellular contact model

into regions for which it has not been intended. However, in reality the breakup of a necrotic cell is

a continuous process. The membrane of a necrotic cell will rupture and expel the cell content into
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the surrounding fluid phase. Thereby, the intrinsic cell shape will not be spherical anymore. If the

membrane is removed after some time as well, re-establishment of the contact may be possible.

A pseudo-Brownian cellular motion can either be incorporated by simulating a symmetric and

δ-correlated stochastic force (see appendix C.2.3) or by adding to every coordinate a normally-

distributed cellular displacement of mean 0 and widthσi =
√

2Dcellδt [143], with Dcell ≈
0.0001µm2s−1 being an effective cellular diffusion constant. Generally, Brownian motion may lead

to the escape of cells at the boundary of the spheroid, which would make a complete growth satu-

ration impossible. Note that another candidate for a cell loss mechanism is shedding of cells at the

spheroid surface [144, 145]. For example, for EMT6/Ro mammary tumour cultures, shedding rates

of O (200) cells mm−2 h−1 have been observed [100], which represents a significant source of cell

loss. In in vitro culture, the separated cells are removed from the culture during replenishments of

the growth medium. Within the model, such effects are not included. However, for the time frame

usually observed in experiments, a pseudo-saturation of both cell number and spheroid radius could

be reproduced in off-lattice agent-based computer simulations [77]. Interestingly, during the period

of saturation, deviations from the spherical shape can emerge: The position of unstable intermediate

holes within the necrotic core is randomly distributed and gives rise to macroscopic deviations from

spherical shape on the spheroid surface. Therefore, an irregular spheroid shape can be explained by

individual durations of the necrotic process as well. All these mechanisms might be combined with

an involvement of metabolic waste products in the induction of necrosis.

Since in line with other continuum approaches [115, 131] saturation of growth can be explained

mechanically, the assumption of a diffusing signal triggering a chemotactic response [7] is not neces-

sary. In the multi-phase continuum approaches, the mass balance equations are not reduced to simple

RDEs by preserving the attractive part of the cellular interaction. A reaction-diffusion model with a

positive-definite diffusion coefficient as in equation (3.10) is incapable of predicting a steady-state of

the cell numbers with realistic assumptions: If one assumes a spatially-heterogeneous steady-state to

exist, such that the cell concentration is localised, one can consider a region outside the spheroid that

extends to infinity. Within this region, the net cell production rate is non-negative. Then one obtains

via Gauss’s theorem for this regionV

dNV

dt
=

	

∂V
D(r)∇C(r) · d f +

∫

V
Q(r) dV , (3.22)

whereNV is the number of cells withinV. The assumption of a steady-state demands thatṄV = 0,

which cannot be fulfilled, sinceQ(r) ≥ 0, D(r) > 0 and∇C(r) ·d f > 0 in the inner boundary of∂V by

assumption. At the outer boundary, no contribution can be expected, since it resides at infinity, where

the concentrations (and derivatives) vanish.
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3.5 Discussion

It has been demonstrated that the Voronoi/Delaunay hybrid model can very well be used to aid agent-

based tissue simulations. The introduced agent-based model is rich in features and therefore allows for

many comparisons with experiments. It can easily be combined with established models on cellular

adhesion and elasticity that rely on direct experimental observables.

Unlike previous models that only considered the influence of a single nutrient on the dynamics of

three-dimensional MTS [7, 103, 104, 111, 115], it has been possible to reproduce experimental growth

curves with a single parameter set by considering the spatiotemporal dynamics of both the oxygen

and glucose concentrations simultaneously. In addition, the typical morphology could be reproduced

qualitatively.

With introducing a second similar model based on continuum equations, a comparison between the

two modelling approaches could be performed. It should be noted that the two models are not com-

pletely analogous as for example the representation of contact inhibition differs. Nevertheless one can

discuss key properties of both models.

When considering macroscopic data such as growth curves, the simpler continuum model of the RDE

type did reproduce the experimental data with similar quality as the agent-based approach. In the

continuum model, the net effect of cellular interactions (adhesion, elasticity, and viscous friction)

could be combined in a density-dependent cellular diffusion coefficient, which leads to a qualitative

improvement in the reproduction of the macroscopic spheroid sizes in comparison to non-varying cel-

lular mobility. However, it turned out that the necessity to fit experimental data considerably changed

the effective cellular diffusion coefficient. The description of cellular movement by mere diffusion

coefficients presents a limitation of the continuum model. In many properties the continuum model

reproduces the analogous agent-based model qualitatively: For example, the emergence of a necrotic

core was necessary to fit the data correctly for all nutrient configurations. However, the dependence

of spheroid size on the total cell number and thereby indirectly on the nutrient conditions was not

very pronounced whenever the cellular density reached threshold values. For real tumours however,

one can – as also predicted by the agent-based model – expect the cellular density to reach the thresh-

old value, since cells tend to adhere. The present PDE model has not been able to reproduce this

qualitative effect. In the agent-based model, a saturation of growth could be obtained by increasing

intercellular adhesive forces threefold, whereas the continuum model is not able to predict such a

steady state.

Since continuum models have the advantage of being computationally simple to solve, the first step

towards more refined tissue models should be to analyse the phase space with a simple continuum
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approach. The agent-based models are advantageous because cellular properties that have been de-

termined from independent experiments (such as e. g. adhesion and repulsion) can be inherently in-

cluded to yield improved predictions. Conversely, with a sufficiently accurate experimental signature,

the model parameters can be adapted to achieve agreement with experimental observations. Since the

parameters of off-lattice agent-based models correspond to experimental observables, their estimation

can be regarded a quantitative model prediction.

One of the major difficulties of experimental systems on the level of cell tissues is their poor definition.

In the chosen example of MTS this is due to several reasons:

1. In order to obtain the cell numbers, spheroids had been destroyed during the measurements.

Therefore, a whole ensemble of spheroids had to be measured.

2. Since the monoclonality of these spheroids is not ensured, it is nota priori clear whether a

single spheroid might contain several species or whether different spheroids might belong to

different species with individual growth characteristics.

3. In addition, it cannot be controlled whether mutations changing the growth characteristics of

tumour spheroids take place during their culture. However, when considering culturing times in

the order of weeks, such mutations should be rare in cell lines that did not change fundamental

properties over years.

The used experimental data exhibit too much scatter to determine parameters with accuracy. There-

fore, more effort must be spent in establishing a defined experimental system including a well-defined

cell line. With such a system, extensive measurements of the time evolution of growth curves and

morphologic parameters could be performed. A combined experimental and theoretical investiga-

tion of MTS of a single well-defined cell line is of urgent interest to discriminate between different

theoretical models.

3.6 Towards a realistic tumour model

It can be questioned whether the presented model grasps essential features ofin vitro multicellular

tumour spheroids. It can be said with certainty that it does not resemble many properties ofin vivo

tumours. In view of the effects of surgery or chemotherapeutic agents, especially the case of a realistic

tumour model is of particular interest. Some extensions that need to be included to approach more

realistic systems (compare [15] and [146] for reviews) are summarized below:



3.6. TOWARDS A REALISTIC TUMOUR MODEL 99

• Since only a single cell type has been considered, the model will have to be extended by tumour

host interaction, which includes

– competition with the surrounding healthy tissue (compare chapter 4) for space, nutrients,

and other factors,

– interaction with cells of the immune system [120] and processes as inflammation,

– secretion of angiogenetic factors and the process of tumour vascularisation [147],

– invasion by tumour cell and metastasis [148, 149, 150, 151] etc.

• Many self-interactions of tumour cells have been neglected in the present model. In addition,

one would have to include

– the effect of metabolic waste products and acidification of the tumour environment [152],

– plasticity of tumour cell properties [101] (for example, the process of de-differentiation),

– apoptosis and necrosis induced by further control mechanisms within the cell cycle [101],

– retardation effects in necrosis due to intracellular nutrient reservoirs,

– possible intercellular communication with diffusing signals etc.

in an extended model.

A simultaneous treatment of all these effects within a single and with moderate effort manageable

model is currently out of reach. In order to identify physiological subregions, more information on

the included mechanisms is necessary. In addition, some mechanisms can lead to similar experimental

signatures, such that they cannot be distinguished clearly within the model [153].

A model however should be more than a mere tool of visualisation: With the inclusion of further

unknown parameters the volume of the parameter space will grow exponentially. In order to gain

predictive power, the allowed volume of the parameter space must be decreased. This could for

example be achieved by studying the mechanism separately in controlledin vitro experiments that

include for example the co-culture of tumour and host cells.
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Chapter 4

The Epidermis

The epidermis is a stratified squamous epithelial tissue. Epithelia are membranous tissues that are

composed of at least a single cell layer. In multicellular animals they cover the external and internal

surfaces of the organism. This chapter will deal with anin silico representation of the epidermis,

which serves as a protective buffer between the organism and the environment.

4.1 Introduction

The epidermis does not contain separate blood vessels and is therefore dependent on diffusion of

nutrients from the dermis below. It can be divided into several layers [154] (compare figure 4.1 left

panel):

The innermoststratum germinativumor stratum basale(basal layer) is a monolayer, in which most

cell divisions occur. It is separated from the dermis below by a basal membrane, which has a ruffled

structure at fingers, palms and soles of feet. A fraction of the cells created by cell division travels

upwards into thestratum spinosum, where most cells are interconnected by desmosomes, which leads

to a spiny appearance. Within this layer, the process of cornification begins: The cytoplasm looses

water and is filled with keratin filaments. Within thestratum granulosum, cells die off and their

shape flattens. This special case of cell death is calledanoikis. Thestratum lucidumis a thin layer

that is dominantly expressed at hand and feet and functions as a barrier against all possible intruders.

Completely cornified cells mark thestratum corneum, which is clearly distinguishable from the layers

below. This layer does not contain viable cells and constitutes an efficient barrier for water and its

solutes. Note that the thickness of this layer varies strongly for different regions of the skin [154]. The

upper part of this layer, where the cellular material detaches due to dissolving intercellular contacts,

101
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is calledstratum disjunctum.

Within the in silico model, only three layers will be distinguished: The termstratum mediumwill be

used as a combination of all layers not belonging to thestratum germinativumor thestratum corneum.

The cell types encountered in the epidermis are keratinocytes, melanocytes, Langerhans cells, and

Merkel cells. Of these, the dominant fraction is constituted by the keratinocytes with roughly 75000

cells per square mm [155, 156].

Keratinocytes are produced in thestratum germinativumby cell division. In order to maintain epi-

dermal homeostasis, in average one of the two keratinocyte daughter cells must leave the basal layer

and travel upwards. The keratinocyte remaining in the basal layer will be termed stemcell further-on.

The cell travelling upwards transforms – undergoing several transit cell divisions [157] – into a fully-

differentiated keratinocyte and reaches the surface after about 12 to 14 days. During this passage, the

keratinocytes follow the process of cornification.

Melanocytes migrate to the dermis during embryonic development. These dendritic cells are dis-

tributed within the basal layer, and their density is relatively constant between individuals and races

with approximately 2000 cells per square mm [154, 155, 158]. They adhere to the basal membrane

via hemi-desmosomes. The known purpose of melanocytes is to produce melanin and to provide it

to keratinocytes and hair with their dendrites – the connected cells are termed epidermal melanocyte

unit [154]. This pigment protects the skin from the ionising effects of electromagnetic radiation,

and it is accumulated above the keratinocyte nuclei. Differences in skin colour mainly result from

different levels of melanin. Tumours arising from melanocytes are called melanoma. Since most

cancerous melanocytes still produce melanin, such tumours mostly have a characteristic black colour

(see figure 4.1 right panel). If they are diagnosed and excised via surgery at an early stage, the general

chances of total recovery are comparably large. This prognosis degrades rapidly for melanoma at

later stages. Therefore, the early and secure diagnosis of this disease is a challenging problem.

Langerhans cells are dendritic cells of the immune system. There is evidence that they collect antigens

via phagocytosis and present them on their surface after transforming to dendritic cells in the lymph

nodes.

Merkel cells are found close to some hair follicles in mammalian epidermis. Though there is no

definite function in skin known, it is believed that these cells play a role in sensation.

Since neither effects of the immune system nor the mechanisms of sensation will be studied here,

the latter two cell types will not be contained in thein silico representation and will not be discussed

further.

The diffusional properties of the skin have important implications on medical treatment applied to this

tissue [159]. With an observed increase of the manifestation of melanoma [158], studies of melanoma



4.2. MODELLING ASSUMPTIONS 103

Figure 4.1: Section of human epidermis and top view on a nodular melanoma. Both pictures have
been adapted from [158].Left : Section of human epidermis in 500-fold magnification. Indicated
from top to bottom are thestratum corneum(SC), thestratum granulosum(SGR), thestratum
spinosum(SS), and thestratum germinativum(SG).Right: Top view on a nodular melanoma.

development are of huge importance. Within this chapter, some simple questions will be addressed

using an off-lattice agent-based approach.

4.2 Modelling assumptions

As in the case of section 3.3, the used agent-based model has been built on the basic description given

in subsections 2.5.4, 2.5.5, and 2.5.6. However, in contrast to the previous case of MTS, the full

equation for the cellular dynamics (2.86) has been solved.

In addition, the model displays specifications [160] that are introduced in the following subsections.

4.2.1 Proliferation and cell death

In contrast to MTS, different cell types are present in the epidermis. The model distinguishes between

three cell types: keratinocyte stemcells, keratinocytes, and melanocytes. It is assumed here that these

cells follow the cell cycle as depicted in figure 2.16 in subsection 2.5.5, but differ in several properties

discussed below.

The mitotic direction in cell divisions has always been chosen randomly on the unit sphere. In the spe-

cial case of stemcells dividing at the basal layer, the asymmetry in terms of the cell types is included

as follows: The daughter cell with the greater distance from the basal membrane is transformed to a

keratinocyte, whereas the other daughter cell stays a stemcell.



104 CHAPTER 4. THE EPIDERMIS

The fact that in reality a stable flow equilibrium of the epidermis exists should translate to anin

silico representation. It can be speculated that the decreasing concentration of nutrients provided in

the dermis constitutes a signal that may cause keratinocytes to cornify. However, the blood supply

provided in the dermis by far exceeds the metabolic demands of normal skin, it is necessary for the

temperature regulation instead. Therefore, other mechanisms on homeostasis should be analysed as

well. In tape-stripping experiments [161, 162] it has been observed that the removal of thestratum

corneumresults in prolonged hyperproliferation of keratinocytes of the skin. It has been proposed

that simply the local concentration of water may be a marker that causes the proliferative response of

the keratinocytes.

In contrast to the MTS in chapter 3, two pathways to cell death are considered here: Stemcells and

melanocytes enter necrosis as soon as the local nutrient concentration falls below a critical threshold.

In contrast, keratinocytes enter anoikis after completion of the cell cycle (i. e., after completion of

S/G2-phase) in the fourth generation. This assumption is motivated by the cellular pedigree concept

[157, 161], which assumes that differentiating cells undergo an approximately constant number of

transient cell divisions before entering a differentiated (nonproliferative) state. Furthermore, healthy

melanocytes in the model are regarded as fully-differentiated cells that do not proliferate. A malignant

transformation however may cause melanocytes to proliferate.

There is strong experimental evidence that the removal of the protectivestratum corneuminfluences

the proliferation turnover rate of the epidermis [161, 162]. In [161] it is hypothesised that an intraep-

ithelial diffusible signal might control proliferation. In this chapter, as a simple candidate for such a

signal the extracellular water content will be considered. Therefore, in the model the proliferation rate

of the keratinocytes and stemcells is influenced by the local water concentration. Since in the model

representation of the cell cycle (subsection 2.5.5) the overall cycle time can be controlled by the length

of theG0-phase, here the local water concentration has been as the critical mechanism. Keratinocytes

(and their stemcells) are assumed to enterG0-phase after completion ofG1-phase only if the local

water concentration is above a critical threshold. The duration of theG0-phase is determined by a

normally distributed random number if the local water concentration does not fall below the critical

threshold before. Thus, a large water concentration may prolong the cycle time of keratinocytes and

their stemcells in the model. Note that further influences on the cell cycle (e. g. contact inhibition as

in chapter 3) are thus neglected here.

Naturally, necrotic or cornified cells do not consume any nutrients. In view of the unknown details

of the cell loss process, an exponential decay of receptor and ligand molecules on the cell membrane

with a given rateαloss has been assumed, i. e.,

Ċrec/lig
i = −αlossCrec/lig

i . (4.1)
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This choice resembles the dissolution of intercellular connections in thestratum corneum. In order

to minimize the perturbation of the equilibrium distance following from equation (2.68), this implies

a decreasing elastic modulus as well. The simple demand, that the equilibrium distance between two

identical cells should not change, can be satisfied with

Ėi = −2αlossEi , (4.2)

which follows from equations (2.60) and (2.75). A measure for the cellular binding strength can then

be defined from the sum of all binding energies with the next neighbours

εi =
∑

j∈NN(i)

εi j (t)Ai j (t). (4.3)

Assuming that cells with low binding are shed of from the skin surface, both necrotic and cornified

cells are removed from the simulation as soon as their binding strength falls below a critical value

εi ≤ εmin. Note that this choice has the consequence that all non-viable cells without contact to other

cells (Ai j = 0) are removed instantaneously from the simulation. This is not a contradiction, since

cells without anchorage are assumed to be shed off in the realistic epidermis anyway. Though the

loss of receptors and ligands as well as decreasing cell elasticity may be reasonable assumptions

for cornified and necrotic cells, the overall time course may certainly differ considerably from the

above equations. Other forms of necrotic cell removal might also be plausible: For example, one

could think of removing non-viable cells randomly at a constant rate as was done in chapter 3. This

choice however did significantly disturb the layered structure of thestratum corneum. In this case,

holes in this protective layer emerged and did lead to sudden loss of water in the epidermal layer and

thereby to irregular proliferative behaviour and considerable oscillations in epidermal thickness. The

same problem occurred when assuming a (normally-distributed) cell-specific eigentime after which

non-viable cells were removed from the simulation.

4.2.2 Cell mobility

All cells are assumed to be subject to delta-correlated random forces (see appendix C.2.3). Note that

these forces act on every cell separately, such that active cellular movement is not considered.

As the computational domain, a rectangular volume has been considered. The obvious anisotropy of

epidermal tissue translates to the boundary conditions on the cellular agents. The simplest possibility

to resemble the basal layer is a static plane boundary with constant normal vector (without loss of

generalityez is chosen here). Within the JKR model (2.63), such a boundary can be well implemented

by assuming contact with a cell of infinitely large radius. Thez-boundary of the basal layer has been
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assumed to be of infinite elasticity. Since the elastic parameters enter additively in equation (2.60),

this choice slightly shifts the position of the basal layer but does not sensitively change the global

model behaviour. The corresponding adhesive anchorage in the basal layer has been made dependent

on the cell type. In order to minimize the boundary effects inx andy direction, periodic boundary

conditions on the cells could in principle be used. This however would necessitate a rather tedious

mirroring of cells close to the boundary and would in addition conflict with the boundary conditions

on the reaction-diffusion grids. Therefore, here a different approach has been chosen: Every cell in

contact with ax or y boundary, is assumed to be in contact with a cell of similar type, size, receptor

and ligand equipment, etc. Thus, it interacts with a virtual mirror copy of itself, where the contact area

is situated within the boundary plane. In comparison to a planar boundary as is used at the bottom this

technical implementation has the additional advantage that special drag forces with a static boundary

need not be considered. In upperz-direction there are no boundary conditions on the cells, but necrotic

or cornified cells that have lost intercellular contact are removed instantaneously from the simulation

(compare subsection 4.2.1).

Note that for an inx andy homogeneous cell distribution, the problem would effectively reduce to

a one-dimensional one. However, the existence of fluctuations and of heterogeneously distributed

melanocytes destroys that symmetry.

4.2.3 Water and Nutrients

Though the theoretical foundation of the diffusion equation relies on vanishing self-interactions of the

described molecules (which can for example be assumed for small concentrations), it has been found

empirically that the distribution of water in the tissue can be described approximately by diffusion as

well [163]. However, it is known that the apparent diffusive properties of the epidermis vary extremely

within the different layers. For example, thestratum corneumhas apparent diffusion coefficients

of water that are three orders of magnitude lower than the diffusive properties of the layers below

(see table 4.1 on page 120). Technically, this is reflected in the model by averaging the diffusion

coefficients for the different cell types residing in a volume element of the reaction-diffusion grid.

Within the model, it is assumed that the net consumption/production rate of water by the cells van-

ishes. Consequently, it is assumed that the distribution of extracellular water can be described with a

normal diffusion equation with spatially heterogeneous diffusion coefficients. In such an equation, the

units may be rescaled such that the water concentration can be expressed in fractions of the maximum

concentration at the basal layer.

The dynamics of nutrients such as glucose differs in the aspect that sink terms have to be considered as
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well and thus, a full reaction-diffusion problem has to be solved for the nutrients. In order to calculate

the dynamics of water and nutrients, the problem has to be treated with time-dependent boundary

conditions. Above the cell layers (dynamic thickness) the concentrations of water and nutrients have

been fixed to vanish. Technically, this has been implemented by setting the concentrations to vanish at

all grid volume elements not containing any cells1. At the x andy boundaries, no-flux von Neumann

boundary conditions have been used, i. e., at these boundaries one has∂xu = 0 and∂yu = 0.

4.3 Results

The model parameters that have not been changed during the simulations can be found in table 4.1

on page 120. As the computational domain, a rectangular volume of dimensions 200µm× 200µm×
400µm has been considered. The initial conditions in thein silico experiment have been determined

as follows: A monolayer of keratinocyte stemcells has been distributed on the basal layer – following

the pattern of a perturbed square lattice. In addition, at the centre of thestratum germinativum, a

single (initially non-proliferating) melanocyte was added. Afterwards, the position of the cells in the

cell cycle was randomised uniformly to avoid initial artifacts. This configuration could for example

mimic a severely perturbed epidermis, where suddenly not only thestratum corneumbut in addition

thestratum mediumwas removed. Consequently, a strong proliferative response should be expected.

After a steady-state flow equilibrium had been established (see subsection 4.3.1), different perturba-

tions have been performed. These include removal of all cornified cells (tape-stripping experiments)

and changes in the melanocyte properties (subsection 4.3.2).

4.3.1 Homeostasis control

The first question to be answered is whether the control mechanism of the water-concentration-

induced prolongation of the keratinocyte cycle time (compare subsection 4.2.1) can actually reproduce

the macroscopically observed flow equilibrium of skin in anin silico model. In particular, the result-

ing flow equilibrium should be stable against perturbations such as complete removal of thestratum

corneumthat is performed for example in tape-stripping experiments [162].

It turns out that such a steady-state flow equilibrium exists and that it is stable for some regions in

parameter space (see figure 4.2).

1Note that this requires that the grid resolution is low enough in order not to generate unphysiological sink terms in

intercellular cavities.
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Figure 4.2: Maintenance of an epidermal steady-state flow equilibrium [160].Top Left : Distribu-
tion of cells in the cell cycle versus time. The vertical dashed lines indicate times where frames of
the cross-sections of the cell distribution (first row below) and the water concentration (bottom row
below) provide spatially-resolved information.Top Right: Number of viable cells versus time for
two successive tape-stripping events. Simulations have been started with different seed values of
the random number generator. The vertical dashed lines denote the respective times of the second
tape-stripping experiment, whereas the first tape-stripping has been performed at time 0 (vertical
solid line). Second row from below: Spatial distribution of cells in the cell cycle (frames from
top left to bottom right). Cells inG0-phase are encoded grey, whereas cornified cells are shown
brown. The remaining colours denote the other phases in the cell cycle. The horizontal diameter of
a single frame corresponds to 200µm. Bottom row: For every frame, the colours in the diagonal
cross-section encode the water concentration (blue for 0 % and red for 100 %). The transparent
isosurface encodes the critical water concentration.
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Starting from a monolayer of cells, the water concentration throughout the tissue (bottom row, left-

most frame) is very low such that no keratinocyte enters cell cycle prolongation. The net effect is an

initial exponential growth phase (top left panel), where stemcells in the basal layer and also transit

amplifying keratinocytes – that have not yet reached their fourth generation – proliferate. After three

days the stemcells in the basal layer enter prolongation of the cell cycle (second row from the bot-

tom, leftmost frame). After four generations, cornification of the first keratinocytes begins, followed

by the rapid formation of a strongstratum corneumafter five days with a considerably decreased

diffusion coefficient for water. This in turn leads to an increased water concentration in thestratum

medium(bottom row, second frame) and thereby a large fraction of non-cornified keratinocytes re-

siding in G0-phase (second row from below, second frame): The initial exponential growth is halted.

Afterwards, the cell number decreases, since cornified keratinocytes are shed off at the outer surface

of thestratum corneum. The dynamics equilibrates slowly. After 35 days, thein silico analogue to

a tape-stripping experiment has been performed: All cornified cells are suddenly removed from the

simulation. This leads again to a proliferative response. However, since this time the cornified layer

quickly re-establishes due to the abundant keratinocytes in the G0-reservoir, the proliferative response

is considerably smaller than initially. Interestingly, the oscillations around the equilibrium value are

remarkably strong. In figure 4.2 second row from below it visible in the rightmost (latest) frame that

the cornified layer exhibits a small hole (blue cells) in thestratum corneum. Through such holes, a

considerable amount of water can be lost, which causes even distant keratinocytes in the model to

leave their cell cycle arrest (white cells changing to blue cells). This sensitivity of the model to small

water concentration changes leads to the strong perturbations of the equilibrium and to the slight

upward tendency. The equilibrium thickness of the epidermis in the model corresponds to approxi-

mately 120µm above the basal membrane and with the ground surface of 200×200µm2 the resulting

equilibrium cell numbers do well correspond to values in the literature of 75000 cells per square mm

epidermis [156].

If the tape-stripping is performed twice (figure 4.2 top right panel), the relative magnitudes of the

proliferative responses display an interesting behaviour. Already in the first tape-stripping event (ver-

tical solid line) there is a considerable variance in the heights of the proliferative responses. This is

a mere result of different seed values in the random number generator. More important, the relative

magnitude of the secondary proliferative responses is generally smaller than in the first tape-stripping

events. In the subpopulations (not shown) it becomes visible that in the second tape-stripping, the

stratum corneumis re-established much faster. This is due to the larger number of viable cells in

between the experiments in comparison to the number of viable cells before the first tape-stripping

experiment. These cells constitute a larger reservoir for cornification. After thestratum corneum
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has been re-established, the water concentration increases quickly and the proliferative response is

halted. Especially for the case when the second tape-stripping experiment is performed at the peak of

the cellular response (blue curve), the time needed for restoration of thestratum corneumis shortest,

which is reflected in the relative magnitude of the secondary response as well.

In addition, it is visible that with a decreasing∆Tts between the tape-stripping events, the relative

magnitude of the secondary proliferative responses decreases: For large distances (11.6 days, black

curve) the epidermis approximately reacts as strong as in the first experiment but with smaller dis-

tances between the experiments (red and green curves), the magnitude of the response decreases.

This has a different reason than the decrease between primary and secondary response: In the cell

cycle distribution (second row from below) right after a tape-stripping event (third frame) it is visible

that the basal layer dominantly remains in G0-phase. Since these are the cells that produce the ker-

atinocytes of the first generation, the overall cell reservoir of keratinocytes will – for the time of an

unprotected epidermis – decrease. The net effect is that the reservoir can regenerate during∆Tts and

the secondary proliferative response will be stronger with larger regeneration times.

4.3.2 Effects of melanocyte anchorage

In a second assay, the single melanocyte in the basal layer was turned cancerous after the flow equi-

librium was approached. Previously, the non-proliferating melanocyte was as firmly attached to the

basal membrane as keratinocyte stemcells, such that it did not separate during equilibrium forma-

tion. Note that in the model, the property “cancerous” is only reflected by suddenly allowing for

melanocyte proliferation. As in the model the cell cycle of melanocytes is not influenced by the local

water concentration, these cells have a competitive advantage in comparison to the keratinocytes. In

a first attempt, the degree of melanocyte anchorage to the basal membrane has been varied concomi-

tantly with the malignant transformation. It is known that most human melanoma cell lines display

decreased or no expression of cadherins and therefore exhibit a decreased ability to adhere [164].

One might think that a decreased basal adhesion of cancerous melanocytes would lead to a decreased

fraction of melanocytes bound to the basal membrane and thereby to a larger fraction of melanocytes

that is shed to regions where the nutrient supply falls below necrosis-inducing levels. Thus, the

total number of tumour cells should intuitively be sensitive to the basal anchorage. Starting from

experience with MTS (compare table 3.1 on page 89), the cycle time of the cancerous cells has been

assumed to be in the order of 15 hours. It turned out that with such short cycle times for melanocytes

and the turnover time chosen for the stemcells in the basal layer, the overall growth dynamics was

hardly dependent on the anchorage to the basal layer (see figure 4.3 left panel). Even with completely
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absent adhesion to the basal membrane, comparable numbers of tumour cells were found. The reason

is that with the given proliferation rate, exponential growth simply outperformed the epidermal flow

induced by the turnover at the basal layer. Consequently, the proliferation rate of the cancerous

cells has been reduced and new simulations were performed in combination with complete loss of

melanocyte basal membrane anchorage (see figure 4.3 right panel). There it is visible that there is
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Figure 4.3: Melanocyte growth after the malignant transformation [160].Left : Total number of
melanocytes (orange, including necrotic and viable melanocytes) and viable cells (black, including
stemcells, keratinocytes, and melanocytes) for different degrees of basal adhesion versus time –
expressed in units of the cancerous melanocyte cycle time. With the melanocyte cycle time set to
τmel = (15.0± 2.0) h and other parameters chosen as in table 4.1 on page 120, the basal anchorage
has no significant effect on the overall dynamics. Initially, the growth of melanocytes follows an
exponential growth, which is soon slowed down since the melanocytes reach distant regions from
the basal layer, where nutrients are provided scarcely. Since the number of viable cells already
indicates saturation, the total number of melanocytes will saturate eventually. A further increase
in the cell numbers can in reality be achieved by angiogenesis or by surface-dominated growth by
leaving the computational domain.Right: With considerably slower melanocyte proliferation, a
parameter regime can be found where melanoma do not persist within the steady-state flow equi-
librium. Interestingly, in this case the period of coexistence of healthy skin and transformed cells
may be remarkably long, which – if transferred to reality – would give time for further malignant
transformations. In this parameter regime, the system is very sensitive to stochastic effects, as is
indicated in the disturbed order (some curves intersect). The damped oscillations stem from the
standard deviations of cell cycle durations (2.01 h in every run).

a region of melanocyte proliferation rates with considerable fraction of the melanocytes being shed

into regions distant from the basal layer, where the glucose concentration falls below life-sustaining

levels. In these regions, necrosis is induced. Interestingly, the number of melanocytes at 35 days after

the malignant transformation is not a monotonously decreasing function of the cycle time (compare
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for example solid yellow and red dotted curves in figure 4.3 right panel). This is due to stochastic

effects:

The region between melanoma persistence and complete tumour shed-off has been examined fur-

ther by adjusting the melanocyte cycle time toτmel = (44.44± 5.56) h. Generally, one can see in

figure 4.4 bottom panels, that the usual spherical form one observes forin vitro MTS (compare chap-

ter 3) is considerably deformed for this system to cylinder-shaped or cone-shaped. This is due to the

pre-existent flow-equilibrium of the surrounding tissue and the effectively one-dimensional diffusion

problem. The shapes of these structures appear to be dynamically fluctuating in the model in these

initial phases. Note that the boundaries of the melanoma are rather diffuse. From the cross-sections

in figure 4.4 it may be hypothesised that the micrometastases sometimes observed around primary

melanoma in skin may correspond to branches of melanoma clones that have separated from the main

clone during the upward flow. For the whole epidermis it can be seen that its thickness increases in

those situations where considerable numbers of melanocytes develop. In the model, this is due to the

displacement of the surrounding keratinocytes, which are constrained in the perpendicular directions,

and also to the increased loss of water through tumour tissue.

Initially, a thin column of cancerous melanocytes is formed. Then, in some simulation runs (see

figure 4.4 bottom rows), the melanocytes can persist within the life-sustaining zone until their growth

velocity outperforms the upward-directed flow velocity and direct contact with the basal membrane is

re-established. Afterwards, in the middle of the column of cancerous cells the upward drag forces are

decreased, since for the interior cells there is no direct contact with keratinocytes moving upwards.

Using different seed values for the random number generator, several simulations with otherwise

equal parameters have been performed (coloured curves in figure 4.4 top panel). It turns out that

completely different outcomes may occur. Thereby, one should keep in mind that the stochastic

effects do not only result from stochastic forces, but from the randomly chosen mitotic directions

and the cell cycle durations as well. The initial phases are most important, as for the small cell

number in the initial melanoma growth phase stochastic effects do not average out completely. In

this first experiment, the different seed value did already lead to different configurations before the

malignant transformation, i. e., stochastic effects had already entered the initial conditions for the

cancerous melanocytes. To elucidate this context further, another series of simulations has been

performed, this time with equal initial seed values. On the contrary, in this second series the seed

value of the random number generators was reset to different values right at the time of the malignant

transformation. Thus, the initial environment of the cancerous melanocyte was the same in these

simulations. It turned out that the variance of the outcomes narrowed considerably (thin grey curves

in figure 4.4 top panel). Thus, it can be concluded that the variance in the initial environment of
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cancerous melanocytes contributes significantly to the final outcome in thein silico model. Note that

these secondary stochastic effects do not only include the spatial cellular position, but also the local

proliferative state and thereby the local upward flow velocity: The upward drag forces will be larger if

the cancerous cell is surrounded by many proliferating keratinocytes with a net upward flow velocity.

4.3.3 Model parameters

Reasonable dynamics has been achieved with the parameters in table 4.1.

The viscosity of the extracellular matrixη determines the friction on loosely bound cells and – since

friction arising from the cytoskeleton was assumed to be small (γ⊥ ≈ 0) – dominates friction in

directions normal to the cell contact surfaces. This contributes for example in proliferation and thus, in

addition the speed of cell division in M-phase is dependent onη. As long as the mechanical relaxation

occurs on a shorter timescale than the cell doubling time, this does not have macroscopic effects on

the evolution of the tissue. Whenγ⊥ has the same order of magnitude asγ‖, it will dominate the

contribution inflicted by the viscosityη. If the magnitude of the total drag force coefficientγ2 = γ2
⊥+γ2

‖
does not change, it turned out by comparing the three extreme cases (that is,γ⊥ = 0, γ‖ = γ and

γ⊥ = γ, γ‖ = 0 andγ⊥ = γ‖ = γ/
√

2), that the differences in the overall population dynamics are rather

small (not shown). It may be speculated that this is due to the fact that in the present calculations, the

relaxation speed has no direct back-reaction on the number of cells, as for example contact inhibition

is not included. As here absence of perpendicular friction has been assumed, the tangential friction

coefficientγ‖ dominantly determines the speed of relaxation within the tissue. The chosen value led

to reasonable dynamics and has been estimated from [76].

The adhesion energy densityεmax determines the cell-cell equilibrium distance and the binding

strength, which was a marker for the removal of necrotic or cornified cells. Generally, this value will

in reality be time-dependent. For example, for cell-cell contact durations shorter than 30 seconds,

average rupture forces of 20 nN have been measured [88]. AssumingKi j = 1000 Pa andRi j = 2.5 µm

one would thereby find from equation (2.69) an adhesion energy density ofεmax ≈ 0.0017µN µm−1.

However, then the equilibrium distances resulting from equations (2.63) or (2.68), respectively, are

inconsistent with the equilibrium distances in [88]. This indicates that neither the full JKR model

(2.63) nor its approximate version (2.68) is directly applicable to cells. For larger times, the discrep-

ancy becomes even worse. Therefore, the binding energy density has been derived from the observed

equilibrium distance [88] solving (2.68) instead. With this procedure, the equilibrium distances are

in a physiological regime. Note that larger adhesion will lead to smaller equilibrium distances (lead-

ing to moderately increased contact surfaces and drag forces) but in addition to longer persistence
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Figure 4.4: Primary and secondary stochastic effects on the initial stages of melanoma [160].Top:
Total number of melanocytes (solid lines) and the necrotic cell subpopulation (dashed lines) after
the malignant transformation with melanocyte cycle timesτmel = (44.44.0± 5.56) h and other pa-
rameters as in table 4.1. Different colours correspond to different initial seed values of the random
number generator with otherwise equal parameters. Completely different outcomes may occur.
Vertical dashed lines mark times where the frames of the cross-sections (below) have been ob-
tained. For seed value 4 (red), the melanocyte population is nearly extinct after 45 days, as nearly
all melanocytes are necrotic (curves combine). The curves in grey correspond to simulations that
have been started with initially equal seed values, which have been reset to differing values at the
time of the malignant transformation.Bottom cross-sections: Time frames of thein silico evo-
lution of cancerous melanocytes (black) within an epidermal population containing keratinocytes
(light grey) and stemcells (yellow). The diameter of a single frame corresponds to 200µm. The
colours do neither differentiate between viable and necrotic melanocytes nor viable and cornified
keratinocytes, respectively. The first row corresponds to the seed value 1 (black curves in the top
panel), the second row to seed value 4 (red in top panel), and the last row to seed value 5 (green in
top panel). The existence of the flow equilibrium of skin leads to cylinder- or cone-shaped tumours.
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times of dead cells, which results in an increased thickness of thestratum corneum. However, due

to equation (4.1) this latter effect only enters logarithmically. Even if the adhesion energyεmax and

the minimum anchorageεmin are decreased simultaneously, differences in the numerical solution may

occur: This is due to the fact that for these reduced values, the equilibrium distance and the contact

distance are much closer together, such that the maximum spatial stepsize allowed in the numerical

solution must be decreased.

The elastic parametersEi andνi correspond to approximate physiological values for cells [76, 134,

140]. However, it is known that – depending on the cell type – significant deviations may occur.

With the given drag forces, mechanical relaxation occurs on a shorter scale than the cell cycle times,

such that changes in physiological windows have only small macroscopic consequences. It should be

noted however that already for moderately changed Young moduli (and/or reduced Poisson moduli)

the equilibrium distance between cells will be shifted, which might decrease the maximum allowed

spatial stepsize in the numerical solution to avoid unphysiological losses of contact.

As has already been discussed in subsection 4.3.2, stochastic perturbations may have significant in-

fluence on melanoma development in the model, both as primary (i. e., occurring after the malignant

transformation) and secondary (i. e., as variations of the initial conditions) effects. Generally, these

can be divided in stochastic forces, randomly distributed mitotic directions, and randomly distributed

cellular cycle times.

Stochastic forces contribute to the detachment of cornified and necrotic cells, which do neither divide

nor advance through the cell cycle. Small variations in their strengthξ change the fluctuations in the

epidermal thickness around the equilibrium value. For completely absent stochastic forces, the exis-

tence of a planar basal layer sometimes led to planar cell configurations, which is unfavourable for

the Delaunay triangulation (compare the general position assumption in subsection 2.3.2). Consider-

ably larger stochastic forces have a strong influence on the thickness of thestratum corneum, since

loosely bound cells are removed much faster and the protective layer is lost. Then, the probability

of water loss is increased and as a compensatory reaction the thickness of the epidermis increases.

The thickness of the cornified layer will thus be strongly dependent on the receptor loss rateαloss, as

follows from equation (4.1).

The values of the durations of M-phaseτ(m), theS/G2-phaseτS/G2 and the prolongation of the cell

cycle τ(G0) influence the relative distribution of cells within the cell cycle (compare figure 4.2 left

panel), whereas the sum of their squared widths primarily determines the speed of desynchronisation

of cell division. This becomes important after the removal of all keratinocytes. Due to missing specific

data, these values have been adopted from chapter 3. The shortest observed cycle time determines

the proliferation time for keratinocytes if the water concentration is below the critical threshold. The
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system is most sensitive to the G0-phase prolongation timeτG0, which has been estimated from [162],

where the cell cycle time was found to range between 14 and 200 hours. Note that the large width of

this prolongation time was necessary to obtain desynchronisation of cell proliferation in reasonable

time. With a smaller width, the time for the establishment of a steady-state flow equilibrium and the

perturbations were much larger.

The simplest assumption of randomly distributed mitotic directions did not conflict with the layered

structure of the epidermis. This however does not refer to the model constraint that after asymmetric

cell divisions of keratinocyte stemcells, the daughter cell with the largerz-component of the position

differentiates to a keratinocyte. Without this assumption, the basal layer would loose stemcells that

would eventually be shed off at the outer surface.

The average cell volume of keratinocytes varies from 425µm3 for cornified cells to 800µm3 for

stratum mediumkeratinocytes [165]. Therefore, with the intrinsic assumption of spherical shape, the

maximum cell radius has been fixed toR(m) = 5.0 µm, which influences the time-dependent target

volume. Note however, that within thestratum corneumthe cornified cells flatten considerably and

the intrinsic cell shape cannot be regarded as spherical anymore.

The glucose uptake rate for cancerous melanocytesλ(mel)
gluc has been chosen considerably larger than

the glucose uptake rate of keratinocytesλ(ker)
gluc . This is motivated by the assumption that cancerous

melanocytes have a considerably increased metabolism. The actual values are in the range observed

for tumour cells [139]. The minimum nutrient concentrationUcrit
gluc, below which for melanocytes

necrosis is induced, has been chosen to be in the order of 1 mM, since necrosis of tumour cells

becomes visible at these nutrient concentrationsin vitro [107, 172]. The combination of melanocyte

nutrient uptake rate and minimum glucose concentration define a region, within which melanocytes

can survive.

The critical relative water concentrationUcrit
H20 has been adjusted to obtain a reasonable thickness of

thestratum mediumwith O (5) cell layers, as is reported for example in [162].

The apparent water diffusivity Dstrat.germ.
H20 in stratum mediumas well as instratum corneumDstrat.corn.

H20

has been estimated experimentally by various researchers. Though strong variances exist, all of them

predict a strong decline of the apparent diffusion coefficient [163, 168, 169]. The local water diffusion

coefficients influence the gradient of water concentration: Large diffusion coefficients correspond to

a small gradient. For an intactstratum corneumthe water concentration is approximately constant

throughout thestratum mediumand then falls rapidly (compare figure 4.2 bottom row).

The same general features hold true for the glucose diffusion coefficientDtiss
gluc, which has specifically

been determined for the human skin [170]. The glucose concentration at the basal layerUbound
gluc has

been fixed to values that are normal for blood [171] for non-diabetic patients. However, it should be
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noted that in reality the blood glucose concentration varies significantly – for example after ingestion.

In the model, the low glucose concentration in upper layers of the epidermis strongly influences the

chances of melanoma survival.

In order not to loose stemcells at the basal layer migrating upwards to thestratum corneum, the basal

adhesion energy for keratinocyte stemcells and non-proliferating melanocytes has been chosen to be

twice the maximum adhesion energy densityεmax. This did suffice to disable detachment of these cells.

For cancerous melanocytes, the basal adhesion has been varied as discussed and for differentiating

keratinocytes, no basal adhesion has been assumed.

4.4 Discussion

With a more complete treatment of the equations of motion than in chapter 3, it has been demonstrated

that agent-based models can still be used for tissue simulations in the order of 104 . . . 105 cells.

From a biological point of view, a diffusible substance can serve as a moderator on cellular prolifera-

tion in the epithelium. The model does not contradict that the extracellular water concentration may

be a candidate for such a moderator. However, since any other diffusible signal that is not consumed

or secreted by the cells themselves in the epidermis but is released at the basal layer and that has a

considerably decreased effective diffusivity in thestratum corneumwould lead to formally equiva-

lent model equations, other signals fulfilling these conditions would yield the same model behaviour.

Consequently, the moderating substance cannot be extracted from the model without quantitative

comparisons. Simple assumptions on the moderating substance can explain the homeostasis of the

epidermis, which is in the model stable against perturbations. The consequences of varying adhesive

properties of cancerous melanocytes to the basal membrane have been studied. It turned out that these

are strongly interlinked with the balance of melanocyte and keratinocyte proliferation rates. In partic-

ular, it has been shown that in some regions of parameter space, stochastic effects play an important

role in thein silico representation of melanoma growth. In particular, the variance of the initial local

environment of cancerous melanocytes was found to have strong consequences.

It is the truth content of the used assumptions and the quality of the applied approximations that

determine the applicability of these results in reality. The model introduced in this chapter has a

number of shortcomings:

A significant macroscopic failure of the model is its inability to explain the reduced thickness of the

stratum corneum. This is due to the fact that the inherent cell shape is spherical, whereas cornified

cells flatten and form polarized adhesive bindings. In reality, this will lead to a greater stability of the

stratum corneumin comparison to the model, which would for example imply a smoother evolution
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around the steady-state flow equilibrium than exhibited in figure 4.2 left panel. Possibly, choosing

ellipsoids in contrast to spheres as the intrinsic cell shape [92] may provide an alternative. Another

possibility would be to use boundary-based models such as e. g. the extended Potts model [173],

which however should be carefully adapted to cellular processes and has the disadvantage of using

enormous computational resources due to the many degrees of freedom.

From the theoretical point of view, the model could be significantly improved by deriving a model

valid for the two-body contact of objects that admits non-normal forces acting and does not underlie

the constraints of only small deformations. In addition, forin vitro cell populations that are not fixed

to a substrate, the effects of torque may become important. Furthermore, the effects of cell shape

plasticity should be included to a greater extent. These refined theories however require much better

experimental resolution than currently provided. It appears questionable whether centre-based models

are able to cope with the increasing degree of complexity resulting from these improvements.

The basal layer has been approximated with a plane boundary condition in this article. As already

mentioned in subsection 4.1, the basal layer is known to have a corrugated structure (see figure 4.1

left panel). This would significantly enlarge the region where water and nutrients are provided in

abundance and thereby lead to a far greater cell reservoir that is able to start a proliferative response

in case of injury. It may be speculated that this is one of the reasons that led to the emergence of

ruffled basal layers the skin.

Technically, the stochastic elements within the simulations include the length of the individual sub-

states of the cell cycle, the stochastic forces acting on single cells and the randomly chosen direction

of mitosis. Note however, that though within the basal layer the direction of mitosis was chosen ran-

domly, only the upper cell differentiated to a keratinocyte within the model. A more realistic model

assumption would use a loss of contact with the basal membrane as a signal of keratinocyte differ-

entiation. Such a model would first densely populate the basal layer with stemcells before building

the epidermis. In general, these stochastic elements did not contradict the characteristic morphology

of the epidermis. From the numerical point of view, they are necessary ingredients to avoid planar

configurations that are unfavourable for the adjacency detection (compare subsection 2.3.2). From

the biological point of view, it is interesting that the stochastic variation of the initial conditions ofin

silico melanocytes can lead to qualitatively different outcomes.

The dynamics of the nutrients and of water has been described with a reaction-diffusion approach here.

However, due to the cellular movement, there will be an additional contribution by active transport

that is completely neglected. To a first approximation, this effect (and others) may be absorbed into

the apparent diffusion coefficient as is done in the experimental measurements. Note that the polarized

structure of the cornified cells in thestratum corneummay give rise to non-isotropic diffusion, where
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the diffusion coefficient is not a scalar value anymore.

The cell cycle has been approximated here by a small number of internal cellular states only. It may

be questioned whether a subdivision into discrete substates makes sense. One may expect a much

smoother reaction of the epidermis to the removal of all keratinocytes if transition into and out of G0-

phase would not depend on a threshold water concentration, but would be determined by transition

probabilities that may continuously depend on the water concentration. This may be judged with

quantified experimental data.

4.5 Realistic model extensions

Though in comparison to chapter 3, a more complicated system including some effects of tumour host

competition has been studied, in addition to the shortcomings discussed before, further properties of

the realistic system have been neglected. Many of these, for example tumour immune interactions,

plasticity of tumour cell properties, tumour cell sensitivity to other diffusing factors than just nutri-

ents etc., have been mentioned already in section 3.6. Several further processes occur in a realistic

epidermis, some of these are summarized below:

• Healthy cells often require further environmental signals (such as e. g. contact with other cells

or with a membrane) that must be continuously supplied. If the supply of these signals fails,

these cells undergo apoptosis. This dependence on external signals is also investigated for

proliferation in a theoretical model [174].

• In processes such as wound healing in epithelial sheets, active cellular movement has been

observed [175].

• In reality, the epidermis can react as well to mechanical irritations that leave thestratum

corneumintact with a proliferative response. This is not accomplished by the current model.

• The protective function of melanin [154] is not included in the model. Consequently, the effects

of electromagnetic radiation cannot be studied.

Living organisms presumably host a plethora of interactions that are currently not even known. This

number would be considerably constrained by anin vitro co-culture of the cell types encountered in

the epidermis. If such an experimental system could be established, it could be used to study isolated

mechanisms under better-defined conditions.
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parameter value comment

ECM viscosityη 0.001 kgµm−1s−1 [76, 77]

adhesion energy densityεmax 0.0001 Nm m−2 [88]

minimum anchorageεmin 0.00001 pJ

receptor loss rateαloss 0.00001 s−1

tangential friction coefficientγ‖ 0.1 · 1012 N s m−3 [76]

stochastic force coefficientξ 0.001·10−6 kg m s−3/2 D = 0.0001µm2 s−1

keratinocyte M-phase durationτ(m) (1.0± 0.25) h [77]

keratinocyte S/G2-phase durationτ(S/G2) (5.0± 2.0) h [77]

keratinocyte G0-phase prolongationτ(G0) (138.9± 138.9) h [162]

shortest observed keratinocyte cycletimeτmin (15.0± 2.0) h [77, 162]

pre-mitotic cell radiusR(m) 5.0 µm [165]

cell elastic modulusEi 0.000750 MPa [140]

cell Poisson ratioνi 1/3 [134]

melanocyte glucose uptake rateλmel
gluc 150.0 amol cell−1 s−1 [139]

keratinocyte glucose uptake rateλker
gluc 10.0 amol cell−1 s−1

critical water concentrationUcrit
H20 90.0 % [163]

critical glucose concentrationUcrit
gluc 1.0 mM [107]

water diffusivity Dstrat.germ.
H20 1000.0 µm2 s−1 [166, 167]

water diffusivity Dstrat.corn.
H20 0.2 µm2 s−1 [168, 169]

water boundary concentrationUbound
H20 100.0 % by definition

glucose diffusivity Dtiss
gluc 256.0 µm2 s−1 [170]

glucose boundary concentrationUbound
gluc 5.0 mM [171]

stemcell basal adhesion energy densityεbasal 2εmax

Table 4.1: Parameters for the agent-based model of the epidermis. As far as possible, model
parameters have been derived from independent experiments or they have been varied as fit pa-
rameters. Parameters not included in the table have been varied and are discussed separately in the
text.
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Critical Reflections

5.1 Numerical algorithms

Several numerical algorithms have been used in this thesis. Being a compromise of algorithmic

simplicity and execution efficiency, all of these algorithms can profit from further improvements.

Evidently, to model realistic systems of a larger size, parallelisation of the algorithms [40] is of urgent

interest.

The numerical tool of the Delaunay triangulation may be improved significantly both in terms of

efficiency and numerical stability:

• The efficiency of the triangulation could be improved by using a different data structure based

on faces and not on tetrahedra [27].

• In the evaluation of the orthosphere criterion (2.7) with adaptive precision arithmetics (compare

appendix A.2) it is assumed that the vertices are in general position, i. e., planar configurations

should not occur. If they do occur, the triangulation is reconstructed following slight perturba-

tions of the vertex positions. For most realistic applications, one can expect stochastic effects to

rule out these planar configurations. However, for these rare cases, the error-handling of the al-

gorithm could be significantly improved. Thus, unnecessary reconstructions could be avoided.

• The flip algorithm presented in subsection 2.3.5 will fail if within a single timestep the tra-

jectories of two balls intersect such that – in an intermediate flipping configuration – a ball

is covered by another one. In such a case, the intermediate spatial steps arising from equation

(2.15) become infinitely small and the error-handling performs a complete reconstruction of the

triangulation with all positions updated. Though it turned out, that with an adaptive timestep
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such situations are reduced to rare exceptions, a more efficient approach would simply delete

the corresponding balls at their old position and insert them at their new ones. This would

contribute to avoid unnecessary reconstructions. In addition, the modification of the cell-cell

interactions in equation (2.73) does not completely rule out overlapping balls but makes them

highly improbable. Note that a smaller value for the divergence point (e. g.xd = 1+ Rmin/Rmax)

in this correction would conflict with the present implementation of mitosis.

• For some applications, it may be necessary to calculate the set intersection of Voronoi volume

and sphere volume as defined in equation (2.77). Though currently a Monte-Carlo approach for

the calculation of such volumes is provided, an efficient numerical routine is still missing.

The discretisation of PDEs with the discrete element method (DEM) is numerically stable under well-

defined conditions. However, based on DEM, the algorithms may still be improved significantly:

• The size of sparse linear systems such as equation (B.1) strongly influences the computation

time necessary for their iterative solution. Currently, the boundary conditions on the PDE are

implemented as separate equations. With an efficient algorithm that could use time-dependent

boundary conditions to reduce the dimension of the system one could considerably decrease the

computational time for obtaining a solution, compare figure B.1 left panel.

• In the full solution of equation (2.36) with the method of biconjugate gradients, currently no

preconditioning beyond the inverse of the diagonal is used. The general matrix structure of

these equations suggests, that the use of the side diagonals for preconditioning might improve

convergence.

• In order to calculate a continuous gradient of concentration in RDE problems, a spline function

of higher order than the linear interpolation in equation (3.8) must be used (compare subsec-

tion 3.2.2), since the chosen tri-linear interpolation is not continuously differentiable.

The numerical solution of the cellular equations of motion (2.86) has been performed using a first-

order scheme that used an adaptive timestep (compare appendices C.2.1 and C.2.3). This approach

may be improved significantly as well:

• The order of the numerical scheme could be increased by using Runge-Kutta methods [68], but

these require intermediate recalculations of the forces (and thus, an intermediate update of the

Delaunay triangulation). This drawback is not displayed by predictor-corrector methods [176]

that require the maintenance of a history of the dynamics instead. However, these methods may

fail if the involved forces are not continuous (as for example in the present implementation of

mitotic separation forces).
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• At present, the timestep used in the adaptive scheme is reduced simultaneously for all particles

(cells) in the simulation as soon as too large spatial stepsizes are encountered. This is also the

case if the maximum spatial stepsize has been exceeded in a small region only. Therefore, the

efficiency of the numerical solution can be increased by using timesteps that are individualised

to every single cell. However, such a scheme must not exhibit artifacts.

5.2 Underlying models

Different models for cell-cell and cell-medium interaction have been introduced for the agent-based

approach within this thesis. Inevitably, these models cannot grasp the full spectrum of the interaction

properties:

• As discussed in subsection 2.5.2, the chosen JKR interaction model has many shortcomings. It

would be interesting to derive a fundamental theoretical contact model that incorporates viscous

and plastic effects under the influence of normal and shear forces. Thus, the effects of friction

could already be included as well. Such a model should be derived from a microscopic model

(e. g. tensegrity) and should be verified experimentally. For the numerical solution, such a

model could then be replaced by a simpler mechanical network as well, where the parameters

have been adjusted such that the dynamics of this network resembles the full theoretical model.

• To model active and possibly random forces exerted by eucaryotic cells usingfilopodia, lamel-

lipodia, or pseudopodia[96], the dynamics of these cellular projections should be understood.

For passive random movement, the stochastic forces should in reality differ considerably in

solution and in dense tissue. Consequently, at the interface of solution and dense tissue, the

isotropy of the stochastic forces should be abandoned in a realistic model.

• For strongly compressed tissue, the involved forces will be large and the overdamped approxi-

mation in equation (2.86) may not apply anymore. If acceleration is included in the equations,

the dimension of the system (2.86) will double, but the same general techniques could be ap-

plied. For example, in the case of MTS, the assumption of pressure relaxation within the fluid

phase may not be validin vivo, as it is known from surgery that excised tumours may be un-

der strong pressure. The influence of the extracellular pressure distribution on the cell kinetics

[111, 115] should be included in these cases.

In addition to the last item, further model limitations apply to the PDE model presented:
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• As has already been discussed, the description of the cell dynamics by positive-definite diffusion

does neglect the attractive part of cellular adhesion. The approximate analytic form of a realistic

effective diffusion coefficients could well be derived from comparisons with an agent-based

modelling approach including repulsion and adhesion, if experimental data are not available.

• If corresponding experimental data become available, it would be interesting to analyse the cell

cycle distribution in an extended continuum approach as well.

The simple model of calculating the distribution of nutrients with RDEs is quite limited:

• If pressure differences exist, this would imply fluid flow and the assumption that the nutrients

are transported using pure diffusion would have to be discarded.

• Depending on the culturing conditions of the tumour spheroids, the boundaries of the spheroids

should be treated as time-dependent Dirichlet boundary conditions in well-stirred growth me-

dia.

• In all modelling approaches, the simple assumptions of constant cellular uptake rates should

be improved by comparing with experimental observations on a single well-defined model cell

line. This could for example be achieved by employing the Michaelis-Menten kinetics (3.6)

for the nutrient uptake rates. As a further advantage, this would directly preserve positive

definiteness of the RDE for the nutrient concentrations.

5.3 Data Improvements

The quantitative experimental signature used in this thesis is too weak to falsify the proposed models

or to determine model parameters with acceptable certainty. However, the present work can well be

interpreted as a feasibility study on large-scale simulations.

Specifically for the continuum approach applied to multicellular tumour spheroids it turned out that

due to the moderate computational demands of the PDE model under spherical symmetry, the multi-

dimensional fitting procedure is well applicable. The conclusions drawn from the best-fit parameters

would benefit greatly if the experimental data contained error estimates. Then, an estimate on the er-

ror of the parameters can be extracted from the fitting procedure as well. With such data, the current

continuum model could well have been falsified.

Consequently, to reduce the number of mathematical models currently available, new experiments

should be carried out. Multicellular tumour spheroids constitute a popular experimental model system
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already and seem under reasonable experimental control. It seems therefore promising to analyse the

growth dynamics of multicellular spheroids on a single (well-defined) cell line. In such an experiment,

the culturing conditions could be varied as in [107] and in addition, the cellular response to growth

inhibition could be studied in line with [106]. The data (including relative distribution of cells in

the cell cycle, total cell number, quantitative morphologic data with error bars) could be studied

with spherically symmetric continuum approaches that also account for the cellular dynamics [66,

111, 115] to extract information on nutrient uptake rates and necrosis- or growth-inhibition inducing

mechanisms.

Having established parameters (with estimates on their uncertainties), these may be used in agent-

based models to analyse the additional effects that arise from the discreteness. Since stochastic effects

seem to be of great importance in the discrete simulations in the epidermis, one should aim at deriving

probabilistic statements of the discrete effects. In comparison with experiments it remains then to be

seen whether tissues display Emergence or not. The other way round, continuum models can profit

from agent-based approaches by incorporating effects arising from discreteness.

The models in this thesis produce a large variety of experimental signatures, not all of which could be

thoroughly discussed here. In table 5.1, different proposals for the experimental falsification of these

model predictions are summarized.

5.4 Limits of Current Theoretical Biology

Theoretical Biology is an interdisciplinary science. Its strongest contributions arise from biology and

mathematics. This remains valid for its strongest limitations as well.

Biology has contributed detailed observations on natural phenomena and is now evolving from a

qualitative empirical science to a quantitative science within which hypotheses can be accepted or

rejected with confidence levels. This process has not been completed up to now. Even in modern

experiments, where error estimates on a defined confidence level are included, the measured quantities

underlie large variations. Historically, this has made it difficult for the quantitative scientific method

to be established in biology. These large variations have several reasons:

Firstly, it is very difficult to keep biological material under good experimental control. Empirically,

specimens collected in nature are not identical and their antecedent is not known. But forin vitro ex-

periments this is not different: Apart from intrinsic genetical differences, one has so far not been able

to establish defined initial and boundary conditions in the experiments. For example, the metabolic

needs of cells in culture are not completely understood such that the growth medium used in many

in vitro experiments has to be prepared or extracted from existing biological systems [98, 107, 139],
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proposal reference

In the initial growth phases of monoclonal MTS, the model predicts
oscillations within the occupation numbers of the cell cycle substates.
This relative distribution of cells in the cell cycle could be measured by
staining methods to falsify the model.

chapter 3

figure 3.4

Both the agent-based model and the continuum approach make quan-
titative predictions about the sizes of the spheroids and the nutrient
distribution.

figure 3.5

figure 3.6

figure 3.7

In the model for the epidermis, tape stripping events lead to a syn-
chronisation of the cellular proliferation, which could be observed by
staining methods afterwards.

figure 4.4

top left panel

By measuring the proliferative response to successive tape-stripping
experiments, information about the time spent in the G0-phase can be
gained.

figure 4.4

top right panel

Table 5.1: List of proposals for the falsification of predictions made by agent-based models. The
proposals are ordered by the occurrence of the corresponding discussion in this thesis.
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which are under limited control only. Hopefully, improved control on culture conditions will be

gained in future.

Secondly, most biological systems above the protein level underlie large intrinsic variations, as for

example two cells are never identical. Since many current measurement techniques are invasive, mea-

sured quantities have to be averaged over a whole ensemble of not completely identical constituents.

The origin of these variations is not entirely genetic, as even organisms with identical genotype may

express different phenotype. In fact, if one includes the DNA of our suspected endosymbiotes – the

mitochondrions that occur in eucaryots – into the definition of the genotype, the variance in the geno-

type becomes even larger. In addition, the time-dependent internal cellular state of expression and

transcription will determine the cellular behaviour. Knowledge of this internal state would require

information about spatial distributions of proteins within the cell. Still, using less invasive measure-

ments in combination with an improved control of experimental conditions would enable a time-

average performed on single individuals, which would reduce the intrinsic uncertainties. However,

the results obtained from such measurements could not directly be transferred to other individuals. In

addition, having medical applications in mind, one should rather be interested in real-world scenarios.

In conclusion, it should be accepted that this second source of error will not be definitely eliminated.

Mathematics alone is a science that examines self-made abstract structures for their properties and

patterns. It is the field of applied mathematics, which analyses correspondents of these abstract struc-

tures in reality. Impressive success of applied mathematics in many natural sciences – especially in

physics – has even put up the philosophical question whether mathematics provides a model of the

world or whether the world is just a realisation of an abstract mathematical model. Independent of the

philosophical outcome, there is the strict requirement that mathematical models must yield conclu-

sions that are consistent with experimental observations and predictions that can be falsified in future

experiments.

The questions that can be answered with current scientific means are a lot simpler: It is established

that biology can profit from the use of mathematical methods for the analyses of experiments, but

possibly one can use mathematics for more. As discussed before, modern experiments are expensive

and often under poor control. An abstract mathematical model has the potential to performin silico

experiments at a fraction of the costs and under complete control. The method of mathematics to

study abstract structures has brought great advantages, since mathematicians do not have to struggle

with the pains of everyday life. However, this tendency to abstraction can turn fatal in the sense that

scientific benefit is lost when predictions of mathematical models cannot be falsified in reality. In

such a case, the effort invested in mathematical modelling is a glass bead game [177].

Within the plethora of mathematical models that already constitute a universe, one has to identify
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the subset that is intrinsically consistent and within this subset, the models that are consistent with

current experimental data and make differing predictions are of special interest. Models that do not

make falsifiable predictions cannot contribute to scientific progress.
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Summary

It has been possible to create previously not existent software that meets the computational require-

ments of off-lattice agent-based model approaches. This included the creation of a triangulation for

adjacency detection and the numerical implementation of algorithms for the solution of reaction-

diffusion equations. For specific examples it has been demonstrated that the tool of weighted kinetic

and dynamic Delaunay triangulations can be used in off-lattice agent-based cell tissue simulations for

adjacency detection. The presented implementation is able to calculate the specifics of a weighted

Voronoi tessellation such as contact surfaces and volumes. The method allows for interesting exten-

sions such as a consistent concept of volume calculation in cellular tissues. The tool has been applied

to off-lattice agent-based simulations in the case of multicellular tumour spheroids and epidermal

tissue.

With simplifying assumptions on cellular interactions and cellular nutrient uptake rates, the model

could reproduce experimental growth curves on multicellular tumour spheroids. An even simpler

continuum approach has been able to reproduce these experimental growth curves as well. Owing

to missing quantitative data on tissue morphology and limited quality of experimental data sets, one

could not distinguish between the two models on this level. Beyond the simple growth curves, the

agent-based model exhibits more physiological properties than the analogous continuum approach.

For example, initial oscillations within the relative occupation of the cell cycle states should be ob-

servable in small and monoclonal spheroids.

For epidermal tissue, the model has qualitatively reproduced simple key features of a realistic evolu-

tion. For the smaller cell numbers considered in this system, the equations of motion could be treated

with less approximations. In particular, a suspected control mechanism for epidermal homeostasis,

where the extracellular water concentration influences the proliferation rate, has been tested using an

agent-based model. The resulting homeostasis was stable against perturbations such as removal of
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thestratum corneum. The consequences of a varying basal adhesion of cancerous melanocytes were

found to be strongly interlinked with the balance between melanocyte and keratinocyte proliferation

rates. In addition, it turned out that for the initial (avascular) growth phases of melanoma stochastic

effects are very important within the model, in particular the stochastic variation of the initial envi-

ronment. The model predicts a cone-like (and dynamically changing) diffuse shape of melanoma in

pre-clinical stages.

Though the kinetic and dynamic Delaunay approach constitutes a great benefit for off-lattice agent-

based approaches, the disadvantage of strong computational demands persists. In addition, it turns

out that the vast amount of information produced by agent-based models currently misses sufficiently

quantified experimental signatures for falsification. Consequently, the current experimental signature

does not suffice to fix the parameters of the theory with sufficient accuracy. Nevertheless, different

mechanisms could be tested for consistency with realistic tissue dynamics within thein silico models.



Appendix A

Delaunay triangulation

A.1 Expected algorithmic scaling

A theoretical analysis on the expected algorithmic complexity of the construction algorithm of sub-

section 2.3.6 is provided in [29]. In order to determine the overall performance of the triangulation

code, the CPU time necessary for the construction of the triangulation has been recorded for different

numbers of randomly-distributed vertices. To exclude time delays arising from disconnected vertices

in the triangulation, all weights have been set to zero. For randomly distributed vertices, the expected

average total algorithmic complexity can then be deduced as follows: A first contribution results from

the stochastic visibility walk [46], where the length of the hopping path – measured in units of passed

simplices (which in average scales as the number of vertices) – can in three dimensions be expected to

scale asN1/3. For randomly distributed points, this is well fulfilled (compare figure A.1 right panel).

A second contribution arises from updating the triangulation using either the Green-Sibson or the

Bowyer-Watson algorithms. If the vertices are not in an extreme configuration (which can be ex-

pected for randomly distributed data), this contribution to complexity will in average be constant. To

obtain the total complexity of Delaunay construction, one has to integrate over the two contributions,

which yields the scalingαN4/3 + βN, whereN is the final number of vertices (compare figure A.1 left

panel).

Since for realistic applications in adjacency detection a complete reconstruction of the triangulation

will require too much time, especially the times necessary for restoration of the Delaunay criterion

after slight vertex movements will be of interest (see figure A.2). It turns out that this time scales lin-

early with the number of vertices and provides an advantage in comparison to complete reconstruction

of the triangulation.
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Figure A.1: Algorithmic scaling for the total Delaunay construction and the visibility walk [26].
Left: CPU times necessary for the tetrahedralization of different point numbers (unweighted case)
for different distributions. Dashed lines are fits to the expected overall algorithmic complexities
αiN4/3 + βiN. Cubic lattices are known to produce many flat simplices (slivers). In the case of the
points distributed on perturbed lattices, the cost of the simplex location can be reduced by giving
a good first guess. In the case of randomly distributed points, the walk in the triangulation can
be considerably shortened by choosing a better guess for a starting simplex.Right: The number
of necessary steps starting from an arbitrary simplex in the triangulation towards another arbitrary
simplex scales for uniformly distributed points in three dimensions asn1/3. Note that number of
steps necessary for a specific location may vary considerably, as each data point resembles the
mean out of ten runs.
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Figure A.2: CPU times necessary for the restoration of the Delaunay criterion [26]. The times
have been obtained after vertex movement for different relative step-sizes defined by the ratios
r = m/dmin (step size over the minimum distance). The expected linear relation (dashed lines
correspond to linear regressions) is found with slopes increasing with the step size. In the ideal
case, this update method is about 20 times as fast as computing a new triangulation. Here, for a
ratio of r = 0.1 the flip restoration method is by a factor of 10 faster in comparison to complete
reconstruction. Blue symbols correspond to the black curve in figure A.1.
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points deletions (total) insertions (total) flips (total) CPU time per timestep [s]

20000 59 41 426 0.26

40000 51 49 1098 0.54

60000 52 48 2067 0.84

80000 46 54 2749 1.15

100000 42 58 3521 1.47

120000 47 53 5154 1.81

140000 62 38 6297 2.14

160000 56 44 7207 2.49

180000 50 50 7918 2.84

200000 49 51 9766 3.21

Table A.1: Mixed performance of the triangulation for different numbers of vertices. In every
run, 100 timesteps have been performed. In each timestep, with probabilityp = 1/2 either an old
vertex was deleted or a new vertex was inserted into the triangulation (second and third columns).
Then all the vertices were moved by a small amount (corresponding to a fraction ofr = 0.1 in
figure A.1) and the flips necessary to restore the Delaunay criterion have been counted – the fourth
column does not include the flips necessary for the deletion process.

Within the context of cellular tissue, a simulation must be able to cope with a varying number of

kinetic vertices. For this case, the performance of the combined algorithms on vertex insertion, vertex

deletion and vertex movement is of interest. In table A.1, for different numbers of uniformly dis-

tributed vertices 100 time steps have been performed. In each time step, with probabilityp = 0.5

an arbitrary vertex was deleted from the triangulation and with probabilityp = 0.5 a random vertex

was inserted. Afterwards, all the vertices were slightly displaced followed by the restoration of the

Delaunay criterion. The resulting computation time increases in average linearly (see table A.1).

For the actual runtime of an application, evidently the additional computing time required by the

application will be important. This will heavily depend on the analysed interactions, but sometimes

an estimate of the mean number of expected interactions may be of use. For the example of MTS,

compare chapter 3, the distribution of the number of next Delaunay-neighbours is given in figure A.3,

where from the Delaunay triangulation in average 14 neighbours can be expected. In the logarithmic

plot in figure A.3 it becomes visible that the number of highly connected vertices exceeds the normal

distribution. This behaviour is not due to the existence of cavities within the tumour spheroid, as it is

found for spheroids right at the onset of necrosis (not shown) as well. Note that only a subset of this

number contributes to actual interaction forces, as adjacency in the Delaunay triangulation does not

necessarily imply a spherical overlap.
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Figure A.3: Relative frequency of the next neighbours inin silico MTS. For a large tumour
spheroid (grown at 0.28 mM oxygen and 16.5 mM glucose concentrations, compare figure 3.5), the
relative frequency of occurrence is displayed versus the number of next Delaunay neighbours in a
logarithmic plot. The cell sizes were allowed to range from 5· 2−1/3 µm to 5 µm. The histogram
(blue circles) is well fit by a normal distribution with mean 14.23 and width 1.46 in the region of
less than 20 Delaunay neighbours. This deteriorates rapidly for larger connectivities.
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A.2 Adaptive Precision Arithmetics

In modern computers, floating point variables are usually stored by a sign bit,p significant bits, and

some bits describing the exponent of the number. For example, in the common IEEE-standard [67] the

64 bits required to store adouble variablex, consist of a single bit to store the sign of the mantissa,

p = 52 bits to store the most significant bits of the mantissa, a single bit to store the sign of the

exponent, and the remaining 10 bits are used to store the exponent

x = ± × bb. . . bbb︸     ︷︷     ︸
p=52

×2
±bb. . . bb︸   ︷︷   ︸

10 . (A.1)

Numerical roundoff error may occur, when thep significant bits do not suffice to store all information.

For example, for adding the numbers 118 and 3 in binary representation withp = 6 one obtains

1110110+ 11 = 1111001≈ 1111000. (A.2)

This however would require 7 significant bits, and thereby the last bit is lost. Numerical roundoff

may occur for all basic operations. A simple way to circumvent this would be to use a much larger

(or variable) number of significant bits. This however would considerably decrease the efficiency of

all operations – and be superfluous most of the time. The adaptive approach is based on the idea of

representing a number by several other numbers via an expansion [39]

x = xn + xn−1 + · · · + x2 + x1 , (A.3)

where

• thexi are ordered such thatxn is largest and

• the expansion is non-overlapping in the sense that the least significant bit ofxi+1 is more signif-

icant than the most significant bit ofxi.

The above expansion is not unique (consider, for example, 1110110= 1110000+100+10 = 110000+

110), but due to the second condition, all expansions fulfil thatx andxn have the same sign. This is

especially interesting for geometric predicates such as the computation of an orthosphere criterion in

equation (2.9). The determinants can be expanded as described in [39] (compare [27, 40]) such that

an order by order evaluation is possible.



Appendix B

Large Sparse systems

B.1 Sparse Matrix Storage

A problem often encountered in the numerical solution of fundamental equations is the inversion of

large matrices, i. e., a problem of the form

Ai j xj = bi or Ax = b , (B.1)

where thebi on the right hand side as well as the matrix elementsAi j are known and the valuesx j ought

to be found. The usual procedure of computing the inverse ofA is not always practical for numerical

purposes, which is especially true for larger dimensions ofA. For most systems encountered in

this thesis the full matrices would not even fit into computer main memory. Fortunately however,

most matrix elements vanish identically for these problems and thus need not be stored (compare

figure B.1). For the numerical calculations, the row-indexed sparse storage mode as provided in [68]

has been used, which is summarized below.

To store anN × N matrix of typedouble, a vector of typedouble S Aand another vector of type

unsigned int IJA are created. Then the matrix entries ofA are saved inS A and IJA as fol-

lows:

1: store theN diagonal entries ofA in the firstN locations ofS A,

2: store the off-diagonal values ofA at locations≥ N + 1 in S A, ordered by rows and – within each

row – by column,

3: set location 0 ofIJA to N + 1,

4: store the index ofS A that stores the first off-diagonal element of the corresponding row in the

first N locations ofIJA

5: store the column number of the corresponding element inS Ain IJA at locationN ≥ N + 1.

137



138 APPENDIX B. LARGE SPARSE SYSTEMS

Figure B.1: Distribution of matrix entries for typical linear systems in this thesis. Non-vanishing
entries are surrounded by black lines, whereas colours indicate the absolute value of the matrix
elements ranging from blue (vanishing) to red (large). Usually, the systems considered are much
larger than the examples displayed, which necessitates a sparse storage scheme.Left: Typical
matrix occupation for a three-dimensional cubic Poissonian problem (here on a 5× 5 × 5 grid
leading to a 125× 125 matrix) with Dirichlet boundary conditions. In three dimensions, there are
6 off-diagonal entries for internal grid nodes, compare also equation (2.30). Note that due to the
Dirichlet boundary conditions, the boundary nodes do not have off-diagonal entries.Right: Typi-
cal matrix occupation for equation (2.86) for a system of 46 cells (leading to a 138× 138 matrix).
The corresponding linear system is symmetric, which enables one to increase the efficiency of
storage and calculation further. Since only tangential friction has been considered here (γ⊥ = 0),
the aligned sub-structures in the coloured regions simply reflect the diagonal dominance of the
3 × 3-dimensional tangential projection operatorsPαβi j,‖. Different numbers of off-diagonal blocks
correspond to different numbers of neighbouring cells with an overlap, and the different degree
of colour saturation in the off-diagonal blocks reflects the varying contact surface. Note that as
the system becomes larger (compare figure A.3), the average number of off-diagonal entries will
hardly change, such that the degree of sparseness increases.
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This storage scheme does have the small overhead of storing vanishing diagonal elements, which is

negligible for large systems. The efficient sparse storage scheme has the additional advantage, that

matrix-vector multiplications can be performed by using much less operations [68]. For example, the

matrix

M =



m11 0 m13 0 0

0 m22 0 0 0

m31 m32 m33 m34 m35

0 0 0 m44 m45

0 0 0 0 m55



(B.2)

would be stored in the arrays as

indexk 0 1 2 3 4 5 6 7 8 9 10 11

IJA[k] 6 7 7 11 12 12 2 0 1 3 4 4

SA[k] m11 m22 m33 m44 m55 × m13 m31 m32 m34 m35 m45

.

For symmetric or anti-symmetric matrices this scheme can be made even more efficient by storing

only the entries on one side of the diagonal. This must be taken into account when implementing

matrix-matrix or matrix-vector multiplication numerically.

B.2 Conjugate Gradient Method

Since the inverse of a sparse matrix is not necessarily sparse itself, the inversion of theN × N linear

system (B.1) is usually not an option. However, if the matrixA is symmetric, the solution of (B.1) is

equivalent to minimizing the function

f (x) =
1
2

xTAx − bTx . (B.3)

For this problem,A has to be referenced by multiplication only, so there is no need for actual matrix

inversion. Therefore, any iterative algorithm can be combined with the sparse storage scheme intro-

duced before in appendix B.1. In addition, it should be noted that since equation (B.3) is a quadratic

form, it will have a single global minimum – provided thatA is positive definite. Therefore, the possi-

bility of finding local minima does not exist. For sparse matrices, a popular algorithm is the Conjugate

Gradient Method, for an introduction see e. g. [68, 178]. The convergence time of the algorithm can

be improved by using the following trick: Equation (B.1) can be rewritten as

(MA) x = Mb , (B.4)
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whereMA ≈ 1. The inverseM−1 is then called a preconditioner. If one replacesM by the identity

matrix, one reverts to the ordinary method of conjugate gradients. A better ansatz for the matrixM

are the diagonal entries ofA, if A is diagonally dominated. Being used in combination with precondi-

tioning, the algorithm of conjugate gradients can be summarized as follows:

1: choose a starting pointx(0) and seti = 0

2: computer(0) = b− Ax(0) {the initial residual}
3: repeat

4: i = i + 1 {count iterations}
5: setz(i−1) = M−1r(i−1) {apply preconditioning}
6: setρi−1 = r(i−1) · z(i−1)

7: if i = 1 then

8: setp(1) = z(0) {the initial direction}
9: else

10: defineβ = ρi−1/ρi−2

11: setp(i) = z(i−1) + βp(i−1) {the new direction}
12: end if

13: setq(i) = Ap(i)

14: defineα =
ρi−1

p(i) · q(i)

15: setx(i) = x(i−1) + αp(i) {the new solution}
16: setr(i) = r(i−1) − αq(i) {the new residual}
17: until convergence reached.{for example

∣∣∣∣∣∣r(i)
∣∣∣∣∣∣ ≤ ε

∣∣∣∣∣∣r(0)
∣∣∣∣∣∣ or

∣∣∣∣∣∣r(i)
∣∣∣∣∣∣ ≤ ε ||b|| for someε < 1}.

In theory, i. e., when numerical roundoff errors are neglected, the algorithm converges (exactly vanish-

ing residual) aftern iterations, withn being the dimension of (B.1) [68, 178]. In practice however, the

algorithm might not terminate, since due to numerical roundoff errors an exactly vanishing residual

is never reached. Thus, it is appropriate to set up some error criterion above the numerical roundoff

threshold which the algorithm should reach. Evidently, if (B.1) describes the temporal evolution of a

physical problem, i. e., ifx contains the time derivative of a physical quantity, the starting point for

computing the solution at timex(t + ∆t) can be chosen as the solution of the problem at timex(t).

This procedure has been applied to equation (2.86). It is visible that for this problem 3× 3 blocks

occur on the diagonal, i. e.,

A =



(A1) . . . . . .

. . .
. . . . . .

. . . . . . (An)


, (B.5)
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see also figure B.1 right panel. In this case, the inverse of the block-diagonals

M−1 =



(A1)
−1 O O

O
. . . O

O O (An)
−1


(B.6)

can be applied as a preconditioner to improve convergence of the algorithm. For large systems,

using a preconditioning matrix becomes contributes significantly to the convergence of the algorithm,

compare figure B.2. There it becomes evident that even for large cell numbers, the conjugate gradient

algorithm converges in reasonable time. It can be improved by using a good initial guess for the

solutionx(0), such that the method is suitable for large-scale simulations. The general problem in the

computational demands will then rather shift to the globally adaptive timestep that will be forced to

small values by only few cells that are subject to strong forces.

The ordinary method of conjugate gradients is only suitable for symmetric and positive definite matri-

ces as occur for example in equation (2.86). For more complicated matrices, the biconjugate gradient

algorithm as discussed and provided with the routinelinbcg in [68] can be used.

B.3 Array referencing

For problems in more than one spatial dimension, it is numerically more favourable to store spatially

discretised quantities on a rectangular lattice within a single array that is accessed using an indexing

function. Within this thesis, in three dimensions the index function

I i jk =
(
kMy + j

)
Mx + i , (B.7)

has been used, wherei, j, andk are the indices of a grid node, andMx/y > 1 denote the maximum

number of grid nodes inx or y direction. Partial differential equations containing derivatives can thus

be discretised and thereby reduce to a sparse linear system of the formAx = b, wherex contains the

unknown quantity that is described by the PDE and the matrixA contains the geometric information

of the chosen discretisation. The partial derivatives contribute to the matrix elements ofA. Thereby,

the order of the matrix elements depends on the chosen index functionI i jk . For the index function

given above, the derivatives occur in the order as given in table B.1. At the boundaries of the reaction

volume however the derivatives cannot be expressed in a centred way: Then, for first order derivatives

the corresponding prefactor should be multiplied by two and the matrix element corresponding to the

index outside the allowed interval should simply be added to the diagonal ofA.
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Figure B.2: Performance of the conjugate gradient algorithm. Shown is the CPU time for different
sizesN of anN×N system in equation (2.86). There, a system size ofN corresponds toN/3 cells.
For the displayed regime, the average number of next neighbours per cell becomes independent
on the system size, such that the number of iterations (maximumNit displayed) is approximately
constant. The linear increase in computing time solely results from the (likewise linearly scaling)
number of non-vanishing matrix elements. Note that in this example, preconditioning reduces the
number of necessary iterations by about a factor of three, with directly results in the corresponding
improvement of the CPU time. To obtain identical conditions, as the initial guess for the solution
x(0) = 0 and as termination criterion

∣∣∣∣∣∣r(i)
∣∣∣∣∣∣ < ε ||b|| (Euclidean norm) have been used.
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derivative ∆i ∆ j ∆k I i+∆i, j+∆ j,k+∆k prefactor

∂y∂z 0 -1 -1 I i jk − MxMy − Mx +(4∆y∆z)−1

∂x∂z -1 0 -1 I i jk − MxMy − 1 +(4∆x∆z)−1

∂z / ∂2
z 0 0 -1 I i jk − MxMy −(2∆z)−1 / + ∆z−2

∂x∂z +1 0 -1 I i jk − MxMy + 1 −(4∆x∆z)−1

∂y∂z 0 +1 -1 I i jk − MxMy + Mx −(4∆y∆z)−1

∂x∂y -1 -1 0 I i jk − Mx − 1 +(4∆x∆y)−1

∂y / ∂2
y 0 -1 0 I i jk − Mx −(2∆y)−1 / + ∆y−2

∂x∂y +1 -1 0 I i jk − Mx + 1 −(4∆x∆y)−1

∂x / ∂2
x -1 0 0 I i jk − 1 −(2∆x)−1 / + ∆x−2

∂2
x / ∂2

y / ∂2
z 0 0 0 I i jk −2∆x−2 / − 2∆y−2 / − 2∆z−2

∂x / ∂2
x +1 0 0 I i jk + 1 +(2∆x)−1 / + ∆x−2

∂x∂y -1 +1 0 I i jk + Mx − 1 −(4∆x∆y)−1

∂y / ∂2
y 0 +1 0 I i jk + Mx +(2∆y)−1 / + ∆y−2

∂x∂y +1 +1 0 I i jk + Mx + 1 +(4∆x∆y)−1

∂y∂z 0 -1 +1 I i jk + MxMy − Mx −(4∆y∆z)−1

∂x∂z -1 0 +1 I i jk + MxMy − 1 −(4∆x∆z)−1

∂z / ∂2
z 0 0 +1 I i jk + MxMy +(2∆z)−1 / + ∆z−2

∂x∂z +1 0 +1 I i jk + MxMy + 1 +(4∆x∆z)−1

∂y∂z 0 +1 +1 I i jk + MxMy + Mx +(4∆y∆z)−1

Table B.1: Array referencing scheme for first and second order spatial derivatives. The table
refers to the index functionI i jk given in equation (B.7). The first section contains the contributions
to matrix elements left of the diagonal of the matrixA, whereas the second section contributes
directly to the diagonal. The last section contains contributions to matrix elements right of the
diagonal ofA. The first column contains all possible spatial derivatives of second order in three
dimensions in the order in which they have to occur within a row of the corresponding linear
system, and the third column contains the corresponding (increasing) index. All derivatives must
be accompanied with the given prefactor. The first and second order derivatives with respect to
a single coordinate contribute to the same off-diagonal matrix elements. Note that for volume
elements on the boundary, different discretisation rules apply, for more details see the text.
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Appendix C

Numerical tests

C.1 Discrete Element Method

All numerical implementations making use of the discrete element method (DEM) have been tested

following the scheme below:

1. The module has been put to the test with the memory leak checkervalgrind .

2. For some sample problem with a given distinct direction, the isotropy of the numerical imple-

mentation has been checked by changing the intrinsic direction.

3. When applicable, the numerical solution has been cross-checked with other numerical methods.

4. The numerical solution has been compared with an analytical solution for a sample problem.

The comparisons with analytical solutions of sample problems are discussed in the following subsec-

tions.

C.1.1 Constant-Diffusivity problems in a rectangular box

Some of the numerical methods described in section 2.4.2 have been implemented and checked as

outlined before, where as a sample problem a rectangular box of dimensionsLx×Ly×Lz with constant

diffusivity and uniform Dirichlet boundary conditions has been chosen:

∂u
∂t
− D∇2u(x, t) = Q(x, t) ,

u|∂V = 0 . (C.1)
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This problem can be solved by using the eigenfunctions of the Laplacian operator over the box

Cn(x) =

√
8

LxLyLz
sin

(
nxπx
Lx

)
sin

(
nyπy

Ly

)
sin

(
nzπz
Lz

)
, (C.2)

with n = (nx,ny,nz) andnx/y/z ∈ {1,2, . . . ,∞}. By expanding both the solution and the rates into these

eigenfunctions with time-dependent coefficients

u(x, t) =
∑

n
un(t)Cn(x) , Q(x, t) =

∑

n
Qn(t)Cn(x) , (C.3)

one can use the orthonormality relation of the eigenfunctions
∫

CnCmdV = δnm (C.4)

and the eigenvalue equation

∇2Cn = −λnCn = −

n2

x

L2
x

+
n2

y

L2
y

+
n2

z

L2
z

 π2Cn , (C.5)

to derive ordinary differential equations describing the dynamics of everyun(t). For constant

Qn(t) = Q0
n one can obtain their analytic solutions and thus, the full solution can be written as

u(x, t) =
∑

n

{
u0
n exp(−Dλnt) +

Q0
n

Dλn

[
1− exp(−Dλnt)

]}
Cn(x) . (C.6)

The agreement with the numerical implementation has been tested for different values of the timestep

(see figure C.1). It turns out that in the observed regime the Crank-Nicholson scheme is stable,

whereas for the chosen ADI and the FTCS schemes stability conditions exist. In the limit oft → ∞
the steady-state-solution is obtained

uSS(x) =
∑

n

Q0
n

Dλn
Cn(x) , (C.7)

which enables one to estimate the quality of the often-used steady-state approximation by observing

the difference to the full analytical solution

∆u(x, t) =
∣∣∣u(x, t) − uSS(x)

∣∣∣ =

∣∣∣∣∣∣∣
∑

n

[
U0

n −
Q0

n
Dλn

]
exp(−Dλnt) Cn(x)

∣∣∣∣∣∣∣

≤
∑

n

∣∣∣∣∣∣
(
U0

n −
Q0

n
Dλn

)
Cn(x)

∣∣∣∣∣∣ exp(−Dλnt)

≤ exp(−Dλmint)
∑

n

∣∣∣∣∣∣
(
U0

n −
Q0

n
Dλn

)
Cn(x)

∣∣∣∣∣∣ = exp
(
−λmin

6
6Dt

)
∆u0(x) , (C.8)
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Figure C.1: Analysis of numerical accuracy/stability for a simple test problem. Displayed is the
maximum deviation from the analytic solution that has accumulated after evolving the reaction-
diffusion equation with different methods forT = 500 s using different timesteps – expressed by
the Courant factor alpha. The calculations have been performed on a cubic grid with 15.625 µm
lattice constant and 653 grid nodes. Circle symbols refer to the free diffusion case (u0

1,1,1 = 20

mM), and the square symbols refer to the reaction-diffusion case (u0
1,1,1 = 20 mM, Q0

1,1,1 = 0.13
mM/s), where all coefficients of higher eigenmodes vanish. The FTCS method fails completely
at α = 1/6 as predicted by equation (2.34), whereas the ADI method has its maximum accuracy
at α = 1/2 in the free diffusion case, corresponding to the analogous Courant condition in one
dimension. Since the error accumulates and the inaccuracy resulting from the chosen numerical
approach contributes as well, small timesteps do not necessarily imply small final errors in the
case of free diffusion. In addition, the full Crank-Nicholson scheme reaches maximum accuracy
at much larger timesteps. For each timestep, the accuracy of the biconjugate gradient method in
the Crank-Nicholson scheme had been set toε = 10−10. Note that the analysed ADI algorithm
as given by equation (2.37) is not unconditionally stable in three dimensions as illustrated by the
super-polynomial growth of the error atα = 2. In the RDE case one can see that the error is now
dominated by the reaction terms with the error growing polynomially with the timestep size in the
regions of numerical stability. The larger error of the steady-state solutions demonstrates in both
cases that afterT = 500 s the concentration has not yet reached the steady-state.
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whereλmin is the smallest eigenvalue in equation (C.5) and∆u0(x) is the initial difference to the steady-

state approximation solution. Thus, it is visible that – besides the initial deviation of the steady-state

approximation the lowest eigenvalue of the Laplacian operator in the volume under consideration in

comparison with the diffusion length
√

6Dt determines the quality of the steady-state approximation.

Note however, that in above derivation the reaction rates have been kept temporally constant. For

physiological values oft = 500 s,D = 105 µm2/s (glucose in tissue, [138]), andV = (1000 µm)3

one obtains exp(−Dλmint) = 0.21. Therefore, for the validity of the steady-state approximation, the

following conditions must be fulfilled

• the initial concentration should be close to the steady-state-concentration,

• the reaction terms should not change much during the observed time interval,

• the time interval should be large enough such that the diffusion length is larger than the typical

length scale of the system.

Different methods for obtaining the steady-state concentration from a given distribution of reaction

rates have been compared (see figure C.2).

It should be noted that the spatial distribution of the error follows the Laplacian equation as well (see

figure C.3 right panel).

In the case of the RDE (2.24) with no-flux von-Neumann boundary conditions and for a given rate

termQ(x, t) the total content of the reaction-diffusion volume

U(t) =

∫

V
u(x, t) d3x (C.9)

can be obtained via

U(t) = U(0) +

∫ t

0

[∫

V
Q(x, t′) d3x

]
dt′ , (C.10)

which can be calculated analytically for simple choices ofQ(x, t). This provides an additional way of

testing. Note that above procedure can be applied for small times and Dirichlet boundary conditions

as well if there is no interaction with the boundary, i. e., if within a non-vanishing environment of the

boundary the cell concentration does not exhibit a gradient.

C.1.2 Steady-state-Solutions for varying-diffusivity problems

By using the formal analogy to electrostatics, where one has [179]

∇ [ε(x)∇Φ(x)] = −4πρ(x) , (C.11)
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Figure C.2: Deviation of the steady-state approximation from the full analytic solution. The ana-
lytical error prediction (dashed line) illustrates the ideal exponential dependence. Three numerical
approaches have been compared: the biconjugate gradient method (CGM), a V-cycle-multigrid
method (VC MGM), and method based on Fast Fourier transform (FFTM). For equal grid reso-
lutions, all numerical approaches converge to the same result within their desired accuracy (here
set toε = 10−10). For small times, the error must be large due to the invalidity of the steady-state
approximation, whereas for large times, the error should decrease as indicated by the dashed line
(analytic calculation). Note that the initial nonlinearity does not contradict equation (C.8), since the
difference has been divided by the (time-dependent) full solution. The saturation of error in the nu-
merical approaches however indicates that though for large times, the steady-state-approximation
becomes valid, the spatial discretisation error will still contribute. Here, it is also demonstrated that
the used finite-differencing schemes are of second order in space, as doubled grid resolution re-
duces the remaining error by a factor of four. Parameters have been chosen as follows:u0

1,1,1 = 0.0

mM, Q0
1,1,1 = 0.13 mM/s,D = 100µm2/s, andLx = Ly = Lz = 1000µm.
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Figure C.3: Density plot of solutions for the 222-eigenmode. The plane of the cross-sections
contains the origin and has the normal vectorn⊥ = 1/

√
2(1,1,0) Left: Numerical solution of

the Poissonian problem withQ222 = 0.13 a. u., and D= 100 a. u. Red encodes field values of
+9.9 · 10−4 a. u., whereas blue encodes−9.9 · 10−4 a. u. The transparent isosurfaces denote field
values of 1.0·10−4 a. u.Right: Red encodes absolute error values of+7.95·10−7 a. u., whereas the
transparent isosurfaces denote absolute error values of 5.0 · 10−7 a. u. Generally, the error follows
Laplaces equation as well.

whereρ(x) represents the charge distribution andε(x) the electric permittivity, one can find an analyt-

ical solution for simple configurations from the Green’s function. For example, if one uses Dirichlet

boundary conditions at infinity, the solution can be obtained directly via

Φ(x) =
1

4πε0

∫
ρ(x′)
|x − x′| d

3x′ . (C.12)

For the special example of a point chargeQ located atx′ in a half-space withε1, whereas the other

half-space has permittivityε2, a solution can be obtained using the method of images

Φ(x) =



Q
ε1

[
1

|x − x′| +
ε1 − ε2

ε1 + ε2

1
|x − x′ + 2n(n · x′)|

]
: x ∈ V1

2
ε1 + ε2

Q
|x − x′| : x ∈ V2

, (C.13)

wheren denotes the normal vector pointing from half-space 1 to half-space 2 (see figure C.4). Obvi-

ously, the error is not completely controlled, as in the numerical solution one has additional boundary

conditions that are not contained in the analytical solution.

A further test problem with varying diffusion coefficients can be constructed from a one-dimensional

example. If both the diffusion coefficient and the reaction rates are isotropic inx andy-directions,

and the solution satisfies no-flux von Neumann boundary conditions in these direction, the diffusion
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Figure C.4: Approximate solution of an electrostatic test problem. The plane of the cross-sections
contains the origin and has normal vectorn⊥ = (1, 0,0). Left: Simple test problem for the steady-
state-solution of space-dependent diffusion. A point charge (filled point) is placed in the left half-
spaceV1 with permittivity ε1, whereas the right half-spaceV2 is filled with a medium of permit-
tivity ε2. The mirror charge (empty point) ensures constant potential at the intermediate boundary.
Middle: Analytical solution (vanishing potential at infinity) for a point charge withQ = 1.0 a. u.
placed at (0.0, 0.0, -15.0) inside a cubic box ranging from (-100.0, -100.0, -100.0) to (+100.0,
+100.0,+100.0). Atz = 0 the volume is divided into two half-spaces withε1 = 1.0 a. u. and
ε2 = 10.0 a. u. The transparent three-dimensional isosurfaces denote regions withΦ = 0.005 a. u.
Blue encodes regions withΦ = 0 a. u., whereas red encodes regions withΦ ≥ 0.1 a. u. Right:
Numerical solution of the same problem with 101 grid nodes in every dimension. In contrast to the
analytical solution (middle), the numerical solution underliesΦ = 0 Dirichlet boundary conditions
at the box walls (colour coding as in the middle panel). This leads to a faster decreasing potential
and to a smaller isosurface of the numerical solution. The associated error can be decreased by
enlarging the grid size while keeping the grid resolution constant.
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equation will reduce to an effectively one-dimensional problem. For example, in the steady-state

approximation one obtains in this case

D(z)u′′(z) + D′(z)u′(z) + Q(z) = 0 . (C.14)

Generally, the above one-dimensional problem can for polynomialD(z) andQ(z) be solved with a

power-series ansatz

u(z) =

∞∑

n=0

anz
n . (C.15)

If, for example, the spatial dependence of the diffusion coefficient and reaction rates is given by

D(z) = D0 + αz2 ,

Q(z) = Q0

(
1 + 3

α

D0
z2

)
, (C.16)

the solution can be found by inserting ansatz (C.15) into (C.14). With the additional equations for the

Dirichlet boundary conditionsu(0) = u0 andu(Lz) = uL the series expansion can be re-summated to

u(z) = u0 − Q0

2D0
z2 +

uL − u0 +
Q0

2D0
L2

z

arctan
(√

α
D0

Lz

) arctan

(√
α

D0
z

)
, (C.17)

as can be verified by re-inserting into equation (C.14). The numerical solution of the above example

has been compared with the analytical solution (C.17), see figure C.5.

C.1.3 The loaded cuboid

As sample problem the following scenario has been considered: A cuboid of dimensionsLx, Ly and

Lz and uniform elastic propertiesE0 andν0 is pressed with the uniform force densitypx on its left side

to the right and is constrained by the half-space situated atx = Lx (see figure C.6 left panel). In this

case, the equations decouple

Ux(x, y, z) = Ux(x) , Uy(x, y, z) = Uy(y) , Uz(x, y, z) = Uz(z) , (C.18)

which considerably simplifies equations (2.44) to

U′′x (x) = 0 , U′′y (y) = 0 , U′′z (z) = 0 ,

nx

[
f1U

′
x(x) + f2U

′
y(y) + f2U

′
z(z)

]
= Px ,

f1U
′
y(y) + f2

[
U′x(x) + U′z(z)

]
= 0 , f1U

′
z(z) + f2

[
U′x(x) + U′y(y)

]
= 0 . (C.19)
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Figure C.5: Steady-state solution of a test problem for varying diffusion coefficients.Left: Max-
imum relative deviation between numerical and analytical solution of C.14 forD(z) = D0 + αz2

and Q(z) = Q0

(
1 + 3α/D0z2

)
. The biconjugate gradient algorithm has been used with differ-

ent values for the error tolerance. For doubled grid resolution, the error decreases by a factor
of four. Parameters have been chosen as follows:D0 = 1.0 µm2/s, Q0 = 0.5 mol/(µm3s),
α = 1.0 · 10−9/s, u0 = 1000.0 mol/µm3, uL = 100000.0 mol/µm3 in a box ranging from
(0, 0,0) µm to (1000.0, 1000.0,1000.0) µm. Right: Density plot of the relative error. The plane
of the cross-section contains the centre of the computational domain and has the normal vector
n⊥ = 1/

√
2(1, 1,0). As in x andy-direction no-flux von-Neumann boundary conditions have been

applied, there are no anisotropies in these dimensions, i. e., the isosurfaces (here at 3.0 · 10−8) are
planes. Naturally, at the Dirichlet boundary conditions the error vanishes, as also the numerical
solution fulfils the boundary conditions exactly.
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In combination with the additional constraintsUx(Lx) = 0, Uy(0) = −Uy(Ly), andUz(0) = −Uz(Lz)

this simplified system can be solved analytically. The elastic properties of the plate thus solely enter

via the boundary conditions and the solution reads

Ux(x) =
px

E
[Lx − x] , Uy(y) = ν

px

E

[
y− Ly

2

]
, Uz(z) = ν

px

E

[
z− Lz

2

]
. (C.20)

Here it becomes visible that the elastic parameterE describes the deformation in longitudinal di-

rection, whereas the Poisson numberν quantifies the relative deformation transversally to the acting

force, compare also subsection 2.4.3. The total volume is given by

V = Lx

(
1− px

E

)
Ly

(
1 + ν

px

E

)
Lz

(
1 + ν

px

E

)
= V0

[
1 + (2ν − 1)

px

E
+ O

(
p2

x

E2

)]
, (C.21)

where it is visible thatν = 1/2 corresponds to the case of an incompressible medium.

Figure C.6: Illustration of a test problem for strain distribution.Left: A plate with dimensions
Lx = Ly = Lz = 1 m and uniform Poisson and Young moduliν = 0.333 andE = 1.0 kPa,
respectively, is pressed with the uniform force densitypx = 0.1 Pa as illustrated.Middle: This
results in a linear dependence of the local deformations: The strain inx direction is largest at the
face where the force acts and decreases withx (transparent isosurfaces are planes).Right: In
contrast, the absolute strain in a perpendicular direction (herey) vanishes at the symmetry plane
marked by the transparent isosurface and increases towards the boundaries. As the strainUα is a
linear function ofxα, the resulting strain and stress tensors are spatially constant.

Similarly, for a special case an analytical solution can be found for spatially varying Young modulus.

If no transversal deformation is allowed (equivalent toν(x) = 0) and if the Young modulus varies

only in one dimensionE(x) = E(x), one hasf1 = E(x), f2 = 0, g = E(x)/2 and the same ansatz

Ux(x) = Ux(x) , Uy(x) = Uy(y) , Uz(x) = Uz(z) (C.22)

can be used to simplify equations (2.44) to

E(x)U′′x (x) + E′(x)U′(x) = 0 , U′′y (y) = 0 , U′′z (z) = 0 ,

nxE(x)U′x(x) = px , U′y(y) = 0 , U′z(z) = 0 , (C.23)
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which has the solution

Ux(x) = px

Lx∫

x

1
E(x′)

dx′ , Uy(y) = 0 , and Uz(z) = 0 . (C.24)

Note that for constantE(x) = E0, above equation reduces to the same solution as (C.20) in case of

ν = 0.

C.2 Cellular mechanics

The correct calculation of cellular interactions has been tested by the following scheme:

1. The code has been tested with the programvalgrind for memory leaks.

2. For a sample problem with a given distinct direction, the isotropy of the solution has been

checked for by changing the intrinsic direction to all coordinates.

In addition, further comparisons with analytic results as described below have been performed.

C.2.1 Deterministic two-body-problem

The equations of motion for two spheres of radiiR1 andR2 underlying a JKR-interaction and tangen-

tial as well as isotropic friction resulting from (2.86) are given by

m1ẍ1 = Fn12− γ12 (ẋ1 − ẋ2) − γ1ẋ1 ,

m2ẍ2 = Fn21− γ21 (ẋ2 − ẋ1) − γ2ẋ2 , (C.25)

whereF denotes the JKR-force,n12 = −n21 the normal vector from cell 1 to cell 2,γ12 = γ21 the

tangential friction tensor, andγi = 6πηRi the isotropic Stokes friction, whereη is the viscosity of the

medium. If the friction tensor only incorporates tangential friction, i. e., if only movements tangential

to the inter-spherical contact surface contribute to intercellular drag forces, the total drag force will

only arise from cell-medium contributions. Mathematically, this reflects inγ12 (ẋ1 − ẋ2) = 0, since

γ12 contains projectors on the tangential part of the velocity difference only. Therefore, one obtains

in the over-damped approximationmi ẍi ≈ 0

6πηR1ẋ1 = −Kh3/2R1/2

1−
√

6πεR1/2

Kh3/2

 Θ(h) ,

6πηR2ẋ2 = +Kh3/2R1/2

1−
√

6πεR1/2

Kh3/2

 Θ(h) , (C.26)
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whereh = R1 + R2 − |x2 − x1| is the total sphere overlap,K denotes the elastic constant defined in

equation (2.60),R is the reduced radius defined in (2.58),ε stands for the adhesion energy density

between the two spheres, andΘ denotes the Heaviside step function. If one assumes – without loss

of generality – thatx2 > x1 and that one has an overlaph > 0 (otherwise the solution is trivial), the

distance between the sphere centers can be calculated by subtracting equations (C.26) from each other

and with introducing a normalised distance measure

∆ =
x2 − x1

R1 + R2
(C.27)

one yields a differential equation

∆̇ = α(1− ∆)3/2 − αβ1/2(1− ∆)3/4 , with (C.28)

α =
K

6πη


√

R1

R2
+

√
R2

R1

 and β =
6πε(R1 + R2)

R1R2K

( √
R1R2

R1 + R2

)3/2

.

Via integration of variables and following expansion into partial fractions the above equation leads to

the implicit solution

3
4
α(t − t0)β

1/3 =
√

3

{
arctan

[
1√
3

(
1 +

2(1− ∆)1/4

β1/6

)]
− arctan

[
1√
3

(
1 +

2(1− ∆0)1/4

β1/6

)]}

− log

[
β1/6 − (1− ∆)1/4

β1/6 − (1− ∆0)1/4

]
+

1
2

log

[
β1/3 + β1/6(1− ∆)1/4 + (1− ∆)1/2

β1/3 + β1/6(1− ∆0)1/4 + (1− ∆0)1/2

]
, (C.29)

that cannot be inverted analytically. Therefore, for testing purposes equation (C.28) has been solved

directly with a 4th order Runge-Kutta method [176] using a sufficiently small timestep. As shown

in figure C.7, the use of adaptive timestep sizes in the agent-based simulation improves the numeric

solution significantly. Note that by using this procedure one has tested the chosen solution scheme

with the adaptive timestepping and in addition whether the tangential projection operators have been

implemented correctly in the dampening matrix in (2.86).

C.2.2 Deterministic many-body-problem

Since for multi-particle systems an analytical solution is usually impossible to find in the general case,

a rather special configuration can serve as a testing problem. A set ofN cells of equal and constant

radiusR being in contact with each other, situated on a plane substrate without any stochastic force

will still experience elastic and adhesive cell-cell as well as cell-substrate interactions due to the JKR-

model and also the corresponding drag forces. If now in addition every cell crawls with a constant

force f α tangential to the plane, one can expect the cell-cell interaction forces to vanish after some
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Figure C.7: Numerical solution of the two-body interaction test problem. Temporal evolution
of the normalised relative distance∆ = (x2 − x1)/(R1 + R2) for constant timestep width (left,
∆t = 50 s) and adaptive timestep width (right , maximum step-size∆xmax = 0.25 µm). The
black dashed line denotes the equilibrium value, for which∆̇ = 0. Solid lines denote pseudo-
analytic solutions (4th order Runge-Kutta with sufficiently small timestep and Euler cross-check),
whereas symbols denote discretisation by the simulation. For the adaptive scheme, strong slopes
automatically enforce smaller timesteps. Parameters have been chosen as follows to correspond
with physiological values:R1 = R2 = 5 µm, E1 = E2 = 1000 Pa,ν1 = ν2 = 0.2, η = 0.005 kg/(µm
s),ε = 0.0001 pJ/µm2.
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time, as the two-body interaction will find its minimum – in particular having the contact surfaceA∞

with the boundary. In the limit of larget, all cells will then move as a single rigid body. The equations

of motion (2.86) can be written as

f α +
∑

j

Fα
i j =

∑

k,β



γ
αβ
k +

∑

j

γ
αβ
k j + Γ

αβ
k

 δik − γαβik

 ẋβk

=
∑

β

[
γ
αβ
i + Γ

αβ
i

]
ẋβi +

∑

j,β

γ
αβ
i j

(
ẋβi − ẋβj

)
, (C.30)

which simplifies in the large time-limit to

f α ≈
{
γ
αβ
i + Γ

αβ
i

}
ẋβi . (C.31)

As the force is tangential to the substrate, one has withΓ
αβ
i = A∞i γ‖Pαβi and the usual Stokes friction

termγ
αβ
i = 6πηRδαβ

ẋαi =
f α

6πηR+ γ‖A∞
, (C.32)

since the cellular velocities are directed tangential to the substrate and are thus unaffected by the

projection operator, i. e.,Pi ẋi = ẋi. Consequently, the observed cellular velocities must approach a

common value proportional to the crawling force, compare figure C.8. Note that the large-time limit is

independent on the number of cells, whereas the initial conditions and the number of cells determine,

how fast this equilibrium is reached.

C.2.3 Stochastic single-body-problem

For a single cell of constant radiusR and massm, that is neither subject to cell-cell nor to cell-

boundary interaction, the dynamics is described by the Langevin equation of motion

ṙ = v ,

v̇ = − γ
m

v(t) +
1
m

F(t) , (C.33)

whereγ = 6πηR is the Stokes friction coefficient, η the viscosity of the medium, andF(t) is a

stochastic force. Note that for active random cellular dynamics the Einstein relation

D =
kBT
6πηR

(C.34)

does not directly relate to the physical temperatureT, but rather defines an effective temperatureTeff,

since in this case the cellular movement does not result from physical collisions with particles in the
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Figure C.8: Deterministic many-body test of the projection operators in the numerical solution.
Left: A cohort of 144 cells subject to intercellular as well as cell-substrate JKR-forces is moving on
the x-y-plane due to a crawling force (arrow) acting on every cell.Right: Initially, the intercellular
and cell-substrate equilibrium distances have to be found, but for large times all cells move syn-
chronously with a constant velocity, as is indicated by the smaller standard deviations (error bars) of
the velocity. For large times, the average absolute value of the velocity matches the theoretical pre-
dictions of equation (C.32) (solid horizontal lines). The difference for non-mobile cells (orange) is
a result of the tolerance of the conjugate gradient algorithm, that had been set toε = 10−5 (compare
section B.2). Parameters have been chosen as follows:Esub = Ecell = 750.0 Pa,νsub = νcell = 1/3,
γ⊥ = 0, γ‖ = 0.1 kg/(µm2 s). εcell−cell = εcell−sub = 0.0001 pJ/m2, η = 0.001 kg/(µm s),
Rcell = 5 µm, ∆t = 50 s,N = 144. Note that with the absence of stochastic forces in this exam-
ple, cells tend to assume a planar equilibrium configuration, which violates the general position
assumption and leads to on-going reconstructions in the Delaunay triangulation module.
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fluid, but rather from internal cellular actions. The solution of (C.33) can be found by variation of

constants and is given by

r(t) = r0 +
m
γ

[
1− exp

(
−γt

m

)]
v0 +

1
γ

∫ t

0

[
1− exp

(
−γ(t − τ)

m

)]
F(τ) dτ . (C.35)

In the large-time limit (over-damped approximation), i. e., withγt/m� 1, this reduces to

r(t) = r0 +
m
γ

v0 +
1
γ

∫ t

0
F(τ) dτ . (C.36)

By using the two assumptions on the stochastic force

〈F〉 = 0 ,

〈F(t1) · F(t2)〉 = 3ξ2δ(t1 − t2) , (C.37)

whereξ is a parameter that describes the strength of the stochastic forces, the mean square displace-

ment can be calculated in the large-time limit as

〈r2(t) − r2
0〉 =

(
m
γ

)2

〈v2
0〉 + 3

ξ2

γ2
t ≈ +3

ξ2

γ2
t . (C.38)

Note that the constant term can be safely neglected, as(mcell/γcell)
2 = O

(
10−22s2

)
for realistic systems.

The above identity is known as the fluctuation-dissipation theorem, where the diffusion coefficient is

sometimes defined asD = ξ2/(2γ2).

A numerical emulation of a stochastic force fulfilling the conditions (C.37) can be derived as follows:

The first condition is met by using any random number distribution with a vanishing mean. In nu-

merical calculations, the smallest time unit within which the stochastic forces can differ is given by

the time step∆t. This can be used to derive the amplitude of the stochastic force from the correlation

condition in (C.37):
∫ t+∆t/2

t−∆t/2
〈F(t) · F(τ)〉dτ = 3ξ2 ≈ F2(t)∆t . (C.39)

Thus, every component of the stochastic force must be renormalised with the timestep width

Fi(t) =
ξ√
∆t
χGAUSS

0,1 , (C.40)

whereχGAUSS
0,1 is a random number drawn from a normalised normal distribution with mean 0 and

width 1. Consequently, the spread of the random forces becomes larger for smaller timesteps. The

fluctuation-dissipation theorem is reproduced by the numerical implementation (see figure C.9). For

the simulations within this thesis, the random number generatorRan800– as provided in the Matpack

package [97] – has been used.
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Figure C.9: Test of the random force calculations. Solid lines indicate the prediction by the
fluctuation-dissipation theorem, whereas the symbols indicate the mean out of 100 test runs with
different seed values of the random number generator. The corresponding standard deviation is
indicated by the yellow or black-dotted region, respectively.Left: For constant timestep width
(∆t = 50 s), the fluctuation-dissipation theorem is well-reproduced.Right: If spatial step-sizes
are constrained to 0.05 µm ≤ ∆xi ≤ 0.5 µm by using a variable timestep width∆t, this appearance
is not changed: As the random forces are normalised by

√
∆t in every timestep, the fluctuation-

dissipation-theorem is recovered. The remaining parameters have been chosen asRcell = 5 µm and
η = 10−3 kg/(µm s). Mean square displacements have been recorded every 1000 seconds. If this
was not possible due to the variable timestep width, linear interpolation between the two closest
successive time points has been used.
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C.3 Fitting Experimental Data

In order to fit theoretical results to experimental data, aχ2-fit has been performed (compare e. g. sub-

section 3.3.2). Thereby, one considers a minimization problem on the function

χ2[p1, . . . , pn] =
∑

i:experiments

∑

j:datapoints

(
yexp

i j (ti j ) − ysim
i j [p1, . . . , pn](ti j )

)2

σ2
i j

, (C.41)

which expresses a measure for the differences between experimental data pointsyexp
i j and the simula-

tion resultsysim
i j – weighted by the experimental uncertaintiesσi j of yexp

i j . Note that generally an error

in ti j will contribute toσi j as well, but for most measurements on growth experiments its contribution

can safely be neglected. Since the simulation results will depend on the parameters{p1, . . . , pn}, the

quantityχ2[p1, . . . , pn] can be minimized by varying the parameters{p1, . . . , pn} by specified proto-

cols such as e. g. systematic rastering of the parameter space, Monte-Carlo methods such as simulated

annealing or genetic algorithms, and geometric algorithms such as simplex walk and Powell’s method

[68, 176]. Note however, that due to numerical reasons equation (C.41) may not be favourable for

minimization problem, as – especially having the initial exponential growth of cell populations in

mind – the cell numbersysim
i j [p1, . . . , pn] may fluctuate strongly. This problem can be alleviated by

reducing the differences between the cell numbers, i. e., by settingyexp/sim
i j = ln

(
Nexp/sim

i j

)
and likewise

for the other quantities [66].

In this thesis, Powell’s algorithm as provided in [68] has been used as minimization protocol. It

is a purely deterministic algorithm, which opens the possibility that it will terminate within a local

minimum. Therefore, different test runs (starting from different initial parameter sets) should be

performed to check whether these terminate within the same minimum.

At a local minimump, any functionf can be expressed as

f (p+ x) = f0 +
1
2

∂2 f
∂pi∂pj

∣∣∣∣∣∣p
xi xj + . . . = f0 +

1
2

xTAx + . . . , (C.42)

where A is the symmetric Hessian matrix at the minimum that can be determined using finite-

differencing. At a local minimum, the Hessian matrix must be positive definite. Withf = χ2, the

isosurfaces of the quadratic formxTAx = 2∆χ2 definen-dimensional hyper-ellipsoids that can gener-

ally be rotated against the parameters axes. By a fixed∆χ2, an ellipsoid of confidence is defined and

consequently, error estimates for single parameters can then be obtained from perpendicular projec-

tion of the hyperellipsoid on the parameter axes. Such a projection is obtained from the inverse of the

Hessian matrix at the minimum, i. e., for parameterPi one can derive an error estimate via

∆pi =
√

eiA−1ei2∆χ2 , (C.43)
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where ei denote the Cartesian unit vectors and∆χ2 defines the confidence region. Technically,

x = A−1ei can be determined using the method of conjugate gradients, compare appendix B.2. Note

that 2eiA−1ei is identical with thei th diagonal element of the covariance matrix [68].

The algorithm has been tested using the logistic growth equationṄ = αN − βN2 – compare equation

(2.1), which has the solution

N(t) =
αN0

(α − βN0) e−αt + βN0
(C.44)

with the three parametersN0, α, andβ. By adding normally-distributed random deviations to above

equation, an artificial data set has been created with the parametersN0 = 4 cells,α = 1.0/day, andβ =

0.005/(day cell), compare figure C.10. The fit yielded the parameter estimatesN0 = (3.94±0.17) cells,

α = (1.01±0.02) /day, andβ = (5.1±0.1)·10−3 /(cell day) at a confidence level of 99%. Consequently,

provided with sufficient quantitative data, Powell’s method can be used to extract model parameters

with acceptable accuracy.

The implemented method has the advantage that the function to be minimized can be defined in a

non-analytic form.
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Figure C.10: Test of Powell’s minimization method with an artificial data set. Using the pa-
rametersN0 = 4 cells,α = 1.0/day, andβ = 0.005/(day cell) in equation (C.44) with assumed
normally-distributed relative errors of∆N/N = 0.05, 200 artificial data points have been created
(symbols, error bars correspond to one standard deviation). Powell’s method [68] has been used to
minimizeχ2 in equation (C.41) (red line). Using confidence ellipsoids of∆χ2 ≈ 6.63 (correspond-
ing to a confidence level for single parameters of 99% [68] in case of normally-distributed errors),
the algorithm yielded the parameter estimatesN0 = (3.94± 0.17) cells,α = (1.01± 0.02)/day, and
β = (5.1±0.1)·10−3/(cell day) (dashed lines mark extremal fits). The green line represents a fit per-
formed withxmgrace, which uses a Levenberg-Marquard algorithm [68] forχ2-minimization and
yieldsN0 = 4.36 cells,α = 0.98/day, andβ = 4.9 · 10−3/(cell day). The discrepancy inN0 results
from the fact that the interface provided in xmgrace ignores the error bars and thereby weights all
points equally, as can be verified by applying Powell’s method to aχ2 with σi j = 1∀i, j in equation
(C.41).
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Source Code

The source code has been written in the programming language C++. Generally, the paradigm of

object-oriented programming [42] has been followed.

The following modules have been implemented as separate (documented) classes, such that they can

be included in independent applications:

• a parameter parser (parameter.h, parameter.cc, approx. 350 lines) that processes param-

eter files, command line options, and provides parameter values upon request,

• a structure class (structs3D.h, structs3D.cc, approx. 2000 lines), within which funda-

mental data structures such as vertex and simplex and the corresponding necessary operations

are defined,

• a triangulation class (triangulator3D.h, triangulator3D.cc, approx. 4000 lines) that

provides the functionality to construct and maintain weighted kinetic and dynamic Delaunay

triangulations in three dimensions as described in section 2.3,

• a series of classes (soluble.h, soluble.cc, approx. 4200 lines) with similar interface mem-

ber functions all intended for the solution of RDE with different methods:

– a class providing the multigrid method on a rectangular grid for the steady-state solution

of RDE,

– a class providing the FFT method for the steady-state solution of RDE,

– a class providing the ADI algorithm for the full solution of RDE,

– a class providing the Crank-Nicholson algorithm for the full solution of RDE with the

method of biconjugate gradients.
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Note however that owing to technical necessities, these separate implementations differ in some

aspects, which are described in the respective documentations.

The source code will be available upon request from July 2006 from Gernot Schaller, Tilo Beyer, and

Dr. Michael Meyer-Hermann.



Appendix E

Used Symbols and Acronyms

Used symbols:

symbol meaning unit/comment

∇ Nabla operator µm−1

R the set of real numbers -

r̂ weighted vertex associated with a vectorr -

r+ lifted vertex r̂ -

F14 flip replacing one by four simplices -

F41 flip replacing four simplices by one -

F23 flip replacing two by three simplices -

F32 flip replacing three by two simplices -

π( r̂ i , r̂ j) orthogonal sphere distance -

u(r, t) concentration of a substance mM = amolµm−3

D(r, t) diffusion coefficient µm2 s−1

∇2, ∆ Laplacian operator µm−2

Q(r, t) reaction term mM s−1

uI (t) spatially discretised concentration mM

DI (t) spatially discretised diffusion coefficient µm2 s−1

QI (t) spatially discretised reaction term mM s−1

un
I spatially and temporally discretised concentration mM

Dn
I spatially and temporally discretised diffusion coefficient µm2 s−1

Qn
I spatially and temporally discretised reaction term mM s−1

AIJ contact surface betweenI andJ µm2
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symbol meaning unit/comment

L lattice discretisation operator s−1

1 identity operator 1

∆t timestep width s

∆x, ∆y, ∆z lattice constants µm

O (. . .) order of. . . -

∂α partial derivative with respect toxα µm−1

σαβ stress tensor MPa

E Young modulus MPa

ν Poisson modulus 1

Uαβ strain tensor 1

FJKR
i j JKR interaction force µN

Ri j reduced radius µm

Ki j elastic coefficient MPa

hi j virtual overlap between spheresi and j µm

εi j adhesive energy density between spheresi and j J m−2

Θ(x) Heaviside step function 1

VJKR
i j JKR interaction potential between cellsi and j pJ

Crec
i (t) receptor density of celli 1

Clig
i (t) ligand density of cellj 1

Fi(t) force acting on celli µN

Fi j (t) force acting between cellsi and j µN

γ
αβ
i cell-medium friction coefficients kg s−1

Γ
αβ
iJ cell-boundary friction coefficients kg s−1

γ
αβ
i j cell-cell friction coefficients kg s−1

η medium viscosity kg µm−1 s−1

δαβ, δi j Kronecker symbol 1

γ‖ friction coefficient for tangential movement kg s−1 µm−2

γ⊥ friction coefficient for perpendicular movement kg s−1 µm−2

Pαβi j,‖ tangential projection operator for cellsi and j 1

Pαβi j,⊥ perpendicular projection operator for cellsi and j 1

O zero operator 1

R(m) (pre-mitotic) mother cell radius µm

R(d) (post-mitotic) daughter cell radius µm
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symbol meaning unit/comment

γmax maximum cell-cell friction contribution kg s−1 µm−2

f ad maximum adhesive force µN µm−2

Tcrit critical cell tension MPa

kB Boltzmann constant J K−1

T temperature K

Cox(r, t) oxygen concentration mM

Cgl(r, t) glucose concentration mM

Cvb(r, t) viable cell density µm−3

Cnc(r, t) necrotic cell density µm−3

α[Cvb,Cnc] proliferation rate s−1

β[Cox,Cgl] death rate s−1

γ necrotic removal rate s−1

Cthresh cell threshold density µm−3

Ccrit maximum cell density µm−3

Kcrit cell compression factor 1

Pcrit minimum nutrient product mM2

m diffusion exponent 1

LD diffusion length µm

τ(m) mean M-phase time s

τ(S/G2) mean S/G2-phase time s

τmin minimum observed cycle time s

λox cellular oxygen uptake rate amol cell−1 s−1

λgl cellular glucose uptake rate amol cell−1 s−1

εi cellular anchorage pJ

εmin minimum anchorage pJ

τmel melanocyte cycle time s

ξ fluctuation force parameter kg m−1 s−3/2

δ(x) Dirichlet δ-distribution function 1

Table E.1: Symbols used throughout this thesis. If units are

given, these correspond to the units chosen in this thesis, un-

less noted otherwise. Symbols are in order of their first oc-

currence in the text.
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Used acronyms:

abbreviation full phrase

ADI Alternating-Direction Implicit

BTCS Backward-Time-Centred Space

CGM Conjugate Gradient Method

CNS Crank-Nicholson Scheme

DEM Discrete Element Method

DNA Deoxyribose Nucleic Acid

FFT Fast Fourier Transform

FTCS Forward-Time-Centred Space

JKR Johnson-Kendall-Roberts

MTS Multicellular Tumour Spheroid

ODE Ordinary Differential Equation

PDE Partial Differential Equation

RDE Reaction-Diffusion Equation

VCMGM V-Cycle Multigrid Method

Table E.2: Abbreviations used throughout this thesis.
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