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1. Introduction

Recursive preferences have become important in a large number of applications includ-
ing macroeconomic and finance theory, and, in particular, equilibrium asset pricing.
In the literature, the notion of stochastic differential utility has been accepted as the
continuous-time analog of recursive utility. This correspondence implicitly underlies
a large number of applications of stochastic differential utility. However, a rigorous
proof of this connection has not been given yet. This paper closes that gap: We
show that, in a general semimartingale framework and under standard assumptions on
the aggregator, stochastic differential utility is the continuous-time limit of recursive
utility.

It is well-known that the standard discounted expected utility paradigm restricts the
relationship between preferences for smoothing across time and across states. To
address this issue, the concept of discrete-time recursive utility was developed by Kreps
and Porteus (1978), Epstein and Zin (1989), Weil (1990), and others, making it possible
to disentangle risk aversion from the elasticity of intertemporal substitution. Stochastic
differential utility was introduced by Epstein (1987) in a deterministic setting and
by Duffie and Epstein (1992) in a stochastic setting as a continuous-time version
of recursive utility. Epstein (1987), Duffie and Epstein (1992) and the subsequent
literature define stochastic differential utility axiomatically in continuous time, but do
not establish a rigorous connection to discrete-time recursive utility. Heuristic links
to recursive utility are provided in Duffie and Epstein (1992), Svensson (1989) and
Skiadas (2008).

The limitations of discounted expected utility are particularly apparent in an impor-
tant area of research: the theory of equilibrium asset pricing. The implications of
expected utility are known to be incompatible with various stylized facts in empirical
findings; for instance, the excess return of stocks implied by expected utility is much
too high for realistic risk aversion parameters (this is the “equity premium puzzle” of
Mehra and Prescott (1985)). In the last 25 years, recursive preferences have therefore
become a key ingredient in the asset pricing literature; see, e.g., Duffie and Epstein
(1992b), Obstfeld (1994), Tallarini (2000), Bansal and Yaron (2004), Uhlig (2007),
Hansen, Heaton, and Li (2008), Guvenen (2009), Kaltenbrunner and Lochstoer (2010),
Gabaix (2012), Borovička, Hansen, Hendricks, and Scheinkman (2011) and Wachter
(2011). These papers demonstrate that recursive preferences are a highly relevant
modeling tool which allows researchers to address various open questions in economics
and finance. Despite their empirical relevance, the literature lacks a rigorous result
relating discrete-time recursive utility to stochastic differential utility. Thus, so far
discrete-time and continuous-time models coexist (e.g., Bansal and Yaron (2004) is a
recent discrete-time model, while Wachter (2011) is set in continuous time).1

Our main result (Theorem 4.1) shows that, under general conditions, the Kreps-
Porteus recursive utilities associated to a sequence of approximating consumption plans
converge to the stochastic differential utility of the limiting consumption plan as the

1This is in stark contrast to, for instance, the theory of option pricing: There are several results,

including, e.g., Cox, Ross, and Rubinstein (1979) and Duffie and Protter (1992), on the convergence

of option prices in discrete-time models to their continuous-time counterparts.
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grid size tends to zero. We also provide a rigorous justification of a classical formula,
first derived by Epstein (1987) in a deterministic setting, that is commonly used to ob-
tain a continuous-time aggregator from its discrete-time counterpart. Theorem 4.1 is
based on assumptions that may be violated in some specific applications. We therefore
also provide a convergence theorem that applies to bounded consumptions plans under
milder assumptions on the aggregator. In particular, we apply our convergence results
to the empirically important Epstein-Zin-Weil parametrization of recursive utility. Fi-
nally, we provide a general sufficient condition for recursive utility with a nonstandard
certainty equivalent to converge to stochastic differential utility.

The remainder of this paper is structured as follows: In Section 2 we fix the framework
for the paper’s analysis. Section 3 briefly reviews recursive and stochastic differential
utility. In Section 4 we present our main convergence result. Section 5 contains the
proof. Section 6 establishes a more general convergence result for bounded consump-
tion plans. In Section 7 we provide a basis for further research on convergence with
nonstandard certainty equivalents, and Section 8 concludes.

2. Mathematical Setting

We work on a filtered probability space (Ω,A,F,P) whose filtration F = {Ft}t∈[0,T ]

satisfies the “usual conditions” of right-continuity and P-completeness. We assume
that F0 is P-trivial, and whenever M = {Mt}t∈[0,T ] is an (F,P)-martingale, we work
with a càdlàg version of M .

Consumption Plans. Let C ⊆ R be an interval modeling the consumption space
(typically, C ⊆ [0,∞)). We call a consumption rate process c = {ct}t∈[0,T ] feasible if
c is C-valued and F-progressively measurable with

(1) E
[
supt∈[0,T ]|ct|2

]
<∞.

We denote by A the class of feasible consumption plans. Moreover we fix a terminal
payoff X, given as a C-valued FT -measurable random variable with E[|X|2] <∞.

Approximating Sequences. We study an arbitrary but fixed sequence {πN}N∈N
of partitions πN = [tN0 , . . . , t

N
N ] of [0, T ] where2 0 = tN0 ≤ tN1 ≤ · · · ≤ tNN = T and

πN ⊆ πN+1. We set ∆N
k , tNk+1 − tNk , k = 0, . . . , N − 1 and assume that

∆N , maxk=0,...,N−1 ∆N
k → 0 as N →∞.

A sequence {cN}N∈N of C-valued adapted processes is said to be an approximating
sequence for the feasible plan c if cN is right-continuous and piecewise constant on
πN for each N ∈ N and3

(2) cN → c a.e. on [0, T ]× Ω as N →∞
subject to the integrability condition

(3) E
[
supN∈N, t∈[0,T ]|cNt |2

]
<∞.

Note that (2) and (3) imply (1) for a suitable modification of c.

2To simplify notation, we assume that πN has exactly N + 1 grid points.
3[0, T ]× Ω is endowed with the product measure dt⊗ P.



STOCHASTIC DIFFERENTIAL UTILITY AND RECURSIVE UTILITY 3

Examples of Approximating Sequences. (a) If c ∈ A has paths with left and right limits
and cN is the discretization of c along πN , i.e.

cNt , ctNk for t ∈ [tNk , t
N
k+1), k = 0, . . . , N − 1

then {cN}N∈N constitutes an approximating sequence.

(b) The approach in (a) applies in particular to piecewise-constant consumption plans.
For instance, c may be represented by a continuous-time Markov chain. In this case,
cN represents the canonical tree-type approximation of c.

(c) If {cN}N∈N is an approximating sequence for c, then {c̄N}N∈N is also one where
c̄N is the space discretization of cN along ζN , i.e.

c̄Nt , zNk if cNt ∈ [zNk , z
N
k+1) for t ∈ [0, T ]

with a sequence {ζN}N∈N of partitions ζN = [zN0 , . . . , z
N
N ] of the consumption space C

such that maxk=0,...,N−1 |zNk+1 − zNk | → 0 as N →∞.

(d) In combination with (a), case (c) covers binomial tree-type approximations to
Brownian models, given suitable integrability conditions.

Note that (b) and (d) correspond to the settings analyzed by Skiadas (2013).

3. Recursive Utility and Stochastic Differential Utility

To model preferences for intertemporal consumption in a stochastic setting, we are
generally interested in mappings of the form

v : A→ R, c 7→ v(c)

such that c is preferred to c′ if and only if v(c) > v(c′). If such a representation is
available, the functional v is referred to as a utility index. Clearly, if v and ṽ are
utility indices and there exists a strictly increasing function ϕ such that ṽ = ϕ ◦ v,
then they describe the same preferences; in this case, v and ṽ are said to be ordinally
equivalent.

3.1 Recursive Utility

Recursive utility is a paradigm to construct utility indices in a discrete-time framework.
Following Kreps and Porteus (1978), its two main components are

(i) a discrete-time intertemporal aggregator W , i.e. a mapping

W : [0, T ]× C× C→ C, (∆, c, v) 7→ W (∆, c, v)

with W (0, c, v) = v for all (c, v) ∈ C× C; and

(ii) a certainty equivalent m, i.e. a mapping

m : M(C)→ C, µ 7→ m(µ)

such that m(δc) = c for all c ∈ C, where M(C) denotes the space of all probability
distributions on C such that

∫
C
|v|2µ(dv) <∞ and δc is the Dirac measure at c.
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The pair (W,m) is referred to as a (discrete-time) aggregator. The current utility
of consumption c∆ during a time interval of length ∆ and a random payoff with
distribution µ at the end of this interval is computed via the aggregation

(∆, c, µ) 7→ W (∆, c,m(µ)).

More precisely, given an aggregator (W,m) the recursive utility index of a feasible
consumption stream cN that is piecewise constant on πN is given by

vN(cN) , V N
0

with the continuation value process V N = {V N
tNk
}k=0,...,N−1 defined recursively via4

(4) V N
tNk

= W
(

∆N
k , c

N
tNk
,m
(
LtNk

(V N
tNk+1

)
))
, k = N − 1, . . . , 0, V N

tNN
= X.

Here Lt(Y ) denotes the conditional distribution, given time-t information Ft, of the
random variable Y . Thus at each time tNk the agent aggregates current consumption
cN
tNk

with the time-tNk certainty equivalent m(LtNk
(V N

tNk+1
)) of consumption starting in the

next period.

The recursion (4) shows that W models intertemporal preferences, while m captures
risk preferences. In Sections 3 – 6 we assume that m can be represented in the form
characterized by Kreps and Porteus (1978):

(5) m(µ) = u−1
(∫

C
u(v)µ(dv)

)
, µ ∈M(C)

with u : C → R a strictly increasing continuous function of linear growth.5 The
interpretation is that preferences between (atemporal) random payoffs Y and Z are
characterized by their expected utilities E[u(Y )] and E[u(Z)].

Normalization. The transformation v 7→ ṽ , u(v) leads to the aggregation

(∆, c, µ) 7→ W̃ (∆, c,m0(µ))

corresponding to the aggregator (W̃ ,m0) where

W̃ : [0, T ]× C× V→ V, W̃ (∆, c, v) , u
(
W (∆, c, u−1(v))

)
and m0 denotes the risk-neutral certainty equivalent on V , u(C),

m0(µ) ,
∫
V
vµ(dv), µ ∈M(V).

The backward recursion (4) for Ṽ N = {Ṽ N
tNk
}k=0,...,N , Ṽ N

tNk
= u(V N

tNk
) now reads

(6) Ṽ N
tNk

= W̃
(

∆N
k , c

N
tNk
,EtNk [Ṽ N

tNk+1
]
)
, k = N − 1, . . . , 0, Ṽ N

tNN
= ξ

and we set ṽN(cN , X) , Ṽ N
0 . Here Et denotes conditional expectation given Ft and

ξ , u(X). Importantly, the aggregator (W,m) describes (via (4)) the same preferences
as (W̃ ,m0) (via (6)): The corresponding utility indices are linked via ṽN(cN) = Ṽ N

0 =
u(V N

0 ) = u(vN(cN)) so they are ordinally equivalent.

4Existence of recursive utility is guaranteed in our setting by conditions (A1), (A2), (A3) and (A4)

below. We refer to Marinacci and Montrucchio (2010) for existence and uniqueness results under

more general conditions.
5The growth condition ensures that m is well-defined. If this is guaranteed by other means, the

condition can be relaxed; see also Section 6.
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Remark. The terminal payoff X is transformed to the terminal utility ξ = u(X). Since
u is of linear growth, we also have E[|ξ|2] <∞.

The above normalization procedure is feasible for every certainty equivalent of Kreps-
Porteus type (5). Therefore, in the following we directly work with a normalized
aggregator (W,m0) (or simply W , for short). Thus we study the discrete-time recursive
utility index given by

vN(cN) , V N
0 for cN ∈ A piecewise constant on πN

where V N = {V N
tNk
}k=0,...,N satisfies the backward aggregation

(RecN) V N
tNk

= W
(

∆N
k , c

N
tNk
,EtNk [V N

tNk+1
]
)
, k = 0, . . . , N − 1, V N

tNN
= ξ.

Here the terminal utility ξ, represented by an FT -measurable random variable with
E[|ξ|2] <∞, and the temporal aggregator W : [0, T ]× C×R→ R are given.6

Remark. If W is additive in the sense that W (∆, c, v) = α∆u(c) + (1 − δ∆)v, we
recover the classical special case of discounted expected utility:

(7) vN(cN) = V N
0 = E

[
α
∑N−1

k=0 β
N
k u(cNtNk

)∆N
k + βNN u(X)

]
where ξ = u(X) and βNk ,

∏k−1
j=0(1− δ∆N

j ) is the discrete time-tNk discount factor.

3.2 Stochastic Differential Utility

Stochastic differential utility was introduced by Duffie and Epstein (1992) as a continuous-
time analog of recursive utility. Although they provide a heuristic connection to re-
cursive utility, Duffie and Epstein (1992) give a rigorous definition of stochastic differ-
ential utility in continuous time only: For a feasible consumption plan c and a given
(continuous-time) aggregator f : C×R→ R they define

v(c) , V0

where ξ is an FT -measurable random variable and the process V = {Vt}t∈[0,T ] is given
by the backward stochastic differential equation (BSDE)

(SDU) Vt = Et
[∫ T

t
f(cs, Vs)ds+ ξ

]
, t ∈ [0, T ]

or alternatively, in equivalent differential notation,

dVt = −f(ct, Vt)dt+ dMt, VT = ξ

with M = {Mt}t∈[0,T ] an (F,P)-martingale.7

Remark. Similarly as in the discrete-time case, if f takes the additive form f(c, v) =
αu(c)− δv and ξ = u(X) we obtain standard expected utility with

Vt = Et
[
α
∫ T
t

e−δsu(cs)ds+ e−δTu(X)
]
, t ∈ [0, T ].

6We assume that W (∆, c, · ) is defined on R. This is a technical requirement that can be relaxed,

see Section 6.
7See Proposition A.2 in Appendix A for conditions on f that ensure existence and uniqueness.
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4. The Convergence Result

Throughout Sections 4 and 5 we suppose that a normalized discrete-time aggregator
W and a terminal utility ξ with E[|ξ|2] < ∞ are given. For a feasible consumption
plan c and an approximating sequence {cN}N∈N we study the sequence {V N}N∈N of
recursive utility processes constructed via (RecN) and the process V given by (SDU).
When there is a risk of confusion, we denote V N by V N(cN) and V by V (c) to highlight
the dependencies on cN and c, respectively.

Conditions (A1), (A2), (A3), (A4). We impose the following regularity conditions
on the aggregator W : There is a function f : C×R→ R such that

W (∆, c, v) = v + f(c, v)∆ + ε(∆, c, v)∆(A1)

with |ε(∆, c, v)| ≤ h(∆)(1 + |c|+ |v|), (∆, c, v) ∈ [0, T ]× C×R
|f(c, v)− f(c, w)| ≤ L|v − w| for c ∈ C, v, w ∈ R(A2)

|f(c, 0)| ≤ K(1 + |c|) for c ∈ C(A3)

f( · , v) is continuous on C for v ∈ R(A4)

where K,L > 0 are constants and h : [0, T ] → [0,∞) is a continuous increasing
function with h(0) = 0. In Theorem 4.1 below we identify f as the continuous-
time aggregator corresponding to W . Condition (A1) is a regularity condition for
the discrete-time aggregator W ; it essentially requires that W grows linearly in ∆ at
∆ = 0. Note that (A1) is always satisfied for additive utility. (A1) implies in particular
that W (0, c, v) = v and that f can be derived from W via

(8)
∂W

∂∆
(0, c, v) = f(c, v) for all (c, v) ∈ C×R.

Conditions (A2) and (A3) are Lipschitz and linear growth conditions for the aggregator
in (SDU) that are standard in the literature on BSDEs; see, e.g., Duffie and Epstein
(1992) and El Karoui, Peng, and Quenez (1997). Condition (A4) is natural if a well-
defined continuous-time limit is to be achieved.

Remark. Epstein (1987) and Duffie and Epstein (1992) specify the discrete-time ag-
gregator as a smooth function W : [0, T ]× C×R→ R such that W (0, c, v) = v and

define the continuous-time generator f̃ via f̃(c, v) , ∂W
∂∆

(0, c, v)/∂W
∂v

(0, c, v). In our

setting this definition coincides with (8) since ∂W
∂v

(0, c, v) = 1.

Recursive Utility in Continuous Time. Let V N = {V N
tNk
}k=0,...,N denote the con-

tinuation value process associated to the consumption plan cN ∈ A on the time grid
πN via (RecN). For the analysis of convergence we extend the definition of V N to the
whole time interval [0, T ] such that V N

t remains unaltered for t ∈ πN :

V N
t , W

(
∆N
k , c

N
tNk
,Et[V N

tNk+1
]
)

for t ∈ [tNk , t
N
k+1) and k = 0, . . . , N − 1.

We now state the main result of this paper: Recursive utility converges to stochastic
differential utility in the continuous-time limit.
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Theorem 4.1 (Convergence). Suppose that (A1), (A2), (A3) and (A4) hold and
consider a feasible consumption plan c ∈ A. Let {cN}N∈N be an approximating se-
quence and let the recursive utility process V N associated to cN be given by

(RecN) V N
t , W

(
∆N
k , c

N
tNk
,Et[V N

tNk+1
]
)
, t ∈ [tNk , t

N
k+1), k = 0, . . . , N − 1, V N

T = ξ.

Moreover, let V denote the stochastic differential utility process of c given by

(SDU) Vt = Et
[∫ T

t
f(cs, Vs)ds+ ξ

]
, t ∈ [0, T ]

where W and f are related via (8), i.e. f(c, v) = ∂W
∂∆

(0, c, v). Then it follows that∥∥supt∈[0,T ]|V N
t − Vt|

∥∥
2
→ 0 as N →∞.

In particular, the associated utility indices satisfy

vN(cN)→ v(c) as N →∞.

5. Proof of the Convergence Theorem

We use the following extension of the definition of f :

(9) f : [0, T ]× C×R→ R, f(∆, c, v) ,
W (∆, c, v)− v

∆
.

With this notation, (A1) can be restated as

(A1’) |f(∆, c, v)− f(c, v)| ≤ h(∆)(1 + |c|+ |v|), (∆, c, v) ∈ [0, T ]× C×R.
Conditions (A1), (A2) and (A3) imply that there is a constant K1 > 0 with

(A3’) |f(∆, c, v)| ≤ K1(1 + |c|+ |v|) for (∆, c, v) ∈ [0, T ]× C×R.
Using (9) the recursion (RecN) can be equivalently reformulated as

V N
t , Et[V N

tNk+1
] + ∆N

k f
(
∆N
k , c

N
tNk
,Et[V N

tNk+1
]
)

for t ∈ [tNk , t
N
k+1)(10)

where k = 0, . . . , N − 1 and V N
tNN

= ξ.

Outline of the Proof. Iterating (10) yields the representation8

(SDUN) V N
t = Et

[∑N−1
k=l ∆N

k f
(
∆N
k , c

N
tNk
,Et∨tNk [V N

tNk+1
]
)

+ ξ
]
, t ∈ [tNl , t

N
l+1).

Our goal is to show that V N → V as N →∞, where

(SDU) Vt = Et
[∫ T

t
f(cs, Vs)ds+ ξ

]
.

Apparently (SDUN) mimics a Riemann sum approximation of (SDU). This moti-
vates the following strategy for the convergence proof: Starting from (SDUN) with
f(∆N

k , c
N
tNk
,Et∨tNk [V N

tNk+1
]), we replace

f
(
∆N
k , c

N
tNk
,Et∨tNk [V N

tNk+1
]
) Step 1
99K f

(
cNtNk

,Et∨tNk [V N
tNk+1

]
) Step 2
99K f

(
cNtNk

, V N
t∨tNk

)
and, starting from (SDU) with f(cs, Vs) we replace∫ T

tNl
f(cNtNk

, VtNk )
Step 4
L99

∫ T
t
f(cNtNk

, VtNk )
Step 3
L99

∫ T
t
f(cs, Vs).

8s ∨ t , max{s, t}. Note that t ∨ tNk = tNk for every summand except possibly the first.
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In the second part of the proof, we “meet halfway” and show with a Gronwall-Bellman
argument that (SDUN) with f(cN

tNk
, V N

tNk
), i.e.

V N
t = Et

[∑N−1
k=l ∆N

k f
(
cNtNk

, V N
t∨tNk

)
+ ξ
]

+ error, t ∈ [tNl , t
N
l+1)

and (SDU) with f(cN
tNk
, VtNk ), i.e.

Vt = Et
[∫ T

tNl
f̃Ns ds+ ξ

]
+ error, t ∈ [tNl , t

N
l+1)

where f̃Ns , f(cN
tNk
, VtNk ) for s ∈ [tNk , t

N
k+1), are close and the error terms are small. Step 1

is crucial since in this step we carry out the transition from the discrete-time aggregator
W to its continuous-time counterpart f via the linearization (A1). In Step 3 we switch
from the continuous-time plan c to the approximating sequence {cN}N∈N. Steps 2 and
4 are intermediate steps. Finally, the Gronwall-Bellman argument establishes the key
link between the recursive utility processes V N and the stochastic differential utility
process V .

Remark. Our approach is related to stability results for BSDEs (such as, e.g., Antonelli
(1996) and Coquet, Mackevičius, and Mémin (1998)) and to the recent literature on
numerical approximations of BSDEs (see, e.g., Bouchard and Touzi (2004), Zhang
(2004) and Bouchard and Elie (2008), among many others). We refer to Bouchard, Elie,
and Touzi (2009) for an overview of this strand of research. This literature focuses on
settings with finite martingale multiplicity (e.g., Brownian or jump-diffusion models).
By contrast, in this paper we allow for a general semimartingale framework, so existing
results are not directly applicable to our convergence problem. In addition, even with
finite martingale multiplicity, recursive utility imposes a nonstandard discretization
scheme (see, e.g., (10)): It involves nested conditional expectations and possibly path-
dependent stochastic aggregators that depend explicitly on the time discretization.

Proof of Theorem 4.1. For reasons of readability, the first part of the proof is
subdivided into lemmas that correspond to Steps 1, 2, 3 and 4 above. Necessary a
priori estimates are deferred to Appendix A. Throughout this section, we consider a
fixed consumption plan c ∈ A and an approximating sequence {cN}N∈N and assume
that (A1), (A2), (A3) and (A4) are satisfied.

Step 1. By (SDUN) we have

(11) V N
t = Et

[∑N−1
k=l ∆N

k f
(
cNtNk

,Et∨tNk [V N
tNk+1

]
)

+ ξ
]

+R1,N
t for t ∈ [tNl , t

N
l+1)

where R1,N = {R1,N
t }t∈[0,T ] is given by

R1,N
t , Et

[∑N−1
k=l ∆N

k

{
f
(
∆N
k , c

N
tNk
,Et∨tNk [V N

tNk+1
]
)
− f

(
cNtNk

,Et∨tNk [V N
tNk+1

]
)}]

for t ∈ [tNl , t
N
l+1). This error term can be estimated as follows:

Lemma 5.1. There is a constant K3 > 0 such that∥∥supt∈[0,T ]|R
1,N
t |
∥∥

2
≤ K3h(∆N) for all N ≥ N0(c, {cN}N∈N).
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Proof. For t ∈ [tNl , t
N
l+1) we have from (A1’) and the conditional triangle inequality

|R1,N
t | ≤ Et

[∑N−1
k=l ∆N

k

∣∣f(∆N
k , c

N
tNk
,Et∨tNk [V N

tNk+1
]
)
− f

(
cNtNk

,Et∨tNk [V N
tNk+1

]
)∣∣]

≤ h(∆N)Et
[∑N−1

k=l

(
1 + |cNtNk |+ |Et∨tNk [V N

tNk+1
]|
)
∆N
k

]
≤ h(∆N)Et

[∑N−1
k=0

(
1 + |cNtNk |+ |V

N
tNk+1
|
)
∆N
k

]
.

Applying Doob’s L2-inequality to the (F,P)-martingale MN = {MN
t }t∈[0,T ] defined by

MN
t , Et[

∑N−1
k=0 (1 + |cN

tNk
|+ |V N

tNk+1
|)∆N

k ] for t ∈ [0, T ] it follows that

(12)
∥∥supt∈[0,T ]|R

1,N
t |
∥∥

2
≤ h(∆N)

∥∥supt∈[0,T ]|MN
t |
∥∥

2
≤ 2h(∆N)‖MN

T ‖2.

On the other hand, by Proposition A.1 and (27) in Appendix A we have

‖MN
T ‖2 ≤

∑N−1
k=0

(
1 + ‖cNtNk ‖2 + ‖V N

tNk+1
‖2

)
∆N
k

≤
∑N−1

k=0

(
2 + ‖cNtNk ‖

2
2 +K2[1 + ‖ξ‖2 + ‖c‖2

2]
)
∆N
k

≤ (2 +K2[1 + ‖ξ‖2 + ‖c‖2
2])T +

∑N−1
k=0 ‖c

N
tNk
‖2

2∆N
k

≤ (2 +K2[1 + ‖ξ‖2 + ‖c‖2
2])T + ‖c‖2

2 + 1, N ≥ N0(c, {cN}N∈N).

In combination with (12) this completes the proof. �

Step 2. By (11) we have

(13) V N
t = Et

[∑N−1
k=l ∆N

k f
(
cNtNk

, V N
t∨tNk

)
+ ξ
]

+R1,N
t +R2,N

t for t ∈ [tNl , t
N
l+1)

where R2,N = {R2,N
t }t∈[0,T ] is given by

R2,N
t , Et

[∑N−1
k=l ∆N

k

{
f
(
cNtNk

,Et∨tNk [V N
tNk+1

]
)
− f

(
cNtNk

, V N
t∨tNk

)}]
, t ∈ [tNl , t

N
l+1).

Lemma 5.2. There is a constant K4 > 0 such that∥∥supt∈[0,T ]|R
2,N
t |
∥∥

2
≤ K4∆N for all N ≥ N0(c, {cN}N∈N).

Proof. Condition (A2) implies

|R2,N
t | ≤ Et

[∑N−1
k=l ∆N

k

∣∣f(cNtNk ,Et∨tNk [V N
tNk+1

]
)
− f

(
cNtNk

, V N
t∨tNk

)∣∣]
≤ L∆NEt

[∑N−1
k=l

∣∣Et∨tNk [V N
tNk+1

]− V N
t∨tNk

∣∣]
= L∆NEt

[∑N−1
k=l ∆N

k

∣∣f(∆N
k , c

N
tNk
,Et∨tNk [V N

tNk+1
]
)∣∣]

where t ∈ [tNl , t
N
l+1) and the identity uses (10). Moreover, (A3’) yields

|R2,N
t | ≤ K1L∆NEt

[∑N−1
k=l ∆N

k

[
1 + |cNtNk |+ |Et∨tNk [V N

tNk+1
]|
]]

≤ K1L∆NEt
[∑N−1

k=0 ∆N
k

[
1 + |cNtNk |+ |V

N
tNk+1
|
]]
.

Now the desired estimate follows exactly as in the proof of Lemma 5.1. �
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For future reference, we rewrite (13) in integral form as9

(14) V N
t = Et

[∫ T
tNl
fN,ts ds+ ξ

]
+R1,N

t +R2,N
t for t ∈ [tNl , t

N
l+1)

where fN,t = {fN,ts }s∈[0,T ] is given by

fN,ts , f
(
cNtNk

, V N
t∨tNk

)
for s ∈ [tNk , t

N
k+1), k = 0, . . . , N − 1.

Step 3. By definition of V we have

(15) Vt = Et
[∫ T

t
f̃Ns ds+ ξ

]
+R3,N

t for t ∈ [tNl , t
N
l+1)

where f̃N = {f̃Ns }s∈[0,T ] is defined by

f̃Ns , f(cNtNk
, VtNk ) for s ∈ [tNk , t

N
k+1), k = 0, . . . , N − 1

and where R3,N = {R3,N
t }t∈[0,T ] is given by

R3,N
t , Et

[∫ T
t

{
f(cs, Vs)− f̃Ns

}
ds
]
, t ∈ [0, T ].

Lemma 5.3. We have ∥∥supt∈[0,T ]|R
3,N
t |
∥∥

2
→ 0 as N →∞.

Proof. For every t ∈ [0, T ] we have

|R3,N
t | ≤MN

t , Et
[∫ T

0
|f(cs, Vs)− f̃Ns |ds

]
with an (F,P)-martingale MN = {MN

t }t∈[0,T ] satisfying MN
T =

∫ T
0
|f(cs, Vs) − f̃Ns |ds.

Using Doob’s L2-inequality and Cauchy’s inequality we obtain∥∥supt∈[0,T ]|R
3,N
t |
∥∥

2
≤
∥∥supt∈[0,T ]|MN

t |
∥∥

2
≤ 2‖MN

T ‖2(16)

= 2
∥∥∥∫ T0 ∣∣f(cs, Vs)− f̃Ns

∣∣ds∥∥∥
2
≤ 2
√
T E
[∫ T

0

∣∣f(cs, Vs)− f̃Ns
∣∣2ds

] 1
2
.

By (2), the càdlàg property of V , (A3) and (A4) we have f̃N· → f(c · , V · ) a.e. on
[0, T ]× Ω, so by (3), Proposition A.2, (A3’) and dominated convergence we obtain

E
[∫ T

0

∣∣f(cs, Vs)− f̃Ns
∣∣2ds

]
→ 0 as N →∞. �

Remark. Lemma 5.3 is the only one of the error estimates established in this section
that does not specify an explicit convergence rate. This cannot be expected unless we
impose stricter assumptions (e.g., a Lipschitz condition) on the dependence of W on c
and on the regularity of c with respect to time. In this case, the literature on numerical
solutions of BSDEs suggests that a convergence rate of

√
∆N could be expected in a

jump-diffusion setting; see Zhang (2004), Bouchard and Elie (2008) or Bouchard, Elie,
and Touzi (2009) and the references therein.

Step 4. By (15) we have

Vt = Et
[∫ tNl+1

tNl
f(cNtNl

, Vt)ds+
∫ T
tNl+1

f̃Ns ds+ ξ
]

+R3,N
t +R4,N

t(17)

= Et
[∫ T

tNl
f̂N,ts ds+ ξ

]
+R3,N

t +R4,N
t for t ∈ [tNl , t

N
l+1)

9The additional superindex t indicates that fN,t depends explicitly on t.
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where f̂N,t = {f̂N,ts }s∈[0,T ] is given by

f̂N,ts , f(cNtNl
, Vt), s ∈ [tNl , t

N
l+1), f̂N,ts , f̃Ns , s ∈ [tNl+1, T ]

and R4,N = {R4,N
t }t∈[0,T ] is given by

R4,N
t , −

∫ t
tNl
f(cNtNl

, Vt)ds+ Et
[∫ tNl+1

t

{
f̃Ns − f(cNtNl

, Vt)
}

ds
]
, t ∈ [0, T ].

Lemma 5.4. There is a constant K5 > 0 such that∥∥supt∈[0,T ]|R
4,N
t |
∥∥

2
≤ K5∆N for all N ∈ N.

Proof. By (A3’) we have∣∣∣∫ ttNl f(cNtNl
, Vt)ds

∣∣∣, ∣∣∣∫ tNl+1

t

{
f̃Ns − f(cNtNl

, Vt)
}

ds
∣∣∣ ≤ 2∆NK1

[
1 + supN∈N, s∈[0,T ]|cNs |+ |Vs|

]
so the desired conclusion follows immediately. �

Gronwall-Bellman Argument. We are now in a position to complete the proof of
Theorem 4.1. For every t ∈ [0, T ] we have

V N
t = Et

[∫ T
tNl
fN,ts ds+ ξ

]
+R1,N

t +R2,N
t(14)

Vt = Et
[∫ T

tNl
f̂N,ts ds+ ξ

]
+R3,N

t +R4,N
t(17)

where l chosen such that t ∈ [tNl , t
N
l+1) and by Lemmas 5.1, 5.2, 5.3 and 5.4∥∥supt∈[0,T ]|R

i,N
t |
∥∥

2
→ 0 as N →∞ for i = 1, 2, 3, 4.

Here fN,t = {fN,ts }s∈[0,T ] and f̂N,t = {f̂N,ts }s∈[0,T ] are given by

fN,ts = f(cNtNl
, V N

t ), s ∈ [tNl , t
N
l+1), fN,ts = f(cNtNk

, V N
tNk

), s ∈ [tNk , t
N
k+1)

f̂N,ts = f(cNtNl
, Vt), s ∈ [tNl , t

N
l+1), f̂N,ts = f̃Ns = f(cNtNk

, VtNk ), s ∈ [tNk , t
N
k+1)

for k = l + 1, . . . , N − 1. Combining these results it follows that the process DN =
{DN

t }t∈[0,T ] given by DN
t , V N

t − Vt for t ∈ [0, T ] satisfies

DN
t = Et

[∫ T
tNl
rN,ts ds

]
+RN

t for t ∈ [tNl , t
N
l+1)

where ‖supt∈[0,T ] |RN
t |‖2 → 0 as N → ∞ and rN,t = {rN,ts }s∈[0,T ] is defined by rN,ts ,

fN,ts − f̂N,ts , i.e.

rN,ts = f(cNtNl
, V N

t )− f(cNtNl
, Vt), s ∈ [tNl , t

N
l+1),

rN,ts = f(cNtNk
, V N

tNk
)− f(cNtNk

, VtNk ), s ∈ [tNk , t
N
k+1), k = l + 1, . . . , N − 1.

The Lipschitz condition (A2) implies that

|rN,ts | ≤ L|DN
t |, s ∈ [tNl , t

N
l+1) and |rN,ts | ≤ L|DN

tNk
|, s ∈ [tNk , t

N
k+1)

for k = l + 1, . . . , N − 1. Therefore,

|DN
t | ≤ LEt

[
∆N
l |DN

t |+
∑N

k=l+1∆N
k |DN

tNk
|
]

+ Et[RN ]

where RN , supt∈[0,T ] |RN
t |. If N is sufficiently large so that L∆N ≤ 1

2
, we get

(18) |DN
t | ≤ 2L

∑N
j=l+1∆N

j Et[|DN
tNj
|] + 2Et[RN ].
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Analogously it follows that |DN
tNk
| ≤ 2L

∑N
j=k+1∆N

j EtNk [|DN
tNj
|] + 2EtNk [RN ] for k = l +

1, . . . , N and therefore

(19) Et[|DN
tNk
|] ≤ 2L

∑N
j=k+1∆N

j Et[|DN
tNj
|] + 2Et[RN ], k = l + 1, . . . , N.

Applying the discrete Gronwall Lemma A.3 to (18) and (19) yields |DN
t | ≤ 2Et[RN ]e2LT .

Since t ∈ [0, T ] is arbitrary and ‖RN‖2 → 0 as N →∞, we get∥∥supt∈[0,T ]|DN
t |
∥∥

2
→ 0 as N →∞

from Doob’s L2-inequality. This completes the proof of Theorem 4.1. �

6. Convergence without (A1), (A2), (A3), (A4)

In this section we provide a convergence result for bounded consumption plans. It
applies to a wide class of aggregators that are relevant in applications but do not, in
general, satisfy the conditions of Section 4.

A General Class of Aggregators. The discrete-time temporal aggregator is speci-
fied in terms of a strictly increasing function g : C ⊆ [0,∞)→ R via

W (∆, c, v) , g−1
(
δ∆g(c) + (1− δ∆)g(v)

)
where δ ∈ (0, 1] models a subjective discount rate. With V , u(C) the corresponding
normalized aggregator reads

(20) W : [0, T ]× C× V→ R, W (∆, c, v) , u ◦ g−1
(
δ∆g(c) + (1− δ∆)g ◦ u−1(v)

)
where u is the function inducing the certainty equivalent via (5). The functions g :
C→ R and u : C→ R are assumed to be of class C2 with

(21) g′(c) , ∂g
∂c

(c) > 0 and u′(c) , ∂u
∂c

(c) > 0, c ∈ C.

Note that (20) becomes additive for u = g, so discounted expected utility is a special
case. By (8) the associated continuous-time aggregator is

(22) f : C× V→ R, f(c, v) = δ
u′
(
u−1(v)

)
g′
(
u−1(v)

)[g(c)− g
(
u−1(v)

)]
.

A direct application of Theorem 4.1 may not be possible if (A1), (A2), (A3) and (A4)
are not satisfied globally.10 In addition, W (∆, c, · ) and f(c, · ) may not be defined
on all of R. Below we present a suitable extension of Theorem 4.1 that applies in this
context.

Example. The empirically relevant specification proposed by Epstein and Zin (1989)
and Weil (1989) is obtained by choosing C = (0,∞), g(c) = 1

1−φc
1−φ and u(c) =

1
1−%c

1−%. The parameters % > 0 and φ > 0 model relative risk aversion and the

10In this case, the continuous-time limit is not necessarily well-defined. For instance, if u(c) =

g(c) = −c−2 and the consumption plan (c, ξ) is given by ct = T − t, t ∈ [0, T ] and ξ = 0, then the

recursive utility indices satisfy (see (7))

vN (c, ξ) = −δ
∑N−1

k=0 β
N
k

1
(T−tNk )2

∆N
k ≤ −δβN

N−1
1

∆N
k

→ −∞ as N →∞.
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inverse of the elasticity of intertemporal substitution. The corresponding normalized
aggregator is given by

W (∆, c, v) = 1
1−%

[
δ∆c1−φ + (1− δ∆)

[
(1− %)v

] 1−φ
1−%
] 1−%

1−φ

with V = (0,∞) if % < 1 and V = (−∞, 0) if % > 1. The associated continuous-time
aggregator

f(c, v) = δ 1−%
1−φv

[( c

([1− %]v)
1

1−%

)1−φ
− 1
]

coincides with the standard parametrization used by Duffie and Epstein (1992), Fisher
and Gilles (1998) and Wachter (2011), among others.

Convergence for Bounded Consumption Plans. Consider a consumption plan
c and an approximating sequence {cN}N∈N that take values in a closed and bounded
subinterval C0 ⊆ C and suppose that the terminal utility ξ takes values in V0 ,
u(C0).11 By (21) the inverse functions g−1 and u−1 are of class C2 on g(C0) and u(C0),
respectively, and it follows from the inverse mapping theorem that W is of class C2 on
[0, T ]× C0 × V0. Applying the mean value theorem twice yields

f(∆, c, v)− f(c, v) = ∂W
∂∆

(∆′, c, v)− ∂W
∂∆

(0, c, v) = ∂2W
∂∆2 (∆′′, c, v)∆′

where 0 < ∆′′ < ∆′ < ∆. Since W is of class C2 it follows that ∂2W
∂∆2 is bounded on

[0, T ]×C0×V0, so the restriction W0 of W to [0, T ]×C0×V0 satisfies (A1). Similarly,
(A2) holds for W0. Finally, (A3) and (A4) are obvious.

Notice that for the aggregation (RecN) which determines V N = V N(cN) only the
restriction W0 is relevant. Indeed, one easily checks that g−1(δ∆g(c)+(1−δ∆)g(v)) ∈
C0 whenever c, v ∈ C0 and δ∆ ≤ 1, so V N takes values in V0 for all but finitely many
N ∈ N. Hence we obtain

Theorem 6.1 (Convergence). Let W be given by (20) where g : C → R and
u : V → R are C2 functions that satisfy (21) and suppose that ξ takes values in
a bounded closed subset of V. If c ∈ A is a consumption plan and {cN}N∈N is an
approximating sequence that take values in bounded closed subintervals of C, then∥∥supt∈[0,T ]|V N

t − Vt|
∥∥

2
→ 0 and in particular vN(cN)→ v(c) as N →∞.

Here vN and v denote, respectively, the recursive utility index on πN and the stochas-
tic differential utility index with aggregator f given by (22), and V N and V are the
associated continuation value processes.

Proof. Choose a closed interval C0 ⊆ C such that c and cN take values in C0 for N ∈ N
and ξ takes values in V0 , u(C0). Let W0 denote the restriction of W to [0, T ]×C0×V0;
by the preceding discussion W0 satisfies (A1), (A2), (A3) and (A4) on [0, T ]×C0×V0.
Now select an extension W̄0 of W0 to [0, T ] × C × R in such a way that (A1), (A2),
(A3) and (A4) hold for W̄0 on [0, T ] × C × R. Now we can apply Theorem 4.1 with
the aggregator W̄0. As observed above, the process V N = V N(cN) takes values in V0

for all but finitely many N ∈ N and, in particular, does not depend on the choice of
the extension W̄0; since ‖V N

t − Vt‖ → 0 as N → ∞ it follows that V = V (c) cannot
depend on the choice of W̄0 either. The claim now follows from Theorem 4.1. �

11This is consistent: The corresponding monetary payoff X = u−1(ξ) is C0-valued.



14 STOCHASTIC DIFFERENTIAL UTILITY AND RECURSIVE UTILITY

Remark. For Epstein-Zin-Weil utility, Theorem 6.1 requires consumption to be bounded
from below by a positive constant. This may not be satisfied in specific applications
as it interferes with the homotheticity of the Epstein-Zin aggregator.

7. Beyond Kreps-Porteus Certainty Equivalents

Recently certainty equivalents outside the Kreps-Porteus specification have become
important in the modeling of ambiguity, source-dependent risk aversion, and further
behavioral aspects of decisions under risk. In this section we provide a basis for re-
search on recursive utility with nonstandard risk preferences: We establish a sufficient
criterion for a general certainty equivalent to lead to stochastic differential utility in
the continuous-time limit.

Normalization. Consider a consumption plan c ∈ A, an approximating sequence
{cN}N∈N and the associated backward recursion (4) that defines recursive utility,

V N
tNk

= W
(

∆N
k , c

N
tNk
,mtNk

(
V N
tNk+1

))
, k = 0, . . . , N − 1, V N

tNN
= X.

Here {mt}t∈[0,T ] is a family of abstract time-t certainty equivalents (not necessarily of

Kreps-Porteus type). As in Section 3 the normalization v 7→ ṽ , u(v) with u strictly
increasing leads to the ordinally equivalent representation

(23) Ṽ N
tNk

= W̃
(

∆N
k , c

N
tNk
, m̃tNk

(
Ṽ N
tNk+1

))
, k = 0, . . . , N − 1, Ṽ N

tNN
= ξ

where ξ , u(X), the normalized time-t certainty equivalent m̃t is given by

(24) m̃t(Ṽ ) , u
(
mt

(
u−1(Ṽ )

))
and W̃ (∆, c, ṽ) , u ◦W

(
∆, c, u−1(ṽ)

)
.

While, in general, it may not be possible to achieve an exact normalization as in
Section 3 for the Kreps-Porteus case, motivated by the analysis in Skiadas (2013) we
consider the case when an approximate normalization is available:

m̃t(Ṽ ) = EQ
t [Ṽ ] +Rt

with a probability measure Q and a “small” error Rt. In the following we establish a
general convergence criterion based on an approximation of this form.

Theorem 7.1 (Convergence with Approximate Normalization). Consider a
normalized aggregator W = W̃ as in (23) that satisfies (A1), (A2), (A3), (A4). Let Q
be an equivalent probability measure such that {cN}N∈N is also an approximating se-
quence for c with respect to Q and EQ[|ξ|2] <∞. If the normalized certainty equivalents
(24) satisfy

(25) mtNk
(V N

tNk+1
) = EQ

tNk
[V N
tNk+1

] +RN
tNk

for k = 0, . . . , N − 1

where
∑N−1

k=1 ‖RN
tNk
‖1,Q → 0 as N →∞, then we have vN(cN)→ v(c) as N →∞ where

v(c) = V0 and V denotes the stochastic differential utility process

Vt = EQ
t

[∫ T
t
f(cs, Vs)ds+ ξ

]
, t ∈ [0, T ] with f(c, v) = ∂W

∂∆
(0, c, v).
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Proof. By (25) we can rewrite the recursion (23) as

V N
tNk

= EQ
tNk

[
∆N
k f
(
∆N
k , c

N
tNk
,mtNk

(V N
tNk+1

)
)

+ V N
tNk+1

+RN
tNk

]
, k = 0, . . . , N − 1

and similarly as in Section 5 iterating this leads to

V N
tNl

= EQ
tNl

[∑N−1
k=l ∆N

k f
(
∆N
k , c

N
tNk
,mtNk

(V N
tNk+1

)
)

+ ξ +
∑N−1

k=l R
N
tNk

]
.

Now Theorem 4.1 implies maxk=0,...,N |Ṽ N
tNk
− VtNk | → 0 in L2(Q) as N →∞ where

Ṽ N
tNl
, EQ

tNl

[∑N−1
k=l ∆N

k f
(
∆N
k , c

N
tNk
,EQ

tNk
[Ṽ N
tNk+1

]
)

+ ξ
]
, l = 0, . . . , N.

Thus it suffices to show that

maxk=0,...,N‖V N
tNk
− Ṽ N

tNk
‖1,Q → 0 as N →∞.

To verify this note that, by (A1’) and (A2), |f(∆, c, v) − f(∆, c, w)| ≤ L|v − w| +
2h(∆)[1 + |c|+ |v|+ |w|], so by (25) and the conditional triangle inequality

|V N
tNl
− Ṽ N

tNl
| ≤ EQ

tNl

[∑N−1
k=l ∆N

k L|V N
tNk+1
− Ṽ N

tNk+1
|
]

+ EQ
tNl

[∑N−1
k=l (1 + ∆N

k L)|RN
tNk
|
]

+ EQ
tNl

[
2h(∆N

k )
∑N−1

k=l ∆N
k

(
|cNtNk |+ |V

N
tNk+1
|+ |Ṽ N

tNk+1
|
)]
, l = 0, . . . , N.

We have supN∈Nmaxk=0,...,N ‖cNtNk ‖2,Q < ∞ since {cN}N∈N is an approximating se-

quence under Q. As in Proposition A.1 we can use (A3’) to establish the a priori
estimate supN∈Nmaxk=0,...,N‖V N

tNk
‖1,Q < ∞. By the first part of the proof, we have

supN∈Nmaxk=0,...,N ‖Ṽ N
tNk
‖2,Q <∞ and thus it follows that

‖V N
tNl
− Ṽ N

tNl
‖1,Q ≤

∑N−1
k=l ∆N

k L‖V N
tNk+1
− Ṽ N

tNk+1
‖1,Q + (1 + ∆NL)

∑N−1
k=1 ‖R

N
tNk
‖1,Q +Kh(∆N)

with a constant K > 0. Now the Gronwall Lemma A.3 yields the result. �

Example: Drift Uncertainty. Suppose W is a (P,F)-Wiener process and {µit(s)}s∈[t,T ]

is a family of progressively measurable processes for each t ∈ [0, T ] and i = 1, . . . , d.
For t, t+ ∆ ∈ [0, T ] define the drift-adjusted probability Qi

t,t+∆ on Ft+∆ by

dQi
t,t+∆

dP
= exp

{∫ t+∆

t
µit(s)dW (s)− 1

2

∫ t+∆

t
|µit(s)|2ds

}
and assume the normalized time-t certainty equivalent is given by

mt(V ) = Φt

(
Eit,t+∆[V ] : i = 1, . . . , d

)
for V ∈ Ft+∆.

Here Eit,t+∆ denotes Qi
t,t+∆-conditional expectation given Ft, and for each t ∈ [0, T ]

the random function Φt : Rd → R is Ft-measurable, satisfies Φt(x, . . . , x) = x for all
x ∈ R and there is a constant L > 0 such that

|Φt(x)− Φt(y)| ≤ L|x− y| for x, y ∈ Rd.

Examples include the robust specification Φt(x) = min(x) and the second-order ex-

pectation Φt(x) =
∑d

i=1 α
i
tx
i with adapted probability weights αi = {αit}t∈[0,T ].

In this setting, if there are a progressive process µ0 = {µ0(t)}t∈[0,T ] and a continuous
increasing function h : [0, T ]→ [0,∞) with h(0) = 0 such that

(26) |µit(s)− µ0(t)| ≤ h(s− t)
√
s− t for s ≥ t and i = 1, . . . , d
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then condition (25) in Theorem 7.1 is satisfied with Q defined via

dQ
dP

= exp
{∫ T

0
µ0(s)dW (s)− 1

2

∫ T
0
|µ0(s)|2ds

}
provided the integrability condition supN∈Nmaxk=0,...,N ‖V N

tNk
‖2,Q < ∞ holds. A proof

is provided in Appendix B.

8. Conclusion

Summary. The convergence results of this paper rigorously establish stochastic differ-
ential utility as the continuous-time limit of Kreps-Porteus recursive utility. Thus they
close an important gap in the literature and justify the use of stochastic differential
utility in continuous-time models in macroeconomics and finance.

Directions for Future Research. The extension of our analysis to the case of
an infinite time horizon is an interesting subject for further study. It would also be
interesting to establish a more general convergence result for the special case of Epstein-
Zin-Weil utility that also covers unbounded consumption rate processes, based on the
analysis of Schroder and Skiadas (1999). In a Brownian setting, one can further
extend the analysis of this paper to the notion of generalized stochastic differential
utility analyzed by Lazrak (2004).
In Section 7 we have provided a basis for the analysis of preferences with nonstandard
certainty equivalents. These results can be extended and generalized, in particular to
specifications when an approximate normalization is not available. Finally, we expect
our results to be relevant for the numerical evaluation of stochastic differential utility.
A detailed analysis of these challenging aspects is left for future research.

Appendix A. A Priori Estimates and Gronwall Inequality

Throughout this appendix, let c ∈ A be a consumption plan with an associated ap-
proximating sequence {cN}N∈N, let E[|ξ|2] <∞ and let the aggregator W satisfy (A1),
(A2), (A3) and (A4). By (2), (3) and dominated convergence we have

‖cN − c‖2
2 → 0 and in particular ‖cN‖2

2 =
∑N−1

k=0 ∆N
k ‖cNtNk ‖

2
2 → ‖c‖2

2 as N →∞

where ‖c‖2
2 , E[

∫ T
0
c2
tdt]. Hence there exists N0(c, {cN}N∈N) ∈ N such that

(27)
∑N−1

k=0 ∆N
k ‖cNtNk ‖

2
2 ≤ 1 + ‖c‖2

2 for all N ≥ N0(c, {cN}N∈N).

The following L2-bounds are used in the proof of Theorem 4.1.

Proposition A.1 (A Priori Estimate for Recursive Utility). For every approx-
imating sequence {cN}N∈N of c ∈ A there is a constant K2 > 0 such that∥∥supt∈[0,T ]|V N

t (cN)|
∥∥

2
≤ K2

[
1 + ‖ξ‖2 + ‖c‖2

2

]
for all N ≥ N0(c, {cN}N∈N).



STOCHASTIC DIFFERENTIAL UTILITY AND RECURSIVE UTILITY 17

Proof. Consider (10) and use the conditional triangle inequality and (A3’) to get

|V N
t | ≤ Et[|V N

tNk+1
|] + ∆N

k Et
[
|f(∆N

k , c
N
tNk
,Et[V N

tNk+1
])|
]

≤ Et[|V N
tNk+1
|] + ∆N

k K1Et
[
1 + |cNtNk |+ |Et[V

N
tNk+1

]|
]

≤ Et
[
(1 +K1∆N

k )|V N
tNk+1
|+K1∆N

k (1 + |cNtNk |)
]

for t ∈ [tNk , t
N
k+1).

Iterating this estimate and using the fact that 1 + x ≤ ex for x ∈ R we find

|V N
t | ≤ Et

[∏N−1
k=l (1 +K1∆N

k )|ξ|+
∑N−1

k=l

∏k−1
j=l (1 +K1∆N

j )K1∆N
k

(
1 + |cNtNk |

)]
(28)

≤MN
t , Et

[
eK1T |ξ|+K1eK1T

∑N−1
k=0 ∆N

k

(
1 + |cNtNk |

)]
, t ∈ [tNl , t

N
l+1)

where the process MN = {MN
t }t∈[0,T ] is an (F,P)-martingale with

‖MN
T ‖2 ≤ eK1T‖ξ‖2 +K1eK1T

∑N−1
k=0 ∆N

k

(
1 + ‖cNtNk ‖2

)
≤ eK1T‖ξ‖2 +K1eK1T

∑N−1
k=0 ∆N

k

(
2 + ‖cNtNk ‖

2
2

)
≤ eK1T‖ξ‖2 +K1eK1T

(
2T + ‖c‖2

2 + 1
)
, N ≥ N0(c, {cN}N∈N).

Here we have used (27) and the fact that x ≤ 1 + x2 for all x ∈ R. Since∥∥supt∈[0,T ]|V N
t |
∥∥

2
≤
∥∥supt∈[0,T ]M

N
t

∥∥
2
≤ 2‖MN

T ‖2

by (28) and Doob’s L2-inequality, this completes the proof. �

Proposition A.2 (A Priori Estimate for SDU). For every c ∈ A there exists a
unique càdlàg process V = V (c) = {Vt(c)}t∈[0,T ] with E[supt∈[0,T ] |Vt(c)|2] < ∞ such
that (SDU) is satisfied. Moreover, there is a constant K ′2 > 0 such that∥∥supt∈[0,T ]|Vt(c)|

∥∥
2
≤ K ′2

[
1 + ‖ξ‖2 + ‖c‖2

2

]
for every c ∈ A.

Proof. By (A2) and (A3) the function f satisfies a Lipschitz and linear growth condi-
tion. Hence the claim follows from well-known results on BSDEs; see, e.g., Duffie and
Epstein (1992) or Antonelli (1993). �

Lemma A.3 (Discrete Gronwall Inequality). Let {dk}k=0,...,N satisfy

dk ≤ ε+
∑N

j=k+1αjdj for k = 0, . . . , N

where {αk}k=0,...,N is a sequence of non-negative numbers and ε ≥ 0. Then

dk ≤ ε
∏N

j=k+1(1 + αj) ≤ εe
∑N
j=k+1 αj for all k = 0, . . . , N.

Proof. Set xk , ε+
∑N

j=k+1αjxj, k = N, . . . , 0. By induction

(29) xk = ε
∏N

j=k+1(1 + αj), k = 0, . . . , N.

Indeed, this is clear for k = N ; if (29) holds for j = k + 1, . . . , N , then

xk = ε+
∑N

j=k+1αjxj = ε+
∑N

j=k+1αjε
∏N

i=j+1(1 + αi)

= ε
[
1 +

∑N
j=k+1

∏N
i=j(1 + αi)−

∏N
i=j+1(1 + αi)

]
= ε
∏N

i=k+1(1 + αi).

Another induction argument yields dk ≤ xk for k = 0, . . . , N . �
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Appendix B. Proof of (25) for Drift Ambiguity

We assume without loss that µ0 = 0. By definition of Qi
t,t+∆ we have Eit,t+∆[V ] =

EQ
t [V ] + EQ

t [Zi
t,t+∆V ] with Zi

t,t+∆ ,
dQit,t+∆

dQ − 1. The Lipschitz property of Φt yields

|mt(V )− EQ
t [V ]| =

∣∣Φt

(
EQ
t [V ] + EQ

t [Zi
t,t+∆V ] : i = 1, . . . , d

)
− EQ

t [V ]
∣∣

≤ Lmaxi=1,...,dEQ
t [Zi

t,t+∆|V |] for V ∈ Ft+∆

and therefore we obtain

‖RN
tNk
‖1,Q = EQ[|mtNk

(V N
tNk+1

)− EQ
tNk

[V N
tNk+1

]|
]
≤ Lmaxi=1,...,dEQ[Zi

tNk ,t
N
k+1
|V N
tNk+1
|
]
.

By Cauchy’s inequality it follows that

(30)
∑N−1

k=1 ‖R
N
tNk
‖1,Q ≤ L′

∑N−1
k=1 maxi=1,...,d‖Zi

tNk ,t
N
k+1
‖2,Q

where L′ , L supN∈Nmaxk=0,...,N ‖V N
tNk
‖2,Q. With µ̄it , 2µit we have from (26)

‖Zi
t,t+∆‖2

2,Q = EQ
[(

exp
{∫ t+∆

t
µit(s)dW (s)− 1

2

∫ t+∆

t
|µit(s)|2ds

}
− 1
)2]

= EQ
[
exp
{∫ t+∆

t
µ̄it(s)dW (s)− 1

2

∫ t+∆

t
|µ̄it(s)|2ds+

∫ t+∆

t
|µit(s)|2ds

}]
− 1

≤ EQ
[
exp
{∫ t+∆

t
µ̄it(s)dW (s)− 1

2

∫ t+∆

t
|µ̄it(s)|2ds+ 1

2
h(∆)2∆2

}]
− 1

= e
1
2
h(∆)2∆2 − 1 ≤ h(∆)2∆2 for sufficiently small ∆ > 0.

Hence the assertion follows from (30) and the estimate∑N−1
k=1 maxi=1,...,d‖Zi

tNk ,t
N
k+1
‖2,Q ≤

∑N−1
k=1 h(∆N

k )∆N
k ≤ h(∆N)T → 0 as N →∞. �
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