
I.S. Howard & M.A. Huckvale

ZAS Papers in Linguistics 40, 2005: 63-78 63

Learning to control an articulatory synthesizer by
imitating real speech

Ian S. Howard
Sobell Department, Institute of Neurology, UCL, England

Mark A. Huckvale
Phonetics & Linguistics, UCL, England

The goal of our current project is to build a system that can learn to imitate a
version of a spoken utterance using an articulatory speech synthesiser. The
approach is informed and inspired by knowledge of early infant speech
development. Thus we expect our system to reproduce and exploit the utility of
infant behaviours such as listening, vocal play, babbling and word imitation. We
expect our system to develop a relationship between the sound-making
capabilities of its vocal tract and the phonetic/phonological structure of imitated
utterances. At the heart of our approach is the learning of an inverse model that
relates acoustic and motor representations of speech. The acoustic to auditory
mappings uses an auditory filter bank and a self-organizing phase of learning. The
inverse model from auditory to vocal tract control parameters is estimated using a
babbling phase, in which the vocal tract is essentially driven in a random manner,
much like the babbling phase of speech acquisition in infants. The complete
system can be used to imitate simple utterances through a direct mapping from
sound to control parameters. Our initial results show that this procedure works
well for sounds generated by its own voice. Further work is needed to build a
phonological control level and achieve better performance with real speech.

1. Introduction

Several different approaches have been adopted in order to get a machine to
speak. One approach is to record human speech, chop it up into pieces and then
reassemble them in a new desired order. Another approach is to program
phonological-to-synthesizer control mapping rules by hand. The approach we

 64

take here is to try to discover an acoustic-to-synthesizer control mapping using
machine learning techniques. We gain inspiration from infant speech acquisition
and in this vain also use an articulator-based synthesiser for our work, to make
our system’s speech production apparatus more like that of a human. Our work
here is obviously only a first step towards producing a useful system, which
would also need to learn other associations such as phonological-to-articulatory
mapping to be a useful system. Several other authors have made similar
investigations. Bailly et al. (1997) modelled the generation of formant
trajectories. Guenther (1994, 1995) has also carried out similar work.

Figure 1: Inverse models. Mappings between
acoustic, phonological, and articulator
representations of speech.

2. Inverse models

Let us consider the speech production and analysis system shown in figure 1.
Here we have a system that can both generate artificial speech and also perform
a basic acoustic speech analysis.

In this model, the vocal tract synthesiser is controlled by a vector of articulatory
parameters which change as a function of time, as specified by a motor

I.S. Howard & M.A. Huckvale

ZAS Papers in Linguistics 40, 2005: 63-78 65

trajectory generation stage. It is the task of the latter to move the articulators of
the model in such a fashion that the desired speech utterance is generated by the
synthesiser.

If we feed back the speech signal generated using this process into the acoustic
analysis pathway, our system then has an explicit representation of the motor
commands it uses to generate speech, as well as their acoustic consequences.
Since we can have access to both the input to our synthesiser, and also its
acoustic consequences, we can use this information to define an inverse
transformation that will map an acoustic representation of speech back to the
motor commands needed to generate it. This inverse transformation is marked
on figure 1 as an acoustic-to-motor inverse model. Clearly, for such an inverse
model to be useful in practice, it must perform well over a representative range
of conditions, corresponding to the kinds of inputs the synthesiser would
experience during normal use. It must also account for any time delay between
the motor commands and their sensor consequences. In the work described here,
this alignment is also performed by the inverse model. A discussion regarding
the training of the inverse model is given in the next sections. The concept of
inverse models is well established in the field of motor control; see (Wolpert,
1997) for a further discussion of the issues involved.

If our speech production system contained a higher hierarchical level of control,
it would also be possible to define an inverse model to a more abstract level of
representation. For example, if our motor trajectory generator was controlled by
a phonetic input representation, we could define an inverse model pathway
mapping between acoustic and phonological representations of speech (also
shown in figure 1). In the work described here, we only investigate the low-level
acoustic to vocal tract parameter inverse model using an articulator synthesiser
based on the work of Maeda (Maeda, 1990) and a simple acoustic analysis based
on the JSRU channel vocoder (Holmes, 1982), together with a simple
autocorrelation estimate for fundamental frequency. The Maeda parameters are
shown in table 1. In our implementation, they are specified at a sampling rate of
8kHz to generate speech signal output at the same rate. This gives the
synthesiser an acceptable speech quality without requiring excessive
computational resources to run it.

Assuming that we can find the inverse model for our system, it can be used to
provide a basic mechanism to control a synthesiser. All we must do is to process
input speech with the acoustic analysis and then map this representation to the
vocal tract control parameters using the inverse model.

 66

Table 1: Maeda’s articulator model parameters.

Parameter Description

P1 Jaw position
P2 Tongue dorsum position
P3 Tongue dorsum shape
P4 Tongue apex position
P5 Lip height (aperture)
P6 Lip protrusion
P7 Larynx height
P8 Voicing (glottal area)

P9 Fundamental frequency

3. Learning the inverse model by babbling

The main task in the approach we describe here is the estimation of the inverse
model that will map between an acoustic representation of speech and the
required vocal tract parameters. If we use some kind of motor trajectory
generator to vary the vocal tract parameters as a function of time, and then use
them to generate synthesised speech (which is then subsequently acoustically
analysed), we can create a data set with which to define the input and output
relationships of the inverse model. This is shown in figure 2. Training the
inverse model then constitutes a classical supervised learning task.

As is the case with regression analysis and pattern recognition in general, we
want the inverse model to operate well over a wide range of representative
inputs and also to generalize well on previously unseen ones. In order to
generate an inverse model that meets these requirements, appropriate training
data is required, as well as a suitable pattern recognition/regression technique
capable of learning the required transformation. With regard to the generation of
suitable training data, the ideal input to the synthesiser would correspond to
motor trajectories that resulted in high quality speech output over a wide range
of utterances. This input would then sample the vocal tract parameter space in a
fashion consistent with its intended use. Training the inverse model on relevant
rather than irrelevant data will also result in higher performance, because it will
be optimised to implement the transformations that are needed, rather than ones
that are not.

At the beginning of the estimation process, the generation of ideal motor trajec-
tories is clearly not possible, because we do not know what they are a priori. We

I.S. Howard & M.A. Huckvale

ZAS Papers in Linguistics 40, 2005: 63-78 67

must therefore resort to a method of synthesiser control that will sample its input
space in a fashion consistent with our knowledge of speech generation. In the
field of control theory, such system identification of a complex system is often
carried out using some kind of random input excitation. However, this excitation
should be matched to the task in hand. Since we are using an articulatory
synthesiser, we know that there are limitations on the maximum rate of change
of articulator positions due to biophysical constraints. To sample vocal tract
parameter space, we thus adopt an approach that randomly investigates this
space, but only does so in a slowly varying fashion consistent with the changes
in articulator positions appropriate for the generation of speech. For example,
there would be no point in instantaneously moving the jaw position from up to
down, because we know that such a change could not occur in a real vocal tract.

We have implemented this slowly varying random signal generation scheme
using a Hidden Markov Model (HMM) with output interpolation, as explained
below. We describe this as a babble generator, because it generates sounds that
have similarities with the babble produced by infants, although the exact form of
the sound sequences generated by this approach does not exactly correspond to
baby babble. Its task is only to explore the input space of the synthesiser in a
way that is useful for the purposes of training the inverse model.

For an inverse transformation to exist, it is necessary for the forward
transformation due to the plant (represented here by the synthesizer and acoustic
analysis) to be unique. If this is not the case, it will not be possible to find an
inverse. That is, if many different vocal tract configurations give rise to the same
acoustic output, it will be impossible to know, on the basis of an acoustic
measurement, which vocal tract configuration was responsible. One approach
that can be adopted in this case is based on distal supervised learning (Jordan &
Rumelhart, 1992), which involves first training a simpler forward model and
then using this to find the inverse. Although the instantaneous mapping between
vocal tract configuration and acoustic output is not in general unique, this
problem can also be overcome using a wide acoustic context at the input to the
inverse mapping. The latter approach was used here and an acoustic window of
50ms was used as an input to the inverse model.

 68

Figure 2: Learning an inverse model by babbling. Motor command space is
sampled using ‘random babbling’. Direct training of the inverse model then
becomes a classical supervised learning task.

4. Babble generator

The task of the babble generator is to generate sequences of parameters that
explore the input space of the synthesiser in a fashion relevant for speech
production. The basic idea is to use an HMM to sample phonetically significant
regions of synthesiser space and then to interpolate the output to generate a
slowly varying time signal vector. By restricting the states of the HMM to
phonetics targets (such as vowels and consonant targets) we can incorporate a
priori speech knowledge into the babble generator. Consider the HMM shown in
figure 3. Using this model structure, we can sample three points in vocal tract
parameter space, represented by the states V1, V2 and V3. Each of these states
has associated transition probabilities to the other states and also an associated
output parameter vector. We can use this approach to sample part of vowel and
consonant space (which forms a subset of the much larger total parameter space)
by associating each of the states with the parameters relating to a particular
vowel/consonant generated by the articulatory synthesiser. Using a duration
parameter in our output vector, we can interpolate between successively
sampled vectors to generate continuous trajectories needed to drive the Maeda
vocal tract synthesizer.

We have also investigated a more naive scheme by directly sampling randomly
from the entire parameter space, rather than from vowel and consonant space. In
this case, the output from our babble generator did not sound as much like baby
babble. Configurations of the articulators arose that were not relevant in the

I.S. Howard & M.A. Huckvale

ZAS Papers in Linguistics 40, 2005: 63-78 69

production of speech. Comparisons of the output speech generated by various
babbling schemes can be found online (see section 5).

Figure 3: HMM babble generator. Each state represents a possible vocal tract
configuration. In this case, only 3 vowels are shown for clarity. The transition
matrix determines vowel sequences. The generation matrix specifies related vocal
tract parameters which are then interpolated to provide smooth trajectories.

In this initial work, the HMM states were limited to five pure vowels and the
consonants /b/ and /g/. By manipulating the transition probabilities between the
states it was possible to generate babble either over this entire vowel space and
consonant space, or only over a small part of it. An example of the latter was
generation of the sequence /babababab/.
To generate smooth parameter trajectories in time at the sampling rate needed by
the synthesiser, cosine interpolation was performed on the vectors generated by
the state sequences according to the relation

VTpar(X) = VTparStart + (Cos(X.PI /duration) -1) . (VTparStart - VTparEnd)/2

for X = 0, 1, 2, … , duration samples

Figure 4 shows the parameter trajectory outputs from the babble generator, as
well as the corresponding vocoder analysis of the resulting synthesised speech.

 70

Figure 4: Babble generator output trajectories for
parameters 1 to 6 and the corresponding vocoder
analysis of the resulting speech signal. In this case the
transition matrix was set up to babble over vowel space
and also include the consonants /b/ and /g/

5. Experimental details

The babble generator was run on vowel and consonant targets to generate 180
seconds of articulator trajectory data. In our current implementation this data
length was limited by computational considerations. This data was then used to
drive the Maeda synthesiser and generate a time waveform representation of the
output speech signal. The latter was then subjected to acoustic analysis with the
channel vocoder, which generated 17 frequency outputs, as well as a
fundamental frequency estimate, every 10ms.

I.S. Howard & M.A. Huckvale

ZAS Papers in Linguistics 40, 2005: 63-78 71

For our experiments, a Matlab implementation of the multilayer perceptron
(MLP) with linear output units was used to implement the inverse model
(Nabney & Bishop, 1995), although in principle many other regression
techniques could have been used. Input and output data patterns were
normalized by subtracting their mean value and dividing by their standard
deviation (after recognition, the inverse procedure was used on the output to
reconstruct the estimated data’s range). It was trained using back-propagation
(Rumelhart et al., 1987). As mentioned previously, the input vector spanned
50ms in time and consisted of 5 adjacent vocoder frames. This time window also
provided an automatic means for the inverse model to compensate for any time
delay between the acoustic data and the synthesiser control parameters. Since
the input to the inverse model spanned 25ms forward and 25ms backwards in
time from the current synthesiser control vector, any information in the acoustic
data that lay within these limits could be related to the current motor command.
If a more time localized representation of the acoustic input had been used (for
example a single spectral input frame) it would have been necessary to explicitly
account for any time shift (although this could also easily be achieved by using
delay lines and optimising the MLP error over delay). The number of hidden
units in the MLP was determined by experimentation and a final value of 20
hidden units was used.

The output of the network consisted of 9 linear units, and these were mapped to
the 9 Maeda synthesiser parameters. Training the inverse model involved 1000
passes over the data set (which comprised around 18000 different patterns). This
value was again arrived at by experimentation and doubling the cycles to 2000
did not significantly improved performance. The output of the inverse model
was smoothed using a median filter to remove undesirable spikes. Figure 5
shows the operation of the inverse model on testing data for the jaw position
parameter.

Apart from the articulator synthesiser, which was implemented in the C
language, all analysis was carried out in Matlab on a PC running under
Windows XP. A supplement to this paper is available on the web at
www.ianhoward.de/ZASPIL2005.htm and contains .wav files of all the input
and output utterances described in this paper.

 72

Figure 5: Training target and output generated by the
inverse model for jaw parameter P1. A median filter
was used to smooth the output.

6. Re-synthesising its own speech

After an inverse model had been trained during a babbling stage, it was clearly
interesting to test its performance by re-synthesising some input speech.
Evaluations were carried by listening to the speech generated by the system and
also by observation of the corresponding wideband spectrograms. At this early
stage of the work, this was considered to be the most appropriate form of
assessment. In the first instance, we were concerned with whether any useful
results could be generated by our system. At some time in the future, more
rigorous quantitative evaluations will no doubt become useful. For example, the
phonetic analysis of confusion matrices from listening tests on real and re-
synthesised utterances could shed light on the deficiencies of the system.

Re-synthesising input speech involved passing an externally generated speech
signal (that is, one from another synthesizer or a human subject) through the
acoustic analysis and then through the inverse model. This produced a time-
varying estimate of the vocal tract control parameters needed to regenerate the
original speech utterance. It is clear that there would only be a perfect
reconstruction of the input speech if the inverse model were perfect and vocal
tract used to generate the speech was identical that of our vocal tract synthesiser.
If the two vocal tracts had different physical dimensions, it may not be possible
to get an exact reconstruction of the input speech. Such a mismatch arises when

I.S. Howard & M.A. Huckvale

ZAS Papers in Linguistics 40, 2005: 63-78 73

children mimic the speech of adults, where there are clearly differences in the
relative size of the speech production apparatus. This also manifests itself at an
acoustic level. However, at a more abstract phonetic level, similarity between
the two can still be achieved. This naturally raises the question of speaker
normalization and speech matching criterion. In this initial work we do not focus
on these two issues, although they will be investigated in more detail in future
work.

Figure 6: Imitating speech generated by an identical system. This is the simplest
case and the issue of speaker normalization does not arise.

Figure 7: Imitating speech generated by a different (and human) system. In this
case speaker normalization is needed.

The simplest task for the inverse mapping between acoustic and vocal tract
parameters is the case when both generator and mimic vocal tracts are identical.
This is shown in figure 6. We simulated this situation by using the articulator

 74

model itself to generate babbled speech utterances (20 seconds of speech was
used) and then used these as input to our imitation system. On its own speech,
performance was very good (examples on the web), although this could
probably still be improved further by using more training data.

7. Re-synthesising speech from human subject

A much more difficult case arises when speech generated by a different vocal
tract must be imitated by the system. This is the case when real human speech is
used as an input, as shown in figure 7. Simple utterances from one male speaker
were used for the evaluation. In this case, the performance was lower, although
simple utterances such as /bababababa/ and /bugi bugi bababa/ were still
intelligible after re-synthesis (examples on the web). Wideband spectrograms for
the input utterance (A) and the synthesiser output (B) are shown in figure 8. It
can be seen that the imitated speech has voicing continuing into the silent parts
of the utterance. Formant F1 corresponds well to that of the original speech,
although F2 tends to be too low during the /i/ vowel section. Formants F3, F4
also appear somewhat too low in their values.

Figure 8: Wideband spectrograms for input utterance /boo gie ba ba/ from male
speaker and re-synthesised outputs generated by imitation system. A shows real
speech, B re-synthesis using vocoder analysis and C re-synthesis using an
additional sparse coding stage.

I.S. Howard & M.A. Huckvale

ZAS Papers in Linguistics 40, 2005: 63-78 75

8. Improved acoustic analysis

In order to improve the performance of the current system, we looked for
inspiration from what is known about front end sensory processing in the human
nervous system.

It has been known for quite a long time that the lower levels of sensory
processing are matched to the statistics of the stimuli that they represent
(Barlow, 1962). Recent work in the visual system has been quite successful in
modelling receptive fields on neurons in the primary visual cortex by using
sparse coding strategies (Olshausen & Field, 1996). Indeed it has been recently
shown that such strategies appear relevant in auditory processing (Lewicki,
2002). The interpretation of this processing is still the subject of much debate,
but it appears that the early sensory system is involved in both efficient coding
as well as the extraction of features in the input modalities that relate to useful
aspects of the input. A simple spectral vocoder vector provides quite a general
representation of the acoustic input, whereas sparse coding may start to code in
terms of features that operate over time and frequency and are specifically
relevant for speech. We maintained the vocoder analysis and investigated adding
a sparse coding to its output. The input to the latter consisted of 5 adjacent
vocoder frames as before. It was implemented in two stages consisting of a
whitening filter followed by a sparse filtering stage. The former consisted of
linear Sobel edge detection filter and it effectively removed all short-term
temporal and spatial correlations in the vocoder data (it effectively differentiated
the vocoder data in 2-dimensions). The sparse filter itself was implemented by a
2-dimensional linear filter with as many outputs as inputs (90 in all). Its
coefficients were optimized to minimize a cost function that requires the outputs
to be both independent and also rarely active. Details of this coding scheme can
be found in (Olshausen & Field, 1996). The sparse coding stage also was trained
on 360 seconds of speech from one speaker.
After training, the auditory sparse coding stage was run on the babble data and
used to train the inverse model as before. Figure 9 shows this modified system.
Performance evaluation was once again carried out using real input speech,
which was once again run through the inverse model pathway and re-
synthesised as before. It was noted that the effect of the sparse coding was to
improve performance on transitions (example on the web). Figure 8 C shows a
wideband spectrogram of the output.

 76

Figure 9: Imitating speech using sparse coding of the auditory representation.

9. Future work

Using our current system architecture, there are several technical improvements
that could be made. The feed forward network used to implement the inverse
model only makes use of a relatively short time window on the acoustic data. In
addition, this network performed a memory-less mapping from input to output
and did not take the continuity in the output trajectories into account. That is, it
made an estimation of the articulator trajectories without using any prior
knowledge regarding their dynamics. A consequence of this was that spikes
were sometimes generated in its output signal, and these had to be smoothed out
using post-processing. Such issues are elegantly addressed by Kalman filtering
techniques, which is also worth of investigation for this kind of task and has
been used for similar decoding tasks in many fields (e.g., Wu et al., 2004).

The simple inverse model used here to map between speech and the control of
its articulator synthesiser obviously differs quite considerably on what is going
on inside an infant’s brain during speech acquisition. Firstly, in our scheme, the
babble generation is totally separate from the imitation process. In a developing
child, it is likely that the mechanisms that cause initial speech production (i.e.
cooing and then babbling) are adapted over time to match its linguistic
environment (i.e. to the speech to which the infant is exposed) and that these
mechanisms develop into ones that are later used for the production of
linguistically significant utterances. A more biologically relevant modification
to our current scheme would thus be to include an abstract speech generator

I.S. Howard & M.A. Huckvale

ZAS Papers in Linguistics 40, 2005: 63-78 77

stage. Initially this would be configured to generate only the simplest of speech
sounds, such as those involved in babbling. It should then develop, due to the
system’s exposure to external speech and feedback of its own speech, to produce
more complex speech utterances. As mentioned previously, the best source of
internally generated articulator movements to train the inverse model would be
those used for the generation of real speech. It would therefore seem
advantageous if the training of the inverse model should be an ongoing process
(and actually never stop). One may expect its performance to improve as the
speech generation process also improved. At the same time there also should be
ongoing adaptation sparse coding stages. These issues are currently being
investigated and are depicted graphically in figure 10.

Figure 10: Improved system structure. The same generation process produces
babble and then develops into a linguistic speech production mechanism. The
inverse model and acoustic features detection are continually adapted and
improved, not only during a separate babbling phase.

Acknowledgements

We wish to thank Daniel Wolpert for supporting this work. The implementation
of the articulator synthesizer was based on an implementation by Shinji Maeda

 78

within the DOS program VTCALCS. We wish to thank Pascal Perrier and an
unknown reviewer for commenting on the manuscript.

References

Bailly, G. (1997). Learning to speak. Sensori-motor control of speech movements,’’ Speech

Commun. 22: 251–267.
Barlow H.B. (1961). Possible principles underlying the transformation of sensory messages.

In Rosenblith, W. (ed.) Sensory Communication. M.I.T. Press, Cambridge MA.
Guenther, F. H. (1994.) A neural-network model of speech acquisition and motor equivalent

speech production. Biol. Cybern. 72: 43–53.
Guenther, F. H. (1995). ‘Speech sound acquisition, coarticulation, and rate effects in a neural-

network model of speech production. Psychol. Rev. 102: 594–621.
Holmes, J.N. (1980). The JSRU Channel Vocoder. Proc. IEEE, 127, Pt. F, 53-60.
Jordan, M.I., and Rumelhart, D.E. (1992). Forward models—Supervised learning with a distal

teacher. Cogn. Sci. 16:307–354.
Lewicki, M.S. (2002). Efficient coding of natural sounds. Nature Neurosci. 5(4):356-363.
Maeda, S. (1990). Compensatory articulation during speech: evidence from the
analysis and synthesis of vocal tract shapes using an articulatory model. In Hardcastle W.J.

and A. Marchal (eds.) Speech production and speech modelling. Kluwer Academic
Publishers, Boston. p.131-149.

Nabney, I. and Bishop, C. (1995). Netlab: Netlab neural network software.
http://www.ncrg.aston.ac.uk/netlab/.

Olshausen B.A. and Field D.J. (1996). Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature. 381(6583): 607-9.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986) Learning representations by back-
propagating errors. Nature 323: 533-536.

Wolpert DM. (1997) Computational approaches to motor control. Trends in Cognitive
Sciences. 1(6): 209-216.

Wu, W., Shaikhouni, A., Donoghue, J. P., and Black, M.J. (2004). Closed-loop neural control
of cursor motion using a Kalman filter. Proc. IEEE Engineering in Medicine and Biology
Society: 4126-4129.

