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The goal of our current project is to build a system that can learn to imitate a 
version of a spoken utterance using an articulatory speech synthesiser. The 
approach is informed and inspired by knowledge of early infant speech 
development. Thus we expect our system to reproduce and exploit the utility of 
infant behaviours such as listening, vocal play, babbling and word imitation. We 
expect our system to develop a relationship between the sound-making 
capabilities of its vocal tract and the phonetic/phonological structure of imitated 
utterances. At the heart of our approach is the learning of an inverse model that 
relates acoustic and motor representations of speech. The acoustic to auditory 
mappings uses an auditory filter bank and a self-organizing phase of learning. The 
inverse model from auditory to vocal tract control parameters is estimated using a 
babbling phase, in which the vocal tract is essentially driven in a random manner, 
much like the babbling phase of speech acquisition in infants. The complete 
system can be used to imitate simple utterances through a direct mapping from 
sound to control parameters. Our initial results show that this procedure works 
well for sounds generated by its own voice. Further work is needed to build a 
phonological control level and achieve better performance with real speech. 

 
 
 
 

1. Introduction 
 
Several different approaches have been adopted in order to get a machine to 
speak. One approach is to record human speech, chop it up into pieces and then 
reassemble them in a new desired order. Another approach is to program 
phonological-to-synthesizer control mapping rules by hand. The approach we 
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take here is to try to discover an acoustic-to-synthesizer control mapping using 
machine learning techniques. We gain inspiration from infant speech acquisition 
and in this vain also use an articulator-based synthesiser for our work, to make 
our system’s speech production apparatus more like that of a human. Our work 
here is obviously only a first step towards producing a useful system, which 
would also need to learn other associations such as phonological-to-articulatory 
mapping to be a useful system. Several other authors have made similar 
investigations. Bailly et al. (1997) modelled the generation of formant 
trajectories. Guenther (1994, 1995) has also carried out similar work. 

 
Figure 1: Inverse models. Mappings between 
acoustic, phonological, and articulator 
representations of speech. 
 

 
2. Inverse models 

 
Let us consider the speech production and analysis system shown in figure 1. 
Here we have a system that can both generate artificial speech and also perform 
a basic acoustic speech analysis.  
 
In this model, the vocal tract synthesiser is controlled by a vector of articulatory 
parameters which change as a function of time, as specified by a motor 
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trajectory generation stage. It is the task of the latter to move the articulators of 
the model in such a fashion that the desired speech utterance is generated by the 
synthesiser. 
 
If we feed back the speech signal generated using this process into the acoustic 
analysis pathway, our system then has an explicit representation of the motor 
commands it uses to generate speech, as well as their acoustic consequences. 
Since we can have access to both the input to our synthesiser, and also its 
acoustic consequences, we can use this information to define an inverse 
transformation that will map an acoustic representation of speech back to the 
motor commands needed to generate it. This inverse transformation is marked 
on figure 1 as an acoustic-to-motor inverse model. Clearly, for such an inverse 
model to be useful in practice, it must perform well over a representative range 
of conditions, corresponding to the kinds of inputs the synthesiser would 
experience during normal use. It must also account for any time delay between 
the motor commands and their sensor consequences. In the work described here, 
this alignment is also performed by the inverse model. A discussion regarding 
the training of the inverse model is given in the next sections. The concept of 
inverse models is well established in the field of motor control; see (Wolpert, 
1997) for a further discussion of the issues involved. 
 
If our speech production system contained a higher hierarchical level of control, 
it would also be possible to define an inverse model to a more abstract level of 
representation. For example, if our motor trajectory generator was controlled by 
a phonetic input representation, we could define an inverse model pathway 
mapping between acoustic and phonological representations of speech (also 
shown in figure 1). In the work described here, we only investigate the low-level 
acoustic to vocal tract parameter inverse model using an articulator synthesiser 
based on the work of Maeda (Maeda, 1990) and a simple acoustic analysis based 
on the JSRU channel vocoder (Holmes, 1982), together with a simple 
autocorrelation estimate for fundamental frequency. The Maeda parameters are 
shown in table 1. In our implementation, they are specified at a sampling rate of 
8kHz to generate speech signal output at the same rate. This gives the 
synthesiser an acceptable speech quality without requiring excessive 
computational resources to run it.  
 
Assuming that we can find the inverse model for our system, it can be used to 
provide a basic mechanism to control a synthesiser. All we must do is to process 
input speech with the acoustic analysis and then map this representation to the 
vocal tract control parameters using the inverse model. 
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Table 1: Maeda’s articulator model parameters. 

Parameter Description 

P1 Jaw position 
P2 Tongue dorsum position 
P3 Tongue dorsum shape 
P4 Tongue apex position 
P5 Lip height (aperture) 
P6 Lip protrusion 
P7 Larynx height 
P8 Voicing (glottal area) 

P9 Fundamental frequency 

 
 

3. Learning the inverse model by babbling 
 
The main task in the approach we describe here is the estimation of the inverse 
model that will map between an acoustic representation of speech and the 
required vocal tract parameters. If we use some kind of motor trajectory 
generator to vary the vocal tract parameters as a function of time, and then use 
them to generate synthesised speech (which is then subsequently acoustically 
analysed), we can create a data set with which to define the input and output 
relationships of the inverse model. This is shown in figure 2. Training the 
inverse model then constitutes a classical supervised learning task.  
 
As is the case with regression analysis and pattern recognition in general, we 
want the inverse model to operate well over a wide range of representative 
inputs and also to generalize well on previously unseen ones. In order to 
generate an inverse model that meets these requirements, appropriate training 
data is required, as well as a suitable pattern recognition/regression technique 
capable of learning the required transformation. With regard to the generation of 
suitable training data, the ideal input to the synthesiser would correspond to 
motor trajectories that resulted in high quality speech output over a wide range 
of utterances. This input would then sample the vocal tract parameter space in a 
fashion consistent with its intended use. Training the inverse model on relevant 
rather than irrelevant data will also result in higher performance, because it will 
be optimised to implement the transformations that are needed, rather than ones 
that are not. 
 
At the beginning of the estimation process, the generation of ideal motor trajec-
tories is clearly not possible, because we do not know what they are a priori. We 
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must therefore resort to a method of synthesiser control that will sample its input 
space in a fashion consistent with our knowledge of speech generation. In the 
field of control theory, such system identification of a complex system is often 
carried out using some kind of random input excitation. However, this excitation 
should be matched to the task in hand. Since we are using an articulatory 
synthesiser, we know that there are limitations on the maximum rate of change 
of articulator positions due to biophysical constraints. To sample vocal tract 
parameter space, we thus adopt an approach that randomly investigates this 
space, but only does so in a slowly varying fashion consistent with the changes 
in articulator positions appropriate for the generation of speech. For example, 
there would be no point in instantaneously moving the jaw position from up to 
down, because we know that such a change could not occur in a real vocal tract. 
 
We have implemented this slowly varying random signal generation scheme 
using a Hidden Markov Model (HMM) with output interpolation, as explained 
below. We describe this as a babble generator, because it generates sounds that 
have similarities with the babble produced by infants, although the exact form of 
the sound sequences generated by this approach does not exactly correspond to 
baby babble. Its task is only to explore the input space of the synthesiser in a 
way that is useful for the purposes of training the inverse model.  
 
For an inverse transformation to exist, it is necessary for the forward 
transformation due to the plant (represented here by the synthesizer and acoustic 
analysis) to be unique. If this is not the case, it will not be possible to find an 
inverse. That is, if many different vocal tract configurations give rise to the same 
acoustic output, it will be impossible to know, on the basis of an acoustic 
measurement, which vocal tract configuration was responsible. One approach 
that can be adopted in this case is based on distal supervised learning (Jordan & 
Rumelhart, 1992), which involves first training a simpler forward model and 
then using this to find the inverse. Although the instantaneous mapping between 
vocal tract configuration and acoustic output is not in general unique, this 
problem can also be overcome using a wide acoustic context at the input to the 
inverse mapping. The latter approach was used here and an acoustic window of 
50ms was used as an input to the inverse model. 
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Figure 2: Learning an inverse model by babbling. Motor command space is 
sampled using ‘random babbling’. Direct training of the inverse model then 
becomes a classical supervised learning task. 

 
4. Babble generator 

 
The task of the babble generator is to generate sequences of parameters that 
explore the input space of the synthesiser in a fashion relevant for speech 
production. The basic idea is to use an HMM to sample phonetically significant 
regions of synthesiser space and then to interpolate the output to generate a 
slowly varying time signal vector. By restricting the states of the HMM to 
phonetics targets (such as vowels and consonant targets) we can incorporate a 
priori speech knowledge into the babble generator. Consider the HMM shown in 
figure 3. Using this model structure, we can sample three points in vocal tract 
parameter space, represented by the states V1, V2 and V3. Each of these states 
has associated transition probabilities to the other states and also an associated 
output parameter vector. We can use this approach to sample part of vowel and 
consonant space (which forms a subset of the much larger total parameter space) 
by associating each of the states with the parameters relating to a particular 
vowel/consonant generated by the articulatory synthesiser. Using a duration 
parameter in our output vector, we can interpolate between successively 
sampled vectors to generate continuous trajectories needed to drive the Maeda 
vocal tract synthesizer. 
 
We have also investigated a more naive scheme by directly sampling randomly 
from the entire parameter space, rather than from vowel and consonant space. In 
this case, the output from our babble generator did not sound as much like baby 
babble. Configurations of the articulators arose that were not relevant in the 
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production of speech. Comparisons of the output speech generated by various 
babbling schemes can be found online (see section 5). 
 

 
Figure 3: HMM babble generator. Each state represents a possible vocal tract 
configuration. In this case, only 3 vowels are shown for clarity. The transition 
matrix determines vowel sequences. The generation matrix specifies related vocal 
tract parameters which are then interpolated to provide smooth trajectories. 

 
 
In this initial work, the HMM states were limited to five pure vowels and the 
consonants /b/ and /g/. By manipulating the transition probabilities between the 
states it was possible to generate babble either over this entire vowel space and 
consonant space, or only over a small part of it. An example of the latter was 
generation of the sequence /babababab/.  
To generate smooth parameter trajectories in time at the sampling rate needed by 
the synthesiser, cosine interpolation was performed on the vectors generated by 
the state sequences according to the relation 
 

VTpar(X) = VTparStart + (Cos(X.PI /duration) -1) . (VTparStart - VTparEnd)/2 

for X = 0, 1, 2, … , duration samples 
 
Figure 4 shows the parameter trajectory outputs from the babble generator, as 
well as the corresponding vocoder analysis of the resulting synthesised speech. 
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Figure 4: Babble generator output trajectories for 
parameters 1 to 6 and the corresponding vocoder 
analysis of the resulting speech signal.  In this case the 
transition matrix was set up to babble over vowel space 
and also include the consonants /b/ and /g/ 

 
 

5. Experimental details 
 
The babble generator was run on vowel and consonant targets to generate 180 
seconds of articulator trajectory data. In our current implementation this data 
length was limited by computational considerations. This data was then used to 
drive the Maeda synthesiser and generate a time waveform representation of the 
output speech signal. The latter was then subjected to acoustic analysis with the 
channel vocoder, which generated 17 frequency outputs, as well as a 
fundamental frequency estimate, every 10ms. 
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For our experiments, a Matlab implementation of the multilayer perceptron 
(MLP) with linear output units was used to implement the inverse model 
(Nabney & Bishop, 1995), although in principle many other regression 
techniques could have been used. Input and output data patterns were 
normalized by subtracting their mean value and dividing by their standard 
deviation (after recognition, the inverse procedure was used on the output to 
reconstruct the estimated data’s range). It was trained using back-propagation 
(Rumelhart et al., 1987). As mentioned previously, the input vector spanned 
50ms in time and consisted of 5 adjacent vocoder frames. This time window also 
provided an automatic means for the inverse model to compensate for any time 
delay between the acoustic data and the synthesiser control parameters. Since 
the input to the inverse model spanned 25ms forward and 25ms backwards in 
time from the current synthesiser control vector, any information in the acoustic 
data that lay within these limits could be related to the current motor command. 
If a more time localized representation of the acoustic input had been used (for 
example a single spectral input frame) it would have been necessary to explicitly 
account for any time shift (although this could also easily be achieved by using 
delay lines and optimising the MLP error over delay). The number of hidden 
units in the MLP was determined by experimentation and a final value of 20 
hidden units was used.  
 
The output of the network consisted of 9 linear units, and these were mapped to 
the 9 Maeda synthesiser parameters. Training the inverse model involved 1000 
passes over the data set (which comprised around 18000 different patterns). This 
value was again arrived at by experimentation and doubling the cycles to 2000 
did not significantly improved performance. The output of the inverse model 
was smoothed using a median filter to remove undesirable spikes. Figure 5 
shows the operation of the inverse model on testing data for the jaw position 
parameter. 
 
Apart from the articulator synthesiser, which was implemented in the C 
language, all analysis was carried out in Matlab on a PC running under 
Windows XP. A supplement to this paper is available on the web at 
www.ianhoward.de/ZASPIL2005.htm and contains .wav files of all the input 
and output utterances described in this paper.  
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Figure 5: Training target and output generated by the 
inverse model for jaw parameter P1. A median filter 
was used to smooth the output. 

 
 

6. Re-synthesising its own speech 
 
After an inverse model had been trained during a babbling stage, it was clearly 
interesting to test its performance by re-synthesising some input speech. 
Evaluations were carried by listening to the speech generated by the system and 
also by observation of the corresponding wideband spectrograms. At this early 
stage of the work, this was considered to be the most appropriate form of 
assessment. In the first instance, we were concerned with whether any useful 
results could be generated by our system. At some time in the future, more 
rigorous quantitative evaluations will no doubt become useful. For example, the 
phonetic analysis of confusion matrices from listening tests on real and re-
synthesised utterances could shed light on the deficiencies of the system. 
 
Re-synthesising input speech involved passing an externally generated speech 
signal (that is, one from another synthesizer or a human subject) through the 
acoustic analysis and then through the inverse model. This produced a time-
varying estimate of the vocal tract control parameters needed to regenerate the 
original speech utterance. It is clear that there would only be a perfect 
reconstruction of the input speech if the inverse model were perfect and vocal 
tract used to generate the speech was identical that of our vocal tract synthesiser. 
If the two vocal tracts had different physical dimensions, it may not be possible 
to get an exact reconstruction of the input speech. Such a mismatch arises when 
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children mimic the speech of adults, where there are clearly differences in the 
relative size of the speech production apparatus. This also manifests itself at an 
acoustic level. However, at a more abstract phonetic level, similarity between 
the two can still be achieved. This naturally raises the question of speaker 
normalization and speech matching criterion. In this initial work we do not focus 
on these two issues, although they will be investigated in more detail in future 
work. 
 

Figure 6: Imitating speech generated by an identical system. This is the simplest 
case and the issue of speaker normalization does not arise. 

Figure 7: Imitating speech generated by a different (and human) system. In this 
case speaker normalization is needed. 

 
The simplest task for the inverse mapping between acoustic and vocal tract 
parameters is the case when both generator and mimic vocal tracts are identical. 
This is shown in figure 6. We simulated this situation by using the articulator 
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model itself to generate babbled speech utterances (20 seconds of speech was 
used) and then used these as input to our imitation system. On its own speech, 
performance was very good (examples on the web), although this could 
probably still be improved further by using more training data.  
 

7. Re-synthesising speech from human subject 
 
A much more difficult case arises when speech generated by a different vocal 
tract must be imitated by the system. This is the case when real human speech is 
used as an input, as shown in figure 7. Simple utterances from one male speaker 
were used for the evaluation. In this case, the performance was lower, although 
simple utterances such as /bababababa/ and /bugi bugi bababa/ were still 
intelligible after re-synthesis (examples on the web). Wideband spectrograms for 
the input utterance (A) and the synthesiser output (B) are shown in figure 8. It 
can be seen that the imitated speech has voicing continuing into the silent parts 
of the utterance. Formant F1 corresponds well to that of the original speech, 
although F2 tends to be too low during the /i/ vowel section. Formants F3, F4 
also appear somewhat too low in their values.  
 
 

 
Figure 8: Wideband spectrograms for input utterance /boo gie ba ba/ from male 
speaker and re-synthesised outputs generated by imitation system. A shows real 
speech, B re-synthesis using vocoder analysis and C re-synthesis using an 
additional sparse coding stage.  
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8. Improved acoustic analysis 
 
In order to improve the performance of the current system, we looked for 
inspiration from what is known about front end sensory processing in the human 
nervous system.  
 
It has been known for quite a long time that the lower levels of sensory 
processing are matched to the statistics of the stimuli that they represent 
(Barlow, 1962). Recent work in the visual system has been quite successful in 
modelling receptive fields on neurons in the primary visual cortex by using 
sparse coding strategies (Olshausen & Field, 1996). Indeed it has been recently 
shown that such strategies appear relevant in auditory processing (Lewicki, 
2002). The interpretation of this processing is still the subject of much debate, 
but it appears that the early sensory system is involved in both efficient coding 
as well as the extraction of features in the input modalities that relate to useful 
aspects of the input. A simple spectral vocoder vector provides quite a general 
representation of the acoustic input, whereas sparse coding may start to code in 
terms of features that operate over time and frequency and are specifically 
relevant for speech. We maintained the vocoder analysis and investigated adding 
a sparse coding to its output. The input to the latter consisted of 5 adjacent 
vocoder frames as before. It was implemented in two stages consisting of a 
whitening filter followed by a sparse filtering stage. The former consisted of 
linear Sobel edge detection filter and it effectively removed all short-term 
temporal and spatial correlations in the vocoder data (it effectively differentiated 
the vocoder data in 2-dimensions). The sparse filter itself was implemented by a 
2-dimensional linear filter with as many outputs as inputs (90 in all). Its 
coefficients were optimized to minimize a cost function that requires the outputs 
to be both independent and also rarely active. Details of this coding scheme can 
be found in (Olshausen & Field, 1996). The sparse coding stage also was trained 
on 360 seconds of speech from one speaker.  
After training, the auditory sparse coding stage was run on the babble data and 
used to train the inverse model as before. Figure 9 shows this modified system. 
Performance evaluation was once again carried out using real input speech, 
which was once again run through the inverse model pathway and re-
synthesised as before. It was noted that the effect of the sparse coding was to 
improve performance on transitions (example on the web). Figure 8 C shows a 
wideband spectrogram of the output. 
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Figure 9: Imitating speech using sparse coding of the auditory representation.  
 
 

9. Future work 
 
Using our current system architecture, there are several technical improvements 
that could be made. The feed forward network used to implement the inverse 
model only makes use of a relatively short time window on the acoustic data. In 
addition, this network performed a memory-less mapping from input to output 
and did not take the continuity in the output trajectories into account. That is, it 
made an estimation of the articulator trajectories without using any prior 
knowledge regarding their dynamics. A consequence of this was that spikes 
were sometimes generated in its output signal, and these had to be smoothed out 
using post-processing. Such issues are elegantly addressed by Kalman filtering 
techniques, which is also worth of investigation for this kind of task and has 
been used for similar decoding tasks in many fields (e.g., Wu et al., 2004).  
 
The simple inverse model used here to map between speech and the control of 
its articulator synthesiser obviously differs quite considerably on what is going 
on inside an infant’s brain during speech acquisition. Firstly, in our scheme, the 
babble generation is totally separate from the imitation process. In a developing 
child, it is likely that the mechanisms that cause initial speech production (i.e. 
cooing and then babbling) are adapted over time to match its linguistic 
environment (i.e. to the speech to which the infant is exposed) and that these 
mechanisms develop into ones that are later used for the production of 
linguistically significant utterances. A more biologically relevant modification 
to our current scheme would thus be to include an abstract speech generator 
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stage. Initially this would be configured to generate only the simplest of speech 
sounds, such as those involved in babbling. It should then develop, due to the 
system’s exposure to external speech and feedback of its own speech, to produce 
more complex speech utterances. As mentioned previously, the best source of 
internally generated articulator movements to train the inverse model would be 
those used for the generation of real speech. It would therefore seem 
advantageous if the training of the inverse model should be an ongoing process 
(and actually never stop). One may expect its performance to improve as the 
speech generation process also improved. At the same time there also should be 
ongoing adaptation sparse coding stages. These issues are currently being 
investigated and are depicted graphically in figure 10. 
 

 
Figure 10: Improved system structure. The same generation process produces 
babble and then develops into a linguistic speech production mechanism. The 
inverse model and acoustic features detection are continually adapted and 
improved, not only during a separate babbling phase. 
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