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Abstract 

This work analyses several granitic bodies of the Variscan Orogen of Central and 

Western Europe in order to improve our knowledge about different aspects of their 

evolution, regarding their ascent and emplacement mechanisms, as well as their 

deformation history. The study areas concerned in this work are located in two sections 

of the Variscan Orogen: the Iberian and the Bohemian Massifs. 

In the Iberian Massif two granitoid bodies showing mainly magmatic structures and no 

appreciable solid-state deformation, namely the La Bazana pluton and the Nisa-

Alburquerque batholith, were studied in order to decipher their ascent and emplacement 

history. Their study was undertaken by means of classical techniques of structural 

geology and petrology, as well as geophysical (gravimetric and magnetic) methods. 

The La Bazana pluton is a small, sub-circular body in map view that intruded into 

Cambrian slates, metagreywackes and volcanics of the Ossa-Morena Zone in the core of 

a late upright antiform. The intrusion took place at the end of or after the main Variscan 

ductile deformations. The granite shows a dome-shaped fabric pattern. Magmatic 

foliations usually dip shallowly towards the host rock. The NW—SE regional attitude of 

the main foliation in the country rock accommodates to the dome shape of the pluton, 

showing gentle deflections around it. Flattening of the host rock on top of the granite is 

indicated by boudinaged and folded veins. These structures are thought to be caused by 

the upward pushing of the magma during its ascent and arrival at the site of 

emplacement. The level of final emplacement was deduced from the mineral 

associations in the thermal aureole to be of 7–10 km in depth. Aeromagnetic data reveal 

no significant anomalies related to the granite, meaning that it is homogeneous in 

composition. Models of the residual gravity anomaly related to the granite body show 

that the granite has a teardrop–pipe shape widened at its top. The modelled granite 

thickness varies, depending on the assumed density contrasts, between 4 and 10 km, 

whereas its teardrop–pipe shape remains nearly unchanged. The results suggest that 

the magma ascended diapirically through the middle crust until reaching a level of 

higher viscosity, where final emplacement accompanied by late-magmatic lateral 

expansion and vertical shortening took place. 

The Nisa-Alburquerque batholith is a 1000 km2 granitic body that intruded during the 

Late Carboniferous into rocks of the Central Iberian Zone, the Central Unit, and the 

Ossa-Morena Zone after the Variscan ductile deformation phases. Its cartographic shape 

is elongate and parallel to the NW—SE to WNW—ESE Variscan structures. The structure 

of the dominant facies, i.e. the Coarse-Grained Granite, is characterized by chaotic 

fabrics in the eastern part, NW—SE striking fabrics in the central sector and N—S 

striking fabrics in the western part. In general, the fabric parallels the longest dimension 

of the batholith, the external contacts and the regional foliation in the host rocks, except 

in the westernmost termination where it is strongly oblique to the regional foliation. 
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Several datings on the Coarse-Grained Granite yielded ages between 285 and 310 Ma.  

Its intrusion depth was estimated to be 7-10 km. The batholith is gravimetrically 

modelled as an east-southeast inclined cylinder-shaped body that becomes flat-floored 

and superficial to the west. The models revealed the existence of a prominent root at 

the eastern termination of the batholith. The eastern root, which coincides with the 

more leucocratic, younger facies, is interpreted as a feeding channel. The internal fabric 

in the central part of the batholith can be explained as a result of the combination of 

nearly uniform to non-coaxial flow, producing NW—SE striking magmatic fabrics. The 

N—S striking fabrics at the western end of the batholith are interpreted as an effect of 

the deceleration flow and the pushing of incoming magma batches. The intrusion is 

viewed as a continuous lateral magma flow from the eastern root guided towards the 

west through the southern limb of a kilometre-scale antiform. As mass-transfer 

mechanisms, a combination of rigid translation of the country rocks, stoping, and 

possibly ballooning is proposed. 

In the Bohemian Massif several small granitoid bodies showing a strong solid-state 

deformation were studied in order to integrate their tectonometamorphic history in the 

geotectonic framework of the south-western Bohemian Massif, focusing principally on 

the deformation phase referred to as D3. The methods used in this region were: 

geological mapping, optical microscopy, electron backscatter diffraction (EBSD), strain 

analysis, X-ray fluorescence analysis, electron microprobe analysis and piezometry. 

The study area is situated in the southern Bavarian Forest, in the area located between 

the Bayerischer Pfahl and the Danube shear zones in the neighbourhood of the 

Fürstenstein Pluton. The rocks which crop out here belong to the Moldanubian Zone. 

These are mainly high-grade gneisses and migmatites derived from sedimentary 

protoliths with intercalations of magmatic rocks. The most important metamorphic 

event, the Variscan one, is characterized by high temperature and low pressure and 

linked to anatexis. It occurred between 330 and 316 Ma in the study area. 

The research related to the geological mapping of the topographic sheet 1:25000 No. 

7246 Tittling delivered valuable basis information for this PhD thesis. The results 

allowed a better understanding of some of the rock types present in the southern 

Bavarian Forest, as well as the discovery of several granitic bodies affected by D3. 

A succession of magmatic bodies of dioritic to granitic composition intruded at different 

stages of the Variscan Orogeny. The more mafic bodies, of dioritic to granodioritic 

composition, intruded at around 335 Ma. Small granitoid stocks and dykes intruded 

pervasively in the migmatites between 322 ± 5 and 331 ± 9 Ma. One of these bodies, 

the Saunstein granite dyke, intruded at 324.4 ± 0.8 Ma. Mainly after the intrusion of the 

former small granitic bodies, the igneous activity concentrated in the areas of the 

Fürstenstein and the Hauzenberg plutons: The Saldenburg granite and the Hauzenberg 

granite II intruded at 315 ± 3 Ma and 320 ± 3 Ma, respectively. The last magmatic 

episode ascribed to the Variscan Orogeny in the study area is represented by sub-
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volcanic dykes of rhyolitic to basaltic andesitic composition. Two datings on these rocks 

yielded 302 ± 7 and 299.0 ± 2.3 Ma. The shape and structure of all of these intrusives 

reflects to some extent the thermal evolution of the crust in which they ascended and 

froze. Elliptical, irregular or elongate intrusive bodies, usually older than ~310 Ma, 

intruded into a relatively hot crust. The way they ascended is not well known, but the 

exploitation of pre-existing anisotropies seems to be the most efficient mechanism in 

this context. Some contribution of diapirism is conceivable in some of the largest and 

more equidimensional bodies, such as the Hauzenberg granite II and the Saldenburg 

granite. The emplacement of granitic end-members was accompanied by pervasive 

stoping of the dioritic to granodioritic and migmatic country rocks. The intrusive bodies 

younger than ~310 Ma are dykes of sharp and planar contacts, suggesting ascent by 

means of dyking in a relatively cold crust. 

The major tectonic features of the study area can be described in the context of the so-

called Bayerischer Pfahl shear-zone system, extending over more than 200 km at the 

south-western border of the Bohemian Massif. It consists of subvertical NW—SE 

trending dextral shears, subsidiary NNW—SSE trending dextral shears and conjugate 

NE—SW trending sinistral shears. The latter have been active over a wide time and 

temperature span ranging from amphibolite facies to near-surface conditions. The 

Bayerischer Pfahl shear-zone system was probably active, at least during its ductile 

history, under compression in N—S to NNW—SSE direction. 

Four ductile deformation phases are proposed for the study area. D1 produced high-

temperature fabrics under upper amphibolite to granulite facies conditions, probably 

coinciding with the thermal peak of the regional high-temperature/low-pressure 

metamorphism. Its kinematics is unknown. D1 is usually obscured by later deformation 

phases, but still identifiable as a relict. D2 occurred under amphibolite to upper 

greenschist facies conditions, as evidenced by lattice-preferred orientation patterns and 

microfabrics. It is responsible for a subvertical NW—SE striking foliation in migmatites 

developed under dextral simple shear and for the deformation at the Bayerischer Pfahl 

shear-zone system at its earlier stages. Most of the dioritic to granodioritic bodies and 

some of the granitic ones intruded prior to or during this deformation phase, in which 

the main compression was probably oriented in N—S to NNW—SSE direction.  

Many granitoid dykes and stocks were found to be affected by sinistral shear along 

subvertical planes trending ENE to ESE. Since this deformation, which is called D3 in the 

present work, is not compatible with a N—S to NNW—SSE compression, it is proposed 

that these sinistral shear zones in granites do not belong to the Bayerischer Pfahl shear-

zone system and constitute themselves a separated one, which is called “D3 shear-zone 

system”. D3 took place under upper greenschist to lower amphibolite facies conditions 

(~480-550°C), as supported by the observed fabrics and quartz lattice-preferred 

orientation patterns. Both the intrusion and the deformation of the granites affected by 

D3 occurred at deep to intermediate levels of the crust (27-14 km), whereas the 
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deformation took place under NE—SW compression. Datings on two of the deformed 

granites yielded 324.4 ± 0.8 Ma (Saunstein granite) and 315.0 ± 1.0 Ma 

(Untermitterdorf rhyolite): Thus, the age of D3 is most probably ~315 Ma, although an 

episodic D3 involving some additional, older pulses, is also conceivable. Nevertheless, 

quartz lattice-preferred orientation patterns and microfabrics show similar characteristics 

in all the studied samples, suggesting that D3 was localised in time and that the 

deformation temperature was in most cases not influenced by any advective heat 

carried by the sheared intrusives themselves. In other words, the intrusion of most of 

the sheared granitoids was pre-kinematic with respect to D3. 

After D3 the N—S to NNW—SSE compression which governed D2 was restored, giving 

way to the next deformation phase D4, which was linked to further deformation at and 

next to the principal shears of the Bayerischer Pfahl shear-zone system under 

greenschist facies conditions.  

The causes for the change of the stress field leading to a NE—SW compression during 

D3 might be related to (1) global changes in the dynamics of the tectonic plates in late 

Variscan times, (2) orogenic collapse leading to the sinking of the Teplá-Barrandian and 

lateral extrusion of the surrounding Moldanubian rocks, (3) distortion of the regional 

stress field by local intrusion of large stocks, such as the Saldenburg granite of the 

Fürstenstein Massif, or (4) distortion of the regional stress field due to the existence of 

ephemeral releasing bends in the Bayerischer Pfahl shear zone during its early 

evolution. 

In addition to the conclusions about the emplacement and tectonometamorphic 

evolution of the studied intrusives in their regional geological context, the present work 

also constitutes a contribution to general questions usually found in structural geology 

works and in studies concerning the ascent and emplacement of granitic magmas. 

Regarding the ascent and emplacement of granitic magmas, the La Bazana granite 

constitutes a field example of how felsic melts may reach the upper crust by diapirism. 

The observed lens shape at its upper part suggests that diapiric granites could evolve 

from teardrop shapes towards flat geometries during their final emplacement, by means 

of lateral expansion at the top. 

The La Bazana and Nisa-Alburquerque intrusions illustrate that the migration direction, 

final location and shape of intrusive bodies is conditioned by the structure (anisotropy 

and heterogeneity) of the country rock. Thus, the aforementioned bodies intruded into 

antiformal structures at middle to upper levels of the crust. Reaching progressively more 

viscous levels, the magma stopped its upward movement and switched from vertical to 

horizontal migration. In the case of a small granitic body like the La Bazana pluton, this 

lateral movement may be limited and more or less radial. In the case of bigger 

intrusions, like the Nisa-Alburquerque batholith, this sideward migration may reach 



Abstract 

 9

several tens of kilometres and polarize toward preferred orientations conditioned by 

regional structures. 

Stoping is usually regarded as a process operating mostly in the upper crust, as 

observed for example in the Nisa-Alburquerque batholith, but the present work shows 

that it can play an important role also in deeper levels. Thus, the intrusion of several 

stocks, whose age might be similar to the one of the Saunstein dyke (~324 Ma), 

provoked pervasive stoping of the dioritic to granodioritic and migmatic country rocks. 

Also the emplacement of the Saldenburg granite was accompanied by stoping. In both 

cases, intrusion depths exceeded 15 km. 

Our results indicate that diapirism is a valid ascent mechanism even at intermediate to 

upper levels of the crust, as exemplified by the La Bazana pluton. But evidence 

supporting indirectly the viability of diapirism can be found in other intrusives. In both 

the Iberian and the Bohemian Massif, it is common to find repeated intrusion of several 

magma batches at the same location. This holds for the Nisa-Alburquerque batholith 

and other composite intrusive bodies of the Iberian Massif; the Fürstenstein and the 

Hauzenberg plutons constitute also good examples of this, as well as several 

granodioritic to dioritic stocks all over the Bavarian Forest, which are systematically 

intruded by younger granites, i.e. younger magma batches use to benefit from older 

ones for their ascent. This constitutes a strong argument suggesting that some thermal 

and mechanical models that reject diapirism as a valid ascent mechanism oversimplify 

the real conditions governing the rheological behaviour of the Earth’s crust. These 

models usually regard magmas as isolated bubbles ascending through a homogeneous 

or nearly homogeneous crust. Further models of magma ascent should consider the 

crust as a thermally, compositionally and rheologically heterogeneous body, and the 

magmas not as isolated, but much more as nested batches following each other along 

thermally and mechanically prepared pathways. 

Regarding the deformation of granitoid rocks, it has been shown that quartz oblique 

foliations have a short-lived strain memory. The quartz shape preferred orientation 

reflects only the very last strain increment and can therefore be misleading when used 

without corroboration of further criteria to infer the sense of shear of a given 

deformation phase.  

Another conclusion of this research concerns the interpretation of quartz lattice-

preferred orientation patterns. On the one hand, rocks which have suffered a weak 

deformation can develop relatively well-defined quartz lattice preferred orientation 

patterns: The application of the electron backscatter diffraction technique constitutes an 

excellent tool for the investigation of rocks which may appear nearly undeformed at first 

glance. On the other hand, for the interpretation of quartz lattice-preferred orientation 

patterns it is necessary to bear in mind that their development is conditioned not only 

by the deformation temperature, but also by other factors amongst which the grain size 

of the rock seems to be a critical one: Fine-grained rocks tend to deform by means of 
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grain-boundary sliding instead of dislocation creep, which results in the development of 

poorly-defined lattice-preferred orientation patterns or in the destruction of pre-existing 

ones. This applies for primary small grain sizes, but also for small grain sizes achieved 

during progressive deformation, i.e. lattice-preferred orientation patterns might weaken 

or even disappear by increasing strain.  

The influence of the grain size in the activation of certain deformation mechanisms 

leaves its imprint not only in the lattice-preferred orientation patterns observed, but also 

in the microfabrics developed. As long as some fine-grained domains of the rock 

accommodate most of the strain by grain boundary sliding, some others like for example 

porphyroclasts or coarse-grained domains might remain nearly undeformed or show 

varying deformation intensities, even though the temperature would be high enough to 

allow their recrystallization. This effect becomes especially patent in rocks with bimodal 

grain-size distribution, as exemplified by the Untermitterdorf rhyolite. 

Strain localisation is a widespread phenomenon observed in many deformed rocks, also 

in the Bavarian Forest. The deformation referred to as D3 is preferentially localised in 

granites. This is due to the fact that granites are usually richer in quartz than the 

surrounding country rocks, and therefore weaker. Thus, granites constituted soft 

corridors at which deformation concentrated. Strain localisation is a self-feeding 

process: As shown in the Saunstein dyke, once the deformation starts at a given 

location of the rock, the reduction in grain size promotes grain boundary sliding; in the 

same way, fluid access gives way to reaction softening or hydrolytic weakening, and 

formation of white mica in cleavage domains also promotes grain boundary sliding. The 

result is the permanent concentration of the deformation there where it initiates. 

Finally, the phenomenon of strain localisation has important implications for the 

reliability of dated igneous rocks when used as time markers for deformations. Ductile 

deformations might not occur en masse, but rather in a spatially localized fashion. This 

is due to several factors, mainly: 1) As already mentioned, different rock types show 

different rheological behaviour, either due to thermal or mineralogical contrasts, i.e. hot 

rocks and rocks rich in quartz are softer and tend to accommodate more strain than 

surrounding rocks, and it obviously does not mean that the surrounding rocks are 

younger at all; 2) even though a given rock body might be softer than the surroundings, 

whether it accommodates some strain or not depends also on its position and geometry, 

i.e. only soft rock bodies with favourable geometry, orientation and position will be able 

to accommodate strain and rigid translation of adjacent blocks. As we saw in the 

Bavarian Forest, the deformations D2 to D4 did not always affect all the rocks present in 

the region, and this is not necessarily due to a post-kinematic genesis with respect to 

the considered deformation phase. Thus, special care is needed when inferring the 

deformation history of a region based on the deformation of dated igneous rocks as 

time markers. 
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Zusammenfassung 

Die vorliegende Arbeit analysiert verschiedene Aspekte der Entwicklung mehrerer 

Granitoide des Variszischen Orogens Zentral- und Westeuropas, unter Berücksichtigung 

sowohl ihrer Aufstiegs- und Platznahmemechanismen als auch ihrer 

Deformationsgeschichte. Die Arbeitsgebiete liegen in zwei Bereichen des Variszischen 

Orogens: in der Iberischen Masse und der Böhmischen Masse. 

In der Iberischen Masse sind zwei granitoide Körper mit dem Ziel untersucht worden, 

ihre Aufstiegs- und Platznahmegeschichte zu entschlüsseln. Diese sind der La Bazana 

Pluton und der Nisa-Alburquerque Batholith, deren Struktur auf magmatische Prozesse 

und nicht auf Deformation in festem Zustand zurückzuführen ist. Für die 

Untersuchungen wurden klassische Techniken der Strukturgeologie und Petrologie 

ebenso wie geophysikalische (gravimetrische und magnetische) Methoden angewendet. 

Der La Bazana Pluton ist ein kleiner, rundlicher Körper, der in den Kern einer späten 

Antiform in kambrische Tonschiefer, Metagrauwacke und vulkanische Gesteine der 

Ossa-Morena Zone intrudierte. Die Intrusion erfolgte am Ende der oder nach den 

variszischen duktilen Hauptdeformationen. Der Granit zeigt eine Domstruktur. 

Magmatische Foliationen fallen in der Regel flach nach außen ein. Das NW—SE-

gerichtete Streichen der regionalen Hauptfoliation des Nebengesteins passt sich an die 

Form des Plutons an. Gefaltete und boudinierte Adern im darüberliegenden 

Nebengestein weisen auf eine Plättungsdeformation hin. Diese Strukturen entstanden 

möglicherweise durch den Druck des aufsteigenden Magmas. Die Intrusionstiefe wurde 

anhand der Mineralparagenesen des Kontakthofes auf etwa 7—10 km geschätzt. Die 

aeromagnetischen Daten offenbaren keine ausgeprägten Anomalien in Verbindung mit 

dem Granit. Dies bedeutet, dass der Granit in seiner Zusammensetzung homogen ist. 

Die gravimetrischen Modelle zeigen, dass der Granit tropfen- bis rohrförmig ist, wobei er 

sich im oberen Teil erweitert. Die modellierte Mächtigkeit des Granits variiert je nach 

angenommenem Dichtekontrast zwischen 4 und 10 km. Die Form des Granits bleibt 

dagegen bei verschiedenen Annahmen für den Dichtekontrast nahezu unverändert. Es 

wird interpretiert, dass das Magma durch die mittlere Kruste diapirisch aufstieg, bis es 

auf eine Zone höherer Viskosität traf, in der die Platznahme erfolgte und laterale 

Ausbreitung und vertikale Plättung des Nebengesteins stattfanden. 

Der Nisa-Alburquerque Batholith ist ein 1000 km2 großer granitischer Körper, der in 

Gesteine der Zentral-Iberischen Zone, der Badajoz-Córdoba Scherzone und der Ossa-

Morena Zone intrudierte. Die Intrusion fand nach den variszischen duktilen 

Hauptdeformationen im Oberkarbon statt. Er ist parallel zu den NW—SE-gerichteten 

variszischen Strukturen gestreckt. Die interne Struktur der dominierenden Fazies (der 

Grobkörnige Granit) ist durch folgende Merkmale charakterisiert: (1) chaotische Struktur 

im östlichen Bereich, (2) NW—SE-gerichtete Struktur im Zentralbereich, (3) N—S-

gerichtete Struktur im westlichen Bereich. Im Allgemeinen ist die innere Struktur des 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 12

Granits parallel zu der Längsachse des Plutons, zu den Kontakten und zu der Foliation 

des Nebengesteins ausgerichtet, abgesehen vom westlichen Ende, in dem die Struktur 

schräg zu den genannten Richtungen orientiert ist. Mehrere Datierungen des 

Grobkörnigen Granits ergaben Alter zwischen 285 und 310 Ma. Die Intrusionstiefe 

wurde auf 7-10 km geschätzt. Die gravimetrischen Modelle zeigen, dass der Batholith 

die Form eines nach Ost-Südosten eintauchenden Zylinders besitzt, der nach Westen hin 

flacher wird und näher an der Oberfläche liegt. Die Modelle offenbaren die Existenz 

einer mächtigen Wurzelzone am östlichen Ende des Batholiths. Diese fällt räumlich mit 

den leukokraten, jüngeren Fazies zusammen. Daher wird die Wurzelzone als 

Zufuhrkanal interpretiert. Die innere Struktur im Zentralbereich des Batholiths kann das 

Ergebnis von nahezu gleichmäßigem bis nicht-koaxialem Fluß sein, wodurch die NW—

SE-gerichtete Struktur entsteht. Die N—S-gerichtete Struktur des westlichen Bereichs 

wird als das Ergebnis der Verlangsamung des Fließens und der Ankunft aufeinander 

folgender Magmaschübe interpretiert. Die Intrusion wird als andauernder, seitlicher 

Magmafluß von der östlichen Wurzelzone nach Westen hin angesehen, wobei das 

Magma an der südlichen Flanke einer kilometergroßen Antiform kanalisiert wurde. Die 

Platznahme des Magmas wurde von der prä-existierenden Struktur des Nebengesteins 

gefördert und durch eine Kombination aus rigider Translation des Nebengesteins, 

stoping und ballooning ermöglicht. 

In der Böhmischen Masse wurden mehrere kleine granitoide Körper analysiert, die im 

Subsolidus-Bereich deformiert wurden. Das Ziel der Untersuchungen war, ihre 

tektonometamorphe Geschichte in den geotektonischen Rahmen des Bayerischen 

Waldes zu integrieren, insbesondere in Hinsicht auf die Deformationsphase, die D3 

genannt wurde. Die in der vorliegenden Arbeit verwendeten Methoden sind: geologische 

Kartierung, optische Mikroskopie, Diffraktion rückgestreuter Elektronen (EBSD), 

Strainanalyse, Röntgenfluoreszenzanalyse, Elektronenstrahlmikrosondenanalyse und 

Piezometrie. 

Das Arbeitsgebiet befindet sich im Vorderen Bayerischen Wald im Bereich zwischen der 

Bayerischer-Pfahl-Scherzone und der Donaustörung in der Umgebung des 

Fürstensteiner Plutons. Die hier vorkommenden Gesteine gehören zur Moldanubischen 

Zone. Diese sind hauptsächlich hochgradige Gneise und Migmatite, die aus 

sedimentären Edukten mit Einschaltungen aus magmatischen Gesteinen entstanden 

sind. Die Variszische Metamorphose ist hier durch hohe Temperatur und niedrigen Druck 

charakterisiert. Sie steht mit der Migmatisierung der Gesteine in Verbindung und 

erfolgte im Arbeitsgebiet zwischen 330 und 316 Ma. 

Die Untersuchungen im Rahmen der geologischen Kartierung des Blattes TK25 Nr. 7246 

Tittling lieferten wertvolle Grundlagen für diese Dissertation. Die Ergebnisse 

ermöglichten eine bessere Kenntnis der im Vorderen Bayerischen Wald vorkommenden 

Gesteine, ebenso wie die Entdeckung mehrerer, von D3 überprägter, granitischer 

Körper. 
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Während verschiedener Stadien der Variszischen Orogenese intrudierten magmatische 

Gesteine dioritischer bis granitischer Zusammensetzung. Die mafischeren Körper, deren 

Zusammensetzung dioritisch bis granodioritisch ist, intrudierten gegen 335 Ma. Kleine 

granitoide Stöcke und Gänge intrudierten in die Migmatite zwischen 322 ± 5 und 331 ± 

9 Ma. Einer dieser Körper, der Saunsteiner Granitgang, intrudierte bei 324.4 ± 0.8 Ma. 

Nach der Intrusion der vorher genannten kleinen Granitoidkörper konzentrierte sich die 

magmatische Aktivität auf den Bereich des Fürstensteiner und des Hauzenberger 

Plutons. Der Saldenburger Granit und der Hauzenberger Granit II intrudierten bei 315 ± 

3 Ma bzw. 320 ± 3 Ma. Als jüngste magmatische Gesteine der Variszischen Orogenese 

drangen subvulkanische Gänge rhyolithischer bis basaltisch-andesitischer 

Zusammensetzung ein. Datierungen dieser Gesteine ergaben Alter von 302 ± 7 und 

299.0 ± 2.3 Ma. Die Form und Struktur all dieser Körper spiegelt in gewissem Maße die 

thermische Entwicklung der Kruste wider, in die sie intrudierten. Elliptische, 

ungleichmäßige oder ausgedehnte Körper, mit einem Alter unter ~310 Ma, intrudierten 

in eine relativ warme Kruste. Ihr Aufstigsmechanismus ist nicht gut bekannt, aber das 

Ausnutzen von prä-existierenden Anisotropien erscheint in diesem Kontext am 

effizientesten. Eine gewisse Mitwirkung von Diapirismus bei den größeren, 

gleichförmigen Körpern, wie dem Hauzenberger Granit II und dem Saldenburger Granit, 

ist ebenso plausibel. Die Platznahme der granitischen Endglieder wurde von Stoping der 

umgebenden Migmatite und der älteren magmatischen Fazies begleitet. Die Körper, die 

junger als ~310 Ma sind, bilden geradlinige Gänge mit scharfen Kontakten, was für 

einen Aufstieg durch Dyking in einer relativ kalten Kruste spricht. 

Die primären tektonischen Elemente der Untersuchungsregion stehen in Zusammenhang 

mit dem Bayerischer-Pfahl-Scherzonen-System, das sich über mehr als 200 km am 

südwestlichen Rand der Böhmischen Masse verfolgen lässt. Dieses besteht aus NW—SE- 

gerichteten, dextralen subvertikalen Scherzonen, subsidiären NNW—SSE-gerichteten 

dextralen Scherzonen und dazu konjugierten NE—SW-gerichteten, sinistralen 

Scherzonen. Diese sind in einem ausgedehnten Zeit- und Temperaturfenster von 

hochduktilen amphibolitfaziellen bis spröden Bedingungen aktiv gewesen. Das 

Bayerischer-Pfahl-Scherzonen-System war, zumindest während seiner duktilen 

Geschichte, unter N—S- bis NNW—SSE-gerichteter Kompression aktiv. 

Vier duktile Deformationsphasen wurden im Untersuchungsgebiet vorgeschlagen. D1 

ergab Hochtemperatur-Strukturen unter Bedingungen der Amphibolit- bis Granulitfazies, 

wahrscheinlich während des thermischen Höhepunkts der Hochtemperatur-

Niedrigdruck-Metamorphose. Ihre Kinematik ist unbekannt. D1 ist in der Regel durch 

spätere Deformationen überprägt, ist aber noch an reliktischen Gefügemerkmalen zu 

erkennen. D2 fand unter Bedingungen der unteren Amphibolit- bis oberen 

Grünschieferfazies statt, wie die Quarz-Texturen und Mikrostrukturen belegen. Sie ist für 

die subvertikale Foliation der Migmatite in Richtung NW—SE verantwortlich, die unter 

dextraler Scherung entstand, ebenso wie für die Deformation am Bayerischer-Pfahl-
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Scherzonen-System in seinen früheren Stadien. Die meisten dioritischen bis 

granodioritischen und manche der granitischen Körper intrudierten vor oder während 

dieser Phase, in der die Hauptkompression N—S- bis NNW—SSE-gerichtet war.  

Viele granitoide Stöcke und Gänge sind von sinistraler Scherung entlang ENE- bis ESE-

streichender Flächen betroffen. Diese Deformation ist inkompatibel mit einer 

Kompression in Richtung N—S bis NNW—SSE. Daher wird vorgeschlagen, dass sie eine 

neue Deformationsphase darstellt, die D3 genannt wurde. Die sinistralen, ENE- bis ESE-

streichenden Scherzonen bilden das sogenannte „D3 Scherzonen-System“, das als 

unabhängig vom Bayerischer-Pfahl-Scherzonen-System angesehen wird. D3 erfolgte 

unter Bedingungen der oberen Grünschiefer- bis unteren Amphibolitfazies (~480-

550°C), wie die Quarz-Texturen und Mikrostrukturen belegen. Sowohl die Intrusion als 

auch die Deformation von Graniten, die von D3 betroffen sind, geschahen in tiefen bis 

intermediären Krustenniveaus. D3 erfolgte unter NE—SW-gerichteter Kompression. 

Datierungen an zwei deformierten Granitoiden ergaben Alter von 324.4 ± 0.8 Ma 

(Saunsteiner Granit) und 315.0 ± 1.0 Ma (Untermitterdorfer Rhyolith). Dies bedeutet, 

dass das Alter von D3 sehr wahrscheinlich bei 315 Ma liegt, wobei ein episodisches 

Auftreten von D3, in dem noch andere, ältere Deformationsereignisse vor 315 Ma 

stattfanden, auch denkbar ist. Trotzdem sind die Texturen und Mikrostrukturen aller 

untersuchten Proben ähnlich. Dies ist ein Hinweis darauf, dass D3 auf einen engen 

Zeitraum begrenzt war und dass die Deformationstemperatur in den meisten Fällen von 

keinerlei advektiver Wärmezufuhr beeinflusst war. Das heißt, das Eindringen der 

meisten zerscherten Granitoide war prä-kinematisch in Bezug auf D3. 

Nach D3 verlief die Richtung der Hauptkompression wieder in Richtung N—S bis NNW—

SSE. Dies setzte die nächste Deformationsphase D4 in Gang. D4 war mit weiterer 

Deformation an und in der Nähe von den Hauptstörungen des Bayerischer-Pfahl-

Scherzonen-Systems unter grünschieferfaziellen Bedingungen verbunden. 

Die Ursachen der Änderung des Stressfeldes, die zu einer Kompression in Richtung NE—

SW führten, können mit folgenden Prozessen in Verbindung stehen: (1) mit globalen 

Änderungen der Dynamik der tektonischen Platten in spätvariszischer Zeit, (2) mit 

orogenem Kollaps assoziiert mit der Absenkung des Teplá-Barradiums und der lateralen 

Extrusion moldanubischer Unterkruste, (3) mit Störungen des regionalen 

Spannungsfeldes durch lokale Magmaintrusion, wie die des Saldenburger Granits im 

Fürstensteiner Massiv, oder (4) mit Störungen des regionalen Spannungsfeldes durch 

die Existenz kurzlebiger Releasing Bends während der Frühgeschichte der Bayerischer-

Pfahl-Scherzone. 

Zusätzlich zu den Schlussfolgerungen über die Platznahme und die tektonometamorphe 

Entwicklung der untersuchten Magmatite in ihrem regionalen geologischen Kontext 

liefert die vorliegende Arbeit einen Beitrag zu generellen Fragen, die üblicherweise in 

strukturgeologischen Studien und in Arbeiten über Aufstieg und Platznahme von 

granitischen Magmen auftreten. 



Zusammenfassung 

 15

In Bezug auf die Aufstiegs- und Platznahmemechanismen granitischer Magmen stellt der 

La Bazana Granit ein Beispiel dafür dar, dass felsische Schmelzen die obere Kruste durch 

Diapirismus erreichen können. Die beobachtete Linsenform seines oberen Bereichs weist 

darauf hin, dass sich diapirische Granite während ihrer Platznahme durch seitliche 

Ausbreitung von tropfenförmigen zu flachen Geometrien entwickeln können. 

Die Intrusionen von La Bazana and Nisa-Alburquerque illustrieren, dass die 

Migrationsrichtung, die Endposition und die Form intrusiver Körper durch die Struktur 

(Anisotropie und Heterogenität) des Nebengesteins beeinflusst werden. Die genannten 

Körper intrudierten in Antiform-Strukturen in der mittleren bis oberen Kruste. Beim 

Erreichen von Stockwerken mit progressiv höherer Viskosität stoppte das Magma seine 

vertikale Migration und fing an, sich horizontal zu bewegen. Im Falle eines kleinen 

Körpers, wie des La Bazana Plutons, dürfte die seitliche Ausbreitung begrenzt und mehr 

oder weniger radial sein. Im Falle eines größeren Körpers, wie des Nisa-Alburquerque 

Batholiths, dürfte die seitliche Ausbreitung mehrere zehner Kilometer erreichen und sich 

in Vorzugsrichtungen orientieren, die von der regionalen Struktur bedingt werden. 

Stoping wird als ein Prozess angesehen, der sich meistens in der oberen Kruste abspielt, 

wie beispielsweise am Nisa-Alburquerque Batholith beobachtet. Die vorliegende Arbeit 

zeigt, dass Stoping auch in tieferen Stockwerken der Kruste eine wichtige Rolle spielen 

kann. Auf diese Weise wurde die Intrusion mehrerer Granitoide, deren Alter ähnlich zu 

dem des Saunsteiner Granits sein dürfte (~324 Ma), von intensivem Stoping der 

umgebenden Migmatite und Diorite bis Granodiorite begleitet. Auch die Intrusion des 

Saldenburger Granits verursachte Stoping des Nebengesteins. In beiden Fällen erfolgte 

die Intrusion tiefer als 15 km. 

Die Ergebnisse dieser Arbeit weisen darauf hin, dass Diapirismus sogar in intermediären 

bis oberen Niveaus der Kruste stattfinden kann, wie am Beispiel des La Bazana Plutons 

vorgeschlagen wurde. Aber weitere, indirekte Hinweise auf Diapirismus können auch in 

anderen Intrusivkörpern gefunden werden. Sowohl in der Iberischen als auch in der 

Böhmischen Masse sind wiederholte Intrusionen mehrerer Magmaschübe an derselben 

Stelle häufig. Beispiele liefern der Nisa-Alburquerque Batholith und andere 

zusammengesetzte Intrusivkörper der Iberischen Masse, sowie der Fürstensteiner 

Pluton, der Hauzenberger Pluton und einige granodioritische bis dioritische Stöcke im 

Bayerischen Wald, in die systematisch granitische Schmelzen eingedrungen sind: 

Jüngere Magmaschübe nutzen für ihren Aufstieg dieselben Pfade, entlang denen die 

älteren emporstiegen.  Dies spricht dafür, dass thermische und mechanische Modelle, 

die Diapirismus als Aufstiegsmechanismus ablehnen, die rheologischen Bedingungen der 

Erdkruste zu sehr vereinfachen. Diese Modelle sehen häufig Magmen als isolierte 

Schübe an, die durch eine homogene oder nahezu homogene Kruste emporsteigen. 

Zukünftige Modelle sollten die heterogene Natur der Erdkruste bezüglich der 

Temperatur, der Zusammensetzung und der Rheologie berücksichtigen. Ebenfalls sollten 
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sie die Magmen nicht als isolierte, sondern als aufeinander folgende Schübe betrachten, 

die entlang vorerwärmter und vordeformierter Bahnen aufeinander folgen. 

Bezüglich der Deformation granitoider Gesteine wurde gezeigt, dass schräge Gefüge in 

quarzreichen duktilen Scherzonen leicht überprägt werden. Quarz-Schrägfoliationen 

spiegeln nur das allerjüngste Straininkrement wider und können daher irreführend sein, 

wenn sie ohne Bestätigung durch andere Scherkriterien für die Ableitung des Schersinns 

einer bestimmten Deformationsphase verwendet werden. 

Eine andere wichtige Schlussfolgerung dieser Arbeit betrifft die Interpretation von 

Quarz-Texturen. Einerseits können auch schwach deformierte Gesteine relativ gut 

ausgeprägte Quarz-Texturen entwickeln. Daher ermöglicht die Verwendung von 

Rückstreuelektronenbildern (EBSD) die Untersuchung der Gesteine, die beim ersten 

Blick nahezu undeformiert erscheinen. Andererseits muss man bei der Interpretation 

von Quarz-Texturen beachten, dass ihre Entwicklung nicht nur von der Temperatur 

beeinflusst wird, sondern auch von anderen Faktoren, unter denen die Korngröße sehr 

wichtig zu sein scheint: Feinkörnige Gesteine tendieren dazu, durch Korngrenzgleiten 

anstatt Versetzungskriechen zu deformieren. Dies führt dazu, dass bei feinkörnigen 

Gesteinen keine Texturen entstehen oder prä-existierende Texturen verschwinden. 

Dieses Phänomen gilt für primär feinkörnige Gesteine, aber auch für kleine Korngrößen, 

die während progressiver Deformation zustande kommen, d.h. Texturen können bei der 

Intensivierung der Deformation abgeschwächt werden oder gar verschwinden. 

Die Rolle der Korngröße bei der Aktivierung bestimmter Deformationsmechanismen 

prägt nicht nur die Texturen, sondern auch die Mikrostrukturen. Solange feinkörnige 

Gesteinsdomänen existieren, die einen großen Teil des Strains durch Korngrenzgleiten 

aufnehmen können, werden Porphyroklasten und grobkörnige Domänen sogar bei hoher 

Temperatur einen niedrigen oder variierenden Strain erleiden. Dieser Effekt wird in 

Gesteinen mit bimodaler Korngrößenverteilung wie dem Untermitterdorfer Rhyolith 

offensichtlich.  

Strainlokalisierung ist ein übliches Phänomen, das in vielen Gebieten und auch im 

Bayerischen Wald beobachtet wird. D3 ist meistens nur in Graniten zu finden. Dies ist 

darauf zurückzuführen, dass Granite quarzreicher und daher schwächer als ihre 

Umgebung sind. Daher stellen Granite schwache Bahnen dar, in denen 

Strainlokalisierung bevorzugt stattfindet. Strainlokalisierung ist ein sich selbst 

verstärkender Prozess: Wenn die Deformation an einer gewissen Stelle anfängt, findet 

Korngrößenverkleinerung statt, die die Deformation durch Korngrenzgleiten begünstigt; 

der Zugang von Fluiden führt zur weiteren Schwächung des Gesteins und zur 

Entstehung von Hellglimmer, die wieder das Korngrenzgleiten fördert. Die Folge ist eine 

permanente Konzentration der Deformation an der Stelle, an der sie beginnt. 

Zum Schluss wird auf die Bedeutung der Strainlokalisierung hingewiesen, wenn datierte 

Magmatite als Zeitmarken für die relative zeitliche Einstufung von Deformationen 



Zusammenfassung 

 17

verwendet werden. Die vorliegende Arbeit zeigt, dass duktile Deformation stark 

lokalisiert auftreten kann. Dies ist im Wesentlichen auf folgende Faktoren 

zurückzuführen: 1) Verschiedene Gesteinstypen weisen unterschiedliches rheologisches 

Verhalten auf, entweder wegen thermischer oder wegen mineralogischer Kontraste, das 

heißt warme Gesteine und Gesteine mit hohem Quarzgehalt sind mechanisch schwächer 

und tendieren dazu, mehr Strain als umgebende Gesteine aufzunehmen; 2) sogar unter 

der Annahme, dass ein Gestein schwächer als seine Umgebung wäre, hängt es von 

seiner Position und Geometrie ab, ob es von einer Verformung betroffen wird oder 

nicht. Das heißt, nur mechanisch weiche Gesteine mit günstiger Geometrie, Orientierung 

und Lage sind dazu geeignet, die Verformung in sich zu konzentrieren und die rigide 

Bewegung angrenzender Blöcke zu ermöglichen. Wie im Bayerischen Wald beobachtet 

wurde, wurden von den Deformationen D2 bis D4 nicht immer alle existierenden 

Gesteine betroffen und dies ist nicht notwendigerweise auf eine post-kinematische 

Genese der undeformierten Gesteine zurückzuführen. Daher ist bei der Verwendung der 

datierten Magmatite als Zeitmarken für Deformationen Vorsicht geboten. 
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Resumen 

Este trabajo analiza diferentes cuerpos graníticos del Orógeno Varisco de Europa Central 

y Occidental con el fin de mejorar nuestro conocimiento sobre algunos aspectos de su 

evolución, contemplando tanto sus mecanismos de ascenso y emplazamiento como su 

historia de deformación. Las áreas de estudio involucradas se localizan en dos sectores 

del Orógeno Varisco: los Macizos Ibérico y de Bohemia. 

En el Macizo Ibérico se han estudiado dos cuerpos graníticos, cuya estructura es 

predominantemente magmática y no muestra signos de deformación en estado sólido, 

con el fin de descifrar su historia de ascenso y emplazamiento: el plutón de La Bazana y 

el batolito de Nisa-Alburquerque. Este estudio se ha realizado utilizando técnicas clásicas 

de geología structural y petrología, así como métodos geofísicos (gravimetría y 

magnetometría). 

El plutón de La Bazana es un cuerpo pequeño de forma cartográfica subcircular 

encajado en pizarras, metagrauvacas y rocas volcánicas cámbricas de la Zona de Ossa-

Morena y situado en el núcleo de un antiforme recto tardío. El granito muestra un 

patrón de fábrica en forma de domo. Las foliaciones magmáticas suelen buzar 

suavemente hacia el encajante. La foliación regional principal de dirección NO—SE se 

acomoda a la forma en domo del plutón, describiendo deflexiones alrededor de él. El 

aplastamiento sufrido por el encajante a techo del granito queda reflejado en la 

existencia de venas plegadas y boudinadas. Estas estructuras se formaron 

probablemente como consecuencia del empuje del magma durante su ascenso y 

emplazamiento. El nivel de emplazamiento se estima en unos 7-10 km a partir de las 

asociaciones minerales observadas en la aureola de contacto. Los datos aeromagnéticos 

no revelan ninguna anomalía asociada al granito, lo que indica que éste es homogéneo. 

Los modelos de las anomalías gravimétricas residuales sugieren que el granito tiene 

forma de pitón a gota invertida, con cierta expansión en su parte superior. El espesor 

modelizado del granito varía entre 4 y 10 km, según los contrastes de densidad 

considerados, mientras que su forma apenas cambia. Se interpreta que el magma 

ascendió diapíricamente a través de la corteza media hasta alcanzar un nivel de alta 

viscosidad, donde el magma se emplazó expandiéndose lateralmente y dando lugar al 

aplastamiento de las rocas suprayacentes. 

El batolito de Nisa-Alburquerque es un cuerpo granítico de 1000 km2 que intruyó en 

rocas de la Zona Centroibérica, la Unidad Central y la Zona de Ossa-Morena en el 

Carbonífero Superior, después de las principales fases variscas de deformación dúctil. 

Su forma cartográfica es alargada, extendiéndose en dirección NO—SE paralelamente a 

las estructuras variscas. La estructura interna de su facies principal, el Granito de Grano 

Grueso, se caracteriza por fábricas caóticas en la parte oriental, fábricas de orientación 

NO—SE en el sector central y fábricas N—S en la parte oeste. En general, la fábrica es 

paralela al eje mayor del cuerpo, a los contactos externos y a la foliación regional del 
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encajante. Varias dataciones del Granito de Grano Grueso indican edades comprendidas 

entre 285 y 310 Ma. Su profundidad de intrusión se estima en unos 7-10 km. Los 

modelos gravimétricos sugieren que el batolito tiene forma de cilindro horizontal 

inclinado hacia el ESE, de fondo más plano y somero hacia el oeste. Los modelos ponen 

de manifiesto la existencia de una raíz prominente en el extremo oriental, coincidiendo 

con las facies más leucocráticas y jóvenes, que probablemente representa la zona 

principal de alimentación. La fábrica interna del batolito en su parte central se interpreta 

como el resultado de una combinación de flujo cuasi uniforme a no coaxial, que produce 

las fábricas de dirección NW—SE. La fábrica N—S de la parte occidental se interpreta 

como el resultado de la deceleración del flujo magmático y el empuje de sucesivos 

pulsos de magma. La intrusión es concebida como un flujo lateral continuado de magma 

partiendo de la raíz oriental y guiado hacia el oeste a lo largo del flanco sur de un 

antiforme kilométrico. Como mecanismos principales de transferencia de masas se 

propone una combinación de traslación rígida del encajante, stoping e inflamiento. 

En el Macizo de Bohemia se estudiaron varios cuerpos graníticos pequeños que 

sufrieron una fuerte deformación en estado sólido con el fin de integrar su historia 

tectonometamórfica en el marco geotectónico del Bosque de Baviera. El estudio se 

centra principalmente en la fase de deformación denominada D3. Los métodos utilizados 

en este trabajo son: cartografía geológica, microscopía óptica, difracción de electrones 

retrodispersados (EBSD), análisis del strain, análisis de fluorescencia de rayos X, análisis 

de microsonda electrónica y piezometría. 

El área de estudio se localiza en el Bosque de Baviera meridional, en la parte 

comprendida entre las zonas de cizalla del Bayerischer Pfahl y del Danubio, en el área 

que circunda el plutón de Fürstenstein. Las rocas que aquí se encuentran pertenecen a 

la Zona Moldanúbica. Éstas son predominantemente gneisses de alto grado y 

migmatitas derivadas de protolitos sedimentarios con intercalaciones de rocas 

magmáticas. El evento metamórfico más importante, de edad varisca, está 

caracterizado por altas temperaturas y bajas presiones y viene acompañado de 

anatexia. Éste ocurrió en el área de estudio entre 330 y 316 Ma. 

Las investigaciones relacionadas con la cartografía de la hoja topográfica 1:25000 n° 

7246 Tittling aportaron una buena información de base para esta tesis. Los resultados 

permitieron un mejor conocimiento de las rocas aflorantes en el Bosque de Baviera 

meridional, así como la localización de numerosos cuerpos graníticos afectados por D3. 

En diferentes estadios de la Orogenia Varisca intruyeron magmas de composición 

diorítica a granítica. La edad de los cuerpos más máficos, de composición diorítica a 

granodiorítica, es de unos 335 Ma. Entre 322 ± 5 y 331 ± 9 Ma intruyeron de manera 

ubicua pequeños stocks y diques de granitoides. Uno de ellos, el dique granítico de 

Saunstein, tiene una edad de 324.4 ± 0.8 Ma. Esencialmente tras estos últimos 

granitoides, la actividad magmática se concentró en las áreas de los plutones de 

Fürstenstein y Hauzenberg: el granito de Saldenburg y el granito de Hauzenberg II 
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intruyeron hace 315 ± 3 Ma y 320 ± 3 Ma respectivamente. El último episodio 

magmático atribuido a la Orogenia Varisca está representado por diques subvolcánicos 

de composición riolítica a basalto-andesítica. Dos dataciones de estas rocas 

suministraron edades de 302 ± 7 y 299.0 ± 2.3 Ma. La forma y estructura de todos 

estos cuerpos intrusivos refleja en cierta medida la evolución térmica de la corteza en 

que ascencieron y se emplazaron. Los cuerpos elípticos, irregulares o elongados, en 

general más antiguos de ~310 Ma, intruyeron en un encajante relativamente caliente. 

Su modo de ascenso es poco conocido, pero el aprovechamiento de anisotropías 

preexistentes parece el mecanismo más efectivo en este contexto. Cabe esperar cierta 

contribución de ascenso diapírico en los cuerpos más equidimensionales y de mayor 

tamaño, como el granito de Hauzenberg II y el de Saldenburg. El emplazamiento de las 

facies graníticas vino acompañado de un stoping intenso de las migmatitas y dioritas a 

granodioritas encajantes. Los cuerpos intrusivos más jóvenes de ~310 Ma son diques 

planares de contactos muy netos, que sugieren un ascenso por dyking en una corteza 

relativamente fría. 

Los elementos tectónicos más destacables del área se pueden describir en el contexto 

del sistema de zonas de cizalla del Bayerischer Pfahl, que se observa a lo largo de más 

de 200 km en el margen suroccidental del Macizo de Bohemia. Este sistema está 

formado por zonas de cizalla subverticales de dirección NO—SE dextras, zonas de cizalla 

subsidiarias de dirección NNO—SSE dextras y zonas de cizalla conjugadas de orientación 

NE—SO sinistras. Éstas fueron activas en un amplio rango de tiempo y temperaturas 

desde facies de anfibolitas hasta condiciones subsuperficiales. El sistema de zonas de 

cizalla del Bayerischer Pfahl fue activo probablemente, al menos durante su historia 

dúctil, bajo compresión N—S a NNO—SSE. 

Se proponen cuatro fases de deformación dútil en el área de trabajo. D1 produjo 

fábricas de alta temperatura en condiciones de facies de anfibolitas a granulitas, 

probablemente coincidiendo con el pico térmico del metamorfismo de alta temperatura 

y baja presión. La cinemática de esta fase es desconocida. D1 fue prácticamente 

oscurecida por deformaciones posteriores, pero queda aún reflejada en fábricas 

relícticas. D2 ocurrió en condiciones de facies de anfibolitas a esquistos verdes, tal y 

como indican las texturas de orientación cristalográfica preferente de cuarzo y las 

microfábricas. Esta fase es responsable de la foliación subvertical de dirección NO—SE 

en migmatitas, desarrollada bajo cizalla simple dextral, y de la deformación en el 

sistema de zonas de cizalla del Bayerischer Pfahl en sus estadios tempranos. La mayoría 

de los cuerpos dioríticos a granodioríticos y algunos graníticos intruyeron antes de o 

durante esta fase, en la que la compresión principal se dirigía en dirección N—S a 

NNO—SSE. 

Se han encontrado numerosos diques y stocks graníticos afectados por una cizalla 

sinistral a lo largo de planos subverticaes de dirección ENE a ESE. Ya que esta 

deformación, denominada D3, no es compatible con una compresión N—S a NNO—SSE, 
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se propone que estas zonas de cizalla sinistrales en granitos no pertenecen al sistema 

de zonas de cizalla del Bayerischer Pfahl y constituyen uno propio, denominado “sistema 

de zonas de cizalla D3”. La fase D3 tuvo lugar en condiciones de facies de esquistos 

verdes a anfibolitas (~480-550°C), como evidencian las texturas de orientación 

cristalográfica preferente de cuarzo y las microfábricas. Tanto la intrusión como la 

deformación de los cuerpos afectados por D3 ocurrió en zonas intermedias a profundas 

de la corteza (27-14 km), mientras que la deformación tuvo lugar bajo compresión en 

dirección NE—SO. La dataciones de cuerpos afectados por D3 proporcionan edades de 

324.4 ± 0.8 Ma (granito de Saunstein) y 315.0 ± 1.0 Ma (riolita de Untermitterdorf). Así 

pues, la edad de D3 se aproxima probablemente a 315 Ma, aunque es asimismo 

concebible que D3 haya sido episódica, es decir, con uno varios eventos adicionales 

anteriores a 315 Ma. De cualquier modo, las texturas de orientación cristalográfica 

preferente de cuarzo y las microfábricas muestran características similares en todas las 

muestras estudiadas, lo que sugiere que D3 fue localizada en el tiempo y la temperatura 

de deformación, en la mayoría de los casos, no estuvo influenciada por el calor 

advectivo aportado por los granitoides que fueron deformados. En otras palabras, la 

intrusión de la mayoría de los granitoides cizallados fue precinemática con respecto a 

D3. 

Después de D3 se restauró la compresión de dirección N—S a NNO—SSE que rigió D2, 

dando paso a la siguiente fase de deformación D4, que se asocia a una deformación 

localizada en las cercanías de las cizallas principales del sistema del Bayerischer Pfahl en 

condiciones de facies de esquistos verdes. 

Las causas del cambio del campo de esfuerzos que desembocó en la compresión NE—

SO puede relacionarse con (1) cambios globales en la dinámica de las placas tectónicas 

en tiempos tardivariscos, (2) colapso orogénico relacionado con el hundimiento del 

bloque Teplá-Barrándico y la extrusión lateral de rocas moldanúbicas, (3) distorsión del 

campo de esfuerzos regional a causa de la intrusión local de grandes stocks como el 

granito de Saldenburg, localizado en el macizo intrusivo de Fürstenstein o (4) distorsión 

del campo de esfuerzos regional a causa de la existencia de releasing bends efímeros en 

la zona de cizalla del Bayerischer Pfahl durante su evolución temprana. 

Además de las conclusiones acerca del emplazamiento y la evolución 

tectonometamórfica de las rocas intrusivas estudiadas en su marco geológico regional, 

este trabajo constituye una contribución más a aspectos generales frecuentemente 

discutidos en trabajos de geología estructural y en estudios sobre el ascenso y 

emplazamiento de magmas graníticos. 

En cuanto al ascenso y emplazamiento de magmas graníticos, el granito de La Bazana 

constituye un ejemplo real de cómo los fundidos félsicos pueden alcanzar 

diapíricamente la corteza superior. La forma lentcular observada en su parte alta sugiere 

que los diapiros graníticos pueden evolucionar desde formas de gota hacia geometrías 

planas durante su emplazamiento final por medio de expansión lateral en su techo. 
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Las intrusiones de La Bazana y Nisa-Alburquerque sirven para ilustrar que la dirección 

de migración, la localización final y la forma de los cuerpos están condicionadas por la 

estructura (anisotropía y heterogeneidad) del encajante. Así, los cuerpos mencionados 

intruyeron en estructuras antiformales en zonas intermedias a altas de la corteza. Al ir 

alcanzando niveles progresivamente más viscosos durante su ascenso, el magma 

bloqueó su movimiento en vertical y comenzó a migrar horizontalmente. En el caso de 

cuerpos pequeños como el plutón de La Bazana, el movimiento lateral puede ser 

limitado y más o menos radial. En el caso de cuerpos mayores como el batolito de Nisa-

Alburquerque, la migración lateral puede llegar a varias decenas de kilómetros y se 

orienta en direcciones preferentes marcadas por la estructura regional. 

El stoping suele considerearse como un proceso que opera predominantemente en la 

corteza superior, como se ha visto en el batolito de Nisa-Alburquerque, pero en esta 

tesis se muestra que también puede ser importante en niveles más profundos. En este 

sentido, la intrusión de numerosos stocks, cuya edad debe de aproximarse a la del 

dique de Saunstein (~324 Ma), provocó un stoping intenso en las dioritas a 

granodioritas y migmatitas de caja. También el emplazamiento del granito de 

Saldenburg vino acompañado de stoping. En ambos casos la profundidad de 

emplazamiento se sitúa más allá de 15 km. 

Nuestros resultados indican que el diapirismo es un mecanismo de ascenso válido en 

niveles intermedios a altos de la corteza, caso que viene a ilustrar el granito de La 

Bazana. Pero también hay evidencias indirectas de diapirismo en otras intrusiones. 

Tanto en el Macizo Ibérico como en el de Bohemia es común encontrar intrusión 

repetida de varios pulsos de magma en el mismo lugar. Este es el caso del batolito de 

Nisa-Alburquerque y de otros cuerpos compuestos del Macizo Ibérico; los plutones de 

Fürstenstein y de Hauzenberg también constituyen buenos ejemplos de ello, así como 

un gran número de stocks dioríticos a granodioríticos repartidos por todo el Bosque de 

Baviera, que fueron sistemáticamente intruidos por granitos más jóvenes, esto es, los 

pulsos de magma jóvenes suelen beneficiarse de los más antiguos en su ascenso. Esto 

constituye un argumento de peso que sugiere que algunos modelos térmicos y 

mecánicos que rechazan el diapirismo como mecanismo de ascenso válido simplifican en 

exceso las condiciones reales que gobiernan el comportamiento reológico de la corteza 

terrestre. Estos modelos suelen considerar los magmas como bolsadas aisladas que 

ascienden a través de una corteza homogénea o casi homogénea. Futuros modelos 

deben considerer la corteza como un cuerpo térmica, composicional y reológicamente 

heterogéneo, y los magmas no como bolsadas aisladas, sino más bien asociadas, 

ascenciendo en cadena a lo largo de canales precalentados y predeformados. 

En cuanto a la deformación de granitoides, se ha mostrado que las foliaciones oblicuas 

de cuarzo poseen una memoria de deformación muy corta. La orientación preferente de 

forma de los granos de cuarzo refleja tan solo el último incremento de deformación 

interna. Esta orientación preferente puede por ello llevar a conclusiones erróneas si se 
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usa sin la corroboración de otros criterios cinemáticos a la hora de establecer el sentido 

de cizalla de una deformación dada. 

Otra de las conclusiones de esta investigación se refiere a la interpretación de texturas 

de orientación cristalográfica preferente de cuarzo. Por una parte, rocas que han sufrido 

una deformación suave pueden desarrollar texturas de orientación cristalográfica 

preferente relativamente bien marcadas. Así, la aplicación de la difracción de electrones 

retrodispersados constituye una herramienta excelente para el estudio de 

deformaciones en rocas que parecen indeformadas a primera vista. Por otra parte, para 

la interpretación de texturas de orientación cristalográfica preferente es necesario tener 

en mente que su desarrollo está condicionado no sólo por la temperatura de 

deformación, sino también por otros factores, entre los cuales el tamaño de grano 

parece ser de especial importancia: rocas de grano fino tienden a deformarse por 

deslizamiento en los bordes grano en vez de por migración de dislocaciones, lo cual da 

como resultado el desarrollo de texturas de orientación cristalográfica preferente poco 

acentuadas o la destrución de texturas preexistentes. Esto es así para tamaños de 

grano finos primarios, pero también para tamaños de grano fino adquiridos durante la 

deformación progresiva, esto es, las texturas de orientación cristalográfica preferente 

pueden debilitarse o incluso desaparecer con el incremento del strain. 

La influencia del tamaño de grano en la activación de determinados mecanismos de 

deformación deja su huella no sólo en los patrones de orientación cristalográfica 

preferente, sino también en las microfábricas desarrolladas. Siempre y cuando existan 

dominios de grano fino que acomoden gran parte de la deformación por deslizamiento 

en los bordes grano,  otras partes de la roca, como porfiroclastos o dominios de grano 

grueso, pueden permanecer casi indeformados o mostrar intensidades de deformación 

variables, a pesar de que la temperatura sea relativamente alta. Este efecto se vuelve 

especialmente patente en rocas con distribución de tamaños de grano bimodal, como la 

riolita de Untermitterdorf. 

La localización del strain es un fenómeno común en muchas rocas deformadas, también 

en el Bosque de Baviera. La deformación denominada D3 se localiza preferentemente en 

granitos. Esto se debe al hecho de que los granitos suelen contener mayor cantidad de 

cuarzo y por tanto ser más débiles que el encajante. Así pues, en el Bosque de Baviera 

los granitos constituyeron corredores débiles en los que la deformación se concentró. La 

localización del strain es un fenómeno retroalimentado: como se ha visto en el dique de 

Saunstein, una vez que la deformación comienza en un lugar concreto de la roca, la 

reducción de tamaño de grano promueve el deslizamiento en los bordes grano; el 

acceso de fluidos provoca ablandamieno y la formación de mica blanca en dominios de 

clivaje acentúa el deslizamiento en los bordes grano. El resultado es la permanente 

concentración de la deformación allí donde se inicia. 

Finalmente, el fenómeno de localización del strain tiene importantes implicaciones en la 

fiabilidad de rocas ígneas datadas cuando éstas de utilizan como marcadores para 
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determinar la edad relativa de las fases de deformación. Este estudio muestra que las 

deformaciones dúctiles pueden tener un carácter localizado en el espacio. Esto se debe 

a varios factores, principalmente: 1) tipos de rocas diferentes tienen un comportamiento 

reológico diferente, ya sea por contrastes de temperatura o mineralógicos; así, rocas 

más calientes o más ricas en cuarzo son más débiles y tienden a absorber más 

deformación que las rocas circundantes; 2) incluso en el supuesto de que un cuerpo de 

roca dado sea más débil que las rocas circundantes, el que sufra algo de deformación o 

no viene también condicionado por su posición y geometría: sólo cuerpos de roca 

débiles y con geometría, orientación y posición favorables son capaces de deformarse y 

de permitir la traslación rígida de bloques adyacentes. Tal y como se ha visto en el 

Bosque de Baviera, las deformaciones D2 a D4 han afectado sólo a algunas de las rocas 

presentes en la región, y esto no es necesariamente debido a que las rocas 

indeformadas presenten una génesis postcinemática respecto a las deformaciones. Por 

ello, el uso de rocas ígneas datadas como marcadores temporales de las deformaciones 

debe hacerse con precaución. 
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1. Introduction 

1.1. The Variscan Orogeny 

The Variscan belt is a large Palaeozoic chain extending over 8000 km from the 

Ouachitas and Southern Appalachians to the Caucasus. Its evolution has been studied 

and partly reconstructed on the basis of plate tectonics. It was built between 500 and 

250 Ma from the convergence and collision of two main continents: Laurentia-Baltica to 

the northwest and Gondwana to the southeast (see Franke (2000) and Matte (2001) for 

recent reviews). The small microplates known as Avalonia and Armorica were situated 

between these two continents. Avalonia was detached from Gondwana in the early 

Ordovician, drifting northward and opening the Rheic Ocean, while the Iapetus closed 

by southward and then northward subduction beneath the Taconic arc of 

Newfoundland. Avalonia was then docked to Laurentia and Baltica, reaching an 

equatorial position in the Silurian. Armorica detached from Gondwana opening the 

Galicia-Southern Brittany Ocean and drifted northward from the Ordovician to the 

Devonian independently from Avalonia, although the extent of the ocean separating it 

from Gondwana is still being discussed. Armorica docked to Laurentia and Baltica before 

the Carboniferous collision between Gondwana and Laurentia-Baltica (see plate 

tectonics evolution model by Matte (2001) shown in Fig. 1.1-1). The convergence 

resulted in the closure of at least three oceanic basins (Iapetus, Rheic and Galicia-

Southern Brittany oceans) whose oceanic rocks are now preserved in some places as 

sutures.  

The European Variscides extending from Poland to Iberia (Fig. 1.1-2) show a complex 

sinuous pattern with two main virgations: the Ibero-Armorican and the Bohemian. The 

main sections through the Variscides show that it is a fan-like orogen with opposite 

vergences of nappes and recumbent folds migrating toward external Carboniferous 

basins. Sutures are found on both sides of the belt and they are the roots of large 

nappes containing ophiolitic rocks and/or high-pressure rocks. 

Most of the pre-Mesozoic basement of Western Europe is formed by Proterozoic to 

Carboniferous terranes deformed, in part metamorphosed, and intruded by various 

types of granitoids before the Permian. The basement outcrops in various stable massifs 

which suffered little deformation after the Permian. In addition, drilling has also 

revealed the basement beneath the various Meso-Cenozoic basins. The pre-Mesozoic 

basement of the Alpine, Pyrenean and Betic chains is also part of the Variscan belt. Most 

metamorphic terranes and most of the granites crop out in a broad central zone which 

was unroofed in some regions to a depth of 25 km before the deposition of Upper 

Carboniferous and Permian strata. 
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Figure 1.1-1. Tentative Palaeozoic reconstructions from middle Ordovician (465 Ma) to Lower 

Carboniferous (340 Ma), after Matte (2001). 

 

The belt was severely eroded before the Permian time and was dismembered during 

Mesozoic plate motion and the opening of the Atlantic Ocean. It is now separated into 

two branches on the two sides of the Atlantic: on the western side the Appalachians 

extending from the Ouachitas to Newfoundland, and on the eastern side the 

Mauritanides on the western coast of Africa and the Variscan belt extending from north 

Africa and south Iberia to the Bohemian Massif and the Caucasus. 
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Figure 1.1-2. Structural sketch map of the European Variscides, redrawn after Matte (1991). 

The main Variscan massifs of central and western Europe are shown on the upper left corner of 

the picture. NVF = northern Variscan front; LRHS = Lizard-Rhenish suture; MTS = Münchberg-

Tepla suture; MCS = Massif Central suture; CCS = Coimbra-Córdoba suture; OMS = Ossa 

Morena suture. The Iberia and Corsica-Sardinia blocks are represented in their possible 

Permian position relative to Europe. 

 

1.2. The Iberian and Bohemian Massifs 

The Iberian Massif (Fig. 1.2-1) provides the best cross section through the Variscan belt 

of Western Europe with its classical fan-like arrangement. The first classification of the 

Iberian Massif in zones was proposed by Lotze (1945). Later, this classification was 

modified by several authors (e.g. Julivert et al., 1972, 1974). The modern classification 

regards 6 zones, which are (Fig. 1.2-1): 

• Cantabrian Zone 

• West Asturian-Leonese Zone 

• Central Iberian Zone 

• Galicia-Trás-os-Montes Zone 

• Ossa-Morena Zone 

• South Portuguese Zone 
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Figure 1.2-1. Sketch of the 

Iberian Massif indicating its 

tectonic subdivision in zones, 

simplified after Pérez-Estaún 

and Bea (2004). 

 

 

According to the vergence of the structures, the Iberian Massif was subdivided into two 

branches (Julivert and Martínez, 1983) separated by the Badajoz-Córdoba shear zone 

(also called Coimbra-Córdoba shear zone or Central Unit), the latter being considered to 

be an orogenic suture: the northern branch comprises the Cantabrian, West Asturian-

Leonese, Central Iberian and Galicia-Trás-os-Montes Zone; the southern branch is 

composed by the Ossa-Morena and South Portuguese Zone. The Cantabrian and the 

South Portuguese Zone show the typical features of external zones, whereas the rest 

are considered to build up the internal zone of the orogen. 

The Cantabrian Zone is characterized by thin-skinned tectonics with thrusts and 

associated folds. Metamorphism and tectonic foliation are usually absent. The 

stratigraphic sequence includes Cambrian to Carboniferous rocks. Neoproterozoic rocks 

crop out in the western sector, at the so-called Narcea Antiform. Igneous activity is 

scarce, but extending all over the Palaeozoic as volcanic episodes, more frequent in the 

Lower Palaeozoic, and late-Variscan intrusions. 

The West Asturian-Leonese Zone shows a thick Cambro-Ordovician sequence. Post-

Devonian rocks are almost absent, except for a few discordant carboniferous deposits. 

Its structure is characterized by E-vergent folds crosscut by E-vergent thrusts and a late 

fold generation with upright axial planes. In this zone tectonic foliations are well 

developed and the rocks underwent low- to medium-grade metamorphism. Magmatic 
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rocks are found in form of volcanic episodes of Neoproterozoic and Palaeozoic age and 

pre-Variscan to Variscan granitoid intrusions. 

In the Central Iberian Zone two domains are distinguished: the Ollo de Sapo domain to 

the north and the schist-greywacke complex domain to the south. In the Ollo de Sapo 

domain gneisses, syn-tectonic granites, and high-grade metamorphic rocks are exposed. 

The folds in this area are overturned and vergent to the E and NE. The schist-

greywacke complex domain is characterized by pre-Ordovician, low-grade shales and 

greywackes and late-orogenic granites. Upright folds are typical for this domain, except 

for the southernmost area (allochthonous unit), in which recumbent NE-vergent folds 

are found.  

The Galicia-Trás-os-Montes Zone is an allochthonous slab overthrust onto the Central 

Iberian Zone. It is composed by fragments of a passive continental margin, rocks 

affected by rifting processes, ophiolitic units and fragments of a volcanic arc. This 

allochthonous slab is thought to be rooted at the Badajoz-Córdoba suture. 

The Ossa-Morena Zone is built up of Upper Proterozoic to Carboniferous rocks with 

variable metamorphic grade. The folds here are asymmetric or recumbent and vergent 

to the SW. Thrusts show a top-to-SW sense of movement. A younger upright folding is 

also observed. The magmatism here was pervasive and took place during three periods: 

at the end of the Precambrian, Cambrian-Ordovician and Carboniferous (Sánchez 

Carretero et al., 1990; Pérez-Estaún and Bea, 2004). 

The South Portuguese Zone is separated from the Ossa-Morena Zone by rocks with 

oceanic affinity (Ossa-Morena suture sensu Matte (2001)). It is built up of very low-

grade, Middle/Upper Devonian to Autunian rocks. Its structure is characterized by folds 

and thrusts verging to the SW. Important sulphide deposits are associated to a Lower 

Carboniferous vulcanosedimentary complex. 

 

The modern tectonic subdivision of the mid-European Variscides in zones is based on 

the proposals of Suess (1903) and Kossmat (1927). Although modern tectonic 

subdivisions show some differences in detail (e.g. Franke 1989; Matte et al., 1990; 

Matte, 1991; Dallmeyer el al., 1995; Franke, 2000), they usually regard the following 

zones from north to south (Fig. 1.2-2): 

• Rhenohercynian Zone. 

• Saxothuringian Zone, including the Mid-German Crystalline High. 

• Moldanubian Region, composed of the Moldanubian Zone sensu stricto and the 

Teplá-Barrandian Zone. 

• Moravo-Silesian Zone. 
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All of the zones are exposed in the Bohemian Massif, except for the Rhenohercynian 

Zone, which crops out in other massifs further to the north and northwest. 

The Rhenohercynian is a typical foreland fold-thrust belt. It can be traced at least from 

SW England through E Germany and correlated with the Moravo-Silesian of Austria and 

even with the South Portuguese Zone of Iberia. The Rhenohercynian Zone is made up 

of an autochthonous part and several allochthonous units underlain by a crystalline 

Cadomian basement. The autochthon is characterized by neritic and hemipelagic 

sequences, mostly of Devonian age. The allochthonous units comprise ocean floor and 

active margin sequences. Its structure is characterized by folds and thrusts verging to 

the NW. The metamorphic grade is normally very low, reaching greenschist facies 

conditions at the Northern Phyllite Zone. The presence of extensive submarine basaltic 

rocks is characteristic for this zone. 

The Mid-German Crystalline Rise forms part of the Saxothuringian Zone. It is composed 

of metamorphic and magmatic complexes. The metamorphic complexes comprise 

metasedimentary, migmatic and metamagmatic rocks. The magmatic complexes are 

represented by plutonic bodies of variable composition, age of intrusion and degree of 

deformation. Most of the complexes of the Mid-German Crystalline Rise were subjected 

to regional metamorphism under lower to upper amphibolite facies conditions. 

The southern part of the Saxothuringian Zone, i.e. excluding the Mid-German Crystalline 

Rise, is usually referred to as Saxothuringian Basin. It is dominated by relatively low-

grade sedimentary and volcanic rocks. Two facies realms are distinguished: the 

Thuringian and the Bavarian facies. The Bavarian facies rocks represent nappes 

emplaced on paraautochthonous sequences developed in Thuringian facies. Most of the 

Saxothuringian shows a very-low metamorphic grade. Greenschist facies conditions or 

higher are locally observed. The structure of the Saxothuringian Belt is characterized by 

large NE-trending syn- and antiforms. These fold structures are transected by NW-

trending fault zones. Repeatedly changing tectonic regimes resulted in the formation of 

numerous distinct plutonic-volcanic suites. 

Some allochthonous nappes, containing eclogites and peridotites amongst other rock 

types, were overthrust from SE onto the Saxothuringian series. These constitute the 

tectonic klippen of Münchberg, Wildenfels, and Frankenberg, which are erosional 

remnants of one or more nappe piles presumably rooted at the boundary between the 

Saxothuringian Zone and the Modanubian Region. This boundary is considered to be a 

major suture. The allochthonous nappes show a tectonic sequence characterized by 

inversion of the stratigraphy and the metamorphic grades. 

The Moldanubian Region of the Bohemian Massif can be subdivided into two 

tectonostratigraphic units: the Teplá-Barrandian, which crops out mainly in the Czech 

Republic, and, west and south of it, the Moldanubian sensu stricto. The Moldanubian 

sensu stricto will be referred to as “Moldanubian Zone” in this work.  
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The Teplá-Barrandian constitutes a median massif between the N- and the S-facing 

parts of the orogen. It is the best-preserved fragment of the Cadomian Orogen in 

central Europe. The basement consists of late Proterozoic sediments and arc-related 

volcanic rocks, which have undergone very low-grade to amphibolite facies 

metamorphism and deformation at the boundary Precambrian/Cambrian (Zulauf et al., 

1999). The Cadomian basement is overlain by Cambrian to middle Devonian 

sedimentary and volcanic rocks. Some parts of the margins of the Teplá-Barrandian are 

lined by eclogite facies and mantle rocks. These margins probably represent sutures, 

but were later overprinted by crustal-scale normal faulting (Zulauf, 1994). Early Variscan 

(Devonian) low-grade metamorphism and deformation affected the continental 

basement and its Palaeozoic cover. 

The Moldanubian Zone contains mainly high-grade gneisses and migmatites of 

supracrustal origin, orthogneisses, granulites and numerous Variscan post-tectonic 

granitoid intrusions. Matte et al. (1990) and Franke (2000) distinguished two main 

tectonostratigraphic units: the Drosendorf and the Gföhl units, separated by the Main 

Moldanubian Thrust which places the high-pressure rocks of the Gföhl unit onto the 

paraautochthonous Drosendorf unit. The boundary between both units is characterized 

by the presence of granulites, eclogites and peridotites. In large areas of the 

Moldanubian Zone the flat attitude of the foliation has been folded into large, open 

antiforms, and the mineral and stretching lineation trends NW—SE, corresponding to the 

transport direction (Matte et al., 1990). As will be seen in the next chapters, the 

structure of the Moldanubian Zone is much more complicated in detail. 

The Moravo-Silesian Zone is separated from the Moldanubian Zone by a major NE—SW 

trending, NW-dipping dextral shear zone which probably reworked an older SE-facing 

thrust. It consists of a Cadomian basement unconformably overlain by Devonian to 

Carboniferous sediments and volcanics. Deformation and metamorphism increase 

toward the boundary with the Moldanubian and along strike toward the northeast. The 

large-scale deformation corresponds to a north-eastward displacement of the 

Moldanubian onto the Moravo-Silesian. In addition, the Carboniferous foredeep shows 

upright NE—SW trending folds with a steeply dipping fan-like slaty cleavage and 

horizontal stretching lineation due to the same transpressional dextral tectonics. 

 

1.3. Migration and deformation of granitoids 

Intrusive rocks provide valuable information about orogenic processes. Their chemistry, 

age and structure can deliver a big amount of data regarding not only their evolution, 

but also that of the melt source and the crust in which they ascended and froze.  

In the Variscan Belt of Europe, studies on igneous rocks are abundant, especially 

regarding geochemical and petrological aspects (e.g. Finger et al., 1997; González 
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Menéndez, 1998; Siebel, 1998; Villaseca et al., 1998a, 1998b; Bea et al., 1999; Salman, 

2004). Nevertheless, studies integrating structural information (e.g. Büttner, 1999; 

Yenes at al., 1999; Simancas et al., 2000; Galadí-Enríquez et al., 2003) are scarcer, 

maybe because structural geologists considered for a long time that igneous rocks 

constitute rather isotropic bodies. 

Beyond petrological, geochemical and geochronological matters, the work on structural 

aspects of intrusive rocks has experienced an important development in recent years 

(e.g. Paterson et al., 1989, 1998). Structures developed during the magmatic phase, 

also called hypersolidus phase, as well as those formed after freezing, i.e. the 

subsolidus phase, have been the object of numerous studies.  

One of the important aspects of intrusive rocks is the way they rise through the Earth’s 

crust and emplace at their final location and how this evolution can be deciphered in the 

field. In the last decades, the mechanisms of magma migration, i.e. of ascent and 

emplacement, have been profusely studied. Structural geologists have paid increasing 

attention to the fabrics of magmatic rocks. Recent works show that magmatic rocks are 

rarely isotropic and, in particular intrusive ones, always exhibit their own internal 

structure which, together with their shape and their relationships with the country rock, 

provides key information for the reconstruction of their emplacement, their subsolidus 

and, in favourable cases, even their ascent history (e.g. Paterson et al., 1989; 

Vigneresse, 1995a; Dehls et al., 1998; Paterson et al., 1998; Brown and Triggvason, 

2001; Goulty et al., 2001; Haederle and Atherton, 2002). 

The ascent of granitic magmas has been envisaged by most authors as a process 

occurring in the Earth’s crust by means of two end-member mechanisms: diapirism and 

dyking. Weinberg (1999) proposed a third mechanism, namely “pervasive migration”, 

which is invoked as a process linking the melt formation and its extraction from the 

source and the ulterior ascent either by dyking or diapirism. A distinction is usually 

made between acid and basic magmas, since their viscosity and density relative to the 

host rock strongly control their ability to ascend as diapirs or through dykes. In the 

present work we will mainly concentrate on the intrusion mechanisms of acid magmas, 

given that the studied rocks are mostly granitic in composition. Paterson and Miller 

(1998) consider the ascent as a complex process in which four main mechanisms play a 

role. These are diapirism, dyking, ascent along pre-existing faults, and heterogeneous 

flow in migmatic rocks. 

The diapirism is basically the ascent of melts in form of drop-shaped or elliptical batches 

which soften and push aside the surrounding wall rock as they pass through. The 

driving force of ascent is supposed to be the buoyancy of less dense acid magmas 

flowing upwards inside a denser host rock, with more or less influence of the regional 

stress field. The field evidence for diapirism must be sought in the shape and internal 

structure of the pluton, as well as in the structures recorded by the country rocks, such 

as concentric foliation patterns, subvertical magmatic lineations, steep contact surfaces, 
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rim synclines or strongly sheared aureoles with pluton-side-up sense of movement, 

depending on the section exposed on the present erosion level. Nevertheless, this 

evidence might be easily obscured by later emplacement and deformation processes 

(England, 1990). Some examples of plutons, which are supposed to have ascended as 

diapirs, are found in the literature, such as the Northern Arran granite (England, 1992; 

Goulty et al., 2001), the Saraya granite (Pons et al., 1991) or the Tenpeak, Oval Peak, 

Entiat and Hall Canyon plutons (Miller and Paterson, 1999). Several theoretical and 

experimental models (Berner et al., 1972; Dixon, 1975 and references therein; Marsh, 

1982 and references therein) support the viability of the ascent of diapirs and provide 

information about the structures expected in and around them, which are partially found 

in natural examples. Diapirism is not accepted by many authors, due in part to the lack 

of diagnostic field evidence and to thermomechanical considerations suggesting that the 

diapirs must spend much of their energy in softening the surrounding rocks, which 

would quickly cause their crystallisation and “thermal death”. However, it is accepted by 

many others that diapirism works and that it does best in the hot lower crust. 

Furthermore, whereas one single diapir can probably ascend only a short distance, a 

succession of two or more nested diapirs exploiting one single “thermally prepared” 

pathway might be able to penetrate the entire crust (Marsh, 1982). 

In the last years, diapirism has been discredited as a transport mechanism. Some 

authors consider it to be inefficient, either irrespective of the crustal level considered or 

at least above the brittle-ductile transition (Bateman, 1984; Clemens and Mawer, 1992; 

Petford et al., 1993; Vigneresse, 1995b; Petford, 1996; Clemens, 1998; Petford et al., 

2000). The dyking theory has attained support in the geological community since some 

mechanical and mathematic models showed that relatively narrow dykes (>2 m) are 

able to feed enough amounts of acid melt into magma chambers without freezing in 

only some hundred years (Petford et al., 1993, 1994; Petford, 1996; Petford et al., 

2000). The development of self-propagating fractures (dykes) in the crust is possible at 

the tip of magma-filled gashes due to the concentration of stresses (Lister and Kerr, 

1991; Clemens and Mawer, 1992). Many plutons have been interpreted as the result of 

the ascent of magma through dykes and shear zones, such as the granitoid plutons of 

the Tulle anticline (Roig et al., 1998), the Cordillera Blanca batholith (Petford et al., 

1993), the Cardenchosa pluton (Simancas et al., 2000), the La Alberca-Béjar granitic 

area (Yenes et al., 1999), the Millevaches massif (Gébelin et al., 2006); the Dzhabyk 

batholith (Brown and Tryggvason, 2001), the Coastal batholith of Peru (Haederle and 

Atherton, 2002) or the Cabeza de Araya pluton (Vigneresse and Bouchez, 1997). 

Nevertheless, Rubin (1995) proposed that dyking is definitely efficient for basic melts, 

but might become inefficient in carrying rhyolitic magmas out of the source region. 

Some authors conciliate the ascent of magmas both as diapirs and along pre-existing or 

self-propagating discontinuities, depending on the rheological conditions and, therefore, 

on the crustal level considered. Thus, it is possible that magmas start their rise as 



1. Introduction 

 37

diapirs in the hot lower crust and continue their ascent along dykes once the diapir cools 

down. Basic magmas would never be able to build diapirs due to their low viscosity and 

high density, whereas felsic magmas are more likely to rise as diapirs. Intermediate 

magmas might swap from diapirs to dykes during their evolution (Bateman, 1984; 

Weinberg, 1996). 

Although partly linked to the ascent mechanisms, the emplacement mechanisms are 

usually regarded as independent from the way the magma arrived to its final location. 

In the literature it is common to find a classification of emplacement mechanisms into 

forceful and passive types, depending on whether the rate of buoyant uprise exceeds 

the rate of tectonic cavity opening or vice versa. However, Paterson and Fowler (1993) 

consider this classification misleading, since several mechanisms may operate in the 

same pluton at different stages and the stress field governing the emplacement is 

always a combination of both regional and magma-induced stresses. The emplacement 

mechanisms must account for the strain patterns observed in and around plutons, but 

also for the “room problem”, i.e. the way the space for the intrusion is created. As a 

consequence, Paterson and Fowler (1993) and Paterson and Vernon (1995) prefer to 

use the terms “near-“ and “far-field material transfer processes” when referring to the 

emplacement mechanisms (Fig. 1.3-1). 

The stoping mechanism consists on piercing and fracturing the wall rock by brittle 

processes. The resulting blocks, provided they are dense enough, sink towards the 

bottom of the magma chamber. Although some stoping may operate during ascent, for 

example in the case of piercing diapirs, it is thought to dominate rather at high crustal 

levels, and therefore to be most important as emplacement mechanism. 

The emplacement may be aided by the vertical and horizontal displacement of the wall 

rock, either by ductile or brittle processes. In cauldron subsidence, space for pluton 

emplacement is created by down-dropping a roughly cylindrical block along a steeply-

dipping ring fault. Downward country rock return flow has been invoked for the 

emplacement of diapirs and lopoliths. Roof uplift or “doming” and shortening create 

some space for the emplacement of laccoliths. Also non-piercing diapirs may cause 

some doming and shortening in the overburden as they arrive to their emplacement 

site. Horizontal shortening of the country rocks is often observed around concordant 

plutons. The deformation around intrusions, caused by magma-driven forces and more 

or less conditioned by tectonic stresses and pre-existing structures, has been studied by 

means of analogue and theoretical models by several authors (Román Berdiel et al., 

1995; Schwerdtner, 1995; Román Berdiel et al., 1997; Benn et al., 1998; Kerr and 

Pollard, 1998; Benn et al., 2000; Acocella and Mulugeta, 2002; Corti et al., 2005) and 

observed in natural examples (e.g. Cruden, 1998; Morgan et al., 1998; Wang et al., 

2000; Acocella and Mulugeta, 2001). 
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Figure 1.3-1. Sketch 

showing one scenario of 

temporally changing near- 

and far-field material-

transfer processes during 

emplacement of 

concentrically expanded 

plutons, after Paterson and 

Vernon (1995). Each time-

slice section is areally 

balanced in the region 

outlined by the thick black 

corners. Material displaced 

during emplacement of the 

pluton is shown outside 

these corners. Diagrams to 

left show relative 

importance of different 

material-transfer processes. 

D = doming of roof rocks, S 

= stoping, DD = ductile 

shortening, L = rigid 

translation of wall rock, A =  

assimilation. The relative importance of material transfer processes changes with depth, time 

and distance from pluton, magnitudes will vary from pluton to pluton. Final time slice shows 

possible magma flow patterns during emplacement of younger magma pulse. 

 

Ballooning is defined by Paterson and Vernon (1995) as the relatively symmetrical, 

radial expansion of a magma chamber where its centre does not move significantly 

relative to a far-field reference frame. Typical ballooning plutons show a concentric 

facies zonation and a flattening-type deformation increasing its intensity from the centre 

to the margins. 

The opening of potential voids in sites of local or regional extension, such as fold hinges 

or pull-aparts, has been invoked by many authors as a space-making mechanism for 

plutons (e.g. McCaffrey, 1992; Aranguren et al., 1996, 1997). 

Zone melting is the partial melting and assimilation of the overlying country rock. It may 

aid the ascent and emplacement of magma mostly in the ductile crust, but its 

importance is probably limited in shallow levels. 

Sheeting is the accretion process of successive magma batches into an elongated 

plutonic body, usually tectonically controlled (Paterson and Miller, 1998) and often 

associated to high-strain zones (Vegas et al., 2001). 
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Due in part to their allochthonous character, intrusive rocks are particularly useful for 

the reconstruction of geological processes. After emplacement, intrusive rocks get 

involved in deformation together with their country rocks. Thus, it is possible to perform 

a relative dating of intrusion and deformation events based on the deformations 

recorded by the intrusives and their country rocks, i.e. these bodies constitute important 

time markers for the determination of the age and duration of a given deformation 

phase. Works on structural aspects of intrusives benefit from geochronological studies: 

The latter can help to translate relative datings into absolute values.  

Granitic systems have been studied by several authors (e.g. Zen, 1988; Johannes and 

Holtz, 1996): Studies concerning their phase relationships and solidus temperature are 

abundant. An important advantage of granitic rocks is their mineralogy. They are rich in 

minerals like quartz, feldspar and mica. Quartz occurs in most of the crustal rocks in a 

wide range of pressure and temperature conditions. Its rheological behaviour has been 

profusely studied. As a consequence, quartz textures and microstructures are well 

known and can provide much information about the deformation mechanisms that 

operated during their development and, therefore, about the PT conditions governing 

the deformation (e.g. Passchier and Trouw, 1996, and references therein). Feldspar is 

the most abundant mineral in the Earth’s crust. Its rheological behaviour under different 

temperature conditions is relatively well known as well (e.g. Tullis, 1983). Thus, its 

microfabrics can also deliver information about the tectonothermal evolution of the 

rocks containing it. Finally, the composition of white mica has been studied and used as 

geobarometric indicator (Massonne and Schreyer, 1987; Massonne and Szpurka, 1997). 

Therefore, the composition of magmatic and synkinematic white mica can also place 

constraints on the PT path followed by granitic rocks from their emplacement to their 

deformation. All of these considerations make granitic rocks especially interesting for the 

study of the tectonometamorphic evolution of orogens.  
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2. Aims 

The goal of this work is to investigate both evolution stages in the history of Variscan 

granitoids: the hypersolidus and the subsolidus stages. With this aim, some intrusive 

bodies, which can be suitable for the study of their evolution either in the subsolidus or 

in the hypersolidus phase, were selected. The methods used for this research are 

adapted to the particular aim pursued in every case, to the specific plutonic body, to the 

geological conditions and to the equipment available at the host institution. 

The study areas are located in two different parts of the Variscan Orogen: the Iberian 

and the Bohemian Massifs (Fig. 2-1). 

 

 

Figure 2-1. Geographic location of the study areas. Source: Google Earth. 

 

Two intrusive bodies of the Iberian Massif were selected to investigate mostly their 

hypersolidus history: the La Bazana Pluton and the Nisa-Alburquerque batholith. Both of 

them intruded after the ductile Variscan deformation phases and are therefore thought 

to preserve a shape and structure conditioned or at least influenced by the mechanisms 

operating during their ascent and emplacement. The first aim of this research is to 
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extract from these well-exposed granitic bodies of the Iberian Massif as much 

information as possible about their hypersolidus evolution. This goal can be achieved by 

(1) studying their three-dimensional shape by means of gravity data modelling and (2) 

describing the internal structure and petrography of both the intrusive bodies and their 

contact aureoles. Magnetometric measurements constitute a good complement to detect 

facies zonations in the granitic bodies and heterogeneities in the country rocks. The 

research on granitoids of the Iberian Massif was supported by the equipment and staff 

of the University of Granada (Spain).  

Some different granitic bodies from the Bohemian Massif were selected for the study of 

their subsolidus history. Most of the studied bodies are sinistrally sheared granites with 

foliation planes trending WNW—ESE to WSW—ENE, which can deliver valuable 

information about the tectonic evolution of the Bavarian Forest before and after their 

emplacement. Key questions to be solved are: 

• Under which conditions did the emplacement and deformation of these igneous 

bodies take place? Did they intrude syn-kinematically? 

• What kind of geometrical and temporal relationships do exist between different 

intrusion and deformation phases? 

• How can we integrate these sheared granites in the tectonic evolution of the 

Bavarian Forest? 

An array of different techniques was applied in order to solve these questions. These 

techniques are: geological mapping, optical microscopy, electron backscatter diffraction 

(EBSD), strain analysis, X-ray fluorescence analysis, electron microprobe analysis and 

piezometry. The research on granitoids of the Bohemian Massif was supported by the 

equipment and staff of the University of Frankfurt a.M. (Germany). 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 42

3. Methods 

3.1. Gravimetry 

The information about the shape of granitic plutons is often restricted to the section cut 

by the present erosion surface. Some authors have attempted to infer their deep shape 

based on surface observations concerning their internal structure. Nevertheless, there 

are several examples in which this method has been proven to fail (Paterson et al., 

1998). Thus, the use of geophysical methods is essential in order to constrain their 

three-dimensional geometry. 

Since the density of acid igneous rocks (2.50-2.81 g/cm3) is usually lower than the one 

of surrounding country rocks, generally of metapelitic composition (2.40-3.30 g/cm3), 

gravity data are appropriate for determining the shape of granitic plutons at depth 

(Vigneresse, 1990). This has already been recognised by many authors, who have 

successfully applied this method in granites and were thus able to propose an 

emplacement model in the light of the obtained geometries (e.g. Améglio et al., 1997; 

Vigneresse and Bouchez, 1997; Yenes et al., 1999; Sant’Ovaia et al., 2000; Simancas et 

al., 2000; Goulty et al., 2001; Kurian et al., 2001; Haederle and Atherton, 2002; Talbot 

et al., 2005). 

In the next lines, the procedure followed to measure, process and model gravity data in 

small regions on land is briefly described. 

The magnitude of gravity depends on five factors: latitude, elevation, topography, earth 

tides, and density variations in the subsurface. Gravity exploring is concerned with 

anomalies due to the last factor, and therefore, the effect of the other ones must be 

removed, i.e. we must make corrections to reduce gravity readings to the values they 

would have on an equipotential surface of reference such as the geoid. In addition, the 

measured gravity is affected by instrumental drift. Gravity anomalies are usually 

expressed in miligal (mGal). 

Due to the rotation of the Earth and its equatorial bulge, the magnitude of gravity 

increases towards the poles. The theoretical value of gravity is given by the equation 

gt = 978031.846 (1 + 0.005278895 sin2 ø + 0.000023462 sin4 ø) (mGal), 

where ø is the latitude. 

Earth-tide correction. The movement of the Sun and the Moon produces gravity changes 

of up to 0.3 mGal. Since these changes are smooth and slow, they can be eliminated 

together with the instrument drift correction. 

Free-air correction. In order to remove the effect due to the differences in elevation 

between stations, the free-air correction must be applied by using the following 

expression: 
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∆gFA / ∆R = 2γMe / Re
3 = 2g / Re = 0.3086 (mGal/m), 

where ∆R is the vertical distance between the station and the reference surface, γ the 

universal gravitational constant (6.672 · 10-11 N m2 / kg2), Me the mass of the Earth, and 

Re the Earth’s radius (~6368 km). 

Bouguer correction. The Bouguer correction accounts for the attraction of material 

between the station and the datum plane, supposing that this material forms a 

continuous, infinite slab of constant thickness and density. The correction is calculated 

as follows: 

∆gB / ∆R = 2πγρ = 0.04192ρ (mGal/m), 

where ρ is the slab density in g/cm3. 

Terrain correction. This correction eliminates the effect of neighbouring hills and valleys, 

both producing a decrease in the magnitude of gravity. The correction is usually 

calculated by dividing the area into compartments and comparing the elevation within 

each compartment with the station elevation. The gravity effect is then calculated for 

every sector and the contribution of all sectors is summed.  

When all the above-mentioned corrections have been applied, the Bouguer anomaly is 

obtained: 

ABOU = gOBS - gt + ∆gFA - ∆gB + ∆gTE, 

i.e. Bouguer anomaly = observed gravity value – theoretical gravity value + free-air 

correction – Bouguer correction + terrain correction. 

Relative gravity measurements were recorded with a Master model Worden gravimeter, 

with temperature compensation and precision of 0.01 mGal. Measurement points were 

positioned by GPS and a barometric altimeter that has a precision of 0.5 m in altitude. 

Measurements were carried out in cycles of less than 3 hours in order to allow the linear 

correction of gravimeter and altimeter drifts. Altimetric data were obtained at base 

stations from topographic maps. After drift correction of barometric altimetry data, the 

altitude was determined for each measurement station. Relative gravity data were 

calibrated with the absolute gravity value of one of the base stations of the Instituto 
Geográfico Nacional (National Geographic Institute) situated at several locations of the 

Spanish territory. Absolute gravity data in each field station made it possible to calculate 

the Bouguer anomaly. A standard density that corresponds to the average density of 

crustal rocks (2.67 g/cm3) was applied for Bouguer correction. The terrain effect was 

ignored, however, since the topography of the study areas is smooth, and the 

contribution of the topographic effect is expected to be small compared to the obtained 

anomalies. Bouguer anomaly maps were constructed by interpolating gravity values 

between measurement points using the kriging method. 

Bouguer anomaly maps show a superposition of anomalies resulting from density 

changes at various depths. Some anomalous masses lie at depths in the zone of 
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interest, some result from deeper masses, and some from shallower ones. As the source 

of an anomaly deepens, the anomaly becomes more spread out and its amplitude 

decreases. The effect of shallow masses (near-surface noise) is usually of short 

wavelength. It can be removed largely by smoothing short-wavelength anomalies. The 

effects of deep-seated masses are called the regional anomaly. The gravity field after 

near-surface noise and the regional have been removed is called the residual anomaly; 

it presumably represents effects of the intermediate zone of interest. 

The separation of regional and residual anomalies can be made using different graphical 

and analytical methods. Vigneresse (1990) suggested that a convenient residual is 

obtained when the zero contour level of the residual anomaly map outlines the studied 

granitic body. 

When the residual anomaly has been obtained, the shape of the anomalous body can be 

modelled. Whatever the modelling procedure used, the ambiguity of the models can be 

considerably reduced by the available geological information, such as the density 

contrast or the position and dip of the contacts. Furthermore, not all the imaginable 

shapes that fit the data are geologically plausible. In this respect, the geological 

background of the interpreter plays an important role. In the direct method, the source 

body is approximated by slices of finite thickness. The effect of each slice is computed, 

assuming a polygonal shape. After comparison with the measured data, the geometry of 

the source is modified until a good fit between the observed and computed anomalies is 

reached. This is the procedure followed in the present work. The inverse method 

involves determining the geometry and physical properties of the source from 

measurements of the anomaly. 

 

3.2. Magnetometry 

In order to detect facies zonations in the studied igneous bodies and heterogeneities in 

their country rocks, measurements of the intensity of the magnetic field were carried 

out during the gravimetric and geological surveys. These measurements are cheap and 

easy and provide additional information about the geology of the study area. The basics 

of this geophysical method are described below. 

As exposed by Telford et al. (1995), the modern and the classical magnetic theories 

differ in basic concepts. Classical magnetic theory is similar to electrical and gravity 

theory; its basic concept is that point magnetic poles are analogous to point electrical 

charges and point masses, with a similar inverse-square law for the forces between the 

poles, charges or masses. Magnetic units in the cgs-emu system are based on this 

concept. SI units are based on the fact that a magnetic field is electrical in origin. Its 

basic unit is the dipole, which is created by a circular electrical current. 

The cgs-emu system begins with the concept of magnetic force given by Coulomb’s law: 
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F = (p1p2 / µ r2) r1, 

where F is the force on p2 in dynes, the poles of strength p1 and p2 are r centimetres 

apart, µ is the magnetic permeability of the medium, and r1 is a unit vector directed 

from p1 toward p2. 

The magnetizing field or magnetic field strength H’ is defined as the force on a unit 

pole: 

H’ = F / p2 = (p1 / µr2) r1, 

where the prime indicates that H is in cgs-em units. H’ is measured in oersteds 

(equivalent to dynes per unit pole).  

According to the modern theory, a magnetic field is a consequence of the flow of an 

electrical current. As expressed by Ampère’s law, a current I in a conductor of length ∆l 
creates, at a point P, a magnetizing field H given by 

∆H = (I∆l) r1 / 4πr2 

where H has the SI dimension amperes per meter (= 4π 10-3 oersted), r and ∆l are in 

meters, I is in amperes, and ∆H, r1, and I∆l have the directions indicated in Fig. 3.2-1. 

 

 

Figure 3.2-1. Ampère’s law. A current I through a 

length of conductor ∆l creates a magnetizing field 

∆H at a point P, taken from Telford et al. (1995). 

 

The orbital motions of electrons around an atomic nucleus constitute circular currents 

and cause atoms to have magnetic moments. Molecules also have spin, which gives 

them magnetic moments. A magnetisable body placed in an external magnetic field 

becomes magnetized by induction. The magnetization is measured by the magnetic 

polarization or magnetization intensity M. The lineup of internal dipoles produces a field 

M which, within the body, is added to the magnetizing field H. M and H have the same 

dimensions (ampere / meter). For low magnetic fields, M is proportional to H and is in 

the direction of H. The degree to which a body is magnetized is determined by its 

magnetic susceptibility k, which is defined by 

M = kH 
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Magnetic susceptibility in electromagnetic units (emu) differs from that in SI units by the 

factor 4π, i.e. 

kSI = 4πk’emu 

The magnetic susceptibility is the fundamental rock parameter in magnetic prospecting. 

The magnetic response of rocks and minerals is determined by the amounts and 

susceptibilities of magnetic materials in them. 

The magnetic induction B is the total field, including the effect of magnetization. It can 

be written 

B = µ0 (H+M) = µ0 (1 + k) H = µµ0 H, or 

B’ = H’ + 4πM’ = (1 + 4πk’) H’ = µH’ 

when H and M are in the same direction, as is usually the case. The SI unit for B is the 

tesla (T) = N/A·m. The electromagnetic unit for B’ is the gauss (= 10-4 tesla). The 

permeability of free space µ0 has the value 4π 10-7 Wb/A·m or N/A2. In vacuum µ = 1 

and in air µ ~ 1. The unit of magnetic induction generally used for geophysical work is 

the nanotesla (nT) or gamma (γ). 

The geomagnetic field of the Earth is composed of three parts: 

1. The main field, which varies relatively slowly and is of internal origin. 

2. A small field, which varies rapidly and originates outside the Earth. 

3. Spatial variations of the main field, which are usually smaller than the main field, 

are nearly constant in time and place, and are caused by local variations of the 

magnetic properties in the near-surface crust of the Earth. These are the targets 

in magnetic prospecting. 

Local changes in the main field result from variations in the near-surface rocks of 1) 

magnetic mineral content, i.e. bulk magnetic susceptibility, or 2) remanent 

magnetization. Thus, the anomalies can be produced either due to susceptibility 

contrasts or to the existence of a remanent or residual magnetization. The remanent 

magnetization is the magnetization shown by ferromagnetic materials as the 

magnetizing field is removed. This material behaviour constitutes the base of 

paleomagnetic studies, but is not relevant for this study. 

Attending to their magnetic susceptibility, the minerals can be classified as diamagnetic 

(k<0), paramagnetic (k>0) or ferromagnetic (k>>0). The susceptibility of the rocks can 

range between very different values, depending on their composition. Sedimentary 

rocks have usually a lower susceptibility than crystalline rocks. The latter have a higher 

susceptibility, the more basic/mafic they are. Thus, ultrabasic rocks, such as peridotites, 

kimberlites and eclogites, are easily identifiable using magnetic methods. 

In this study, measurements of the total intensity were carried out with a GSM neutron 

precession magnetometer, with a precision of 1nT. Once the magnetic data have been 
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acquired, they must be processed in order to obtain the magnetic anomaly. The 

processing usually involves the following steps: 

• Some corrections must be undertaken. The so-called spikes are anomalous 

values caused by instrumental errors or anomalous bodies located next to or at 

the surface. They must be removed in order to eliminate the superficial noise. 

Furthermore, the magnitude of the magnetic intensity varies with time at a given 

location and thus, this variation must be corrected, especially if the anomalies 

expected are small; the correction can be made by comparing with a reference 

station or by linear interpolation in measurement cycles of less than 3 hours. 

Finally, the theoretical intensity value, which is dependent on location and time, 

must be substracted from the observed value. This theoretical intensity is given 

by the International Geomagnetic Reference Field (IGRF) and based on empirical 

observations. After substracting the theoretical from the observed magnetic 

intensity value, the magnetic anomaly is obtained. 

• Reduction to the pole. This processing step might be optionally made. Since the 

flow lines of the geomagnetic field are generally (except at the poles) oblique to 

the Earth’s surface, the changes of the magnetic field intensity produced by an 

anomalous body are displaced with respect to the vertical of the body. Moreover, 

the shape of the anomalies is also distorted: for example, an anomalous body 

with high susceptibility in the northern hemisphere would produce not a simple 

positive anomaly centered on its vertical, but a pair of anomalies (a dipole), 

positive and negative, being the positive one more pronounced and located 

south of the body. The reduction to the pole eliminates this effect by simulating 

vertical flow lines of the geomagnetic field and restoring the shape of the 

anomaly to one single maximum. 

• Also optionally, the regional variations can be eliminated in a similar way as in 

gravimetry in order to obtain the anomalies caused by anomalous bodies located 

in the zone of interest. 

Magnetic survey results are displayed as a set of profiles or a magnetic contour map. 

Because of the erratic and complex character of magnetic maps, the interpretation is 

often only qualitative, as in the case of the present work. 
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3.3. Structural inventory of pluton-host rock systems 

The ascent and emplacement mechanisms that operated during magma migration, 

together with the subsolidus evolution of granitoids, may leave their imprint in the 

shape and structure of plutons, as well as in their relationships with the deformation 

and metamorphism of the contact aureole. Thus, for the reconstruction of the geological 

history of plutons it is important to constrain their shape and structure, apart from other 

petrological, geochemical and structural aspects, such as their absolute age or their 

relative timing in relation to the observed deformation phases. 

The first approximation to a pluton-host rock system is the determination of the 

cartographic form of the pluton and the characteristics of its contacts. The position and 

dip of the contact surface places important constrains on the gravimetric models and 

gives some information about the possible shape of the plutonic body on its uppermost 

part. Discordant contacts have been usually interpreted as diagnostic for a passive 

emplacement mode. On the other hand, concordant contacts are supposed to reflect the 

forceful emplacement of the pluton and the accommodation of the country rocks 

accompanying the uprise and arrival of the magma. Regarding the thermal effects of the 

magma, the mineral associations developed next to the contacts provide information 

about the P-T-conditions governing the intrusion. 

The shape of granitic plutons can be only partly constrained using the conventional field 

techniques, since field observations are limited to their uppermost part or, sometimes, if 

some crustal tilting occurred, to a limited section of them. Constraining the shape of 

granitic bodies in depth is only possible by means of geophysical techniques, amongst 

which gravimetry is the most useful one (Vigneresse, 1990). 

The internal structure of a pluton is principally characterized by the shape preferred 

orientation of planar and elongated crystals, which define foliations and lineations. 

These can provide information about the dynamics of the magma chamber at the late 

stages of emplacement and about the subsolidus evolution of the pluton-host rock 

system. They are sometimes observable and measurable with the aid of a compass, 

provided that the grains are large enough and the degree of their shape preferred 

orientation is sufficiently pronounced. In fine grained rocks or in the case of poorly-

developed fabrics, they can be studied by means of anisotropy of magnetic susceptibility 

(AMS). This method has been proved to constitute a useful tool to characterize the 

fabrics of granitoid bodies (Borradaile, 1988; Bouchez, 1997). Other structural elements 

to be studied and documented are xenoliths, microgranitic enclaves, dykes, veins, and 

schlieren. 

A key issue is the differentiation of sub- and hypersolidus structures of plutons, as well 

as their relationship with the structure and metamorphism of the contact aureole. 

Paterson et al. (1989) proposed a series of criteria to distinguish between magmatic, 
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sub-magmatic, high-temperature solid-state and medium- to low-temperature solid-

state fabrics, which develop during of after the ascent and emplacement. The principal 

criterion for magmatic flow is the shape preferred orientation of magmatic minerals 

without any evidence for crystal-plastic deformation or recrystallization. Evidence for 

solid-state deformation can be easily found under the microscope in form of 

recrystallized quartz aggregates, fractured feldspars, or S—C fabrics, amongst other 

microstructures. 

Finally, the structure of the host rock, especially in thermal and strain aureoles, must be 

documented in order to develop an emplacement model. It is important to distinguish 

between pre-, syn-, and post-emplacement clevages (Fig. 3.3-1) and to establish their 

relationships with the mineral associations formed during the contact metamorphism. 

 

Figure 3.3-1. Hypothetical end-

member foliation patterns 

produced around pre-tectonic 

(a,d), syn-tectonic (b, e) and 

post-tectonic (c, f) plutons, after 

Paterson et al. (1991). 

 

 

Plutons may intrude prior, during or after the regional deformations and they are 

commonly used to constrain the age of deformation and metamorphism in mountain 

belts. Their structure and the one of their contact aureole depend partly on the relative 

timing of their intrusion. A useful way of viewing contact aureoles is as gradients (of 

temperature, strain, viscosity, etc.) between a pluton and their wall rocks (Paterson et 

al., 1991). Foliation patterns in contact aureoles noted as being typical of pre-, syn- and 

post-tectonic are the following (Paterson et al., 1991; see also Paterson et al., 1998; 

Fig. 3.3-1). For post-tectonic plutons, the foliations in the host rock are sharply 

truncated by the pluton or curve into parallelism with the pluton margin, depending on 

whether the emplacement is passive or forceful, respectively.  For syn-tectonic plutons, 

a regionally developed foliation is continuous with any emplacement-related foliation in 

the pluton or deflects across the contact because the pluton does not record the same 

strain as the country rock. For pre-tectonic plutons, a regionally developed foliation 

either cuts through the granitoid, maintaining its regional strike, or curves around a 
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non-foliated pluton because of viscosity contrasts, and in both cases postdates all 

emplacement-related structures. 

 

3.4. Geological mapping 

The detailed geology of the Bavarian Forest remained up to now poorly known in some 

areas. Thank to an EU-project of the Bavarian Environment Agency called “Schaffung 
geologischer und hydrogeologischer Informationsgrundlagen” (generation of geological 

and hydrogeological basis information), the financial support was provided to perform 

detailed geological maps at scale 1:25000. The authoress carried out the geological 

mapping of the topographic sheet number 7246 Tittling (Fig. 3.4-1). 

The field work related to this project brought a big amount of information about up to 

now unknown sheared dykes and stocks, which are the central object of this thesis on 

its Bohemian Massif section, but also about their country rocks and the structural 

elements present in the region. 

 

 
 

Figure 3.4-1. Location of the topographic sheet 1:25000 number 7246 Tittling. 
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3.5. Microfabrics and optical microscopy 

Several thin sections were studied, some of which were used for the petrographical 

characterization of the different rock types cropping out in the study area. Some others 

were prepared for their structural analysis: they were cut parallel to the XZ and YZ-

planes of the finite strain ellipsoid in order to (i) describe the microstructural features 

characterizing each deformation phase that affected the sheared granites and its host 

rock, (ii) estimate the temperature conditions and the deformation mechanisms 

governing each phase and (iii) study the changes in intensity and style of deformation 

inside the sheared granites. 

The spatial and geometrical configuration of all those components that make up a rock 

is referred to as fabric. The fabric of a rock, especially the microfabric, provides 

information about the deformation mechanisms that operated during its geological 

history, because each deformation mechanism gives rise to some associated fabric 

features. For the purpose of the present work the fabrics of quartz and feldspar are 

especially relevant, most of all those formed under ductile conditions.  

The dynamic recrystallization of a rock or mineral aggregate can occur by local 

migration of grain boundaries and growth of the less deformed crystals or by adding 

dislocations to subgrain boundaries causing a progressive misorientation of subgrains 

(Passchier and Trouw, 1996 and references therein; Stipp et al., 2002 and references 

therein). These recrystallization mechanisms are called grain boundary migration (GBM) 

and subgrain rotation (SGR), respectively. At natural strain rates and low temperature 

(lower greenschist facies), quartz recrystallizes by a particular type of grain boundary 

migration which occurs in a localized fashion at the borders of porphyroclasts. This 

mechanism is called bulging recrystallization (BLG). At higher temperatures SGR 

becomes dominant, followed by GBM. The temperature ranges in which each 

recrystallization mechanism takes place proposed by Stipp et al. (2002) at 2.5 to 3 kbar 

are: 260-420°C BLG, 380-530°C SGR, 480°C and above GBM. Feldspars typically start to 

recrystallize at higher temperatures than quartz (Tullis, 1983), at around 450°C. 

At high or very high temperatures solid-state diffusion creep may operate. In quartz-

feldspar aggregates this deformation mechanism leads to the formation of strongly 

lobate grain boundaries between both minerals (Gower and Simpson, 1992). 

Grain boundary sliding, in combination or not with diffusion creep (superplasticity), 

typically takes place in fine-grained, equigranular aggregates. This deformation 

mechanism usually destroys a pre-existing lattice-preferred orientation or prevents the 

formation of a new one. 
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3.6. Quartz textures by means of electron backscatter 

diffraction 

Quartz textures 

In this work the term “texture” will be used to refer to the geometrical arrangement of 

the crystallographic directions of the grains in a rock. In deformed rocks, the orientation 

of the crystallographic axes of the grains is not randomly distributed, but tends to 

cluster at concrete directions, giving rise to the so-called lattice-preferred orientation 

(LPO) patterns. In the case of tabular or prismatic grains, such as amphiboles or micas, 

the LPO is linked to a shape preferred orientation (SPO), which is as easy to identify as 

a foliation or lineation. In equant grains, such as quartz, the LPO occurs as a result of 

recrystallization by dislocation creep. Therefore, the configuration of the LPO patterns 

depends on the slip systems (i.e. crystallographic slip planes and slip directions) that are 

active during the deformation (Fig. 3.6-1). 

 

Figure 3.6-1. Quartz crystal 

showing main crystal faces 

and principal 

crystallographic axes. 

Some of the main slip 

systems in quartz are listed. 

 

Each slip system has a critical resolved shear stress that changes with temperature and 

chemical activity of certain components. Thus, the study of the quartz LPO patterns 

constitutes a good way to estimate the temperature governing the deformation. The 

quartz textures have been profusely studied, maybe due to the fact that quartz is a 

mineral present in most of the rocks of the crust and is stable under a wide range of 

metamorphic conditions.  

Fig. 3.6-2 shows the typical LPO patterns formed by coaxial progressive deformation 

under low to intermediate temperatures in quartz. Small circle girdles are most 

common, but in plane strain they are connected giving rise to Type I crossed girdles. 
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Figure 3.6-2. Flinn diagram showing 

the relation of geometry of LPO 

patterns of quartz c-axes (black 

contours) and a-axes (striped) with 

strain in the case of coaxial 

progressive deformation. The inset 

at the top shows the orientation of 

the principal strain axes in the pole 

diagrams. Horizontal lines in pole 

diagrams indicate reference 

foliation. Dots indicate reference 

lineation. Taken from Passchier and 

Trouw (1996). 

 

 

Other c-axis LPO patterns that develop in coaxial progressive deformation are Type II 

crossed girdles, which form under constriction, and point maxima around the Y-axis of 

the finite strain ellipsoid. Both patterns seem to form at higher temperature than the 

patterns of Fig. 3.6-2 (Schmid and Casey, 1986). 

Under non-coaxial deformation (Fig. 3.6-3) cross girdles become slightly asymmetric (or 

monoclinic symmetric). Increasing temperature, the following patterns develop 

progressively: single girdles inclined towards the foliation plane, single maxima around 

the Y-axis of the finite strain ellipsoid and point maxima close to the direction of the 

stretching lineation. As for a-axes, they display two maxima parallel and perpendicular 

to the movement direction on the XZ-plane of strain under low temperatures. Increasing 

temperature, they cluster first parallel to the movement direction, begin later to scatter 

on the XZ-plane of strain and become at the end perpendicular to the movement 

direction.  

As mentioned above, the development of the different LPO patterns is due to the 

activation of given slip systems. Fig. 3.6-4 represents the areas of the stereographic plot 

in which c-axes concentrate when a given slip system is active: Prism <a> slip is active 

under a wide rage of temperatures, whereas basal <a> slip is active rather at low-grade 

conditions and prism <c> slip under high temperatures (Mainprice et al., 1986; Masberg 

et al., 1992; Kruhl, 1996). 
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Figure 3.6-3. Pole diagrams 

showing four types of 

contoured LPO patterns of 

quartz c-axes (grey) and a-

axes (striped) such as 

develop with increasing 

metamorphic grade in non- 

coaxial progressive deformation. The variation is due to a change in the dominant slip systems. 

Taken from Passchier and Trouw (1996). 

 

Figure 3.6-4. a) Illustration 

of the contribution of 

equidimensional quartz 

crystals with aligned a-axes 

and basal, rhomb or prism 

slip planes to a Type I 

crossed girdle pattern 

formed in coaxial 

progressive deformation. c-

axes in grey, a-axes striped. 

b) The same for several 

patterns that develop in 

non-coaxial progressive 

deformation. Taken from 

Passchier and Trouw 

(1996). 

 

Electron backscatter diffraction 

Using a U-stage, the measurement of the orientation of c-axes is, although time 

consuming, easily carried out. The application of electron backscatter diffraction (EBSD, 

e.g. Prior et al., 1999) to the study of quartz microfabrics provides information about 

the existence of a lattice preferred orientation not only concerning c-axes, but also other 

crystallographic directions which are not easily measured on a U-stage and provide also 

valuable information, for example a-axes. 
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This technique was applied using a SEM Leo 1530 at the Bayerisches Geoinstitut of the 

University of Bayreuth (Germany). From different samples of mylonite, deformed granite 

and diatexite, slabs parallel to the XZ-section of the finite strain ellipsoid were cut and 

polished in a first step up to a particle size of the medium of 1 µm and finally with a 

high pH silica solution (SYTON). The samples were coated with carbon up to a thickness 

of about 4 nm to reduce charging effects and scanned under an accelerating voltage of 

30 ke. The beam current was about 4 nA. Rectangular areas of the samples were 

delimited and scanned with a step width between 170 and 10 µm, depending on the 

grain size in every case. 

 

3.7. Strain analysis 

The strain in the studied sheared granites is typically inhomogeneous. In order to study 

the geometry of strain and its variations, a strain analysis was performed at different 

locations of an especially well exposed dyke: the Saunstein granite dyke (chapter 

5.3.3.2). 

Four samples were selected for the application of the Rf/Φ’ method (Peach and Lisle, 

1979; Ramsay and Huber, 1983), which allows the calculation of the aspect ratio of the 

finite strain ellipse (Rs) from initially elliptical markers. As marker we used feldspar 

mantled porphyroclasts, whose initial form after crystallisation from melt is comparable 

to an ellipse. Hand specimens were cut parallel to the XZ and YZ principal planes of the 

finite strain ellipsoid and scanned. For an average of 73 particles per section the 

elliptical shape of porphyroclasts (Rf) and the orientation of their major axis (Φ’) were 

measured. Making use of the program “STRAIN” (Unzog, 1990), the strain ratios on the 

above mentioned principal planes (Rs,xz and Rs,yz) were calculated. Rs,xy was obtained 

from Rs,xz /Rs,yz. 

The angle between S and C planes was used to estimate the strain in three of the 

former samples using the formula: 

'2tan
2

θγ =  , 

where γ is the shear strain and θ’ the angle between S and C (Ramsay and Graham, 

1970). 

 

3.8. X-ray fluorescence analysis 

Six samples distributed throughout the Saunstein dyke (chapter 5.3.3.2) were selected 

to be analyzed by means of X-ray fluorescence (XRF) at the Bavarian Environment 
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Agency (Marktredwitz, Germany). The results were used in the application of the isocon-

diagram method and the Zr-thermometry. 

 

3.8.1. Isocon diagram 

In order to check a possible mass transfer and volume change during deformation the 

isocon-diagram method (Grant, 1986) was applied. This method consists in plotting the 

concentration of components in an unaltered rock (undeformed in our case) against the 

concentration in an altered (deformed) equivalent. The equation linking the 

concentration of a component relative to its concentration prior to deformation is: 
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where C is the concentration and M is the mass of the sample. i, O and A represent a 

given component, the undeformed state and the deformed state respectively. If 

deformation carries no change in volume, both mobile and immobile components will 

plot on a line of slope = 1. If deformation was accompanied by mass loss, which 

normally takes place by removing the mobile components, then the immobile 

components would become more concentrated and tend to plot on a line of slope > 1. 

 

3.8.2. Zr-thermometry 

From the zirconium content of the samples, the temperature of the granitic melt can be 

calculated after Watson and Harrison’s (1983) zircon solubility model making use of the 

equation: 

( )
T
MD 12900185.080.3 +−⋅−−

= , 

where D represents the solubility of zircon in the melt, T the temperature and M the 

cation ratio  

SiAl
CaKNaM

⋅
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=
2 . 
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3.9. Electron microprobe analysis 

3.9.1. Phengite barometry 

The phengite geobarometer (Massonne and Schreyer, 1987; Massonne and Szpurka, 

1997) correlates the number of Si atoms per formula unit (p.f.u.) in white mica with 

pressure and temperature. The minerals biotite/phlogopite, quartz, K-feldspar and white 

mica constitute the limiting assemblage for the use of this barometer and are present in 

most of the studied sinistrally sheared dykes and stocks. The phengite geobarometer 

can provide information about the emplacement depth and the pressure governing the 

deformation. White micas found in mylonites and deformed granites were analysed at 

the Institut fuer Geowissenschaften, Frankfurt am Main University (Germany), using a 

JEOL JXA-8900RL electron probe microanalyzer with five wavelength-dispersive 

spectrometers. The operating conditions were 15 kV accelerating voltage, 13 nA 

specimen current and 5 µm spot size. The results are listed in Appendix 3. 

3.9.2. Feldspar composition 

Electron microprobe analyses of feldspars were performed with the aim of studying 

variations in chemical composition between old and dynamically recrystallized feldspar 

grains. The analyses were performed at the Institut fuer Geologie und Mineralogie, 

Erlangen-Nuernberg University (Germany), using a JEOL Superprobe JXA-8200 with four 

wavelength-dispersive spectrometers. Operating conditions were 15 kV accelerating 

voltage, 15 nA specimen current and 5 µm beam size. The results are listed in Appendix 

4. 

 

3.10. Piezometry 

Several empirical (Mercier et al., 1977; White, 1979; Christie et al., 1980; Etheridge and 

Wilkie, 1981; Koch, 1983; Stipp and Tullis, 2003) and theoretical piezometers (Twiss, 

1977; Twiss, 1980) have been calibrated, which relate differential stress and the size of 

dynamically recrystallized quartz grains formed during steady-state dislocation creep. 

The difference between the piezometers lies in the value of the parameters b and r in 

an equation of the form: 

r

b
D

1







=σ , 

where σ is the differential stress, D the diameter of quartz grains and b and r 
experimentally determined constants (Table 3.10-1). 
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 b r 

Twiss (1977, 1980)a 14500 -1.47 

Mercier et al. (1977)a 4070 -1.4 

White (1979)a 12900 -1.43 

Etheridge and Wilkie (1981)a 14200 -1.47 

Koch (1983)a 490 -0.59 

Christie et al. (1980), wetb 1780 -0.9 

Stipp and Tullis (2003) 3631 -1.26 

 

Table 3.10-1. Basic parameters for piezometers. a taken from Abalos et al. (1996), b taken from 

Ord and Christie (1984). 

 

In order to apply them to the deformation in the Saunstein dyke (chapter 5.3.3.2), 

quartz grains were traced on photomicrographs. Their area was measured using the 

image analysis software DIAna. The grain diameter is then calculated as the diameter of 

a circular particle of equal area. 
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4. Investigations on granitoids of the Ossa-Morena 

and Central Iberian Zones, Iberian Massif 

4.1. Geographic overview 

In the Iberian Massif two areas were studied. The La Bazana Pluton is located in south-

western Spain in the administrative district of Extremadura, at about 38°18’N 6°46’W. 

The Nisa-Alburquerque batholith lies between 39°13’N and 39°31’N and 6°49’W and 

7°49’W, half of it is found in the same Spanish district, the other half in Portuguese 

territory. In this area the climate is continentalized Mediterranean, with precipitations 

from 400 to 600 mm/yr. The landscape is dominated by the western ends of the 

mountain ranges called Montes de Toledo and Sierra Morena, and also by the valleys of 

the rivers Guadiana and Tajo (Fig. 4.1-1). Most of the surface of Extremadura is 

occupied by a vast plain with an average altitude of 350 m AMSL, in which pasture 

grounds are a very typical way of land use. The lack of a dense vegetal cover eases the 

geological observation. In some areas, the road coverage is insufficient, so that a part 

of the geological work must be done on foot. 

 

 

Figure 4.1-1. a) General map of Europe. Source: Google Earth. b) Enlargement of the Iberian 

Peninsula showing the main geographic features and the location of the Nisa-Alburquerque 

(NA) and La Bazana (LB) study areas. 
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4.2. The La Bazana pluton 

4.2.1. Introduction 

The La Bazana pluton is a late-Variscan pluton intruding Cambrian rocks of the Ossa-

Morena Zone, in the south-western part of the Iberian Massif (Fernández-Carrasco et 

al., 1981; Fig. 4.2.1-1). Magmatism in the Ossa-Morena Zone was abundant, and apart 

from Late Proterozoic (Cadomian) and Early Palaeozoic (rifting-related) plutonism and 

volcanism (Sánchez Carretero et al., 1990; Pérez-Estaún and Bea, 2004), there are 

plutonic and volcanic rocks emplaced at different times during the Variscan Orogeny. 

 

 

Figure 4.2.1-1. Geological map of the study area, modified after Expósito (2000). A-D indicate 

the position of the composite cross-section in Fig. 4.2.3-5. (1) Syn-orogenic sediments 

(Devonian – Lower Carboniferous); (2) siliceous slates and chert (Silurian – Lower Devonian); 

(3) metasandstones and slates (Cambro-Ordovician); (4) basalts and slates (Middle 

Cambrian); (5) slates, metagreywackes and volcanics (Lower Cambrian); (6) carbonates, 

metagreywackes and volcanics (Lower Cambrian); (7) slates, metagreywackes and black 

quartzites (Upper Proterozoic). 
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The La Bazana pluton is a late manifestation of the Variscan collisional magmatism 

(Expósito, 2000). In the area around this pluton, the stratigraphic sequence consists of 

a pre-orogenic succession ranging from Late Proterozoic to Early Devonian rocks, 

unconformably covered by syn-orogenic Devono-Carboniferous sedimentary rocks (Fig. 

4.2.1-1). The pre-orogenic rocks are affected, successively, by (Expósito, 2000): (1) 

Devonian recumbent folding verging to the SW and having developed regional axial 

plane cleavage, (2) thrusting with top-to-the-south sense of movement, (3) Early 

Carboniferous normal faulting, and (4) Middle Carboniferous upright folding with 

irregular development of crenulation cleavage. The La Bazana pluton is located in the 

core of one of these large late upright antiforms (Fig. 4.2.1-1). As the granite is sub-

circular in outcrop and does not seem to record any of the aforementioned regional 

deformations, its emplacement is likely to have occurred during or shortly after the 

development of the upright Middle Carboniferous folds. No geochronological data are 

available for this granite. 

 

4.2.2. Petrography and structure of the La Bazana pluton and its 

country rocks 

The cartographic shape of the La Bazana pluton is approximately circular, 6 km in 

diameter (Fig. 4.2.1-1). Petrographically, it is remarkably homogeneous, medium-

grained and with a monzogranitic peraluminous composition (Fernández-Carrasco et al., 

1981). The main primary constituents are quartz (30%), K-feldspar (25–30%), 

plagioclase (25–30%), biotite (10%) and muscovite (5%). Muscovite has the 

microstructural appearance of igneous crystallisation: crystals are clean, subidiomorphic 

and frequently intergrown with biotite, and they impose their own shape to the adjacent 

quartz (Fig. 4.2.2-1a). Plagioclase is also usually subidiomorphic and shows zoning 

ranging from oscillatory oligoclase compositions in the core to albite at the rim. Quartz 

grains are moulded to the shapes of plagioclase and micas, but in contact with (or as 

inclusions in) K-feldspar, they preserve crystal faces. K-feldspar always has an interstitial 

appearance and myrmekite is locally developed at the grain margins. From these 

microstructural relationships, the following order of crystallisation is inferred: (1) 

plagioclase (though the most external albitic rim is somewhat late), (2) biotite and 

muscovite, (3) quartz, and (4) K-feldspar. In most samples, the mineral grains do not 

show any signs of significant strain, although quartz sometimes displays undulatory 

extinction (Fig. 4.2.2-1a). 
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Figure 4.2.2-1. Microscopic and field aspects of the La Bazana granite and its country rocks. a) 

The La Bazana granite muscovite (Ms) and biotite (Bt), frequently intergrown, impose their 

crystallographic shape to quartz (Qtz) and K-feldspar (Kfs), which supports the igneous 

crystallisation of muscovite. b) Ragged appearance of muscovite (Ms) in the innermost zone 

of the thermal aureole, suggesting that it is out of equilibrium. c) Andalusite porphyroblast 

including the main regional foliation, which is deflected around the porphyroblast due to a 

late flattening (see also f, g, h). Continues on next page →  
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 →Figure 4.2.2-1 (continued). d) Layers of hornfels (hf) can be seen sometimes in the 

proximity of the top of the granite; they are parallel to the contact with the country rock. e) 

Outcrop scale view of a lateral contact between the granite (gr) and the hornfelsic country 

rock (hf), showing small fingers of granite. f) Country rock just on top of the granite, with 

folded (f), boudinaged (b) or non-deformed veins (n). g) A sub-horizontal spaced foliation in 

the country rock on top of the granite as a consequence of the subvertical flattening 

illustrated in the previous photograph. h) Dyke of leucocratic granite (lgr) flattened and 

foliated, its foliation being continuous with the one in the granite (gr); this constitutes further 

evidence for flattening undergone by the granite and the country rock on top. 

 

A distinctive thermal aureole 1–200 m wide developed around the granite (Fernández-

Carrasco et al., 1981). Within the first few meters away from the granite contact, the 

rocks are hornfelses having the following mineral associations (in order of proximity to 

the granite): (1) Qtz, Bt, Sil, Ms, Crd?; (2) Qtz, Bt, And, Sil, Ms, Crd?; (3) Qtz, Bt, And, 

Ms, Crd?. In the first association, muscovite has a ragged appearance (Fig. 4.2.2-1b), 

suggesting that it is not stable in the innermost part of the aureole, where the reaction 

Ms + Qtz = Sil + Kfs may have just begun to develop. Cordierite is very scarce (a few 

grains of unclear identification), perhaps because chlorite was depleted in the first 

reactions and afterwards andalusite is formed consuming cordierite (Yardley, 1989). The 

andalusite appears as prismatic porphyroblasts with inclusions of opaque grains and 

sericitic rims. Trails of opaque minerals inside the andalusite prisms demonstrate that 

the regional foliation associated with recumbent folding existed prior to the growth of 

andalusite. However, the same foliation is also moulded around the andalusite 

porphyroblasts (Fig. 4.2.2-1c), constituting the microstructural expression of fabric 

formation synchronous with blastesis that is also clearly expressed at the outcrop scale 

(see below). The crystallisation of sillimanite in the innermost part of the thermal 

aureole starts in the stability field of muscovite, but within a short distance the 

muscovite seems to be in disequilibrium by microstructural evidence. This observation 

allows pressure during thermal metamorphism to be estimated at 2–3 kbar (Fig. 4.2.2-

2). On the other hand, igneous muscovite in granites seems to imply a minimum of 3 

kbar for the pressure of crystallisation, although this matter is still questioned (Zen, 

1988). Anyway, bearing in mind that the granite could have ascended somewhat after 

the muscovite crystallisation, there is no conflict with the metamorphic data, and it is 

believed that a depth of 7–10 km corresponds to the emplacement of the La Bazana 

granite (Fig. 4.2.2-2). 
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4.2.2-2. P-T diagram illustrating the 

emplacement conditions of the La 

Bazana granite inferred from mineral 

assemblages. a) Upper limit for the 

stability of muscovite in the presence 

of quartz, after Chatterjee and 

Johannes (1974) and Chatterjee and 

Flux (1986). b) and c) 

Andalusite/sillimanite boundary, after 

Hemingway et al. (1991) and 

Holdaway (1971), respectively. d) and 

e) Water saturated granite solidi, after 

Wyllie (1977) and Tuttle and Bowen 

(1958), respectively. Dotted area:  

stability field of magmatic muscovite. Arrow: ascent path of the La Bazana granite. Thermal 

aureole: (4) andalusite, (3) andalusite and sillimanite, (2) sillimanite and muscovite, (1) 

sillimanite (unstable muscovite). 

 

The axial-plane foliation of Devonian recumbent folds represents a previous marker that 

helps to determine the deformation produced by the granite intrusion in the host rocks. 

The dip of the main regional foliation in the nearby country rock defines a gentle dome 

centred on the granite and imposed over the regional NW—SE strike (Fig. 4.2.2-3). 

Congruently, the dominant dips of the granite–country rock contact point outward from 

the granite, as well as do the foliation in the granite (see below). The granite does not 

show, however, a simple immersion under the country rock: Fingering at different scales 

has been observed where the granitic magma penetrated along the regional foliation 

(Fig. 4.2.2-1e and 4.2.2-4). The country rock just on top of the granite is sometimes 

pervaded by the veins of quartz and feldspar, as a result of hydrothermal fluid flow 

coming from the granite. These veins (Fig. 4.2.2-1f) show different orientations and 

strain: Some of them are folded with sub-horizontal axial-plane surfaces, and veins lying 

sub-horizontally are boudinaged. Locally, a centimetre-spaced sub-horizontal crenulation 

cleavage is developed (Fig. 4.2.2-1g). Consequently, the country rock on top of the 

granite has been affected by subvertical shortening and sub-horizontal stretching (see 

also Fig. 4.2.2-1c), a strain probably related to the granite emplacement. There are also 

undeformed or less deformed veins whose penetration into the overlying country rock 

had to be late with respect to the vertical flattening (Fig. 4.2.2-1f). 
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Figure 4.2.2-3. Map of foliations and lineations in the La Bazana pluton and its host rock. Plots 

of granite and host rock foliation poles (equal area, lower hemisphere projection). 

 

Careful examination of the granite reveals a foliation and, locally, a mineral lineation 

defined by biotite and feldspar crystals. These are magmatic structures, i.e. they formed 

while the crystallisation of the magma was not complete, as no tectonic twins or 

bending in feldspars, no kink folds in micas, and only weakly deformed interstitial quartz 

is observed. The shape preferred orientation is never strong, so that the foliation and 

the mineral lineation have a faint appearance. The foliation is distinguishable in most 

outcrops (not so the lineation); its orientations describe a dome pattern (Fig. 4.2.2-3). 

In some places, there are N—S and E—W subvertical leucogranitic dykes with a sub-

horizontal foliation passing into the foliation of the granite (Figs. 4.2.2-1h and 4.2.2-3), 

implying that at some point during crystallisation of the granite, tensional sub-horizontal 

stress-originated fractures immediately replenished with residual magma, after which 

vertical shortening deformed both the granite and the dykes. This deformation in the 

granite has an obvious correlation with the flattening observed in the country rock, and 

with the dome pattern in both the granite and the country rock around it. 
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Figure 4.2.2-4. Cross-

section through the 

western border of the La 

Bazana pluton. Location 

shown in Fig. 4.2.2-3. 

Cross pattern: granite. 

Dashed-dotted  pattern: 

host rocks. Horizontal 

scale = vertical scale. 

 

4.2.3. Three-dimensional granite geometry 

After the field study of the granite and its metamorphic aureole, new gravity data were 

gathered in order to model the deep geometry of the pluton. Relative gravity 

measurements were carried out on an irregular grid covering the outcrop and 

surrounding areas. Relative gravity measurements were calibrated with the absolute 

gravity value of the base station of the Instituto Geográfico Nacional located in Fuente 

de Cantos (Badajoz, Spain). The irregular grid of gravity measurements was 

interpolated using the kriging method in order to draw the Bouguer anomaly map (Fig. 

4.2.3-1). 

In addition, we had access to an aeromagnetic survey carried out by the Junta de 

Andalucía and the Instituto Tecnológico Geominero de España in 1997. The recording 

lines were N—S and spaced 250 m, and the control lines were E—W and spaced 2.5 km. 

Flight altitude was 80 m above the topography. Magnetic measurements were carried 

out with a G822 Geometrics magnetometer and positioned by means of differential GPS. 

The gravimetric and magnetometric data provided valuable information to constrain the 

deep shape of the granite. Regional Bouguer anomaly maps (1:1000000 scale, I.G.N., 

1976) show the presence of a poorly-defined minimum in the La Bazana granite region, 

over 20 km in diameter, with anomaly values < 0 mGal, and a regional increase of 

0.357 mGal/km towards the SW. The Bouguer anomaly map calculated with the new 

field data (Fig. 4.2.3-1) offers a more detailed view of the anomaly minimum related to 

the granite. 

The calculated Bouguer anomalies in the study region range from -2 to 17 mGal, 

compatible with the regional Bouguer anomaly map values (I.G.N., 1976). The gravity 

minimum is approximately circular in shape, though slightly displaced northeast of the 

granite outcrop probably as an effect of the basic volcanic rocks located to the south-

west. In analysing the main features of the granite shape, two profiles with SW—NE and 

NW—SE orientations were studied. The granite intrudes into a homogeneous sequence 

of host rock consisting of metapelites, except at the south-western border where basic 
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volcanic rocks are also present (Figs. 4.2.1-1 and 4.2.2-3). The regional anomaly was 

determined taking into account this setting. In the NW—SE oriented B profile, with a 

most homogeneous host rock near the granite body, the regional anomaly was 

established mainly by the main asymptotic tendency of the Bouguer anomaly, taking 

into account that in both extremities of the profile this tendency is well defined (Fig. 

4.2.3-2), allowing the calculation of the residual anomaly. However, in the SW—NE 

oriented A profile, the outcropping host rock is not homogeneous. We have considered 

for this profile the gradient of the south-westwards regional increase of the Bouguer 

anomaly obtained from the 1:1000000 scale map (I.G.N., 1976). Both A and B profiles 

intersect with the same regional anomaly value. The residual anomaly related to the 

granite body shows values < -8 mGal despite the small size of the granite outcrop. 

 

Figure 4.2.3-1. Bouguer 

anomaly map. The hatched 

line shows the contour of 

the outcropping La Bazana 

granite. UTM coordinates. 

 

 

Figure 4.2.3-2. 

Bouguer and 

regional anomaly 

profiles. Location 

in Fig. 4.2.3-1. 
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In order to determine the shape of the granite in the subsurface, we constructed gravity 

models (Fig. 4.2.3-3) of this body along the two profiles A and B located in Fig. 4.2.3-1, 

also taking into account field data (Figs. 4.2.1-1 and 4.2.2-3) and magnetic data (Fig. 

4.2.3-4).  

 

 
 

Figure 4.2.3-3. Residual gravity anomaly models. Location in Fig. 4.2.3-1. Two possibilities are 

presented, considering densities of 2.62 and 2.60 g/cm3 for the granite body. The two patterns 

in the density represent no different densities, but only different lateral extension in the 2 ½ 

modelling. 

 

Campos and Plata (1991) determined the mean density of metapelites (2.72 g/cm3) in 

the region of Albuquerque, similar to those in the host rock of the La Bazana granite. 

Consequently, we took 2.72 g/cm3 as the value for mean density of the host rock, 
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except at the south-western border were basic volcanic rocks crop out. The La Bazana 

granite has a homogeneous composition, as shown by the petrographic observations 

and its largely constant, low mean magnetic susceptibility values (comprised between 

1×10-5 and 17×10-5 with a mean value of 10×10-5 SI) which point to a low density. 

Specifically, taking into account the modal composition of the granite and the mineral 

densities (quartz: 30%, 2.65 g/cm3; K-feldspar: 30%, 2.56 g/cm3; oligoclase: 30%, 2.63 

g/cm3; mica: 10%, 2.85 g/cm3), it is possible to estimate a mean density of 2.637 

g/cm3. However, the true density will be a little lower, as it occurs in other granite 

bodies (Campos and Plata, 1991) because of weathering and the presence of fractures. 

Then, we have modelled two possibilities, considering the most probable 2.62 g/cm3 and 

the extremely low 2.60 g/cm3 densities. In addition, we adopted a 2.91 g/cm3 density 

for the metabasites located southwest of the granite body, a value well in the range for 

this lithology (Telford et al., 1990), while justifying the observed anomaly. These basic 

rocks constitute laterally discontinuous strata of variable thickness (see Figs. 4.2.1-1 and 

4.2.3-5). The higher density rocks formed in the aureole have not been considered in 

our model, since there are no relative positive values of the residual anomaly that we 

could relate to them. Thus, their thickness must be so small that their influence on the 

observed gravity values remains unnoticed. Note finally that the strip of basic rocks in 

the northwest and southeast of the granite (Figs. 4.2.1-1 and 4.2.2-3) just touches the 

surface and does not penetrate in depth (Fig. 4.2.3-5); its volume is insignificant. 

Gravity models were built in 2 ½ dimensions (Fig. 4.2.3-3) in order to take into account 

the limited extent of the bodies orthogonal to the profiles. The shallower part of the 

granite was considered to have greater lateral extent than the deeper part for the sake 

of consistency between the two crossing sections. 

In the gravity model of profile A (Fig. 4.2.3-3), a positive residual gravity anomaly is 

observed; it may be related to the basic volcanic rocks, and could produce the north-

eastward displacement of the anomaly minimum related to the granite body. The 

gravity models suggest that the uppermost part of the granite extends laterally below 

the host rocks, reaching a diameter of up to 8 km at very shallow depths. At deeper 

levels, however, the granite would have a thinner root. The root depth depends upon 

the density considered. For a density of 2.62 g/cm3, we obtain a deep root of up to 4 

km in diameter and as much as 10 km in depth. However, for a lower density of 2.60 

g/cm3, we obtained a shallower root of about 4 km in depth (Fig. 4.2.3-3). Anyway, the 

granite has a teardrop-pipe geometry, with a larger cap zone. At the south-western 

border, the lateral spreading of the granite seems to exploit the mechanic anisotropy of 

the contact between the metapelites and the volcanic rocks (Fig. 4.2.3-5).  

Southwest of the granite, there are large aeromagnetic anomalies (Fig. 4.2.3-4) 

associated with the outcrop of basic volcanic rocks (Fig. 4.2.2-3). The aeromagnetic 

map shows the dipole centre to be located very near the granite border, suggesting that 
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the basic volcanic rocks may extend in depth to the SSW of the granite and even below 

the granite, as it was foreseen from geological studies (Fig. 4.2.3-5; Expósito, 2000). 

 

Figure 4.2.3-4. 

Aeromagnetic 

anomaly map. The 

thick line shows the 

contour of the 

outcropping La 

Bazana granite. 

 

The geological cross-section of Fig. 4.2.3-5 shows that the La Bazana granite emplaced 

at a late stage of the regional tectonic evolution and cuts the recumbent folds. The 

granite is located in the core of a late antiform. The granite was most likely emplaced 

during or shortly after the development of this late large antiform since: (1) as indicated 

by the petrographic data, the top of the granite at the time of emplacement was 

situated at a maximum depth of 10 km; (2) the geological cross-section of Fig. 4.2.3-5 

shows that such an overburden atop the granite is viable, provided it intruded when 

erosion had not yet removed much of the relief created by late folding; and (3) it was 

not deformed during the late upright folding. All these considerations suggest the 

emplacement to have occurred most likely at the end of or shortly after the Middle 

Carboniferous upright folding. 
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Figure 4.2.3-5. Composite cross-section of the study area, including the geometry of the La 

Bazana granite as modelled from gravity data. Location in Fig. 4.2.1-1 (A-D). The floor depth of 

the granite body depends upon the density considered, although the geometry of the top is 

similar. Host-rock structure after Expósito (2000). 

 

4.2.4. Ascent and emplacement model: discussion 

Field observations provide data to determine the shallow structure of granite plutons 

and gravity measurements help to establish their 3D view, although the size of the 

bodies determined by gravity modelling depends on the choice of regional and residual 

anomalies and density contrasts. In our study of the La Bazana granite, the regional and 

residual gravity anomalies have been determined from the regional gravity data (I.G.N., 

1976) and the asymptotic tendency of our Bouguer anomaly data. As the local anomaly 

is strong, no improvement in the characterization of the residual (granite-related) 

anomaly is expected with more sophisticated procedures. The density contrast is, of 

course, essential in gravimetric interpretation. The modal composition of the La Bazana 

granite gives a mean density of 2.637 g/cm3, but a gravity model developed with this 

density needs a very large body occupying almost the entire crust, and the theoretical 

anomaly of this model does not fit well with the observed anomaly profile. In fact, the 

true density of granite massifs is somewhat lower (Telford et al., 1990) than those of 

fresh samples because granite massifs are more or less altered and fractured. 

Consequently, models with mean densities of 2.62 and 2.60 g/cm3 were developed. The 

shapes obtained in both cases are very similar, of teardrop-pipe, expanded at the top, 

but the root is greater if we consider a 2.62 g/cm3
 density. The 2.72 g/cm3

 density for 

the country rock, determined by Campos and Plata (1991) for similar lithologies, is 

rather on the top of the densities for schists and metagreywackes. If we consider a 
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lower density for the host rock, it would result in an even deeper root for the granite 

body. In summary, whatever the densities considered, a teardrop-pipe 3D shape is 

obtained, with some uncertainty about the maximum depth of the root (Figs. 4.2.3-3 

and 4.2.3-5). The geometry of the La Bazana granite strongly suggests diapiric ascent 

because of its thick root and teardrop-pipe shape. The geometry of its upper part 

indicates lateral expansion of the diapir during its final emplacement. The strain 

undergone in the host rock and the magmatic fabric pattern indicate upward pushing 

producing vertical shortening plus doming, and are compatible with this type of 

emplacement. 

The petrological data of the granite and its metamorphic aureole show that the final 

emplacement occurred at a pressure between 2 and 3 kbar. The geological cross-section 

of the region (Figs. 4.2.1-1 and 4.2.3-5) also shows that the level where the granite was 

emplaced may have been located at depths of up to 10 km. In the same direction points 

the lens shape of the uppermost part of the intrusion (in contrast to bell shapes), as 

similar geometries have been also observed in the analogue models of Román-Berdiel et 

al. (1995), indicating a relatively deep emplacement (deep regarding the upper crust). 

The La Bazana granite cuts through all the regional structures (Fig. 4.2.3-5). It is not 

related to any fault; for this reason, we may discard mechanisms of fault-controlled 

emplacement. Although it is sub-circular in outcrop, its mushroom geometry, its 

homogeneity and its internal fabric is not compatible with a ballooning emplacement. 

Indeed, only a gentle dome has been observed in the studied area that is compatible 

with diapiric emplacement but not with in situ inflation (Fig. 4.2.4-1). The importance of 

stoping in assisting emplacement is difficult to evaluate: the discordant contacts 

observed in a few places suggest that some amount of it would have occurred, but the 

absence of large blocks on top of the granite makes it difficult to confirm. 

The final stage of the evolution of the La Bazana diapir is characterized by the widening 

of its top laterally, exploiting the anisotropy of flat-lying bedding and foliation, as clearly 

shown by the interfingering with the country rock (Figs. 4.2.2-1d and 4.2.2-4). This 

evolution is the consequence of still active pushing by buoyancy, though insufficient (it 

has been diminished by crystallisation) to force the upward migration of the diapir 

through an increasingly viscous crust. Upward magmatic pressure at this stage is 

evidenced not only by the upper widening, but also by the dome geometry and the 

flattening strain in the granite (late-magmatic fabric) and in the overlying country rock.  

In salt tectonics, diapiric growth is said to be effected through two end-member 

mechanisms (Jackson and Talbot, 1994): downbuilding (syn-depositional diapir growth) 

and upbuilding (post-depositional diapir growth by active piercing through the 

overburden). The upbuilding of salt diapirs is believed unlikely, yet possible if: (a) the 

diapirs are tall and the overburden is thin, (b) the overburden is being extended, or (c) 

the overburden is unusually weak. In contrast to salt tectonics, downbuilding can never 

be the case for the ascent of granite diapirs. Then, concerning upbuilding, it has been 
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argued, as in salt tectonics, that magmatic diapirs are unable to penetrate through the 

rheologically strong upper crust (e.g. Petford, 1996; Clemens, 1998). Natural examples, 

like the La Bazana granite, provide new data to influence theoretical discussions. The 

key for the ascent of granite diapirs seems to be the thermal and strain-rate softening 

of the country rock by the granite (Mahon et al., 1988; Weinberg and Podladchikov, 

1995; Weinberg, 1996; Miller and Paterson, 1999), bearing in mind the whole 

complexity of the crust’s behaviour. The La Bazana granite is an example that suggests 

that some granite bodies may have undergone a diapiric ascent to relatively shallow 

levels of the crust (7–10 km in depth in the case studied). Clemens (1998) considers 

that diapiric thermal death by increasing crystallisation carries with it the important 

implication that diapiric ascent should give rise mainly to diapiric emplacement, since 

the magma would have little or no potential to migrate further once the diapiric process 

had finished. Nevertheless, our case study suggests that sometimes other mechanisms 

may still operate: when the diapiric ascent is blocked, the bodies probably start to 

develop a lateral expansion. It could be that highly evolved diapirs would reach even 

tabular shapes (e.g., Goulty et al., 2001) by further evolution of what is observed in the 

upper part of the La Bazana pluton. In an extreme case, this would lead to the removal 

of the root zone and the development of a flat floor. 

 

 

Figure 4.2.4-1. Ascent and emplacement model of the La Bazana granite. A) and B) Two stages 

of diapiric ascent, probably simultaneous to late regional fold development. C) Emplacement 

with doming and lateral expansion of the granite at shallow levels. The model is based on the 

present-day geological cross-section of the area and the data on granite emplacement 

discussed in the text. 
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4.3. The Nisa-Alburquerque batholith 

4.3.1. Introduction 

The Nisa-Alburquerque batholith is a 1000 km2 WNW—ESE elongated granitic body (Fig. 

4.3.1-1) emplaced during the Late Carboniferous, after the Variscan ductile deformation 

phases in the SW Iberian Massif, mostly in the Central Iberian Zone and partly in the 

Ossa-Morena Zone (see chapter 1.2). The Ossa-Morena and the Central Iberian Zones 

are characterized by intense deformation and coeval metamorphism, with pervasive 

Carboniferous magmatism resulting in granitoids cropping out at different structural 

levels.  

The Ossa-Morena / Central Iberian Zones boundary is marked by a strongly deformed 

and metamorphosed NW—SE trending band, namely, the Badajoz-Córdoba Shear Zone 

or Central Unit (Burg et al., 1981; Matte, 1986; Azor et al., 1994; Simancas et al., 

2003). This unit is made up of orthogneisses, metasediments and amphibolites affected 

by high-pressure metamorphism and an intense shearing responsible for the 

development of a planar-linear fabric. South of the Central Unit, the northern Ossa-

Morena Zone is made up of Upper Precambrian to Silurian metasediments affected by 

SW-vergent recumbent folding and low-grade regional metamorphism. 

The southern Central Iberian Zone is made up of uppermost Precambrian to 

Carboniferous low-grade, mostly siliciclastic metasediments displaying upright kilometric 

syn-schistose folds formed in Westphalian times (Martínez Poyatos et al., 1998; 

Simancas et al., 2001). Next to the Central Unit, in the so-called allochthonous unit, Late 

Devonian NE-vergent recumbent folds are also observed (Martínez Poyatos et al., 1998; 

Simancas et al., 2001). The lowest formation is the Schist-Greywacke Complex, a 

monotonous succession made up of slates with greywacke intercalations of uppermost 

Precambrian to Lower Cambrian age. Unconformably over the Schist-Greywacke 

Complex, an Ordovician to Lower Carboniferous succession made up by slates, 

metaquartzites and metasandstones is present; among the different formations, the 

Armorican Quartzite, consisting of a several hundred-metre thick sequence of 

metaquartzites can be used as a regional marker that depicts the different structures. 

The Nisa-Alburquerque batholith intrudes the southern Central Iberian Zone, the Central 

Unit and the northern part of the Ossa-Morena Zone (Fig. 4.3.1-1). 
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4.3.2. Petrography and structure of the Nisa-Alburquerque batholith 

and its country rocks 

The present chapter outlines the main results published by Azor et al. (2000), González 

Menéndez (2002), González Menéndez and Bea (2004) and González Menéndez and 

Azor (2006).  

The Nisa-Alburquerque batholith is made up of a dominant Coarse-Grained Granite 

representing 70% of the total outcrop extent, and three subordinate facies, namely a 

Central Granite A, a Central Granite B and a Fine-Grained Granite (Fig. 4.3.2-1). The 

Coarse-Grained Granite, Central Granite A and Fine-Grained Granite are two-mica 

peraluminous S-type granites which were mapped according to their fabrics. The 

Coarse-Grained Granite is a cordierite, tourmaline and andalusite bearing, usually 

porphyritic granite that includes monzogranites and leucogranites. The Central Granite A 

is medium-grained and crops out along the axis of the batholith as a 40 km-long body 

roughly parallel to the external contacts. This dike-shaped body of biotite-bearing 

muscovite granite appears in the central and western sectors of the batholith. The Fine-

Grained Granite is a medium- to fine-grained, equigranular granite that crops out in the 

easternmost portions of the batholith (North of Alburquerque) as small stocks scattered 

throughout the Coarse-Grained Granite; this facies is a cordierite, tourmaline and 

andalusite bearing granite, very similar to the Coarse-Grained Granite but slightly more 

leucocratic. The Central Granite B is a medium-grained biotite granite that appears 

inside the Central Granite A and the Coarse-Grained Granite at the southwest sector; it 

forms small stocks aligned in the same direction as the Central Granite A band. 

Compositionally, the Central Granite B includes metaaluminous monzogranites, 

granodiorites and tonalites, being more mafic towards the W-SW, where it contains 

amphibole and sphene, and shows local mixing effects with the Coarse-Grained Granite. 

Giving these features, the Central Granite B is classified as I-type, in clear contrast with 

all the other granites of the Nisa-Alburquerque batholith, which are regarded as S-type 

granitoids. 

The compositional and geochemical data reveal an E—W zonation in the batholith, being 

the less differentiated facies in the western part. The main field evidence of this 

zonation is that the Coarse-Grained Granite becomes more leucocratic to the east. 

Further evidence is provided by the biotite composition, that shows a zonation in the 

Coarse-Grained Granite and in the Central Granite A, with a Fe/(Fe+Mg) ratio that 

decreases toward the crystal rims and also westward parallel to the longest dimension 

of the batholith. Moreover, the whole rock composition of the Coarse-Grained Granite 

shows an increasing abundance of MgO, Sr, Ba, V, Zr, Th, and REE from the east-

central domains towards the west-southwest region of the batholith. There is also a 

slight normal zonation consisting in a more leucocratic composition toward the centre of 
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the batholith and a decrease in MgO, Ba, V, Zr and LREE in the same direction 

(González Menéndez, 2002). 

The dominant Coarse-Grained Granite has been dated in several locations yielding ages 

between 285 and 310 Ma. In the western part of the batholith, Mendes (1967-68) 

obtained Rb-Sr isochrons with ages of 290 ± 8, 309 ± 20 and 301 ±9 Ma. In the eastern 

part, Roberts et al. (1991) obtained a Rb-Sr age of 286 ± 3.6 Ma, while González 

Menéndez (1998) reported Rb-Sr ages of 289 ± 22 and 294 ± 11 Ma. Despite the 

uncertainties, these ages point to a slightly older age in the western part than in the 

eastern one. The emplacement pressure has been estimated at 2.3-3 kbar (7-10 km, 

Rodríguez Suárez, 1985). 

The Nisa-Alburquerque batholith is strongly elongated parallel to the main Variscan 

structures of the southern Central Iberian zone, showing at the outcrop scale sharp 

contacts parallel to the main foliation in the country rocks, which strikes NW—SE and 

dips sub-vertically. The south-eastern end displays an E—W elongated sub-rounded 

shape that joins the rest of the batholith by means of a sort of narrows (Figs. 4.3.1-1 

and 4.3.2-1). Towards the west-northwest, the batholith enlarges and is deflected to the 

south, cutting across the Variscan structures and intruding the Central Unit and the 

northern part of the Ossa-Morena Zone. The north-western end is covered by Cenozoic 

sediments. The country rocks are mostly metapelites and quartzites, except along the 

southern contact close to the Castelo de Vide sector where the batholith intrudes the 

Ordovician Portalegre orthogneiss. The southern contact of the batholith in the 

Alburquerque sector is close to the Armorican Quartzite formation belonging to the 

southern limb of a major antiform; actually, the granite intrudes the Armorican Quartzite 

formation in the sub-rounded eastern termination while to the west the contact 

separates from this formation by a north directed deflection. Along the northern contact 

the batholith intrudes the Schist-Greywacke Complex. 

The batholith shows a 1-2 km-wide contact aureole where andalusite grew statically 

over the previous regional foliation. A strain aureole is not well developed since no 

penetrative structures attributable to the granite emplacement are recognized. The 

Armorican Quartzite formation does not modify its regional trend in the proximity of the 

batholith along the southern external contact. 
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The internal fabric of the batholith is defined by the shape preferred orientation of K-

feldspar megacrysts of the Coarse-Grained Granite (Fig. 4.3.2-1). This fabric is probably 

related to magmatic flow since other minerals apart from K-feldspar megacrysts are not 

oriented and do not show evidence for solid-state deformation. Except for the western 

part where the batholith enlarges, the magmatic fabric has an average WNW—ESE 

direction and variable dips (20-80º) mainly to the north; the fabric is therefore roughly 

parallel to the internal contact with the Central Granite A, the external contacts and the 

regional foliation in the country rocks. In the western termination, the fabric is mainly 

N—S oriented and parallel to the longest dimension of the batholith here. The intensity 

of the fabric generally increases from east to west. In the eastern sub-rounded-shaped 

sector, the fabric is more often than not isotrope, except close to the external contacts 

where a planar fabric parallel to the contact is observed. In the central-western sector, 

the fabric is very intense and homogeneous. In this sector, the orientation of the (010) 

planes of K-feldspar megacrysts define a planar fabric parallel to the external contact. 

 

4.3.3. Geometry of the Nisa-Alburquerque batholith 

To characterize the 3D shape of the Nisa-Alburquerque batholith, 6 gravimetric and 

magnetic profiles were carried out. Their orientation is approximately perpendicular to 

its longest dimension and covering its whole cartographic extent and surrounding areas. 

The obtained relative gravity measurements have been calibrated with the absolute 

gravity value of the base station of the Instituto Geográfico Nacional located in Badajoz 

(Spain). The resulting absolute gravity values were interpolated between measurement 

points using the kriging method in order to draw the Bouguer anomaly map (Fig. 4.3.3-

1). As for the magnetic data, the magnetic anomaly was obtained by substracting the 

theoretical intensity of the geomagnetic field from the observed values; the theoretical 

intensity of the geomagnetic field at the time and location of measurement is given by 

the International Geomagnetic Reference Field (IGRF).  

The magnetic profiles show no significant anomalies associated with the batholith (Fig. 

4.3.3-2), which can be taken as evidence for its homogeneous character. As for the 

country rocks, there are no magnetic anomalies, except in the south-westernmost 

sector, where some rocks with high magnetic susceptibility, such as amphibolites, can 

be found. 

Two-dimensional models of residual gravity anomaly along the 6 profiles were 

developed in order to infer the geometry of the batholith at depth (Fig. 4.3.3-3). The 

regional anomaly has been considered to approximate a linear function, which can be 

drawn in each profile taking into account the asymptotic tendency of the Bouguer 

anomaly towards and in the host rock (Fig. 4.3.3-2). We have considered the densities 

provided by Campos and Plata (1991). For the metapelitic-quartzitic country rocks, an 
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average density of 2.72 g/cm3 was assumed. For the granite, a density of 2.63 g/cm3, 

slightly lower than the one used by Campos and Plata (1991), has been considered in 

order to get the best adjustment between the observed and calculated anomalies. As for 

the Portalegre orthogneiss, we have considered the same density as for the granite, 

since their compositions are similar. 

 

 
 

Figure 4.3.3-1. Bouguer gravity anomaly map of the Nisa-Alburquerque batholith and its 

surroundings. UTM coordinates. 

 

The Bouguer anomaly profiles vary notably from east to west along the batholith. In the 

easternmost part, the batholith is related to a very pronounced minimum with 

amplitudes up to –16.4 mGal of Bouguer anomaly, and residual anomaly close to –32 

mGal. To the west, the profiles show progressively a less intense anomaly, reaching 

values of –3 mGal for Bouguer anomaly and between –15 and –18 mGal for residual 

anomaly. The shape of the profiles also changes notably from east to west. In the 

eastern and central parts, the batholith intrudes metapelites and quartzites and the 

anomaly is symmetric. In the western part, the batholith intrudes to the south the 

Portalegre orthogneiss, resulting in asymmetric profiles with lateral flats at different 

levels. 
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Figure 4.3.3-2. Gravity and magnetic anomaly profiles across the Nisa-Alburquerque batholith 

(see Fig. 4.3.3-1 for location). 
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Figure 4.3.3-3. Residual gravity anomaly models of the Nisa-Alburquerque batholith along 

profiles A to F (see Fig. 4.3.3-1 for location). 
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The two-dimensional models of the granite (Fig. 4.3.3-3) show that the geometry of the 

batholith varies notably along the different profiles. In the eastern part, the batholith 

has the geometry of an irregular cylinder inclined to the ESE, from which at surface one 

can observe the upper part, being the floor located at a depth close to 15 km in the 

easternmost part. Moreover, according to Campos and Plata (1991) the batholith 

prolongs to the ESE underneath the surface, since the gravity anomaly extends in that 

direction outside the contour of the body at surface. In the profile B, a hidden mass 

deficit must be considered in the south-south-western part in order to explain the 

obtained anomaly, suggesting that the granitic body might show some widening and 

interfingering with the country rock at depth. A similar shape was modelled by Campos 

and Plata (1991) at this location. To the west, the batholith becomes a more extended 

body whose floor is irregular and located at a depth of 4-8 km. Slight differences in the 

assumed densities for country rocks and granite provoke important variations in the 

depth of the batholith’s floor. Nevertheless, the relative differences in the granite shape 

between the profiles remain unchanged independently of the assumed densities. 

 

4.3.4. Ascent and emplacement model: discussion 

An emplacement model for the Nisa-Alburquerque batholith must take into account the 

deep geometry deduced from gravimetry, together with the petrologic, geochemical and 

structural data available, and the geotectonic context at the time of intrusion. The whole 

south-western Iberian Massif underwent transpression during most of the Variscan 

Orogeny, giving way to left-lateral ductile and brittle shear zones partially coeval with 

the folding phases (Azor et al., 1994; Simancas et al., 2001). The granite cuts across all 

the Variscan structures, meaning that it intruded after the Variscan deformation, during 

a period of post-orogenic tectonic quiescence or extension in Stephanian times 

(Simancas et al., 2003 and references therein). Sanderson et al. (1991) proposed that 

the Nisa-Alburquerque batholith intruded in a releasing bend of a left-lateral shear 

related to the Badajoz-Córdoba shear zone (or Central Unit). However, this hypothesis 

must be rejected, since no shear zone was found in the area to be spatially related to 

the batholith and the granite intrudes the ductile and brittle fault rocks of the Central 

Unit without recording any penetrative deformation. 

The gravimetric data indicate that the central and eastern parts of the Nisa-

Alburquerque batholith correspond to a WNW—ESE elongated body that tends to be 

equidimensional in cross section; the body increases in thickness and is rooted in the 

eastern part. To the west, the batholith becomes a much more superficial, flat-floored 

body. Thus, it is likely that the main feeding channel of the batholith was located in the 

east, were the maximum granite thickness is found.  
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The petrological, geochemical and geochronological data (González Menéndez, 1998, 

2002) suggest that from west to east the Coarse-Grained Granite becomes younger and 

is built up by more differentiated facies. As for the structure (González Menéndez and 

Azor, 2006), the batholith is elongated parallel to the Variscan structures and is located 

at the southern limb of a kilometre-scale antiform. In the central-eastern part of the 

batholith, the external contacts are subvertical and parallel to the regional foliation in 

the country rocks. The internal fabric of the Coarse-Grained Granite is characterized by 

magmatic foliations and lineations in WNW—ESE direction. In the western sector the 

granite cuts across the Variscan structures and its internal fabric is oriented in N—S 

direction. In the easternmost, sub-rounded termination, the internal structure is not well 

defined, except next to the borders, where a contact parallel fabric is observed. 

Given the above-mentioned characteristics, it is proposed that the Coarse-Grained 

Granite ascended through the crust along a feeding channel located in the eastern part 

of the batholith (Fig. 4.3.4-1). The ascent mechanism and the shape of this feeding 

zone cannot be postulated with confidence, but it is possible that the regional, 

subvertical cleavage constituted pre-existing, planar anisotropies which were exploited 

by the magma during ascent. The poorly defined fabric found in the eastern part can be 

explained by the turbulent flow in a site of continuously incoming magma, whereas the 

contact parallel fabric is the result of the accommodation of the magma to the chamber 

shape with more or less contribution of radial chamber expansion (ballooning) or local 

convection. From the eastern part, the magma flowed towards the west along the 

southern limb of an antiform. This is congruent with the WNW—ESE fabric, presumably 

parallel to the magma flow lines, since the flow was here nearly uniform, with an 

increasing component of non-coaxial flow (or velocity-gradient flow, Paterson et al., 

1998 and references therein) towards the margins. Progressive cooling during westward 

flow increased the viscosity of the magma and caused its blockage at the western 

termination of the batholith. The deceleration flow, together with successively incoming 

magma batches pushing former ones aside, caused the fabric to rotate towards a N—S 

direction and the magma chamber to spread laterally to the south. This southward 

expansion led to further flow deceleration, thus enhancing the development of the fabric 

at high angles to the flow direction. This scenario is compatible not only with the 

structural and gravity data, but also with the younger and more differentiated magma 

batches being located to the east. A similar situation was found by Vigneresse and 

Bouchez (1997) in the nearby Cabeza de Araya pluton, in which the root zones, 

interpreted as feeders, also correlate with the more leucocratic facies. 

The space needed by the intrusion might have been created mostly by rigid 

displacement of the wall rock in NE—SW direction, provided that the tectonic scenario 

was at this time most probably extensional. The formation of andalusite in the contact 

aureole post-dates the cleavage formation, suggesting that no ductile shortening was 

achieved by the country rocks during or after the emplacement. The sub-rounded shape 
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and the contact parallel fabric at the borders of the eastern lobe can be attributed to 

some contribution of ballooning. Finally, stoping must have played some role during 

emplacement, since some fragments of the host rock were found in some areas of the 

pluton. 

The above described emplacement history accounts for the Coarse-Grained Granite. For 

the existence of the other granitoid facies, namely the Central Granite A and B and the 

Fine Grained Granite, the intrusion of later magma batches, probably along dykes, must 

be invoked. 

 

 
 

Figure 4.3.4-1. Sketch showing a possible scenario for the emplacement of the Nisa-

Alburquerque batholith (Coarse-Grained Granite). Short, thick lines represent the shape 

preferred orientation of feldspars (linear and planar fabric after Azor et al. (2000) and 

González Menéndez and Azor (2006)). Arrows symbolize the inferred magma flow direction.  
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5. Investigations on granitoids of the Moldanubian 

Zone, Bohemian Massif 

5.1. Geographic overview 

The area studied in the Bohemian Massif is located in south-eastern Germany and 

belongs to the region known as Bavarian Forest (Fig. 5.1-1). It is situated between 

48°30’N to 48°50’N and 13°10’E to 13°40’E, north of the German city of Passau and the 

Danube River, next to the border to the Czech Republic and Austria. Very characteristic 

in this region are the quarries, in which granite and other rocks are mined. The altitude 

ranges from 300 to 800 m AMSL. The climate in this area is transitional between atlantic 

and continental with a precipitation of about 800 und 2000 mm/yr, a big amount of it in 

form of snow. The landscape is the typical one of a hilly, low mountain range and an 

important portion of the surface is occupied by forests of conifers and broad-leafed 

trees. The vegetal cover is dense, which makes geological work somewhat difficult. On 

the other hand, road conditions and coverage are excellent and almost every outcrop 

can be reached by car. 

 

 

Figure 5.1-1. a) General map of Europe. Source: Google Earth. b) Enlargement of the region 

known as Bavarian Forest, in which the study area is located.  
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5.2. Geological setting and previous works 

5.2.1. The Moldanubian Zone in the study area 

The study area is located at the south-western margin of the Bohemian Massif, where 

rocks belonging to the Moldanubian Zone crop out (see chapter 1.2 and Fig. 5.2.1-1). 

The Moldanubian Zone is a mosaic of different tectonic units with their own 

tectonometamorphic history, which were assembled during the collision of Laurussia and 

Gondwana at late Palaeozoic times (Urban and Synek, 1995). The present architecture 

of the Moldanubian Zone is mainly due to the dominant medium pressure / medium 

temperature collisional event which led to stacking of all tectonic units at ca. 350-330 

Ma. This phase was succeeded by the most important metamorphic event in the study 

area, which is characterized by high temperature and low pressure and linked to 

anatexis and extensional processes. It occurred at ca. 330-316 Ma in the neighbourhood 

of the study area (Blümel, 1995, and references therein; Kalt et al., 2000; Propach et 

al., 2000; Teipel, 2003) and is responsible for the present appearance of the migmatic 

rocks. After Kalt et al. (1999) the peak conditions during the HT-LP metamorphism 

reached 800-850°C and 0.5-0.7 GPa, whereas the last equilibration occurred under 770-

846°C and 0.44-0.51 GPa. Finger et al. (2007) postulate the existence of two HT-LP 

events in the south-western sector of the Bohemian Massif at 345-330 Ma and at 330-

315 Ma, respectively. Numerous late- to post-kinematic granitoids intruded between 340 

and 280 Ma. The Variscan tectonic activity was terminated by important intracontinental 

strike-lip movements along two fault sets (NW—SE and NNE—SSW, see chapter 5.2.2) 

vanning at around 290-260 Ma (Urban and Synek, 1995, and references therein). 

The Moldanubian Zone is usually regarded as part of the SE-vergent flank of the 

bilateral Variscan Orogen (Urban and Synek, 1995, and references therein). In the 

central part of the Moldanubian Zone the general structure is characterized by thrusts 

with dominant top-to-SE sense of movement formed during two thrusting phases. These 

thrusts were folded during a later deformation phase. The Variscan tectonic activity was 

terminated by ductile to brittle strike-slip faulting. However, the structure of the south-

western part of the Moldanubian Zone is strikingly different. Thus, some authors have 

attempted to distinguish different lithotectonic units based in part on their distinct 

structural style (Urban and Synek, 1995, and references therein). One of these units is 

the so-called Bavaricum, which represents an intensely reworked marginal part of the 

Moldanubian Zone located mostly in German and Austrian territory (Fig. 5.2.1-1). The 

boundary of the Bavaricum with other Moldanubian units is marked by a gradual change 

in the foliation trend which is typically NW—SE in the Bavaricum and NE—SW in the 

central part of the Moldanubian Zone. In the Bavaricum, the intensity of dextral 

transcurrent movements along NW—SE trending shear zones decreases to the north. 
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The SW part of the Moldanubian Zone (Bavaricum) can be roughly divided into two 

parts: (1) the antiformal wedge of the Oberpfalz and Bohemian Forests and (2) the 

generally monoclinal area of the Bavarian Forest, Mühlviertel, Sauwald, and Sumava 

Mountains (Fig. 5.2.1-1). 

 

Figure 5.2.1-1. Distribution of the main lithotectonic units of the Moldanubian Zone in the 

Bohemian Massif, modified after Urban and Synek (1995). 1 Teplá-Barrandian Zone (including 

the Zone of Erbendorf-Vohenstrauß; ZTT Zone of Teplá-Domažlice (Taus)); 2 Saxothuringian 

Zone (ST); 3 Moravo-Silesian Zone (MS); 4-10 Moldanubian Zone; 4 Monotonous Group; 5 

Variegated Group; 6 Gföhl Group; 7 Gföhl Gneiss; 8 Granulite bodies; 9 Kutná Hora-Svratka 

Complex; 10 Bavaricum; 11 Moravian Micaschist Zone between the Moldanubian and Moravo-

Silesian Zones; 12 Cadomian granitoids; 13-14 Variscan granitoids; 13 durbachites; 14 other 

granitoids; 15 Permo-Carboniferous basins; 16 important faults; ČK Český Krumlov; Ji Jihlava; 

KH Kutná Hora; Kr Krems; Pa Passau; Re Regensburg; Zn Znojmo. 

 

As already mentioned in chapter 1.2, Matte et al. (1990) and Franke (2000) 

distinguished two main tectonostratigraphic units in the Moldanubian Zone: the 

Drosendorf and the Gföhl units. The above-mentioned Bavaricum is after these authors 

equivalent to the western part of the Drosendorf Unit (Fig. 1.2-2). Two lithostratigraphic 

units are traditionally distinguished in the Drosendorf Unit: the Monotonous Group, 

constituted by migmatic paragneisses with intercalations of metamorphosed igneous 

rocks and calc-silicate rocks, and the Variegated Group, which is embedded in the 
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former one and consists of migmatic paragneisses and amphibolites, leucocratic 

gneisses, marbles and graphite (Rohrmüller et al., 1996).  

The study area is located at the south-western margin of the Bohemian Massif, between 

the Bayerischer Pfahl shear zone, the Danube shear zone, the Hauzenberg pluton and 

the Fürstenstein pluton (Fig. 5.2.1-2). Consequently, the rocks of the study area belong 

to the Monotonous Group of the Drosendorf Unit and to the Bavaricum. 

In the following lines an overview will be given about the main Variscan ductile 

deformation phases proposed by some authors in the neighbourhood of the study area. 

Stein (1988) found in the Oberpfalz Forest (see Fig. 5.2.1-1 for location) four ductile 

deformation phases accompanying the HT-LP metamorphism. All of these deformations 

resulted in the formation of folds with axes parallel to the zone limits (NE—SW), except 

for D4, which produced folds with axes trending NNW―SSE to NW―SE and steeply 

dipping axial planes under greenschist facies conditions. After Stein (1988), this change 

in the orientation of fold axes points to a change in the convergence direction between 

Laurussia and Gondwana at the end of the Variscan Orogeny (Late Westphalian to Early 

Stephanian) from NW―SE to E―W or NE―SW. 

According to Tanner (1995), Tanner and Behrmann (1995), and Behrmann and Tanner 

(1997) four compressive or transpressive deformation phases (D3-D6) occurred during 

the Namurian in the Oberpfalz Forest, which in order of decreasing age produced: 

subvertical foliation striking NW—SE to NNE—SSW (re-folded) with a steep NW-plunging 

lineation, originated mainly by simple shear with east-side-up shear sense (D3); large-

scale folds with steeply dipping axial planes and 60° NW-plunging axes (D4); the two 

younger deformations D5 and D6 are only locally observed. D4 is the result of NE—SW 

horizontal contraction. 

After some other authors (Zulauf et al., 2002a; Zulauf and Vejnar, 2003), the 

Carboniferous anatexis was linked in time with an extensional process of orogenic 

collapse that provoked the sinking of the Teplá-Barrandian block in the Moldanubian 

rocks between approx. 360 and 320 Ma (Upper Devonian to Upper Carboniferous). 

Büttner (1999) described two main deformation phases in the Mühlviertel (Austria, see 

Fig. 5.2.1-1 for location). D2 led to the development to gently dipping foliations and 

lineations with top-to-SE shear sense. D2 affected the Weinsberg granite in hypersolidus 

state. D3 led to the formation of the Bayerischer Pfahl conjugate shear-zone system. 

Both deformation phases took place under a sub-horizontal principal compression in 

approximately N—S direction.  

After Beer (1981) the migmatites south of the Bayerischer Pfahl shear zone show a 

steep NW―SE striking mylonitic foliation formed during the Carboniferous at high- to 

medium-grade metamorphic conditions. North of the Bayerischer Pfahl shear zone, the 

migmatic gneisses display isoclinal folds with axial planes dipping to the NE, which were 

formed in Ordovician times. 
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5.2.2. The Bayerischer Pfahl shear zone and the Bayerischer Pfahl 

shear-zone system 

The Bayerischer Pfahl shear zone is, from the geographical point of view, the most 

prominent shear zone in the Bavarian Forest. This is due to the quartz lode formed by 

hydrothermal processes during its late history (Horn et al., 1986). The quartz lode is 

very resistant against meteorization and builds in some areas impressive natural walls of 

rock. 

There are some other shear zones which together with the Bayerischer Pfahl form a 

strike-slip system of conjugate and subsidiary shear zones. All together will be named in 

this work “Bayerischer Pfahl shear-zone system”. These shear zones are (Fig. 5.2.2-1): 

• NW—SE striking: Bayerischer Pfahl shear zone, Runding shear zone, Danube 

shear zone. 

• NNW—SSE striking: Buchberger Leite shear zone and other minor ones. 

• NE—SW to NNE—SSW striking: Rodl shear zone, Karlstift shear zone, Vitis shear 

zone, Diendorf shear zone. 

All of them are represented in Fig 5.2.1-2 (except for the last three, which are located 

further to the east in Austrian territory) and in Fig 5.2.2-1. 

The Bayerischer Pfahl shear zone, and probably the whole system, has been active over 

a wide time and temperature span ranging from amphibolite facies to near-surface 

conditions (Hoffmann, 1962; Beer, 1981; Brandmayr et al., 1990; Wallbrecher et al., 

1990; Masch and Cetin, 1991; Brandmayr et al., 1995, 1999) from pre-Variscan to 

Miocene times (Freudenberger, 1996, and references therein). The Bayerischer Pfahl 

shear-zone system was probably active, at least during its ductile history, under 

compression in N—S to NNW—SSE direction (Brandmayr et al. 1990, 1995). The NE—

SW trending shear zones of this system display a sinistral sense of shear and tend to 

show lower grade conditions than the others (Brandmayr et al. 1990, 1995, 1999). The 

NW—SE and NNW—SSE trending ones are dextral and reach deformation temperatures 

up to amphibolite facies conditions. After Beer (1981) the movement at the Bayerischer 

Pfahl shear zone had a dextral and a NE-side-down vertical component. Reaching 

progressively lower temperatures and brittle conditions, the regime of the Bavarian 

Pfahl shear zone might have changed (Mattern, 1995). 
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Figure 5.2.2-1. a) Sketch of the Bayerischer Pfahl shear-zone system and b) its tectonic 

interpretation. 

 

The conclusions of previous investigations about the temperature conditions governing 

the deformation at the Bayerischer Pfahl shear-zone system can be summarized as 

follows. It must be born in mind that the boundaries between high, intermediate and 

low temperature are not sharp and may be different for each author: 

Beer (1988). At the Runding shear zone quartz c-axes patterns show a maximum 

parallel to the stretching lineation combined with small circle girdles around the Z-axis 

of the finite strain ellipsoid, pointing to a combination of pure and simple shear under 

high temperatures. The shear sense is not clearly defined. The c-axes patterns at the 

Bayerischer Pfahl shear zone show single girdles inclined towards the foliation plane 

indicate dextral simple shear under intermediate to low temperatures. 
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Masch and Cetin (1991). At the Buchberger Leite shear zone took place a dextral 

movement and a relative sinking of the western block. They interpret the 

recrystallization of feldspars and the existence of the association Bt-Kfs-Pl-Qtz-Hbl as 

indicatives of high deformation temperature. At the Bayerischer Pfahl shear zone 

(Reschbach/Wolfsteiner Ohe) the paragenesis Chl-Ab-Ep-Qtz-Ser and the c-axes mostly 

parallel to the Y-axis of the finite strain ellipsoid are (after these authors) indicative of 

low temperature conditions during dextral shearing. 

Brandmayr et al. (1990), Handler et al. (1991), Brandmayr et al. (1995, 1999). Their 

conclusions are based on quartz c-axes patterns and microfabrics. Temperatures above 

650 °C were reached in the Bayerischer Pfahl and the Danube shear zones, whereas 

shearing under greenschist facies conditions took place in the Rodl and Karlstift shear 

zones. The Vitis and Diendorf shear zones are characterised by essentially brittle 

deformation. The high and medium temperature fabrics observed at the Bayerischer 

Pfahl, Danube, Rodl and Karlstift shear zones were subsequently overprinted during 

younger deformation stages.  

Büttner (1999). The deformation at the Bayerischer Pfahl and related shear zones 

started under amphibolite facies and continued during cooling to greenschist facies 

conditions. The conditions during the deformation at the shear-zone system were 

around 3.3-4.0 kbar and 650-700°C at the high-T stages and 1.8-3.1 kbar and 472-

510°C at the greenschist-facies stages. 

It is important to remark that the temperatures deduced by these authors neither 

represent an upper limit, nor governed deformation at the same point in time. Two facts 

must be born in mind: (i) the deformation was polyphase, that is, younger events might 

have completely overprinted former fabrics and (ii) even considering the existence of 

parts of the shear-zone rock which are representative for the early stages of 

deformation, i.e. that have undergone little or no overprint during later stages, it is a 

question of luck whether the sampling sites coincide exactly with these zones. 

Therefore, it should not be forgotten that the deformation temperatures deduced from 

microfabric and textural analysis always provide a minimum estimation for the maximum 

temperature reached during the deformation at the shear zone considered as a whole. 

 

5.2.3. The intrusive bodies 

Variscan and late-Variscan intrusives are ubiquitous in the Moldanubian Zone. Focusing 

in our study area, a succession of magmatic bodies is observed, which intruded at 

different stages of the Variscan Orogeny. Attending to their age, composition, 

deformation and geometry, the following classification of the intrusives cropping out in 

the study area can be made (see some examples of each group in Fig. 5.3.1-1 and 

Appendix 1). It is important to remark that some bodies might show transitional 
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characteristics. Although this classification oversimplifies the regional variability of 

intrusive rocks, this simplification fits the scope of the present work. For more general 

discussions about the Variscan intrusives of the Bohemian Massif the reader is referred 

to the existing literature (e.g. Finger et al., 1997; Siebel, 1998): 

Group 1: Old dioritic to granodioritic bodies 

The diatexites of the study area are very often cut by dioritic to granodioritic/tonalitic 

stocks of different sizes. The ages available for these rocks suggest that they intruded 

prior to the peak of the HT-LP metamorphism. One of the varieties of dioritic to 

granodioritic rocks included in the Fürstenstein pluton (granodiorite with titanite spots) 

has been dated at 334-332 Ma (Pb-Pb evaporation and U-Pb on zircon, Chen et al., 

2002; Chen and Siebel, 2004).  

One special type of this group of rocks is the traditionally called “Palit” (Frentzel, 1911): 

this rock is dark coloured, biotite and amphibole rich, with a granodioritic to dioritic 

matrix and often bearing large crystals of K-feldspar (see detailed description later in 

chapter 5.3.1.1). In recent works (e.g. Galadí-Enríquez and Zulauf, 2006; Galadí-

Enríquez, in press) these rocks are considered to have been affected by Variscan 

anatexis. Consequently they are called dark-coloured diatexites. Siebel et al. (2005) 

consider dark-coloured diatexites to have evolved from a plutonic protolith, which 

intruded at 334 ± 3 Ma (Pb-Pb evaporation and U-Pb on zircon). 

Dioritic to granodioritic stocks may be tectonically foliated or nearly undeformed, 

depending on the considered outcrop. 

Group 2: Small granitic stocks and dykes 

In the migmatites also intruded granitic magmas in form of small stocks and dykes, very 

often spatially coinciding with older, more basic intrusions. Siebel et al. (2005) dated 

some small granitic dykes ranging between 322 ± 5 and 331 ± 9 Ma (U-Pb on zircon). 

One of them, the Saunstein granite dyke (see chapter 5.3.3.2), intruded at 324.4 ± 0.8 

Ma (U-Pb on monazite, Galadí-Enríquez et al., 2005). Like the dioritic to granodioritic 

intrusions, the granitic ones can show variable deformation intensities, which vary from 

one body to another, but also within the same one. Judging from the characteristics of 

these bodies in the field, showing mostly sharp but lobate contacts at the outcrop scale, 

it seems most probable that their intrusion took place just after the regional anatexis. 

Group 3: Large stocks (main facies in plutons) 

Mainly after the intrusion of the former small granitic bodies, the igneous activity 

concentrated in two domains, which nowadays constitute roughly the flanks of our study 

area: the Fürstenstein Pluton to the west and the Hauzenberg Pluton to the east.  
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The Fürstenstein Pluton (Troll, 1964) is composed of many different magmatic batches. 

The first one is constituted by granodioritic to dioritic rocks, which can be included in 

the aforementioned group 1. After that, more acid facies intruded, for example the 

Tittling granite, dated at 323-321 Ma (Chen et al., 2002; Chen and Siebel 2004), which 

could be included in the group 2. The youngest facies dated up to now is also the one 

which occupies most of the surface area of the pluton: the Saldenburg granite, which 

intruded at 318-312 Ma (Chen et al., 2002; Chen and Siebel, 2004), almost 

contemporaneously with the Eberhardsreuth granite (a fine- to medium-grained facies 

located at the northern margin of the pluton on topographic sheet 1:25000 No. 7146 

Grafenau) and shortly after the two-mica granite (see Appendix 1 and chapter 5.3.1.5). 

The initial εNd values and initial 87Sr/86Sr ratios of the more basic facies suggest a mantle 

contribution to the melts or melting of a young mafic lower crust. The values of the 

same parameters in the granitic facies indicate the involvement of crustal material in 

their genesis. 

The Hauzenberg Pluton is made up of three magmatic facies (Dollinger, 1967): a 

granodiorite, a fine-grained granite (Hauzenberg granite I) and a coarse-grained granite 

(Hauzenberg granite II). The Hauzenberg granite II has been dated at 320 ± 3 Ma and 

329 ± 7 Ma (U-Pb on zircon and monazite, respectively, Klein et al., 2007). As for the 

Hauzenberg granite I, K-Ar datings of Harre et al. (1967) yielded 284 ± 3 and 313 ± 3 

Ma for muscovite and 293 ± 3 Ma for biotite, whereas Rb-Sr datings of biotite yielded 

310 ± 3 Ma. The same author obtained an age of 284 ± 4 and 294 ± 5 by means of K-

Ar dating on biotite and 302 ± 13 by means of Rb-Sr dating on biotite for the 

Hauzenberg granodiorite. 

All of the facies of the group 3 are rarely affected by ductile deformation. 

The Bouguer gravity anomaly map 1:500000 of Germany (Plaumann, 1995) reveals a 

negative anomaly of about 8 mGal (approximate residual) centered on the Fürstenstein 

Pluton, and a similar one centered on the Hauzenberg Pluton. We could make a simple 

calculation to obtain a rough estimation of the geometry of the Saldenburg granite, 

which builds up most of the volume of the Fürstenstein pluton. In a simple scenario, we 

can imagine the form of the Saldenburg granite to resemble a vertical cylinder. After the 

equation gmax=2πGρ [L+R-(L2+R2)1/2] (Telford et al., 1995), in which gmax is the residual 

anomaly, G the gravitational constant, ρ the density contrast, L the cylinder thickness 

and R the cylinder radius, and using the values of gmax = 8·10-5 m s-2, G = 6.672 10-11 

m3 kg-1 s-2, ρ = 102 kg m-3 and R = 3000 m, results in a thickness of 3600 m. 

Dietl et al. (2005) postulate for the Fürstenstein Pluton a combination of active and 

passive emplacement mechanisms. The main intrusion phase took place at 14-17 km 

(Massonne, 1984; Dietl et al., 2005). The Hauzenberg granite II intruded into its 

country rocks at about 550°C and 16-18 km depth (Massonne, 1984; Klein et al., 2007). 
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Group 4: Post-granitic dykes (young sub-volcanic rocks) 

The last magmatic episode ascribed to the Variscan Orogeny in the study area is 

represented by sub-volcanic rocks of rhyolitic to basaltic andesitic composition (von 

Gümbel, 1868; Frentzel, 1911; Scholtz, 1927; Voll, 1960; Troll, 1964; Dollinger, 1967; 

Ohst and Troll, 1981; Troll and Ohst, 1984; Bayer, 1997; Propach et al., 2007). In the 

new geological maps 1:25000 of the Bavarian Environment Agency they are grouped 

under the rubric of “post-granitic dykes”. They are always found in form of subvertical 

dykes striking NNW―SSE to WNW—ENE, showing very sharp and straight contacts to 

the country rock. Their thickness rarely exceeds 5 m, except for a few ones in the area 

west of Waldkirchen (east of sheet Tittling, see Fig. 3.4-1 and Appendix 2 for location). 

Dacitic varieties have been dated at 302 ± 7 (Rb-Sr on apatite-biotite, Christinas et al., 

1991b) and 299.0 ± 2.3 Ma (U-Pb on zircon, Propach et al., 2007). Their composition 

can be explained by mantle melting with more or less contribution of crustal material. 

Their emplacement occurred 4-6 km deep (Propach, 2002) in a country rock at a 

temperature of 200 ± 50°C. These rocks are, except for some brittle overprint, always 

undeformed. 

 

5.2.4. The sheared granites 

The recent mapping survey at scale 1:25000 undertaken by the Bavarian Environment 

Agency in the Bavarian Forest led to the discovery of several small dykes and stocks of 

granitic composition, which belong to the group 2 of Variscan intrusives of the study 

area. Many of these bodies are affected by subvertical, ENE―WSW to WNW—ESE 

trending sinistral shear zones. In well exposed examples it is possible to realize that the 

deformation concentrates preferentially in the intrusions, affecting the host rock 

(diatexites and granodiorites to diorites) in rare cases. As we will analyze in the next 

chapters, the existence of these sheared granitic bodies has opened new research lines 

and new questions that need to be answered. They constitute the main object of 

investigation of the study area. 

 

5.2.5. Deformation phases in the Moldanubian Zone: open questions 

Up to now, a tectonic model concerning all Carboniferous structures present in 

Moldanubian rocks is lacking. From the results of some authors, a N―S to NNW―SSE 

compression seems to explain many of the ductile Variscan structures found in 

migmatites, gneisses and pre- to syn-orogenic intrusives (Stein, 1988; Tanner, 1995; 

Tanner and Behrmann, 1995; Behrmann and Tanner, 1997; Büttner and Kruhl, 1997; 

Büttner, 1999). In the same way, such a compression direction is compatible with the 
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kinematics of the Bayerischer Pfahl shear-zone system (Brandmayr et al., 1990; 

Wallbrecher et al., 1990; Brandmayr et al., 1995) during its ductile deformation. The 

frontal convergence between Laurussia and Gondwana during most of the Carboniferous 

represents the geotectonic framework, in which this compression took place. 

However, some structural elements remain to be difficult to integrate in this geotectonic 

framework. As reported by Stein (1988), Tanner (1995), Tanner and Behrmann (1995), 

and Behrmann and Tanner (1997), some of the observed structures need a 

rearrangement of the principal stresses. Thus, the existence of NW—SE to NNW—SSE 

trending, open folds in the Oberpfalz Forest would be easier to understand under 

NE―SW compression. 

An important question is whether the studied sinistrally sheared granites (Fig. 5.2.5-1) 

might have developed coevally with the Bayerischer Pfahl shear-zone system under 

N―S to NNW—SSE compression. Platt (1984) presented a model regarding different 

foliation types developed in ductile shear zones (Fig. 5.2.5-1c), which can be useful in 

our case to visualize the geometrical relationships between the different shear zones 

found in the Bavarian Forest. Comparing the orientation of shear planes in sinistrally 

sheared granites with the foliations of Platt (1984), it would be possible to correlate 

some the sinistrally sheared granites (some of the ones located to the east striking 

ENE—WSW) with extensional crenulation cleavages (ecc2) related to the Bayerischer 

Pfahl shear-zone system. However, many other sinistrally sheared granites with shear 

planes striking E—W to WNW—ESE cannot be explained by this model.  

Therefore, we concluded that the sinistrally sheared granites presented and studied in 

this work are not compatible with a N―S to NNW—SSE compression and cannot 

develop contemporaneously with the Bayerischer Pfahl shear-zone system under normal 

conditions. 

In the following chapters we will evaluate the importance of the sheared granites in 

supporting the rearrangement of the directions of principal stresses in the Bavarian 

Forest in late-Carboniferous times. 
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Figure 5.2.5-1. a) Tectonic sketch of the 

Bayerischer Pfahl shear-zone system. b) 

Simplified geological map of the study area 

showing the orientation of shear planes in 

sinistrally sheared granites, modified after 

Bundesanstalt fuer Geowissenschaften und 

Rohstoffe (1993). c) Diagram illustrating the 

orientations and mutual relationships of 

foliations in shear zones: S, shape fabric; C, 

shear bands, ecc1 and ecc2, conjugate sets of  

extensional crenulation cleavage, redrawn after Platt (1984). The shear-zone boundaries of 

the diagram (c) were drawn parallel to the Bayerischer Pfahl and Danube shear zones in order 

to allow an easier comparison. Note that ecc2 planes are parallel to some of the sinistrally 

sheared granites of (b), but oblique to some others. 
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5.3. Results 

5.3.1. Geological mapping in the Passau Forest 

In this chapter an overview about the different rock types present in the topographic 

sheet 1:25000 number 7246 Tittling will be given (see Appendix 1). The information 

contained in some previous works was taken into account, reviewed and in part 

included in the resulting geological map. The most important contribution is the work of 

Troll (1964, 1967), who mapped the whole Fürstenstein Massif and made also some 

studies about its country rock (Troll, 1966; Troll and Winter, 1969) and other intrusives 

(Troll and Ohst, 1984). His results were included in the geological map nearly 

unchanged. Three diploma theses were also considered: the one of Koch (1998) 

occupying the central area surrounding the Miocene deposits, the one of Schmidl (2000) 

in the SE corner of the map and the one of Weiss (1981) in the north-eastern margin of 

the Fürstenstein Pluton. Steiner (1968, 1969, 1972) focused on the rocks formerly called 

“Palit”, which crop out in the north-eastern corner of the map and will be called “dark-

coloured diatexites” from now on. For the version of the geological map provided in the 

present work, the Cenozoic units were grouped under the general term “post-Variscan 

cover”. A more detailed version of the map can be found in Galadí-Enríquez and Zulauf 

(2006). Fig. 5.3.1-1 shows schematically the main lithologies found in the map and a 

tentative reconstruction of their temporal relationships. 

 

Figure 5.3.1-1. Chart summarizing the principal rock types present on the Tittling map and a 

tentative reconstruction of their temporal relationships. 
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5.3.1.1. Migmatic rocks 

In the special case of this map, the partial melting of the rocks reached an advanced 

stage, in which the dark-coloured minerals were also involved in melting: the darker and 

lighter parts of the rock form schlieren and nebulitic structures which merge into one 

another. Consequently, they are called diatexites (Wimmenauer and Bryhni, 2002). 

 

Figure 5.3.1.1-1. a) 

Schollen structure 

south of Tittling. b) 

Schollen structure 

north of Neureut. c) 

Schlieren structure 

near Poxreut. 

 

The diatexites in the Tittling map show different deformation intensities and, therefore, 

different macro- and microfabrics: Granofelsic as well as intensively foliated varieties 

were found.  

The variability of the appearance of the diatexites is not only due to the deformation 

intensity and type of migmatic structure, but also to the mineral composition, which was 

used as a criterion to subdivide the diatexites in varieties. The differences in the quartz, 

K-feldspar and plagioclase content between light-coloured and dark-coloured diatexites 

can be viewed in a diagram for the classification of plutonic rocks (Le Maitre et al., 

1989, 2002), although it must be born in mind that these rocks are in their present form 

no plutonic, but metamorphic rocks. Both varieties can be described as mainly granitic 

in composition, whereas the dark-coloured diatexites show a tendency towards 

granodiorite and a wider compositional range (Fig. 5.3.1.1-2). 
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Figure 5.3.1.1-2. QAP 

modal classification of 

light- (white circles) 

and dark-coloured 

(black circles) 

diatexites 

 

Light-coloured diatexite 

Macroscopic features 

The appearance of this rock is granitoid-like. A detailed observation leads to the 

discovery of numerous, dark-coloured, unmelted parts. At the outcrop scale pegmatoid 

pockets and aploid veins are usually found. The weathering product of the rock, made 

of angular grains of sand to fine gravel grain size, is often mined and used as a fill 

material (e.g. small sand pits northeast of Pfefferhof and between Adlmühle and 

Pötzersdorf). Melanosomes result typically in a finer weathering product with a grain 

size between fine sand and silt. The rock is medium to coarse grained, finer in 

melanosomes. Its colour is white to greyish, sometimes pinky in leucosomes and black 

in melanosomes. Some amphibole grains may be present, but the greenish colour of 

some mineral aggregates uses to be due rather to the secondary biotite that grows from 

them as to the amphiboles themselves. 

In some areas, in which the pervasive intrusion of granite in diatexite makes it 

impossible to map single bodies, “light-coloured diatexite crosscut by granite veins” was 

mapped. In a few outcrops the alternance of diatexite and granite at the cm to dm scale 

is observable.  

The size of the K-feldspar crystals can vary strongly. Large specimens, about 1.5 cm 

long or even larger, can be found in the whole region. The porphyritic variety of the 

light-coloured diatexite was mapped only there, where the length of the K-feldspars 

exceeds 2 cm within a mappable area. These large crystals occur in more or less 

discrete bands and are usually scattered, that is they are embedded in the matrix of the 

rock, rarely in touch with each other. 
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Garnet is a rare mineral on the Tittling map and, when present, it is not easily 

identifiable with the naked eye. The mapping of the garnet-bearing variety is based on a 

few outcrops south-west of Perlesreut and some observations under the microscope.  

Microscopic features 

Major constituents: K-feldspar 60—30%, with cross-hatched and carlsbad twinning, 

often as microperthite, the size of the crystals can locally exceed the size of the crystals 

of other minerals (porphyritic fabric); quartz 40—10%, shows depending on the thin 

section undulose extinction, dynamic or static recrystallization; plagioclase 45—15%, 

normally with a stronger alteration than K-feldspar, with pericline and albite twins and 

myrmekites at the contact to K-feldspar. 

Major to minor constituents: biotite 15—1%, pleochroism from reddish brown to yellow, 

rarely from greenish brown or brownish red to yellow, sometimes deformed as kink 

folds and mica fishes. 

Minor to accessory constituents: pale amphibole 3—0%. 

Accessory constituents — most of them appear also in the rest of the diatexite varieties 

and will therefore be described only once, later only mentioned: zircon, mostly in biotite, 

in which it builds pleochroic haloes, and nearly always with several distinguishable 

growth episodes; chlorite, light green with blue anomalous interference colour, rarely 

green, secondary from biotite; opaque phases (ilmenite?) and titanite occur very often 

together in form of aggregates next to biotite and sometimes as large opaque grains 

surrounded by titanite coronas; allanite, with pleochroism in pink colours, zoned and 

twinned, as very well developed crystals, sometimes with epidote corona; apatite, 

sometimes as minor constituent, often in form of aggregates together with biotite, 

shows characteristic hexagonal basal sections; rutile as tiny needles (max. 0.05 mm 

long) in quartz and biotite; white mica, secondary from feldspars. 

Microfabric: granoblastic to lepidoblastic, porphyritic in some areas. 

The pale amphibole occurs in form of aggregates of tabular crystals, sometimes mixed 

with opaque phases. These aggregates replace a former mineral (probably pyroxene) 

which has been completely corroded. Sometimes, most of all at the rims, the 

aggregates show a greenish colour (hornblende?). In most cases they are surrounded 

by green biotite ± chlorite. 

The growth of titanite and opaque phases next to biotite can be explained as a result of 

the crystallisation of biotite at high temperatures and the expulsion of titanium out of 

the biotite lattice during temperature drop. 
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Hornblende diatexite 

Macroscopic features 

In several areas the relationship between the occurrence of hornblende diatexite and 

metabasite enclaves is patent: they both are found often spatially related. At the 

outcrop scale light-coloured and hornblende diatexites look pretty much similar, but a 

closer look on the hand specimens of hornblende diatexites reveals a mosaic-like pattern 

of green and milky white grains, which are hornblende and plagioclase, respectively, 

accompanied by varying amounts of biotite. 

Microscopic features 

Major constituents: plagioclase 70—40%, sericitized, with pericline and albite twins; 

green amphibole (hornblende) 30—5%, pleochroism yellow - light green - light bluish 

green, in some samples as well developed hypidiomorphic crystals, in some others as 

patchy transformation product from clinopyroxene, in some others as transformation 

product from an older pale amphibole; biotite 15—5%, most of it is primary with 

pleochroism yellow - reddish brown, a minor part of it is secondary growing from 

amphibole and showing pleochroism yellow - light green. 

Major to minor constituents: pale amphibole 15—0%, in form of aggregates of long 

prismatic to fibrous crystals; quartz ~ 5%. 

Minor constituents: pyroxene, most of it is certainly clinopyroxene (diopside), but the 

presence of a low amount of orthopyroxene is also possible. 

Accessory constituents: K-feldspar (microcline); zircon; epidote, secondary from 

amphibole; chlorite, light green, pleochroic, secondary from amphibole and biotite; 

sericite; opaque phases; apatite; titanite, mostly next to biotite and amphibole in form 

of very fine-grained aggregates; rutile, as tiny needles in quartz and biotite. 

Microfabric: granoblastic to lepidoblastic, depending on the considered domain.  

The reactions that took place in relationship with the formation and destruction of 

amphiboles can be summarized as follows: 

The oldest mineral is a clinopyroxene. It has been semi-quantitatively analysed at the 

Institut fuer Geologie und Mineralogie in Erlangen by means of energy dispersive 

spectroscopy (EDS) (sample from the area around Dießenstein—Unteranschiessing), 

obtaining a diopsidic composition. In the course of the observation under the light 

microscope it was not possible to definitively clarify, whether orthopyroxene is present 

in the sampled hornblende diatexites. The pyroxene transforms into hornblende, being 

the transformation either direct or over an intermediate step involving the crystallisation 

of pale amphibole. The pale amphibole is after Steiner (1968) cummingtonitic (Mg-rich) 

or actinolite-edenitic after our semi-quantitative analysis (see chapter “Hypersthene-
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bearing diatexite” for more information), i.e. with magnesium and low amounts of 

calcium and sodium (Leake et al. 1997). The amphiboles transform later into biotite at 

the borders, sometimes giving way to a late chlorite growing. 

Further EDS analyses point to the plagioclase having an intermediate composition 

(andesine-labradorite). The bulk composition of hornblende diatexites can be described 

as dioritic to quartz dioritic, since the rock is relatively poor in quartz and K-feldspar was 

found only in very small amounts.  

Dark-coloured diatexite 

Macroscopic features 

This diatexite variety shows a relatively dark colour, since it contains a higher 

percentage of mafic minerals, mainly biotite, amphibole and clinopyroxene. Under the 

microscope, these mafic minerals can be found dispersed everywhere in the rock, in 

contrast to the light-coloured diatexite, in which pyroxene is found only in restitic parts, 

amphibole is rarely present and biotite represents only a low volume percentage. 

The appearance in hand specimens is dominated by the pink K-feldspars and the black, 

biotite-rich matrix. These colours are found to form bands and augen structures in 

foliated specimens, but granofelsic varieties can be found as well. Lens-shaped 

bimineralic, K-feldspar-hornblende pockets were observed at the cm to dm scale, 

bounded by biotite-rich bands. The exposed surface of the rock is typically much lighter 

than in fresh sections due to meteorization processes. Clinopyroxene and amphibole 

appear as mm long, rusty brown and green spots, respectively. Zonations, 

macroperthites and twins are identifiable in feldspars with the unaided eye. 

The porphyritic variety of the dark-coloured diatexite differs from the porphyritic variety 

of the light-coloured diatexite in two aspects. On the one hand, the K-feldspar crystals 

are much bigger in dark-coloured diatexites, reaching up to 4 cm in the Tittling map, 

but being even larger in neighbouring areas, e.g. sheets 7145 Schöfweg (Blaha and 

Siebel, 2006; Blaha, in press) and 7147 Freyung (Ott, 1988). On the other hand, K-

feldspar crystals are much more densely packed in dark-coloured diatexites, i.e. they are 

often in close contact to each other, making the rock locally exceptionally pale. 

Microscopic features 

Major constituents: plagioclase 75—10%; K-feldspar 65—3%, with typical cross-hatched 

and carlsbad twinning, often as microperthite, the crystals are sometimes bigger than 

the crystals in the matrix (porphyritic structure); quartz 35—1%; biotite 20—10%, 

pleochroic in reddish or greenish brown and yellow colours, rarely brownish green or 

brownish red to yellow, also as secondary phase with pleochroism in light green colours.  
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Major to minor constituents: clinopyroxene 10—0%, not always present, corroded by 

amphibole; green amphibole (hornblende) and pale amphibole 10—1%. 

Minor to accessory constituents: apatite, frequently as aggregates together with biotite; 

titanite, mostly as fine-grained aggregates next to biotite, but also as large, idiomorphic 

crystals; opaque phases, often next to biotite and amphibole, sometimes surrounded by 

titanite. 

Accessory constituents: zircon; rutile, as tiny needles in quartz and biotite; chlorite, 

secondary from biotite and amphibole; white mica, as sericite from feldspars and rarely 

from biotite. 

Microfabric: lepidoblastic to granoblastic, in parts porphyritic.  

Clinopyroxene is probably diopsidic, since it shows the same appearance as in other 

rock types (hornblende diatexite and metabasites), in which EDS analyses were 

performed. The pale, fibrous amphibole might be similar to the one found in 

hypersthene-bearing diatexites, i.e. actinolite-edenitic after our EDS analyses, or 

cummingtonitic after Steiner (1968). The bulk composition of the rock can vary largely, 

but it can be described as mostly granitic to granodioritic. The dioritic varieties represent 

the transition to the amphibole-pyroxene-plagioclase-biotite gneisses.  

Hypersthene-bearing diatexite 

Macroscopic features 

Its appearance is still more variable as in the other diatexite varieties. Some 

characteristics of this rock type can be observed uniformly along its whole extension. 

One of them is the equigranular fabric, i.e. porphyritic fabrics are hardly found. Another 

one is the existence of up to 3 mm long, leather brown to ochre brown hypersthene 

crystals and up to 7 mm long hypersthene aggregates. Hypersthene crystals and 

aggregates are not uniform in size and abundance: To the SE they become smaller and 

rarer, in such a way that in the area of Reisersberg they might be difficult to identify 

with the naked eye. The maximum size is reached in the most mafic members 

(Waldbrunn, northwest of Perlesreut and in some areas of the Lindberg). Since the 

boundaries between the different diatexite varieties are not sharp but rather 

progressive, some hypersthene can be found beyond the limits of the mapped 

hypersthene-bearing diatexite. 

The light-coloured hypersthene-bearing diatexite is characterised by the occurrence of 

hypersthene and the scarcity of amphibole and biotite. The hypersthene grains are 

smaller and more difficult to identify as in the rest of the hypersthene-bearing 

diatexites, but the rock itself is much easier to identify instead, due to its characteristic 

appearance. The rock can be granofelsic (e.g. southeast of Poxreut) or gneissose (e.g. 
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northeast of Poxreut at the map boundary), its colour is milky and it has relatively few 

metabasitic fragments. 

Garnet-hypersthene-bearing diatexite was found in a small area northeast of 

Hammermühle. The red garnets reach a diameter of 8 mm. Towards the north 

(Wittersitt quarry) the garnet crystals become smaller and can be identified only under 

the microscope. 

Microscopic features 

Major constituents: plagioclase 70—20%; quartz 50—5%, not necessarily in big 

amounts, but always present. 

Major to minor constituents: K-feldspar 30—0%, with myrmekites at the contact to 

plagioclase, sometimes lacking; biotite 25—0%, pleochroic in yellow to reddish brown. 

Minor constituents: orthopyroxene (hypersthene, Fig. 5.3.1.1-3) 5—1% is a 

characteristic mineral in this rock, appears in form of long prismatic, hypidiomorphic 

crystals, shows pleochroism from light pink to light green and displays a corona 

structure together with its transformation products (see later for further explanations); 

amphibole 5—1% in different generations; rutile, as tiny needles in quartz, chlorite and 

biotite. 

Accessory constituents: zircon; chlorite; opaque phases (ilmenite), not only next to 

biotite, but also in cleavage planes of hypersthene and as aggregates together with 

amphibole in coronas around hypersthene crystals; titanite; apatite; rutile; white mica, 

secondary. 

Microfabric: granoblastic, rarely lepidoblastic. 

 

Figure 5.3.1.1-3. Hypersthene-

bearing diatexite under the 

microscope, crossed polarizers. 

Around the hypersthene grows 

a fibrous, pale amphibole. The 

crystal at the bottom of the 

photomicrograph is completely 

transformed. Further 

transformations into 

hornblende, biotite and 

chlorite are not visible in this 

black and white version of the 

original photograph. 
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The hypersthene is a relic mineral that grew under granulite facies conditions. During 

the retrograde path undergone by the rock, the hypersthene became unstable, giving 

way to the formation of the corona structure that can be found under the microscope. 

Together with opaque phases, a fibrous, pale amphibole grows from hypersthene (Fig. 

5.3.1.1-3). This amphibole was semi-quantitatively analysed by means of EDS in a 

sample taken 300 m west of Hirtreut and another one taken between Poxreut and 

Wittersitt. After our results and the nomenclature of amphiboles of Leake et al. (1997), 

it is probably a clinoamphibole of actinolite-edenitic composition. Alternatively, the 

amphibole may be cummingtonitic, as proposed by Steiner (1968). The fibrous, pale 

amphibole becomes greenish towards the borders of the corona, which is the result of a 

progressive transformation into hornblende that can be observed at different stages 

depending on the sample. The youngest minerals found at the borders of the coronas 

are light green biotite and sometimes chlorite. 

The transformation processes of pyroxenes into amphiboles proceeds in a similar way in 

all diatexite varieties. An important and remarkable difference is, however, the resulting 

fabric. Whereas in hypersthene-bearing diatexites the characteristic transformation 

pattern gives rise to a corona structure, that in general is made up of orthopyroxene 

and two amphiboles, the other diatexite varieties show a patchy transformation of 

clinopyroxene into one or two amphiboles. 

Some EDS analyses on plagioclase resulted in a composition from oligoclase to 

labradorite. The bulk composition of hypersthene-bearing diatexites is extremely 

variable, but tends to fall into the tonalite and quartz diorite fields of the QAP 

classification diagram for plutonic rocks (Le Maitre et al. 1989, 2002). 

 

5.3.1.2. Metamorphosed magmatic rocks 

Metabasite (undifferentiated) 

The metabasites of the Bavarian Forest have been studied by many authors (e.g. 

Frentzel, 1911; Steiner, 1968; Troll, 1966; Troll and Winter, 1969; Weiss, 1981). These 

studies are often dealing with very small bodies like the „Essexite“ of Trautmannsdorf 

(Frentzel, 1911), the metabasite of Anschiessing (Troll and Winter, 1969) or the 

metabasite of Mauthäusl (Troll, 1966). Sometimes these studies describe larger bodies, 

like in Galgenreiter (Troll, 1966). Most of these rocks have been usually called 

amphibolites or biotite amphibolites. In most cases, these names do not match the 

modern definition of “proper” amphibolites (Coutinho et al., 2002). 

The composition of the metabasites on the Tittling map is anything but uniform. Two 

principal types, the Amp-Px-Pl-Bt gneiss owing to its ubiquitousness and the amphibolite 
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owing to its popularity as a rock type, were distinguished from the rest of metabasites. 

They will be described in the corresponding chapter. 

The metabasites are hardly found as large bodies, but rather in form of small 

intercalations of a few decimetres in diameter in the diatexite. Their composition is very 

variable. Even inside one and the same body, we can see fluctuations in the mineral 

composition, e.g. between biotite- and amphibole-rich layers in the outcrop Dießenstein. 

The metabasite bodies are found to be tabular, ellipsoidal or angular. As a general 

tendency, the macrofabric correlates with the biotite content. Thus, the specimens 

richer in biotite tend to show a better developed foliation. The rest of metabasites show 

very often a granofelsic fabric, which is probably inherited from the protolith, i.e. it 

formed during the freezing of a mafic magma (Steiner, 1986), largely lacking later 

overprints. Most of the metabasites are fine to medium grained. Some of the factors 

controlling the variation of the fabric and composition of these rocks could be the 

metamorphic grade, the protolith, the deformation intensity and the activity of fluids. 

The rocks mapped as “metabasite (undifferentiated)“ are those, whose composition 

matches neither the definition of amphibolites (Coutinho et al., 2002), nor the one of 

Amp-Px-Pl-Bt gneisses. These rocks can be named, depending on the particular case, 

for example diopside-plagioclase granofels or gneiss, amphibole-biotite gneiss or 

pyroxene-hornblende metanorite. It is difficult to list the volume per cent limits, in which 

any mineral appears in the undifferentiated metabasites. Common minerals are 

pyroxene, amphibole, plagioclase and biotite in different amounts. In the following lines 

we will describe three outcrops that will help to exemplify the variability of the 

undifferentiated metabasites. 

 

The outcrop Spitzendorf-Fürsteneck 

Macroscopic features 

The rock cropping out here can be classified locally as a proper amphibolite, but not the 

whole body. In some areas, the rock can be better described as hypersthene-

hornblende metanorite or hypersthene-hornblende-plagioclase granofels. At first glance, 

the appearance is very similar to that of the amphibolites. A closer observation leads to 

the discovery of brown hypersthene grains. 

Microscopic features 

Major constituents: plagioclase ~ 60%, zoned and with broad albite-twins; hornblende 

~ 25 %, pleochroism in yellow - light brownish - green - brownish green, often as 

skeletal crystals which are diablastic intergrown with hypersthene; hypersthene ~ 15 %, 

pleochroism light pink to light green. 
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Accessory constituents: opaque phases; quartz; pale amphibole as transformation 

product of hypersthene. 

Microfabric: granoblastic, nearly unchanged after freezing of the melt (Fig. 5.3.1.2-1) 

 

Figure 5.3.1.2-1. Hy-

Hbl-Pl granofels under 

the microscope, parallel 

polarizers. Two 

intergrown hypersthene 

crystals in the centre 

are surrounded by 

hornblende and 

plagioclase. 

 

The outcrop near Dießenstein 

Macroscopic features 

This metabasite body shows strong variations in its composition. It contains gold-

coloured grains of sulphides at the millimetre to centimetre scale. There is a tendency to 

become richer in biotite to the NE, where the rock fits in the group of the Amp-Px-Pl-Bt 

gneisses. The south-western sector can be denominated Pl-Px granofels, Amp-Pl-Px 

granofels or gneiss, depending on the considered point. The following microscopic 

description is based on one single sample, and is therefore not necessarily 

representative for the whole metabasite body. 

Microscopic features (one sample from the south-western part of the outcrop) 

Major constituents: clinopyroxene ~ 70%; plagioclase ~ 20%. 

Minor constituents: biotite; amphibole, mainly pale-coloured growing from pyroxene; 

chlorite, secondary from pyroxene and biotite. 

Accessory constituents: quartz; epidote, secondary from amphibole; sulphides (pyrite?); 

apatite; opaque phases. 

Microfabric: granoblastic. 
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The outcrop at the Ilz River south of Fürsteneck 

Macroscopic features 

This metabasite body is too small to be mappable (coordinates R 46 07 670 H 53 98 58) 

and can be referred to as a Amp-Px-Pl gneiss. The rock is dark-coloured, hard and 

heavy and shows a weak banding. 

Microscopic features 

Major constituents: plagioclase ~ 50%; clinopyroxene ~ 30%; green amphibole 

(hornblende) ~ 20%, grows from pyroxene. 

Minor constituents: biotite; minerals of the epidote group. 

Accessory constituents: titanite; quartz; apatite; opaque phases. 

Microfabric: granoblastic to lepidoblastic. 

One sample of this outcrop was used for EDS analyses. The clinopyroxene shows a 

diopsidic composition (with calcium, magnesium and iron) and the plagioclase is An-rich.  

Amphibolite 

Macroscopic features 

It is not easy to find „proper“ amphibolites (after the definition of Coutinho et al., 2002) 

in the Tittling map. The rock is in general weakly foliated and shows a dark-green 

colour. The well crystallised hornblende grains are surrounded by a matrix of 

plagioclase. At their borders, the amphibolite fragments contained in diatexite display a 

biotite-rich zone. Due to meteorization processes, the amphibolites develop a light-

coloured crust on their surface. 

Microscopic features 

Major constituents: plagioclase 60—50%; green amphibole (hornblende) 40—30%, 

pleochroism yellow – light green – light bluish green. 

Minor to accessory constituents: pale amphibole, as aggregates together with opaque 

phases and displaying coronas of green biotite; titanite, especially abundant in the area 

north-northeast of Reisersberg; chlorite, secondary from biotite and amphibole, with 

pleochroism in green colours. 

Accessory constituents: biotite, both primary (brown) and secondary (green) from 

amphibole; opaque phases, often at the borders of amphibole crystals; epidote, 

secondary from amphibole; zircon; quartz; apatite; white mica, as secondary sericite 

from plagioclase. 

Microfabric: granoblastic, rarely lepidoblastic.  
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Chlorite can appear in large amounts, most of all in foliated areas, in which a more 

intense fluid activity took place. The hornblende occurs often, but not always, in form of 

well developed, short prismatic crystals. Sometimes it builds aggregates of rod-like to 

fibrous crystals. This fact, together with the presence of fibrous, pale amphibole, points 

to at least a part of the amphiboles growing from a former phase (pyroxene?).  

Amphibole-pyroxene-plagioclase-biotite gneiss 

It is possible to find transitional rocks with hybrid characteristics not only between 

different diatexite varieties, but also between diatexites and metabasites. In fact, at 

least from a descriptive point of view, we can consider the Amp-Px-Pl-Bt gneiss as a 

dark-coloured diatexite with a higher concentration of mafic minerals (more than around 

40% of mafic minerals) and less K-feldspar as usual. A pervasive mingling between both 

end members is ubiquitously visible in the field. 

Steiner (1968) called this rock „K-feldspar metablastite from gabbro“ and analyzed the 

outcrop of Söldtrümmer. From his point of view, it is about a gabbroic rock that suffered 

during the last metamorphism some transformations leading to the growth of biotite, 

hornblende and K-feldspar. Troll (1966) interpreted the metabasite of Galgenreiter as a 

diabase which suffered transformations due to an input of alkalis and phosphorus. The 

Amp-Px-Pl-Bt gneiss can also be found in form of small intercalations and fragments 

everywhere in the diatexites. 

Macroscopic features 

The rock is black and brittle. The macrostructure is mainly gneissose, sometimes 

schistose or granofelsic. Every now and then the rock is crosscut by quartzofeldspathic 

veins. There are two important differences between the rock of the outcrops 

Galgenreiter and Söldtrümmer. On the one hand, the K-feldspar is found in Galgenreiter 

only as accessory mineral, while in Söldtrümmer it is in parts present even as major 

constituent. On the other hand, the rock in Söldtrümmer contains ortho- and 

clinopyroxene, whereas in Galgenreiter only clinopyroxene was found. 

Microscopic features 

The following list describes the composition of the rock in both principal outcrops 

(Galgenreiter and Söldtrümmer). 

Major constituents: biotite 50—25%, pleochroism reddish brown - yellow; plagioclase 

60—30%; clinopyroxene 20—5%, probably diopsidic; green amphibole (hornblende) 

and pale amphibole 10—5%, the hornblende can be found either in form of well 

developed crystals or as patches on pyroxene, the pale amphibole appears as 

aggregates together with opaque phases, often with coronas of green biotite. 

Minor to accessory constituents: apatite, as aggregates together with biotite; K-feldspar. 
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Accessory constituents: quartz; titanite, mostly as aggregates next to biotite; 

orthopyroxene; opaque phases; rutile; epidote; zircon. 

Microfabric: lepidoblastic.  

The transformations suffered by pyroxenes and amphiboles can be explained in the 

same way as in former chapters. 

Metaultramafic rock, serpentinite 

von Gümbel (1868) found a serpentinite body cropping out in the Tittling map. He 

located this body in the hamlet of Neureut, but it was not found in the course of the 

present investigation. 

 

5.3.1.3. Metamorphosed sedimentary rocks 

Quartz-biotite-cordierite-feldspar granulite 

Macroscopic features 

At the road between the hamlets Stadl and Ebersdorf, an uncommon rock crops out. It 

is a very hard rock, bluish in colour. Red garnets around 1-2 mm in diameter can be 

distinguished in a matrix of feldspar, biotite and cordierite. The tectonic foliation is 

poorly developed. 

Microscopic features 

Major constituents: feldspar ~ 35%, with albite and carlsbad twins; cordierite ~ 20%, 

as prismatic or rounded crystals with patches or coronas of white mica and chlorite; 

biotite ~ 20%, pleochroism red - yellow; quartz ~ 15%. 

Minor constituents: garnet, pink (almandine), with inclusions of quartz, biotite, opaque 

phases and not identifiable needles around 0,02 mm in length; white mica, secondary 

from biotite, feldspar and cordierite, possibly in part grown from former sillimanite; 

chlorite, pleochroism in light green colours, secondary from biotite and white mica. 

Accessory constituents: zircon; opaque phases. 

Microfabric: granoblastic (Fig. 5.3.1.3-1). 
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Figure 5.3.1.3-1. 

Qtz-Bt-Crd-Fs 

granulite under 

the microscope, 

parallel polarizers. 

 

 

Calc-silicate granofels 

Only a few fragments of this rock type were found in the south-western part of the 

map. The calc-silicate rocks lied originally as lenses or fine bands intercalated in 

diatexite. Their protoliths are supposed to be marls, which were intercalated in a 

psammopelitic series that was subsequently metamorphosed. 

Macroscopic features 

At the first glance the light grey-blue colour and the splity fracture of the rock are very 

characteristic. Loose fragments develop a reddish colour at the surface due to the 

meteorization. At the hand-specimen scale the rock is fine grained and granofelsic. A 

poorly developed banding is identifiable only under the microscope.  

Microscopic features 

Major constituents: plagioclase ~ 50%; quartz ~ 20%; diopside ~ 20%. 

Accessory constituents: opaque phases; titanite; minerals of the epidote group; apatite. 

Microfabric: granoblastic. 

 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 114

5.3.1.4. Magmatic rocks out of the Fürstenstein pluton 

Diorite 

Macroscopic features 

Only some few blocks of this rock were found at the Steinhügel east of Tittling. The rock 

is dark grey, fine- to medium-grained and undeformed. The black, idiomorphic, long 

prismatic hornblende crystals are very noticeable.  

Microscopic features 

Major constituents: plagioclase ~ 60%; hornblende ~ 30%, with pleochroism in brown 

colours, as idiomorphic rods, sometimes zoned; opaque phases 10—5%. 

Minor constituents: chlorite, secondary; epidote, secondary; quartz. 

Accessory constituents: apatite; zircon; white mica (sericite). 

Microfabric: hypidiomorphic equigranular, poorly developed fluidal structure.  

Quartz-biotite diorite 

This rock is almost always associated with fine- to medium-grained granite. When both 

appear together, the quartz diorite is crosscut by the granite, which is an important fact 

to deduce their relative age. No outcrops were found showing the contact between the 

diorite and the diatexite. Diorites and quartz-diorites belong to the group 1 of intrusives, 

as defined in chapter 5.2.3. 

Macroscopic features 

The rock forms always small bodies, often coinciding with topographic highs due to its 

resistance against the weathering. It is sometimes tectonically foliated. The foliation is 

easy to recognize in the varieties containing flattened or stretched aggregates of biotite 

± hornblende. These aggregates are very sensible to the weathering, giving way to the 

occurrence of characteristic holes in the surface of the rock. It is fine or very fine 

grained and is bluish dark grey. 

Microscopic features 

Major constituents: plagioclase 60—40%, either fine grained in the matrix or as large 

crystals or aggregates; biotite 45—20%, with pleochroism green brown to yellow, 

sometimes in form of aggregates with or without hornblende; quartz 20—5%, small 

crystals dispersed in the matrix; hornblende 15—0%, pleochroism in bluish green 

colours. 
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Accessory constituents: titanite; opaque phases; apatite; epidote; chlorite, secondary 

from biotite; white mica, as sericite from plagioclase. 

Microfabric: hypidiomorphic inequigranular (magmatic structure), lepidoblastic (with 

tectonic overprint).  

The modal composition of this rock cannot be accurately determined due to its very fine 

grain size, but it plots most probably in the field of the quartz diorites, and in some 

cases in the granodiorite and tonalite fields of the QAP diagram (Blaha and Siebel, 2006; 

Galadí-Enríquez and Zulauf, 2006). The hornblende is very often lacking and is therefore 

not considered to be typical for his rock. The most important mafic mineral, which is 

always present, is biotite. 

Fine- to medium-grained granite 

In the diatexites we can find a myriad of small granitic intrusions in form of stocks and 

dykes (group 2 of intrusives, as defined in chapter 5.2.3). At least in part, these 

intrusions can be considered to be older than the granites of the Fürstenstein pluton, 

since the later often crosscut the former, as seen in map view (see Appendix 1). 

Nevertheless, the contact between both of them was not found in any outcrop. The 

lower limit for the age of these granite bodies is given by the quartz dioritic rocks, since 

the later are usually crosscut by the younger granitic intrusions. Most of the described 

sinistrally sheared granite bodies described in later chapters belongs to this group of 

rocks. 

The fine- to medium-grained granite was mined principally in the Schlossberg quarry 

north of Tittling, but also in many small quarries all over the study area. Many of them 

constitute good outcrops, some others are unfortunately inaccessible due to the dense 

vegetation or to the bad state originated by anthropogenic fillings. 

Macroscopic features 

As already mentioned, the fine- to medium-grained granite can be found all over the 

study area, but it tends to be more abundant and build larger bodies to the SSE. The 

granite is more resistant to the meteorization than the hosting diatexite; that is why we 

can find much more granite than diatexite fragments resting on cultivated fields. The 

granite usually builds summits and crests. The fractures found in granite are more even 

and penetrative than in diatexites: This feature makes the granite easy to identify even 

at some distance. The contact to the host rock, i.e. diatexite or quartz diorite, is always 

sharp.  

At the hand-specimen scale the appearance of the granite can vary regarding colour 

and intensity of deformation. It can be bluish grey, orange, yellowish or even reddish if 

it is strongly altered. It is mostly fine to medium grained. Most of the bodies are 
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undeformed, but some of them can be slightly or moderately deformed or even 

ultramylonitic.  

To the ESE, the granite contains more and more diatexite fragments and blocks (Fig. 

5.3.1.4-1), not only in the areas mapped as such, but also sometimes in other small 

areas. North of Wilhelmsreut, the diatexite fragments reach several meters in size. 

 

 

Figure 5.3.1.4-1. Diatexite 

fragment in fine- to 

medium-grained granite 

east of Wilhelmsreut. 

 

The fine- to medium-grained granite intrudes very often into quartz diorite. As a result, 

the quartz diorite is crosscut and divided in several fragments that are completely 

enclosed by granite. The size of the quartz diorite fragments typically reaches some dm.  

Microscopic features 

Major constituents: K-feldspar 65—20%, with typical cross-hatched twinning and often 

as microperthite, sometimes with myrmekites at the contact to plagioclase; quartz 60—

28%, often deformed and recrystallized; plagioclase 25—8%, twinned and sometimes 

zoned, in general stronger sericitized than K-feldspar; biotite 7—1%, with pleochroism 

from brown, greenish brown or rarely red to yellow. 

Minor to accessory constituents: white mica, as primary, hypidiomorphic crystals and as 

secondary sericite from feldspars as well; chlorite, secondary from biotite, often 

intergrown with opaque phases and titanite. 

Accessory constituents: titanite; zircon, with several growth phases; opaque phases. 

Microfabric: granoblastic, mylonitic.  

In the QAP diagram, the modal composition of the fine- to medium-grained granites 

plots in the field of the granites, in some cases in the field of the K-feldspar granites. 

Biotite is always present, but not necessarily as a major constituent. Primary white mica 
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was found in about a half of the sampled specimens. Therefore, the rock can be called 

biotite granite or two-mica granite, depending on the case. 

 

5.3.1.5. Magmatic rocks of the Fürstenstein pluton 

The Fürstenstein Pluton is partly located on the Tittling map and continues on the  

topographic sheets 7245 Schöllnach, 7145 Schöfweg, 7146 Grafenau, 7346 Hutthurm 

and 7345 Vilshofen. Most of the results of Troll (1964, 1967) were included in the 

present work with minor modifications. One of the most important changes presented 

here concerns not that much the map extension of the different facies but rather their 

nomenclature, which has been modified to match the modern recommendations of the 

IUGS (Le Maitre et al., 1989, 2002; see Fig. 5.3.1.5-1). The rocks referred to as “quartz 

dioritic” by Troll are in fact granodiorites and tonalites. 

 
 

Figure 5.3.1.5-1. QAP diagram showing the composition of the facies of the Fürstenstein 

Pluton contained on the Tittling map, using modal data reported by Troll (1964), 1 = medium- 

to coarse-grained porphyritic granite (Saldenburg granite), 2 = fine- to medium-grained two-

mica granite, 3 = medium-grained granite to granodiorite (Tittling granite), 4 = medium-

grained granodiorite, 5 = fine-grained granodiorite with titanite spots, 6 = fine-grained biotite 

tonalite, 7 = medium-grained biotite tonalite, 8 = fine-grained granite to granodiorite. 
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Fine-grained granite to granodiorite 

This magmatic facies groups the ones referred to as „very fine-grained biotite granite“ 

and „old fine-grained granite dykes“ by Troll (1964), since no important petrographic 

criteria to treat them as separate facies were found. These rocks are found in form of 

large blocks enclosed in younger facies. 

Macroscopic features 

Good outcrops showing this rock type were not found. The rock suffered an intensive 

weathering together with the neighbouring two-mica granite, which is responsible for its 

reddish colour. Representative for the whole unit are the relatively dark colour and the 

fine grain size. 

Microscopic features 

Major constituents: plagioclase 46—38%, twinned, zoned, sericitized; quartz 27—26%; 

K-feldspar, mostly microcline 22—12%; biotite 13—10%, with pleochroism in brown 

colours. 

Minor to accessory constituents: muscovite. 

Accessory constituents: titanite; opaque phases; apatite; epidote; allanite; zircon; 

monazite; white mica, as secondary sericite from feldspars. 

Microfabric: hypidiomorphic equigranular.  

Medium-grained biotite tonalite („Unterpolling granodiorite“ after Troll, 

1964) 

Macroscopic features 

A single block of this rock was found at the south-western corner of the map. It is 

surrounded by two-mica granite. Plagioclase, biotite and hornblende crystals confer this 

medium-grained rock the appearance of a chessboard, in which some rare titanite 

crystals are distinguishable with the naked eye. 

Microscopic features 

Major constituents: plagioclase 54—48%, An-content 43—20% (andesine-oligoclase); 

biotite 24—19%, with pleochroism in red or greenish brown colours; quartz 22—19%. 

Minor constituents: hornblende, pleochroism yellow - light green - light bluish green; 

titanite, primary or secondary from biotite. 

Minor to accessory constituents: K-feldspar; apatite. 
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Accessory constituents: opaque phases (ilmenite, magnetite and pyrite); zircon; 

epidote; allanite; apatite; white mica, as secondary sericite from feldspars; chlorite, 

secondary from biotite. 

Microfabric: hypidiomorphic equigranular. 

Fine-grained biotite tonalite („Fürstenstein quartz-mica diorite“ after Troll, 

1964) 

Macroscopic features 

Some small blocks of this rock can be found in the neighbourhood of Fürstenstein, 

surrounded by porphyritic granite ort two-mica granite. The rock is fine-grained and 

dark coloured. Some larger plagioclase and biotite crystals or aggregates are found in a 

biotite-rich matrix. Some biotite aggregates are interpreted by (Troll, 1964) as rests of 

not completely assimilated gneiss fragments.  

Microscopic features 

Major constituents: plagioclase 49—45%, An-content 50—15% (andesine-oligoclase), 

zoned, twinned, sericitized; quartz 28—23%; biotite 25—19%, with pleochroism in 

brown or green colours. 

Minor constituents: K-feldspar. 

Minor to accessory constituents: opaque phases (ilmenite); apatite. 

Accessory constituents: titanite; allanite; zircon; white mica, as secondary sericite from 

feldspars; chlorite, secondary from biotite; epidote. 

Microfabric: hypidiomorphic inequigranular.  

Fine-grained granodiorite with titanite spots („Englburgit“ after Troll, 1964) 

This is one of the best-known rocks of the Fürstenstein Pluton. The Tittling granite 

intruded at approximately the same location of the granodiorite with titanite spots, 

which caused the fragmentation of the latter (Fig. 5.3.1.5-2). After Troll (1964) the 

titanite spots grew after the cooling of the granodiorite as a result of the heat provided 

by the Tittling granite. At their contact, both facies partially mingled with each other 

producing an intermediate facies, which is called medium-grained granodiorite in the 

present work. The fine-grained granodiorite with titanite spots was dated at 334-331 Ma 

(Chen et al., 2002, Chen and Siebel, 2004). At the time of research this rock was being 

mined in the quarry Kusser at the Kühberg (1.3 km east-southeast of Fürstenstein). 

Some more information about this rock and the enigmatic origin of its fabric can be 

found in Frentzel (1911), Osann (1923), Fischer (1926), Drescher (1930), and Troll 

(1964). 
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Figure 5.3.1.5-2. Fragment of fine-

grained granodiorite with titanite 

spots enclosed in Tittling granite. 

Macroscopic features 

At the outcrop scale the rock can be found in form of blocks and fragments enclosed in 

Tittling granite or in medium-grained granodiorite. The fragments are from some cm to 

a few meters in size. The spots are aggregates of quartz and feldspar with a diameter of 

3 to 5 mm containing a titanite crystal in the centre (Fig. 5.3.1.5-3). Some spots reach 

even 1 cm in diameter. They use to be elongated. The spots are contained in a dark-

coloured matrix which is rich in biotite and contains some hornblende. Some of the 

spots contain allanite instead of titanite.  

Microscopic features 

Major constituents: plagioclase 48—37%, An-content 49—15% (andesine-oligoclase), 

twinned, zoned; quartz 25—21%; biotite 28—18%, pleochroism in green colours; alkali 

feldspar (orthoclase and microcline) 15—2%, heterogeneously distributed, with 

myrmekites. 

Minor constituents: hornblende, pleochroism yellow - light green - light bluish green, 

mostly transformed into biotite, sometimes in form of aggregates; titanite, as 

idiomorphic crystals up to 3 mm in length. 

Accessory constituents: opaque phases; apatite; epidote; zircon; allanite, zoned, 

twinned, sometimes completely transformed into epidote; chlorite, secondary from 

biotite; white mica, as secondary sericite from feldspars. 

Microfabric: hypidiomorphic inequigranular (titanite crystals are larger than the matrix 

grains), poikilitic (we can find often large microcline crystals containing other crystals), 

usually banded by magmatic flow or tectonically foliated. 
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Figure 5.3.1.5-3. This 

photomicrograph shows a 

titanite spot, i.e. a titanite 

crystal surrounded by a 

biotite-free halo. 

 

Medium-grained granite to granodiorite („Tittling granite“ after Troll, 1964) 

The medium-grained granite to granodiorite or “Tittling granite” crops out at the 

easternmost part of the Fürstenstein Pluton. The sharp contact between it and the 

younger porphyritic granite is shown in some outcrops (Fig. 5.3.1.5-6). On the other 

hand, the contact to the two-mica granite is poorly known. As documented in the 

neighbouring topographic sheet 7346 Hutthurm, a block of Tittling granite is enclosed in 

two-mica granite, which determines the relative age of these facies (Troll, 1964). The 

contact to the granodiorite with titanite spots is described in the former and next 

chapters. The contact between the Tittling granite and the hosting diatexite was found 

only in the quarry Krenn south of Matzersdorf. The Tittling granite was dated at 323-321 

Ma (Chen et al., 2002; Chen and Siebel, 2004). Together with the “quartz dioritic” rocks 

(sensu Troll, 1964), the Tittling granite is the most appreciated material by the rock 

industry in the Fürstenstein Massif. It is mined in the quarries „Hötzendorfer 

Granitwerke Merkenschlager“ west of Hötzendorf, „Kusser am Höhenberg“ north of 

Rothau and „Krenn“ south of Matzersdorf. 

Macroscopic features 

The bluish grey colour is typical for the Tittling granite. It is equigranular and medium 

grained. In parts (Steinhügel) some bigger microcline crystals can be identified. Brown 

titanite and allanite grains are dispersed in the rock. Primary muscovite is lacking. 

Microscopic features 

Major constituents: plagioclase 50—33%, An-content 38—18% (andesine-oligoclase), 

twinned, zoned; quartz 34—21%; K-feldspar (mostly microcline) 32—10%, myrmekites; 

biotite 15—8%, pleochroism in brownish green colours. 
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Accessory constituents: titanite; opaque phases; apatite; epidote, often as corona 

around allanite crystals; allanite, brownish, zoned and twinned, sometimes isotropic; 

zircon; xenotime; white mica, secondary from biotite and feldspars; chlorite, greenish, 

secondary from biotite. 

Microfabric: hypidiomorphic equigranular.  

Medium-grained granodiorite 

The medium-grained granodiorite represents the zone in which the Tittling granite and 

the granodiorite with titanite spots mingle (Fig. 5.3.1.5-4). After Troll (1964), the Tittling 

granite is chemically more active than the younger facies, that is the reason why it 

reacted with the older granodiorites at the contact zone giving rise to an intermediary 

product: the medium-grained granodiorite (“Tittlinger Mischdiorit” after Troll, 1964). 

 

 

Figure 5.3.1.5-4. This photo shows the appearance of the granodiorite with titanite spots, the 

Tittling granite and the mixing product of both of them: the medium-grained granodiorite. 

 

The variety containing gneiss fragments can be best observed in a small, old quarry 

south of Englburg. Unfortunately, the observations in the quarry are hindered by the 

vegetation, but some gneiss rests and fragments can still be found.  

Macroscopic features 

The medium-grained granodiorite fills the voids and veins between the blocks of 

granodiorite with titanite spots. The granodiorite with titanite spots is usually 

surrounded by a more or less thick band of medium-grained granodiorite. The boundary 

between the medium-grained granodiorite and the Tittling granite is anything but sharp. 

At the scale of hand specimens, the rock is intermediary between both Tittling granite 
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and granodiorite with titanite spots in terms of colour and fabric (Fig. 5.3.1.5-4). Some 

titanite spots are also present. 

Microscopic features 

Major constituents: plagioclase 50—41%, An-content 35—20% (andesine-oligoclase), 

twinned, zoned; quartz 31—23%; biotite 19—12%, pleochroism in brownish green 

colours; K-feldspar (orthoclase and microcline) 18—5%, with some impressive 

myrmekites at the contact with plagioclase. 

Minor to accessory constituents: hornblende; titanite, as well developed crystals or as 

secondary aggregates growing from biotite, sometimes transformed into ilmenite. 

Accessory constituents: opaque phases (ilmenite and magnetite); apatite, often 

associated with biotite; epidote; allanite, zoned, twinned; zircon; white mica, as 

secondary sericite from feldspars. 

Microfabric: hypidiomorphic equigranular. 

Fine- to medium-grained two-mica granite 

This rock is rarely mined due to the fact that weathering reaches relatively deep levels 

of it. The outcrops in which we can find it are normally quarries of other rocks where 

the two-mica granite either appears in form of dykes (Fig. 5.3.1.5-5) or encloses a 

mined stoped block (e.g. in the Unterpolling quarry in the SW corner of the map). The 

contacts to the older facies of the Fürstenstein pluton are sharp. However, this is not 

the case of the contact to the younger facies, i.e. the porphyritic granite (see below), 

that probably intruded while the two-mica granite was not completely frozen. The two-

mica granite contains often blocks of “quartz dioritic” rocks (sensu Troll, 1964), gneiss, 

diatexite and fine-grained granite to granodiorite. 

 

Figure 5.3.1.5-5. 

Medium-grained 

granodiorite 

containing fragments 

of granodiorite with 

titanite spots and 

crosscut by two-mica 

granite. The 

photograph was 

taken at the Bahnhof 

quarry south of 

Fürstenstein. 
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Macroscopic features 

This rock is predominantly fine to medium grained and pale yellow. Biotite and 

muscovite crystals shine under the sunlight. Troll (1964) distinguished a fine-grained, a 

medium-grained and a porphyritic variety. In the present work all of them were 

integrated in the same facies. A possible origin for the big K-feldspar crystals of the 

porphyritic variety is the potassium supply by the younger Saldenburg granite. 

Microscopic features 

Major constituents: plagioclase 43—33%, An-content 19—7% (oligoclase-albite), zoned, 

twinned; quartz 32—24%; K-feldspar (microcline and orthoclase) 28—21%, with 

myrmekites; biotite 11—8%, pleochroism in brown and reddish brown. 

Minor constituents: muscovite, partially secondary from biotite. 

Accessory constituents: apatite; opaque phases (mostly magnetite); zircon; monazite; 

xenotime; sillimanite. 

Microfabric: hypidiomorphic equigranular, sometimes porphyritic. 

Medium- to coarse-grained porphyritic granite („Saldenburg granite“ after 

Troll, 1964) 

This rock type can be found in areas which are most densely covered with forest and in 

the highest areas of the map. It is the youngest facies of the Fürstenstein Pluton and 

therefore crosscuts any older facies. U-Pb dating on zircon of this intrusion yielded 318-

312 Ma (Chen et al., 2002; Chen and Siebel, 2004). The contact to the Tittling Granite is 

very well exposed in two quarries (Krenn south of Matzersdorf and Kusser at the 

Höhenberg, see Fig. 5.3.1.5-6), in which the contact surface between both facies dips 

around 30—35° to the E or SE.  

The porphyritic granite contains stoped fragments of “quartz dioritic“ rocks (sensu Troll, 

1964), gneiss and diatexite, the former being found only in the marginal zone. The 

variety containing fragments of two-mica granite was mapped at the north-western 

corner of the map. These fragments are supposed to belong to the group of fine- to 

medium-grained granites that can be found almost everywhere scattered in the region 

out of the limits of the plutons. 

Macroscopic features 

The porphyritic granite is mostly found in a strongly weathered state. The thickness of 

the weathered rock may reach several meters above the fresh rock. Taking a closer look 

to the rock, large, pink K-feldspar crystals are prominent. The latter can be up to 5 cm 

long and are surrounded by a matrix of white plagioclase, bluish transparent quartz and 

biotite. The carlsbad twins of the K-feldspars can be seen with the naked eye. 
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There are all possible intermediary varieties between the dominant porphyritic one and 

a medium-grained, muscovite-bearing facies, the latter being mostly found as a 

marginal facies. 

 

Figure 5.3.1.5-6. In the Kusser am 

Höhenberg quarry the contact between the 

Saldenburg granite (bottom left) and the 

Tittling granite (top right) can be seen. The 

Tittling granite contains fragments of „quartz 

dioritic“ rocks and diatexite (left of hammer). 

Line of sight pointing to the north. 

 

Microscopic features 

Major constituents: K-feldspar (microcline) 41—31%, with carlsbad twins, often with 

myrmekites; plagioclase 30—28%, An-content 23—9% (oligoclase-albite), zoned, 

twinned, saussuritized und sericitized; quartz 34—24%; biotite 6—5%, with pleochroism 

in brown colours, greenish in weathered specimens. 

Accessory constituents: muscovite, primary only in marginal areas; opaque phases; 

apatite; zircon, with several growth phases; xenotime; monazite; allanite; epidote, 

secondary; white mica, as secondary sericite from feldspars. 

Microfabric: porphyritic, rarely hypidiomorphic equigranular (mostly at the margins). 
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5.3.1.6. Dykes 

Aplite 

Macroscopic features 

Together with the pegmatites, with which they are often spatially associated, and with 

the post-granitic dykes, these rocks are the youngest ones on the Tittling map. Aplites 

can be found either in the Fürstenstein pluton or in the neighbouring country rock. 

Normally, they are not mappable due to their small thickness, with the exception of a 

few examples. Aplite dykes are generally straight and crosscut the country rock with 

very sharp contacts. 

Microscopic features 

Major constituents: quartz; K-feldspar; plagioclase; muscovite. 

Minor constituents: biotite. 

Accessory constituents: chlorite, secondary from mica. 

Microfabric: hypidiomorphic equigranular. 

Pegmatite 

Though the pegmatites of the study area are in general considered to be younger than 

the facies found as stocks, most of them intruded actually prior to the Saldenburg 

granite, and some of them even prior to the two-mica granite (Troll, 1964). 

Macroscopic features 

As well as the aplites, they can be found in the Fürstenstein pluton and in the 

neighbouring country rocks as well. The contacts with the host are sharp. Characteristic 

for this rock is its coarse grain size.  

Microscopic features 

A thin section was prepared from a specimen taken in the outcrop east-southeast of 

Rettenbach at the Ilz River. The typical major constituents quartz, K-feldspar plagioclase 

and biotite were found. Regarding the microfabric, the rock is panallotriomorphic to 

hypidiomorphic and equigranular.  

Tennyson (1960, 1981) distinguished two major pegmatite generations. One of them is 

associated with the Tittling granite and contains apatite, fluorite, garnet (spessartine), 

epidote and zeolithes. The other one, associated with the two-mica granite, contains 

tourmaline, beryl and mica. Other minerals that can be found in the pegmatites of the 

area are molybdenite, zircon, monazite, titanite, allanite and chlorite. 
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Post-granitic dyke, intermediary to acid („Porphyrite“)  

These rocks have been studied by many authors since the beginning of the century. 

That is the reason why they have received several different names (“porphyrite” 

amongst others). They are found everywhere in the whole Bavarian Forest. In the 

Tittling map they can be observed in the Fürstenstein pluton as well as in its host rock. 

The post-granitic dykes represent the final records of Variscan magmatic activity. Dacitic 

varieties have been dated at 302 ± 7 (Rb-Sr on apatite-biotite, Christinas et al., 1991b) 

and 299.0 ± 2.3 Ma (U-Pb on zircon, Propach et al., 2007). 

These rocks show an aphanitic fabric, which means that, after the recommendations of 

the IUGS (Le Maitre et al., 1989, 2002), they should be named after the nomenclature 

of volcanic rocks. Due to their small grain size and strong late-magmatic alteration, it is 

difficult, if not impossible, to calculate their modal composition under the microscope. 

Consequently, we will not use the QAP, but the TAS diagram for their classification (Le 

Maitre et al., 1989, 2002), i.e. the rocks are classified attending to their chemical 

composition (sodium, potassium and silicon content). The differentiation between types 

of dykes is based on chemical analyses of Propach et al. (2007) or on the appearance of 

the rocks in hand specimens, since some macroscopic characteristics (colour, 

mineralogy of phenocrysts) correlate roughly with the bulk chemical composition. In 

some cases, the strong post-magmatic alteration or the untypical macroscopic features 

shown by the rocks made their classification as rhyolite, dacite or andesite impossible. 

General macroscopic features 

The post-granitic dykes strike WNW—ESE to NNW—SSE and are subvertical. They are 

always undeformed. Their thickness ranges between a few dm and 6 m on the Tittling 

map. Some thicker dykes can be found on sheet Waldkirchen, east of Tittling. The 

contacts to the host rock are always sharp and sometimes a marginal facies free of 

phenocrysts develops. The primary magmatic minerals are often transformed due to a 

late- to post-magmatic fluid activity. Fragments of the host rock are rarely found 

enclosed in the sub-volcanic dykes. Since these rocks are harder than the country rock, 

they can be usually found in topographic highs. All post-granitic dykes are aphanitic. 

They are mostly porphyritic, in some rare cases aphyric.  

Post-granitic dyke, andesitic 

Macroscopic features 

Hornblende phenocrysts are embedded inside a dark green coloured matrix. The 

arrangement of the phenocrysts is often controlled by magmatic flow. Plagioclase 

phenocrysts, when present, appear as light coloured spots (Fig. 5.3.1.6-1). 
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Figure 5.3.1.6-1. Hand 

specimen of andesite, taken 

north of Schneidermühl. 

Phenocrysts of hornblende and 

plagioclase are embedded in a 

very fine-grained matrix. 

 

Microscopic features 

Major constituents: plagioclase is an important constituent of the matrix, sometimes 

also found as phenocrysts, zoned, strongly sericitized and saussuritized; hornblende, as 

phenocrysts, with pleochroism in brown or greenish colours, twinned, completely or 

partially transformed into biotite or chlorite; quartz. 

Minor to accessory constituents: biotite, primary or secondary from hornblende; chlorite, 

secondary from hornblende or biotite; K-feldspar; epidote, secondary; opaque phases; 

titanite, secondary; calcite, secondary; apatite; zircon; white mica, secondary. 

Microfabric: porphyritic, pilotaxitic, rarely aphyric. 

After Propach et al. (2007), in the most mafic end members phenocrysts of olivine and 

orthopyroxene can be found. 

Post-granitic dyke, dacitic 

Macroscopic features 

In comparison to the andesitic ones, the dacitic varieties have a lighter, greyish green 

colour. The most typical phenocrysts are of plagioclase, whereas phenocrysts of mafic 

minerals recede. 

Microscopic features 

Major constituents: plagioclase, in the matrix and as phenocrysts, zoned, sericitized and 

saussuritized; chlorite, secondary from biotite or hornblende; K-feldspar; quartz. 

Minor to accessory constituents: biotite; hornblende, not always present, transformed 

into biotite and chlorite; titanite, secondary, often intergrown with chlorite; epidote, 
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secondary; opaque phases; calcite, secondary; apatite; zircon; white mica, secondary; 

allanite. 

Microfabric: porphyritic, pilotaxitic, rarely aphyric. 

Post-granitic dyke, rhyolitic 

Macroscopic features 

The lack of phenocrysts is the most typical feature of the rhyolites of the Tittling map. 

The two existing outcrops show different characteristics. The rock south of Fürsteneck 

shows a grey-bluish colour and intrudes into both the diatexite and the pre-existing 

dacite (Propach, pers. comm.). The rock found north of Auggenthal was called alkali 

aplite by Troll (1964) and is accompanied by some veins of micro- to cryptocrystalline 

quartz. The rock is here light brownish yellow. Both dykes show a rhyolitic composition 

(Propach et al., 2007). 

Microscopic features 

The analysis of one thin section obtained from the outcrop south of Fürsteneck provided 

less information due to its extremely fine grain size and strong late-magmatic alteration. 

The identified minerals are: quartz; feldspar, strongly altered, presumably plagioclase 

and K-feldspar; sericite; epidote; chlorite; apatite; opaque phases. 

Microfabric: aphyric, trachytic. 

 

5.3.1.7. Mineralisations 

Quartz lode 

The most popular quartz lode in the Bavarian Forest is represented by the natural rock 

wall of Weißenstein, at the Bayerischer Pfahl shear zone. The quartz mineralisation 

occurred not only at this shear zone, but everywhere in the Bavarian Forest, which led 

to the formation of more or less thick veins and dykes of quartz, often associated with 

brittle faults or fault zones. The quartz lode was dated at 247 ± 21 Ma (Rb-Sr whole-

rock age, Horn et al., 1986). Its origin is supposed to be related with a high fluid activity 

in post-Variscan times. 

In the Tittling map, quartz veins are normally found in form of small blocks and 

fragments distributed along straight lines across the cultivated fields and forests. Very 

rarely, the veins or dykes can be observed in good outcrops: This is the case of one 

outcrop at the Ilz River southeast of Allmunzen, in which a thickness of 1.60 m and an 

orientation N120E/80SW were measured. 
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5.3.1.8. Fault rocks 

Mylonite 

The protolith of most of the mylonites is a fine- to medium-grained granite. This 

influences the colour of the mylonite, which is mostly light yellow or milky white. Two 

different groups of mylonites can be distinguished attending to their kinematics and the 

orientation of their foliation planes: 

• NNW—SSE, dextral. 

• WSW—ENE to WNW—ESE, sinistral. 

The second group is constituted by the so-called sinistrally sheared granites and will be 

studied in detail in the next chapters. 
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5.3.2. Deformation phases in migmatites of the study area: D1 and 

D2 

In the study area the following deformation phases were inferred from field and 

microscopic observations: 

5.3.2.1. D1 

This is the oldest deformation phase recognizable in the diatexites south of the 

Bayerischer Pfahl shear zone and is identifiable only under the microscope. It is 

recorded by very high temperature microfabrics (Fig. 5.3.2.2-1a). Amoeboid contacts 

between quartz and feldspar are the result of diffusion creep indicating high-grade 

conditions (Gower and Simpson, 1992). Quartz grains show subgrains with boundaries 

parallel to both prism and basal planes, defining a so-called chessboard pattern. The 

latter is thought to be diagnostic for prism <c> slip, which is active at temperatures 

higher than 600°C in the β-quartz stability field (Mainprice et al., 1986; Masberg et al., 

1992; Kruhl, 1996). This deformation phase produced a weak foliation defined by the 

shape-preferred orientation of minerals (mainly quartz, feldspar and biotite). D1 is found 

as a relict in areas with no or a very weak D2 overprint. The D1 kinematics is unknown. 

5.3.2.2. D2 

D2 is characterized by a variously, usually poorly developed, steep NW—SE striking 

tectonic foliation resulting from dextral simple shear (Fig. 5.3.3-1b). It can be found in 

diatexites and igneous bodies of the groups 1 and 2 (see chapter 5.2.3) and reaches its 

maximum intensity in the vicinity of major shear zones like the Bayerischer Pfahl shear 

zone. Photomicrographs of diatexites affected by D2 are presented in Fig. 5.3.2.2-1b-d. 

Quartz forms aggregates of new grains, in which relict old grains are abundant. New 

grains appear to be nearly strain free, whereas old grains present chessboard patterns. 

The chessboard pattern might be to some extent inherited from D1, since subgrain 

boundaries may be very stable microstructures in quartz (Kruhl, 1996), but this 

possibility is difficult to evaluate. Grain boundaries are strongly lobate or serrated due to 

grain boundary migration recrystallization, often with crystallographically controlled 

squared contours that constitute the so-called reticular or mosaic-like pattern (Gapais 

and Barbarin, 1986).  
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Figure 5.3.2.2-1. Photomicrographs of diatexites affected by D1 and D2, XZ-sections (for D2), 

crossed polarizers. a) D1 in sample Tit 141 (see Appendix 2 for location). D1 is recorded by 

amoeboid contacts between quartz and feldspar (indicated by black arrows) and chessboard 

patterns in quartz (orientation of prism and basal planes indicated by labels). b) D2 in sample 

Grf 599 (see Appendix 2 and Fig.5.3.3.1-1 for location), mosaic-like pattern in quartz. c) and d) 

D2 in sample Frg 92 (see Appendix 2 for location), chessboard pattern in relictic old quartz 

grains (orientation of prism and basal planes indicated by labels) surrounded by recrystallized 

quartz. 

 

Feldspar started to recrystallize at grain boundaries and cracks. Although the 

temperature seems to have been high enough, the amount of strain was probably not 

sufficient to produce pervasive feldspar recrystallization, as proposed by Tullis and Yund 

(1977). Feldspar shows also patchy undulose extinction and microcracks and is in a few 

cases boudinaged or broken. Plagioclase is mechanically twinned and sometimes zoned. 

Lobate grain boundaries between feldspar and quartz are rare. Most of the mobile 

contacts between different phases were probably formed during D1 and destroyed 

during D2, since they represent a rather unstable microfabric element (Gower and 

Simpson, 1992). Amphibole, often containing a diopsidic core in dark-coloured 

diatexites, displays patchy undulatory extinction and subgrains. Biotite plates define the 

tectonic foliation. Biotite grains are always accompanied by a large number of tiny (~10 

µm) titanite and/or ilmenite crystals at the borders or at mineral cleavage planes, 
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suggesting crystallisation of Ti-rich biotite at high temperature and Ti exsolution during 

temperature decrease. Dextral shear sense is deduced from σ-type mantled 

porphyroclasts (Fig. 5.3.3-1b). 

 

5.3.3. D3 and sinistrally sheared granites: the D3 shear-zone system 

D3 is characterized by a well-developed, ENE—WSW to WNW—ESE trending mylonitic 

foliation and a sub-horizontal stretching lineation resulting from sinistral simple shear. It 

occurs in a localized fashion, mostly in granitic dykes and stocks of the group 2 (see 

chapter 5.2.3), rarely in the country rock (diatexites and dioritic to granodioritic rocks). 

A rare case of diatexite affected by D3 is found in the Saunstein quarry (see below). 

Apart from the orientation of the foliation, the sinistral sense of shear of this phase, as 

clearly indicated by σ-type mantled porphyroclasts and other kinematic criteria, also 

differs from the kinematics of D2. It is important to note that dextral displacement along 

NW—SE trending planes (D2) and sinistral displacement along ENE—WSW to ESE—

WNW trending planes (D3) cannot result from one single deformation phase (see 

chapter 5.2.5). Therefore we consider sinistral shearing as a result of a post-D2 event, 

which will be referred to as D3 and is the central object of the present work. The shear 

zones formed during D3 constitute the D3 shear-zone system.  

The fabric associated to D3 in granites will be described in the following chapters. When 

observed in diatexites, D3 is accompanied by a considerable grain size reduction 

(compare Fig. 5.3.3-1a and b). 

 

Figure 5.3.3-1. Hand specimens of dark-coloured diatexite, XZ-sections, same scale for both 

specimens. a) Sample Grf 598 (see Appendix 2 and Fig. 5.3.3.1-1 for location) is affected by 

D3; sinistral shear sense is deduced from σ-type mantled porphyroclasts. b) Sample Frg 92 

(see Appendix 2 for location) is affected by D2; dextral shear sense is deduced from σ-type 

mantled porphyroclasts. 
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Quartz forms lenticular aggregates and ribbons of equant new grains of strain-free 

appearance (Figure 5.3.3-2). Grain boundaries are mostly regular and straight, but 

some show also serrated or sutured geometries. A well-developed LPO is present, but 

no shape-preferred orientation. Chessboard patterns are lacking. Attending to these 

microfabric features, a combination of subgrain rotation and grain boundary migration 

are proposed as active recrystallization mechanisms. Feldspars are partially 

recrystallized forming core-and-mantle structures, σ-type mantled porphyroclasts and 

fine-grained polycrystalline ribbons. Local brittle behaviour is also documented by some 

broken crystals. There is no evidence for diffusion creep at quartz/feldspar boundaries. 

Amphibole can be found as porphyroclast, often with a diopsidic core, and also forming 

part of the foliation planes together with biotite. New, small biotite grains grow in strain 

shadows and parallel to the foliation. The amount of titanite and ilmenite accompanying 

biotite is even higher than described for D2. 

 

 
 

Figure 5.3.3-2. Microfabrics of dark-coloured diatexite affected by D3, sample Grf 598 (see 

Appendix 2 and Fig. 5.3.3.1-1 for location). a) Quartz is completely recrystallized and feldspar 

is partly recrystallized. Amphiboles are found as porphyroclasts. b) Local brittle behaviour is 

shown by some feldspars (see white arrow pointing to a fracture). 

 

EBSD analyses were performed on two diatexite samples in order to compare the quartz 

textures resulting from D2 and D3. Quartz in diatexites shows a weak lattice preferred 

orientation, probably due to the low quartz content, which leads to a stronger 

interaction between quartz and other minerals and prevents quartz grains from 

recrystallizing without obstacles. Whereas the lattice preferred orientation patterns of 

sample Frg 92, which is representative for D2, are hardly interpretable (Fig. 5.3.3-3), the 

ones of sample Grf 598, representative for D3, are fairly well developed and show a 

similar appearance as in sheared granites (see following chapters), i.e. a concentration 

of c-axes around the Y-axis of the finite strain ellipsoid. We will discuss the meaning of 
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the quartz textures after presenting the patterns obtained from sinistrally sheared 

granites. 

 
 

Figure 5.3.3-3. Quartz a- and c-axes patterns of diatexites affected by D2 and D3 (see Appendix 

2 for sample location). 

 

5.3.3.1. Geographic distribution of sinistrally sheared granites 

The sites which have been sampled and studied (Fig. 5.3.3.1-1) constitute the best 

exposed examples, but they are not the only existing sheared granites in the region. 

More information about the sampling sites can be found in Appendix 2. 

 

Figure 5.3.3.1-1. Geographic 

distribution of sampling sites of 

sinistrally sheared granites (see also 

Appendix 2). 
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5.3.3.2. The case study of the Saunstein granite dyke 

Introduction and previous data 

The Saunstein granite dyke is the best exposed one amongst all of the sinistrally 

sheared granites. It is about 50-100 m thick, but only the northern half of it is well 

exposed in the quarry of the same name, which is located 4 km west of the town 

Grafenau (Fig. 5.3.3.2-1, 5.3.3.2-2). This outcrop has raised the interest of many 

workers. A good documentation of it can be found in Artmann (2001). Christinas et al. 

(1991a) dated cooling age T< 500 ±  50°C at 316 ± 6 Ma (Rb-Sr on muscovite) and T< 

300 ± 50°C at 310 ± 7 Ma (Rb-Sr on biotite). Siebel et al. (2005) provided an age of 

326 ± 9 Ma (U-Pb on zircon). Dr. W. Dörr (University of Giessen, Germany) carried out 

a U-Pb dating of monazite separated from this dyke and obtained an emplacement age 

of 324.4 ± 0.8 Ma (Galadí-Enríquez et al., 2005). 

 

Figure 5.3.3.2-1. a) Geographic distribution 

of sampling sites of sinistrally sheared 

granites (see also Appendix 2). b) 

Enlargement of the area surrounding the 

Saunstein quarry, simplified after geological 

maps at scale 1:25000 of Blaha and Siebel 

(2006) and Teipel et al. (in press).  
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Figure 5.3.3.2-2. 

Overview of the 

upper level of the 

Saunstein quarry, in 

which an impressive 

sinistrally sheared 

dyke crops out. 

 

Outcrop description and sampling mode 

The Saunstein dyke belongs to the group 2 of intrusive bodies (see classification in 

chapter 5.2.3). D3 transformed the granite into proto-, meso- or ultramylonite, 

depending on the considered location across the dyke. The deformation is 

heterogeneous: The increase in strain intensity towards the contact to the hosting 

diatexite is reflected by the reduction in grain size, the increasing intensity of the 

foliation and the lineation and the decreasing angle between C and S planes (Fig. 

5.3.3.2-3, 5.3.3.2-4). 

Figure 5.3.3.2-3. Geological section along the eastern wall of the Saunstein quarry. The 

location of the samples used in this study is indicated (see also Appendix 2). 
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Looking at the different samples in detail, we can realize that the decrease of the 

deformation intensity does not take place in a strictly progressive fashion, but rather 

changes back and forth on a meter scale with a generally decreasing trend on the 

outcrop scale. The most fine-grained specimens are found in two bands, one of them 

between 0 and 2 cm away from the contact to the host rock and the second one 

between 0.5 and 2 m away from the contact (schematically represented in Fig. 5.3.3.2-

3). 

The dyke was sampled at intervals from a few centimetres in highly deformed parts up 

to two meters in less deformed parts. XZ and YZ-sections at hand specimen and thin 

section scale were prepared for structural analysis. 

 

 

Figure 5.3.3.2-4. Hand specimens of granite in order of increasing distance to the host rock 

and decreasing intensity of D3, XZ-sections. a) Sample Grf 603, S and C planes are parallel to 

each other. b) Sample Grf 606, S and C planes are parallel to each other, an asymmetric fold is 

observable (indicated by dashed line). c) Sample Grf 605, S and C planes at an angle of 12°, d) 

Sample Grf 607, S and C planes at an angle of 18°. e) Sample Grf 608, S and C planes at an 

angle of 20°. f) Sample Grf 615, nearly undeformed. 

 

A detailed geologic profile along the eastern wall of the quarry allows the recognition of 

two more dykes north of the principal one (Fig. 5.3.3.2-3). One of them is 0.15 m thick 

and presents a very strong D3 mylonitic foliation. The other one is 0.5 m thick and is 

affected by D3 at the southern part and practically undeformed at the northern contact, 

where a not strongly marked but visible chilled margin is present (Fig. 5.3.3.2-5). The 

internal characteristics of these two smaller dykes are similar to those of the principal 

dyke and will therefore not be the focus of further studies. Nevertheless, there is an 

important fact accompanying these dykes: the host rock at their southern part is 
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affected by D3. The host rock at the contact to the main dyke is also likely to have been 

affected by D3 (Fig. 5.3.3.2-3), but structures related to D3 cannot be unequivocally 

identified due to a late cataclastic overprint. 

 

Figure 5.3.3.2-5. 

Photomicrograph of sample 

Grf 596 (see Fig. 5.3.3.2-3 

for location), showing a 

slight decrease in grain size 

in undeformed granite 

towards the contact to the 

host rock. Crossed 

polarizers. 

 

Microfabrics 

Under the microscope the most fine-grained samples are constituted by a very fine-

grained quartz-feldspar matrix in which some cleavage domains of newly formed white 

mica are recognizable (Fig. 5.3.3.2-6a and c). Quartz and feldspar grains are completely 

mixed, with the exception of some rare bands of pure quartz. Some porphyroclasts of 

feldspar and igneous white mica are present. The configuration of asymmetric folds is 

compatible with a sinistral sense of shear (Fig. 5.3.3.2-4b). 

In moderately to weakly strained areas (Fig. 5.3.3.2-6b, d, e, f and g) a fine banding of 

quartz and feldspar layers becomes visible, whereas white mica is more homogeneously 

distributed and does not form separate domains. Quartz and feldspar domains are easily 

identified due to the difference in grain size.  

Quartz occurs in form of equigranular polycrystalline ribbons. Grain boundaries are 

straight and regular as well as irregular and serrated. A lattice preferred orientation is 

present. Most of the grains appear to be strain-free; a few of them show prism-parallel 

subgrain boundaries or deformation bands. The quartz microfabrics present no 

differences compared to those described for D3 in the host rock (chapter 5.3.3). Grain 

boundary migration and subgrain rotation seem to have been likewise the dominant 

recrystallization mechanisms. 
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Figure 5.3.3.2-6. Photomicrographs of granite samples affected by D3 and D4 in order of 

increasing distance to the host rock, XZ-sections, crossed polarizers. a) Sample Grf 602 and b) 

Grf 603. D4 quartz SPO (white arrows) indicates dextral shear sense. c) Sample Grf 606. The 

white arrow indicates a cleavage domain constituted by synkinematic white mica. The black 

arrow points to a white mica crystal showing kinking. d) Sample Grf 605. Mica-fish and angular 

relationship between S and C planes point to a sinistral sense of shear (D3), whereas quartz 

SPO results from dextral simple shear (white arrows, D4). The fine-grained matrix consists of 

recrystallized feldspar. e) Sample Grf 607. White mica and feldspar porphyroclasts embedded 

in a matrix of alternating fine-grained feldspar layers and polycrystalline quartz ribbons. Note 

the sinistral sigmoidal fabric (white dashed lines, D3) and dextral quartz SPO (white arrows, 

D4). f) Sample Grf 608. The arrow indicates a band along which D4 concentrates, resulting in 

dextral quartz SPO. Below this band there are some other quartz layers which are practically 

not affected by D4 and show no SPO. 
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Figure 5.3.3.2-6 (continued). g) 

Enlargement of the former picture 

showing a quartz aggregate affected 

by D4. Grain boundaries are intensively 

sutured and fuzzy. h) Sample Grf 611. 

Quartz ribbons are slightly affected by 

D4, more intensively at the bottom 

right corner of the photograph (white 

arrow). i) Sample Grf 615. Nearly 

undeformed granite. 

 

Feldspar is partially recrystallized, forming fine-grained layers and σ-type mantled 

porphyroclasts, rarely δ-type ones. K-feldspar was replaced by albite at the margins 

(see below under feldspar composition), which points to a fluid-assisted deformation. 

Some porphyroclasts are transected by synthetic or antithetic microfaults. Primary 

igneous feldspars were partially transformed into to white mica during grain-size 

reduction. Fine-grained white mica and biotite grow principally in strain shadows or at 

foliation surfaces. Igneous white mica typically forms mica-fishes (Fig. 5.3.3.2-6d) and 

shows kinking (Fig. 5.3.3.2-6c). Igneous biotite is found as inclusions in feldspar or 

dispersed in the matrix. Sinistral shear sense is reported by σ-type mantled 
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porphyroclasts, mica fishes, monomineralic sigmoidal bands and the angular relationship 

between S and C planes. 

Considering all microfabric aspects of D3 both in this granite dyke and in the adjacent 

diatexite, some constraints on the deformation temperature can be made: (i) the 

transition from dominant subgrain rotation recrystallization to dominant grain boundary 

migration recrystallization is proposed by Stipp et al. (2002) to be approximately 

between 480 and 530°C (P ~ 2.5-3 kbar); (ii) after Kruhl (1996) the absence of 

chessboard patterns in quartz does not allow any major constraint in our case, since the 

pressure during the deformation is unknown, but even assuming middle crust pressures, 

the maximum deformation temperature is above or around the wet granite solidus, 

which represents in fact no constraint at all; (iii) the lack of mobile boundaries between 

different phases indicates that diffusion creep did not play an important role in 

deformation; thus, the deformation must have taken place well under solidus 

conditions; (iv) feldspar deforms by dislocation creep at temperatures above 450-500°C, 

the presence of fluids can have contradictory effects (microcracking and recrystallization 

favoured by a chemical free energy term (Tullis, 1983)), which are difficult to evaluate 

in terms of deformation temperature. In summary, assuming a deformation temperature 

around 500-550°C seems to be reasonable. 

A further deformation phase D4 can be inferred from the study of the Saunstein granite 

dyke. While σ-type porphyroclast systems and other monoclinic fabric elements (e.g. 

mica fishes, sigmoidal bands and ribbons) indicate clearly a sinistral sense of shear 

during D3 in the granite dyke, the oblique foliation defined by the SPO in many quartz 

aggregates displays a dextral shear sense (Fig. 5.3.3.2-6b, d, e, f and g). This 

phenomenon could be explained in three ways:  

1. The quartz SPO is older than the whole D3 fabric. A pre-D3 dextral event 

produced the quartz shape-preferred orientation, which remains preserved as a 

relict. 

2. The quartz SPO formed during D3, i.e. there is some unknown mechanism 

producing “anomalous” SPO of quartz grains under certain conditions.  

3. The quartz SPO is younger than the whole D3 fabric. A new deformation phase 

(D4) of very low intensity overprinted not the whole fabric, but only the SPO of 

quartz.  

The first possibility is improbable: D3 produced a very strong monoclinic symmetry and a 

considerable amount of strain; feldspar recrystallized and formed well-developed σ-type 

mantled porphyroclasts and fine-grained bands; thus, the strain magnitude and the 

temperature were too high for the preservation of pre-existing structures in quartz 

during D3 and resetting of its fabric is to be expected. 

The second hypothesis lacks experimental support. Such a phenomenon has not been 

described up to now. Moreover, the fact that many but not all quartz ribbons present 
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this “anomalous” SPO (Fig. 5.3.3.2-6f) does not support a common development of SPO 

and D3 fabric, but rather a separate formation of the D3 fabric and the quartz SPO. 

Thus, the third option seems the most probable. As a microstructural evidence for the 

quartz SPO being post-D3, we observed that even in polycrystalline quartz ribbons, 

whose sigmoidal form displays clearly a sinistral shear sense, the SPO shows a dextral 

shear sense (Fig. 5.3.3.2-6d and e): The opposite temporal succession would have 

destroyed the dextral SPO of quartz. Quartz grain boundaries are not squared and sharp 

as observed in D3 (Fig. 5.3.3.2-6), but intensively sutured and fuzzy (Fig. 5.3.3.2-6g) 

indicating grain boundary migration recrystallization and a deformation temperature 

slightly lower to that during D3. The amount of quartz aggregates displaying dextral SPO 

increases towards the contact to the host rock, suggesting that during D4 this contact 

continued to play an important role. 

Feldspar composition 

Microprobe analyses of feldspars of sample Grf 605 were performed in order to detect 

changes in the composition between old, magmatic porphyroclast cores and their 

dynamically recrystallized mantles. The results can be found in Appendix 4. 

The analyses revealed a strong contrast between the composition of porphyroclast cores 

and mantles. The average composition of feldspars is An0 Ab5 Or95 in cores and An9 Ab90 

Or1 in mantles. K-feldspar was replaced by albite at the margins, which points to a fluid-

assisted deformation. 

The variations in composition are also reflected in the backscattered electrons image of 

Fig. 5.3.3.2-7. The minerals shown are, in order of increasing brightness, quartz, albite, 

K-feldspar and phengite. 

 

Figure 5.3.3.2-7. Backscattered 

electrons image showing the 

chemical variations between 

feldspar core and mantle in 

sample Grf 605. 
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Quartz texture 

Six granite samples located at different distances to the contact, and therefore variously 

deformed, were selected and scanned by means of EBSD on XZ-sections. The obtained 

a and c-axes patterns are represented in Fig. 5.3.3.2-8. In the diagrams shown, a 

clustering of quartz c-axes parallel to the intermediate Y-axis of the finite strain ellipsoid 

is obvious. a-axes patterns develop three maxima: two secondary maxima on the XZ-

plane and one principal maximum on the XZ-plane parallel to C. The latter is deviated 

with respect to the X-axis of the finite strain ellipsoid indicating sinistral sense of shear 

(Simpson and Schmid, 1983; Schmid and Casey, 1986). This LPO pattern is diagnostic 

for prism <a> slip in quartz, which is known to be dominant at middle to high 

temperature conditions, that is, at upper greenschist to amphibolite facies conditions 

(Bouchez and Pêcher, 1981; Schmid and Casey, 1986; Jessell and Lister, 1990; Law, 

1990). After Stipp et al. (2002) this pattern is diagnostic for grain boundary migration 

recrystallization and its transition towards subgrain rotation recrystallization, which 

corroborates the results of our microfabric analyses (see above) and is in good 

agreement with a deformation temperature of 500-550°C. The homogeneity of the 

quartz texture across the dyke indicates no temperature gradient and, therefore, the 

dyke and the host were thermically equilibrated during the deformation. 

 

 

Figure 5.3.3.2-8. Quartz a- and c-axes patterns obtained by means of EBSD in a profile across 

the deformed dyke indicating sinistral simple shear component.  Equal area projection, lower 

hemispheres. n = number of data points, MiD = minimum density, MaD = maximum density. 

Density contours at 0.5; 1; 1.5; 2; 2.5; 3; 4; 5; 6. Black represents the maximum density. Data 

points were smoothed with a Gaussian of 10° full width half maximum. 
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It is not possible to infer a shear sense from the a-axes pattern of sample Grf 603, in 

which S and C surfaces are parallel. In the most fine-grained sample (sample Grf 606, 

Figs. 5.3.3.2-4b and 5.3.3.2-8) the texture is more poorly developed than in the other 

samples. This phenomenon has already been observed by other authors (Berthé et al., 

1979) and could be a result of operating deformation mechanisms that do not promote 

or even prevent the development of lattice preferred orientation, such as grain 

boundary sliding with more or less contribution of diffusion creep, since grains slide past 

each other more easily in fine-grained aggregates than in coarser-grained ones (Boullier 

and Gueguen, 1975; Behrmann, 1985; Behrmann and Mainprice, 1987). Sample Grf 615 

is macroscopically nearly undeformed but shows some weak crystallographic fabric. 

Maxima are in this case displaced with respect to the principal strain axes due to the 

uncertainty about their position during sample preparation, since foliation and lineation 

are lacking. 

The effect of D4 on the LPO patterns is impossible to quantify. In relation to this 

deformation phase, we should emphasize that both temperature and shear sense 

inferred from LPO patterns are compatible with D3 and therefore i) D4 must have been 

very weak and/or ii) the averaging effect of the method results in patterns showing 

predominantly D3. 

Quartz in diatexites shows a much weaker LPO (Fig. 5.3.3-3), probably due to the lower 

quartz content, which leads to a stronger interaction between quartz and other minerals 

and prevents quartz grains from recrystallizing without obstacles. Whereas the LPO 

patterns of sample Frg 92, which is representative for D2, are hardly interpretable, the 

ones of sample Grf 598, representative for D3, are fairly well developed and show a 

similar appearance as in the granite dyke. Thus, it is corroborated that D3 observed in 

granite and host rock took place under similar temperatures. 

Finite strain of the principal dyke 

Four samples were selected for the application of the Rf/Φ’ method (see chapter 3.7). 

The results obtained are represented in Table 5.3.3.2-1 and Fig. 5.3.3.2-9. It is 

important to note that Rs is an underestimation of the real strain, since feldspars exist in 

the deformed granite not only as porphyroclast, but also as completely recrystallized, 

fine-grained aggregates in the matrix, which could not be taken into account in our 

measurements due to their small thickness at hand specimen scale. Moreover, feldspar 

crystals contribute to the bulk strain not only by ductile behaviour but also by rotation. 

Finally, the strain measured in feldspar porphyroclasts is surely lower than the bulk 

strain, since the matrix contains a large amount of quartz, which was likely weaker and 

is expected to have suffered a higher strain than the porphyroclasts. 

Two aspects of our results are notable: 

• The magnitude of strain increases towards the contact to the host rock. 
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• The shape of the finite strain ellipsoid in different points of the dyke was plotted 

in a Flinn graph (Fig. 5.3.3.2-9): Oblate ellipsoids (S > L) are obtained, with the 

flattening being most pronounced near the contact. This result is visually 

corroborated by the fact that the planar fabric of the deformed granite dyke is 

best developed next to the contact to the host rock. 

In Table 5.3.3.2-1 the strain calculated from the angle between S and C planes is 

shown.  

 

after Peach & Lisle (1979) after Ramsay & Huber (1983) 
after Ramsay & Graham 

(1970) 

Rs Rs sample 
distance to 

contact (m) 

Rs,xz Rs,yz Rs,xy 
k 

Rs,xz Rs,yz Rs,xy

k θ’ γ 

606 2.0 2.94 2.24 1.31 0.25 3.37 2.57 1.31 0.20 - - 

605 3.5 2.59 1.79 1.45 0.45 2.66 1.86 1.43 0.50 12° 4.5 

607 6.6 2.33 1.76 1.32 0.43 2.58 1.85 1.39 0.46 18° 2.7 

608 8.5 1.99 1.61 1.24 0.39 2.16 1.72 1.26 0.36 20° 2.4 

 

Table 5.3.3.2-1. Finite strain data calculated by the Rf/Φ’ method using the computer program 

“STRAIN” (Unzog, 1990) and by the angle between S and C planes. Rs = ellipticity of the strain 

ellipse. 

 

As obtained from the Rf/Φ’ method, the finite strain ellipsoid plots in the flattening field 

and therefore the plane-strain requirement for the strain calculation from the angle 

between S and C planes is not fulfilled. Therefore, the reported γ values must be 

considered only as an approximation. 

 

 

Figure 5.3.3.2-9. Flinn graph showing the 

finite strain geometry calculated by the 

Rf/Φ’ method at different locations of the 

principal dyke. White and grey symbols 

represent the strain calculated after 

Ramsay and Huber (1983) and Peach and 

Lisle (1979), respectively. DC = distance to 

the contact (m). 
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Mass transfer, volumetric strain and Zr-thermometry 

There is some evidence for the presence of a fluid phase during D3. Electron microprobe 

analyses (Appendix 4) show a change in feldspar composition: K-feldspar (An0 Ab5 Or95) 

is substituted by plagioclase (An9 Ab90 Or1) during dynamic recrystallization (Fig. 5.3.3.2-

7). The second evidence is constituted by the fine-grained white mica growing parallel 

to the mylonitic foliation, whose formation, probably at the expense of igneous feldspar, 

needs the presence of a fluid phase. At this point, the question arises whether this fluid 

phase played an important role in transferring mass away from or into the deformed 

rock. 

The isocon-diagram method (see chapter 3.8.1) was applied in order to evaluate the 

mass transfer effect of the fluids present during D3. Six samples were chemically 

analyzed by means of X-ray fluorescence. The results are shown on Table 5.3.3.2-2 and 

depicted in Fig. 5.3.3.2-10. 

 

sample DC (m) Total SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5  

603 0.05 99.93 76.12 13.15 0.93 0.023 0.16 0.75 3.86 4.54 0.06 0.02  

604 0.5 99.89 76.79 13.00 0.74 0.033 0.12 0.63 3.50 4.61 0.06 0.02  

605 3.5 100.02 76.97 13.40 0.89 0.044 0.12 0.66 3.28 4.03 0.07 0.02  

608 8.5 100.78 76.47 12.94 1.06 0.041 0.18 1.00 3.15 4.96 0.07 0.02  

610 11 100.47 76.78 12.95 0.97 0.037 0.14 0.35 3.28 5.38 0.06 0.02  

615 28.5 100.80 76.42 13.23 0.86 0.025 0.17 0.42 3.42 5.70 0.07 0.03  

sample DC (m) Ce Cr Ga La Nb Nd Ni Pb U V Zr  

603 0.05 55 18 16 21 51 16 41 23 11 6 44  

604 0.5 75 4 16 10 46 27 18 30 14 3 50  

605 3.5 80 2 14 27 29 28 12 33 11 5 68  

608 8.5 67 10 16 20 29 27 23 32 15 2 69  

610 11 71 13 15 23 28 17 12 28 4 5 68  

615 28.5 66 5 15 15 31 14 19 25 5 5 72  

sample DC (m) As Ba Co Cs Cu Rb Sn Sr Th Y Zn LOI (%) 

603 0.05 5 192 37 15 6 326 9 107 30 78 1 0.23 

604 0.5 6 26 55 21 2 462 11 28 26 108 5 0.33 

605 3.5 6 27 83 20 6 455 14 32 34 115 10 0.47 

608 8.5 6 39 66 12 2 430 14 41 37 116 9 0.83 

610 11 6 34 95 14 1 498 13 31 35 107 4 0.43 

615 28.5 6 206 91 13 2 392 6 92 42 85 - 0.37 

 

Table 5.3.3.2-2. X-ray fluorescence analyses of different granite samples in order of increasing 

distance to the host rock. Oxides in weight per cent, elements in ppm. DC = distance to the 

contact. These data were used for the application of the isocon-diagram method (Fig. 5.3.3.2-

10) and for Zr-thermometry. 
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Figure 5.3.3.2-10. Isocon diagrams plotting 

deformed sample vs. undeformed sample in 

order of increasing deformation intensity 

(see Fig. 5.3.3.2-3 for sample location). In 

all diagrams the X-axis represents the 

concentration in sample 615 (undeformed). 

Oxides in weight per cent, elements in ppm. 

Grey and black points represent mobile and 

immobile components, respectively. 
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Fig. 5.3.3.2-10 shows most of the mobile and immobile components plotting next to or 

on a line of slope = 1. We can therefore conclude that deformation did not lead to an 

important mass exchange between the sheared granite and the surrounding rocks, 

despite a fluid being present and enhancing the mobility of some components. Thus, no 

significant volume change took place during deformation. Nevertheless, some K and Ba 

loss is observed, maybe due to the transformation of K-feldspar into white mica. The 

higher Ca content in strained areas is coupled with the aforementioned transformation 

of K-feldspar into plagioclase during deformation. The required additional Ca might have 

been supplied by the host rock. 

Since no significant volume change took place during the deformation, the strain 

geometry presented in Fig. 5.3.3.2-9 is therefore a real geometry and not the result of 

volumetric strain: The dyke constituted a closed chemical system at the outcrop scale, 

in which the mineral transformations visible at the microscope scale remained nearly 

isochemical. Flattening strain suggests transpression during the main phase of shearing 

(e.g. Sanderson and Marchini, 1984; Tikoff and Fossen, 1999). 

From the zirconium content of the samples a temperature of 716 ± 18°C was 

calculated. After Siebel et al. (2005), the granitic dyke is peraluminous; zircons display 

magmatic zoning and show no clear evidence for the presence of inherited cores. 

Therefore, the conditions for the application of the zircon-solution model by Watson and 

Harrison (1983) are fulfilled. However, it is important to remark that this Zr-

thermometer is based upon experiments above 860°C, so that the obtained temperature 

might be relatively imprecise. 

Differential stress 

We calculated the differential stress using piezometers from several authors (Table 

5.3.3.2-3, Fig. 5.3.3.2-11). Although D4 had an important effect on quartz oblique 

orientation, this deformation affected quartz grain size and shape significantly only in 

some identifiable discrete bands. These overprinted bands were excluded from our 

analysis and only quartz grains included in monomineralic bands without SPO were 

used. In these monomineralic bands the size of quartz grains remains nearly constant 

and steady-state dislocation creep was presumably reached during dynamic 

recrystallization. The obtained differential stress should therefore approximate the stress 

governing D3. All piezometers show similar tendencies, with the differential stresses 

increasing towards the contact to the host rock, that is, towards more strained areas. 

Differential stresses range between ~10 und 60 MPa in the analyzed specimens. 
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sample 606 

D =  48 ± 18 µm 

N = 61 

sample 605 

D =  86 ± 25 µm 

N = 60 

sample 607 

D =  122 ± 37 µm 

N = 87 

sample 608 

D =  130 ± 42 µm 

N = 84 

 σ (MPa) error σ (MPa) error σ (MPa) error σ (MPa) error 

Twiss (1977, 1980)a 49 +19, -10 33 +9, -5 26 +7, -4 25 +8, -4 

Mercier et al. (1977)a 24 +10, -5 16 +4, -3 12 +4, -2 12 +4, -2 

White (1979)a 50 +20, -10 33 +9, -5 26 +7, -4 25 +8, -4 

Etheridge and Wilkie (1981)a 48 +19, -10 32 +9, -5 25 +7, -4 24 +8, -4 

Koch (1983)a 52 +67, -22 19 +15, -7 11 +9, -4 10 +9, -4 

Christie et al. (1980), wetb 56 +40, -17 29 +14, -7 20 +10, -5 18 +10, -5 

Stipp and Tullis (2003) 31 +15, -7 20 +6, -4 15 +5, -3 14 +5, -3 

 

Table 5.3.3.2-3. Differential stresses calculated using the piezometers listed in Table 3.10-1. D 

= particle diameter, N = number of particles measured. Basic parameters ataken from Abalos 

et al. (1996), btaken from Ord and Christie (1984). 

 

 

Figure 5.3.3.2-11. Differential stress 

calculated from quartz piezometers 

calibrated by different authors. 

Error bars were omitted for 

simplicity. See errors on Table 

5.3.3.2-3 and Table 3.10-1 for 

further details. 

 

Phengite barometry 

The phengite geobarometer (Massonne and Szpurka, 1997) was applied to one sample 

of deformed granite (Grf 605, see Fig. 5.3.3.2-3 for location in the profile and Fig. 

5.3.3.2-6 for details about the fabrics). This geobarometer correlates the number of Si 

atoms p.f.u. with pressure and temperature. The minerals biotite/phlogopite, quartz, K-

feldspar and phengite constitute the limiting assemblage for the use of the 

thermobarometer and are present in the granite dyke. The composition of igneous white 

mica crystals, which can be called porphyroclasts after the deformation, was analysed in 

cores and rims in order to detect zonation. Fine-grained white mica constituting 

cleavage domains, which grew syn-kinematically after the emplacement, was also 

analysed. The results of the analyses are listed in Appendix 3. 
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 porphyroclasts, core porphyroclasts, rim cleavage domains 

Si p.f.u. (mean ± std. dev.) 3.135 ± 0.015 3.147 ± 0.022 3.196 ± 0.039 

Pressure (GPa) 0.59 ± 0.04 -- 0.51 + 0.07 

        - 0.09 

Depth (km) 21.7 ± 1.4 -- 18.8 + 2.9 

        - 3.3 

 

Table 5.3.3.2-4. Si content data used for geobarometry. The listed values were plotted in the 

PT diagram of Fig. 5.3.3.2-12. 

 

The porphyroclasts show a weak tendency to increase their Si content towards the rim. 

In comparison with the porphyroclasts, the fine-grained white mica is clearly richer in Si. 

After Massonne and Schreyer (1987) “…homogenization and re-equilibration of phengitic 

micas are extremely sluggish processes even within geologic times”. Our data support 

this statement and show that newly grown white micas have a composition different to 

that of primary igneous white micas in which a zonation is present and, therefore, 

equilibrium was not reached. 

As representative for the conditions during emplacement and freezing of the dyke we 

considered the Si content p.f.u. in the core of white mica porphyroclasts. The 

intersection between the granite solidus line and the 3.135 isopleth is assumed to 

approximately provide a maximum emplacement depth since i) emplacement and 

reaching of the solidus temperature are thought to occur nearly simultaneously and ii) 

crystallisation of igneous mica might have taken place to some extent before the 

magma reached its final emplacement level. The Si content in white mica of cleavage 

domains is thought to represent the conditions during deformation. The deformation 

temperature is given by the microfabric inferred from the microfabrics and the c-axis 

patterns, i.e. around 500-550°C. Plotting this information of temperature and Si content 

(Fig. 5.3.3.2-12) allows the constraining of pressure for each event and sheds some 

light on the PT path followed between emplacement and deformation of the dyke. 

Pressure is inferred to have been around 0.59 ± 0.04 GPa during emplacement and 

around 0.51 (+ 0.07, - 0.09) GPa during deformation (for a deformation temperature of 

525°C), which corresponds to a depth of about 22 km and 19 km, respectively. 

Since the analysed white micas contain a larger amount of components than those 

regarded in the KMASH system, in which the applied geobarometer was calibrated, the 

pressure results obtained might be somewhat imprecise. The Fe content is relatively 

high compared to the Mg content. After Massonne and Schreyer (1987), the 

introduction of Fe in white mica reduces its Si content and might therefore derive in 

underestimated pressures. The effect of Na might be similar, but the Na content of the 

analysed white mica is anyway relatively low. Fluorine might have the opposite effect, 

i.e. it might lead to the overestimation of pressures, but its concentration in the 

analysed micas is very low. Zen (1988) pointed out that magmatic muscovites are 
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characterised by a relatively high Ti content. However, it is interesting that the Ti 

content of all analysed white mica populations is very similar, although their origin is 

different: magmatic in some cases and metamorphic in others. 

 

 

 

Figure 5.3.3.2-12. PT diagram showing the results of the application of the phengite 

geobarometer of Massonne and Szpurka (1997) on the Saunstein dyke. A) Solidus of water-

saturated haplogranite after Johannes and Holtz (1996). B) Stability of white mica in presence 

of quartz after Chatterjee and Flux (1986), see mineral abbreviations in Appendix 5. Stability 

fields of aluminium silicate polymorphs are shown for reference C) after Hemingway et al. 

(1991) and D) after Bohlen et al. (1991). E) Phengite geobarometer: Si-content isopleths after 

Massonne and Szpurka (1997). Number of Si atoms p.f.u. are indicated on each isopleth. F) 

Phengite geobarometer: Si-content isopleths after Massonne and Schreyer (1987), not used 

for calculations. G) The dotted line represents the 3.135 isopleth after the barometer of 

Massonne and Szpurka (1997), corresponding to the mean Si content of porphyroclast cores, 

whereas the hatched area was constructed taking into account the standard deviation of all 

analyses. The hatched area represents the PT window in which white mica might most 

probably have crystallised. H) The same for fine-grained white mica of cleavage domains, 

using a temperature window of 500-550°C. dt = deformation temperature. 
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5.3.3.3. The case study of the Untermitterdorf dyke 

Introduction 

The Untermitterdorf dyke is situated 5 km north of the town Schöfweg and 600 m north 

of the village Untermitterdorf (Fig. 5.3.3.3-1). It intrudes into diatexite and a 

granodiorite body (Blaha and Siebel, 2006) belonging to the group 1 of Variscan 

intrusives of the study area (see chapter 5.2.3). 

 

Figure 5.3.3.3-1. a) Geographic distribution 

of sampling sites of sinistrally sheared 

granites (see also Appendix 2). b) 

Enlargement of the area surrounding the 

Untermitterdorf rhyolite, simplified after the 

geological map at scale 1:25000 of Blaha and 

Siebel (2006).  

 

The granodiorite builds an irregular stock, around 150 m wide and 300 m long. It has 

been dated by Dr. W. Siebel and co-workers (University of Tübingen) at 315-325 Ma (U-

Pb on zircon, Galadí-Enríquez et al., in prep.). The rock is fine-grained and dark-

coloured due to the high biotite content. It is composed of plagioclase (40—55 %), 

biotite (20—40 %), quartz (10—20 %), amphibole (5—15 %), opaque phases (1—10 

%) and K-feldspar (0—5 %). Secondary chlorite grows from biotite and amphibole. 

Rutile, titanite, zircon, apatite and allanite occur as accessory minerals. In some areas it 

is possible to identify a subvertical, NW―SE striking tectonic foliation. In other areas, an 

evidence for deformation is lacking. 

The Untermitterdorf dyke is WNW—ESE striking and granitic in composition (Blaha, in 

press). It is a few meters thick, building a main dyke and several apophyses and 
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incorporating stoped blocks (Figs. 5.3.3.3-1, 5.3.3.3-2). It has been dated by the 

investigation group of Dr. W. Siebel (University of Tübingen) at 315.0 ± 1.0 Ma (Galadí-

Enríquez et al., in prep.). Attending to its age and fabric, it can be classified as 

belonging either to the group 2 or 4 of Variscan intrusives of the study area (see 

chapter 5.2.3). Its structure is aphanitic and porphyritic; hence it will be referred to as 

“rhyolite” regardless of its assumed plutonic nature and following the recommendations 

of Le Maitre et al. (1989, 2002). 

 

 

Figure 5.3.3.3-2. One very well exposed stoped block of granodiorite was found in the 

porphyritic rhyolite. The strain partitioning is strongly controlled by the rheological contrasts 

between different lithologies: The granodioritic stoped block is, except for one narrow band, 

almost undeformed and surrounded by deformed rhyolite. Note the large, light phenocrysts in 

the rhyolite. 

 

Quartz, K-feldspar and biotite phenocrysts are embedded in a very fine-grained, bluish 

grey-coloured matrix, presumably made of quartz, feldspar and mica (Fig. 5.3.3.3-3). 

Some plagioclase crystals were also found, but they are scarce and more intensively 

sericitized than K-feldspar. Aggregates made of white mica, partly transformed into light 

green chlorite and mixed with biotite, are shiny and greenish in hand specimens. Zircon, 

apatite, titanite and opaque phases occur as accessory minerals. The intensity of the 

deformation in the porphyritic dyke is variable. Some more or less discrete bands show 

a steeply N dipping mylonitic foliation, the latter displaying a sub-horizontal stretching 

lineation. A well developed S―C structure (Berthé et al., 1979; Lister and Snoke, 1984) 

points to a sinistral shear sense (Figs. 5.3.3.3-2, 5.3.3.3-3, 5.3.3.3-5). 
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Figure 5.3.3.3-3. Hand specimens of Untermitterdorf rhyolite, XZ-sections, north direction 

approximately to the top of the picture. a) Slightly deformed rhyolite (sample Schoef 14), were 

light feldspar phenocrysts and dark, elliptical white mica ± chlorite aggregates are visible in a 

very fine-grained, greyish matrix. b) Strongly deformed rhyolite (sample Schoef 12). White 

mica ± chlorite aggregates are strongly deformed (elongate dark bands). The sinistral shear-

sense can be inferred from σ-type mantled porphyroclasts and the angular relationship 

between S and C planes.  

 

Microfabrics 

The hosting granodiorite is partly deformed. The subvertical tectonic foliation striking 

NW―SE parallels that of the migmatites. The kinematics is difficult to determine 

because of the very small grain size of the rock. Similar to the country rock and other 

dioritic to granodioritic bodies, the deformation might result mainly from dextral simple 

shear under upper greenschist to amphibolite facies conditions (D2). D3 rarely overprints 

the primary fabric in the granodiorite, except in narrow bands in contact with rhyolitic 

material (Fig. 5.3.3.3-2). 

The porphyritic rhyolite is variably deformed by D3, i.e. it was sinistrally sheared along 

planes striking N079E to N103E and dipping steeply to the north (S3) with a sub-

horizontal stretching lineation (L3). Sinistral shear sense is inferred from σ-type mantled 

porphyroclasts, the angular relationship between S and C planes and mica fishes with 

stair-stepping of trails of mica fragments (Fig. 5.3.3.3-5).  

Feldspars (mainly K-feldspar, but also zoned plagioclase) occur as euhedral to subhedral 

crystals (average diameter 2-2.5 mm) and do not show any evidence for mechanical 

fragmentation and recrystallization (Fig. 5.3.3.3-5). 

White mica was found as stretched, cm-long polycrystalline aggregates, accompanied by 

biotite and locally replaced by chlorite (Fig. 5.3.3.3-4). The long side of single crystals is 

usually < 100 µm in length. In rare cases, normally coinciding with strain shadows 

behind large feldspar grains, these mica aggregates are found in a nearly undeformed 
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state, constituting sub-spherical, chlorite-free aggregates of subhedral crystals. Thus, 

white mica is supposed to be of igneous origin. It built spherical aggregates together 

with biotite before deformation and was partially transformed into chlorite during 

deformation. The igneous origin of white mica is supported by the fact that it can be 

found as inclusions inside quartz and feldspar porphyroclasts. The deformation changed 

the shape of the mica aggregates, but caused no significant recrystallization on them. 

The fine-grained fraction (< 5 µm) of the matrix might partly result from alteration of 

feldspar in a late magmatic phase and during deformation.  

Biotite can be found as aggregates together with white mica (see above), but is also 

present as larger tabular crystals (length ~ 600 µm), usually displaying mica fishes. It is 

possible that both grain sizes represent two different biotite generations. It is 

sometimes accompanied by opaque phases (ilmenite?), the latter growing at the 

margins or at mineral cleavage planes of biotite, suggesting crystallisation of Ti-rich 

biotite under high temperature and Ti exsolution during temperature drop. Zircon 

inclusions are commonly found in biotite. 

Titanite is, although accessory, abundant in comparison with other samples. It is found 

in form of bands of boudinaged grains. 

Quartz can display very different fabrics (Figs. 5.3.3.3-4b and 5.3.3.3-5, Table 5.3.3.3-

1): 

i) Euhedral to subhedral quartz grains, not recrystallized (diameter ~ 1 mm). 

These grains are nearly undeformed or show evidence for crystal plastic 

deformation and recovery like undulose extinction, deformation bands and 

subgrains with boundaries parallel to the prism planes. Subgrains with 

boundaries parallel to the basal planes are found in less deformed crystals and, 

together with the prism-parallel planes, define a so-called chessboard pattern. 

This pattern is thought to be diagnostic for prism <c> slip, which is active at 

temperatures higher than ca. 600°C in the β-quartz stability field (Mainprice et 

al., 1986; Masberg et al., 1992; Kruhl, 1996). Since the chessboard patterns tend 

to disappear by increasing strain of the quartz porphyroclasts of the rhyolite, 

they are considered to be a relic of early, weak deformation at temperatures 

close to the granite solidus prior to or at early stages of D3. 

ii) Monocrystalline ribbon-grains of quartz are abundant. Some of them are very 

elongated, have a strain-free appearance and in extinction position under 

crossed polarizers in XZ-sections, i.e. their c-axis parallels the Y-axis of the finite 

strain ellipsoid. Other grains show evidence for crystal plastic deformation and 

recovery like undulose extinction, deformation bands and prism-parallel subgrain 

boundaries. 

iii) Polycrystalline ribbon-grains or lenticular aggregates of quartz are partially or 

completely dynamically recrystallized. They are usually equigranular and made 
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up of equant or slightly elongated new grains (diameter ~ 45 µm) with serrated 

or polygonal boundaries, sometimes showing crystallographically controlled 

squared contours. The latter constitute the so-called reticular or mosaic-like 

pattern (Gapais and Barbarin, 1986). The recrystallized quartz shows a strong 

LPO and a poorly developed SPO. Relicts of old grains show prism-parallel 

subgrain boundaries parallel to the long axis of the new grains. Subgrains are 

similar in size to recrystallized grains. The dominant recrystallization mechanism 

most probably was subgrain rotation accompanied by grain boundary migration. 

The recrystallization of quartz by these mechanisms requires temperatures of 

480-530°C (Stipp et al., 2002). 

 

 

- not deformed  

- deformed, monocrystalline ribbons  

  with strain-free appearance 

undulose extinction 

deformation bands 

not recrystallized: 

- deformed, monocrystalline ribbons with: 

prism-parallel subgrains 

recrystallized: - partially, by subgrain rotation and grain boundary migration: relicts of old grains 

with prism-parallel subgrain boundaries and some recrystallized grains similar in 

size to subgrains 

- completely (rare), by subgrain rotation and grain boundary migration: 

equigranular aggregates made up of equant or slightly elongated new grains with 

serrated or polygonal boundaries, strong LPO, poorly developed SPO 

 

Table 5.3.3.3-1. Summary of quartz microfabrics found in the Untermitterdorf rhyolite. 
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Figure 5.3.3.3-4. Photomicrographs of rhyolite, all of them belonging to a slightly deformed 

specimen (sample Schoef 14). a) Parallel polarizers. Inclusions of white mica and biotite in 

quartz porphyroclast, suggesting magmatic origin of mica. b) Crossed polarizers. Same as (a). 

This quartz porphyroclast shows subgrains with boundaries parallel to the basal and prism 

planes. c) Parallel polarizers. Sub-rounded aggregate of white mica, biotite, apatite and 

opaque phases located at a strain shadow. d) Parallel polarizers. Sub-rounded aggregate of 

white mica and biotite located at a strain shadow. e) Parallel polarizers. Elliptical aggregate of 

white mica and biotite, slightly deformed. f) Crossed polarizers. Same as (e).  

 



5. Investigations on granitoids of the Moldanubian Zone, Bohemian Massif 

 159

 

Figure 5.3.3.3-5. Photomicrographs of rhyolite, all of them belonging to a strongly deformed 

specimen (sample Schoef 12), except for c (sample Schoef 14).  Crossed polarizers. The 

position of the X and Z axes of the finite strain ellipsoid is indicated. X is parallel to S. In most 

of the pictures the monoclinic symmetry of the fabric (σ-clasts and S-C structures) points to a 

sinistral sense of shear. a) σ-clasts of feldspar embedded in a very fine-grained matrix. An 

aggregate of white mica (WM) is found at the bottom left corner. b) Weakly deformed quartz 

grain at the strain shadow of a feldspar σ-clast. c) The photomicrograph shows several quartz 

grains situated between two large feldspar phenocrysts. The feldspar crystal at the top acts 

as an indenter and pierces the quartz crystals in the surroundings, which are flattened by 

intracrystalline deformation, whereas the quartz grain in the centre is nearly undeformed. 

Continues on next page →  
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→Figure 5.3.3.3-5 (continued). d) In the centre there is a stretched aggregate of white mica 

with stair-stepping of trails of mica fragments. Below the mica aggregate on the right there is 

a polycrystalline quartz ribbon, presumably resulting from the recrystallization of a former 

phenocryst. e) Three different forms in which we can find quartz in this rock. Large grain at 

the top-left part of the picture: partly recrystallized porphyroclast. Large grain at the bottom-

right part of the picture: not recrystallized grain with prism-parallel deformation bands. Grain 

at the bottom-right corner, indicated by an arrow: monocrystalline ribbon-grain in extinction 

position. f) Lenticular aggregate of quartz, almost completely recrystallized. New grains show 

serrated or polygonal boundaries. 

Quartz texture 

For the EBSD analyses of quartz, three rectangular areas of the sample were delimited. 

Two of them enclosed polycrystalline quartz ribbons and were scanned with a step 

width of 10 µm. The third rectangle enclosed fine-grained quartz of the matrix and was 

scanned with a step width of 15 µm. The resulting texture is shown in Fig. 5.3.3.3-6. 

 

 
 

Figure 5.3.3.3-6. Stereographic representation of quartz c and a-axes obtained by means of 

EBSD (sample Schoef 12). Equal area projection, lower hemispheres. n = number of data 

points, MiD = minimum density, MaD = maximum density. Density contours at 0.5; 1; 1.5; 2; 

2.5; 3; 4; 5; 6. Black represents the maximum density. Data points were smoothed with a 

Gaussian of 10° full width half maximum. 

 

Recrystallized quartz ribbons display a very well developed LPO. c-axes are clustered in 

the direction parallel to the Y-axis of the finite strain ellipsoid. The a-axes pattern shows 

two weak sub-maxima on the XZ-plane and a main strong maximum on the XZ-plane 

parallel to C-planes of S―C structures, pointing to a sinistral shear sense. This LPO 

pattern is typically developed when intracrystalline slip takes place along the prism 

planes of the quartz crystal lattice in <a> direction. The LPO patterns of the 

Untermitterdorf rhyolite suggest a similar or slightly lower temperature than in the other 

sinistrally sheared granites (compare Figs. 5.3.3.2-8, 5.3.3.3-6, 5.3.3.4-4, and 5.3.3.4-
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5): The fact that a-axes tend to concentrate in one single maximum instead of three 

and that the c-axes maximum shows a slightly stretched shape might be the result of 

some contribution of rhomb <a> slip and a slightly lower deformation temperature. The 

very fine-grained matrix does not display a well-developed LPO pattern, suggesting that 

grain boundary sliding was the main deformation mechanism. 

Phengite barometry 

The phengite geobarometers of Massonne and Schreyer (1987) and Massonne and 

Szpurka (1997) were applied to the white micas of the rhyolite. Three populations of 

white mica were distinguished: i) igneous grains, appearing as elliptical aggregates in 

deformed specimens, ii) crystals enclosed in feldspar porphyroclasts, which could be 

either magmatic (real magmatic inclusions) or late- to post-magmatic (replacing 

feldspars) and iii) very fine-grained white mica that grew syn-kinematically parallel to 

the mylonitic foliation constituting cleavage domains in the deformed rhyolite. The result 

of the analyses of the Si content in different mica populations can provide a rough 

estimation about the PT path followed by the rocks in the study area. The results of the 

microprobe analyses on sample Schoef 12 are listed in detail in Appendix 3 and depicted 

in Fig. 5.3.3.3-7. Some igneous grains were analysed along profiles, but no remarkable 

zonation tendency was observed, meaning that no significant chemical overprint 

occurred in the white mica due to the deformation. Therefore, all analyses performed on 

igneous grains were listed together in Appendix 3 regardless of their spatial position. 

The Si content p.f.u. in igneous grains averages 3.080 with a standard deviation of 

0.007. 

The graphic solution provided by Massonne and Schreyer (1987) and Massonne and 

Szpurka (1997) comprises the range between 3.8 and 3.1 Si atoms p.f.u.. The 

approximate position of the isopleth at 3.08 Si atoms p.f.u. was estimated by linear 

extrapolation for both barometers. The hatched areas G and H in Figure 5.3.3.3-7 

represent the estimated PT range, in which igneous white mica may have crystallised. 

The intersection between the granite solidus line and the 3.08 isopleth is assumed to 

approximately provide a maximum emplacement depth since i) emplacement and 

reaching of the solidus temperature are thought to occur nearly simultaneously and ii) 

crystallisation of igneous mica might have taken place to some extent before the 

magma reached its final emplacement level. This maximum emplacement depth is then 

16.6 ± 0.7 km (0.45 ± 0.02 GPa) or 15.5 ± 0.7 km (0.42 ± 0.02 GPa), depending on 

the barometer used. 
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Figure 5.3.3.3-7. PT diagram showing the results of the application of the phengite 

geobarometer on the Untermitterdorf rhyolite. A) Solidus of water-saturated haplogranite 

after Johannes and Holtz (1996). B) Stability of white mica in presence of quartz after 

Chatterjee and Flux (1986), see mineral abbreviations in Appendix 5. Stability fields of 

aluminium silicate polymorphs are shown for reference C) after Hemingway et al. (1991) and 

D) after Bohlen et al. (1991). E) Phengite geobarometer: Si-content isopleths after Massonne 

and Szpurka (1997). Number of Si atoms p.f.u. are indicated on each isopleth. F) Phengite 

geobarometer: Si-content isopleths after Massonne and Schreyer (1987). G) The dotted line 

represents the extrapolated 3.08 isopleth after the barometer of Massonne and Szpurka 

(1997), whereas the hatched area was constructed taking into account the standard deviation 

of all analyses. The hatched area represents the PT window in which white mica might most 

probably have crystallised. H) A slightly different result delivered by the barometer of 

Massonne and Schreyer (1987). 

 

Due to the reduced size of white mica crystals of the other two populations, only a few 

microprobe analyses were successful (see Appendix 3). Unfortunately, these few 

analyses cannot be presented as evidence, but barely as a clue of a decompression 

taking place between freezing and deformation, since the Si content tends to decrease 

in the population of synkinematic white mica. At least some of the white mica grains 

contained in feldspars seem to be of magmatic origin; this is suggested by their high Ti 

content. On the other hand, the grains of white mica which have been categorised as 

igneous based on their fabric features show a very low Ti content. This can be due to 
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the presence of other phases which incorporate Ti in their lattice, such as biotite, 

ilmenite and, most of all titanite. 

It must be emphasized that the applied geobarometer was calibrated for the KMASH 

system. However, the analysed white mica shows a high Fe content. After Massonne 

and Schreyer (1987), the introduction of Fe and Na in white mica reduces its Si content 

and might therefore derive in underestimated pressures. Fluorine, which is present in 

the analysed white mica, might have the opposite effect, i.e. it might lead to the 

overestimation of pressures. 

The fabric of the Untermitterdorf rhyolite remains somewhat enigmatic. Our results 

point to a relatively deep intrusion inside a warm country rock, so why did it develop an 

aphanitic structure? It is possible that there are, apart from the cooling rate, other 

factors (maybe chemical ones) controlling the grain size of magmatic rocks. 
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5.3.3.4. Other sinistrally sheared granites 

The outcrops of Saunstein and Untermitterdorf are the most impressive examples of 

sinistrally sheared dykes found in the study area. The complete area between Schöfweg 

and Waldkirchen is crosscut by further sinistrally sheared granite stocks and dykes, 

some of which are also well exposed (see Fig. 5.3.3.1-1 and Appendix 2 for location). In 

the following lines we will offer an overview about the characteristics of these rocks. 

Macroscopic features 

A location map and a list of the most relevant samples of sinistrally sheared granites 

including coordinates and structural information can be found in Appendix 2. The 

sinistrally sheared granites are not always, but very often, dykes. In exceptionally good 

outcrops, such as the Saunstein and the Schneidermühl ones, it is possible to observe 

contacts sub-parallel to the shear planes. Nevertheless, it is important to remark that 

the contacts are more often than not lobate, and by far not as straight as in the case of 

younger subvolcanic dykes. The detailed geometry of most of the sinistrally sheared 

dykes is at best only roughly mappable, so that a general relationship between the 

orientation of shear planes and contacts cannot be definitely stated: This is the case of 

the Untermitterdorf dyke and most of the sampled bodies. The thickness of these dykes 

ranges between a few cm (Fig. 5.3.3.4-1a) and 50-100 m (Saunstein dyke). Some other 

sheared bodies are rather irregular stocks; this is the case for the intrusions in 

Goggersreut (samples Wk 32 and Wk 50) and Hochholz (sample Tit 711). In a few cases 

it is not possible to infer the shape of the intrusions due to the poor quality of the 

outcrops, like for example in Loizersdorf (sample Tit 211) or Steinberg (sample Tit 125).  

With the only exception of the Untermitterdorf dyke, all of the studied sheared granites 

are faneritic, i.e. they are “real” granites in the sense of the IUGS nomenclature (Le 

Maitre et al., 1989, 2002). The Untermitterdorf dyke, as mentioned above, shows an 

aphanitic structure. The Abersberger Holz dyke (samples Schoef 7 and 8, see Figs. 

5.3.3.1-1, 5.3.3.4-1c, 5.3.3.4-2c, and Appendix 2) is very fine grained, partly due to the 

grain-size reduction undergone during deformation, but also due to a primary smaller 

grain size, i.e. this dyke shows intermediary characteristics between the Saunstein and 

the Untermitterdorf end-member types. 

Sometimes D3 affects the whole volume of these intrusions, but it is also very typical to 

find nearly undeformed parts adjacent to strongly foliated ones. Especially remarkable is 

the fact that the strongly sheared bands are often found next to the contact to the host 

rock. This case has been studied in detail in the Saunstein dyke. 
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Figure 5.3.3.4-1. a) This thin granitic dyke clearly underwent sinistral shearing. The host rock 

(hypersthene-bearing diatexite) shows drag folds, meaning that the temperature during 

deformation was not very high. The photograph was taken at R 4607200 H 5405375 (Gauss-

Krüger coordinates). The mylonitic foliation of the dyke strikes N065E and is subvertical. b) 

This photo shows the outcrop Goggersreut 1, sampling site of Wk 32 (see Fig. 5.3.3.1-1 and 

Appendix 2 for location). The photo was taken looking to the east. c) Hand specimen of Schoef 

7, σ-type mantled porphyroclasts point to a sinistral sense of shear. d) Hand specimen of 

Schoef 1, the angular relationship between S and C planes indicates sinistral shear sense. e) 

Hand specimen of Tit 125, showing a well-developed augen structure. S-C fabric shows 

sinistral sense of shear. f) Hand specimen of Tit 396, D3 converted the rock into a very fine-

grained ultramylonite. 
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Microfabrics 

Microfabrics are in all sinistrally sheared granites similar. They can be described as type 

I S—C mylonites after Lister and Snoke (1984; see also Berthé et al., 1979). The 

deformation intensity varies from one specimen to another, comparing different bodies, 

but also comparing different locations inside one and the same body. Independently of 

the deformation intensity, the following characteristics apply to most of the studied 

specimens: 

The mylonites which result from the sinistral shearing of granitic bodies are made up of 

alternating quartz and feldspar layers enclosing feldspar and mica porphyroclasts. Many 

of them have well-developed cleavage domains of synkinematic white mica. 

The quartz is usually completely recrystallized and forms equigranular polycrystalline 

ribbons. Straight or slightly serrated grain boundaries are commonly found. Some rare 

old grains show prism-parallel subgrains of the same size as the recrystallized grains. A 

LPO is identifiable by inserting a gypsum plate under crossed polarizers. This fabric 

features suggest recrystallization to have occurred by grain boundary migration together 

with subgrain rotation. In sample Tit 125 (Figs. 5.3.3.4-1e and 5.3.3.4-2h), polygonal 

crystals with contacts displaying triple points with interfacial angles of 120° and a 

relatively large grain size point to some static recrystallization by grain boundary area 

reduction taking place after shear. 

The feldspar grains are partially recrystallized and are typically found either as fine-

grained layers or σ-type mantled porphyroclasts. The boundaries between cores and 

mantles are more or less pronounced depending on the sample considered. Some 

porphyroclasts show evidence for brittle behaviour documented by rare microfaults. The 

mica grains display a SPO with the long axes oriented parallel to the foliation. 

Most of the samples show one or more of the following kinematic indicators pointing to 

a sinistral sense of shear: σ-type mantled porphyroclasts of feldspar, S-C structures, 

mica fishes with stair-stepping of trails of mica fragments, asymmetric folds, 

monomineralic sigmoidal bands. 

The cited microstructural features are practically identical to those described for the 

Saunstein dyke. The only remarkable difference is that the deformation referred to as D4 

can be clearly identified only in the Saunstein dyke and, although in a much weaker 

way, in sample Schoef 5. 
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Figure 5.3.3.4-2. Some of the sinistrally sheared granites under the microscope, XZ-sections, 

crossed polarizers. σ-clasts, S-C structures and stair-stepping of trails of mineral fragments 

point to a sinistral sense of shear. a) Sample Schoef 1 shows low deformation intensity, quartz 

and feldspar are incipiently recrystallized. b) Sample Schoef 5, with the typical alternance of 

quartz (coarse grained) and feldspar (fine grained) bands. Continues on next page → 
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→ Figure 5.3.3.4-2 (continued). c) Sample Schoef 7, only a couple of feldspar porphyroclasts 

survived the intense deformation. d) Sample Schoef 8, sigmoidal monomineralic bands of 

quartz and feldspar. e) Sample Schoef 617, typical S-C structures and mica grains oriented 

parallel to the foliation. f) Sample Schoef 617, enlargement of the former picture. g) Sample 

Tit 760, showing the typical banding of quartz and feldspar. h) Sample Tit 125, showing 

relatively large feldspar mantled porphyroclasts and sigmoidal polycrystalline quartz ribbons. 

 

Feldspar composition 

In the same way as in the Saunstein dyke, the partially recrystallized feldspars of the 

samples Tit 125 and Tit 711 were analyzed. The results can be found in Appendix 4. 

The analyses corroborate the pattern observed in the Saunstein dyke, in which K-rich 

feldspar cores are mantled by recrystallized Na-rich grains. The average composition of 

feldspars is An0 Ab5 Or96 in cores and An4 Ab95 Or1 in mantles in Tit 125, An0 Ab5 Or95 in 

cores and An9 Ab90 Or1 in mantles in Tit 711. K-feldspar was therefore replaced by albite 

at the margins, which points to a fluid-assisted deformation. 

 

Quartz texture 

Apart from the Saunstein and Untermitterdorf dykes, the quartz textures were analyzed 

on two further examples of sinistrally sheared granites by means of EBSD. 

The granite dyke of the outcrop Schneidermühl was strongly sheared during D3. The 

rock is foliated and shows a couple of milky white, almost monomineralic bands of 

quartz embedded in a light brown mass of mixed quartz and feldspar. Both areas of the 

rock were sampled: The quartzitic one is represented by the sample Tit 93 and the 

quartzofeldspathic one by the sample Tit 396 (see Figs. 5.3.3.4-1f, 5.3.3.4-3, 5.3.3.4-4). 

In sample 93, poorly-developed S and C planes are traced by some alternating 

sigmoidal bands of quartz and feldspar. The angle between both planes is around 10°-

15°. No SPO is shown by quartz grains. In sample Tit 396, S and C planes are parallel to 

each other. 

At the Heiblmühle locality, sample Tit 760 (Fig. 5.3.3.4-2g, 5.3.3.4-5) has a similar 

appearance as Schoef 1 (see Fig. 5.3.3.4-1d) at the hand specimen scale, although with 

a slightly better developed mylonitic foliation. The angle between S and C planes 

averages 15°. 

The resulting texture is defined in both localities by a strongly developed single 

maximum around the Y-axis of the finite strain ellipsoid, in the same manner as in the 

Saunstein and the Untermitterdorf dyke. a-axes are clustering in three maxima, being 

the strongest one sub-parallel to the direction of the stretching lineation, pointing to a 
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sinistral sense of shear. After Stipp et al. (2002) this pattern is diagnostic for grain 

boundary migration recrystallization and its transition towards subgrain rotation 

recrystallization, which is in good agreement with a deformation temperature of 500-

550°C. As already observed in other cases, the fine-grained, quartzofeldspathic 

specimen of Tit 396 tends to show a much weaker texture than the coarser-grained 

ones, in which monomineralic domains occur. This is supposed to be due to the 

activation of grain boundary sliding as deformation mechanism. 

 

 

Figure 5.3.3.4-3. Left: Sample Tit 93, recrystallized quartz grains with sutured boundaries and 

similar size. Right: Sample Tit 396, very fine banding of quartz and feldspar. Both pictures 

have a total width of 5.5 mm. 

 

 

 

Figure 5.3.3.4-4. Quartz c and a-axes patterns of two samples of the Schneidermühl dyke 

obtained by means of EBSD. Equal area projection, lower hemispheres. n = number of data 

points, MiD = minimum density, MaD = maximum density. Density contours at 0.5; 1; 1.5; 2; 

2.5; 3; 4; 5; 6; 7. Black represents the maximum density. Data points were smoothed with a 

Gaussian of 10° full width half maximum. 
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Figure 5.3.3.4-5. Quartz c and a-axes 

patterns of Tit 760 obtained by means of 

EBSD. Equal area projection, lower 

hemispheres. n = number of data points, 

MiD = minimum density, MaD = 

maximum density. Density contours at 

0.5; 1; 1.5; 2; 2.5; 3; 4. Black represents 

the maximum density. Data points were 

smoothed with a Gaussian of 10° full 

width half maximum. 

 

Phengite barometry 

Many of the sheared granites bear white mica and have the limiting assemblage needed 

for the application of the phengite geobarometer of Massonne and Szpurka (1997). 

Three of them were chosen to analyse their white mica crystals. 

The analyzed samples contain igneous and synkinematic white mica, whose composition 

can provide some clues about the intrusion depth of the granitic body that contains 

them and the conditions during the deformation, respectively. Table 5.3.3.4-1 

summarizes the results obtained by the electron microprobe (see full results in Appendix 

3). These were plotted in the PT diagram of Fig. 5.3.3.4-6, in which also the barometry 

results of the Saunstein and the Untermitterdorf dyke are depicted for comparison. 

 

 Tit 125 

 

Schoef 617, core Tit 711, average 

core cleavage domains 

Si p.f.u. (mean ± std. dev.) 3.176 ± 0.016 3.189 ± 0.022 3.097 ± 0.011 3.137 ± 0.021 

pressure (GPa) 0.69 ± 0.04 0.72 ± 0.05 0.49 + 0.03 0.38 ± 0.05 

depth (km) 25.5 ± 1.5 26.7 ± 2.0 18.2 + 1.0 13.9 ± 0.7 

 

Table 5.3.3.4-1. Si content data used for geobarometry. The listed values were plotted in the 

PT diagram of Fig. 5.3.3.4-6. 

 

In sample Tit 711 (Hochholz locality) two populations of white mica were analyzed. The 

first one is constituted by large porphyroclast, in which the composition at rim and core 

positions was measured. The second one consists of small porphyroclasts, in which only 

the composition in the core was measured. All analyses provided similar results 

independently of the population or the position in the crystal. Thus, the Si content of 

these white mica crystals is supposed to reflect the conditions during the emplacement 

in all cases. The Ti content is high in all cases, pointing to a magmatic origin of the 

mica. 
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Figure 5.3.3.4-6. PT diagram showing the results of the application of the phengite 

geobarometer of Massonne and Szpurka (1997). A) Solidus of water-saturated haplogranite 

after Johannes and Holtz (1996). B) Stability of white mica in presence of quartz after 

Chatterjee and Flux (1986), see mineral abbreviations in Appendix 5. Stability fields of 

aluminium silicate polymorphs are shown for reference C) after Hemingway et al. (1991) and 

D) after Bohlen et al. (1991). E) Phengite geobarometer: Si-content isopleths after Massonne 

and Szpurka (1997). Number of Si atoms p.f.u. are indicated on each isopleth. F) Phengite 

geobarometer: Si-content isopleths after Massonne and Schreyer (1987), not used for 

calculations. G) The dotted lines represent the isopleths for the Si content of each sample that 

is supposed to record the conditions during the crystallisation of magmatic white mica. The 

crossing point between this dotted lines and the granite solidus represent the maximum 

emplacement depth. The hatched or shaded areas were constructed taking into account the 

standard deviation of all analyses and represents the PT window in which white mica might 

most probably have crystallised. H) The same for fine-grained white mica of cleavage domains, 

using a temperature window of 500-550°C. dt = deformation temperature. 

 

In sample Schoef 617 (sand pit east of Untermitterdorf), crystals of magmatic white 

mica were analysed at core and rim positions. The difference in Si content between both 

positions is smaller than the standard deviation of the analyses of each group, i.e. no 

clear zonation could be detected. The Si content in cores was chosen to be plotted in 

the PT diagram (Fig. 5.3.3.4-6) to show the conditions during the emplacement. The 

obtained pressure is supposed to represent a maximum intrusion depth, as discussed 

above. Ti was not measured in this sample. 
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In sample Tit 125 (Steinberg locality), the difference in the Si content at cores and rims 

of magmatic grains is noticeable. A second population of very fine-grained white mica of 

cleavage domains was also analysed. This population has a clearly higher Si content 

than the magmatic generation. The Ti content is, as expected, higher in magmatic 

grains. 

As already discussed in chapters 5.3.3.2 and 5.3.3.3, the analysed white micas contain a 

larger amount of components than those regarded in the KMASH system, in which the 

applied geobarometer was calibrated. Therefore, the pressure results obtained might be 

somewhat imprecise. The Fe content is relatively high compared to the Mg content, 

which might derive in underestimated pressures. Na has a similar effect, whereas the 

presence of fluorine (relatively high in sample Tit 125) might lead to the overestimation 

of pressures. 
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5.3.4. Deformation at the Bayerischer Pfahl shear-zone system: some 

new results 

In order to allow a better interpretation of the results obtained for the sinistrally sheared 

granites, some complementary investigations were carried out on rocks of the 

Bayerischer Pfahl shear-zone system, and more concretely of the Bayerischer Pfahl and 

Buchberger Leite shear zones. The locations of the sampling sites are shown in Fig. 

5.3.4-1 (for more information see Appendix 2). 

 

 

Figure 5.3.4-1. Geological map of the south-eastern part of the Bohemian Massif, simplified 

after Bundesanstalt fuer Geowissenschaften und Rohstoffe (1993). White: post-Variscan 

cover. Light grey: metamorphic rocks. Medium grey with crosses: intrusive rocks, mainly 

granites and granodiorites. Dark grey and thick lines: major faults and fault rocks. FP 

Fürstenstein pluton, HP Hauzenberg pluton. The locations of the sampling sites at the 

Bayerischer Pfahl shear-zone system are marked with rectangles and capital letters. A: Große 

Ohe, samples Grf 4 to 13. B: Patersdorf, samples Pat 10 to 12. C: Buchberger Leite, sample Frg 

91. 
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5.3.4.1. The Bayerischer Pfahl shear zone at the Große Ohe 

Introduction 

At this locality (Fig. 5.3.4-1 A) a complete profile across the Bayerischer Pfahl shear 

zone was studied (Fig. 5.3.4.1-1). Here the shear zone separates gneisses to the north 

from dark-coloured diatexites to the south. Judging from the minerals present in the 

mylonites found in this area, the protolith is supposed to be a two-mica granite, apart 

from gneiss and diatexite. From north to south, the following samples were taken (Fig. 

5.3.4.1-1, 5.3.4.1-2, more details in Appendix 2): 

 

• Sample Grf 6, gneiss. 

• Samples Grf 8, 9, 13, 5, mylonite. 

• Sample Grf 4, diatexite. 

 

 
 

Figure 5.3.4.1-1. Geological cross section across the Bayerischer Pfahl shear zone at the 

Große Ohe locality, based on geological map 1:25000 of Teipel et al. (in press). Location of 

sampling sites was projected in the cross-section plane. 
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Figure 5.3.4.1-2. Samples of mylonites of the Bayerischer Pfahl shear zone at the Große Ohe 

locality shown from north to south, XZ-sections. a) Grf 6, gneiss (protomylonite). b) Grf 8, 

mesomylonite with a relatively strong brittle overprint in the lower half of the photo. c) Grf 9, 

mesomylonite with a pronounced S-C structure. d) Grf 13, meso to ultramylonite. e) Grf 5, 

ultramylonite with late quartz-epidote veins. f) Grf 4, dark-coloured diatexite (protomylonite), 

feldspars show here a dominant brittle behaviour. 

 

As typically observed everywhere along the Bayerischer Pfahl shear zone, the shearing 

during a long time span and, consequently, under a progressively dropping 

temperature, has caused a rough zonation across the shear zone. Thus, we can imagine 
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a high-strain domain along the central axis of the shear zone, where the deformation 

concentrated in space and in time. Brittle deformation tends to concentrate in narrower 

bands than ductile deformation. Therefore, diverging from this imaginary axial zone, we 

will progressively find rocks which show less strain and higher-tempered fabrics. The 

reality in the field is, of course, not that simple and a well developed, symmetrical 

zonation of the deformation intensity, whether ductile or brittle, is rarely found. 

We are interested in the ductile evolution of the Bayerischer Pfahl shear-zone system. 

From now on, the brittle component of the deformation will be therefore not treated in 

depth. 

Based on the ideal zonation pattern described above, it is expectable to find high-strain 

domains approximately at the central plane of the shear zone. Thus, at the central zone 

it is usual to find ultramylonites, whereas heading to the north or to the south, we will 

find meso- and protomylonites, and finally the country rocks, i.e. gneisses and 

diatexites, which can be considered to be protomylonites themselves near the shear 

zone.  

Macroscopically, these rocks are similar to the sinistrally sheared granites described 

above. The orientation of shear planes and the shear sense are the most important 

differences. The shear planes strike approximately N110E at the Große Ohe locality, 

although fluctuations can occur (see Appendix 2). Vertical or strongly dipping foliations 

are most common. The stretching lineation is normally sub-horizontal or plunges gently 

to the WNW or ESE. The sense of shear is always dextral. 

 

Microfabrics 

The quartz is usually completely recrystallized, building equigranular, elongated 

aggregates. The grain boundaries are serrated, sometimes displaying deflections at 90°. 

The boundaries tend to be finer serrated and fuzzier than in sinistrally sheared granites. 

An oblique foliation is usually found, although not strongly developed (Fig. 5.3.4.1-3). 

Small misorientations between adjacent grains and transitions between subgrains and 

recrystallized grains can be found in some areas, pointing to a more important 

contribution of SGR recrystallization than in sinistrally sheared granites. If present, 

subgrains are oriented parallel to the prism planes. 
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Figure 5.3.4.1-3. Microstructures at the Große Ohe profile, XZ-sections, crossed polarizers. a) 

Sample Grf 6, σ-clasts of K-feldspar surrounded by sigmoidal bands of quartz. The K-feldspar is 

generally not recrystallized or only locally, whereas the quartz builds recrystallized, 

equigranular aggregates. b) Sample Grf 6, K-feldspar porphyroclast showing antithetic 

microfaults. c) Sample Grf 8, this aggregate of recrystallized quartz shows evidence for SGR 

being the main recrystallization mechanism: Note the transitions between zones of subgrains 

(lower central part of the picture) and zones of new grains (upper left and lower right parts of 

the picture), all of them showing similar sizes. Continues on next page → 
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→ Figure 5.3.4.1-3 (continued). d) Sample Grf 9, the quartz here is completely recrystallized 

displaying sigmoidal bands of grains with a weak SPO (arrow). The feldspar is essentially 

brittle (note the large clast at the lower part of the picture). Though some fine-grained bands 

made of feldspar are observed, it is not always easy to determine, what kind of role played 

recrystallization and cataclasis in their formation. e) Sample Grf 13, S-C structures pointing to 

a dextral shear sense. The quartz forms recrystallized bands and the behaviour of the feldspar 

has an important brittle component. f) Sample Grf 5, very fine-grained ultramylonite with 

quartz vein at the upper part of the picture. g) Grf 4, a large K-feldspar porphyroclast showing 

a mixture of microcracking and localized recrystallization. h) Grf 4, alternating bands of 

recrystallized quartz (coarser grained) and feldspar (finer grained). The borders of the quartz 

grains are fine serrated and a SPO (arrows) is present. 

 

Feldspar shows a transitional brittle/ductile behaviour. Feldspar porphyroclasts are 

normally broken and recrystallized at borders and cracks. Some of the porphyroclasts 

developed a core-and-mantle structure with a very sharp boundary between core and 

mantle, i.e. without a transition zone in between in which subgrain structures occur. In 

general, the fine-grained feldspar bands may be produced by recrystallization but, 

especially in the specimens where the feldspar behaviour tends to be more brittle, the 

cataclastic flow can also play a role in their formation. 

The dextral shear sense can be inferred from oblique foliations, σ-clasts, mica fishes, S-

C structures and monomineralic sigmoidal bands (Fig. 5.3.4.1-3). 

Quartz texture 

The determination of the quartz texture on samples of the Große Ohe profile involves an 

important problem: Since the deformation took place in a wide time and temperature 

span, old deformation stages were subsequently overprinted. For the study of the 

quartz texture, we delimited and scanned the areas of the samples with the weakest 

brittle overprint, trying to avoid late quartz veins and cataclastic bands. As we will see, 

even when selecting only suitable areas of the sample, caution is required when 

interpreting the resulting patterns (Fig. 5.3.4.1-4). 

There is no well-defined texture in sample Grf 13, possibly due to the small grain size 

that promotes the deformation by means of grain boundary sliding and prevents the 

texture development. The texture of sample Grf 5 seems to result rather from a late 

quartz fill in voids than from deformation by dislocation creep. The samples 6, 9 and 4 

show a c-axes maximum around (or next to) the Y-axis of the finite strain ellipsoid. As 

already mentioned for the sinistrally sheared granites, this texture points to slip along 

prism planes in <a> direction, which is diagnostic for medium grade deformation 

temperatures. The maxima are shifted off the centre of the stereographic plot, maybe 

because the movement direction, and therefore the orientation of the stretching 
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lineation, fluctuated slightly in the course of deformation. Unfortunately, a-axes do not 

build well-defined patterns. The a-axes in the samples 9 and 4 seem to scatter in all 

directions perpendicular to Y, which points to a higher temperature as in the sample 6, 

where the a-axes tend to concentrate preferentially in one maximum (Passchier and 

Trouw, 1996). 

 

 
 

Figure 5.3.4.1-4. Quartz c- and a-axes patterns obtained at the Große Ohe profile by means of 

EBSD. Equal area projection, lower hemispheres. n = number of data points, MiD = minimum 

density, MaD = maximum density. Density contours at 0.5; 1; 1.5; 2; 2.5; 3. Black represents 

the maximum density. Data points were smoothed with a Gaussian of 10° full width half 

maximum. 

 

A well developed, symmetrical zonation of the textures, in which lower-tempered 

patterns substitute the higher-tempered ones towards the axial zone of the shear zone, 

is not observed. Furthermore, towards the axial zone the patterns do not tend to be 

lower-tempered, but they rather tend to simply disappear. 

Phengite barometry 

As already mentioned, most of the mylonites found in this profile are supposed to have 

developed from a granite protolith. This is so due to its mineralogy, which is different 

from that of the country rocks and similar to that of typical granites, with quartz, K-

feldspar, plagioclase and white mica. The phase biotite/phlogopite is normally not 

present, and thus the limiting assemblage for the application of the geobarometer of 

Massone and Szpurka (1997) is not available. Only in the sample Grf 9 we could find 
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some small amounts of biotite; however it is not clear whether their origin is magmatic 

or post-magmatic.  

In the sample Grf 9, the white mica is available in two different generations: magmatic 

crystals (porphyroclasts) and very fine synkinematic crystals. We analyzed both of them 

in order to obtain an estimation for the pressure governing the emplacement of the 

protolith and its later deformation. The analyses provided a Si content of 3.049 ± 0.011 

atoms p.f.u. in magmatic crystals, as depicted in Fig. 5.3.4.1-5.  

 

 
 

Figure 5.3.4.1-5. PT diagram showing the results of the application of the phengite 

geobarometer of Massonne and Szpurka (1997). A) Solidus of water-saturated haplogranite 

after Johannes and Holtz (1996). B) Stability of white mica in presence of quartz after 

Chatterjee and Flux (1986), see mineral abbreviations in Appendix 5. Stability fields of 

aluminium silicate polymorphs are shown for reference C) after Hemingway et al. (1991) and 

D) after Bohlen et al. (1991). E) Phengite geobarometer: Si-content isopleths after Massonne 

and Szpurka (1997). Number of Si atoms p.f.u. are indicated on each isopleth. F) Phengite 

geobarometer: Si-content isopleths after Massonne and Schreyer (1987), not used for 

calculations. The shaded area was constructed taking into account the standard deviation of all 

analyses as maximum limit and the crossing point between A and B as minimum limit. This 

area represents the PT window in which white mica might have crystallised. 
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The synkinematic crystals show a large standard deviation and their Si content has 

therefore no defined tendency. The extrapolated 3.049 isopleth falls next to the crossing 

point between the granitic solidus and the Ms-out line. Since the PT field in which white 

mica crystallised must be above this crossing point, the pressure corresponding to the 

obtained Si content must be 0.37 +0.03/-0.00 GPa. This would mean that the protolith 

of the mylonites found in the Große Ohe profile intruded at around 13.8 +1.0/-0.1 km. 

This emplacement depth clearly differs from the one obtained for the sinistrally sheared 

dykes and it would suggest in principle that the present rock intruded later in the crust, 

which is compatible with the lower-tempered fabrics observed here. However, since the 

requirements for the application of the geobarometer are not surely given, the results 

cannot be regarded as conclusive. 

Both white mica generations have contrasting Ti contents, the higher one belonging to 

the magmatic population, in agreement with the general tendency pointed out by Zen 

(1988). Again, it must be emphasized that the analysed white micas contain a larger 

amount of components than those regarded in the KMASH system, in which the applied 

geobarometer was calibrated (see discussion about the effects of Fe, Na and F in 

chapters 5.3.3.2, 5.3.3.3, 5.3.3.4). Therefore, the pressure results obtained might be 

somewhat imprecise.  
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5.3.4.2. The Bayerischer Pfahl shear zone and the Patersdorf granite 

Introduction 

The medium-grained Patersdorf granite is exposed in the surroundings of the town 

Patersdorf, 11 km north-west of Regen (see Fig. 5.3.4-1B and Appendix 2). After Ott 

(1983) this granite body is crosscut by the Bayerischer Pfahl shear zone. Since it is a 

muscovite-bearing granite containing the critical assemblage necessary for the 

application of the phengite geobarometer (Massonne and Szpurka, 1997), the first 

intention of the analysis in this locality was to compare fabrics and emplacement depth 

between the blocks at both sides of the shear zone across a profile. Unfortunately, the 

study of the rocks under the microscope revealed that white mica is only present in the 

Patersdorf granite north of the shear zone. This can be explained in two ways: 

• The Bayerischer Pfahl shear zone had a vertical component that sank the 

southern block. Thus, today we find deeper parts of the Patersdorf granite in the 

north, in which white mica is stable, and shallower parts in the southern block 

that were at a maximum depth of about 13 km at the time of intrusion, were 

white mica is not stable. 

• The granites that crop out north and south of the shear zone constitute different 

magma batches with different geochemical characteristics. 

The second explanation seems more plausible, since the paragneisses north of the 

Bayerischer Pfahl shear zone are supposed to belong to shallower crustal levels than the 

migmatites south of it. Furthermore, Beer (1981) proposed the Bayerischer Pfahl shear 

zone to have a NE-side-down vertical component. The discussion of this matter is out of 

the scope of this work and must be kept in mind as a perspective for new investigations. 

Due to the aforementioned unexpected eventuality, and together with the fact that no 

suitable outcrops of deformed granite were found south of the shear zone, the study 

was restricted to the sampling sites north of the shear zone. 

Three samples were studied (Figs. 5.3.4.2-1, 5.3.4.2-2): two samples of deformed 

granite (Pat 10 and Pat 11, 200 and 150 m northeast of the shear-zone axis, 

respectively) and one mylonite sample (Pat 12, immediately north of the shear-zone 

axis). The granite is composed mainly of quartz, plagioclase, K-feldspar, biotite, white 

mica and chlorite. 
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Figure 5.3.4.2-1. Geological 

cross section across the 

northern part of the Bayerischer 

Pfahl shear zone at the 

Patersdorf locality. Location of 

sampling sites was projected in 

the cross-section plane. 

 

Figure 5.3.4.2-2. Hand specimens of 

deformed granite and phyllonite of the 

Bayerischer Pfahl shear zone at the 

Patersdorf locality, XZ-sections. a) Pat 10, 

deformed granite, weakly developed S, C 

and C’ planes are visible. b) Pat 11, 

deformed granite, the orientation of the 

shear planes is oblique to the picture 

margins (top right to bottom left). c) Pat 12, 

phyllonite. 

 

Microfabrics 

Sample Pat 10 is more weakly deformed than Pat 11, which is to be expected since Pat 

11 was taken closer to the Bayerischer Pfahl shear zone. Apart from the intensity of the 

deformation, both samples share a common fabric. The mylonitic foliation is poorly 

developed, strikes NW—SE and dips steeply or is vertical. The stretching lineation is also 

poorly developed and lies sub-horizontal or gently dipping. S-C structures are present, 

although not strongly developed. As shown in Fig 5.3.4.2-3, the deformation is weak in 

both samples. Most of the quartz is recrystallized, building aggregates of recrystallized 
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grains similar in size with serrated boundaries, some of them with deflections at 90°. In 

some areas of the thin sections it is possible to recognize triple points indicating some 

late static recrystallization. All grains, even old, large ones, have a strain-free 

appearance. The feldspar crystals are sometimes recrystallized at the borders, but this is 

rather the exception, since most of the grains remained unchanged by the deformation, 

maybe not due to a low temperature, but maybe rather to the low strain (Tullis and 

Yund, 1977). Myrmekites are often found. The plagioclase crystals are strongly 

sericitized. White mica and biotite, the latter partially transformed into chlorite, are 

arranged parallel to the foliation planes. The deformation is clearly stronger in the 

sample 12, in which the feldspars were transformed into white mica for the most part; 

thus, we can speak in this case about a phyllonite, i.e. a mylonite that is rich in 

phyllosilicates. 

 

Figure 5.3.4.2-3. Photomicrographs of 

deformed granite and phyllonite of the 

Bayerischer Pfahl shear zone at the 

Patersdorf locality, XZ-sections, crossed 

polarizers. a) Sample Pat 10, weakly 

deformed granite. b) Sample Pat 11, 

moderately deformed granite. c) Sample Pat 

12, phyllonite. 

 

Quartz texture 

Samples Pat 10, Pat 11 and Pat 12 were scanned by means of EBSD in order to obtain 

their quartz textures. The resulting c- and a-axes patterns can be viewed in Fig. 5.3.4.2-

4. Sample Pat 12, located at the axis of the shear zone, displays no well defined LPO 
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pattern. The other two samples show a concentration of c-axes around (or next to) Y. 

Here again, the maxima are shifted off the centre of the plot, but this time it is probably 

due to the fact that the foliation and the lineation are not well developed and the 

sample was probably not exactly cut parallel to the XZ plane of the finite strain ellipsoid. 

The a-axes build three maxima perpendicular to Y. 

 

Figure 5.3.4.2-4. Quartz a- 

and c-axes patterns of 

samples Pat 10, 11 and 12 

obtained by means of EBSD. 

Equal area projection, lower 

hemispheres. n = number 

of data points, MiD = 

minimum density, MaD = 

maximum density. Density 

contours at 0.5; 1; 1.5; 2; 

2.5; 3; 4; 5. Black 

represents the maximum 

density. Data points were 

smoothed with a Gaussian 

of 10° full width half 

maximum. 

 

Judging from the observed patterns, it seems that the sample Pat 10 is stronger 

deformed than Pat 11, since the texture is much better developed in the first one. This 

is just the opposite as observed on the hand specimens and under the microscope. A 

possible explanation for this is that the deformation lasted for a longer time in Pat 11 

and, therefore, the last increment of the deformation occurred under a slightly lower 

temperature involving some rhomb <a> slip, dealing to a partial destruction of the 

former, higher-tempered texture and originating a slight redistribution of c-axes towards 

an inclined single girdle. Another possible explanation is a progressively bigger 

contribution of grain boundary sliding during grain size reduction in sample Pat 11. The 

continuous deformation towards and under greenschist facies conditions and the 

formation of big amounts of white mica where probably the causes that destroyed the 

texture in sample Pat 12. 

Phengite Barometry 

The critical assemblage for the application of the phengite geobarometer of Massonne 

and Szpurka (1997) is present in Pat 10 and Pat 11, but not in Pat 12, where the biotite 

was probably consumed during the deformation. The results of some white mica 
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analyses in sample Pat 12 are, however, listed in Appendix 3. In Pat 10 and Pat 11 we 

analyzed: 

• medium-sized crystals, which are supposed to be of igneous origin, 

• small-sized crystals, which are also of igneous origin, but can change their 

composition more easily than the larger ones during deformation, and 

• white mica included in feldspar, which might in part have grown from feldspar in 

a late- to post-magmatic stage. 

Taking into account the standard deviation of the measurements, the different groups of 

white mica are indistinguishable from each other regarding the Si content. Thus, the 

only information that we can extract from the results is the Si content representative for 

the maximum emplacement depth. The crystals that are supposed to have suffered the 

minimum post-magmatic overprint are the medium-sized ones in the sample Pat 10. 

Therefore, their Si content was used to be plotted in the P-T diagram of Fig 5.3.4.2-5. 

We obtained 3.106 ± 0.018 Si atoms p.f.u. (see Appendix 3). The crossing point 

between the solidus line and the 3.106 isopleth gives as a result a pressure of 0.51 ± 

0.05 GPa and a maximum emplacement depth of 19.0 ± 1.7 km. 

No synkinematic white mica was found in aggregates big enough to be analyzed, except 

in the sample Pat 12, where the geobarometer cannot be applied because of the lack of 

biotite. An estimation of the pressure governing the deformation can therefore not be 

made.  

It is interesting that the white mica of Pat 12 shows a high Ti content. After Zen (1988) 

white mica with more than 0.6 wt% TiO2 are candidates for magmatic origin. However, 

the white mica of Pat 12 is without any doubt metamorphic and not igneous. The mean 

TiO2 content of igneous white mica in Pat 10 and Pat 11 is also above 0.6 wt%. 

Once more, it must be emphasized that the analysed white micas contain a larger 

amount of components than those regarded in the KMASH system, in which the applied 

geobarometer was calibrated (see discussion about the effects of Fe, Na and F in 

chapters 5.3.3.2, 5.3.3.3, 5.3.3.4). Therefore, the pressure results obtained might be 

somewhat imprecise.  
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Figure 5.3.4.2-5. PT diagram showing the results of the application of the phengite 

geobarometer of Massonne and Szpurka (1997). A) Solidus of water-saturated haplogranite 

after Johannes and Holtz (1996). B) Stability of white mica in presence of quartz after 

Chatterjee and Flux (1986), see mineral abbreviations in Appendix 5. Stability fields of 

aluminium silicate polymorphs are shown for reference C) after Hemingway et al. (1991) and 

D) after Bohlen et al. (1991). E) Phengite geobarometer: Si-content isopleths after Massonne 

and Szpurka (1997). Number of Si atoms p.f.u. are indicated on each isopleth. F) Phengite 

geobarometer: Si-content isopleths after Massonne and Schreyer (1987), not used for 

calculations. The shaded area was constructed taking into account the standard deviation of all 

analyses. This area represents the PT window in which white mica might have crystallised. A 

maximum emplacement depth of 19 km is obtained. 
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5.3.4.3. The Buchberger Leite 

Introduction 

The Buchberger Leite shear zone strikes approximately NNW—SSE and is supposed to 

be a subsidiary Riedel shear of the Bayerischer Pfahl shear zone, although no 

connection is found in the field between both shear zones. Masch and Cetin (1991) 

studied the mylonites of the Buchberger Leite shear zone and interpreted the 

recrystallization of feldspars and the existence of the association Bt-Kfs-Pl-Qtz-Hbl as 

indicatives of high deformation temperature.  

The mylonites cropping out at the power station on the Wolfsteiner Ohe river shore are 

very dark, fine grained and developed from a dark-coloured diatexite protolith (Fig. 

5.3.4.3-1). The foliation is very well developed and its orientation is N170E/90, with a 

stretching lineation plunging gently to N170E. 

 

Figure 5.3.4.3-1. The appearance of 

a polished hand specimen (sample 

Frg 91) from the Buchberger Leite 

shear zone, XZ-section. Light 

feldspar grains are embedded in a 

dark, fine-grained matrix rich in 

biotite. Shear-sense criteria are 

hardly applicable at the scale of 

hand specimens on this rock. 

 

 

Microfabrics 

The rock contains biotite, quartz, K-feldspar and plagioclase. Titanite, allanite and 

opaque phases are present in relatively big amounts. The studied sample contains no 

amphibole. The quartz is found in form of sigmoidal bands of recrystallized grains. Grain 

boundaries are polygonal or slightly serrated. The feldspars are largely recrystallized, 

building fine-grained bands. Relic feldspar grains show subgrains and a core-and-mantle 

structure, in which transitions between subgrains and new grains are common. The 

feldspars can show sometimes microfractures, in which incipient recrystallization is 

observed. The biotite crystals are very small; they are oriented parallel to the foliation 

planes and display also sigmoidal forms. The shear sense is dextral as indicated by the 

monoclinic symmetry of mantled σ-porphyroclasts and sigmoidal bands (Fig. 5.3.4.3-2). 
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The microfabric is very similar to the one described for D2 in diatexites (see chapter 

5.3.2.2), with the particularity that the strain seems to have been higher at the 

Buchberger Leite shear zone. 

 

 

Figure 5.3.4.3-2. Microfabrics of the 

Buchberger Leite mylonite (sample Frg 91), 

crossed polarizers, XZ-sections. a) Banded 

matrix of biotite, recrystallized feldspar and 

recrystallized quartz with porphyroclasts of 

feldspar. The matrix looks so light coloured 

because of the brilliant interference colours 

of the biotite. b) Enlargement of the 

feldspar porphyroclast right of the centre of 

the former photo. The porphyroclast shows 

subgrains, a recrystallized mantle and  

microfractures at which incipient recrystallization takes place. c) Feldspar σ-porphyroclast 

showing dextral sense of shear, embedded in a matrix of biotite, recrystallized feldspar and 

recrystallized quartz. The porphyroclast is transected by some microfaults along which 

incipient recrystallization takes place. Subgrains are not well developed in this crystal. 

 

Quartz texture 

Two different areas of the sample were scanned by means of EBSD. The resulting 

texture (Fig 5.3.4.3-3) is unfortunately not well developed. The a-axes display no 

distinct pattern. The c-axes seem to concentrate around the centre of the plot with 

some tendency to rotate towards the orientation of the X-axis of the finite strain 

ellipsoid. It is not possible to consider this rotation as evidence, but just as a clue of a 

high-temperature deformation under amphibolite facies conditions. 
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Figure 5.3.4.3-3. Quartz a- and c-axes 

patterns of sample Frg 91 obtained by 

means of EBSD. Equal area projection, 

lower hemispheres. n = number of data 

points, MiD = minimum density, MaD = 

maximum density. Density contours at 

0.5; 1; 1.5. Black represents the 

maximum density. Data points were 

smoothed with a Gaussian of 10° full 

width half maximum. 
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5.4. Discussion: global consideration of sheared granitoids 

The research carried out in the Bavarian Forest led to the achievement of a large 

amount of data, not only regarding the geology of the region, but also concerning some 

general issues on structural geology. The following discussion will focus first on the 

obtained results about fabrics, textures and strain in a general view, independently of 

regional considerations (chapter 5.4.1). Afterwards, we will concentrate on the geology 

of the region: Some considerations about the migration history of the intrusives of the 

southern Bavarian Forest will be outlined (chapter 5.4.2); then, the results obtained and 

their implications for the formation of different shear-zone systems in the course of 

several deformation phases will be analysed (chapter 5.4.3); this will be followed by the 

integration of new and pre-existing data at the scale of the Bavarian Forest and the 

Bohemian Massif (chapter 5.4.4); finally, an evaluation of different geodynamical models 

which may account for the development of the geological features found in the region 

will be presented (chapter 5.4.5). 

5.4.1. Fabrics, textures and strain 

5.4.1.1. Oblique foliations as shear-sense indicators  

Compilations of the most commonly used shear-sense indicators have been published by 

many authors (e.g. Simpson and Schmid, 1983; Bjornerud, 1989; Hanmer and 

Passchier, 1991; Blenkinsop, 2000). Oblique foliations or shape fabrics defined by the 

SPO of quartz are amongst the most frequently used criteria. In spite of this, the 

example of the Saunstein dyke shows that the reliability of oblique foliations as a shear-

sense indicator must be re-examined. The oblique foliation defined by quartz SPO (D4) 

probably reflects a reactivation of the former sinistral shear zone during D3 under 

dextral conditions (Fig. 5.3.3.2-6). In high-strain domains of the granite dyke, S and C 

planes became parallel to one another, sigmoidal structures are absent and 

porphyroclasts are scarce. The only available shear-sense indicators here are a few 

asymmetric folds and the asymmetric (dextral) SPO of quartz. By examining these high-

strain domains, one could interpret the deformation in the shear zone as having been 

produced by a single, dextral episode, which would have important consequences on 

the regional interpretation of the shear zone in relation to other major shear zones. It is 

proposed, therefore, that quartz oblique foliations should only be used always in 

combination with other shear-sense criteria. 
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5.4.1.2. Development of lattice-preferred orientation in quartz  

Lattice-preferred orientation patterns (or textures) of quartz are used to infer 

deformation mechanisms and temperatures. This information can also be obtained by 

means of fabrics analysis under the microscope, but in cases of weak deformations 

producing poorly developed fabric features the data delivered by microscopical 

observations might be insufficient. In such cases, EBSD studies provide valuable 

information: As shown in the Saunstein dyke and the Patersdorf granite, rocks that have 

suffered little deformation can develop a quartz texture. This is the case of samples Grf 

615 (Fig. 5.3.3.2-8) and Pat 10 (Fig. 5.3.4.2-4). The Patersdorf locality provides an 

interesting example of weakly deformed rocks with better-developed textures than 

strongly deformed ones. This can be due to the fact that fine-grained rocks show a 

tendency to deform preferentially by grain boundary sliding instead of dislocation creep. 

This results in the development of no texture or in the destruction of pre-existing ones 

(Figs. 5.3.3.2-8, 5.3.3.3-6, 5.3.3.4-4, 5.3.4.1-4, 5.3.4.2-4). 

5.4.1.3. Deformation mechanisms vs. temperature and grain-size 

The temperature at which quartz and feldspar start to recrystallize under geological 

strain rates is about 300 and 450°C, respectively (e.g. Tullis, 1983; Passchier and 

Trouw, 1996). However, it has been demonstrated in many examples that sometimes 

the temperature is high enough for a given mineral to recrystallize but it does not 

recrystallize. This can be due to two factors: i) As proposed by Tullis and Yund (1977) 

for feldspars, crystals seem to need a certain amount of strain to recrystallize, apart 

from a sufficiently high temperature; ii) as long as some other soft elements exist in the 

rock, these will accommodate the deformation.  

The first factor might be responsible for the fabrics observed in diatexites affected by 

D2, in which some feldspar grains did not recrystallize, although the temperature was 

well above 450°C.  

The second factor is a plausible explanation for the fabrics of the Untermitterdorf 

rhyolite, whose deformation was strongly controlled by its magmatic fabric: The bimodal 

grain-size distribution has important consequences on the activation of certain 

deformation mechanisms. The amount of strain accommodated by the quartz 

phenocrysts/porphyroclasts by intracrystalline deformation, recovery and dynamic 

recrystallization was evidently not high, since many crystals remained nearly unstrained, 

nor was it uniformly distributed in the whole rock, as each quartz grain reacted in a 

different way to the stresses. The strain of quartz porphyroclasts was promoted in areas 

of stress concentration, i.e. in the neighbourhood of other porphyroclasts. The 

recrystallization of quartz by subgrain rotation plus grain boundary migration requires 

relatively high temperatures of at least 480°C (Stipp et al., 2002). The quartz is ductile 

under these conditions, so why did some grains remain unstrained? On the other hand, 
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if the deformation temperature was > 480°C, why did feldspar not start to recrystallize? 

The explanation to these apparently incongruent fabric features is that, even being the 

temperature high enough for quartz and feldspar to recrystallize, there are some other 

soft elements in the rock accommodating most of the strain. These are the mica 

aggregates and, most of all, the very fine-grained matrix, in which grain boundary 

sliding, perhaps accompanied by some diffusion, were most likely the dominant 

deformation mechanisms. Moreover, progressive deformation leads to the formation of 

white mica from feldspar in the matrix, enhancing reaction softening and further strain 

localisation in the matrix. 

5.4.1.4. Strain localization 

D3 is preferentially localized in granites, rarely found in the country rock. The heat 

carried by the intrusions might have provoked a deformation at slightly higher 

temperature than the one of the host rock in some cases, especially in the case of the 

Untermitterdorf rhyolite (the youngest one), but this seems to be more probably the 

exception than the rule: Indeed, the homogeneous textures and structures across the 

profile of the Saunstein dyke suggest that the dyke and the host were at the time of 

deformation thermally equilibrated at 500-550°C. Thus, the granites constituted soft 

corridors at which the deformation concentrated, allowing rigid translation of adjacent 

blocks. The granites are softer and deform more easily than the host rock, but not 

necessarily due to a thermal contrast, but rather to a mineralogical one: The granites 

are in general richer in quartz and therefore weaker.  

The deformation of the Saunstein dyke is characterized by dramatic softening and strain 

localization at its margin due to several interacting processes: The initial strain 

localisation started a series of feedback processes leading to further strain localisation. 

The contact must have played an important role during D3. It probably represented a 

rheological boundary at which mechanically strong, feldspar-rich diatexite and soft, 

quartz-rich granite met. Stresses concentrate at the contact surface, affecting 

predominantly the softest rock type. In a first phase of D3, the concentration of stresses 

at the rheological boundary and their dissipation towards the centre of the dyke 

originated a stress distribution which might have been similar to that represented in Fig. 

5.3.3.2-11. This stress distribution caused a strain and strain-rate gradient. As a 

consequence, the strain-rate gradient was probably responsible for a viscosity decay at 

the contact, promoting further strain localization and fluid access. The reduction in grain 

size promotes grain boundary sliding. The presence of a fluid gives way to reaction 

softening or hydrolytic weakening and formation of white mica in cleavage domains. 

Synkinematic white mica contributed to the softening of the rock by accommodating 

strain by frictional sliding along (001) planes. The stresses measurable from quartz grain 

size probably represent mainly the stress governing the first phase, since the 

deformation in the second phase was dominated not by dynamic recrystallization but 
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rather by frictional or grain boundary sliding in cleavage domains and fine-grained 

microlithons. 

The existence of dioritic to granodioritic bodies with and without D2-overprint does not 

necessarily imply that these intrusions are different to each other in age. More probably, 

some of these bodies are more rigid than the diatexites, and consequently they can 

remain more or less undeformed inside a diatexite mass which flows around them. 

Further on, the deformation during D2 was not homogeneous, but rather localized along 

discrete bands, occurring more or less randomly distributed over the study area, 

although more frequently next to the principal shears. The same holds for the small 

granitic bodies (mostly belonging to the group 2 of intrusives, as defined in chapter 

5.2.3) scattered all over the Bavarian Forest, which are most probably older than the 

Untermitterdorf rhyolite, and are in spite of this often undeformed (see chapter 5.3.1.4): 

Many of the granites did not suffer any deformation, although probably not due to a 

post-kinematic emplacement, but rather due to their having an unfavourable position or 

geometry to accommodate deformation. 

5.4.2. Migration of intrusives in the southern Bavarian Forest 

Although the hypersolidus evolution of intrusive bodies of the Bohemian Massif was not 

the main focus of this work, some conclusions about their ascent and emplacement can 

be outlined.  

In the southern Bavarian Forest, the shape of the different magmatic bodies reflects the 

thermal evolution of the crust in which they ascended and froze. Elliptical, irregular or 

elongate intrusive bodies are usually older than ~310 Ma. They intruded into a relatively 

hot crust. Their shape and internal fabric is conditioned by the structure and rheology of 

the host in which they intruded and by the polyphase deformation history that they 

underwent. The way they ascended is not well known, but the exploitation of pre-

existing anisotropies seems to be the most efficient mechanism in this context. Some 

contribution of diapirism is conceivable in some of the largest and more equidimensional 

bodies, such as the Hauzenberg granite II (Hauzenberg pluton) and the Saldenburg 

granite (Fürstenstein pluton).  

Stoping is usually regarded as a process operating mostly in the upper crust, but the 

present work shows that it can play an important role also in deeper levels. Thus, the 

intrusion of several stocks, whose age might be similar to the one of the Saunstein dyke 

(~324 Ma), provoked pervasive stoping of the dioritic to granodioritic and migmatic 

country rocks (see chapter 5.3.1.4). Also the emplacement of the Saldenburg granite 

was accompanied by stoping, i.e. by the incorporation of fragments of country rocks 

and older magmatic facies. In both cases, intrusion depths exceeded 15 km.  

The intrusive bodies younger than ~310 are dykes of sharp and planar contacts, 

suggesting ascent by means of dyking in a relatively cold crust. A similar intrusion 
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sequence (stocks followed by planar dykes) is observed in the batholith of the Spanish 

Central System, also called Ávila batholith (Central Iberian Zone of the Iberian Massif; 

Bea et al., 1999; Bea et al., 2004). 

 

5.4.3. Shear-zone systems and conditions governing their evolution 

The deformations found in the rocks of the study area, D1 to D4, reflect the thermal 

evolution of the region from granulite/amphibolite facies to greenschist facies 

conditions. The data achieved during this research, together with previous data of other 

authors, will be analysed in order to 1) propose a succession of deformation events, 2) 

estimate the temperature and pressure governing these events, 3) ascribe the activity of 

different shear-zone systems to their corresponding deformation phase, 4) infer the 

stress state that produced the deformations and 4) outline the temporal relationships 

between deformations and intrusions. 

D1 produced high-temperature fabrics under upper amphibolite to granulite facies 

conditions in the studied samples, probably coinciding with the thermal peak of the 

regional HT-LP metamorphism. Its kinematics is unknown. D1 is usually obscured by 

later deformation phases, but still identifiable as a relict. 

D2 occurred under amphibolite to upper greenschist facies conditions in the studied 

samples, as evidenced by the microfabrics and textures presented here and by other 

authors (see below), and is responsible for a subvertical NW—SE striking foliation in 

migmatites and for the deformation at the Bayerischer Pfahl shear-zone system at its 

earlier stages. Most of the dioritic to granodioritic bodies and some of the granitic ones 

intruded prior to or during this deformation phase.  

D3 took place under upper greenschist to lower amphibolite facies conditions and is the 

deformation phase that caused the sinistral shear along planes trending ENE to ESE in 

granites. It is proposed that these sinistral shear zones in granites are not compatible 

with a N—S to NNW—SSE compression and do not belong to the Bayerischer Pfahl 

shear-zone system. They constitute themselves a separated shear-zone system, which 

was active during D3. Cross-cutting or abutting relationships between both shear-zone 

systems have not been found up to now. Our inferred deformation temperatures at the 

Bayerischer Pfahl and Buchberger Leite shear zones and in diatexites affected by D2 are 

unfortunately not far away from the boundary between lower amphibolite and upper 

greenschist facies conditions, which is very close to the deformation temperature 

assumed during D3, so that the distinction between deformation phases remains 

somewhat diffuse in terms of temperature. Only a few of our examples of the 

Bayerischer Pfahl shear-zone system constitute a weak indication of higher or lower 

temperature than the one governing D3: 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 196

• rhomb <a> slip in Pat 11 (Fig. 5.3.4.2-4), 

• a light tendency of a-axes to form one maximum instead of three at the Große 

Ohe profile (Fig. 5.3.4.1-4),  

• a weak rotation of the c-axes towards the direction of the lineation at the 

Buchberger Leite location (Fig. 5.3.4.3-3), 

• a larger variability of quartz and feldspar fabrics than in sinistrally sheared 

granites. 

Nevertheless, all the spectrum of deformation temperatures recorded by other authors 

in the Bayerischer Pfahl shear-zone system (Beer, 1988; Brandmayr et al., 1990; 

Handler et al., 1991; Masch and Cetin, 1991; Brandmayr et al., 1995; Büttner, 1999) 

spans from upper amphibolite to lower greenschist facies conditions and even lower. 

That means that the principal direction of compression trending approximately N—S 

governed prior to and after D3. 

Thus, after D3 the existence of a following D4, with a similar arrangement of the 

principal stresses as D2, is postulated. D4 caused the development of quartz oblique 

fabrics pointing to a different sense of shear as the D3 fabrics. D4 oblique foliations were 

found in the sinistrally sheared granites that are located closer to the Bayerischer Pfahl 

shear zone (outcrops south of Kleinarmschlag and Saunstein quarry), also suggesting 

that D4 is linked to further dextral deformation at the Bayerischer Pfahl shear zone. 

The microstructures and textures formed during D3 are surprisingly similar to each other 

in the different studied specimens. The deformation temperature inferred is in most 

cases around 500-550°C, based on the recrystallization mechanisms (GBM and some 

contribution of SGR in quartz) and active glide systems observed (prism <a> slip in 

quartz leading to c-axes patterns with maxima around the Y-axis of the finite strain 

ellipsoid). The homogeneity in the results across a profile in the Saunstein dyke 

indicates that the dyke and the host were thermally equilibrated during the deformation. 

The homogeneity in the results from different examples points to D3 being a 

deformation phase very localized in time, which interrupted for a geological moment the 

normal activity of the Bayerischer Pfahl shear-zone system. The Untermitterdorf rhyolite 

constitutes the only example which seems to break this homogeneity: Quartz seems to 

recrystallize by GBM and a more important component of SGR, some contribution of 

rhomb <a> slip is suggested by the LPO patterns, and feldspars show no signs of 

recrystallization. All of this points to a slightly lower temperature during deformation, 

probably around ~480-530°C.  Both the barometric data and the aphanitic structure of 

the rock suggest a lower temperature also during its emplacement (see below). This 

constitutes a first indication for either 1) a recurring D3, i.e. D3 probably occurred in two 

or more events, or 2) for a D3 undergone at slightly different levels of the crust, today 

exposed at the same level due to later vertical movements. These possibilities will be 

discussed later again in the light of available data.  
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The geochemical and strain data of the Saunstein dyke point to a flattening geometry of 

the deformation with no volume change. This suggests transpression during the main 

phase of shearing (e.g. Sanderson and Marchini, 1984; Tikoff and Fossen, 1999) for this 

dyke, in which shear planes strike N070E to N090E. The principal compression direction 

could have been approximately NE—SW during D3. Taking into account the variable 

strike of S3 in the rest of the studied sinistrally sheared granites, between N056E and 

N122E (see Appendix 2), the trend of the principal compression must have been 

between N056 and N032E, in order to induce sinistral shear in all of them. 

The available geochronological data provide the emplacement ages of two sinistrally 

sheared granitoids yielding: 

• Saunstein dyke 324.4 ± 0.8 Ma, a U-Pb on monazite dating performed by Dr. W. 

Dörr (Galadí-Enríquez et al., 2005), 

• Untermitterdorf rhyolite 315.0 ± 1.0 Ma, a U-Pb on zircon dating performed by  

Dr. W. Siebel and co-workers (Galadí-Enríquez et al., in prep.). 

The geobarometric study of the sinistrally sheared granites provided maximum intrusion 

depths between 27 and 17 km for the sinistrally sheared granitoids. The deformation 

depth is around 19 and 14 km in two different samples. Two samples of the Bayerischer 

Pfahl shear zone provided maximum intrusion depths of 19 and 14 km, which could 

mean that they have intruded rather a bit later than the former ones and have been 

deformed under slightly lower temperature (beginning of D4).  

The scattering of the results about emplacement and deformation depth (Table 5.4.3-1) 

can be attributed to three factors: 1) to the uncertainties of the method, 2) to vertical 

movements, and 3) to an episodical occurrence of D3. The first factor certainly plays an 

important role: As pointed out in chapters 5.3.3.2, 5.3.3.3, 5.3.3.4, and 5.3.4.1, the 

geobarometer used might provide imprecise results due to the fact that real 

geochemical systems are more complicated than the KMASH system, in which the 

geobarometer was calibrated. The second factor is possible, although the lack of 

evidence in the field, such as the existence of major faults or metamorphic gradients, 

makes it difficult to evaluate. Finally, supposing a simple scenario in which no significant 

differential vertical displacements took place between the studied granitoid bodies, an 

episodical occurrence of D3 is regarded as plausible. Nevertheless, although the 

geobarometric results seem to reflect some trends correlatable with the age of the 

intrusions and their deformation, i.e. older intrusions tend to be deeper (Table 5.4.3-1), 

the uncertainties of the method seem to be large and the absolute numbers obtained 

cannot be considered to accurately constrain the real depths at which these processes 

took place. 

 

 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 198

 D3 overprint age maximum 

emplacement depth 

deformation depth (D3) 

Hochholz yes ? 26.7 ± 2.0 km ? 

Sand pit E Untermitterdorf yes ? 25.5 ± 1.5 km ? 

Saunstein dyke yes 324.4 ± 0.8 Mac 21.7 ± 1.4 km 18.8 (+ 2.9/- 3.3) km 

Steinberg yes ? 18.2 ± 1.0 km 13.9 ± 0.7 km 

Hauzenberg granite II no 320 ± 3 Mad 16-18 kmd - 

Saldenburg granite no 315 ± 3 Mae ~20 kma  

~17 kmb 

14-15 kmg 

- 

Untermitterdorf rhyolite yes 315 ± 1 Maf 16.6 ± 0.7 km ? 

 

Table 5.4.3-1. Comparison between age and depth of intrusion and deformation in some 

granitoid bodies of the study area. In the case of the Saldenburg granite, a depth of 20 km 

(labelled with a) results from the application of the barometer of Massonne and Szpurka 

(1997), used in all samples of the present study, to the Si content of 3.11 atoms p.f.u. reported 

by Massonne (1984). Massonne (1984) calculated an emplacement depth of ~17 km (labelled 

with b) using the barometer of Massonne and Schreyer (1979), which provides lower 

pressures than the one of Massonne and Szpurka (1997). Therefore, the emplacement depth of 

20 km must be considered for comparison in this study. Further labels: c) after Galadí-Enríquez 

et al. (2005), d) after Klein et al. (2007), e) after Chen et al. (2002) and Chen and Siebel 

(2004), f) after Galadí-Enríquez et al. (in prep.), g) after Dietl et al. (2005), the latter depth 

was calculated by means of hornblende thermobarometry on older granodioritic rocks which 

are supposed to have been reset by the emplacement of the Saldenburg granite. 

 

5.4.4. Significance of D3 in the Bavarian Forest and the Bohemian 

Massif 

In the following lines, the available data will be discussed together with data of other 

authors. This will provide an overview about the present state of knowledge in the 

region and will serve as a previous step for the proposal of different geodynamic models 

which may account for the development of the geological features found in the region, 

especially those associated to D3. A geodynamic model for the development of D3 must 

take into account the P-T evolution of intrusives and country rocks and the structures 

present in the region. 

The phengite barometry data roughly agree with other barometric data of the region. 

However, it is important to remark that the pressures obtained from the phengite 

geobarometer might be somewhat overestimated, as pointed out by some authors (e.g. 

Simpson et al., 2000). The obtained intrusion depths are regarded as maximum values, 

since the muscovite might have crystallised during the ascent prior to the emplacement 

(Zen, 1988). The obtained intrusion depths of the sheared granites indicate 
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intermediate to deep levels of the crust between 17 and 27 km. The available pressure 

and age data indicate that the Saldenburg granite intruded later and deeper than the 

Hauzenberg granite II. Nevertheless, it is unlikely that crustal thickening took place 

between both intrusions, and therefore the barometric results are considered to be only 

approximate and/or to reflect some post-emplacement crustal tilting. The latter 

possibility should be checked in the future by means of combined barometric and 

geochronological studies of intrusive bodies. It is well supported by the data that the 

Saunstein dyke is older and intruded at a deeper level than the Untermitterdorf rhyolite. 

The Hauzenberg granite intruded after the Saunstein granite. Finally, the Saldenburg 

granite and the Untermitterdorf rhyolite intruded coevally. All of this occurred in a 

general context of exhumation. D3 occurred shortly after the intrusion of the 

Untermitterdorf rhyolite, although an episodical occurrence of D3, both after and before 

this intrusion, is also possible, as suggested by the higher deformation pressure and 

slightly higher temperature inferred for the Saunstein dyke.  

The temperature of the country rock during the emplacement of the Hauzenberg granite 

II (320 Ma) was ca. 550°C (Klein et al., 2007), which is the same temperature 

governing D3 in the Saunstein and similar dykes. As already exposed, the temperature 

governing D3 was, at least in the case of the Saunstein dyke, not influenced by any 

advective heat provided by the deformed granites themselves, although in the case of 

the youngest deformed granitic body, the Untermitterdorf rhyolite, it is conceivable that 

it was slightly hotter than the country rock at the time of D3, as we will analyse in the 

course of this discussion. 

After Kalt et al. (1999) the peak conditions during the HT-LP metamorphism reached 

800-850°C and 0.5-0.7 GPa (18.4-25.8 km) at 323-326 Ma, whereas the last 

equilibration occurred at 770-846°C and 0.44-0.51 GPa (16.2-18.8 km) and a cooling 

rate of ca. 100°C/Ma during 2-3 Ma after peak conditions can be assumed (Kalt et al., 

2000), which is compatible with a deformation temperature of about 550°C ca. 3 Ma 

after the metamorphic peak, i.e. some time after the intrusion of the Saunstein and 

similar dykes at 324 Ma. Nevertheless, Kalt et al. (1999) obtained these results from 

migmatic gneisses located north of the Bayerischer Pfahl shear zone: It is possible that 

the diatexites of our study area, i.e. south of the Bayerischer Pfahl shear zone, would 

yield different values regarding age, pressure and temperature of the regional HT-LP 

metamorphism. 

Cooling ages of biotite and muscovite typically range from 310 to 290 Ma in the study 

area (Harre et al, 1967; Christinas et al., 1991a; Brandmayr et al, 1995). The post-

granitic dykes intruded after all ductile deformation phases at 302 ± 7 (Christinas et al., 

1991b) and 299.0 ± 2.3 Ma (Propach et al., 2007) at a depth of 4-6 km and into a 

country rock with a temperature of 200 ± 50°C (Propach, 2002). These data provide 

information about the evolution of the crust after D3 constraining its minimum age. 

Although the new maps of the Bavarian Environment Agency group all basaltic andesitic 
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to rhyolitic dykes under the rubric of the post-granitic dykes, attending primarily to their 

common aphanitic fabric, it has been already pointed out by Propach et al. (2007) that 

the rhyolitic end members might constitute a genetically distinct group, geochemically 

distinguishable from the more basic ones. This proposal is supported by recent results, 

pointing to the Untermitterdorf rhyolite as being 315.0 ± 1.0 Ma old and affected by D3, 

i.e. as being clearly older than the dated dacitic dykes. 

Returning to the question of the thermal evolution of the study area, it has been 

mentioned that the crust cooled down from approximately 550 to 200°C between 320 

and 300 Ma. Supposing that no further thermal perturbation occurred after 320 Ma, this 

cooling should have been achieved in an exponential way: This implies that the study 

area must have been at T < 450°C during the intrusion of the Untermitterdorf and 

Saldenburg granitoids (450°C would have been reached at a constant cooling rate, 

which was certainly not the case). These considerations, together with the deformation 

of the Untermitterdorf rhyolite at around 500°C at ≤315 Ma, imply that, in this particular 

case, the dyke still retained some of its thermal energy at the time of deformation. 

Since the dyke is very thin (no more than a few meters), its cooling probably occurred, 

in geological time scales, instantaneously. The conclusions of this reasoning are that 1) 

the intrusion of the Untermitterdorf dyke and its deformation occurred almost 

simultaneously, and 2) D3 must have occurred in at least two events, the first one 

before and the second one immediately after the intrusion of the Untermitterdorf dyke. 

The possible role played by vertical movements will not be considered at the moment, 

due to the lack of robust geochronological, barometric and field evidence. 

But the assumption that a simple cooling occurred after 320 Ma is not necessarily 

correct. In fact, some works (Finger et al., 2007 and references therein) sustain the 

existence of a HT-LP event as young as 330-315 Ma in the south-western Bohemian 

Massif. This period of time was in fact characterized by a strong input of advective heat 

(intrusion of plutons). Therefore, it would be conceivable that the temperature of the 

study area remained as high as 500-550°C until 315 Ma. As a consequence, the 

deformation D3 of granitoids of different ages can be explained in a single event post-

dating the youngest one of them, i.e. at ≤ 315 Ma. The differences in the deformation 

depth must be explained then as a consequence of the uncertainties of the method 

and/or later vertical movements, but this question must be solved in the future in the 

light of further evidence. 

The measurement of magmatic foliations and lineations in the field and by means of 

AMS has revealed the internal structure of the plutons of the study area (Cloos et al, 

1927; Troll, 1964; Dollinger, 1967; Dietl et al., 2005). The Hauzenberg pluton shows a 

magmatic foliation trending E—W, parallel to the foliation of the country rock, and a 

horizontal E—W lineation, which is compatible with a N—S compression and a E—W 

magma flow during the emplacement. The magmatic foliation of the Saldenburg granite 

strikes around N045E after Troll (1964) and around N060E after Dietl et al. (2005). It is 
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normally strongly dipping with a lineation plunging gently or moderately to the NE or 

SW.  

Taking into account all the available data presented above, further discussions and 

investigations must evaluate two possibilities: 

1. It seems probable that D3 occurred in at least two events: D3A and D3B. D3A must 

have occurred after the intrusion of the Saunstein granite, i.e. after 324 Ma, 

under a temperature of 500-550°C (host and dyke were thermally equilibrated) 

at a poorly constrained depth of about 14-19 km; D3B occurred at about 315 Ma, 

i.e. at the time of intrusion of the Untermitterdorf dyke, under a dyke 

temperature of ca. 500°C, being the host rock somewhat cooler. It remains 

unclear whether the Hauzenberg granite II intruded prior to, after or during D3A, 

but the fact that it shows no sub-solidus deformation places no robust 

constraints in the tectonometamorphic evolution of the area, since D3 was very 

localized in time and in space. During D3B the Hauzenberg granite was already 

solid (freezing took around 3 Ma or more, Berger et al., 2002), whereas the 

intrusion of the Saldenburg granite, considering the datings available, occurred 

very close in time with the deformation. 

2. It is also possible that the study area remained relatively hot, at a temperature 

of about 500°C, until the intrusion of the Saldenburg and Untermitterdorf 

granitoids at 315 Ma. D3 could have occurred then in a single event, probably 

during the intrusion. Placing D3 much later than 315 Ma seems inappropriate, as 

suggested by the cooling ages available. 

 

5.4.5. Geodynamic models 

Looking for the causes for the change in the stress field that gave way to D3 requires an 

evaluation of local and regional factors governing the stress state in the study area. 

Therefore, we will analyse first the regional processes that presumably took place at the 

time of D3. After that, the role played by local processes will be evaluated.  

5.4.5.1. Models based on regional processes 

As already mentioned, D3 occurred as a response to a short period of NE—SW 

compression pre- and post-dated by a regional N—S to NNW—SSE compression. The 

significance of D3 in the geological evolution of the Central European Variscides is still 

poorly understood. D3 took place probably at the end of the Namurian or beginning of 

the Westphalian. In late-Variscan times, the Variscan internides had reached an 

important thickness (e.g. Ziegler, 1990), perhaps a critical thickness, and the 

convergence direction between Laurussia and Gondwana might have changed.  
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In order to propose a concrete tectonic model for a regional change of the principal 

compression direction from N—S/NNW—SSE to NE—SW, it is necessary to correlate 

diverse structures caused by this process in the whole Moldanubian Zone. This seems at 

present premature due to the following reasons: 

• The structure of large areas of the Moldanubian Zone, especially concerning Late 

Variscan tectonics, is still poorly documented. 

• The deformation history of the Moldanubian Zone seems to be quite complicated 

during the Carboniferous, especially in its northern sector, in which different 

authors (Stein, 1988; Tanner, 1995) reported several deformation phases which 

are hardly correlatable with each other. 

• The age of the deformation phases is usually poorly constrained. 

• The vertical movements along the main shear zones that occurred in Variscan 

and post-Variscan times have brought in contact different crustal levels: The 

present erosion level shows structures of diverse styles developed under 

different temperatures, which makes the recognition of structures of coeval 

development still more difficult. For the correlation of structures formed coevally 

it is necessary to bear in mind that the temperature and the orientation of the 

principal stresses might have been different depending on the block (=level) 

considered, which can be a possible explanation for the development of 

structures of different type under the same geotectonic framework. For example, 

given a horizontal σ1, folds and reverse ductile or brittle faults might form at 

upper levels (vertical σ3), whereas ductile strike-slip shears (vertical σ2) might 

develop at deeper levels. A huge amount of new geothermobarometric and 

geochronological studies is needed to overcome these limitations. 

The aforementioned shortcomings become patent when comparing the results of 

different authors. For example, in the northern sector of the Moldanubian Zone, Stein 

(1988) reported the existence of open folds of sub-horizontal axes striking NNW―SSE to 

NW―SE (D4) which probably developed in the Westphalian-Stephanian under a similar 

stress field as our D3 (see chapter 5.2.1), whereas Tanner (1995; see also Tanner and 

Behrmann, 1995; Behrmann and Tanner, 1997) found folds with axis of similar strike 

(D4), but steeply plunging to the NW, which were attributed to the Namurian. A late 

Carboniferous NE—SW compression has further been obtained for brittle-ductile reverse 

faults at the KTB superdeep well and surroundings in the Erbendorf-Vohenstrauss Zone 

(Zulauf, 1992), their age being between 310 and 296 Ma (Zulauf and Duyster, 1997), 

i.e. Westphalian-Stephanian. Concerning the relationships between the Moldanubian and 

Teplá-Barrandian units, from Late Devonian to Late Carboniferous times, mainly 

between 360 and 320 Ma, extensional collapse and sinking of the nearby Teplá-

Barradian unit is postulated by Zulauf (1994; see also Scheuvens and Zulauf, 2000; 

Zulauf et al. 2002a, b; Zulauf and Vejnar, 2003). The development of ductile structures 
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in the Moldanubian rocks and at the West Bohemian and Central Bohemian shear zones 

was coeval with brittle tectonics in the Teplá-Barrandian (e.g. in the Mariánské Lázně 

fault, Zulauf et al., 2002a). The sense of tectonic transport was after these authors top-

to-E or east-side-down, which is, at least apparently, in conflict with the proposal of 

Tanner (1995) suggesting that the main foliation (S3) in the Moldanubian next to the 

West Bohemian Shear Zone was the result of an east-side up movement at some point 

in time during the Namurian. 

In summary, the geotectonic framework was at this time very complex in Central 

Europe. A regional process responsible for the rotation of the main compression 

direction from N—S to NE—SW is impossible to elucidate at present. As for the meaning 

of the term “regional”, it might be used in a far-field, i.e. at the scale of the entire 

Variscan Orogen, or in an intermediate-field scope, i.e. at the scale of the Moldanubian 

Region (Moldanubian and Teplá-Barrandian units). 

In a far-field scope, and following the proposal of Ziegler (1990), the rotation might 

have been caused by a change in the convergence direction between Laurussia and 

Gondwana at the end of the Carboniferous, whereas the detailed configuration and 

relative movements of the different crustal blocks remains somewhat obscure. 

In an intermediate-field scope, the sinking of the cold Teplá-Barrandian block might 

have produced local perturbations of the regional stress field and lateral extrusion of the 

surrounding and underlying hot Moldanubian rocks. The sinking of the Teplá-Barrandian 

unit might have influenced and distorted the stress fields in the vicinity for a long time, 

either continuously or episodically, thus provoking anomalous stress fields in a far-field 

N—S to NW—SE convergent scenario. The effect of the sinking of the Teplá-Barrandian 

block on Moldanubian rocks is then envisaged as a combination of internal deformation 

and rigid translation of surrounding rocks which could have resulted in the development 

of (1) some of the contractive, ductile structures in the northern sector of the 

Moldanubian Zone, such as the NW—SE trending folds developed during the D4 of 

Tanner (1995), or the D4 open folds with horizontal axes trending NNW—SSE found by 

Stein (1988), (2) the sinistral overprint at the Bayerischer Pfahl shear zone observed by 

Mattern (1995), and (3) the sinistrally sheared granites described in the present work, 

which would represent shear zones along soft paths bounding blocks of relatively rigid 

behaviour (Fig. 5.4.5.1-1). This hypothesis is nevertheless only tentative and must be 

checked in the future by further investigations. 

However, the sinking of the Teplá-Barrandian unit probably ended or was already very 

limited at and after 320 Ma. Thus, D3 (supposed a single D3 event) or at least D3B 

occurred as the Teplá-Barrandian unit had already reached its final position relative to 

the Moldanubian. The operation of far-field mechanisms provoking a NE—SW 

compression must therefore be invoked to explain the whole D3 or some part of it. 
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Figure 5.4.5.1-1. Sketch showing the sinking of the Teplá-Barrandian block as a potential 

regional, intermediate-field factor provoking a change in the stress field. White arrows 

represent the situation during D2 and D4, black arrows are referring to D3. WBSZ: West 

Bohemian shear zone. CBSZ: Central Bohemian shear zone. BPSZ: Bayerischer Pfahl shear 

zone. The sketch exemplifies how the sinking of the Teplá-Barrandian unit could be 

responsible for the rotation of σ1 to a NE—SW direction, causing the development of folds 

(antiform and synform symbols on picture representing D4 of Stein (1988) and D4 of Tanner 

(1995)), and sinistral shear in granites (strike-slip shears at the bottom of the picture, D3 in 

this study). A sinistral re-activation of the Pfahl shear zone might also have occurred during 

D3, as proposed by Mattern (1995). 

 

Whatever the geotectonic mechanism that caused the rotation of σ1 to a NE—SW 

orientation, the new configuration of the principal stresses must explain not only the 

localized sinistral shear in granitic bodies, but also a possibly coeval ascent and 

emplacement of the Saldenburg granite. At the time of emplacement, at around 315 

Ma, the country rocks were either (i) below 450°C or (ii) at around 500°C, depending on 

the model of thermal evolution considered, as discussed above.  

In the first case, a temperature below 450°C is compatible with a level of the crust in or 

next to the brittle-ductile transition. In this context, the development of vertical weak 

planes, similar to joints parallel to σ1, is possible. Under NE—SW compression, we can 

imagine the ascent and emplacement of the Saldenburg magma exploiting those vertical 

anisotropy planes parallel to σ1 and perpendicular to σ3 (Fig. 5.4.5.1-2). This would 

explain the magmatic fabric oriented in NE—SW direction observed  by  Troll (1964) and 
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Figure 5.4.5.1-2. Sketch showing a 

possible explanation for the 

intrusion of the Saldenburg granite 

and the intrusion and deformation of 

the Untermitterdorf rhyolite. a) 

Situation before D3B. Thin lines 

represent the foliation formed during 

D2 and during D3A: Continuous and 

dashed ones represent subsolidus 

and hypersolidus foliations, 

respectively. b) The rotation of the 

principal compression to a NE—SW 

direction leads to the formation of 

vertical weak planes parallel to σ1 

under brittle-ductile conditions. The 

deformation of the Untermitterdorf 

rhyolite takes place, and also a weak 

sinistral overprint at the Bayerischer 

Pfahl shear zone is possible at this 

stage. c) Intrusion of the Saldenburg 

granite, magmatic flow (black 

arrows) parallel to the weak planes 

and development of magmatic fabric 

(dashed lines). 

Dietl et al. (2005) and the coeval occurrence of D3 (D3B in this framework). Similar cases 

of magmatic fabrics and feeding channels parallel to σ1 in or above the brittle-ductile 

transition have been reported by Vigneresse (1995a, 1995c), Aranguren et al. (1996), 

and Vigneresse and Bouchez (1997).  
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In the second case (Fig. 5.4.5.1-3), we consider that the study area was at T ~ 500°C 

and, furthermore, that the location of the Saldenburg granite was probably pre-heated 

by the previous intrusion of the Tittling granite and the two-mica granite: As mentioned 

in  chapter  5.3.1.5, the  two-mica  granite  was  still  hot or even partially molten as the 

Figure 5.4.5.1-3. Sketch showing a 

possible explanation for the intrusion 

of the Saldenburg and 

Untermitterdorf granitoids and the 

sinistral shearing of granitoid bodies. 

a) Situation during D2 just before D3 

(single event). Pre-Saldenburg 

granite facies are represented. Thin 

lines represent the foliation formed 

at this stage: Continuous and dashed 

ones represent subsolidus and 

hypersolidus foliations, respectively. 

b) The rotation of the principal 

compression to a NE—SW direction 

leads to the formation of vertical, 

conjugate weak planes at some 

angle to σ1 under ductile conditions. 

The deformation of sinistrally 

sheared granitoids takes place, and 

also a weak sinistral overprint at the 

Bayerischer Pfahl shear zone is 

possible. c) Intrusion of the 

Saldenburg granite, magmatic flow 

parallel to the average strike of weak 

planes and development of magmatic 

fabric (dashed lines). 



5. Investigations on granitoids of the Moldanubian Zone, Bohemian Massif 

 207

Saldenburg granite intruded. The explanation for the emplacement of the Saldenburg 

granite, leading to NE—SW magmatic flow, the development of NE—SW trending 

magmatic fabrics, and the occurrence of D3 (single event, in this framework), starts with 

the consideration that the NE—SW compression would have led to the shearing of some 

pre-existing granitoids and to the development of shear planes in the Fürstenstein area. 

There were possibly several of these planes forming a conjugate system at some angle 

to σ1. The Saldenburg magma intruded then along these planes, developing an average 

NE—SW fabric and destroying any evidence for the preceding deformation (Fig. 5.4.5.1-

3). 

 

5.4.5.2. Models based on local processes 

The sinistrally sheared granites with ENE to ESE striking shear planes have been 

reported only in the area surrounding the Fürstenstein pluton so far. The intrusion of 

the Untermitterdorf rhyolite and the Saldenburg granite and D3 occurred coevally, 

supposed that D3 occurred in one single event as the host rock was at about 500°C. 

Given this scenario, two models might be proposed: 

Model 1. Since the intrusion of the Saldenburg granite is associated with D3 in time, its 

internal structure must not necessarily be regarded as a consequence, but perhaps 

rather as the cause of the NE—SW compression. Further on, the structure of the 

Saldenburg granite can be explained in the context of the activity of the Bayerischer 

Pfahl shear-zone system, as the magmatic flow parallels the orientation of the NE—SW 

striking, conjugate Rodl shear zone and similar ones (Figs. 5.2.1-2, 5.2.2-1). Thus, it is 

conceivable that the migration of the Saldenburg magma started as a consequence of 

the N—S compression and exploited a NE—SW striking discontinuity. The latter 

controlled the site of magma ascent by focusing melt accumulation at depth, provided a 

favourable site for the initiation of dykes or diapirs and could have even functioned as 

feeding channel during the ascent. At the time of emplacement, the magma moved 

passively in NE—SW direction along the weak zone and pushed the country rocks aside 

to the NW and SE. This NW—SE expansion was accompanied by rigid translation with 

more or less contribution of shortening of the country rock. The interference between 

local NW—SE diverging forces (extension) and the regional N—S compression could 

have resulted in local NE—SW compression, which lasted only for a short time. This 

short-lived NE—SW compression led to D3. After the Saldenburg granite completed its 

emplacement and stopped pushing, the normal N—S compression was restored and D3 

ended, giving way to the next deformation phase D4 (Fig. 5.4.5.2-1). 

This process would explain the coeval intrusion of the Saldenburg granite and the 

Untermitterdorf rhyolite, as well as the deformation of sinistrally sheared granitoids. In 

the case that D3 was episodic, this process would explain the D3B event. 
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Figure 5.4.5.2-1. A possible scenario 

showing the change of orientation of 

σ1 due to a local factor, which is the 

intrusion of the Saldenburg granite, 

supposing that the country rock was 

hot enough (~ 500°C) to allow D3 to 

occur during one single event. a) 

Situation just before the intrusion of 

the Saldenburg granite (D2). Pre-

Saldenburg granite facies are 

represented. The white arrows show 

the position of σ1 and the half-arrows 

the sense of shear during D2. Thin, 

continuous lines represent the 

subsolidus foliation, the dashed ones 

represent the hypersolidus foliation 

formed at this point in time. The 

generation of a weak zone that will 

act as a feeding channel activated 

the ascent of the Saldenburg granite 

magma. b) Situation during the 

emplacement of the Saldenburg 

granite (D3). The magma flows 

passively in NE—SW direction (black 

thin arrows) and pushes the country 

rock to the NW and SE. The 

interference between local and 

regional stresses, represented in 

black and white thick arrows, 

respectively, results in a local NE—

SW compression (grey arrows) in the 

neighbourhood of the Fürstenstein 

pluton. The grey half-arrows 

represent the sense of shear in 

sinistrally sheared granites. At this 

stage a steep mylonitic foliation 

striking ENE to ESE develops in 

granites (S3). A shear sense reversal 

might have occurred at the  

Bayerischer Pfahl shear zone at this time. c) Situation after the emplacement of the 

Saldenburg granite (D4). The regional compression in N—S direction is restored, as well as the 

activity of the Bayerischer Pfahl shear-zone. The deformation is localized in the vicinity of the 

shear zones. 
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Model 2. Shear zones often show an irregular shape. In its present cartographic form, 

the Bayerischer Pfahl shear zone is straight, showing a more or less constant strike at 

about N120E, practically without irregularities. Nevertheless, the present shape of this 

shear zone is conditioned by a long deformation history spanning over several million 

years and governed by a wide variety of temperatures. Thus, it is conceivable that this 

shear zone might have had a more sinuous shape at earlier development stages. The 

next model proposed is based on this idea and considers the Bayerischer Pfahl as a 

sinuous shear zone, in which one or more releasing bends existed at the time of D3 (Fig. 

5.4.5.2-2). These releasing bends were areas in which NW—SE extension took place, 

provoking local perturbations of the stress fields in their neighbourhood. The local NW—

SE extension would have led to local NE—SW compression in areas adjacent to releasing 

bends, with more or less interference between local and regional stresses, leading to 

the sinistral shear along planes trending ENE to ESE and to the development of weak 

planes parallel or at a low angle to the local σ1 which were exploited by the Saldenburg 

granite for its ascent and emplacement (in a similar way as represented in Figs. 5.4.5.1-

2b and 5.4.5.1-3b). The releasing bends were probably ephemeral and were later sealed 

and obscured by further deformation under dropping temperatures (Fig. 5.4.5.2-2). This 

model may account either for a single or for several D3 events. However, no field 

evidence for such fossil releasing bends was found so far. 

In summary, some near-, intermediate-, and far-field processes have been proposed to 

explain not only the characteristics of the studied sinistrally sheared granites, but also 

the data available about the geological framework in which they appear. The role played 

by each of the mentioned processes cannot be exactly postulated at present, but one or 

more of them could have operated during the Late Carboniferous, giving way to 

changes of the stress fields between D2, D3 and D4. 
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Figure 5.4.5.2-2. A possible scenario 

showing the change of orientation of σ1 

due to a local factor, which is the 

development of releasing bends at the 

Bayerischer Pfahl shear zone, 

supposing that the country rock was 

hot enough (~ 500°C) to allow D3 to 

occur during one single event. a) 

Situation just before the intrusion of 

the Saldenburg granite (D2). Pre-

Saldenburg granite facies are 

represented. The white arrows show 

the position of σ1 and the half-arrows 

the sense of shear during D2. Thin, 

continuous lines represent the 

subsolidus foliation, the dashed ones 

represent the hypersolidus foliation 

formed at this point in time. b) The 

development of one or more releasing 

bends at the Bayerischer Pfahl shear 

zone is schematically represented.  A 

local NW—SE extension takes places at 

the releasing bends (black thick 

arrows). This originates, with more or 

less interference with the regional 

stresses, a local NE—SW compression in 

the neighbourhood of the Bayerischer 

Pfahl shear zone (grey arrows). This 

local compression is responsible for D3 

and for intrusion of the Saldenburg 

granite (the magma flows passively in 

NE—SW direction along weak planes 

parallel or at a low angle to σ1). The 

grey half-arrows represent the sense of 

shear in sinistrally sheared granites. At 

this stage a steep mylonitic foliation 

striking ENE to ESE develops in granites 

(S3, thin lines). c) Situation  

after the emplacement of the Saldenburg granite (D4). The Bayerischer Pfahl shear zone 

becomes straighter. The deformation is localized in the vicinity of the shear zones. Any 

evidence for the formerly existing releasing bends (dashed line) is obscured by further 

deformation. 
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6. Conclusions 

The present work has studied the role of different mechanisms in the ascent and 

emplacement of granitic bodies and the behaviour of these bodies on later deformation 

in different areas of the Variscan Orogen of western and central Europe. In the next 

lines, the conclusions of this research will be summarised. We will focus first on regional 

aspects of the studied rocks, concerning the ascent and emplacement of the granitoids 

studied in the Iberian Massif (chapter 6.1) and the tectonometamorphic evolution of the 

intrusives studied in the Bohemian Massif (chapter 6.2) in relation to their geological 

framework. Afterwards, some general conclusions about migration (chapter 6.3) and 

deformation of granitoids (chapter 6.4) will be recapitulated, regarding these processes 

independently from their regional geological context. 

6.1. Migration of granitoids in the Iberian Massif 

The ascent and emplacement mechanisms of granitic magmas were studied in depth on 

two intrusive bodies of the Iberian Massif: the La Bazana pluton and the Nisa-

Alburquerque batholith. The reconstruction of the ascent and emplacement history of an 

intrusive body requires a detailed knowledge about its three-dimensional shape and 

structure. Thus, the gravimetric models presented, together with some new structural 

data, constitute the main contribution of this work to the hypersolidus history of 

Variscan granitoids.  

The La Bazana pluton is a small, sub-circular body in map view that intruded into 

Cambrian slates, metagreywackes and volcanics of the Ossa-Morena Zone in the core of 

a late upright antiform. The intrusion took place at the end of or after the main Variscan 

ductile deformations. The granite shows a dome-shaped fabric pattern. Magmatic 

foliations usually dip shallowly towards the host rock. The NW—SE regional attitude of 

the main foliation in the country rock accommodates to the dome shape of the pluton, 

showing gentle deflections around it. Flattening of the host rock on top of the granite is 

indicated by boudinaged and folded veins. These structures are thought to be caused by 

the upward pushing of the magma during its ascent and arrival at the site of 

emplacement. The level of final emplacement was deduced from the mineral 

associations in the thermal aureole to be of 7–10 km in depth. The relatively deep level 

of emplacement is congruent with the lens shaped lateral expansion at the top of the 

granite body. Aeromagnetic data reveal no significant anomalies related to the granite, 

meaning that it is homogeneous in composition. Models of the residual gravity anomaly 

related to the granite body show that the granite has a teardrop–pipe shape widened at 

its top. The modelled granite thickness varies, depending on the assumed density 

contrasts, between 4 and 10 km, whereas its teardrop–pipe shape remains nearly 

unchanged. The results suggest that the magma ascended diapirically through the 
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middle crust until reaching a level of higher viscosity, where final emplacement 

accompanied by late-magmatic lateral expansion and vertical flattening took place. 

The Nisa-Alburquerque batholith is a 1000 km2 granitic body that intruded during the 

Late Carboniferous into rocks the Central Iberian Zone, the Central Unit, and the Ossa-

Morena Zone after the Variscan ductile deformation phases. Its cartographic shape is 

elongate and parallel to the NW—SE to WNW—ESE Variscan structures. The new 

geophysical data, combined with previous petrologic, geochemical, isotopic and 

structural data, were used to infer the geometry and emplacement history of the 

dominant facies of the Nisa-Alburquerque batholith: the Coarse-Grained Granite. The 

latter is characterized by chaotic fabrics in the eastern part, NW—SE striking fabrics in 

the central sector and N—S striking fabrics in the western part. In general, the fabric 

parallels the longest dimension of the batholith, the external contacts and the regional 

foliation in the host rocks, except in the westernmost termination where it is strongly 

oblique to the regional foliation. Several datings on the Coarse-Grained Granite yielded 

ages between 285 and 310 Ma.  Its intrusion depth was estimated to be 7-10 km. The 

batholith is modelled as an east-southeast inclined cylinder-shaped body that is rooted 

to the east and becomes rather flat-floored and superficial to the west. The eastern 

root, which coincides with more leucocratic and younger facies, is interpreted as the 

feeding channel. The internal fabric of the batholith can be explained as a result of the 

combination of nearly uniform to non-coaxial flow in the central part, producing NW—SE 

striking magmatic fabrics, and deceleration flow towards the western part. The N—S 

striking fabrics at the western end of the batholith are interpreted as an effect of the 

deceleration flow and the pushing of incoming magma batches. The intrusion is viewed 

as a continuous lateral magma flow from the eastern root guided towards the west 

through the southern limb of a kilometre-scale antiform. As mass-transfer mechanisms, 

a combination of rigid translation of the country rocks, stoping, and possibly ballooning 

is proposed. 

 

6.2. Tectonometamorphic evolution of the Bavarian Forest 

The research performed in the Bavarian Forest focused on the subsolidus evolution of 

some granitoids, especially those affected by the deformation phase referred to as D3. 

The main contributions of the present work to the knowledge of the region are: 1) the 

geological mapping of the topographic sheet 1:25000 No. 7246 Tittling, which allowed a 

better understanding of some of the rock types present in the southern Bavarian Forest, 

as well as the discovery of several granitoid bodies affected by D3; 2) the establishment 

of the main deformation phases occurred in the study area, D1 to D4, and their 

characterization in terms of kinematics, temperature and pressure by means of 

structural, EBSD, and barometric studies; 3) the proposal of some geodynamic models 
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integrating new and pre-existing data, which may account for the tectonometamorphic 

history of the area and, in particular, for the occurrence of D3. 

Although the hypersolidus evolution of intrusive bodies of the Bohemian Massif was not 

the main focus of this work, some conclusions about their ascent and emplacement can 

be outlined. The shape of the different magmatic bodies reflects the thermal evolution 

of the crust in which they ascended and froze. Elliptical, irregular or elongate intrusive 

bodies, usually older than ~310 Ma, intruded into a relatively hot crust. The way they 

ascended is not well known, but the exploitation of pre-existing anisotropies seems to 

be the most efficient mechanism in this context. Some contribution of diapirism is 

conceivable in some of the largest and more equidimensional bodies, such as the 

Hauzenberg granite II (Hauzenberg pluton) and the Saldenburg granite (Fürstenstein 

pluton). Stoping was an important emplacement mechanism during the intrusion of 

several granitic stocks, which provoked the fragmentation of the dioritic to granodioritic 

and migmatic country rocks. The intrusive bodies younger than ~310 are dykes of sharp 

and planar contacts, suggesting ascent through dykes in a relatively cold crust. 

Four ductile deformation phases are proposed for the study area. D1 produced high-

temperature fabrics under upper amphibolite to granulite facies conditions, probably 

coinciding with the thermal peak of the regional HT-LP metamorphism. Its kinematics is 

unknown. D1 is usually obscured by later deformation phases, but still identifiable as a 

relict. D2 occurred under amphibolite to upper greenschist facies conditions in the 

studied samples, and is responsible for a subvertical NW—SE striking foliation in 

migmatites and for the deformation at the Bayerischer Pfahl shear-zone system at its 

earlier stages. Most of the dioritic to granodioritic bodies and some of the granitic ones 

intruded prior to or during this deformation phase, in which the main compression was 

probably oriented in N—S to NNW—SSE direction.  

Many granitoid dykes and stocks were found to be affected by sinistral shear along 

planes trending ENE to ESE. Since this deformation, which is called D3 in the present 

work, is not compatible with a N—S to NNW—SSE compression, it is proposed that 

these sinistral shear zones in granites do not belong to the Bayerischer Pfahl shear-zone 

system and constitute themselves a separated shear-zone system, which is called “D3 

shear-zone system”. D3 took place under upper greenschist to lower amphibolite facies 

conditions, as supported by the observed fabrics and by quartz LPO patterns. Both the 

intrusion and the deformation of the granites affected by D3 occurred at deep to 

intermediate levels of the crust, whereas the deformation took place under NE—SW 

compression. Datings on two of the deformed granites yielded 324.4 ± 0.8 Ma 

(Saunstein granite) and 315.0 ± 1.0 Ma (Untermitterdorf rhyolite): Thus, the age D3 is 

most probably ~315 Ma, although an episodic D3 involving some additional, older 

pulses, is also conceivable. Nevertheless, quartz lattice preferred orientation patterns 

and microfabrics show similar characteristics in all the studied samples, suggesting that 

D3 was localised in time and that the deformation temperature was in most cases not 
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influenced by any advective heat carried by the sheared intrusives themselves. In other 

words, the intrusion of most of the sheared granitoids was pre-kinematic with respect to 

D3. 

After D3 the existence of a following D4, with a similar arrangement of the principal 

stresses as D2, is postulated. D4 produced further deformation at the Bayerischer Pfahl 

shear-zone system and neighbouring areas under greenschist facies conditions and 

below. 

The geodynamic models proposed regard different regional and local processes, which 

might have been responsible for the change of the compression direction between D2, 

D3 and D4. These models are summarized as follows: 

1. As proposed by some authors (e.g. Ziegler, 1990), in late-Variscan times the 

convergence direction between Laurussia and Gondwana might have changed 

from NW―SE to E―W or NE―SW. 

2. The sinking of the cold Teplá-Barrandian block at Late Devonian to Late 

Carboniferous times (Zulauf, 1994), might have produced local perturbations of 

the regional stress field and lateral extrusion of the surrounding and underlying 

hot Moldanubian rocks. The sinking of the Teplá-Barrandian unit might have 

influenced and distorted the stress fields in the vicinity for a long time, either 

continuously or episodically, thus provoking anomalous stress fields in a far-field 

N—S to NW—SE convergent scenario. The effect of the sinking of the Teplá-

Barrandian block on Moldanubian rocks is then envisaged as a combination of 

internal deformation and rigid translation of surrounding rocks which could have 

resulted in the development of (1) some of the contractive, ductile structures in 

the northern sector of the Moldanubian Zone, such as the NW—SE trending folds 

developed during the D4 of Tanner (1995), or the D4 open folds with horizontal 

axes trending NNW—SSE found by Stein (1988), (2) the sinistral overprint at the 

Bayerischer Pfahl shear zone observed by Mattern (1995), and (3) the sinistrally 

sheared granites described in the present work, which would represent shear 

zones along soft paths bounding blocks of relatively rigid behaviour. 

3. The intrusion of the Saldenburg granite is associated with D3 in time. It is 

possible that the migration of the Saldenburg magma started as a consequence 

of the N—S compression and exploited a NE—SW striking discontinuity. At the 

time of emplacement, the magma moved passively in NE—SW direction and 

pushed the country rocks aside to the NW and SE. This NW—SE expansion was 

accompanied by rigid translation with more or less contribution of shortening of 

the country rock. The interference between local NW—SE diverging forces 

(extension) and the regional N—S compression could have resulted in local NE—

SW compression, which lasted only for a short time and led to D3. After the 

Saldenburg granite completed its emplacement and stopped pushing, the normal 
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N—S compression was restored and D3 ended, giving way to the next 

deformation phase D4. 

4. The Bayerischer Pfahl shear zone is straight in its present cartographic form, but 

its shape is conditioned by a long deformation history spanning over several 

million years and governed by a wide variety of temperatures. It is conceivable 

that the Bayerischer Pfahl shear zone might have had a more sinuous shape at 

the time of D3, with one or more releasing bends. These releasing bends were 

areas in which NW—SE extension took place, provoking local perturbations of 

the stress fields in their neighbourhood. The interference between local NW—SE 

extension and regional N—S compression would have led to local NE—SW 

compression in areas adjacent to releasing bends, leading to the sinistral shear 

along planes trending ENE to ESE and to the development of weak planes 

parallel or at a low angle to the local σ1 which were exploited by the Saldenburg 

granite for its ascent and emplacement. The releasing bends were probably 

ephemeral and were later sealed and obscured by further deformation under 

dropping temperatures. 

 

6.3. Ascent and emplacement of granitoids 

Beside implications for the regional geology of the study areas, the intrusive bodies 

shown in this work provided some contribution to the problem of magma migration, 

which is being discussed in recent papers. 

The La Bazana granite constitutes a field example of how felsic magmas may reach the 

upper crust by diapirism. The observed lens shape at its upper part suggests that 

diapiric granites could evolve from teardrop shapes towards flat geometries during their 

final emplacement, by means of lateral expansion at the top. 

The La Bazana and Nisa-Alburquerque intrusions illustrate that the migration direction, 

final location and shape of intrusive bodies is conditioned by the structure (anisotropy 

and heterogeneity) of the country rock. Thus, the aforementioned bodies intruded into 

antiformal structures at middle to upper levels of the crust. Reaching progressively more 

viscous levels, the magma stopped its upward movement and switched from vertical to 

horizontal migration. In the case of a small granitic body like the La Bazana pluton, this 

lateral movement may be limited and more or less radial. In the case of bigger 

intrusions, like the Nisa-Alburquerque batholith, this sideward migration may reach 

several tens of kilometres and polarize toward preferred orientations conditioned by 

regional structures. 

Stoping is usually regarded as a process operating mostly in the upper crust, as 

observed for example in the Nisa-Alburquerque batholith, but the present work shows 

that it can play an important role also in deeper levels: As exemplified in the Bavarian 
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Forest, the intrusion of several stocks, whose age might be similar to the one of the 

Saunstein dyke (~324 Ma), provoked pervasive stoping of the dioritic to granodioritic 

and migmatic country rocks. Also the emplacement of the Saldenburg granite (~315 

Ma) was accompanied by stoping, i.e. by the incorporation of fragments of country 

rocks and older magmatic facies. In both cases, intrusion depths exceeded 15 km. 

Our results indicate that diapirism is a valid ascent mechanism even at intermediate to 

upper levels of the crust, as demonstrated by the La Bazana pluton. But evidence 

supporting indirectly the viability of diapirism can be found in other intrusives. In both 

the Iberian and the Bohemian Massif, it is common to find repeated intrusion of several 

magma batches at the same location. This holds for the Nisa-Alburquerque batholith 

and other composite intrusive bodies of the Iberian Massif; the Fürstenstein and the 

Hauzenberg plutons constitute also good examples of this, as well as several 

granodioritic to dioritic stocks all over the Bavarian Forest, which are systematically 

intruded by younger granites. This implies that younger magma batches use to benefit 

from older ones, which provide thermally and mechanically prepared pathways for their 

ascent. This constitutes a strong argument supporting the ideas of Marsh (1982) and 

Miller and Paterson (1999) suggesting that some thermal and mechanical models that 

reject diapirism as a valid ascent mechanism oversimplify the real conditions governing 

the rheological behaviour of the Earth’s crust. These models usually regard magmas as 

isolated bubbles ascending through a homogeneous or nearly homogeneous crust. 

Further models of magma ascent should consider the crust as a thermally, 

compositionally and rheologically heterogeneous body, and the magmas not as isolated, 

but much more as nested batches following each other along one and the same 

pathway. 

 

6.4. Deformation of granitoids 

The research carried out on deformed granitoids of the Bavarian Forest led to the 

achievement of some results concerning general issues on structural geology, about 

fabrics, textures and strain in a general view, independently of regional considerations.  

Oblique foliations defined by the SPO of quartz have been proven to fail when used as 

shear-sense indicators in some cases. In the case of the Saunstein dyke, most of the 

shear-sense criteria, such as σ-type mantled porphyroclasts, mica fishes and S-C 

structures, point to a sinistral shear sense, whereas quartz oblique foliations point to a 

later dextral reactivation. Thus, it must be concluded that quartz oblique foliations 

should be used with caution as shear-sense indicators, since they have a short-lived 

strain memory and are representative only for the very last strain increment. 

EBSD studies are very useful in order to infer deformation mechanisms and 

temperatures. It has been shown that even rocks which underwent a weak deformation 
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might show relatively well-developed LPO patterns. Thus, the application of EBSD 

techniques might be useful for the study of deformations in rocks which appear nearly 

undeformed at first sight. On the other hand, for the interpretation of quartz LPO 

patterns it is necessary to bear in mind that their development is conditioned not only 

by the deformation temperature, but also by other factors amongst which the grain size 

of the rock seems to be a critical one: As we observed in many examples, fine-grained 

rocks tend to deform by means of grain-boundary sliding instead of dislocation creep, 

which results in the development of poorly-defined LPO patterns or in the destruction of 

pre-existing ones. This applies for primary, small grain sizes, but also for small grain 

sizes achieved during progressive deformation, i.e. LPO patterns might weaken or even 

disappear by increasing strain. 

The influence of the grain size in the activation of certain deformation mechanisms 

leaves its imprint not only in the LPO patterns observed, but also in the microfabrics 

developed. As long as some fine-grained domains of the rock accommodate most of the 

strain by grain boundary sliding, some others like for example porphyroclasts or coarse-

grained domains might remain nearly undeformed, even though the temperature would 

be high enough to allow their recrystallization. This effect becomes especially patent in 

rocks with bimodal grain-size distribution, as exemplified by the Untermitterdorf rhyolite. 

Strain localisation is a widespread phenomenon observed in many deformed rocks, also 

in the Bavarian Forest. The deformation referred to as D3 is preferentially localised in 

granites. This is due to the fact that granites are usually richer in quartz than the 

surrounding country rocks, and therefore weaker. Thus, granites constituted soft 

corridors at which deformation concentrated. Strain localisation is a self-feeding 

process: As shown in the Saunstein dyke, once the deformation starts at a given 

location of the rock, the reduction in grain size promotes grain boundary sliding; in the 

same way, fluid access gives way to reaction softening or hydrolytic weakening, and 

formation of white mica in cleavage domains also promotes grain boundary sliding. The 

result is the permanent concentration of the deformation there where it initiates. 

Finally, the phenomenon of strain localisation has important implications for the 

reliability of dated igneous rocks when used as time markers for deformations. Ductile 

deformations might occur not en masse, but rather in a spatially localized fashion. As 

we saw in the Bavarian Forest, the deformations D2 to D4 did not always affect all the 

rocks present in the region, and this is not necessarily due to a post-kinematic genesis 

with respect to the considered deformation phase. This is due to several factors, mainly: 

1) As already mentioned, different rock types show different rheological behaviour, 

either due to thermal or mineralogical contrasts, i.e. hot rocks and rocks rich in quartz 

are softer and tend to accommodate more strain than surrounding rocks, and it 

obviously does not mean that the surrounding rocks are younger at all; 2) even though 

a given rock body might be softer than the surroundings, whether it accommodates 

some strain or not depends also on its position and geometry, i.e. only soft rock bodies 
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with favourable geometry, orientation and position will be able to accommodate strain 

and rigid translation of adjacent blocks. Thus, special care is needed when inferring the 

deformation history of a region based on the deformation of dated igneous rocks as 

time markers. 
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7. Perspectives 

Exhaustive studies on intrusive bodies should integrate surface, geophysical, 

petrological, and structural data in order to propose models that explain their migration 

and deformation history. Most of the studies found in the literature use to offer only 

partial approaches to this issue, making use of a limited array of techniques. 

One important deficiency of many studies about the ascent and emplacement history of 

plutons resides on the lack of constraints about their three-dimensional geometry. 

Several evolution models of plutons cropping out in or in the surroundings of the study 

areas are based only on surface data. This is, for example, the case for the Fürstenstein 

Pluton (Dietl et al., 2005), the Los Pedroches batholith (Aranguren et al., 1997), the 

plutons of the Burguillos anticline (Brun and Pons, 1981), and some plutons of Central 

Extremadura (Castro, 1986; Castro and Fernández, 1998; these plutons were later 

gravimetrically modelled by Campos et al., 1999). The systematic application of 

geophysical techniques in the future might considerably improve our understanding 

about the intrusion processes and their integration in the dynamics of the crust. 

Whether the development of D3 in the Bavarian Forest study area was caused by local 

or regional processes, or a combination of both, cannot be definitely stated at present. 

The body of evidence presented in this study, combined with the results published by 

other authors, is still insufficient to discriminate between the different evolution models 

proposed here. Nevertheless, the present work provides some hints for the investigation 

lines that might be followed and the hypotheses that might be explored in the future. 

Further works should try to check the possible existence of structures which can be 

correlated in time with the sinistral sheared granites in other parts of the Bavarian 

Forest and the Moldanubian Zone. This is key information in order to shed light on the 

causes for the development of D3. 

A systematic sampling and analysis of the shear zones that constitute the Bayerischer 

Pfahl and the D3 shear-zone systems would contribute to further constrain the 

temperature and time range at which the deformation took place and the possible 

existence of structures supporting components of vertical displacement. The existence 

of some vertical displacements at the Bayerischer Pfahl shear zone are assumed by 

some workers, but little evidence has been published so far. 

The new maps at scale 1:25000 of the Bavarian Environment Agency, which are 

currently being published, will constitute an excellent foundation for searching 

appropriate sampling sites for both the Bayerischer Pfahl shear-zone system and the D3 

shear-zone system, as well as for the improvement of the inventory of Late 

Carboniferous structural elements. 

One of the main uncertainties concerning the tectonothermal evolution of the Bavarian 

Forest is the P-T-t path followed by the migmatites during and after the Variscan 
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anatexis. New thermobarometric and geochronological studies, still lacking in some 

areas of the Bavarian Forest, would contribute to further constrain the conditions under 

which deformation and metamorphism took place. Systematic studies of deformed 

intrusives combining geochronological, thermobarometric, and structural data are 

essential in order to reconstruct the geological history of the Bavarian Forest and its 

integration in the context of the Bohemian Massif and the whole Variscan Orogen. 

Finally, it would be interesting to study in depth how LPO patterns behave not only 

depending on the deformation temperature, but also depending on the grain-size of the 

rock, its mono- or polymineralic character and the strain intensity. This study could be 

undertaken by means of analogue modelling and would deliver key information in order 

to interpret LPO patterns in the future. 

 



References 

 221

References 

Abalos, B., Azcarraga, J., Gil Ibarguchi, J.I., Mendia, M.S., Santos Zalduegui, J.F., 1996. 

Flow stress, strain rate and effective viscosity evaluation in a high-pressure 

metamorphic nappe (Cabo Ortegal, Spain). Journal of Metamorphic Geology 14, 227-

248.  

Acocella, V., Mulugueta, G., 2001. Surface deformation induced by pluton emplacement: 

The case study of Amiata (Italy). Physics and Chemistry of the Earth 26, 355-362. 

Acocella, V., Mulugueta, G., 2002. Experiments simulating surface deformation induced 

by pluton emplacement. Tectonophysics 352, 275-293. 

Améglio, L., Vigneresse, J.L., Bouchez, J.L., 1997. Granite pluton geometry and 

emplacement mode inferred from combined fabric and gravity data. In: Bouchez, J.L., 

Hutton, D.H.W., Stephens, W.E. (eds.), Granite: from Segregation of Melt to 

Emplacement Fabrics, 199-214, Kluwer Academic Publishers. 

Aranguren, A., Larrea, F.J., Carracedo, M., Cuevas, J., Tubía, J.M., 1997. The Los 

Pedroches batholith (southern Spain): polyphase interplay between shear zones in 

transtension and setting of granites. In: Bouchez, J.L., Hutton, D.H.W., Stephens, W.E. 

(Eds.), Granite: From Segregation of Melt to Emplacement Fabrics, 215-229, Kluwer 

Academic Publishers. 

Aranguren, A., Tubia, J.M., Bouchez, J.L., Vigneresse, J.L., 1996. The Guitiriz granite, 

Variscan belt of northern Spain: extension-controlled emplacement of magma during 

tectonic escape. Earth and Planetary Science Letters 139, 165-176. 

Artmann, C., 2001. Erläuterungen zur geologischen Karte 7146 Grafenau (NW-Teil, 

nördlich Schönberg) und Untersuchungen zu den felsmechanischen Kennwerten der 

Mylonite der Pfahlzone. Unpublished Diploma Thesis, Technische Universität München. 

Azor, A., González Lodeiro, F., Simancas, J.F., 1994. Tectonic evolution of the Boundary 

between the Central Iberian and Ossa-Morena Zones (Variscan Belt, SW Spain). 

Tectonics 13, 45-61. 

Azor, A., Menéndez, L.G., Galindo-Zaldívar, J., Galadí-Enríquez, E., 2000. Structure of 

the Nisa-Alburquerque batholith (SW Iberian Massif). In: Variscan-Appalachian 

Dynamics: The Building of the Upper Paleozoic Basement, 15th International Conference 

on Basement Tectonics, abstracts, A Coruña (Spain). 

Bateman, R., 1984. On the role of diapirism in the segregation, ascent and final 

emplacement of granitoid magmas. Tectonophysics 110, 211-231. 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 222

Bayer, B., 1997. Geochemie und Petrographie von spätvariskischen Ganggesteinen des 

Vorderen Bayerischen Waldes. Unpublished Diploma Thesis, Ludwig Maximilians Univ. 

München. 

Bea, F., Montero, P., Molina, J.F., 1999. Mafic precursors, peraluminous granitoids, and 

late lamprophyres in the Ávila batholith: A model for the generation of Variscan 

batholiths in Iberia. Journal of Geology 107, 399-419. 

Bea, F., Villaseca, C., Bellido, F., 2004. El Batolito de Ávila (Sistema Central Español). 

In: Vera, J.A. (Ed.), Geología de España, SGE-IGME, Madrid, 101-110. 

Beer, W.W., 1981. Die strukturelle Entwicklung der Metamorphite des Bayerischen 

Waldes. PhD Thesis, Univ. Göttingen. 

Behrmann, J.H., 1985. Crystal plasticity and superplasticity in quartzite: a natural 

example. Tectonophysics 115, 101-129. 

Behrmann, J.H., Mainprice, D., 1987. Deformation mechanisms in a high-temperature 

quartz-feldspar mylonite: evidence for superplastic flow in the lower continental crust. 

Tectonophysics 140, 297-305. 

Behrmann, J.H., Tanner, D.C., 1997. Carboniferous tectonics of the Variscan basement 

collage in eastern Bavaria and western Bohemia. Geologische Rundschau 86 Suppl., 15-

27. 

Benn, K., Odonne, F., Lee, S.K.Y., Darcovich, K., 2000. Analogue scale models of pluton 

emplacement during transpression in brittle and ductile crust. Transactions of the Royal 

Society of Edinburgh: Earth Sciences 91, 111-121. 

Benn, K., Odonne, F., Saint-Blanquat, M., 1998. Pluton emplacement during 

transpression in brittle crust: New views from analogue experiments. Geology 26, 1079-

1082. 

Berger, F., Kiehm, S., Klein, T., Dörr, W., Zulauf, G., 2002. Alter und Intrusionstiefe des 

Hauzenberger Granits. Erlanger Geologische Abhandlungen, Sonderband 3, 9-10. 

Berner, H., Ramberg, H., Stephansson, O., 1972. Diapirism in theory and experiment. 

Tectonophysics 15, 197-218. 

Berthé, D., Choukroune, P., Jegouzo, P., 1979. Orthogneiss, mylonite and non coaxial 

deformation of granites: the example of the South Armorican Shear Zone. Journal of 

Structural Geology 1, 31-42. 

Bjornerud, M., 1989. Toward a unified conceptual framework for shear-sense indicators. 

Journal of Structural Geology 11, 1045-1049. 



References 

 223

Blaha, U., in press. Geologische Karte von Bayern 1:25 000, Erläuterungen zum Blatt Nr. 

7145 Schöfweg. Bayerisches Landesamt fuer Umwelt, München. 

Blaha, U., Siebel, W., 2006. Geologische Karte von Bayern 1:25000, Blatt Nr. 7145 

Schöfweg. Bayerisches Landesamt fuer Umwelt, München. 

Blenkinsop, T., 2000. Deformation microstructures and mechanisms in minerals and 

rocks. Kluwer Academic Publishers. 

Blümel, P., 1995. The Moldanubian Zone in Bavaria. In: Dallmeyer, R.D., Franke, W., 

Weber, K. (Eds.), Pre-Permian geology of Central and Eastern Europe, 462-464, 

Springer. 

Bohlen, S.R., Montana, A., Kerrick, D.M., 1991. Precise determinations of the equilibria 

kyanite-sillimanite and kyanite-andalusite and a revised triple point for Al2SiO5 

polymorphs. American Mineralogist 76, 677-680. 

Borradaile, G.J., 1988. Magnetic susceptibility, petrographics and strain. Tectonophysics 

156, 1-20. 

Bouchez, J.L., 1997. Granite is never isotropic: an introduction to AMS studies of granitic 

rocks. In: Bouchez, J.L., Hutton, D.H.W., Stephens, W.E. (Eds.), Granite: From 

Segregation of Melt to Emplacement Fabrics, 95-112, Kluwer Academic Publishers. 

Bouchez, J.L., Pêcher, A., 1981. The Himalayan Main Central Thrust pile and its quartz-

rich tectonites in central Nepal. Tectonophysics 78, 23-50. 

Boullier, A.M., Gueguen, Y., 1975. SP-Mylonites: origin of some mylonites by 

superplastic flow. Contributions to Mineralogy and Petrology 50, 93-104. 

Brandmayr, M., Dallmeyer, R.D., Handler, R., Wallbrecher, E., 1990. Age and kinematics 

of shear zones in the southern Bohemian Massif: evidence from the Rodl shear zone. 

Terranes in the circum-atlantic Paleozoic orogens, International Conference on Paleozoic 

orogens in Central Europe, conference abstracts, Göttingen-Giessen Aug.-Sept. 1990. 

Brandmayr, M., Dallmeyer, R.D., Handler, R., Wallbrecher, E., 1995. Conjugate shear 

zones in the Southern Bohemian Massif (Austria): implications for Variscan and Alpine 

tectonothermal activity. Tectonophysics 248, 97-116. 

Brandmayr, M., Loizenbauer, J., Wallbrecher, E., 1999. Contrasting P-T conditions 

during conjugate shear zone development in the Southern Bohemian Massif, Austria. 

Mitteilungen der Österreichischen Geologischen Gesellschaft 90, 11-29. 

Brown, D., Tryggvason, A., 2001. Ascent mechanism of the Dzhabyk batholith, southern 

Urals: constraints from URSEIS reflection seismic profiling. Journal of the Geological 

Society, London 158, 881-884. 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 224

Brun, J.P., Pons, J., 1981. Strain patterns of pluton emplacement in a crust undergoing 

non-coaxial deformation, Sierra Morena, Southern Spain. Journal of Structural Geology 

3, 219-229. 

Bundesanstalt fuer Geowissenschaften und Rohstoffe, 1993. Geologische Karte der 

Bundesrepublik Deutschland 1:1 000 000, Hannover. 

Burg, J.P., Iglesias, M., Laurent, Ph., Matte, Ph., Ribeiro, A., 1981. Variscan 

intracontinental deformation: The Coimbra-Córdoba Shear Zone (SW Iberian Peninsula). 

Tectonophysics 78, 161-177. 

Büttner, S.H., 1999. The geometric evolution of structures in granite during continuous 

deformation from magmatic to solid-state conditions: an example from the central 

European Variscan Belt. American Mineralogist 84, 1781-1792. 

Büttner, S., Kruhl, J.H., 1997. The evolution of a late-Variscan high-T/low-P region: the 

southeastern margin of the Bohemian massif. Geologische Rundschau 86, 21-38.  

Campos, R., Gumiel, P., Tejero, R., Plata, J.L., 1999. Modelización gravimétrica de los 

granitoides del sector central de Extremadura. Revista Sociedad Geológica España 12, 

461-476. 

Campos, R., Plata, J.L., 1991. Gravity Survey. In: Gumiel, P., Antón-Pacheco, C., 

Campos R. (Eds.), Development of new multidisciplinary techniques for mineral 

exploration in several areas of the western Iberian Peninsula, ITGE Special Publication, 

55-66. 

Castro, A., 1986. Structural pattern and ascent model in the Central Extremadura 

batholith, Hercynian Belt, Spain. Journal of Structural Geology 8, 633-645. 

Castro, A., Fernández, C., 1998. Granite intrusion by externally induced growth and 

deformation of the magma reservoir, the example of the Plasenzuela pluton, Spain. 

Journal of Structural Geology 20, 1219-1228. 

Chatterjee, N.D., Flux, S., 1986. Thermodynamic mixing properties of muscovite-

paragonite crystalline solutions at high temperatures and pressures, and their geological 

applications. Journal of Petrology 27, 677-693. 

Chatterjee, N.D., Johannes, W., 1974. Thermal stability and standard thermodynamic 

properties of synthetic 2M1 muscovite, KAl2[AlSi3O10(OH)2]. Contributions to Mineralogy 

and Petrology 48, 89-114. 

Chen, F., Siebel, W., 2004. Zircon and titanite geochronology of the Fürstenstein granite 

massif, Bavarian Forest, SW Bohemian Massif: pulses of the late Variscan magmatic 

activity. European Journal of Mineralogy 16, 777-788. 



References 

 225

Chen, F., Siebel, W., Satir, M., 2002. Zircon geochronology and geochemistry of the 

Fürstensteiner pluton, Bavaria Forest. Berichte der Deutschen Mineralogischen 

Gesellschaft 14, 33. 

Christie, J.M., Ord, A., Koch, P.S., 1980. Relationship between recrystallized grain size 

and flow stress in experimentally deformed quartzite. EOS Transactions American 

Geophysical Union 61, 377. 

Christinas, P.,  Köhler, H., Müller-Sohnius, D., 1991a. Alterstellung und Genese der 

Palite des Vorderen Bayerischen Waldes (Nordostbayern). Geologica Bavarica 96, 87-

107. 

Christinas, P., Köhler, H., Müller-Sohnius, D., 1991b. Rb-Sr-Alterbestimmungen an 

Intrusiva des Hauzenberges Massivs, Nordostbayern. Geologica Bavarica 96, 109-118. 

Clemens, D., 1998. Observations on the origins and ascent mechanisms of granitic 

magmas. Journal of the Geological Society, London 155, 843-851. 

Clemens, D., Mawer, C.K., 1992. Granitic magma transport by fracture propagation. 

Tectonophysics 204, 339-360. 

Cloos, H., Balk, E., Cloos, E. , Scholtz, H., 1927. Die Plutone des Passauer Waldes. Ihr 

Bau und Werdegang und ihre innere Tektonik. Monogr. zur Geol. und Paleont., Ser. II, 

H. 3. Berlin. 

Corti, G., Morati, G., Sani, F., 2005. Relations between surface faulting and granite 

intrusions in analogue models of strike-slip deformation. Journal of Structural Geology 

27, 1547-1562. 

Coutinho, J., Desmons, J., Kräutner, H., Peinado, M., Sassi, F., Schmid, R., Sen, S., 

2002. Towards a unified nomenclature in metamorphic petrology: Amphibolite and 

Granulite. A proposal on behalf of the IUGS Subcommission on the Systematics of 

Metamorphic Rocks. Web version of 31.10.2002, http:// 

www.bgs.ac.uk/SCMR/scmr_products.html. 

Cruden, A., 1998. On the emplacement of tabular granites. Journal of the Geological 

Society, London 155, 853-862. 

Dallmeyer, R.D., Franke, W., Weber, K. (Eds.), 1995. Pre-Permian geology of Central 

and Eastern Europe, Springer. 

Dehls, J.F., Cruden, A.R., Vigneresse, J.L., 1998. Fracture control of late Archean pluton 

emplacement in the northern Slave Province, Canada. Journal of Structural Geology 20, 

1145-1154. 

Dietl, C., Gößmann, M., de Wall, H., 2005. Kombinierte aktive und passive 

Plutonplatznahme in einer verdickten Kruste – Erste Ergebnisse von 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 226

gesteinsmagnetischen und petrologischen Untersuchungen a, Fürstensteiner 

Intrusivkomplex (Bayerischer Wald). Zeitschrift der Deutschen Geologischen Gesellschaft 

155/2-4, 311-328. 

Dixon, J.M., 1975. Finite strain and progressive deformation in models of diapiric 

structures. Tectonophysics 28, 89-124. 

Dollinger, U., 1967. Das Hauzenberger Granitmassiv und seine Umrahmung. In: Troll, G. 

(Ed.), Führer zu geologisch-petrographiscen Exkursionen im Bayerischen Wald. Teil I: 

Aufschlüsse im Mittel- und Ostteil. Geologica Bavarica 58, 145-168. 

Drescher, F. K., 1930. Zur Genese der Diorite von Fürstenstein (Bayrischer Wald). Neues 

Jahrbuch für Mineralogie, Geologie und Paläontologie, Beil.-Bd. 60, 445-530. 

England, R.W., 1990. The identification of granitic diapirs. Journal of the Geological 

Society, London 147, 931-933. 

England, R.W., 1992. The genesis, ascent, and emplacement of the Northern Arran 

Granite, Scotland: Implications for granitic diapirism. Geological Society of America 

Bulletin 104, 606-614. 

Etheridge, M.A., Wilkie, J.C., 1981. An assessment of dynamically recrystallized grainsize 

as a palaeopiezometer in quartz-bearing mylonite zones. Tectonophysics 78, 475-508. 

Expósito, I., 2000. Evolución estructural de la mitad septentrional de la Zona de Ossa – 

Morena, y su relación con el límite Zona de Ossa – Morena / Zona Centroibérica. PhD 

Thesis, Univ. Granada. 

Fernández Carrasco, J., Coullaut, J.L., Aguilar, J.M., 1981.  Mapa de la hoja nº 875 

(Jerez de los Caballeros) del Mapa Geológico de España a escala 1: 50.000. IGME. 

Finger, F., Gerdes, A., Janoušek, V., René, M., Riegler, G., 2007. Resolving the Variscan 

evolution of the Moldanubian sector of the Bohemian Massif: the significance of the 

Bavarian and the Moravo-Moldanubian tectonometamorphic phases. Journal of 

Geosciences 52, 9-28. 

Finger, F., Roberts, M.P., Haunschmid, B., Schermaier, A., Steyrer, H.P., 1997. Variscan 

granitoids of central Europe: their typology, potential sources and tectonothermal 

relations. Mineralogy and Petrology 61, 67-96. 

Fischer, G., 1926. Über Verbreitung und Entstehung der Titanitfleckengesteine im 

Bayrischen Wald. Cbl. Min. Geol. und Paläont., A, 155-168. 

Franke, W., 1989. Tectonostratigraphic units in the Variscan belt of central Europe. In: 

Dallmeyer, R.D. (Ed.), Terranes in the Circum-Atlantic Palaeozoic Ocean. Geological 

Society of America Special Paper 230, 67-90. 



References 

 227

Franke, W., 1992. Phanerozoic structures and events in central Europe. In: Blundell, D., 

Freeman, R., Mueller, S. (Eds), A Continent Revealed ― The European Geotraverse, 

164-179, Cambridge University Press. 

Franke, W., 2000. The mid-European segment of the Variscides: tectonostratigraphic 

units, terrane boundaries and plate tectonic evolution. In: Franke, W., Haak, V., 

Oncken, O., Tanner, D. (Eds.), Orogenic Processes: Quantification and Modelling in the 

Variscan Belt, Geological Society of London Special Publications 179, 35-61. 

Frentzel, A., 1911. Das Passauer Granitmassiv. Geognostische Jahrhefte 24, 105-192. 

Freudenberger, W., 1996. Deckgebirge nördlich der Donau. In: Bayerisches 

Geologisches Landesamt (Ed.), Erläuterungen zur Geologischen Karte von Bayern 1:500 

000, 4th ed., 259-265, München. 

Galadí-Enríquez, E., in press. Geologische Karte von Bayern 1:25 000, Erläuterungen 

zum Blatt Nr. 7246 Tittling. Bayerisches Landesamt für Umwelt, München. 

Galadí-Enríquez, E., Blaha, U., Siebel, W., Rohrmüller, J., in prep.. Polyphase intrusion 

and deformation of igneous bodies and their significance in the tectonometamorphic 

history of the Bavarian Forest, Central European Variscides. 

Galadí-Enríquez, E., Galindo-Zaldívar, J., Simancas, F., Expósito, I., 2003. Diapiric 

emplacement in the upper crust of a granitic body: the La Bazana Granite (SW Spain). 

Tectonophysics 361, 83-96. 

Galadí-Enríquez, E., Zulauf, G., 2006. Geologische Karte von Bayern 1:25000, Blatt Nr. 

7246 Tittling. Bayerisches Landesamt fuer Umwelt, München. 

Galadí-Enríquez, E., Zulauf, G., Heidelbach, F., Dörr, W., Rohrmüller, J., 2005. Variscan 

dyke emplacement and sinistral strike slip in the Bavarian Forest (SE Germany): 

constraints on the evolution of the Bavarian Pfahl shear zone. Schriftenreihe der 

Deutschen Gesellschaft für Geowissenschaften 39, 111-112. 

Gapais, D., Barbarin, B., 1986. Quartz fabric transition in a cooling syntectonic granite 

(Hermitage Massif, France). Tectonophysics 125, 357-370. 

Gébelin, A., Martelet, G., Chen, Y., Brunel, M., Faure, M., 2006. Structure of late 

Variscan Millevaches leucogranite massif in the French Massif Central: AMS and gravity 

modelling results. Journal of Structural Geology 28, 148-169. 

González Menéndez, L.G., 1998. Petrología y geoquímica del batolito granítico de Nisa-

Alburquerque. PhD Thesis, Universidad de Granada. 

González Menéndez, L.G., 2002. Petrología del batolito granítico de Nisa-Alburquerque. 

Revista de la Sociedad Geológica de España 15, 233-246. 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 228

González Menéndez, L., Azor, A., 2006. Estructura interna del batolito granítico de Nisa-

Alburquerque. Geogaceta 40, 131-134. 

González Menéndez, L., Bea, F., 2004. El Batolito de Nisa-Alburquerque. In: Vera, J.A. 

(Ed.), Geología de España, SGE-IGME, Madrid, 120-122. 

Goulty, N.R., Dobson, A.J., Jones, G.D., Al-Kindi, S.A., Holland, J.G, 2001. Gravity 

evidence for diapiric ascent of the Northern Arran Granite. Journal of the Geological 

Society, London 158, 869-876. 

Gower, R.J.W., Simpson, C., 1992. Phase boundary mobility in naturally deformed, high-

grade quartzofeldspathic rocks: evidence for diffusional creep. Journal of Structural 

Geology 14, 301-314. 

Grant, J.A., 1986. The isocon diagram — A simple solution to Gresens’ equation for 

metasomatic alteration. Economic Geology 81, 1976-1982. 

Haederle, M., Atherton, M.P., 2002. Shape and intrusion style of the Coastal Batholith, 

Peru. Tectonophysics 345, 17-28. 

Handler, R., Brandmayr, M., Wallbrecher, E., 1991. The Rodl shear zone in the southern 

Bohemian Massif. Zentralblatt für Geologie und Paläontologie. Teil I H.1, 69-86. 

Hanmer, S., Passchier, C., 1991. Shear-sense indicators: a review. Geological Survey of 

Canada Paper 90-17. 

Harre, W., Kreuzer, H., Lenz, H., Müller, P., 1967. Zwischenbericht über K/Ar und Rb/Sr-

Datierungen von Gesteinen aus dem osbayerisch-österreichischen Kristallin. 

Bundesanstalt für Bodenforschung, Datierungsbericht 5/67, Archiv-Nr. 25/338. 

Hemingway, B.S., Robie, R.A., Evans, H.T., Kerrick, D.M., 1991. Heat capacities and 

entropies of sillimanite, fibrolite, andalusite, kyanite, and quartz and the Al2SiO5 phase 

diagram. American Mineralogist 76, 1597-1613. 

Hoffmann, R., 1962. Die Tektonik des Bayerischen Pfahls. Geologische Rundschau 52, 

332-346. 

Holdaway, M.J., 1971. Stability of andalusite and the aluminium silicate phase diagram. 

American Journal of Science 271, 97-131. 

Horn, P., Köhler, H., Müller-Sohnius, D., 1986. Rb/Sr-Isotopengeochemie 

hydrothermaler Quarze des bayerischen Pfahles und eines Flusspat-Schwerspat-Ganges 

von Nabburg-Wölsendorf/Bundesrepublik Deutschland. Chemical Geology (Isotope 

Geoscience Section) 58, 259-272. 

I. G. N., 1976.  Mapa de España de Anomalía de Bouguer,  e: 1:1000.000.  



References 

 229

Instituto Tecnológico Geominero de España, 1994. Mapa geológico de la Península 

Ibérica, Baleares y Canarias 1:1000000. 

Jackson, M.P.A., Talbot, C.J., 1994. Advances in Salt Tectonics. In : Hancock, P.L. (Ed.), 

Continental Deformation, 159-179, Pergamon Press. 

Jessell, M.W., Lister, G.S., 1990. A simulation of the temperature dependence of quartz 

fabrics. In: Knipe, R.J., Rutter, E.H. (Eds.), Deformation Mechanisms, Rheology and 

Tectonics, Geological Society Special Publication 54, 353-362. 

Johannes, W., Holtz, F., 1996. Petrogenesis and experimental petrology of granitic 

rocks. Minerals and rocks 22. Springer. 

Julivert, M., Fontboté, J.M., Ribeiro, A., Conde, L., 1972. Mapa tectónico de la Península 

Ibérica y Baleares, escala 1:1.000.000 y memoria explicativa. Instituto Geológico y 

Minero de España, Madrid. 

Julivert, M., Fontboté, J.M., Ribeiro, A., Nabais-Conde, L.E., 1974. Mapa tectónico de la 

Península Ibérica y Baleares, escala 1:1.000.000. Instituto Geológico y Minero de 

España, Madrid. 

Julivert, M., Martínez, F.J., 1983. Estructura de conjunto y visión global de la Cordillera 

Herciniana. In: Comba, J.A. (Ed.), Geología de España, Libro Jubilar J.M. Ríos. Instituto 

Geológico y Minero de España, Madrid. 

Kalt, A., Berger, A., Blümel, P., 1999. Metamorphic evolution of cordierite-bearing 

migmatites from the Bayerische Wald (Variscan Belt, Germany). Journal of Petrology 40, 

601-627. 

Kalt, A., Corfu, F., Wijbrans, J.R., 2000. Time calibration of a P-T path from a Variscan 

high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and 

the detection of inherited monazite. Contributions to Mineralogy and Petrology 138, 

143-163. 

Kerr, A.D., Pollard, D.D., 1998. Toward more realistic formulations for the analysis of 

laccoliths. Journal of Structural Geology 20, 1783-1793. 

Klein, T., Kiehm, S., Siebel, W., Shang, C.K., Rohrmüller, J., Dörr, W., Zulauf, G., 2007. 

Age and emplacement of late-Variscan granites of the western Bohemian Massif with 

main focus on the Hauzenberg granitoids (European Variscides, Germany). Lithos (in 

press). 

Koch, A., 1998. Geologie und Goldvorkommen im Moldanubikum zwischen Tittling und 

Perlesreut, Bayerischer Wald. Unpublished Diploma Thesis, Technische Universität 

München. 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 230

Koch, P.S., 1983. Rheology and microstructures of experimentally deformed quartz 

aggregates. PhD Thesis, University of California. 

Kossmat, F., 1927. Gliederung des varistischen Gebirgsbaus. Abhandlungen des 

sächsischen geologischen Landesamtes 1, 1-84. 

Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277-279. 

Kruhl, J.H., 1996. Prism- and basal-plane parallel subgrain boundaries in quartz: a 

microstructural geothermobarometer. Journal of Metamorphic Geology 14, 581-589. 

Kurian, P.J., Krishna, M.R., Nambiar, C.G., Murthy, B.V.S., 2001. Gravity field and 

subsurface geometry of the Kalpatta granite, South India and the tectonic significance. 

Gondwana Research 4, 105-111. 

Law, R.D., 1990. Crystallographic fabrics: a selective review of their applications to 

research in structural geology. In: Knipe, R.J., Rutter, E.H. (Eds.), Deformation 

Mechanisms, Rheology and Tectonics, Geological Society Special Publication 54, 335-

352. 

Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., 

Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. C., Linthout, K., Laird, J., 

Mandarino, J., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, 

D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., Youzhi, G., 1997. 

Nomenclature of amphiboles. Report of the Subcomitee on Amphiboles of the 

International Mineralogical Association. Commission on New Minerals and Mineral 

Names. European Journal of Mineralogy 9, 623-651. 

Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, 

P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R., Zanettin, B., 1989. A 

classification of igneous rocks and glossary of terms. Blackwell Scientific Publications. 

Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., 

Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., 

Sørensen, H., Woolley, A.R., 2002. Igneous Rocks. A classification and glossary of 

terms. Cambridge University Press. 

Lister, J.R., Kerr, R.C., 1991. Fluid-Mechanical models of crack propagation and their 

application to magma transport in dykes. Journal of Geophysical Research 96, 10049-

10077. 

Lister, G.S., Snoke, A.W., 1984. S―C Mylonites. Journal of Structural Geology 6, 617-

638. 

Lotze, F., 1945. Zur Gliederung der Varisziden der Iberischen Meseta. Geotekt. Forsch. 

6, 78-92. 



References 

 231

Mahon, K.I., Harrison, T.M., Drew, D.A., 1988. Ascent of a granitoid diapir in a 

temperature varying medium. Journal of Geophysical Research B93, 1174-1188. 

Mainprice, D., Bouchez, J.L., Blumenfeld, P., Tubia, J.M., 1986. Dominant c slip in 

naturally deformed quartz: Implications for dramatic plastic softening at high 

temperature. Geology 14, 819-822. 

Marsh, B.D., 1982.  On the mechanics of igneous diapirism, stoping and zone melting. 

American Journal of Science 282, 808-855. 

Martínez Poyatos, D.J., Simancas, J.F., Azor, A., González Lodeiro, F., 1998. Evolution of 

a Carboniferous piggyback basin in the southern Central Iberian Zone (Variscan Belt, 

SW Spain). Bulletin Société géologique France 169, 573-578. 

Masberg, H.P., Hoffer, E., Hoernes, S., 1992. Microfabrics indicating granulite-facies 

metamorphism in the low-pressure central Damara Orogen, Namibia. Precambrian 

Research 55, 243-257. 

Masch, L., Cetin, B., 1991. Gefüge, Deformationsmechanismen und Kinematik in 

ausgewählten Hochtemperatur-Mylonitzonen im Moldanubikum des Bayerischen Waldes. 

Geologica Bavarica 96, 7-27. 

Massonne, H.J., 1984. Bestimmung von Intrusionstiefen variszischer granite 

Mitteleuropas und Neuschottlands anhand der Chemie ihrer Hellglimmer. Fortschritte 

der Mineralogie, Beihefte, 62/1, 147-149. 

Massonne, H.J., Schreyer, W., 1979. Synthese von Phengiten im System K2O-MgO-

Al2O3-SiO2-H2O bei Wasserdrucken bis 35 kbar. Fortschritte der Mineralogie 57, Beiheft 

1, 98-99. 

Massonne, H.J., Schreyer, W., 1987. Phengite geobarometry based on the limiting 

assemblage with K-feldspar, phlogopite and quartz. Contributions to Mineralogy and 

Petrology 96, 212-224. 

Massonne, H.J., Szpurka, Z., 1997. Thermodynamic properties of white micas on the 

basis of high-pressure experiments in the systems K2O-MgO-Al2O3-SiO2-H2O and K2O-

FeO-Al2O3-SiO2-H2O. Lithos 41, 229-250. 

Matte, P., 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. 

Tectonophysics 126, 329-374. 

Matte, P., 1991. Accretionary history and crustal evolution of the Variscan belt in 

Western Europe. Tectonophysics 196, 309-337. 

Matte, P., 2001. The Variscan collage and orogeny (480-290 Ma) and the tectonic 

definition of the Armorica microplate: a review. Terra Nova 13, 122-128. 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 232

Matte, P., Maluski, H., Rajlich, P., Franke, W., 1990. Terrane boundaries in the 

Bohemian Massif: Result of large-scale Variscan shearing. Tectonophysics 177, 151-170. 

Mattern, F., 1995. Late Carboniferous to early Triassic shear sense reversals at strike-

slip faults in eastern Bavaria. Zentralblatt für Geologie und Paläontologie Teil I 1993, 

1471-1490. 

McCaffrey, K.J.W., 1992. Igneous emplacement in a transpressive shear zone: Ox 

Mountains igneous complex. Journal of the Geological Society, London 149, 221-235. 

Mendes, F., 1967-68. Contribution a l´étude géochronologique, par la méthode au 

strontium, des formations cristallines du Portugal. Geocronología, Facultad de Ciencias 

de Lisboa. 

Mercier, J.C.C., Anderson, D.A., Carter, N.L., 1977. Stress in the lithosphere: Inferences 

from steady state flow of rocks. Pure and Applied Geophysics 115, 199-226. 

Miller, R.B., Paterson, S.R., 1999. In defense of magmatic diapirs. Journal of Structural 

Geology 21, 1161-1173. 

Morgan, S.S., Law, R.D., Nyman, M.W., 1998. Laccolith-like emplacement model for the 

Papoose Flat pluton based on porphyroblast-matrix analysis. Geological Society of 

America Bulletin 110, 96-110. 

Ohst, E., Troll, G., 1981. Porphyrite in der Umgebung von Waldkirchen.  Der Aufschluss, 

Sonderband 31, 125-151. 

Ord, A., Christie, J.M., 1984. Flow stresses from microstructures in mylonitic quartzites 

of the Moine Thrust zone, Assynt area, Scotland. Journal of Structural Geology 6, 639-

654. 

Ossan, A., 1923. Über Titanitfleckengranite. Neues Jahrbuch für Mineralogie, Bil.-Bd. 48, 

223-239. 

Ott, W.D., 1983. Geologische Karte von Bayern 1:25 000, Erläuterungen zum Blatt Nr. 

6943 Viechtach. Bayerisches Geologisches Landesamt, München. 

Ott, W.D., 1988. Geologische Karte von Bayern 1:25 000, Erläuterungen zum Blatt Nr. 

7147/48 Freyung/Bischofsreut. Bayerisches Geologisches Landesamt, München. 

Passchier, C.W., Trouw, R.A.J., 1996. Microtectonics. Springer. 

Paterson, S.R., Fowler, T.K., 1993. Re-examining pluton emplacement processes. 

Journal of Structural Geology 15, 191-206. 

Paterson, S.R., Fowler, T.K., Schmidt, K.L., Yoshinobu, A.S., Yuan, E.S., Miller, R.B., 

1998. Interpreting magmatic fabric patterns in plutons. Lithos 44, 53-82. 



References 

 233

Paterson, S.R., Miller, R.B., 1998. Mid-crustal magmatic sheets in the Cascades 

Mountains, Washington: implications for magma ascent. Journal of Structural Geology 

20, 1345-1363. 

Paterson, S.R., Vernon, R.H., 1995. Bursting the bubble of ballooning plutons: A return 

to nested diapirs emplaced by multiple processes. Geological Society of America Bulletin 

107, 1356-1380. 

Paterson, S.R., Vernon, R.H., Fowler, T.K., 1991. Aureole tectonics. Reviews in 

Mineralogy 26, 673-722. 

Paterson, S.R., Vernon, R.H., Tobisch, O.T., 1989. A review of criteria for identification 

of magmatic and tectonic foliation in granitoids. Journal of Structural Geology 11, 

349-364. 

Peach, C.J., Lisle, R.J., 1979. A FORTRAN IV program for the analysis of tectonic strain 

using deformed elliptical markers. Computers and Geosciences 5, 325-334. 

Pérez-Estaún, A., Bea, F., (Eds.) 2004. Macizo Ibérico. In: Vera, J.A. (Ed.), Geología de 

España, 19-230, SGE-IGME, Madrid. 

Petford, N., 1996. Dykes or diapirs?. Transactions of the Royal Society of Edinburgh: 

Earth Sciences 87, 105-114. 

Petford, N., Kerr, R.C., Lister, J.R., 1993. Dike transport of granitoid magmas. Geology 

21, 845-848. 

Petford, N., Lister, J.R., Kerr, R.C., 1994. The ascent of felsic magmas in dykes. Lithos 

32, 161-168. 

Petford, N., Cruden, A.R., McCaffrey, K.J.W., Vigneresse, J.L., 2000. Granite magma 

formation, transport and emplacement in the Earth’s crust. Nature 408, 669-673. 

Platt, J.P., 1984. Secondary cleavages in ductile shear zones. Journal of Structural 

Geology 6, 439-442. 

Plaumann, S., 1995. Die Schwerekarte 1:500 000 der Bundesrepublik Deutschland 

(Bouguer-Anomalien). Blatt Süd. Geologisches Jahrbuch E 53, 3-13. 

Pons, J., Debat, P., Oudin, C., Valero, J., 1991. Emplacement kinematics of the 

syntectonic Saraya granite (Senegal, West Africa). Bulletin de la Société Géologique de 

France 162, 1075-1082. 

Prior, D.J., Boyle, A.P., Brenker, F., Cheadle, M.C., Day, A., López, G., Peruzzo, L., Potts, 

G.J., Reddy, S., Spiess, R., Timms, N.E., Trimby, P., Wheeler, J., Zetterström, L., 1999. 

The application of electron backscatter diffraction and orientation contrast imaging in 

the SEM to textural problems in rocks. American Mineralogist 84, 1741-1759. 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 234

Propach, G., 2002. Postmagmatic mineral parageneses of dykes may be used to 

estimate the PT data of their country rocks – An example from the Bayerischer Wald, 

Germany. Neues Jahrbuch für Mineralogie, Abhandlungen 9, 424-432. 

Propach, G., Baumann, A., Schulz-Schmalschläger, M., Grauert, B., 2000. Zircon and 

monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of 

eastern Bavaria, Germany. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 

6, 345-377. 

Propach, G., Bayer, B., Chen, F., Frank, C., Hölzl, S., Hofmann, B., Köhler, H., Siebel, 

W., Troll, G., 2007. Geochemistry and petrology of late Variscan magmatic dykes of the 

Bavarian Forest, Germany. Neues Jahrbuch für Mineralogie, Abhandlungen (in press). 

Ramsay, J.G., Graham, R.H., 1970. Strain variations in shear belts. Canadian Journal of 

Earth Sciences 7, 786-813. 

Ramsay, J.G., Huber, M.I., 1983. The Techniques of Modern Structural Geology. Volume 

1: Strain Analysis. Academic Press. 

Roberts, S., Sanderson, D.J., Gumiel, P., Dee, S., 1991. Tectonic and fluid evolution of 

auriferous quartz veins from La Codosera area, SW Spain. Economic Geology 86, 1012-

1022. 

Rodríquez Suárez, J.I., 1985. Petrografía, blastesis y deformación en la aureola de 

contacto del plutón de Nisa-Alburquerque. Diploma Thesis, Univ. Oviedo. 

Rohrmüller, J., Mielke, H.,  Gebauer, D., 1996. Gesteinsfolge des Grundgebirges nördlich 

der Donau und im Molassenuntergrund. In: Bayerisches Geologisches Landesamt (Ed.), 

Erläuterungen zur Geologischen Karte von Bayern 1:500 000, 4th Ed., 16—54, München. 

Roig, J.Y., Faure, M., Truffert, C., 1998. Folding and granite emplacement inferred from 

structural, strain, TEM and gravimetric analyses: the case study of the Tulle antiform, 

SW French Massif Central. Journal of Structural Geology 20, 1169-1189. 

Román-Berdiel, T., Gapais, D., Brun, J.P., 1995. Analogue models of laccolith formation. 

Journal of Structural Geology 17, 1337-1346. 

Román-Berdiel, T., Gapais, D., Brun, J.P., 1997. Granite intrusion along strike-slip zones 

in experiment and nature. American Journal of Science 297, 651-678. 

Rubin, A.M., 1995. Getting granite dikes out of the source region. Journal of Geophysical 

Research 100, 5911-5929. 

Salman, K., 2002. Estudio petrológico, geoquímico y geocronológico de los granitoides 

del área Monesterio-Cala, Zona de Ossa-Morena (Macizo Ibérico). PhD Thesis, Univ. 

Granada. 



References 

 235

Sánchez Carretero, R., Eguíluz, L., Pascual, E., Carracedo, M., 1990. Part V, Igneous 

Rocks. In: Dallmeyer, R.D., Martínez García, E., (Eds.), Pre-Mesozoic Geology of Iberia, 

292-312, Springer Verlag. 

Sanderson, D.J., Marchini, W.R.D., 1984. Transpression. Journal of Structural Geology 6, 

449-458. 

Sanderson, D.J., Roberts, S., McGowan, J.A., Gumiel, P., 1991. Hercynian 

transpressional tectonics at the southern margin of the Central Iberian Zone, west 

Spain. Journal Geological Society London 148, 893-898. 

Sant’Ovaia, Bouchez, J.L., Noronha, F., Leblanc, D., Vigneresse, J.L., 2000. Composite-

laccolith emplacement of the post-tectonic Vila Pouca de Aguiar granite pluton (northern 

Portugal): a combined AMS and gravity study. Transactions of the Royal Society of 

Edinburgh: Earth Sciences 91, 123-137. 

Scheuvens, D., Zulauf, G., 2000. Exhumation, strain localization, and emplacement of 

granitoids along the western part of the Central Bohemian shear zone (Bohemian 

Massif). International Journal of Earth Sciences 89, 617-630. 

Schmid, S.W., Casey, M., 1986. Complete fabric analysis of some commonly observed 

quartz c-axis patterns. Geophysical Monograph 36, 263-286. 

Schmidl, H.W., 2000. Geologische Kartierung im Passauer Wald, eines Teilgebietes auf 

dem Gradabteilungsblatt Nr. 7246 Tittling (SE-Ecke) zwischen Tittling, Röhrnbach and 

Hutthurm. Unpublished Diploma Thesis, Ludwig Maximilians Universität München. 

Scholtz, H., 1927. Das Saldenburger Granitmassiv und seine Umgebung. In: Cloos, H., 

Balk, E., Cloos, E., Scholtz, H., Die Plutone des Passauer Waldes. Ihr Bau und 

Werdegang und ihre innere Tektonik. Monogr. zur Geol. und Paleont., Ser. II, H. 3, 137-

180. 

Schwerdtner, W.M., 1995. Local displacement of diapir contacts and its importance to 

pluton emplacement study. Journal of Structural Geology 17, 907-910. 

Siebel, W., 1998. Variszischer spät- bis postkollisionaler Plutonismus in Deutschland: 

Regionale Verbreitung, Stoffbestand und Altersstellung. Zeitschrift für geologische 

Wissenschaften 26, 329-358. 

Siebel, W., Blaha, U., Chen, F., Rohrmüller, J., 2005. Geochronology and geochemistry 

of a dyke-host rock association and implications for the formation of the Bavarian Pfahl 

shear zone, Bohemian Massif. International Journal of Earth Sciences 94, 8-23. 

Simancas, J.F., Galindo-Zaldívar, J., Azor, A., 2000. Three-dimensional shape and 

emplacement of the Cardenchosa deformed pluton (Variscan Orogen, southwestern 

Iberian Massif). Journal of Structural Geology 22, 489-503. 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 236

Simancas, J.F., Carbonell, R., González Lodeiro, F., Pérez Estaún, A., Juhlin, C., Ayarza, 

P., Kashubin, A., Azor, A., Martínez Poyatos, D., Almodóvar, G.R., Pascual, E., Sáez, R., 

Expósito, I., 2003. Crustal Structure of the transpressional Variscan Orogen of SW 

Iberia: SW Iberia deep seismic reflection profile (IBERSEIS). Tectonics 22. doi: 

10.1029/2002TC001479 

Simancas, J.F., Martínez Poyatos D.J., Expósito, I., Azor, A., González Lodeiro, F., 2001. 

Structure of the SW Iberian Massif on Both Sides of a Variscan Suture: the Ossa-Morena 

/ Central Iberian Contact. Tectonophysics 332, 295-308. 

Simpson, C., Schmid, S.M., 1983. An evaluation of criteria to deduce the sense of 

movement in sheared rocks. Geological Society of America Bulletin 94, 1288-1288. 

Simpson, G.D.H., Thompson, A.B., Connolly, J.A.D., 2000. Phase relations, singularities 

and thermobarometry of metamorphic assemblages containing phengite, chlorite, 

biotite, K-feldspar, quartz and H2O. Contributions to Mineralogy and Petrology 139, 555-

569. 

Stein, E., 1988. Die strukturgeologische Entwicklung im Übergangsbereich 

Saxothuringikum/Moldanubikum in NE-Bayern. Geologica Bavarica 92, 5-131. 

Steiner, L., 1968. Alkalisierung im Pfahlgebiet am Beispiel der Palitgesteine des 

Bayrischen Waldes. Unpublished PhD Thesis, Univ. München. 

Steiner, L., 1969. Kalifeldspatisierung in den Palitgesteinen des Pfahlgebietes. Geologica 

Bavarica 60, 163-170. 

Steiner, L., 1972. Alkalisierung im Grundgebirge des Bayrischen Waldes. Neues 

Jahrbuch für Mineralogie Abhandlungen 116, 132-166. 

Stipp, M., Stünitz, H, Heilbronner, R., Schmid, S.M., 2002. The eastern Tonale fault 

zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature 

range from 250 to 700°C. Journal of Structural Geology 24, 1861-1884. 

Stipp, M., Tullis, J., 2003. The recrystallized grain size piezometer for quartz. 

Geophysical Research Letters 30(21), 2088, doi: 10.1029/2003GL018444. 

Suess, F. E., 1903. Bau und Bild der Böhmischen Masse. In: Diener, C., Hoernes, R., 

Suess F. E., Uhlig, V. (Eds.), Bau und Bild Österreichs. Temsky-Freytag, Wien. 

Talbot, J.Y., Faure, M., Chen, Y., Martelet, G., 2005. Pull-apart emplacement of the 

Margeride granitic complex (French Massif Central). Implications for the late evolution of 

the Variscan orogen. Journal of Structural Geology 27, 1610-1629. 

Tanner, D. C., 1995. Strukturen und Gefüge in hochgradig metamorphen Gneisen der 

mittleren Oberpfalz und Westböhmens. Giessener Geologische Schriften 57. PhD Thesis, 

Univ. Giessen. 



References 

 237

Tanner, D. C., Behrmann, J. H., 1995. The Variscan tectonics of the Moldanubian 

gneisses, Obepfälzer Wald: A compressional story. Neues Jahrbuch für Geologie und 

Paläontologie Abhandlungen 197, 331-355. 

Teipel, U., 2003. Obervendischer und unterordovizischer Magmatismus im Bayerischen 

Wald. Münchner Geologische Hefte, A 33. 

Teipel, U., Galadí-Enríquez, E., Kroemer, E., in press. Geologische Karte von Bayern 

1:25000, Blatt Nr. 7146 Grafenau. Bayerisches Landesamt fuer Umwelt, München. 

Telford, W. M., Geldart, L. P., Sheriff, R. E., 1995. Applied Geophysics, 2nd Ed., 

Cambridge University Press. 

Tennyson, C., 1960. Berylliummineralien und ihre pegmatitische Paragenese in den 

Graniten von Tittling: Bayerischer Wald. Neues Jahrbuch für Mineralogie Abhandlungen 

94, 1253-1265. 

Tennyson, C., 1981. Zur Mineralogie der Pegmatite des Bayerischen Waldes. Der 

Aufschluss, Sonderband 31, 49-73. 

Tikoff, B., Fossen, H., 1999. Three-dimensional reference deformations and strain 

facies. Journal of Structural Geology 21, 1497-1512. 

Troll, G., 1964. Das Intrusivgebiet von Fürstenstein (Bayerischer Wald). Geologica 

Bavarica 52. 

Troll, G., 1966. Über Metabasite des Bayerischen Waldes. 1. Zur Petrographie und 

Petrochemie apatit- und biotitreicher Metabasite im nördlichen Passauer Wald. Neues 

Jahrbuch für Mineralogie Abhandlungen 106,  72-105. 

Troll, G., 1967. Steinbrüche im Intrusivgebiet von Fürstenstein. In: Troll, G., Führer zu 

geologisch-petrographiscen Exkursionen im Bayerischen Wald. Teil I: Aufschlüsse im 

Mittel- und Ostteil. Geologica Bavarica 58, 133-144 

Troll, G., Ohst, E., 1984. Porphyrite des Bayerischen Waldes zwischen Granitintrusionen 

und Pfahlquarzbildung. Fortschritte der Mineralogie 62, 244-246. 

Troll, G., Winter, H., 1969. Zur Petrographie und Geochemie von Anatexiten und ihren 

basischen Einschlüssen im Passauer Wald, Niederbayern. Geologica Bavarica 60, 52-94. 

Tullis, J., 1983. Deformation of feldspars. In: Ribbe, P.H. (Ed.), Feldspar Mineralogy. 

Mineralogical Society of America, Reviews in Mineralogy 2, 297-323. 

Tullis, J., Yund, R.A., 1977. Experimental deformation of dry Westerly granite. Journal of 

Geophysical Research 82, 5705-5718. 

Tuttle, O.F., Bowen, N.L., 1958. Origin of granite in the light of experimental studies in 

the system NaAlSi3O8 - KAlSi3O8 – H2O. Geol. Soc. Am. Mem. 74, 153 pp. 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 238

Twiss, R.J., 1977. Theory and applicability of a recrystallized grain size piezometer. Pure 

and Applied Geophysics 115, 227-244. 

Twiss, R.J., 1980. Static theory of size variation with stress for subgrains and 

dynamically recrystallized grains. U.S. Geological Survey, Open File Report 80-625, 665-

683. 

Unzog, W., 1990. Beispiele von Strainanalysen in Kristallingebieten. TSK III, 3. 

Symposium für Tektonik, Strukturgeologie, Kristallingeologie. Graz, 19. - 21.4.1990, 

265-266. 

Urban, M., Synek, J., 1995. Moldanubian Region. Structure. In: Dallmeyer, R.D., Franke, 

W., Weber, K. (Eds.), Pre-Permian geology of Central and Eastern Europe, 429-443, 

Springer. 

Vegas, N., Aranguren, A., Tubía, J.M., 2001. Granites built by sheeting in a fault 

stepover (the Sanabria Massifs, Variscan Orogen, NW Spain). Terra Nova 13, 180-187. 

Vigneresse, J.L., 1990. Use and misuse of geophysical data to determine the shape at 

depth of granitic intrusions. Geological Journal 25, 248-260. 

Vigneresse, J.L., 1995a. Control of granite emplacement by regional deformation. 

Tectonophysics 249, 173-186. 

Vigneresse, J.L., 1995b. Crustal regime of deformation and ascent of granitic magma. 

Tectonophysics 249, 187-202. 

Vigneresse, J.L., 1995c. Far- and near-field deformation and granite emplacement. 

Geodinamica Acta 8, 211-227. 

Vigneresse, J.L., Bouchez, J.L., 1997. Successive granitic magma batches during pluton 

emplacement: the Case of Cabeza de Araya (Spain). Journal of Petrology 38, 1767-

1776. 

Villaseca, C., Barbero, L., Herreros, V., 1998b. A re-examination of the typology of 

peraluminous granite types in intracontinental orogenic belts. Transactions of the Royal 

Society of Edinburgh: Earth Sciences 89, 113-119. 

Villaseca, C., Barbero, L., Rogers, G., 1998a. Crustal origin of Hercynian peraluminous 

granitic batholiths of Central Sapin: petrological, geochemical and isotopic (Sr, Nd) 

constraints. Lithos 43, 55-79. 

Voll, G., 1960. Stoff, Bau und Alter in der Grenzzone Moldanubikum/Saxothuringikum in 

Bayern unter besonderer Berücksichtigung gabbroider, amphibolitischer und 

kalksilikatführender Gesteine. Beihefte zum Geologischen Jahrbuch 42. 



References 

 239

von Gümbel, C.W., 1868. Geognostische Beschreibung des Königreiches Bayern. II Abt. 

Ostbayerisches Grenzgebirge. Gotha. 

Wallbrecher, E., Brandmayr, M., Handler, R., 1990. Kinematische Untersuchungen an 

Blattverschiebungszonen in der südlichen Böhmischen Masse. Österreichische Beiträge 

zu Meteorologie und Geophysik 3, 97-120. 

Wang, T., Wang, X., Li, W., 2000. Evaluation of multiple emplacement mechanisms: the 

Huichizi granite pluton, Qinling orogenic belt, central China. Journal of Structural 

Geology 22, 505-518. 

Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and 

composition effects in a variety of crustal magma types. Earth and Planetary Science 

Letters 64, 295-304. 

Weinberg, R.F., 1996. Ascent mechanism of felsic magmas: news and views. 

Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 95-103. 

Weinberg, R.F., 1999. Mesoscale pervasive felsic magma migration: alternatives to 

dyking. Lithos 46, 393-410. 

Weinberg, R.F., Podladchikov, Y.Y., 1995. The rise of solid-state diapirs. Journal of 

Structural Geology 17, 1183-1195. 

Weiss, S., 1981. Geologisch-petrographische Untersuchungen im NE-Teil des 

Saldenburger Granitmassivs und im Gneisrahmen des Ilzgebietes, Vorderer Bayerischer 

Wald. Unpublished Diploma Thesis, Ludwig Maximilians Univ. München. 

White, S.H., 1979. Paleostress estimates in the Moine Thrust zone. Nature 280, 222-

223. 

Wimmenauer, W., Bryhni, I., 2002. Towards a unified nomenclature in metamorphic 

petrology: Migmatites and related rocks. A proposal on behalf of the IUGS 

Subcommission on the Systematics of Metamorphic Rocks. Web version of 31.07.2002, 

http://www.bgs.ac.uk/scmr/docs/paper_6/scmr_mig.pdf. 

Wyllie, P.J., 1977. Crustal anatexis: an experimental review. Tectonophysics 43, 41-71. 

Yardley, B.W.D., 1989. An Introduction to metamorphic petrology. Longman. 

Yenes, M., Álvarez, F., Gutiérrez-Alonso, G., 1999. Granite emplacement in orogenic 

compressional conditions: the La Alberca--Béjar granitic area (Spanish Central System, 

Variscan Iberian Belt). Journal of Structural Geology 21, 1419-1440. 

Zen, E., 1988. Phase relations of peraluminous granitic rocks and their petrogenetic 

implications. Ann. Rev. Earth Planet. Sci. 16, 21-51. 

Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe, 2nd ed. Elsevier. 



Granitoids from the European Variscides: an approach to their emplacement and tectonometamorphic history 

 240

Zulauf, G., 1992. Late to post-Variscan deformation phases and palaeostresses in the 

KTB pilot research well (bohemian Massif, Germany). Tectonophysics 202, 1-21. 

Zulauf, G., 1994. Ductile normal faulting along the West Bohemian shear zone 

(Moldanubian/Teplá-Barrandian boundary): evidence for late Variscan extensional 

collapse in the Variscan Internides. Geologische Rundschau, 83, 276-292. 

Zulauf, G., Bues, C., Dörr, W., Vejnar, Z., 2002a. 10 km minimum throw along the West 

Bohemian shear-zone: Evidence for dramatic crustal thickening and high topography in 

the Bohemian Massif (European Variscides). International Journal of Earth Sciences 91, 

850-864. 

Zulauf, G., Dörr, W., Fiala, J., Kotková, J., Maluski, H., Valverde-Vaquero, P., 2002b. 

Evidence for high-temperature diffusional creep preserved by rapid cooling of lower 

crust (North Bohemian shear zone, Czech Republic). Terra Nova 14, 343-354. 

Zulauf, G., Duyster, J., 1997. Supracrustal intraplate thickening of Variscan basement 

due to Alpine foreland compression: Results from the superdeep well KTB (Bohemian 

Massif, Germany). Tectonics 16, 730-743. 

Zulauf, G., Schitter, F., Riegler, G., Finger, F., Fiala, J., Vejnar, Z., 1999. Age constraints 

on the Cadomian evolution of the Teplá-Barrandian unit (Bohemian Massif) through 

electron microprobe dating of metamorphic monazite. Zeitschrift der deutschen 

geologischen Gesellschaft 150, 627-639. 

Zulauf, G., Vejnar, Z., 2003. Variszische Fahrstuhltektonik und cadomisches Basement 

im Westteil der Böhmischen Masse (Exkursion I am 25. April 2003). Jber. Mitt. 

oberrhein. geol. Ver., N. F. 85, 295-315, Stuttgart 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 1: 
geological map of sheet No. 7246 

Tittling, Bavaria (Germany) 
(simplified after Galadí-Enríquez and 

Zulauf, 2006) 
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Appendix 2: 
sampling sites 

 



 

 
Geological map of the south-eastern part of the Bohemian Massif simplified after 
Bundesanstalt fuer Geowissenschaften und Rohstoffe (1993), showing location of sampling 
sites. White: post-Variscan cover. Light grey: metamorphic rocks. Medium grey with crosses: 
intrusive rocks, mainly granites and granodiorites. Dark grey: major faults and fault rocks. RSZ 
Runding shear zone, BPSZ Bayerischer Pfahl shear zone, BLSZ Buchberger Leite shear zone, 
DSZ Danube shear zone, FP Fürstenstein pluton, HP Hauzenberg pluton. Dashed lines 
represent the limits of topographic sheets at scale 1:25000: Number and name of the relevant 
ones are indicated. 
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schlag 

Schoef 5 No. 7145 
Schoefweg 

48° 52' 04.1'' N 
13° 17' 26.5'' E 

R 4594680 
H 5415175 

N122E/50N P: 10°→N310E sinistral, 
normal 

 

Abersber-
ger Holz 

Schoef 7, 
8 

No. 7145 
Schoefweg 

48° 51' 27.1'' N 
13° 18' 10.7'' E 

R 4595600 
H 5414050 

N103E/45N P: 31°→N067E sinistral, 
reverse 

 

Unter-
mitterdorf 
dyke 

Schoef 
12, 13, 
14 

No. 7145 
Schoefweg 

48° 52' 59.9'' N 
13° 14' 02.8'' E 

R 4590500 
H 5416830 

N079E/78N 
to 
N103E/78N 

R: 15° →W to 
subhoriz. 
P: 15°→N262E 
to subhoriz. 

sinistral, 
normal 

B,T 

sand pit 
east of 
Unter-
mitterdorf 

Schoef 
617 

No. 7145 
Schoefweg 

48° 52' 30.4'' N 
13° 14' 58.5'' E 

R 4591650 
H 5415940 

N076E/77S R: 25°→N076E 
P: 24°→N078E 

sinistral, 
normal 

B 

Saunstein 
quarry 

Grf 590-
615 

No. 7146 
Grafenau 

48° 51' 24.2'' N 
13° 20' 03.5'' E 

R 4597900 
H 5414000 

N070E/90 to 
N090E/90 

subhoriz. sinistral B,T 

Schneider-
mühl 

Tit 93, 
396 

No. 7246 
Tittling 

48° 45' 39.1'' N 
13° 24' 17.5'' E 

R 4603274 
H 5403434 

N065E/90 P: 15°→N065E sinistral T 

Steinberg Tit 125 No. 7246 
Tittling 

48° 46' 27.8'' N 
13° 29' 09.2'' E 

R 4609200 
H 5405050 

N070E/60S P: 17°→N080E sinistral, 
normal 

B 

Loizersdorf Tit 211 No. 7246 
Tittling 

48° 43' 56.9'' N 
13° 28' 32.9'' E 

R 4608550 
H 5400375 

N105E/60S P: 13°→N277E sinistral, 
reverse 

 

Schrotten-
baummühle 

Tit 399 No. 7246 
Tittling 

48° 44' 00.5'' N 
13° 26' 29.7'' E 

R 4606030 
H 5400440 

N060E/65N subhoriz.? 
(brittle 
overprint) 

sinistral?  

Ohbruck Tit 682 No. 7246 
Tittling 

48° 43' 05.5'' N 
13° 28' 09.6'' E 

R 4608105 
H 5398780 

N080E/70S subhoriz. sinistral  

Heiblmühle Tit 760, 
404 

No. 7246 
Tittling 

48° 45' 43.2'' N 
13° 28' 34.1'' E 

R 4608510 
H 5403660 

N070E/55N P: 5° →N067E sinistral T 

Hochholz Tit 711 No. 7246 
Tittling 

48° 44' 49.3'' N 
13° 29' 34.2'' E 

R 4609770 
H 5402020 

N060E/85N subhoriz. sinistral B 

Goggers-
reut 1 

Wk 32 No. 7247 
Waldkirchen 

48° 45' 48.8'' N 
13° 30' 40.2'' E 

R 5390560 
H 5403850 

N060E/82S subhoriz. sinistral  

Goggers-
reut 2 

Wk 50 No. 7247 
Waldkirchen 

48° 45' 40.7'' N 
13° 30' 43.9'' E 

R 5390630 
H 5430600 

N056E/72N subhoriz. sinistral  

*comments: B = barometry data available; T = quartz-texture data available 
 
 

Bayerischer Pfahl shear-zone system 
locality sample lithology geogr. coord GK coord. foliation S2 

(shear bands) 
lineation L2 
(R=rake, 
P=plunge) 

kinemat. comm.* 

Grf 6 gneiss 48° 52' 38.6'' N 
13° 21' 27.1'' E 

R 4599562 
H 5416326 

N121E/80N subhoriz. dextral T 

Grf 8 mylonite 48° 52' 23.8'' N 
13° 21' 25.6'' E 

R 4599540 
H 5415870 

N114E/70N R: 5°→N294E dextral  

Grf 9 mylonite 48° 52' 22.5'' N 
13° 21' 27.1'' E 

R 4599572 
H 5415831 

N111E/64N subhoriz. dextral B,T 

Grf 13 mylonite 48° 52' 18.4'' N 
13° 21' 30.0'' E 

R 4599633 
H 5415704 

N105E/75S R: 5°→N295E dextral T 

Grf 5 mylonite 48° 52' 12.9'' N 
13° 21' 29.3'' E 

R 4599621 
H 5415536 

N100E/88S R: 10°→N280E dextral T 

Große Ohe 
top. sheet 
No. 7146 
Grafenau 

Grf 4 diatexite 48° 52' 09.7'' N 
13° 21' 37.6'' E 

R 4599793 
H 5415439 

N090E/78S R: 5°→N090E dextral T 

Pat 10 granite 
mylonite 

49° 01' 08.0'' N 
12° 59' 43.5'' E 

R 4572800 
H 5431650 

N131E/76N subhoriz. dextral B,T 

Pat 11 granite 
mylonite 

49° 01' 07.2'' N 
12° 59' 40.1'' E 

R 4572730 
H 5431625 

N125E/90 subhoriz. dextral B,T 

Patersdorf 
top. sheet 
No. 6943 
Viechtach 

Pat 12 mylonite 
(phyllonite) 

49° 01' 01.6'' N 
12° 59' 38.0'' E 

R 4572690 
H 5431450 

N081E/76S R: 27°→N081E dextral,  
reverse 

B,T 

Buchberger 
Leite top. 
sheet No. 
7147 
Freyung 

Frg 91 mylonite 48° 48' 44.8'' N 
13° 30' 10.0'' E 

R 5390050 
H 5409300 

N170E/90 P: 20°→N170E dextral T 

*comments: B = barometry data available; T = quartz-texture data available 
 
 

other samples 
topographic 
sheet 
1:25000 

sample lithology geogr. coord GK coord. foliation S2 
(shear bands) 

lineation L2 
(R=rake, 
P=plunge) 

kinemat. comm.* 

No. 7246 
Tittling 

Tit 141 hypersthene-
bearing 
diatexite 

48° 47' 39.2'' N 
13° 28' 34.9'' E 

R 4608457 
H 5407242 

N120E/80NE R: 8°→ N120E dextral, 
normal 

 

No. 7147 
Freyung 

Frg 92 dark-
coloured 
diatexite 

48° 48' 25.1'' N 
13° 30' 22.5'' E 

R 5390292 
H 5408685 

N135E/60SW subhoriz. dextral T 

*comments: T = quartz-texture data available 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 3: 
microprobe analyses of phengites 

Electron microprobe analyses of different populations of white micas. Cations calculated by 
charge balance assuming 22 negative charges and total Fe as Fe2+. mv: mean value. sd: 
standard deviation. The mean number of Si atoms p.f.u., written in bold type, and the standard 
deviation were used for the construction of P-T-graphics included in the text. 



Sample Grf 9
No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Cl Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 

igneous white mica: 
80 10.42 0.63 0.02 0.00 1.24 0.74 0.03 0.00 34.84 1.00 45.72 0.49 0.00 95.12 0.910 0.082 0.001 0.000 0.069 0.074 0.001 0.000 2.752 0.050 3.064 7.005 
81 10.47 0.50 0.04 0.00 1.29 0.71 0.04 0.01 34.44 1.04 45.67 0.38 0.00 94.59 0.919 0.065 0.003 0.000 0.073 0.071 0.002 0.001 2.734 0.053 3.076 6.996 
82 10.40 0.75 0.01 0.00 1.29 0.69 0.02 0.03 35.24 1.05 45.68 0.40 0.00 95.56 0.904 0.097 0.001 0.000 0.072 0.069 0.001 0.001 2.770 0.053 3.047 7.015 
83 10.54 0.70 0.01 0.00 1.26 0.77 0.03 0.01 35.36 1.04 45.96 0.49 0.00 96.17 0.912 0.090 0.001 0.000 0.070 0.076 0.002 0.001 2.765 0.052 3.049 7.017 
84 10.51 0.69 0.00 0.00 1.34 0.75 0.01 0.02 35.08 0.84 45.43 0.41 0.01 95.09 0.919 0.090 0.000 0.000 0.075 0.075 0.001 0.001 2.775 0.042 3.048 7.026 
85 10.40 0.77 0.01 0.00 1.24 0.82 0.00 0.01 34.77 1.05 45.45 0.49 0.00 95.00 0.911 0.100 0.001 0.000 0.070 0.082 0.000 0.001 2.753 0.053 3.053 7.023 
86 10.77 0.51 0.02 0.00 1.07 0.64 0.00 0.01 35.51 0.84 45.52 0.34 0.00 95.23 0.939 0.066 0.002 0.000 0.060 0.064 0.000 0.001 2.799 0.042 3.044 7.016 
87 10.71 0.55 0.00 0.00 1.29 0.69 0.00 0.00 35.56 0.47 45.39 0.45 0.01 95.12 0.936 0.071 0.000 0.000 0.072 0.069 0.000 0.000 2.812 0.024 3.045 7.030 
88 10.84 0.42 0.01 0.00 1.12 0.75 0.02 0.07 34.40 2.56 45.64 0.40 0.00 96.23 0.939 0.055 0.001 0.000 0.062 0.074 0.001 0.003 2.694 0.128 3.032 6.988 
89 10.85 0.43 0.02 0.00 1.39 0.69 0.02 0.00 35.80 0.53 45.39 0.40 0.00 95.53 0.945 0.056 0.001 0.000 0.078 0.069 0.001 0.000 2.820 0.027 3.033 7.031 
90 10.19 0.70 0.03 0.00 1.36 0.80 0.03 0.00 34.91 1.00 45.59 0.38 0.01 95.01 0.890 0.091 0.002 0.000 0.076 0.080 0.002 0.000 2.758 0.050 3.056 7.005 
91 10.52 0.69 0.03 0.00 1.21 0.70 0.01 0.01 35.21 0.82 45.29 0.47 0.00 94.97 0.921 0.090 0.002 0.000 0.068 0.070 0.001 0.000 2.789 0.042 3.043 7.026 
92 11.04 0.34 0.01 0.00 1.03 0.55 0.03 0.00 35.96 0.57 45.04 0.37 0.00 94.94 0.967 0.044 0.001 0.000 0.058 0.055 0.002 0.000 2.847 0.029 3.026 7.027 
96 10.69 0.52 0.07 0.00 1.01 0.64 0.02 0.01 35.30 0.95 45.21 0.47 0.00 94.87 0.937 0.067 0.005 0.000 0.057 0.064 0.001 0.001 2.797 0.048 3.039 7.016 
97 10.41 0.75 0.03 0.00 1.20 0.71 0.02 0.00 35.03 0.75 45.53 0.46 0.01 94.90 0.912 0.097 0.002 0.000 0.068 0.071 0.001 0.000 2.774 0.038 3.059 7.021 
98 10.09 0.65 0.01 0.00 2.27 0.95 0.04 0.00 34.92 0.67 45.27 0.40 0.00 95.27 0.883 0.084 0.001 0.000 0.127 0.095 0.002 0.000 2.763 0.034 3.039 7.029 
99 10.56 0.60 0.02 0.00 1.19 0.76 0.04 0.00 35.35 0.51 45.90 0.42 0.00 95.33 0.919 0.077 0.001 0.000 0.066 0.076 0.002 0.000 2.783 0.025 3.066 7.016 

100 10.81 0.42 0.03 0.00 1.37 0.74 0.01 0.00 35.46 0.84 45.97 0.34 0.01 96.01 0.936 0.055 0.002 0.000 0.076 0.073 0.001 0.000 2.776 0.042 3.053 7.013 
101 10.62 0.65 0.04 0.00 1.25 0.71 0.02 0.03 35.05 0.92 45.52 0.50 0.01 95.33 0.928 0.085 0.003 0.000 0.070 0.071 0.001 0.002 2.769 0.046 3.050 7.025 
102 10.51 0.68 0.01 0.00 1.21 0.78 0.03 0.00 35.11 0.85 46.01 0.48 0.01 95.68 0.913 0.087 0.001 0.000 0.068 0.077 0.002 0.000 2.757 0.043 3.066 7.013 
103 10.99 0.19 0.00 0.00 1.92 1.36 0.00 0.01 32.23 1.58 47.14 0.53 0.00 95.95 0.957 0.025 0.000 0.000 0.107 0.135 0.000 0.001 2.538 0.080 3.150 6.993 
104 10.91 0.32 0.02 0.00 1.51 0.67 0.07 0.01 35.26 1.11 46.10 0.34 0.01 96.33 0.942 0.041 0.002 0.000 0.084 0.066 0.004 0.001 2.754 0.055 3.055 7.004 
105 10.76 0.41 0.02 0.00 1.42 0.68 0.03 0.00 34.83 0.73 45.31 0.42 0.00 94.60 0.947 0.054 0.002 0.000 0.080 0.068 0.002 0.000 2.771 0.037 3.059 7.019 
106 10.65 0.53 0.02 0.00 1.22 0.77 0.03 0.00 35.40 0.94 45.66 0.40 0.01 95.62 0.926 0.068 0.001 0.000 0.068 0.076 0.002 0.000 2.782 0.047 3.044 7.014 
107 10.56 0.64 0.03 0.00 1.29 0.71 0.01 0.02 35.73 0.77 45.70 0.36 0.01 95.82 0.915 0.082 0.002 0.000 0.072 0.070 0.001 0.001 2.800 0.038 3.039 7.021 
108 10.47 0.64 0.03 0.00 1.18 0.76 0.00 0.00 35.43 1.08 45.92 0.56 0.01 96.08 0.906 0.083 0.002 0.000 0.066 0.075 0.000 0.000 2.772 0.054 3.048 7.006 
109 10.38 0.82 0.05 0.00 1.23 0.76 0.02 0.02 35.56 0.98 45.85 0.44 0.00 96.09 0.897 0.105 0.003 0.000 0.068 0.075 0.001 0.001 2.780 0.049 3.041 7.021 
110 10.97 0.39 0.00 0.00 1.12 0.63 0.00 0.00 35.37 0.89 46.05 0.35 0.00 95.76 0.951 0.050 0.000 0.000 0.062 0.062 0.000 0.000 2.773 0.044 3.063 7.006 
111 10.37 0.71 0.00 0.00 1.28 0.73 0.01 0.00 34.85 1.01 45.23 0.41 0.00 94.59 0.911 0.092 0.000 0.000 0.072 0.074 0.001 0.000 2.769 0.051 3.049 7.018 
112 10.26 0.60 0.00 0.00 1.33 0.75 0.03 0.00 34.86 0.98 45.08 0.40 0.01 94.29 0.904 0.078 0.000 0.000 0.075 0.076 0.001 0.000 2.777 0.050 3.046 7.007 
mv 10.58 0.59 0.02 0.00 1.28 0.73 0.02 0.01 35.19 0.92 45.59 0.42 0.00 95.35 0.922 0.076 0.001 0.000 0.072 0.072 0.001 0.000 2.775 0.046 3.049 7.016 
sd 0.23 0.14 0.02 0.00 0.22 0.07 0.02 0.01 0.38 0.36 0.30 0.06 0.00 0.55 0.019 0.018 0.001 0.000 0.012 0.007 0.001 0.001 0.028 0.018 0.011 0.010 

 
 
 
 



Sample Grf 9 (continued) 
No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Cl Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 

very fine-grained white mica (synkinematic): 
72 11.08 0.21 0.05 0.00 2.17 0.91 0.05 0.02 34.78 0.05 45.78 0.40 0.00 95.51 0.970 0.028 0.003 0.000 0.122 0.091 0.003 0.001 2.752 0.003 3.074 7.046 
73 10.70 0.26 0.03 0.00 2.55 0.90 0.00 0.00 35.27 0.04 44.62 0.38 0.01 94.77 0.945 0.033 0.002 0.000 0.144 0.091 0.000 0.000 2.816 0.002 3.022 7.057 
74 11.13 0.25 0.03 0.03 1.36 0.53 0.04 0.00 35.49 0.06 44.88 0.37 0.01 94.18 0.985 0.033 0.002 0.001 0.077 0.054 0.003 0.000 2.839 0.003 3.046 7.041 
75 10.13 0.22 0.05 0.01 3.34 1.57 0.04 0.04 33.02 0.05 45.99 0.44 0.01 94.90 0.894 0.028 0.003 0.000 0.189 0.158 0.002 0.002 2.635 0.002 3.113 7.027 
78 10.81 0.14 0.03 0.00 3.29 1.50 0.05 0.00 32.26 0.20 45.73 0.48 0.01 94.50 0.962 0.018 0.002 0.000 0.188 0.153 0.003 0.000 2.597 0.010 3.124 7.058 
93 10.83 0.22 0.01 0.00 2.12 1.11 0.00 0.01 33.40 0.44 45.78 0.49 0.00 94.40 0.959 0.028 0.001 0.000 0.120 0.112 0.000 0.001 2.673 0.022 3.109 7.025 
95 11.22 0.23 0.02 0.08 2.02 1.15 0.00 0.00 33.77 0.04 46.09 0.59 0.01 95.22 0.987 0.030 0.002 0.002 0.114 0.116 0.000 0.000 2.687 0.002 3.112 7.051 
mv 10.84 0.22 0.03 0.02 2.41 1.09 0.03 0.01 34.00 0.13 45.55 0.45 0.01 94.78 0.957 0.028 0.002 0.000 0.136 0.111 0.002 0.001 2.714 0.006 3.086 7.044 
sd 0.37 0.04 0.01 0.03 0.71 0.36 0.02 0.01 1.21 0.15 0.57 0.08 0.01 0.47 0.032 0.005 0.001 0.001 0.041 0.037 0.001 0.001 0.091 0.008 0.039 0.013 

 
 



 
Sample Grf 605 

No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 
porphyroclasts, core: 

10 10.70 0.39 0.00 0.00 4.01 0.54 0.11 0.00 32.80 0.44 45.74 0.10 94.83 0.949 0.051 0.000 0.000 0.228 0.055 0.006 0.000 2.630 0.022 3.111 7.051
11 9.64 0.35 0.04 0.00 5.86 0.65 0.20 0.02 31.29 0.39 46.10 0.02 94.55 0.859 0.047 0.003 0.000 0.335 0.066 0.011 0.001 2.522 0.020 3.153 7.018
12 10.75 0.37 0.00 0.00 4.43 0.54 0.12 0.00 32.25 0.45 45.76 0.00 94.66 0.956 0.049 0.000 0.000 0.253 0.055 0.007 0.000 2.594 0.023 3.123 7.059
15 10.82 0.33 0.00 0.00 4.66 0.65 0.13 0.02 32.00 0.33 45.97 0.00 94.91 0.961 0.043 0.000 0.000 0.266 0.066 0.008 0.001 2.571 0.017 3.133 7.066
16 10.92 0.42 0.00 0.00 4.07 0.63 0.11 0.00 32.45 0.41 46.21 0.25 95.46 0.964 0.055 0.000 0.000 0.231 0.063 0.006 0.000 2.591 0.021 3.131 7.063
17 10.74 0.42 0.00 0.00 4.17 0.62 0.09 0.02 32.55 0.31 46.08 0.15 95.14 0.950 0.055 0.000 0.000 0.236 0.063 0.005 0.001 2.604 0.016 3.127 7.057
18 11.05 0.43 0.00 0.03 4.09 0.56 0.09 0.02 32.79 0.47 45.92 0.00 95.44 0.975 0.057 0.000 0.001 0.231 0.056 0.005 0.001 2.617 0.024 3.108 7.075
31 10.68 0.33 0.00 0.02 4.68 0.64 0.14 0.00 32.05 0.43 45.92 0.00 94.88 0.948 0.044 0.000 0.001 0.267 0.065 0.008 0.000 2.574 0.022 3.129 7.058
32 10.87 0.33 0.00 0.00 4.63 0.63 0.19 0.00 31.72 0.44 46.17 0.15 95.13 0.966 0.044 0.000 0.000 0.264 0.064 0.011 0.000 2.547 0.023 3.146 7.063
33 10.68 0.30 0.00 0.02 4.17 0.64 0.08 0.00 32.11 0.44 45.82 0.00 94.25 0.952 0.040 0.000 0.000 0.239 0.065 0.004 0.000 2.589 0.023 3.134 7.045
34 10.61 0.37 0.00 0.00 4.03 0.66 0.11 0.00 32.53 0.42 46.17 0.00 94.91 0.938 0.049 0.000 0.000 0.229 0.067 0.006 0.000 2.600 0.022 3.131 7.041
35 10.89 0.31 0.00 0.00 4.52 0.64 0.15 0.00 32.13 0.44 46.32 0.29 95.70 0.962 0.041 0.000 0.000 0.256 0.065 0.008 0.000 2.566 0.023 3.138 7.058
56 10.88 0.24 0.00 0.00 5.21 0.66 0.16 0.00 31.09 0.38 45.63 0.00 94.25 0.977 0.032 0.000 0.000 0.301 0.068 0.009 0.000 2.526 0.020 3.145 7.077
57 10.59 0.35 0.00 0.00 4.49 0.63 0.15 0.00 31.70 0.36 45.89 0.33 94.49 0.946 0.046 0.000 0.000 0.258 0.065 0.009 0.000 2.562 0.019 3.146 7.050
66 11.06 0.27 0.00 0.02 4.66 0.72 0.25 0.01 31.40 0.01 46.19 0.23 94.81 0.987 0.036 0.000 0.000 0.267 0.074 0.015 0.000 2.535 0.000 3.164 7.079
mv 10.72 0.35 0.00 0.01 4.51 0.63 0.14 0.01 32.06 0.38 45.99 0.10 94.89 0.953 0.046 0.000 0.000 0.257 0.064 0.008 0.000 2.575 0.020 3.135 7.057
sd 0.33 0.05 0.01 0.01 0.50 0.05 0.05 0.01 0.53 0.11 0.20 0.12 0.43 0.029 0.007 0.001 0.000 0.029 0.005 0.003 0.000 0.033 0.006 0.015 0.016

porphyroclasts, rim: 
9 10.81 0.28 0.00 0.00 4.37 0.54 0.14 0.00 32.42 0.41 45.67 0.08 94.72 0.961 0.038 0.000 0.000 0.250 0.054 0.008 0.000 2.608 0.021 3.117 7.057
13 10.82 0.33 0.00 0.03 3.97 0.55 0.09 0.05 32.24 0.45 45.80 0.00 94.33 0.964 0.043 0.000 0.001 0.227 0.056 0.005 0.003 2.598 0.023 3.130 7.050
14 10.94 0.32 0.00 0.03 4.75 0.71 0.19 0.01 31.70 0.44 46.33 0.25 95.66 0.968 0.042 0.000 0.001 0.270 0.072 0.011 0.000 2.537 0.023 3.146 7.068
19 10.79 0.23 0.01 0.02 5.15 0.65 0.09 0.00 31.62 0.37 45.99 0.46 95.37 0.960 0.031 0.000 0.000 0.294 0.066 0.005 0.000 2.545 0.019 3.141 7.063
30 10.80 0.23 0.00 0.06 5.02 0.72 0.17 0.00 30.98 0.32 46.87 0.10 95.29 0.957 0.031 0.000 0.001 0.286 0.073 0.010 0.000 2.484 0.016 3.188 7.047
36 11.03 0.28 0.01 0.00 4.98 0.69 0.15 0.00 31.76 0.43 46.36 0.21 95.89 0.975 0.037 0.000 0.000 0.282 0.069 0.009 0.000 2.537 0.022 3.142 7.073
55 10.75 0.22 0.01 0.02 4.67 0.64 0.17 0.01 31.90 0.35 46.01 0.17 94.91 0.956 0.029 0.001 0.000 0.267 0.065 0.010 0.000 2.566 0.018 3.139 7.052
58 10.95 0.25 0.00 0.00 4.71 0.65 0.14 0.00 31.74 0.31 46.01 0.25 95.01 0.975 0.033 0.000 0.000 0.269 0.066 0.008 0.000 2.556 0.016 3.144 7.067
65 10.86 0.18 0.01 0.00 4.93 0.69 0.15 0.01 30.83 0.03 45.77 0.21 93.66 0.982 0.024 0.001 0.000 0.286 0.071 0.009 0.001 2.520 0.001 3.174 7.067
mv 10.86 0.26 0.00 0.02 4.73 0.65 0.14 0.01 31.69 0.34 46.09 0.19 94.98 0.967 0.034 0.000 0.000 0.270 0.066 0.008 0.000 2.550 0.018 3.147 7.061
sd 0.09 0.05 0.00 0.02 0.37 0.07 0.03 0.02 0.52 0.13 0.38 0.13 0.69 0.009 0.006 0.000 0.000 0.021 0.007 0.002 0.001 0.038 0.007 0.022 0.009

cleavage domains: 
1 10.80 0.16 0.00 0.05 5.28 0.73 0.19 0.01 30.35 0.32 46.01 0.00 93.88 0.973 0.021 0.000 0.001 0.305 0.075 0.011 0.000 2.475 0.017 3.182 7.061
2 10.70 0.21 0.00 0.01 4.93 0.76 0.15 0.00 30.82 0.33 46.39 0.46 94.74 0.957 0.028 0.000 0.000 0.283 0.077 0.009 0.000 2.492 0.017 3.183 7.046
3 9.71 0.20 0.03 0.00 5.71 0.71 0.14 0.00 30.86 0.28 46.21 0.00 93.84 0.870 0.027 0.002 0.000 0.328 0.072 0.008 0.000 2.503 0.014 3.179 7.004
4 10.76 0.19 0.00 0.00 5.20 0.75 0.23 0.02 29.35 0.39 44.72 0.25 91.87 0.997 0.026 0.000 0.000 0.309 0.080 0.014 0.001 2.458 0.021 3.178 7.084
6 10.31 0.12 0.00 0.00 6.58 0.80 0.21 0.01 27.98 0.40 48.80 0.25 95.45 0.916 0.016 0.000 0.000 0.375 0.081 0.012 0.001 2.248 0.020 3.326 6.995



Sample Grf 605 (continued) 
No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 

cleavage domains: 
21 10.82 0.22 0.01 0.01 5.12 0.75 0.22 0.00 30.41 0.32 45.93 0.25 94.06 0.976 0.029 0.001 0.000 0.296 0.077 0.013 0.000 2.480 0.017 3.178 7.068 
22 10.77 0.24 0.01 0.00 4.95 0.78 0.14 0.00 30.79 0.30 46.80 0.25 95.03 0.958 0.032 0.001 0.000 0.283 0.079 0.008 0.000 2.477 0.016 3.194 7.047 
23 10.95 0.25 0.00 0.00 5.03 0.77 0.18 0.00 30.94 0.27 46.86 0.00 95.24 0.971 0.033 0.000 0.000 0.286 0.078 0.010 0.000 2.481 0.014 3.188 7.060 
24 10.57 0.23 0.01 0.06 4.95 0.75 0.17 0.01 29.71 0.32 44.66 0.19 91.63 0.979 0.032 0.001 0.002 0.294 0.079 0.010 0.000 2.487 0.017 3.172 7.073 
25 10.33 0.21 0.00 0.00 4.90 0.72 0.27 0.00 29.91 0.32 47.18 0.00 93.84 0.925 0.028 0.000 0.000 0.282 0.074 0.016 0.000 2.423 0.016 3.242 7.006 
26 10.41 0.18 0.03 0.06 5.22 0.76 0.19 0.01 30.45 0.30 46.52 0.19 94.31 0.933 0.024 0.002 0.002 0.300 0.078 0.011 0.000 2.468 0.016 3.198 7.031 
27 10.76 0.29 0.00 0.00 5.17 0.65 0.19 0.00 30.77 0.70 45.50 0.31 94.34 0.969 0.038 0.000 0.000 0.299 0.067 0.011 0.000 2.506 0.037 3.144 7.070 
28 10.30 0.21 0.01 0.05 4.85 0.76 0.16 0.00 30.89 0.14 47.43 0.00 94.81 0.912 0.027 0.001 0.001 0.276 0.077 0.009 0.000 2.473 0.007 3.221 7.004 
29 10.94 0.23 0.01 0.02 4.59 0.75 0.15 0.01 31.26 0.28 46.76 0.15 95.13 0.970 0.031 0.000 0.000 0.261 0.076 0.009 0.000 2.507 0.014 3.182 7.051 
37 11.00 0.15 0.00 0.00 5.41 0.75 0.18 0.03 30.73 0.33 47.24 0.00 95.81 0.970 0.019 0.000 0.000 0.306 0.076 0.010 0.001 2.453 0.017 3.199 7.052 
42 9.18 0.19 0.01 0.00 4.99 0.74 0.19 0.01 28.82 0.33 45.07 0.02 89.56 0.859 0.026 0.001 0.000 0.300 0.079 0.012 0.001 2.439 0.018 3.236 6.970 
43 10.47 0.22 0.01 0.00 5.39 0.80 0.12 0.00 29.74 0.37 45.94 0.19 93.24 0.951 0.029 0.001 0.000 0.314 0.083 0.007 0.000 2.443 0.019 3.201 7.048 
44 11.04 0.23 0.02 0.00 5.04 0.78 0.16 0.01 30.81 0.38 46.39 0.13 94.97 0.985 0.030 0.002 0.000 0.288 0.079 0.009 0.000 2.485 0.020 3.174 7.071 
45 10.83 0.23 0.00 0.02 4.93 0.81 0.17 0.01 30.67 0.33 46.92 0.21 95.15 0.963 0.030 0.000 0.001 0.281 0.082 0.010 0.001 2.465 0.017 3.199 7.048 
46 10.93 0.17 0.00 0.00 5.37 0.78 0.13 0.02 30.66 0.34 46.33 0.23 94.96 0.976 0.023 0.000 0.000 0.308 0.080 0.008 0.001 2.477 0.018 3.176 7.067 
47 10.53 0.20 0.00 0.00 5.15 0.79 0.20 0.01 30.63 0.40 46.34 0.00 94.25 0.943 0.027 0.000 0.000 0.296 0.080 0.012 0.000 2.480 0.021 3.183 7.041 
48 10.97 0.15 0.00 0.00 5.28 0.79 0.16 0.00 30.28 0.42 47.10 0.15 95.29 0.975 0.019 0.000 0.000 0.301 0.081 0.009 0.000 2.433 0.022 3.210 7.049 
51 10.76 0.29 0.00 0.00 4.93 0.75 0.09 0.00 31.74 0.41 46.62 0.00 95.59 0.949 0.037 0.000 0.000 0.279 0.075 0.005 0.000 2.532 0.021 3.154 7.052 
52 10.90 0.28 0.00 0.00 5.11 0.74 0.17 0.00 31.26 0.36 46.07 0.15 95.03 0.972 0.037 0.000 0.000 0.292 0.076 0.010 0.000 2.520 0.018 3.151 7.075 
53 9.70 0.18 0.02 0.07 5.10 0.70 0.16 0.04 29.88 0.23 45.56 0.00 91.64 0.889 0.024 0.001 0.002 0.300 0.074 0.010 0.002 2.478 0.012 3.206 6.998 
59 10.51 0.27 0.02 0.02 4.91 0.77 0.20 0.00 30.81 0.35 46.32 0.17 94.35 0.940 0.036 0.002 0.000 0.282 0.079 0.012 0.000 2.493 0.018 3.180 7.043 
60 10.01 0.16 0.00 0.00 4.72 0.73 0.19 0.01 29.37 0.26 48.84 0.21 94.49 0.886 0.021 0.000 0.000 0.268 0.074 0.011 0.000 2.353 0.013 3.319 6.945 
61 10.86 0.19 0.00 0.00 5.23 0.76 0.15 0.00 31.02 0.27 46.83 0.12 95.45 0.962 0.025 0.000 0.000 0.297 0.077 0.009 0.000 2.486 0.014 3.183 7.054 
62 10.94 0.30 0.00 0.01 5.08 0.81 0.23 0.06 30.70 0.23 46.66 0.19 95.20 0.974 0.039 0.000 0.000 0.290 0.083 0.013 0.003 2.471 0.012 3.186 7.072 
63 10.49 0.21 0.02 0.00 4.82 0.80 0.17 0.00 30.00 0.46 45.41 0.00 92.37 0.958 0.029 0.001 0.000 0.282 0.084 0.010 0.000 2.478 0.024 3.182 7.048 
64 10.65 0.32 0.00 0.03 4.70 0.67 0.16 0.04 31.99 0.05 46.33 0.17 95.09 0.945 0.042 0.000 0.001 0.267 0.068 0.009 0.002 2.565 0.002 3.153 7.054 
68 10.49 0.25 0.01 0.00 4.67 0.85 0.16 0.00 32.12 0.24 48.78 0.00 97.57 0.900 0.032 0.001 0.000 0.257 0.084 0.009 0.000 2.492 0.012 3.211 6.997 
69 10.83 0.19 0.01 0.00 4.97 0.76 0.22 0.03 30.44 0.27 46.10 0.41 94.22 0.975 0.025 0.001 0.000 0.287 0.078 0.013 0.002 2.479 0.014 3.185 7.060 
70 10.44 0.32 0.01 0.05 4.92 0.81 0.16 0.00 32.45 0.21 49.77 0.39 99.52 0.881 0.040 0.001 0.001 0.266 0.078 0.009 0.000 2.477 0.010 3.224 6.988 
mv 10.58 0.22 0.01 0.01 5.09 0.76 0.18 0.01 30.55 0.32 46.60 0.15 94.47 0.946 0.029 0.001 0.000 0.292 0.078 0.010 0.001 2.470 0.017 3.196 7.039 
sd 0.42 0.05 0.01 0.02 0.35 0.04 0.03 0.01 0.90 0.11 1.13 0.13 1.73 0.036 0.006 0.001 0.001 0.021 0.004 0.002 0.001 0.053 0.006 0.039 0.033 

 
 



 
Sample Pat 10 

No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Cl Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 
medium-sized crystals: 

3 10.82 0.23 0.34 0.01 2.68 1.00 0.01 0.01 33.02 0.52 45.54 0.36 0.00 94.54 0.960 0.030 0.025 0.000 0.153 0.101 0.001 0.001 2.649 0.026 3.099 7.044 
4 10.89 0.39 0.01 0.07 2.44 0.93 0.02 0.00 33.94 0.17 45.79 0.42 0.01 95.08 0.959 0.050 0.001 0.002 0.138 0.094 0.001 0.000 2.703 0.009 3.094 7.051 
5 11.00 0.32 0.00 0.00 2.75 1.10 0.04 0.00 32.81 0.70 45.74 0.39 0.01 94.85 0.974 0.042 0.000 0.000 0.156 0.111 0.002 0.000 2.626 0.036 3.106 7.053 
9 10.86 0.31 0.01 0.07 2.93 1.20 0.02 0.02 32.51 0.43 45.86 0.43 0.00 94.64 0.964 0.041 0.001 0.002 0.167 0.121 0.001 0.001 2.609 0.022 3.123 7.052 
10 10.80 0.29 0.01 0.02 2.59 0.95 0.00 0.00 33.33 0.53 45.52 0.40 0.01 94.46 0.958 0.039 0.001 0.001 0.147 0.097 0.000 0.000 2.673 0.027 3.097 7.038 
11 11.04 0.21 0.01 0.08 2.59 0.94 0.03 0.00 33.36 0.50 45.66 0.30 0.00 94.72 0.977 0.028 0.001 0.002 0.147 0.095 0.002 0.000 2.668 0.025 3.099 7.044 
12 10.82 0.31 0.03 0.00 2.40 1.10 0.07 0.02 32.48 1.37 45.97 0.36 0.00 94.91 0.955 0.041 0.002 0.000 0.136 0.111 0.004 0.001 2.591 0.070 3.111 7.021 
13 11.00 0.31 0.00 0.06 2.89 1.21 0.03 0.00 32.18 0.57 45.53 0.44 0.01 94.24 0.982 0.041 0.000 0.002 0.166 0.124 0.002 0.000 2.599 0.030 3.119 7.064 
14 10.97 0.34 0.02 0.04 3.13 1.20 0.02 0.02 32.63 0.62 45.86 0.44 0.01 95.30 0.969 0.044 0.002 0.001 0.177 0.121 0.001 0.001 2.607 0.031 3.108 7.063 
16 10.73 0.36 0.03 0.00 2.88 1.05 0.05 0.03 33.06 0.52 46.24 0.45 0.01 95.42 0.943 0.047 0.002 0.000 0.162 0.106 0.003 0.002 2.627 0.026 3.118 7.036 
17 10.93 0.39 0.02 0.01 2.59 0.94 0.06 0.00 33.71 0.79 45.92 0.36 0.00 95.72 0.957 0.051 0.002 0.000 0.145 0.095 0.003 0.000 2.669 0.040 3.084 7.046 
18 10.94 0.36 0.00 0.06 2.84 1.06 0.04 0.01 33.40 0.50 45.68 0.51 0.01 95.40 0.964 0.047 0.000 0.002 0.161 0.107 0.002 0.000 2.662 0.026 3.089 7.059 
19 10.98 0.26 0.00 0.04 2.79 1.34 0.02 0.00 31.77 0.67 46.17 0.44 0.00 94.47 0.976 0.034 0.000 0.001 0.159 0.136 0.001 0.000 2.554 0.034 3.149 7.044 
20 10.89 0.40 0.00 0.00 2.44 0.83 0.04 0.00 33.97 0.89 45.75 0.29 0.00 95.50 0.954 0.053 0.000 0.000 0.137 0.083 0.002 0.000 2.690 0.045 3.074 7.039 
21 11.09 0.28 0.00 0.06 3.06 1.10 0.00 0.02 32.94 0.60 45.24 0.45 0.00 94.83 0.985 0.037 0.000 0.002 0.174 0.112 0.000 0.001 2.647 0.031 3.084 7.072 
22 10.77 0.33 0.00 0.03 2.55 1.03 0.02 0.01 33.39 0.50 45.87 0.45 0.00 94.95 0.950 0.043 0.000 0.001 0.144 0.104 0.001 0.001 2.663 0.025 3.104 7.036 
25 10.98 0.30 0.01 0.01 2.68 1.12 0.00 0.00 32.18 1.02 45.89 0.40 0.00 94.59 0.974 0.039 0.001 0.000 0.153 0.114 0.000 0.000 2.582 0.052 3.124 7.039 

117 10.58 0.27 0.01 0.04 2.77 1.12 0.01 0.00 32.46 0.57 45.44 0.38 0.01 93.66 0.946 0.036 0.001 0.001 0.159 0.114 0.001 0.000 2.625 0.030 3.118 7.031 
118 9.79 0.17 0.01 0.00 2.78 1.08 0.04 0.01 33.00 0.57 45.76 0.47 0.01 93.69 0.870 0.023 0.001 0.000 0.159 0.110 0.002 0.000 2.653 0.029 3.121 6.969 
mv 10.84 0.31 0.03 0.03 2.73 1.07 0.03 0.01 32.95 0.63 45.76 0.41 0.00 94.79 0.959 0.040 0.002 0.001 0.155 0.108 0.002 0.000 2.637 0.032 3.106 7.042 
sd 0.28 0.06 0.08 0.03 0.20 0.12 0.02 0.01 0.61 0.25 0.24 0.06 0.01 0.56 0.025 0.008 0.006 0.001 0.012 0.013 0.001 0.001 0.039 0.013 0.018 0.022 

small-sized crystals: 
6 10.92 0.32 0.03 0.00 2.72 0.89 0.00 0.00 32.77 1.28 45.46 0.44 0.00 94.83 0.967 0.042 0.002 0.000 0.155 0.090 0.000 0.000 2.625 0.065 3.090 7.037 
7 9.97 0.26 0.05 0.00 2.14 0.74 0.02 0.00 33.99 0.80 45.72 0.44 0.01 94.15 0.880 0.035 0.004 0.000 0.121 0.075 0.001 0.000 2.713 0.041 3.096 6.965 
8 10.78 0.43 0.04 0.00 3.21 1.12 0.03 0.03 33.04 0.96 45.23 0.45 0.02 95.32 0.953 0.057 0.003 0.000 0.182 0.113 0.001 0.001 2.641 0.049 3.067 7.068 
29 11.03 0.35 0.00 0.00 2.50 1.06 0.04 0.02 33.22 0.52 45.90 0.40 0.01 95.05 0.973 0.046 0.000 0.000 0.141 0.107 0.002 0.001 2.649 0.027 3.106 7.052 
31 11.12 0.30 0.00 0.04 2.79 1.09 0.03 0.02 32.89 0.97 45.88 0.49 0.00 95.62 0.979 0.039 0.000 0.001 0.158 0.109 0.002 0.001 2.617 0.049 3.098 7.053 
32 10.87 0.45 0.02 0.00 2.41 0.76 0.00 0.01 34.45 0.78 45.73 0.35 0.01 95.84 0.949 0.059 0.002 0.000 0.135 0.076 0.000 0.001 2.719 0.039 3.063 7.042 
33 10.89 0.33 0.03 0.03 3.05 1.20 0.02 0.02 32.45 0.45 45.36 0.44 0.01 94.28 0.972 0.044 0.002 0.001 0.175 0.123 0.001 0.001 2.620 0.023 3.107 7.068 
34 11.02 0.23 0.00 0.06 2.45 0.91 0.04 0.00 33.67 0.52 45.60 0.32 0.00 94.81 0.973 0.030 0.000 0.002 0.139 0.092 0.002 0.000 2.689 0.026 3.089 7.042 
35 11.02 0.23 0.02 0.03 2.93 1.41 0.02 0.00 31.36 0.97 46.49 0.40 0.00 94.87 0.976 0.030 0.001 0.001 0.167 0.143 0.001 0.000 2.512 0.050 3.159 7.038 
36 10.89 0.33 0.01 0.00 2.69 1.02 0.02 0.05 32.69 1.21 45.70 0.38 0.01 95.01 0.962 0.043 0.001 0.000 0.152 0.103 0.001 0.003 2.611 0.062 3.097 7.037 
37 10.86 0.34 0.02 0.06 2.70 1.06 0.01 0.00 33.20 0.53 45.37 0.38 0.01 94.54 0.964 0.045 0.002 0.002 0.154 0.108 0.001 0.000 2.665 0.027 3.089 7.056 
38 10.74 0.25 0.03 0.04 3.40 1.41 0.06 0.02 31.93 0.45 45.99 0.42 0.02 94.74 0.954 0.033 0.002 0.001 0.194 0.143 0.004 0.001 2.565 0.023 3.134 7.053 
39 11.16 0.23 0.03 0.00 2.51 1.04 0.00 0.00 32.70 1.45 45.33 0.26 0.01 94.71 0.989 0.031 0.002 0.000 0.143 0.105 0.000 0.000 2.620 0.074 3.081 7.044 



Sample Pat 10 (continued) 
No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Cl Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 

small-sized crystals: 
40 11.05 0.24 0.04 0.07 3.62 1.45 0.04 0.03 31.46 0.50 45.59 0.53 0.00 94.61 0.988 0.032 0.003 0.002 0.208 0.148 0.002 0.002 2.545 0.026 3.128 7.083 
mv 10.88 0.31 0.02 0.02 2.79 1.08 0.02 0.01 32.84 0.81 45.67 0.41 0.01 94.88 0.963 0.040 0.002 0.001 0.159 0.110 0.001 0.001 2.628 0.041 3.100 7.046 
sd 0.29 0.07 0.02 0.03 0.41 0.22 0.02 0.02 0.88 0.34 0.33 0.07 0.01 0.47 0.027 0.009 0.001 0.001 0.024 0.023 0.001 0.001 0.060 0.017 0.026 0.027 

crystals included in feldspar: 
1 10.92 0.37 0.01 0.03 2.33 0.84 0.01 0.06 33.87 0.32 45.52 0.36 0.00 94.65 0.965 0.049 0.001 0.001 0.132 0.085 0.001 0.003 2.708 0.016 3.087 7.048 
2 10.63 0.49 0.00 0.03 2.12 0.64 0.03 0.01 34.60 0.46 45.45 0.41 0.01 94.88 0.935 0.064 0.000 0.001 0.120 0.065 0.002 0.000 2.753 0.023 3.068 7.031 
15 10.97 0.26 0.01 0.06 2.88 1.29 0.03 0.02 31.51 0.53 46.23 0.56 0.00 94.35 0.978 0.035 0.001 0.002 0.165 0.131 0.002 0.001 2.541 0.027 3.163 7.045 
23 10.50 0.33 0.02 0.00 2.36 0.98 0.01 0.02 33.05 0.66 45.77 0.36 0.01 94.06 0.932 0.043 0.002 0.000 0.134 0.099 0.000 0.001 2.652 0.034 3.115 7.012 
24 10.92 0.29 0.00 0.00 2.63 1.14 0.05 0.00 32.70 0.74 45.67 0.42 0.01 94.55 0.969 0.038 0.000 0.000 0.150 0.115 0.003 0.000 2.624 0.038 3.109 7.045 
26 11.10 0.25 0.02 0.04 2.72 1.15 0.05 0.00 32.39 0.56 45.70 0.46 0.00 94.43 0.988 0.033 0.001 0.001 0.155 0.117 0.003 0.000 2.608 0.029 3.121 7.057 
27 10.65 0.21 0.03 0.00 2.88 1.50 0.03 0.00 31.39 0.43 46.88 0.48 0.00 94.47 0.944 0.028 0.002 0.000 0.164 0.152 0.002 0.000 2.516 0.022 3.188 7.018 
28 11.08 0.19 0.00 0.02 3.21 1.54 0.04 0.00 31.01 0.64 45.82 0.47 0.01 94.02 0.994 0.025 0.000 0.000 0.185 0.157 0.003 0.000 2.515 0.033 3.153 7.066 
30 10.76 0.37 0.01 0.24 2.25 0.77 0.02 0.00 34.72 0.34 45.40 0.33 0.01 95.22 0.945 0.048 0.001 0.006 0.127 0.078 0.001 0.000 2.758 0.017 3.060 7.041 
41 11.10 0.20 0.02 0.01 3.65 1.57 0.05 0.03 31.32 0.46 45.72 0.43 0.00 94.55 0.992 0.027 0.001 0.000 0.209 0.160 0.003 0.002 2.531 0.024 3.135 7.084 
42 11.15 0.24 0.01 0.15 3.43 1.48 0.03 0.00 31.69 0.44 46.19 0.46 0.00 95.27 0.988 0.032 0.001 0.004 0.195 0.150 0.002 0.000 2.540 0.022 3.141 7.076 
43 10.98 0.23 0.05 0.05 3.27 1.57 0.04 0.03 30.94 0.54 45.61 0.42 0.01 93.74 0.988 0.031 0.004 0.001 0.189 0.161 0.002 0.002 2.518 0.028 3.149 7.073 
mv 10.90 0.29 0.02 0.05 2.81 1.20 0.03 0.01 32.43 0.51 45.83 0.43 0.00 94.52 0.968 0.038 0.001 0.001 0.160 0.123 0.002 0.001 2.605 0.026 3.124 7.050 
sd 0.21 0.09 0.02 0.07 0.50 0.33 0.01 0.02 1.36 0.13 0.42 0.06 0.00 0.46 0.023 0.011 0.001 0.002 0.029 0.035 0.001 0.001 0.093 0.007 0.039 0.023 

 



 
Sample Pat 11 

No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Cl Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 
small magmatic crystals: 

44 10.42 0.30 0.02 0.08 2.13 0.83 0.02 0.00 34.46 0.16 45.18 0.28 0.01 93.88 0.924 0.039 0.001 0.002 0.121 0.085 0.001 0.000 2.763 0.008 3.074 7.019 
45 10.51 0.20 0.04 0.15 2.98 1.56 0.03 0.00 31.82 0.75 46.13 0.31 0.01 94.48 0.932 0.027 0.003 0.004 0.170 0.159 0.002 0.000 2.552 0.038 3.139 7.026 
46 10.52 0.30 0.02 0.05 2.47 1.07 0.02 0.00 33.33 0.75 45.82 0.36 0.01 94.72 0.928 0.039 0.002 0.001 0.140 0.108 0.001 0.000 2.658 0.038 3.100 7.016 
47 10.52 0.25 0.05 0.10 2.43 1.17 0.03 0.00 33.00 0.60 46.11 0.32 0.01 94.59 0.928 0.033 0.004 0.003 0.138 0.118 0.002 0.000 2.634 0.030 3.122 7.011 
48 10.46 0.30 0.05 0.15 2.10 0.80 0.00 0.01 34.01 0.57 44.99 0.28 0.02 93.74 0.931 0.040 0.003 0.004 0.120 0.082 0.000 0.001 2.736 0.029 3.071 7.017 
49 11.16 0.31 0.04 0.04 2.09 0.96 0.05 0.02 33.10 1.48 45.39 0.30 0.02 94.94 0.985 0.041 0.003 0.001 0.118 0.097 0.003 0.001 2.643 0.075 3.075 7.042 
50 10.85 0.30 0.05 0.08 2.07 1.09 0.01 0.01 33.69 0.49 46.19 0.28 0.00 95.11 0.952 0.038 0.004 0.002 0.116 0.109 0.000 0.001 2.672 0.025 3.108 7.026 
51 10.89 0.23 0.01 0.15 2.57 1.51 0.04 0.00 32.37 0.55 46.42 0.24 0.01 94.99 0.960 0.030 0.001 0.004 0.145 0.152 0.003 0.000 2.579 0.028 3.138 7.039 
52 10.14 0.29 0.05 0.00 2.16 0.76 0.00 0.00 33.78 0.76 45.49 0.24 0.02 93.69 0.899 0.038 0.004 0.000 0.123 0.077 0.000 0.000 2.708 0.039 3.094 6.981 
53 11.16 0.30 0.02 0.09 2.06 0.87 0.00 0.00 34.42 0.54 45.41 0.25 0.00 95.12 0.981 0.039 0.001 0.002 0.116 0.087 0.000 0.000 2.736 0.027 3.062 7.053 
54 9.62 0.26 0.04 0.11 2.79 1.00 0.05 0.02 33.79 0.51 46.25 0.29 0.01 94.74 0.844 0.033 0.003 0.003 0.157 0.100 0.003 0.001 2.679 0.026 3.111 6.961 
55 9.91 0.31 0.06 0.13 2.55 1.08 0.04 0.00 33.54 0.57 45.93 0.31 0.01 94.42 0.874 0.040 0.004 0.003 0.144 0.108 0.002 0.000 2.674 0.029 3.106 6.985 
56 10.99 0.26 0.00 0.14 2.32 1.19 0.05 0.00 33.27 0.67 46.24 0.27 0.00 95.41 0.964 0.034 0.000 0.004 0.131 0.120 0.003 0.000 2.638 0.034 3.110 7.036 
57 9.82 0.22 0.04 0.14 2.81 1.45 0.05 0.03 31.95 0.75 46.40 0.26 0.02 93.94 0.871 0.029 0.003 0.004 0.160 0.147 0.003 0.002 2.561 0.039 3.156 6.974 
58 10.66 0.33 0.04 0.14 2.66 1.01 0.06 0.02 33.26 0.71 45.46 0.29 0.01 94.63 0.944 0.043 0.003 0.004 0.151 0.102 0.003 0.001 2.663 0.036 3.088 7.038 
59 10.31 0.29 0.03 0.14 2.51 1.14 0.00 0.00 32.96 0.60 46.24 0.35 0.00 94.57 0.909 0.038 0.002 0.004 0.142 0.115 0.000 0.000 2.629 0.031 3.129 6.999 
60 11.15 0.23 0.02 0.17 2.78 1.50 0.03 0.00 32.62 0.49 46.07 0.32 0.00 95.37 0.983 0.031 0.001 0.005 0.157 0.151 0.002 0.000 2.599 0.025 3.115 7.068 
61 10.75 0.31 0.03 0.14 2.30 1.00 0.05 0.00 33.35 0.48 44.57 0.18 0.01 93.18 0.965 0.041 0.002 0.004 0.133 0.103 0.003 0.000 2.708 0.025 3.070 7.054 
62 10.93 0.30 0.01 0.02 2.15 1.15 0.03 0.01 33.53 0.69 45.79 0.35 0.00 94.96 0.962 0.039 0.001 0.001 0.121 0.115 0.002 0.001 2.669 0.035 3.092 7.038 
63 10.66 0.29 0.03 0.08 2.46 1.12 0.00 0.00 32.79 0.83 46.07 0.31 0.03 94.67 0.941 0.037 0.002 0.002 0.139 0.113 0.000 0.000 2.618 0.042 3.121 7.017 
64 10.23 0.29 0.02 0.01 2.59 1.08 0.00 0.00 33.16 0.92 46.27 0.40 0.01 94.97 0.898 0.037 0.001 0.000 0.146 0.108 0.000 0.000 2.633 0.047 3.117 6.988 
65 10.27 0.27 0.25 0.09 2.63 1.11 0.04 0.00 32.75 1.03 46.09 0.37 0.02 94.93 0.905 0.036 0.018 0.002 0.149 0.112 0.002 0.000 2.609 0.052 3.115 6.999 
66 11.07 0.30 0.04 0.13 2.22 0.98 0.04 0.05 33.94 0.50 45.53 0.21 0.00 95.00 0.975 0.039 0.003 0.003 0.125 0.099 0.002 0.003 2.703 0.026 3.076 7.053 
67 10.51 0.31 0.04 0.15 2.58 0.96 0.02 0.01 33.47 0.55 45.96 0.25 0.01 94.81 0.926 0.040 0.003 0.004 0.146 0.097 0.001 0.001 2.666 0.028 3.106 7.016 
68 10.94 0.30 0.00 0.12 2.72 1.27 0.03 0.00 33.00 0.75 45.83 0.28 0.00 95.23 0.964 0.039 0.000 0.003 0.154 0.127 0.002 0.000 2.628 0.038 3.097 7.052 
69 11.05 0.40 0.03 0.12 1.77 0.66 0.01 0.00 35.46 0.58 45.53 0.23 0.00 95.85 0.962 0.052 0.002 0.003 0.099 0.066 0.001 0.000 2.790 0.029 3.039 7.043 
70 10.91 0.23 0.02 0.05 2.42 1.12 0.03 0.00 32.97 0.71 46.04 0.41 0.01 94.91 0.962 0.030 0.001 0.001 0.137 0.113 0.002 0.000 2.630 0.036 3.116 7.029 
mv 10.61 0.28 0.04 0.10 2.42 1.09 0.03 0.01 33.33 0.67 45.83 0.29 0.01 94.70 0.936 0.037 0.003 0.003 0.137 0.110 0.002 0.000 2.659 0.034 3.102 7.021 
sd 0.42 0.04 0.05 0.05 0.29 0.22 0.02 0.01 0.77 0.23 0.46 0.06 0.01 0.59 0.037 0.005 0.003 0.001 0.017 0.023 0.001 0.001 0.058 0.012 0.026 0.027 

crystals included in feldspar: 
71 10.42 0.11 0.05 0.15 2.72 1.67 0.03 0.00 30.39 0.01 49.00 0.54 0.02 95.11 0.914 0.014 0.004 0.004 0.153 0.167 0.002 0.000 2.409 0.001 3.296 6.963 

 



 
Sample Pat 12 

No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Cl Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 
large crystals, core: 

2 9.39 0.24 0.03 0.21 1.05 0.66 0.01 0.03 35.19 0.85 45.56 0.31 0.01 93.54 0.826 0.032 0.002 0.005 0.059 0.067 0.001 0.000 2.800 0.043 3.075 6.911 
3 10.33 0.26 0.04 0.17 2.56 1.27 0.06 0.02 33.01 0.74 44.42 0.36 0.00 93.25 0.929 0.035 0.003 0.004 0.148 0.131 0.004 0.000 2.683 0.039 3.063 7.038 
6 10.64 0.31 0.02 0.23 1.21 0.68 0.01 0.03 34.65 0.55 45.10 0.19 0.00 93.62 0.944 0.041 0.001 0.006 0.069 0.069 0.001 0.000 2.779 0.028 3.069 7.006 
9 10.83 0.38 0.04 0.27 0.97 0.56 0.02 0.00 35.87 0.70 45.04 0.27 0.02 94.97 0.948 0.050 0.003 0.007 0.054 0.056 0.001 0.000 2.839 0.035 3.025 7.019 
10 10.74 0.27 0.04 0.21 1.49 0.92 0.02 0.03 33.89 0.74 45.46 0.24 0.00 94.04 0.951 0.035 0.003 0.006 0.085 0.093 0.001 0.000 2.713 0.038 3.087 7.011 
11 10.77 0.45 0.02 0.30 0.83 0.46 0.00 0.04 36.09 0.43 45.00 0.30 0.00 94.67 0.945 0.058 0.001 0.008 0.047 0.046 0.000 0.000 2.864 0.022 3.029 7.019 
14 10.38 0.30 0.03 0.22 2.30 0.84 0.01 0.00 33.99 0.57 45.02 0.31 0.01 93.98 0.922 0.039 0.002 0.006 0.131 0.085 0.001 0.000 2.731 0.029 3.069 7.017 
17 10.35 0.21 0.02 0.21 1.51 1.15 0.01 0.02 32.81 0.53 46.76 0.23 0.01 93.82 0.914 0.027 0.001 0.006 0.086 0.116 0.001 0.000 2.620 0.027 3.168 6.966 
18 10.53 0.26 0.04 0.20 1.49 1.08 0.00 0.02 32.89 0.58 44.77 0.36 0.00 92.21 0.952 0.034 0.003 0.005 0.086 0.111 0.000 0.000 2.688 0.030 3.104 7.014 
21 10.73 0.23 0.03 0.16 1.60 1.14 0.02 0.00 32.11 0.66 46.57 0.25 0.01 93.50 0.954 0.030 0.002 0.004 0.091 0.116 0.001 0.000 2.582 0.034 3.177 6.990 
mv 10.47 0.29 0.03 0.22 1.50 0.88 0.02 0.02 34.05 0.63 45.37 0.28 0.01 93.76 0.928 0.038 0.002 0.006 0.086 0.089 0.001 0.000 2.730 0.032 3.087 6.999 
sd 0.42 0.07 0.01 0.04 0.56 0.28 0.02 0.01 1.37 0.13 0.75 0.06 0.01 0.76 0.038 0.009 0.001 0.001 0.032 0.029 0.001 0.000 0.092 0.006 0.051 0.037 

large crystals, rim: 
1 10.69 0.37 0.03 0.24 1.03 0.60 0.03 0.05 34.74 0.72 44.72 0.27 0.00 93.49 0.951 0.049 0.002 0.006 0.059 0.061 0.001 0.000 2.795 0.037 3.052 7.014 
4 10.71 0.38 0.01 0.19 0.99 0.67 0.00 0.00 35.22 0.69 45.25 0.31 0.01 94.44 0.942 0.050 0.001 0.005 0.056 0.067 0.000 0.000 2.800 0.035 3.052 7.008 
5 10.42 0.30 0.02 0.15 1.46 0.87 0.03 0.03 34.03 0.62 45.31 0.29 0.00 93.51 0.926 0.039 0.001 0.004 0.083 0.088 0.001 0.000 2.733 0.032 3.088 6.996 
7 10.77 0.31 0.03 0.21 1.15 0.55 0.01 0.04 34.86 0.65 44.92 0.25 0.00 93.76 0.955 0.041 0.002 0.006 0.066 0.056 0.001 0.000 2.796 0.033 3.056 7.011 
8 10.14 0.17 0.08 0.10 1.74 1.33 0.00 0.03 32.52 0.56 47.37 0.32 0.02 94.37 0.890 0.022 0.005 0.003 0.098 0.133 0.000 0.000 2.580 0.028 3.189 6.949 
12 10.65 0.36 0.05 0.27 1.05 0.62 0.03 0.06 35.45 0.54 44.88 0.21 0.01 94.18 0.940 0.047 0.003 0.007 0.059 0.063 0.002 0.000 2.828 0.027 3.038 7.014 
13 10.71 0.33 0.02 0.25 1.09 0.70 0.02 0.02 34.77 0.82 45.48 0.26 0.00 94.47 0.942 0.043 0.001 0.007 0.061 0.070 0.001 0.000 2.765 0.042 3.068 7.000 
15 10.58 0.30 0.01 0.17 1.60 0.90 0.04 0.00 34.15 0.78 45.40 0.28 0.02 94.22 0.935 0.040 0.001 0.004 0.091 0.091 0.002 0.000 2.728 0.040 3.076 7.007 
16 10.88 0.31 0.01 0.23 1.21 0.98 0.00 0.00 33.67 0.45 45.48 0.27 0.00 93.50 0.968 0.041 0.001 0.006 0.069 0.100 0.000 0.000 2.709 0.023 3.105 7.022 
19 10.17 0.34 0.03 0.21 1.70 0.72 0.00 0.02 34.04 0.77 44.37 0.30 0.01 92.68 0.913 0.045 0.002 0.006 0.098 0.074 0.000 0.000 2.764 0.040 3.057 7.000 
20 10.69 0.21 0.03 0.14 1.70 1.48 0.04 0.03 31.23 0.45 46.96 0.39 0.01 93.37 0.954 0.028 0.002 0.004 0.097 0.151 0.002 0.000 2.519 0.023 3.214 6.994 
22 10.03 0.25 0.04 0.24 1.56 1.06 0.01 0.00 33.28 0.70 45.70 0.25 0.01 93.13 0.893 0.033 0.003 0.006 0.089 0.108 0.000 0.000 2.678 0.036 3.120 6.967 
mv 10.54 0.30 0.03 0.20 1.36 0.87 0.02 0.02 34.00 0.65 45.49 0.28 0.01 93.76 0.934 0.040 0.002 0.005 0.077 0.088 0.001 0.000 2.725 0.033 3.093 6.999 
sd 0.28 0.06 0.02 0.05 0.30 0.30 0.01 0.02 1.21 0.12 0.87 0.05 0.01 0.58 0.024 0.008 0.001 0.001 0.017 0.030 0.001 0.000 0.093 0.006 0.056 0.021 

small crystals: 
23 10.56 0.39 0.03 0.34 1.05 0.72 0.00 0.03 34.58 0.86 45.13 0.27 0.02 93.98 0.934 0.052 0.002 0.009 0.060 0.073 0.000 0.000 2.766 0.044 3.063 7.003 
24 10.55 0.30 0.02 0.19 1.29 0.91 0.00 0.01 33.90 0.80 45.17 0.34 0.00 93.48 0.939 0.040 0.001 0.005 0.074 0.092 0.000 0.000 2.727 0.041 3.083 7.002 
25 10.28 0.29 0.03 0.21 1.36 0.83 0.04 0.02 34.02 0.87 45.34 0.26 0.02 93.56 0.912 0.038 0.002 0.006 0.077 0.084 0.002 0.000 2.729 0.044 3.086 6.980 
26 10.72 0.35 0.00 0.27 1.06 0.63 0.06 0.05 35.08 0.72 45.12 0.28 0.01 94.34 0.945 0.046 0.000 0.007 0.060 0.063 0.003 0.000 2.796 0.037 3.051 7.009 
27 10.53 0.39 0.01 0.29 0.98 0.64 0.02 0.09 35.28 0.75 45.30 0.28 0.00 94.56 0.925 0.051 0.001 0.008 0.055 0.065 0.001 0.000 2.802 0.038 3.052 6.997 
28 10.69 0.45 0.01 0.30 1.00 0.55 0.04 0.00 35.50 0.78 44.65 0.20 0.01 94.17 0.943 0.059 0.001 0.008 0.057 0.055 0.002 0.000 2.833 0.040 3.023 7.021 
29 10.60 0.27 0.03 0.16 1.39 0.94 0.02 0.03 33.35 0.92 45.53 0.18 0.01 93.44 0.943 0.036 0.002 0.004 0.079 0.096 0.001 0.000 2.682 0.047 3.106 6.996 



Sample Pat 12 (continued) 
No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Cl Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 

small crystals: 
31 10.23 0.36 0.02 0.13 1.42 0.67 0.01 0.03 34.62 0.72 45.07 0.23 0.01 93.52 0.907 0.047 0.001 0.004 0.081 0.068 0.001 0.000 2.776 0.037 3.066 6.987 
32 10.45 0.32 0.03 0.31 1.98 0.71 0.00 0.03 34.14 0.52 44.82 0.22 0.00 93.53 0.932 0.043 0.002 0.008 0.113 0.073 0.000 0.000 2.753 0.027 3.067 7.018 
33 9.09 0.29 0.09 0.19 4.06 2.16 0.07 0.04 31.41 0.69 44.65 0.24 0.01 93.00 0.820 0.038 0.007 0.005 0.235 0.223 0.004 0.000 2.562 0.036 3.090 7.022 
34 9.40 0.30 0.08 0.19 4.33 2.14 0.05 0.03 31.53 0.57 44.27 0.23 0.01 93.11 0.850 0.040 0.006 0.005 0.251 0.221 0.003 0.000 2.578 0.029 3.071 7.055 
35 10.42 0.34 0.02 0.33 1.60 0.86 0.00 0.02 34.48 0.53 44.63 0.24 0.01 93.47 0.929 0.045 0.001 0.009 0.091 0.088 0.000 0.000 2.778 0.027 3.051 7.019 
36 10.49 0.46 0.04 0.24 1.14 0.66 0.00 0.04 35.14 0.70 44.77 0.24 0.01 93.93 0.928 0.060 0.003 0.006 0.065 0.066 0.000 0.000 2.811 0.036 3.039 7.014 
37 10.09 0.22 0.03 0.15 1.92 1.27 0.02 0.05 32.41 0.50 46.13 0.27 0.01 93.07 0.900 0.029 0.002 0.004 0.110 0.129 0.001 0.000 2.615 0.026 3.158 6.974 
38 10.66 0.32 0.05 0.20 1.39 0.98 0.01 0.06 33.81 1.06 45.91 0.32 0.01 94.78 0.936 0.041 0.004 0.005 0.078 0.099 0.001 0.000 2.686 0.054 3.094 6.998 
39 10.09 0.17 0.03 0.11 2.33 1.55 0.03 0.04 30.89 0.47 47.62 0.21 0.00 93.54 0.895 0.023 0.002 0.003 0.133 0.157 0.002 0.000 2.477 0.024 3.240 6.956 
40 10.01 0.19 0.06 0.13 2.05 1.21 0.03 0.04 32.49 0.39 47.18 0.25 0.02 94.06 0.882 0.025 0.004 0.003 0.116 0.122 0.002 0.000 2.588 0.020 3.189 6.951 
42 9.13 0.24 0.07 0.11 4.30 1.94 0.08 0.01 31.68 0.55 44.58 0.19 0.02 92.89 0.824 0.032 0.005 0.003 0.249 0.200 0.005 0.000 2.586 0.028 3.087 7.020 
43 10.39 0.23 0.03 0.18 1.67 1.08 0.01 0.00 32.67 0.52 45.76 0.27 0.00 92.81 0.930 0.030 0.002 0.005 0.096 0.111 0.001 0.000 2.645 0.027 3.143 6.989 
44 10.83 0.33 0.02 0.25 1.07 0.67 0.03 0.00 34.78 0.75 45.10 0.29 0.01 94.14 0.957 0.044 0.001 0.007 0.061 0.068 0.002 0.000 2.779 0.038 3.058 7.015 
mv 10.26 0.31 0.03 0.21 1.87 1.06 0.03 0.03 33.59 0.68 45.34 0.25 0.01 93.67 0.912 0.041 0.003 0.006 0.107 0.108 0.002 0.000 2.699 0.035 3.091 7.001 
sd 0.51 0.08 0.02 0.07 1.09 0.51 0.02 0.02 1.44 0.17 0.85 0.04 0.01 0.56 0.039 0.010 0.002 0.002 0.063 0.053 0.001 0.000 0.102 0.009 0.054 0.024 

 



 
Sample Schoef 12 

No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Cl Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 
white mica aggregates (magmatic): 

81 10.67 0.42 0.03 0.00 1.33 0.63 0.00 0.01 34.82 0.01 45.09 0.61 0.00 93.63 0.949 0.055 0.002 0.000 0.076 0.064 0.000 0.001 2.800 0.001 3.077 7.025 
82 10.85 0.32 0.02 0.01 1.35 0.72 0.04 0.00 34.37 0.01 45.22 0.65 0.00 93.55 0.967 0.042 0.002 0.000 0.077 0.073 0.002 0.000 2.770 0.001 3.092 7.027 
83 11.00 0.27 0.01 0.00 1.50 0.74 0.02 0.00 34.56 0.05 45.28 0.67 0.00 94.10 0.976 0.036 0.001 0.000 0.085 0.075 0.001 0.000 2.774 0.003 3.083 7.034 
84 10.98 0.25 0.01 0.00 1.61 0.71 0.02 0.00 34.57 0.05 44.91 0.65 0.00 93.75 0.979 0.033 0.001 0.000 0.092 0.072 0.001 0.000 2.787 0.002 3.071 7.039 
85 10.58 0.40 0.02 0.03 1.42 0.67 0.01 0.01 34.62 0.14 45.21 0.61 0.01 93.73 0.940 0.053 0.001 0.001 0.081 0.068 0.001 0.001 2.782 0.007 3.082 7.016 
86 10.84 0.37 0.01 0.00 1.43 0.75 0.00 0.02 34.58 0.02 45.37 0.63 0.01 94.02 0.961 0.049 0.001 0.000 0.081 0.076 0.000 0.001 2.773 0.001 3.087 7.030 
87 10.74 0.32 0.04 0.00 2.02 0.79 0.00 0.00 34.26 0.13 45.08 0.63 0.01 94.02 0.956 0.043 0.003 0.000 0.115 0.081 0.000 0.000 2.757 0.006 3.077 7.037 
88 10.70 0.44 0.04 0.00 1.31 0.69 0.02 0.00 35.23 0.04 45.50 0.65 0.00 94.61 0.942 0.057 0.003 0.000 0.074 0.069 0.001 0.000 2.804 0.002 3.072 7.024 
89 10.85 0.31 0.02 0.00 1.76 0.60 0.03 0.00 34.59 0.18 44.71 0.50 0.02 93.57 0.968 0.041 0.002 0.000 0.101 0.062 0.002 0.000 2.792 0.009 3.062 7.038 
90 10.70 0.36 0.01 0.00 1.54 0.76 0.02 0.01 34.46 0.03 45.40 0.66 0.01 93.96 0.950 0.048 0.001 0.000 0.088 0.078 0.001 0.001 2.766 0.001 3.091 7.023 
91 10.73 0.40 0.02 0.02 1.51 0.80 0.01 0.02 34.62 0.05 45.32 0.68 0.00 94.17 0.951 0.052 0.001 0.000 0.086 0.081 0.001 0.001 2.774 0.003 3.081 7.030 
92 10.60 0.44 0.00 0.00 1.37 0.85 0.02 0.00 35.04 0.00 45.76 0.74 0.01 94.83 0.931 0.057 0.000 0.000 0.077 0.086 0.001 0.000 2.783 0.000 3.084 7.019 
93 10.72 0.34 0.02 0.00 1.41 0.69 0.00 0.02 35.08 0.00 45.42 0.58 0.01 94.29 0.946 0.044 0.001 0.000 0.080 0.070 0.000 0.001 2.800 0.000 3.076 7.019 
94 10.62 0.27 0.04 0.00 1.79 1.02 0.01 0.00 34.30 0.00 45.14 0.60 0.01 93.80 0.945 0.036 0.003 0.000 0.102 0.104 0.001 0.000 2.759 0.000 3.081 7.030 
95 10.90 0.22 0.02 0.00 1.73 0.78 0.04 0.01 34.40 0.04 45.22 0.63 0.00 93.99 0.969 0.029 0.002 0.000 0.099 0.079 0.002 0.001 2.765 0.002 3.083 7.031 
96 10.83 0.39 0.04 0.00 1.47 0.81 0.05 0.00 34.63 0.02 45.32 0.75 0.01 94.32 0.959 0.052 0.003 0.000 0.084 0.082 0.003 0.000 2.774 0.001 3.080 7.037 
97 10.57 0.29 0.02 0.00 1.51 0.63 0.03 0.02 34.27 0.00 44.60 0.50 0.01 92.45 0.952 0.039 0.001 0.000 0.087 0.065 0.002 0.001 2.791 0.000 3.081 7.018 
98 10.70 0.44 0.03 0.00 2.01 0.94 0.06 0.00 34.13 0.11 45.08 0.62 0.01 94.12 0.952 0.059 0.002 0.000 0.115 0.095 0.003 0.000 2.745 0.006 3.076 7.051 
99 10.66 0.46 0.02 0.00 1.42 0.76 0.00 0.00 34.80 0.12 45.70 0.64 0.00 94.59 0.939 0.061 0.002 0.000 0.080 0.077 0.000 0.000 2.771 0.006 3.087 7.021 

100 11.10 0.31 0.00 0.00 1.36 0.65 0.00 0.02 34.85 0.04 45.32 0.56 0.01 94.23 0.983 0.041 0.000 0.000 0.077 0.065 0.000 0.001 2.789 0.002 3.078 7.037 
mv 10.77 0.35 0.02 0.00 1.54 0.75 0.02 0.01 34.61 0.05 45.23 0.63 0.01 93.98 0.956 0.046 0.002 0.000 0.088 0.076 0.001 0.000 2.778 0.003 3.080 7.029 
sd 0.15 0.07 0.01 0.01 0.21 0.10 0.02 0.01 0.29 0.05 0.28 0.06 0.01 0.50 0.014 0.009 0.001 0.000 0.012 0.010 0.001 0.000 0.016 0.003 0.007 0.009 

white mica included in feldspar: 
101 10.56 0.29 0.10 0.00 1.99 0.61 0.03 0.05 34.13 0.80 45.19 0.47 0.02 94.24 0.935 0.038 0.007 0.000 0.113 0.062 0.002 0.003 2.734 0.041 3.071 7.007 
102 10.87 0.30 0.01 0.00 1.64 0.69 0.01 0.00 34.17 0.83 45.17 0.52 0.00 94.20 0.963 0.039 0.001 0.000 0.093 0.069 0.001 0.000 2.739 0.042 3.071 7.019 
103 10.79 0.39 0.07 0.00 1.35 0.57 0.00 0.00 35.05 0.15 45.30 0.51 0.01 94.19 0.953 0.051 0.005 0.000 0.077 0.058 0.000 0.000 2.801 0.007 3.071 7.024 

very fine-grained white mica (synkinematic): 
69 10.58 0.30 0.05 0.01 1.52 0.51 0.01 0.00 35.07 0.30 44.63 0.64 0.00 93.61 0.942 0.039 0.003 0.000 0.087 0.052 0.001 0.000 2.825 0.015 3.050 7.014 
79 10.91 0.27 0.02 0.00 1.57 0.59 0.00 0.00 34.92 0.44 45.32 0.56 0.00 94.59 0.962 0.036 0.001 0.000 0.089 0.059 0.000 0.000 2.784 0.022 3.066 7.019 

 



 
Sample Schoef 617 

No. K2O Na2O CaO FeOt MgO Al2O3 SiO2 F Total K Na Ca Fe2+ Mg Al Si Total 
porphyroclasts, core: 

1 9.36 0.40 0.14 3.08 0.94 30.91 44.89 0.27 89.72 0.866 0.054 0.010 0.183 0.100 2.585 3.185 6.983 
2 9.70 0.40 0.11 2.21 1.00 32.37 46.77 0.35 92.56 0.864 0.053 0.008 0.127 0.101 2.608 3.197 6.958 
3 9.41 0.49 0.16 2.18 0.92 31.83 45.46 0.40 90.46 0.858 0.067 0.012 0.128 0.096 2.626 3.181 6.968 
5 9.37 0.42 0.09 2.43 1.12 31.27 44.96 0.56 89.65 0.864 0.057 0.007 0.144 0.118 2.607 3.180 6.977 
6 9.54 0.51 0.07 2.28 1.13 31.98 44.39 0.76 89.88 0.878 0.070 0.005 0.135 0.119 2.663 3.136 7.006 
7 9.85 0.59 0.07 2.13 1.09 32.08 44.40 0.60 90.20 0.905 0.081 0.005 0.126 0.115 2.667 3.131 7.029 
9 9.74 0.38 0.11 2.21 0.99 32.65 46.10 0.26 92.16 0.872 0.050 0.008 0.127 0.102 2.645 3.168 6.971 
10 9.89 0.40 0.07 2.23 0.99 32.76 46.83 0.48 93.16 0.876 0.052 0.005 0.126 0.100 2.625 3.183 6.969 
11 9.61 0.42 0.07 2.25 0.98 33.14 47.23 0.32 93.70 0.844 0.055 0.005 0.127 0.099 2.633 3.185 6.948 
12 9.83 0.39 0.08 1.97 0.98 32.84 46.98 0.60 93.07 0.870 0.051 0.006 0.112 0.099 2.629 3.190 6.957 
13 10.00 0.41 0.06 2.39 1.07 32.26 46.36 0.68 92.55 0.894 0.054 0.005 0.137 0.110 2.608 3.181 6.989 
14 9.64 0.40 0.09 2.42 1.09 32.21 46.42 0.33 92.28 0.862 0.054 0.007 0.139 0.112 2.607 3.187 6.968 
15 9.72 0.49 0.06 2.15 1.00 32.51 46.52 0.54 92.45 0.867 0.065 0.004 0.123 0.102 2.623 3.185 6.970 
16 9.86 0.42 0.08 2.20 1.04 31.94 45.93 0.42 91.47 0.891 0.056 0.006 0.128 0.107 2.611 3.185 6.984 
18 9.77 0.38 0.07 2.21 0.96 32.92 46.62 0.34 92.92 0.867 0.050 0.005 0.126 0.098 2.642 3.175 6.963 
19 9.90 0.47 0.06 2.30 1.11 32.52 47.14 0.53 93.50 0.874 0.061 0.004 0.131 0.112 2.597 3.195 6.975 
21 9.76 0.42 0.04 2.18 0.93 32.48 45.70 0.64 91.51 0.881 0.057 0.003 0.126 0.096 2.651 3.164 6.979 
23 9.63 0.41 0.07 2.35 0.96 32.62 46.08 0.64 92.12 0.863 0.055 0.005 0.135 0.098 2.644 3.169 6.968 
25 10.25 0.46 0.00 2.42 1.09 32.49 46.96 0.72 93.66 0.906 0.060 0.000 0.137 0.110 2.598 3.186 6.998 
26 10.12 0.38 0.02 2.46 1.04 32.60 46.49 0.50 93.11 0.900 0.051 0.002 0.140 0.106 2.622 3.172 6.992 
28 10.08 0.36 0.03 2.20 0.92 33.46 47.20 0.52 94.26 0.883 0.046 0.002 0.124 0.092 2.649 3.171 6.969 
29 10.07 0.47 0.04 2.39 1.09 33.02 46.73 0.29 93.80 0.889 0.062 0.003 0.135 0.110 2.634 3.163 6.995 
30 10.07 0.36 0.04 2.21 0.92 32.88 46.57 0.56 93.04 0.894 0.047 0.003 0.126 0.093 2.640 3.173 6.977 
mv 9.79 0.43 0.07 2.30 1.01 32.42 46.21 0.49 92.23 0.877 0.057 0.005 0.132 0.104 2.627 3.176 6.978 
sd 0.24 0.06 0.04 0.21 0.07 0.58 0.86 0.15 1.40 0.016 0.008 0.003 0.013 0.008 0.022 0.016 0.018 

porphyroclasts, rim: 
4 9.61 0.43 0.06 2.41 1.09 32.37 46.04 0.47 92.01 0.863 0.058 0.005 0.139 0.112 2.628 3.171 6.975 
8 9.91 0.45 0.09 2.20 1.00 32.23 45.13 0.21 91.01 0.901 0.061 0.007 0.128 0.104 2.652 3.151 7.005 
17 9.75 0.35 0.10 2.10 1.02 32.37 47.30 0.63 93.00 0.863 0.047 0.007 0.120 0.103 2.592 3.213 6.945 
20 9.66 0.38 0.08 2.39 1.15 32.22 46.66 0.68 92.53 0.862 0.051 0.006 0.137 0.117 2.599 3.193 6.964 
24 10.46 0.22 0.01 2.50 1.12 31.76 46.27 0.76 92.33 0.940 0.030 0.001 0.144 0.115 2.582 3.191 7.003 
27 9.78 0.36 0.09 2.35 1.07 32.77 47.59 0.64 94.00 0.858 0.047 0.006 0.132 0.108 2.599 3.202 6.951 
mv 9.86 0.37 0.07 2.32 1.07 32.29 46.50 0.56 92.48 0.881 0.049 0.005 0.133 0.110 2.609 3.187 6.974 
sd 0.31 0.08 0.03 0.14 0.06 0.33 0.89 0.20 1.00 0.033 0.011 0.002 0.009 0.006 0.026 0.023 0.025 



 
Sample Tit 125 

No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 
porphyroclasts, core: 

2 10.74 0.37 0.02 0.01 2.94 0.63 0.07 0.04 34.02 0.48 46.45 1.01 96.76 0.935 0.048 0.001 0.000 0.164 0.062 0.004 0.002 2.679 0.024 3.103 7.024 
3 10.90 0.42 0.01 0.00 2.92 0.55 0.06 0.00 34.37 0.36 46.59 0.70 96.86 0.946 0.054 0.001 0.000 0.162 0.054 0.003 0.000 2.696 0.018 3.100 7.034 
4 10.84 0.57 0.00 0.03 2.74 0.60 0.09 0.00 34.49 0.40 46.17 0.90 96.83 0.943 0.073 0.000 0.001 0.153 0.060 0.005 0.000 2.713 0.020 3.081 7.050 
5 10.90 0.43 0.00 0.00 2.61 0.54 0.08 0.07 34.04 0.53 45.84 0.92 95.96 0.957 0.056 0.000 0.000 0.147 0.054 0.005 0.003 2.703 0.027 3.087 7.039 
6 11.11 0.38 0.00 0.01 2.75 0.50 0.06 0.02 33.86 0.44 45.40 1.01 95.54 0.983 0.049 0.000 0.000 0.156 0.050 0.004 0.001 2.709 0.022 3.082 7.057 
16 10.91 0.46 0.02 0.00 2.92 0.60 0.11 0.01 34.03 0.46 46.41 1.01 96.92 0.950 0.059 0.001 0.000 0.163 0.059 0.006 0.000 2.679 0.023 3.100 7.042 
17 10.75 0.49 0.03 0.07 2.83 0.62 0.10 0.00 34.37 0.40 47.01 0.85 97.53 0.926 0.062 0.002 0.002 0.156 0.061 0.006 0.000 2.680 0.020 3.109 7.025 
18 10.83 0.46 0.01 0.00 2.87 0.58 0.07 0.00 34.36 0.49 46.35 0.59 96.63 0.941 0.060 0.001 0.000 0.160 0.058 0.004 0.000 2.699 0.025 3.089 7.037 
36 10.51 0.49 0.00 0.01 2.68 0.63 0.06 0.00 34.38 0.42 46.55 0.86 96.59 0.913 0.064 0.000 0.000 0.149 0.062 0.003 0.000 2.701 0.021 3.102 7.015 
37 10.65 0.52 0.00 0.00 2.50 0.61 0.06 0.00 34.34 0.41 46.80 1.10 96.99 0.923 0.067 0.000 0.000 0.139 0.061 0.003 0.000 2.691 0.020 3.112 7.017 
mv 10.81 0.46 0.01 0.01 2.78 0.58 0.08 0.01 34.23 0.44 46.36 0.89 96.66 0.942 0.059 0.001 0.000 0.155 0.058 0.004 0.001 2.695 0.022 3.097 7.034 
sd 0.16 0.06 0.01 0.02 0.15 0.04 0.02 0.02 0.22 0.05 0.46 0.15 0.56 0.020 0.008 0.001 0.001 0.008 0.004 0.001 0.001 0.012 0.003 0.011 0.014 

porphyroclasts, rim: 
1 10.74 0.32 0.01 0.01 3.19 0.62 0.08 0.00 33.52 0.40 46.52 0.88 96.29 0.939 0.041 0.001 0.000 0.179 0.062 0.004 0.000 2.652 0.020 3.122 7.022 
7 10.58 0.31 0.00 0.02 3.08 0.55 0.03 0.00 33.29 0.44 46.41 0.83 95.55 0.930 0.041 0.000 0.001 0.174 0.056 0.002 0.000 2.649 0.022 3.133 7.006 
15 10.73 0.38 0.01 0.00 2.80 0.65 0.08 0.03 33.41 0.73 47.05 1.16 97.02 0.932 0.049 0.001 0.000 0.156 0.065 0.004 0.002 2.624 0.036 3.136 7.006 
19 10.76 0.39 0.00 0.00 3.02 0.54 0.09 0.00 34.25 0.41 46.68 1.54 97.67 0.933 0.050 0.000 0.000 0.168 0.053 0.005 0.000 2.686 0.021 3.106 7.022 
35 11.09 0.35 0.00 0.03 2.80 0.57 0.10 0.00 34.10 0.43 46.51 1.05 97.02 0.965 0.045 0.000 0.001 0.156 0.057 0.006 0.000 2.683 0.021 3.104 7.038 
38 10.98 0.43 0.01 0.00 2.56 0.58 0.07 0.00 34.13 0.53 46.38 0.99 96.67 0.957 0.056 0.001 0.000 0.143 0.057 0.004 0.000 2.689 0.027 3.101 7.034 
mv 10.81 0.36 0.01 0.01 2.91 0.59 0.07 0.01 33.78 0.49 46.59 1.08 96.70 0.943 0.047 0.000 0.000 0.163 0.058 0.004 0.000 2.664 0.025 3.117 7.021 
sd 0.19 0.05 0.01 0.01 0.23 0.04 0.02 0.01 0.42 0.12 0.25 0.26 0.73 0.014 0.006 0.000 0.000 0.013 0.004 0.001 0.001 0.026 0.006 0.015 0.013 

cleavage domains: 
8 11.06 0.30 0.01 0.00 3.09 0.54 0.03 0.03 33.94 0.21 47.05 0.96 97.23 0.959 0.038 0.001 0.000 0.172 0.054 0.002 0.002 2.661 0.011 3.129 7.027 
9 10.85 0.27 0.00 0.00 3.20 0.64 0.08 0.01 33.23 0.32 45.96 1.07 95.62 0.959 0.036 0.000 0.000 0.182 0.065 0.005 0.000 2.657 0.016 3.117 7.036 
10 10.79 0.39 0.10 0.00 3.33 0.66 0.09 0.01 32.97 0.36 46.58 1.11 96.39 0.947 0.050 0.007 0.000 0.187 0.066 0.005 0.001 2.617 0.018 3.136 7.035 
11 10.67 0.36 0.07 0.00 3.76 0.67 0.08 0.00 32.00 0.36 46.85 1.32 96.13 0.942 0.047 0.005 0.000 0.213 0.067 0.005 0.000 2.555 0.018 3.173 7.025 
12 11.01 0.22 0.04 0.00 3.63 0.64 0.10 0.08 32.76 0.54 46.64 1.16 96.81 0.965 0.028 0.003 0.000 0.204 0.064 0.006 0.004 2.596 0.027 3.136 7.033 
13 10.84 0.29 0.01 0.00 3.45 0.69 0.14 0.00 32.99 0.47 48.13 0.94 97.94 0.932 0.037 0.001 0.000 0.191 0.068 0.008 0.000 2.566 0.023 3.176 7.002 
14 10.25 0.18 0.04 0.02 3.27 0.63 0.08 0.04 32.96 0.07 46.35 0.94 94.84 0.909 0.024 0.003 0.001 0.186 0.064 0.005 0.002 2.641 0.004 3.151 6.990 
20 11.01 0.21 0.06 0.00 3.76 0.73 0.10 0.02 31.53 0.23 47.21 1.09 95.94 0.973 0.027 0.004 0.000 0.213 0.073 0.006 0.001 2.519 0.012 3.200 7.028 
22 10.63 0.34 0.01 0.00 3.06 0.54 0.07 0.04 33.50 0.45 45.93 1.03 95.57 0.938 0.044 0.001 0.000 0.173 0.054 0.004 0.002 2.673 0.023 3.109 7.021 
26 10.92 0.32 0.00 0.02 2.68 0.44 0.10 0.00 34.42 0.04 46.95 0.92 96.80 0.948 0.042 0.000 0.001 0.149 0.043 0.005 0.000 2.701 0.002 3.126 7.017 
27 10.78 0.41 0.05 0.01 3.02 0.48 0.08 0.00 34.13 0.03 47.30 0.92 97.20 0.932 0.053 0.003 0.000 0.168 0.047 0.005 0.000 2.669 0.002 3.139 7.018 
28 11.10 0.29 0.01 0.00 2.79 0.55 0.04 0.00 33.85 0.48 46.91 1.10 97.10 0.964 0.037 0.000 0.000 0.155 0.055 0.002 0.000 2.659 0.024 3.126 7.022 
29 11.11 0.27 0.01 0.00 3.65 0.71 0.08 0.00 32.17 0.44 46.51 1.24 96.20 0.982 0.035 0.001 0.000 0.207 0.072 0.005 0.000 2.571 0.023 3.153 7.047 



Sample Tit 125 (continued) 
No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 

cleavage domains: 
30 10.92 0.38 0.02 0.00 2.68 0.57 0.09 0.02 33.66 0.43 46.94 1.01 96.71 0.950 0.049 0.001 0.000 0.149 0.057 0.005 0.001 2.649 0.022 3.134 7.019
31 10.85 0.34 0.00 0.00 2.86 0.59 0.06 0.00 33.67 0.45 46.68 0.79 96.29 0.947 0.045 0.000 0.000 0.160 0.059 0.003 0.000 2.657 0.023 3.125 7.019
32 10.69 0.42 0.01 0.05 2.68 0.55 0.09 0.02 33.82 0.51 45.90 0.90 95.65 0.940 0.055 0.001 0.001 0.151 0.055 0.005 0.001 2.691 0.026 3.099 7.027
33 11.14 0.23 0.01 0.00 3.52 0.66 0.10 0.00 33.07 0.48 46.79 1.37 97.38 0.972 0.029 0.001 0.000 0.197 0.066 0.006 0.000 2.610 0.024 3.133 7.039
34 10.87 0.27 0.00 0.00 3.38 0.74 0.12 0.03 32.97 0.29 46.84 0.88 96.38 0.952 0.035 0.000 0.000 0.190 0.074 0.007 0.001 2.609 0.015 3.145 7.028
39 11.06 0.24 0.01 0.00 3.03 0.58 0.11 0.02 33.12 0.49 46.79 0.99 96.44 0.968 0.031 0.001 0.000 0.170 0.058 0.006 0.001 2.621 0.025 3.141 7.022
40 10.43 0.32 0.01 0.00 2.84 0.61 0.08 0.00 33.66 0.48 46.97 1.12 96.51 0.908 0.041 0.000 0.000 0.159 0.060 0.005 0.000 2.651 0.024 3.138 6.987
41 10.61 0.29 0.01 0.01 2.73 0.59 0.07 0.03 33.96 0.48 46.74 1.40 96.92 0.923 0.038 0.001 0.000 0.152 0.058 0.004 0.001 2.673 0.024 3.122 6.997
42 10.99 0.23 0.00 0.01 3.55 0.62 0.10 0.04 32.56 0.38 46.28 0.88 95.63 0.972 0.030 0.000 0.000 0.201 0.063 0.006 0.002 2.604 0.020 3.140 7.038
43 10.56 0.23 0.01 0.00 3.06 0.51 0.09 0.00 34.33 0.33 47.91 1.12 98.15 0.904 0.029 0.001 0.000 0.168 0.050 0.005 0.000 2.657 0.016 3.146 6.975
44 10.90 0.30 0.02 0.02 3.31 0.59 0.08 0.01 33.23 0.25 46.73 0.59 96.03 0.954 0.039 0.001 0.001 0.186 0.059 0.004 0.001 2.631 0.012 3.140 7.029
45 10.40 0.40 0.02 0.02 2.91 0.50 0.07 0.00 34.40 0.33 46.66 1.12 96.83 0.903 0.052 0.002 0.001 0.162 0.049 0.004 0.000 2.702 0.016 3.109 7.001
46 9.67 0.30 0.05 0.00 3.03 0.49 0.08 0.00 34.71 0.28 47.35 1.01 96.96 0.833 0.039 0.004 0.000 0.168 0.048 0.004 0.000 2.704 0.014 3.129 6.941
47 8.94 0.24 0.03 0.00 2.90 0.51 0.07 0.00 35.29 0.37 48.03 1.46 97.82 0.761 0.030 0.002 0.000 0.158 0.050 0.004 0.000 2.718 0.018 3.139 6.880
mv 10.70 0.30 0.02 0.01 3.15 0.59 0.08 0.01 33.44 0.35 46.85 1.05 96.57 0.935 0.039 0.002 0.000 0.177 0.059 0.005 0.001 2.639 0.018 3.137 7.011
sd 0.48 0.07 0.02 0.01 0.34 0.08 0.02 0.02 0.85 0.14 0.56 0.19 0.78 0.046 0.009 0.002 0.000 0.020 0.008 0.001 0.001 0.049 0.007 0.021 0.035

 



 
Sample Tit 711 

No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 
large porphyroclasts, core: 

2 10.63 0.27 0.05 0.08 4.25 1.06 0.05 0.01 30.04 0.67 45.85 0.00 92.95 0.963 0.037 0.003 0.002 0.247 0.110 0.003 0.000 2.461 0.035 3.187 7.047 
3 11.00 0.30 0.01 0.03 4.42 1.12 0.08 0.00 30.43 0.83 47.02 0.13 95.37 0.974 0.039 0.001 0.001 0.251 0.113 0.005 0.000 2.436 0.042 3.193 7.054 
4 10.84 0.24 0.05 0.01 4.19 1.13 0.05 0.03 30.23 1.02 47.29 0.40 95.48 0.959 0.032 0.003 0.000 0.237 0.114 0.003 0.000 2.417 0.052 3.208 7.026 
5 10.89 0.28 0.03 0.00 4.31 1.09 0.07 0.00 30.24 1.01 46.70 0.00 94.61 0.970 0.036 0.002 0.000 0.246 0.111 0.004 0.000 2.434 0.052 3.189 7.045 
6 10.96 0.28 0.05 0.03 4.44 1.17 0.04 0.01 30.72 0.46 46.95 0.06 95.18 0.971 0.037 0.004 0.001 0.252 0.119 0.002 0.000 2.460 0.024 3.190 7.060 
7 10.99 0.27 0.05 0.00 4.72 1.15 0.03 0.01 31.23 0.58 47.32 0.19 96.54 0.961 0.036 0.003 0.000 0.265 0.115 0.002 0.000 2.470 0.029 3.176 7.058 
8 10.82 0.25 0.04 0.06 4.84 1.13 0.08 0.01 30.87 0.57 47.76 0.17 96.58 0.945 0.033 0.003 0.001 0.271 0.113 0.004 0.000 2.439 0.029 3.201 7.039 
9 10.74 0.31 0.07 0.01 4.47 1.24 0.00 0.00 30.60 0.46 46.73 0.37 95.00 0.955 0.041 0.005 0.000 0.255 0.126 0.000 0.000 2.461 0.024 3.188 7.056 
10 10.85 0.27 0.08 0.01 4.76 1.22 0.01 0.00 30.81 0.52 47.70 0.00 96.22 0.949 0.036 0.005 0.000 0.267 0.122 0.000 0.000 2.437 0.026 3.202 7.046 
12 10.94 0.22 0.04 0.05 4.72 1.10 0.10 0.00 29.76 0.42 45.69 0.06 93.09 0.995 0.029 0.003 0.001 0.275 0.114 0.006 0.000 2.447 0.022 3.187 7.080 
19 10.82 0.23 0.01 0.03 4.65 1.15 0.01 0.01 29.65 0.44 45.92 0.50 93.40 0.983 0.031 0.001 0.001 0.271 0.119 0.001 0.000 2.436 0.023 3.201 7.065 
20 10.74 0.21 0.00 0.02 4.32 1.12 0.05 0.00 30.02 0.46 46.53 0.33 93.79 0.967 0.028 0.000 0.000 0.249 0.115 0.003 0.000 2.443 0.024 3.212 7.040 
21 10.87 0.25 0.00 0.00 4.59 1.08 0.05 0.03 30.17 0.53 47.09 0.27 94.93 0.967 0.034 0.000 0.000 0.262 0.110 0.003 0.000 2.428 0.027 3.215 7.045 
22 10.88 0.26 0.01 0.00 4.80 1.16 0.04 0.00 30.33 0.55 47.02 0.35 95.40 0.966 0.034 0.001 0.000 0.273 0.117 0.003 0.000 2.433 0.028 3.200 7.055 
23 10.69 0.29 0.01 0.01 4.45 1.17 0.07 0.01 29.78 0.53 46.76 0.19 93.97 0.959 0.039 0.001 0.000 0.256 0.120 0.004 0.000 2.417 0.027 3.219 7.044 
24 10.68 0.31 0.01 0.02 4.66 1.13 0.08 0.02 30.62 0.47 46.93 0.44 95.35 0.947 0.040 0.001 0.000 0.265 0.115 0.004 0.000 2.456 0.024 3.194 7.048 
27 10.82 0.27 0.01 0.00 4.44 1.14 0.01 0.03 30.39 0.67 46.81 0.31 94.90 0.963 0.035 0.001 0.000 0.254 0.116 0.000 0.000 2.446 0.034 3.196 7.046 
29 10.99 0.26 0.00 0.06 4.35 1.07 0.03 0.10 30.84 0.64 46.85 0.10 95.31 0.973 0.034 0.000 0.002 0.247 0.108 0.002 0.000 2.470 0.033 3.183 7.052 
36 10.73 0.23 0.01 0.00 4.59 1.19 0.08 0.00 29.95 0.48 44.43 0.15 91.82 0.990 0.031 0.000 0.000 0.271 0.125 0.005 0.000 2.499 0.026 3.144 7.091 
37 10.56 0.26 0.00 0.00 4.66 1.19 0.07 0.00 29.46 0.78 43.98 0.21 91.16 0.982 0.036 0.000 0.000 0.278 0.126 0.004 0.000 2.479 0.042 3.140 7.088 
38 10.60 0.29 0.01 0.00 4.62 1.22 0.03 0.05 29.19 0.75 44.81 0.23 91.78 0.979 0.039 0.000 0.000 0.273 0.128 0.002 0.000 2.438 0.040 3.175 7.075 
39 10.54 0.26 0.02 0.03 4.75 1.23 0.08 0.00 29.38 0.60 44.80 0.33 92.03 0.972 0.036 0.001 0.001 0.281 0.130 0.005 0.000 2.450 0.032 3.170 7.077 
62 11.01 0.31 0.00 0.03 4.55 1.15 0.04 0.01 30.49 0.61 46.98 0.21 95.40 0.975 0.041 0.000 0.001 0.259 0.117 0.003 0.000 2.443 0.031 3.193 7.063 
63 10.60 0.42 0.03 0.00 4.63 1.27 0.08 0.00 30.58 1.03 47.45 0.23 96.32 0.929 0.055 0.002 0.000 0.260 0.127 0.004 0.000 2.422 0.052 3.188 7.040 
68 10.81 0.21 0.00 0.00 4.71 1.15 0.02 0.00 30.74 0.57 47.42 0.19 95.81 0.951 0.028 0.000 0.000 0.266 0.115 0.001 0.000 2.446 0.029 3.201 7.037 
69 10.30 0.17 0.01 0.01 4.61 1.15 0.03 0.01 31.11 0.65 47.86 0.42 96.33 0.899 0.022 0.001 0.000 0.258 0.115 0.002 0.000 2.457 0.033 3.206 6.993 
70 9.11 0.13 0.01 0.03 4.83 1.18 0.08 0.02 31.75 0.62 48.75 0.31 96.83 0.785 0.017 0.001 0.001 0.267 0.116 0.005 0.000 2.472 0.031 3.220 6.914 
82 11.03 0.33 0.01 0.05 4.45 1.20 0.04 0.04 30.46 0.57 47.49 0.63 96.29 0.972 0.043 0.001 0.001 0.252 0.121 0.002 0.000 2.427 0.029 3.209 7.056 
83 11.08 0.36 0.00 0.05 4.76 1.08 0.07 0.04 30.74 0.97 46.78 0.13 96.05 0.977 0.047 0.000 0.001 0.269 0.109 0.004 0.000 2.451 0.049 3.165 7.073 
86 10.98 0.32 0.00 0.00 4.65 1.07 0.09 0.02 31.06 0.71 46.37 0.31 95.59 0.973 0.043 0.000 0.000 0.265 0.109 0.005 0.000 2.489 0.036 3.154 7.073 
87 11.02 0.35 0.00 0.05 4.68 1.15 0.01 0.04 30.74 0.79 46.56 0.34 95.72 0.977 0.046 0.000 0.001 0.266 0.116 0.001 0.000 2.463 0.041 3.165 7.075 
88 10.87 0.31 0.00 0.01 4.75 1.14 0.06 0.00 30.84 0.64 46.64 0.42 95.66 0.963 0.040 0.000 0.000 0.270 0.115 0.003 0.000 2.471 0.032 3.170 7.064 
90 10.85 0.39 0.00 0.00 4.54 1.24 0.06 0.00 30.78 0.86 47.60 0.50 96.82 0.948 0.051 0.000 0.000 0.255 0.124 0.003 0.000 2.432 0.043 3.192 7.048 
91 10.94 0.28 0.00 0.00 4.74 1.19 0.02 0.00 30.86 1.00 47.47 0.21 96.72 0.956 0.037 0.000 0.000 0.265 0.119 0.001 0.000 2.437 0.050 3.181 7.047 
92 11.01 0.32 0.00 0.04 4.86 1.23 0.05 0.00 30.72 0.39 47.18 0.33 96.14 0.970 0.042 0.000 0.001 0.275 0.124 0.003 0.000 2.448 0.020 3.190 7.073 



Sample Tit 711 (continued) 
No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 

large porphyroclasts, core: 
98 10.85 0.32 0.03 0.00 4.97 1.16 0.05 0.01 30.53 0.92 46.85 0.31 96.00 0.958 0.042 0.002 0.000 0.282 0.117 0.003 0.000 2.437 0.047 3.173 7.062
mv 10.78 0.28 0.02 0.02 4.60 1.16 0.05 0.01 30.45 0.66 46.73 0.26 95.01 0.959 0.037 0.001 0.001 0.263 0.118 0.003 0.000 2.449 0.034 3.188 7.051
sd 0.33 0.06 0.02 0.02 0.18 0.05 0.03 0.02 0.55 0.19 0.99 0.15 1.55 0.035 0.007 0.002 0.001 0.011 0.006 0.002 0.000 0.019 0.010 0.019 0.030

large porphyroclasts, rim: 
1 9.92 0.28 0.04 0.00 4.35 1.05 0.07 0.02 30.66 0.64 46.61 0.17 93.80 0.887 0.037 0.003 0.000 0.250 0.107 0.004 0.000 2.478 0.033 3.196 6.994
11 10.75 0.24 0.05 0.00 4.46 1.20 0.05 0.02 30.06 0.38 46.85 0.31 94.37 0.962 0.032 0.004 0.000 0.256 0.122 0.003 0.000 2.432 0.019 3.216 7.046
13 10.86 0.20 0.03 0.05 5.20 1.14 0.10 0.00 29.65 0.14 46.35 0.39 94.11 0.981 0.027 0.002 0.001 0.301 0.118 0.006 0.000 2.421 0.008 3.211 7.075
18 10.57 0.12 0.02 0.00 4.38 1.16 0.11 0.04 26.52 0.99 43.05 0.38 87.33 1.031 0.017 0.001 0.000 0.274 0.130 0.007 0.000 2.339 0.056 3.222 7.077
25 11.10 0.17 0.01 0.01 3.97 1.07 0.04 0.00 30.56 0.44 46.66 0.23 94.26 0.993 0.023 0.001 0.000 0.228 0.110 0.002 0.000 2.470 0.022 3.200 7.049
26 10.63 0.21 0.04 0.04 4.96 1.20 0.07 0.01 30.63 0.54 47.25 0.27 95.84 0.937 0.028 0.003 0.001 0.281 0.121 0.004 0.000 2.441 0.028 3.196 7.038
28 10.64 0.27 0.02 0.00 4.26 1.24 0.02 0.00 30.47 0.61 46.97 0.23 94.72 0.945 0.035 0.002 0.000 0.243 0.126 0.001 0.000 2.448 0.031 3.202 7.033
35 10.79 0.17 0.03 0.10 4.68 1.14 0.02 0.00 30.40 0.53 44.37 0.23 92.45 0.991 0.023 0.002 0.003 0.276 0.119 0.001 0.000 2.524 0.028 3.125 7.092
61 10.93 0.28 0.00 0.00 4.80 1.10 0.08 0.00 30.43 0.72 46.56 0.15 95.05 0.973 0.037 0.000 0.000 0.274 0.112 0.004 0.000 2.449 0.037 3.179 7.065
64 10.57 0.34 0.07 0.03 4.39 1.18 0.04 0.03 30.33 0.85 46.81 0.02 94.64 0.939 0.044 0.005 0.001 0.250 0.119 0.002 0.000 2.438 0.044 3.193 7.036
67 10.98 0.26 0.00 0.00 4.36 1.09 0.08 0.00 31.38 0.68 47.04 0.23 96.10 0.963 0.033 0.000 0.000 0.245 0.109 0.005 0.000 2.491 0.035 3.168 7.050
81 11.10 0.18 0.00 0.03 4.47 1.07 0.02 0.03 31.00 0.61 47.40 0.17 96.07 0.974 0.023 0.000 0.001 0.252 0.108 0.001 0.000 2.461 0.031 3.193 7.044
84 11.08 0.31 0.02 0.00 4.44 1.24 0.05 0.00 30.84 0.43 47.41 0.40 96.22 0.974 0.040 0.002 0.000 0.250 0.124 0.003 0.000 2.451 0.022 3.197 7.063
85 10.97 0.26 0.01 0.00 4.62 0.95 0.09 0.00 31.26 0.83 46.70 0.52 96.22 0.967 0.034 0.001 0.000 0.261 0.096 0.005 0.000 2.492 0.042 3.157 7.055
89 11.15 0.26 0.01 0.00 4.56 1.09 0.06 0.06 30.83 0.67 46.99 0.19 95.88 0.984 0.034 0.000 0.000 0.258 0.110 0.003 0.000 2.460 0.034 3.181 7.065
mv 10.80 0.23 0.02 0.02 4.53 1.13 0.06 0.01 30.33 0.60 46.47 0.26 94.47 0.967 0.031 0.002 0.000 0.260 0.115 0.004 0.000 2.453 0.031 3.189 7.052
sd 0.32 0.06 0.02 0.03 0.30 0.08 0.03 0.02 1.14 0.21 1.19 0.12 2.26 0.032 0.008 0.001 0.001 0.018 0.009 0.002 0.000 0.041 0.011 0.025 0.023

small porphyroclasts: 
14 9.85 0.24 0.04 0.00 4.47 1.08 0.04 0.00 30.77 0.45 46.83 0.25 94.01 0.878 0.032 0.003 0.000 0.255 0.110 0.002 0.000 2.481 0.023 3.203 6.988
15 10.71 0.25 0.05 0.02 4.54 1.14 0.04 0.00 30.01 0.65 46.52 0.15 94.10 0.960 0.033 0.004 0.001 0.261 0.117 0.002 0.000 2.433 0.034 3.200 7.046
16 10.95 0.22 0.03 0.00 4.56 1.13 0.07 0.02 30.13 0.60 46.26 0.35 94.32 0.983 0.029 0.002 0.000 0.263 0.116 0.004 0.000 2.447 0.031 3.188 7.064
17 11.01 0.26 0.07 0.06 4.94 1.16 0.00 0.00 30.05 0.38 45.88 0.21 94.00 0.994 0.035 0.005 0.002 0.286 0.119 0.000 0.000 2.453 0.020 3.177 7.091
30 10.40 0.28 0.04 0.08 4.23 1.13 0.06 0.00 30.92 0.40 47.29 0.33 95.16 0.919 0.037 0.003 0.002 0.240 0.115 0.003 0.000 2.471 0.020 3.206 7.016
31 10.62 0.20 0.04 0.00 4.83 1.14 0.04 0.00 30.27 0.31 46.89 0.10 94.44 0.948 0.027 0.003 0.000 0.277 0.117 0.002 0.000 2.442 0.016 3.210 7.041
32 10.90 0.24 0.01 0.04 6.24 1.22 0.04 0.00 29.29 0.35 45.52 0.21 94.05 0.991 0.032 0.001 0.001 0.364 0.127 0.002 0.000 2.407 0.018 3.174 7.116
33 10.86 0.25 0.03 0.03 4.28 1.12 0.03 0.00 30.77 0.30 46.07 0.25 93.98 0.975 0.033 0.002 0.001 0.247 0.115 0.002 0.000 2.499 0.015 3.175 7.064
34 10.76 0.32 0.03 0.02 4.57 1.09 0.00 0.04 30.36 0.58 46.40 0.13 94.27 0.963 0.042 0.002 0.000 0.262 0.111 0.000 0.000 2.458 0.030 3.187 7.057
47 11.15 0.21 0.00 0.00 4.44 0.98 0.04 0.00 30.53 0.98 46.74 0.25 95.33 0.989 0.028 0.000 0.000 0.253 0.099 0.002 0.000 2.449 0.050 3.181 7.053
48 10.69 0.22 0.00 0.00 5.04 1.38 0.07 0.03 28.72 0.38 48.84 0.38 95.73 0.943 0.029 0.000 0.000 0.285 0.139 0.004 0.000 2.291 0.020 3.305 7.015
49 10.77 0.27 0.01 0.00 4.39 1.07 0.06 0.02 31.55 0.39 47.15 0.25 95.94 0.946 0.036 0.000 0.000 0.247 0.108 0.004 0.000 2.505 0.020 3.176 7.042
50 9.87 0.22 0.04 0.03 4.60 1.07 0.02 0.00 30.34 0.41 46.72 0.17 93.49 0.886 0.029 0.003 0.001 0.264 0.110 0.001 0.000 2.461 0.021 3.215 6.991
51 11.25 0.22 0.00 0.02 4.81 1.14 0.07 0.00 30.74 0.28 47.14 0.46 96.12 0.993 0.029 0.000 0.001 0.272 0.115 0.004 0.000 2.455 0.014 3.193 7.076



Sample Tit 711 (continued) 
No. K2O Na2O CaO BaO FeOt MgO MnO Cr2O3 Al2O3 TiO2 SiO2 F Total K Na Ca Ba Fe2+ Mg Mn Cr Al Ti Si Total 

small porphyroclasts: 
52 10.93 0.37 0.01 0.00 4.55 1.13 0.07 0.04 30.43 0.65 47.35 0.08 95.60 0.964 0.048 0.001 0.000 0.258 0.114 0.004 0.000 2.428 0.033 3.205 7.054 
53 10.76 0.29 0.00 0.02 4.71 1.17 0.04 0.00 30.40 0.53 46.73 0.44 95.08 0.958 0.038 0.000 0.000 0.269 0.119 0.002 0.000 2.448 0.027 3.192 7.054 
54 11.31 0.24 0.00 0.01 4.45 1.13 0.04 0.00 31.57 0.36 47.63 0.29 97.02 0.985 0.031 0.000 0.000 0.249 0.112 0.002 0.000 2.486 0.018 3.182 7.065 
55 11.02 0.30 0.00 0.00 4.54 1.09 0.03 0.01 30.48 0.85 46.60 0.27 95.19 0.980 0.039 0.000 0.000 0.259 0.111 0.002 0.000 2.451 0.044 3.178 7.063 
56 10.81 0.29 0.01 0.00 4.55 1.15 0.03 0.00 30.52 0.70 46.47 0.46 94.98 0.964 0.038 0.000 0.000 0.260 0.117 0.002 0.000 2.460 0.036 3.179 7.056 
57 10.85 0.25 0.00 0.00 4.33 1.07 0.04 0.03 30.45 0.84 46.39 0.29 94.54 0.970 0.033 0.000 0.000 0.248 0.109 0.002 0.000 2.461 0.043 3.181 7.047 
58 10.91 0.21 0.00 0.00 4.55 1.08 0.07 0.00 31.02 0.61 47.48 0.44 96.35 0.956 0.027 0.000 0.000 0.256 0.108 0.004 0.000 2.460 0.031 3.194 7.037 
59 11.05 0.26 0.00 0.00 4.50 1.15 0.05 0.00 30.71 0.65 46.87 0.17 95.40 0.978 0.034 0.000 0.000 0.255 0.117 0.003 0.000 2.458 0.033 3.183 7.061 
65 11.06 0.28 0.00 0.05 4.62 1.14 0.09 0.00 30.57 0.57 46.72 0.00 95.10 0.982 0.037 0.000 0.001 0.263 0.116 0.005 0.000 2.455 0.029 3.182 7.070 
66 10.77 0.24 0.00 0.03 5.03 1.23 0.03 0.01 30.61 0.43 47.34 0.37 96.09 0.949 0.032 0.000 0.001 0.284 0.124 0.001 0.000 2.438 0.022 3.199 7.050 
73 10.75 0.22 0.01 0.00 4.77 1.08 0.06 0.00 31.23 0.74 47.60 0.36 96.81 0.938 0.029 0.001 0.000 0.267 0.107 0.003 0.000 2.463 0.037 3.185 7.030 
74 11.10 0.24 0.01 0.00 4.53 1.06 0.05 0.00 30.97 0.67 47.04 0.17 95.84 0.978 0.031 0.001 0.000 0.256 0.106 0.003 0.000 2.468 0.034 3.180 7.057 
75 10.97 0.19 0.02 0.00 4.65 1.01 0.06 0.00 30.80 0.41 46.33 0.33 94.78 0.980 0.025 0.001 0.000 0.267 0.103 0.003 0.000 2.488 0.021 3.174 7.063 
76 10.95 0.32 0.08 0.05 4.70 1.20 0.05 0.00 31.25 0.42 47.74 0.04 96.78 0.953 0.041 0.006 0.001 0.262 0.119 0.003 0.000 2.461 0.021 3.189 7.056 
77 11.36 0.23 0.00 0.03 4.64 1.10 0.04 0.00 31.32 0.53 47.03 0.42 96.70 0.997 0.030 0.000 0.001 0.261 0.111 0.002 0.000 2.485 0.027 3.166 7.078 
78 11.22 0.31 0.00 0.02 4.51 1.11 0.00 0.02 30.43 1.29 46.85 0.06 95.82 0.990 0.040 0.000 0.000 0.256 0.112 0.000 0.000 2.428 0.066 3.172 7.064 
79 11.25 0.24 0.00 0.00 4.58 1.10 0.04 0.02 31.10 0.58 47.29 0.19 96.39 0.986 0.032 0.000 0.000 0.258 0.110 0.002 0.000 2.466 0.029 3.181 7.065 
80 11.28 0.26 0.00 0.03 4.72 1.14 0.05 0.00 30.94 0.48 47.28 0.23 96.41 0.991 0.034 0.000 0.001 0.266 0.114 0.003 0.000 2.457 0.024 3.185 7.074 
93 11.05 0.26 0.00 0.00 4.79 1.23 0.04 0.04 30.57 0.60 47.12 0.02 95.72 0.975 0.035 0.000 0.000 0.271 0.124 0.002 0.000 2.439 0.031 3.189 7.065 
94 11.05 0.28 0.00 0.00 4.57 1.19 0.02 0.05 30.61 0.58 46.91 0.06 95.33 0.979 0.037 0.000 0.000 0.260 0.121 0.001 0.000 2.451 0.030 3.187 7.066 
95 10.54 0.37 0.04 0.03 4.63 1.21 0.10 0.01 31.13 0.68 47.00 0.23 95.97 0.926 0.049 0.003 0.001 0.261 0.121 0.005 0.000 2.475 0.035 3.170 7.046 
96 10.88 0.19 0.00 0.00 4.20 1.08 0.05 0.00 30.69 0.59 46.61 0.32 94.60 0.970 0.025 0.000 0.000 0.240 0.110 0.003 0.000 2.474 0.030 3.188 7.042 
97 11.16 0.27 0.03 0.00 4.29 1.01 0.03 0.00 31.48 0.57 47.21 0.34 96.38 0.978 0.035 0.002 0.000 0.241 0.101 0.002 0.000 2.495 0.029 3.174 7.056 
99 11.04 0.26 0.02 0.04 4.42 1.28 0.02 0.04 31.25 0.04 47.85 0.19 96.43 0.964 0.034 0.002 0.001 0.248 0.128 0.001 0.000 2.469 0.002 3.207 7.055 
mv 10.89 0.26 0.02 0.02 4.62 1.13 0.04 0.01 30.66 0.55 46.94 0.24 95.37 0.965 0.034 0.001 0.000 0.263 0.115 0.002 0.000 2.456 0.028 3.190 7.054 
sd 0.33 0.04 0.02 0.02 0.33 0.08 0.02 0.01 0.57 0.22 0.60 0.13 0.96 0.027 0.006 0.002 0.001 0.020 0.008 0.001 0.000 0.034 0.011 0.023 0.024 

all data: 
mv 10.83 0.26 0.02 0.02 4.60 1.14 0.05 0.01 30.52 0.60 46.78 0.25 95.08 0.963 0.035 0.001 0.000 0.262 0.116 0.003 0.000 2.452 0.031 3.189 7.052 
sd 0.33 0.05 0.02 0.02 0.27 0.07 0.03 0.02 0.69 0.21 0.89 0.14 1.50 0.031 0.007 0.001 0.001 0.017 0.007 0.001 0.000 0.030 0.011 0.022 0.026 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 4: 
microprobe analyses of feldspars 

Electron microprobe analyses of feldspars. Cations calculated by charge balance assuming 8 
oxygen atoms per formula unit. Ba and Fe were also analysed: their concentration as oxides is 
always below 0.1 wt% and was not listed. 
 



 
Sample Grf 605 

Ca2+  Na+  K+   Si4+ Al3+ Total      
0.11 0.84 0.01 2.93 1.07 4.96 
0.11 0.84 0.01 2.90 1.10 4.97 
0.12 0.84 0.01 2.90 1.10 4.97 
0.06 0.88 0.01 2.97 1.04 4.95 

mantle 

0.00 0.04 1.01 3.01 0.97 5.03 
0.00 0.04 0.97 3.01 0.98 5.01 
0.00 0.05 0.96 3.00 0.99 5.01 
0.00 0.10 0.92 3.00 0.99 5.02 
0.00 0.09 0.93 3.00 0.99 5.01 

po
rp

hy
ro

cl
as

t 1
 

core  

0.08 0.88 0.01 2.95 1.05 4.97 
0.12 0.84 0.01 2.92 1.08 4.97 
0.09 0.90 0.01 2.94 1.06 4.99 

mantle  

0.00 0.03 1.00 3.01 0.98 5.02 
0.00 0.05 0.97 3.01 0.98 5.01 
0.00 0.03 1.00 3.01 0.98 5.02 
0.00 0.03 0.99 3.01 0.98 5.01 
0.00 0.03 0.99 3.01 0.98 5.02 
0.00 0.03 0.98 3.01 0.98 5.01 

po
rp

hy
ro

cl
as

t 2
 

core  

0.00 0.06 0.97 3.01 0.98 5.02 
0.00 0.06 0.97 3.01 0.98 5.02 
0.00 0.04 0.99 3.00 0.99 5.03 
0.00 0.04 0.99 3.00 0.99 5.02 
0.00 0.04 1.00 2.99 0.99 5.03 

core  

0.08 0.87 0.01 2.95 1.06 4.96 
0.10 0.86 0.01 2.91 1.09 4.98 po

rp
hy

ro
cl

as
t 3

 

mantle  

0.07 0.89 0.01 2.94 1.07 4.98 
0.07 0.80 0.00 3.06 0.93 4.88 
0.10 0.86 0.01 2.92 1.09 4.98 
0.07 0.89 0.01 2.94 1.06 4.98 

mantle 

0.00 0.04 0.99 3.00 0.99 5.02 
0.00 0.04 0.97 3.00 0.99 5.01 
0.00 0.03 1.00 3.00 0.99 5.02 
0.00 0.04 0.98 3.00 0.99 5.02 
0.00 0.04 0.99 3.00 0.99 5.02 

po
rp

hy
ro

cl
as

t 4
 

core  

0.00 0.04 0.99 3.00 0.99 5.02 
0.00 0.07 0.96 3.00 1.00 5.02 
0.00 0.05 0.98 3.00 0.99 5.02 
0.00 0.07 0.95 3.00 0.99 5.01 
0.00 0.04 0.98 3.00 0.99 5.01 

core  

0.03 0.92 0.01 2.98 1.03 4.97 

po
rp

h.
 5

 

mantle 
The average composition of feldspars is An0 Ab5 Or95 in cores and An9 Ab90 Or1 in mantles. 
 
 
 
 
 
 
 
 
 
 



 
Sample Tit 125 

Ca2+  Na+  K+   Si4+ Al3+ Total      
0.00 0.04 0.98 2.98 1.02 5.03 
0.00 0.06 0.96 2.97 1.03 5.02 
0.00 0.03 0.98 2.98 1.02 5.02 
0.00 0.04 0.98 2.98 1.02 5.02 
0.00 0.04 0.99 2.97 1.04 5.03 

core 

0.04 0.93 0.01 2.97 1.04 4.99 
0.07 0.95 0.01 2.94 1.04 5.01 
0.04 0.95 0.01 2.97 1.03 4.99 
0.04 0.95 0.01 2.98 1.02 4.99 

po
rp

hy
ro

cl
as

t 1
 

mantle  

0.03 0.97 0.01 2.99 1.00 5.00 
0.06 0.93 0.01 2.95 1.04 5.00 
0.04 0.94 0.01 2.97 1.03 4.99 
0.03 0.93 0.01 2.97 1.04 4.98 

mantle  

0.00 0.04 0.98 2.99 1.01 5.01 
0.00 0.03 0.99 2.99 1.01 5.02 
0.00 0.04 0.96 2.98 1.02 5.01 
0.00 0.03 0.98 2.99 1.00 5.01 
0.00 0.03 0.99 2.99 1.00 5.02 

po
rp

hy
ro

cl
as

t 2
 

core  

0.00 0.03 0.97 2.98 1.02 5.01 
0.00 0.05 0.97 2.98 1.02 5.02 
0.00 0.04 0.97 2.99 1.02 5.01 
0.00 0.07 0.93 2.99 1.01 5.01 
0.00 0.09 0.92 2.99 1.01 5.02 

core  

0.03 0.95 0.01 2.97 1.03 4.99 
0.06 0.96 0.01 2.97 1.01 5.01 
0.03 0.94 0.01 2.98 1.02 4.99 
0.03 0.95 0.01 2.98 1.02 4.99 

po
rp

hy
ro

cl
as

t 3
 

mantle  

0.03 0.95 0.01 2.98 1.02 4.99 
0.05 0.93 0.00 2.96 1.04 4.98 
0.06 0.91 0.01 2.95 1.05 4.98 
0.06 0.93 0.01 2.95 1.05 5.00 

mantle 

0.00 0.09 0.93 2.98 1.01 5.02 
0.00 0.10 0.91 2.98 1.02 5.02 
0.00 0.03 0.96 2.99 1.01 5.00 
0.00 0.07 0.94 2.98 1.02 5.01 
0.00 0.04 0.97 2.99 1.01 5.01 
0.00 0.04 0.96 2.99 1.01 5.01 
0.00 0.03 0.98 2.99 1.01 5.01 
0.00 0.03 0.98 2.99 1.01 5.01 

po
rp

hy
ro

cl
as

t 4
 

core  

The average composition of feldspars is An0 Ab5 Or96 in cores and An4 Ab95 Or1 in mantles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Sample Tit 711 

Ca2+  Na+  K+   Si4+ Al3+ Total      
0.13 0.85 0.01 2.89 1.11 4.98 
0.07 0.92 0.01 2.94 1.06 5.00 
0.04 0.93 0.01 3.00 0.99 4.97 

mantle 

0.00 0.04 0.98 3.00 0.99 5.01 
0.00 0.03 0.99 3.00 1.00 5.01 
0.00 0.03 0.98 3.00 1.00 5.01 
0.00 0.04 0.99 2.99 1.00 5.02 
0.00 0.07 0.93 3.00 1.00 5.01 

po
rp

hy
ro

cl
as

t 1
 

core 

0.12 0.86 0.01 2.88 1.12 4.99 
0.10 0.85 0.01 2.92 1.09 4.96 
0.07 0.89 0.00 2.94 1.07 4.97 
0.11 0.76 0.01 2.99 1.01 4.89 
0.13 0.82 0.00 2.88 1.13 4.97 

mantle  

0.00 0.07 0.95 3.00 1.00 5.01 
0.00 0.03 0.98 3.00 1.00 5.01 
0.00 0.07 0.96 3.00 1.00 5.02 
0.00 0.08 0.94 2.99 1.00 5.01 
0.00 0.06 0.96 3.00 1.00 5.01 

po
rp

hy
ro

cl
as

t 2
 

core  

0.00 0.06 0.96 2.99 1.01 5.01 
0.00 0.08 0.94 2.99 1.00 5.01 
0.00 0.04 0.97 2.99 1.00 5.01 
0.00 0.05 0.97 3.00 0.99 5.01 
0.00 0.03 0.98 3.00 1.00 5.01 

core  

0.11 0.84 0.01 2.89 1.12 4.98 
0.06 0.91 0.00 2.95 1.06 4.98 
0.11 0.84 0.01 2.90 1.11 4.97 

po
rp

hy
ro

cl
as

t 3
 

mantle  

0.11 0.87 0.01 2.90 1.10 4.98 
0.11 0.85 0.01 2.89 1.11 4.98 
0.10 0.87 0.01 2.90 1.10 4.99 
0.04 0.92 0.01 2.97 1.04 4.98 

mantle 

0.00 0.04 0.97 3.00 0.99 5.01 
0.00 0.06 0.95 3.00 0.99 5.01 
0.00 0.06 0.96 3.00 0.99 5.01 
0.00 0.07 0.95 2.99 1.00 5.01 
0.00 0.07 0.94 3.00 0.99 5.01 
0.00 0.07 0.95 3.00 1.00 5.02 

po
rp

hy
ro

cl
as

t 4
 

core  

The average composition of feldspars is An0 Ab5 Or95 in cores and An9 Ab90 Or1 in mantles. 
 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Appendix 5: 
abbreviations 



General abbreviations 
AMS – anisotropy of the magnetic susceptibility 
BLG – bulging  
BPSZ – Bayerischer Pfahl shear zone  
CIZ – Central Iberian Zone 
EBSD – electron backscatter diffraction 
EDS – energy dispersive spectroscopy 
emu – electromagnetic unit 
GBM – grain boundary migration 
GBMR – grain boundary migration recrystallization 
HT – high temperature 
IGRF – International Geomagnetic Reference Field 
IUGS – International Union of Geological Sciences 
LOI – loss on ignition 
LP – low pressure 
LPO – lattice preferred orientation 
LREE – light rare earth elements 
MZ – Moldanubian Zone 
OMZ – Ossa-Morena Zone 
p.f.u. – per formula unit  
RRE – rare earth elements 
SGR – subgrain rotation 
SGRR – subgrain rotation recrystallization 
SI – international system 
SPO – shape preferred orientation 
s.z. – shear zone 
W – Water  
 

Mineral abbreviations 
* after Kretz (1983) 
Ab* - Albite 
Amp - Amphibole 
An - Anorthite 
And* - Andalusite 
As - Aluminium silicate 
Bt* - Biotite 
Cpx - Clinopyroxene 
Crd* - Cordierite 
Fs - Feldspar 
Grt* - Garnet 
Hbl* - Hornblende 
Kfs* - K-feldspar 

Hy - Hypersthene 
Ms* - Muscovite 
Opx* - Orthopyroxene 
Or - Orthoclase 
Ph - Phengite 
Pl* - Plagioclase 
Px - Pyroxene 
Qtz* - Quartz 
Sil* - Sillimanite 
Ttn* - Titanite 
WM - White mica

  

Physical magnitudes and units 
ρ – density 
g – gravity acceleration 
k – magnetic susceptibility 
µ – magnetic permeability 
A – ampere 
m – meter  
N – newton (SI unit for force equivalent to 105 dyne in the cgs system) 
Wb – weber (SI unit for magnetic flux) 
mGal – miligal (unit for gravity acceleration equivalent to 10-5 m/s2) 
T – tesla (SI unit for magnetic induction equivalent to N/A·m) 
nT – nanotesla ( = 10-9 T) 
GPa – gigapascal (unit for pressure equivalent to 109 pascal) 
kbar – kilobar (unit for pressure equivalent to 108 pascal) 
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