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Abstract

Paging is one of the most prominent problems in the field of online algorithms.
We have to serve a sequence of page requests using a cache that can hold up
to k pages. If the currently requested page is in cache we have a cache hit,
otherwise we say that a cache miss occurs, and the requested page needs to be
loaded into the cache. The goal is to minimize the number of cache misses by
providing a good page-replacement strategy. This problem is part of memory-
management when data is stored in a two-level memory hierarchy, more precisely
a small and fast memory (cache) and a slow but large memory (disk). The
most important application area is the virtual memory management of operating
systems. Accessed pages are either already in the RAM or need to be loaded
from the hard disk into the RAM using expensive I/O. The time needed to
access the RAM is insignificant compared to an I/O operation which takes several
milliseconds.

The traditional evaluation framework for online algorithms is competitive
analysis where the online algorithm is compared to the optimal offline solution.
A shortcoming of competitive analysis consists of its too pessimistic worst-case
guarantees. For example LRU has a theoretical competitive ratio of k but in
practice this ratio rarely exceeds the value 4. Reducing the gap between theory
and practice has been a hot research issue during the last years. More recent
evaluation models have been used to prove that LRU is an optimal online algo-
rithm or part of a class of optimal algorithms respectively, which was motivated
by the assumption that LRU is one of the best algorithms in practice. Most of
the newer models make LRU-friendly assumptions regarding the input, thus not
leaving much room for new algorithms. Only few works in the field of online
paging have introduced new algorithms which can compete with LRU as regards
the small number of cache misses.

In the first part of this thesis we study strongly competitive randomized pag-
ing algorithms, i.e. algorithms with optimal competitive guarantees. Although
the tight bound for the competitive ratio has been known for decades, current
algorithms matching this bound are complex and have high running times and
memory requirements. We propose the algorithm OnlineMin which processes
a page request in O(log k/ log log k) time in the worst case. The best previously
known solution requires O(k2) time.
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Usually the memory requirement of a paging algorithm is measured by the
maximum number of pages that the algorithm keeps track of. Any algorithm
stores information about the k pages in the cache. In addition it can also store
information about pages not in cache, denoted bookmarks. We answer the open
question of Bein et al. [9] whether strongly competitive randomized paging algo-
rithms using only o(k) bookmarks exist or not. To do so we modify the Parti-
tion algorithm of McGeoch and Sleator [60] which has an unbounded bookmark
complexity, and obtain Partition2 which uses Θ(k/ log k) bookmarks.

In the second part we extract ideas from theoretical analysis of randomized
paging algorithms in order to design deterministic algorithms that perform well
in practice. We refine competitive analysis by introducing the attack rate pa-
rameter r, which ranges between 1 and k. We show that r is a tight bound on
the competitive ratio of deterministic algorithms. We give empirical evidence
that r is usually much smaller than k and thus r-competitive algorithms have a
reasonable performance on real-world traces. By introducing the r-competitive
priority-based algorithm class OnOPT we obtain a collection of promising al-
gorithms to beat the LRU-standard. We single out the new algorithm RDM
and show that it outperforms LRU and some of its variants on a wide range of
real-world traces.

Since RDM is more complex than LRU one may think at first sight that the
gain in terms of lowering the number of cache misses is ruined by high runtime
for processing pages. We engineer a fast implementation of RDM, and compare it
to LRU and the very fast FIFO algorithm in an overall evaluation scheme, where
we measure the runtime of the algorithms and add penalties for each cache miss.
Experimental results show that for realistic penalties RDM still outperforms these
two algorithms even if we grant the competitors an idealistic runtime of 0.
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Chapter 1

Introduction

This thesis deals with theoretical and practical aspects of the paging problem.
Paging is part of the memory management in systems with a hierarchy of memory
levels, where the faster the memory the more expensive it is. Paging strategies
manage the arrangement of accessed data between two memory levels. The small
and fast memory is denoted cache and the slow and large one is called disk. When
data is accessed it is desirable to be contained in the cache in order to avoid time
penalties for disk access. Data is considered to be organized in chunks of equal
size, called pages and we denote by k the number of pages that fit into the cache.

The most prominent application area is the virtual memory management of
modern operating systems [18, 24, 59, 63], where the cache corresponds to the
limited-size RAM (Random-Access Memory). When the needed memory space
exceeds the size of available RAM a part of the data is stored on the much slower
hard disk. When a page is accessed and it is in the cache we have a cache hit and
nothing has to be done. Otherwise we say that a cache miss occurs and the page
has to be loaded into the cache which involves time-consuming I/O operations.
Upon a cache miss a paging algorithm decides which page to replace from the
cache. Other examples where paging algorithms are used to manage the same
data splitting between RAM and hard disk are database systems [22, 55, 58, 62],
web caching [19, 56, 64] and tools for external memory algorithms like the C++
library STXXL [25].

Competitive Analysis. The major difficulty regarding paging algorithms is
given by the fact that usually little is known about future data access patterns.
Thus paging is one of the most studied problems in the field of online algorithms,
namely algorithms which have to make irrevocable decisions without knowing
the whole input in advance. The first part of this thesis focuses on theoretical
analysis of randomized paging algorithms. We use the classical quality measure
for online algorithms, namely the competitive ratio [60]. A deterministic online
algorithm A is c-competitive if for any input sequence it holds that

cost(A) ≤ c · cost(OPT ) + b,

1



2 Chapter 1. Introduction

where cost(A) and cost(OPT ) denote the cost of A and the optimal offline cost
respectively, and b is a constant. In the case of randomized online algorithms the
expected number of misses is taken into consideration. An online algorithm is
said to be strongly competitive if it has the best possible competitive ratio.

For deterministic algorithms the lower bound on the competitive ratio is k [60].
Three of the most prominent k-competitive paging algorithms are LRU (Least
Recently Used), FIFO (First In First Out) and FWF (Flush When Full) [60].
Fiat et al. [32] proved that randomized algorithms cannot perform better than
Hk-competitive, where Hk =

∑k
i=1 1/i is the k-th harmonic number. In the same

work the randomized algorithm Mark was proposed and proven to be 2Hk-
competitive. Although not optimal, Mark has the advantage of being a simple
and fast algorithm. Later, Achlioptas et al. [1] determined the exact competitive
ratio of 2Hk − 1 for Mark.

The first strongly competitive randomized algorithm Partition was pro-
posed by McGeoch and Slater [48]. The memory requirement and runtime com-
plexity of Partition are not bounded by the cache size k. Although the cache
miss performance is the primary issue in competitive analysis, memory require-
ment and runtime also play an important role. The first strongly competitive
algorithm improving efficiency was Equitable [1] which can be implemented
in O(k2) time per request and O(k2 log k) memory. Borodin and El-Yaniv [14]
stated the open question if Hk-competitive algorithms exist with only O(k) mem-
ory. Bein et al. [10] show that O(k) memory is possible by providing the algorithm
Equitable2, a variant of Equitable which uses only 2k bookmarks, i.e. pages
not in cache that the algorithm keeps track of. In the same work it was conjec-
tured that o(k) bookmarks are possible. Although Equitable2 uses only O(k)
memory it still requires O(k2) time per request.

Contributions I. In this thesis we propose the strongly competitive random-
ized algorithm OnlineMin which processes a page request in O(log k) time [20]
while preserving the O(k) memory requirement of Equitable2. We further im-
prove the runtime to O(log k/ log log k) [21] by exploiting the power of the RAM
model. We refine the analysis of Equitable2 and show that it can be imple-
mented using only approximately 0.62k bookmarks and show that Equitable2
cannot achieve o(k) bookmarks. Instead we present a variant of Partition,
which we denote Partition2, and show that Partition2 requires Θ(k/ log k)
bookmarks, thus proving the o(k) bookmark conjecture [10].

Theory vs. Practice. The second part of this thesis deals with the gap be-
tween theory and practice of competitive analysis which was often criticized for its
too pessimistic quality guarantees for deterministic paging algorithms. Young [67]
investigated the empirical competitive ratio, i.e. the ratio between the cost of the
online algorithm and the optimal cost on real-world inputs. The empirical com-
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petitive ratio of LRU is a small constant, almost independent of the cache size,
whereas its competitive ratio is k. Multiplicative factors in the hundreds have
been observed between the theoretical worst-case bound and the experimental
results. Another criticized issue is the fact that competitive analysis does not sep-
arate algorithm LRU from FWF or FIFO, although in practice it is well-known
that LRU performs substantially better than the other two algorithms [14].

Recent theoretical research focused on new methods for analyzing online al-
gorithms in general and paging in particular. One line of research is concerned
with restricted versions of competitive analysis, such as the diffuse adversary [44]
or loose competitiveness [68]. Other approaches consider comparing algorithms
directly, without relating them to an optimal offline algorithm. Relevant exam-
ples include the Max/Max ratio [13], the random order ratio [42], the relative
worst order ratio [17], and bijective analysis and average analysis [6]. A detailed
survey of alternative performance measures can be found in [29]. Many of these
approaches are concerned with separating existing paging algorithms in order
to explain the differences noticed in practice. In particular, several approaches
(e.g. diffuse adversary, bijective analysis combined with locality of reference [7])
single out LRU as the best algorithm in the respective setting. In certain cases,
these models also resulted in the design of new algorithms. Examples include
RLRU (Retrospective LRU) [17] and FARL (Farthest-To-Last-Request) [14, 33]
which were designed according to the relative worst order ratio and access graph
model [15,31,38] respectively.

Contributions II. We propose a refinement of competitive analysis for the
paging problem by introducing the attack rate r [51]. The attack rate is an
input parameter which ranges between 1 and k and roughly corresponds to the
extent of uncertainty regarding which pages the optimal offline algorithm has in
cache. In contrast to many other approaches we do not use the LRU-friendly
assumption of locality of reference. We prove that r is a lower and upper bound
on the competitive ratio of deterministic algorithms. This bound is matched by
LRU and FIFO but not by FWF. Experiments on real-world traces reveal that
the value of r is in many settings much smaller than k, thus the gap between the
observed empirical competitive ratio and r is much smaller for LRU and FIFO
compared to classical competitive analysis. Our parametrization also allows us
to give an upper bound on the fault rate of r-competitive algorithms. We show
experimentally that our parametrized bound explains better the low fault rate of
LRU than the fault rate predictions using parametrizations based on locality of
reference.

Separating known algorithms and/or predicting their performance is one as-
pect of a cost model which is (at least partially) addressed successfully by many
new approaches. Another desirable property is to find new algorithms with a
good behaviour in practice. We define the OnOPT algorithm class which con-
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tains only r-competitive algorithms, including LRU. From this class we single
out the new algorithm RDM and perform experiments on real-world traces. The
experimental results show that RDM can outperform LRU and other algorithms
thus contradicting newer theoretical models that single out LRU as the best pag-
ing algorithm. We note that the attack rate model and the OnOPT class are
inspired by the research of strongly competitive paging algorithms. This shows
that insights from classical competitive analysis can help design algorithms per-
forming few cache misses on real world inputs.

The main goal of a practical paging algorithm is to minimize the cost in terms
of cache misses since cache misses can cause several milliseconds time penalties
in the program execution which is up to ten thousand times more than the access
time for the main memory. Yet the running time of paging algorithms cannot
be ignored. We engineer an efficient implementation of RDM [54]. Further
we provide an overall evaluation which simulates page requests from traces and
determines a so-called total cost. The total cost consists of the runtime of the
paging algorithm and a typical additional penalty of 9ms [63, Chapter 1.3.3] for
each cache miss. The experimental results show that RDM can outperform LRU
and FIFO as regards the total cost.

Publications. The results in this cumulative thesis are based on four peer-
reviewed conference publications, two peer-reviewed (invited) journal publica-
tions, and one technical report. I was the main contributor of all six publications.

[20] G. S. Brodal, G. Moruz, and A. Negoescu. Onlinemin: A fast strongly com-
petitive randomized paging algorithm. In Proc. 9th International Workshop
on Approximation and Online Algorithms:, WAOA 2011, Revised Selected
Papers, pages 164–175. Springer, 2012

I contributed with the design and and the main part of the competitive
analysis of algorithm OnlineMin. The proposed data structures are a
contribution which belongs to all authors in the same proportion.

[21] G. S. Brodal, G. Moruz, and A. Negoescu. Onlinemin: A fast strongly
competitive randomized paging algorithm. Journal Theory of Computing
Systems, Special issue of the 9th Workshop on Approximation and Online
Algorithms, 2013

My share in this paper is the design and the main part of the competi-
tive analysis of algorithm OnlineMin, including the improvements over
the conference version [20]. The pointer-based data structures are a joint
contribution of all the authors in the same amount. The input regarding
the data structures in the RAM model mainly belongs to my co-author
Gerth Stølting Brodal.
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[51] G. Moruz and A. Negoescu. Outperforming LRU via competitive analysis
on paramterized inputs for paging. In Proc. 23rd Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1669–1680, 2012

My contribution contains the attack rate model, the OnOPT class and
the RDM algorithm. The experimental evaluation is a joint contribution
which belongs to both authors in the same proportion.

[54] G. Moruz, A. Negoescu, C. Neumann, and V. Weichert. Engineering effi-
cient paging algorithms. In Proc. 11th International Symposium on Exper-
imental Algorithms, pages 320–331, 2012

The compressed layer representation, the improved implementation of On-
lineMin and the overall evaluation method are the part I brought to this
paper. The experimental evaluation was performed together with the other
authors of the paper: Christian Neumann, Gabriel Moruz, and Volker We-
ichert.

[53] G. Moruz, A. Negoescu, C. Neumann, and V. Weichert. Engineering ef-
ficient paging algorithms. Journal of Experimental Algorithmics, Special
issue of SEA 2012 (to appear)

The part I bring in this paper is the compressed layer representation, the
improved implementation of OnlineMin, the overall evaluation method,
and the equivalence proof of the layer representation, which was omitted
in the conference paper [54] due to space limitations. The contribution of
the more detailed experimental results (compared to the conference paper)
belongs to all authors in the same proportion.

[50] G. Moruz and A. Negoescu. Improved space bounds for strongly competi-
tive randomized paging algorithms. In Proc. 40th International Colloquium
on Automata, Languages, and Programming, ICALP 2013 (to appear)

My share in this work is the design and analysis of algorithm Partition2
(the main result of this paper) and the lower bound on algorithms using
deterministic forgiveness methods. The tighter analysis of Equitable2
belongs to both authors in the same proportion.

[52] G. Moruz and A. Negoescu. Improved space bounds for strongly compet-
itive randomized paging algorithms. Technical report, Goethe-Universität
Frankfurt am Main, 2013

This technical report is the full version of paper [50]. It contains the same
results as the conference paper. Additionally it contains proofs omitted due
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to space limitation in the conference paper. My contribution is the design
and analysis of algorithm Partition2 (the main result of this paper) and
the lower bound on algorithms using deterministic forgiveness methods.
The tighter analysis of Equitable2 belongs to both authors in the same
proportion.

Beside my research on the classical paging problem I have also studied two other
topics, which are not covered by this thesis. The first is α-paging, a variation of
paging tailored for flash memory devices. The second is about lower bounds on
the average-case complexity for classic single-source shortest-paths algorithms.
The two resulted peer-reviewed publications are listed next.

[45] A. Kovács, U. Meyer, G. Moruz, and A. Negoescu. Online paging for flash
memory devices. In Proc. 20th International Symposium on Algorithms and
Computation,, ISAAC 2009, pages 352–361, 2009

[49] U. Meyer, A. Negoescu, and V. Weichert. New bounds for old algorithms:
On the average-case behavior of classic single-source shortest-paths ap-
proaches. In Proc. First International ICST Conference on Theory and
Practice of Algorithms in (Computer) Systems, TAPAS 2011, pages 217–
228, 2011

Outline. The rest of this thesis is structured as follows: In Chapter 2 we intro-
duce relevant concepts of online algorithms in general and the paging problem in
particular. This covers a brief description of the most popular paging algorithms
in the theoretical framework of competitive analysis. As a preliminary step for
our experimental results, we also introduce three known models for analyzing the
fault rate. This chapter ends with a survey on the concept of the so-called valid
configurations, a crucial ingredient for our results.

In Chapter 3 the results of our research are presented. We begin with theoret-
ical improvements of runtime [20, 21] and memory requirement [50] for strongly
competitive paging algorithms. Next we introduce a refinement of competitive
analysis leading to a new algorithm named RDM which outperforms LRU on real-
world traces [51]. At the end of the chapter we engineer fast implementations for
RDM [53,54].

Chapters 4-7 contain our published papers.



Chapter 2

Definitions and Basics

2.1 Online Algorithms

Optimization Problems. A well-known optimization problem we deal with
on a daily basis when driving our car, is to find the shortest path from the starting
point to the destination. There are many feasible solutions, namely each path
that may take us to our destination, and each solution has a cost, in this case -
the distance. We are interested in the solution with the minimal distance.

Formally an optimization problem consists of a set I of possible inputs; for
every input I we have a set F (I) of feasible solutions and a quality measure
function f : F (I) → R. Depending on the problem we are dealing with we
have either to minimize or to maximize the value of f over the set of all feasible
solutions. Thus we call f a cost or a profit function.

Usually we are provided with the complete input of finite size and the task
is to find good solutions for the given instance. In the case of the shortest path
problem our input is a weighted graph G which models the street map. We can
find an optimal solution with Dijkstras algorithm [28] in a number of computation
steps, which is polynomial in the input size. There are also harder problems,
which we cannot solve in polynomial time. One prominent example is Clique,
where provided with an unweighted graph G we have to find a subgraph G′ such
that each node in G′ is connected to all other nodes in the subgraph. The profit
function is the number of nodes in G′ and has to be maximized. This kind of
problems can also be solved optimally although not in reasonable time.

The basic challenge in design and analysis is finding algorithms which are
efficient in terms of running time and space consumption. If we cannot compute
the optimum in polynomial time we are seeking for good approximations.

Online Optimization Problems. Consider that a person goes skiing, where
the duration d of the trip is not known in advance, due to weather conditions for
example. There exists the possibility to rent skis for 1 price unit per day or buy
them for 10 price units. Each day our vacationist has to decide if he rents the

7



8 Chapter 2. Definitions and Basics

skis or buys them. If he buys the skis no other expenses need to be done in the
remaining days. The goal is to minimize the amount of money spent during the
holiday. If d ≥ 10 he should buy the skis on the first day; otherwise renting (each
day) is more profitable. It is easy to see that an optimal decision strategy does
not exist since we do not know d in advance. The described problem is known as
the ski rental problem [40].

We call this kind of problems online problems . They differ from offline prob-
lems by the property that irrevocable decisions have to be made with only partial
knowledge of the input. More precisely an online algorithm A has to process
an input sequence σ = (σ1, . . . , σn), where at each step i the element σi is pre-
sented. Algorithm A has to base its decisions in step i only on the first i elements
σ1, . . . , σi. Due to the lack of information about the future an online algorithm
cannot solve the given problem optimally for every request sequence, even with-
out any constraints on computation time or memory space. In the following we
assume online problems to be minimization problems, i.e. f is a cost function
and the goal is to minimize the value of f over all feasible solutions. We denote
by A(σ) the cost of A on input σ.

Optimal Offline Algorithm (OPT). Offline algorithms for online optimiza-
tion problems can base their decisions on the whole request sequence, including
the items yet to be presented. Although not implementable for an online prob-
lem in practice, they allow for a comparison of the online solution with the best
possible solution. The optimal cost for a given input σ is defined as:

OPT (σ) = min
A

{A(σ)},

where A is an arbitrary algorithm. For the ski rental problem, assume that the
input σ is a binary sequence, where the first 1 indicates the ending of the vacation.
At the beginning, the optimal offline algorithm identifies the index d such that
σ1 = σ2 = · · · = σd = 0 and σd+1 = 1. If d ≥ 10 it decides to buy on the first day;
otherwise it rents skis for the entire period. Note that not all online problems
have such simple optimal offline solutions.

Competitive Analysis. Let A be a deterministic online algorithm. How can
we decide whether A is a good algorithm or not? Competitive analysis is doing
this by comparing A to the optimal offline algorithm.

Definition 2.1 Online algorithm A is c-competitive if there exists a constant b
such that:

∀σ : A(σ) ≤ c ·OPT (σ) + b.

In the case that A is a randomized algorithm, A(σ) stands for the expected
cost of A on σ. As an alternative to A is c-competitive we can say that A has
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a competitive ratio of c. Algorithm A is said to be strongly competitive if its
competitive ratio is minimal, and thus the best possible for the given online
problem.

Competitive analysis can be seen as a two-player game between the online
player and the adversary . The adversary creates an input which maximizes the
ratio between the online and the optimal offline cost. When creating a worst-case
input the adversary knows exactly the decisions of a deterministic algorithm. In
the case of randomized algorithms it knows only a probability distribution over
all possible decisions.

For the ski rental problem consider the following strategy: rent skis for the
first 9 days and buy them at the beginning of the 10th day. What value d for the
duration would be chosen by the adversary? For sure it would not choose d ≤ 9
since the online strategy is optimal in this case. The value d = 10 is a good one
since the online player pays 19 whereas the optimal solution is 10. A higher value
for d does not increase any of the two costs. We conclude that the worst-case
ratio is 1.9. This online algorithm is known as the break-even algorithm [41] and
is strongly competitive.

2.2 The Paging Problem

Paging is a prominent, well studied problem in the area of online algorithms. It is
a special case of the k-server problem [46], one of the most challenging problems
in the field of online algorithms.

Problem Definition. We are provided with a slow but large memory, the so-
called disk , and a fast but small memory, the so-called cache. Data is assumed
to be organized in blocks of equal size which we denote pages . We assume pages
to be represented by numbers 1, . . . ,m. The size of the cache is k. The input
consists of a request sequence σ = (σ1, σ2, . . . , σn), where σi ∈ {1, . . . ,m}.

An online algorithm A for the paging problem has to process the requests
online and it is allowed to update its cache content CA upon each request. We
have that CA is a subset of {1, . . . ,m} under the constraint |CA| ≤ k. Upon
request σi we distinguish two possibilities. If σi ∈ CA we say that a cache hit
occurs and we have cost 0 for processing σi. Otherwise we get a cache miss , which
is also denoted page fault and the cost is 1. Algorithm A needs to load σi into
the cache, where a page replacement has to be performed if the cache contains
already k pages. More precisely, A has to determine a page q ∈ CA and perform
the update CA = CA \ {q} ∪ {σi}. The decision of A is based only on the input
seen so far, namely σ1, σ2, . . . , σi.

Bookmarks. Every paging algorithm needs to keep track of all k pages in its
cache. Some more sophisticated algorithms also need to store information about
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a part of the pages on the disk. The pieces of information about those pages are
called bookmarks. If an algorithm does not use bookmarks at all it is denoted
trackless.

The Optimal Offline Solution. An optimal offline algorithm for paging is
known for decades, namely LFD (Longest-Forward-Distance) [12]. Upon a page
replacement it evicts the page which is requested farthest in the future. Consider
the request σi which triggers a cache miss. Assign each page p in the cache the
the value v[p] = j, where j is the smallest index j > i such that σj = p. In the
case that p is never requested again, assign v[p] = ∞. Determine q as the page
with the highest v-value in the cache and replace it by σi.

In the following we refer to LFD as OPT. Although not implementable in
real-world scenarios due to its offline character it is important to compare the
performance of online algorithms to the best possible result.

Competitive Ratio Lower Bounds. Sleator and Tarjan [60] showed a lower
bound of k on the competitive ratio for deterministic algorithms, where k is the
cache size. A proof for this lower bound is summarized in the following.

Consider an arbitrary online algorithm A. The adversary requests at the
beginning k distinct pages p1, p2, . . . , pk. We assume these pages to be contained
in both the cache of OPT and A. Then the adversary requests a page pk+1 and
A has to evict some page pi1 from the cache. Next he requests pi1 which has
to be brought back by A and another page currently in the cache pi2 has to
be evicted. This continues until the request of pik−1

. Each of the k requests
(pk+1, pi1 , pi2 , . . . , pik−1

) triggers one cache miss for A. In this sequence at least
one page pj from the initial cache content {p1, . . . , pk} is not requested. Thus
upon the first request of pk+1 the optimal algorithm can replace page pj and has
a total cost of 1 for this sequence. We request pages from {p1, . . . , pk+1} \ {pj}
until A evicts pj and thus A has the same cache content as OPT. Now we can
repeat our attack scheme which incurs cost at least k for A and cost 1 for OPT.
We conclude that no deterministic online algorithm can achieve a competitive
ratio smaller than k. Algorithms like LRU and FIFO are k-competitive and thus
strongly competitive.

When considering randomized algorithms life becomes harder for the adver-
sary. When creating a worst-case input, it does not know the precise cache content
of the online algorithm A. In the previous lower bound proof the adversary knew
exactly the cache content of A and could always request a page not in the cache
of A. If A uses randomization the adversary can only determine the probability
of a page not being in the cache of A.

Fiat et al. [32] showed that randomized algorithms cannot perform better
than Hk-competitive, where Hk is the k-th harmonic number: 1+ 1

2
+ 1

3
+ · · ·+ 1

k
.

A simpler proof in [32] using Yao’s principle [66](a powerful technique for proving
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lower bounds for randomized algorithms) is given in [14]. It is an adaptation of
the lower bound proof for uniform task systems [16].

Empirical Competitive Ratio. Competitive ratio guarantees are worst-case
guarantees, which do not necessarily reflect the behaviour of online algorithms in
practice and especially not for paging. Empirical competitive ratio is the ratio
between the cache misses of an online algorithm divided by the cache misses of
the optimal solution on real-world traces. Usually this ratio is plotted on a chart
where k varies from 2 to the amount of all distinct pages requested in the trace.
LRU is known to have a very small empirical competitive ratio.

Fault Rate. The fault rate is the measure often used in practice in order to
evaluate the performance of paging algorithms. Let A be an arbitrary paging
algorithm and σ a request sequence of length |σ|. If A(σ) is the number of cache
misses of A when processing σ, we define the fault rate of A on σ by the quotient

FA(σ) = A(σ)/|σ|,

which ranges between 0 and 1. Reasonable theoretical worst case results for the
fault rate are not possible if we do not restrict the class of possible inputs, as
every algorithm can be forced to fault on each request by always requesting a
page that has never been requested before.

2.2.1 Paging Algorithms

In this section we give a brief description of the most popular paging algorithms.
All the following deterministic algorithms are trackless.

LRU. The strategy Least Recently Used maintains the cache content sorted by
the timestamp when the pages were requested last time. The more recently a
page was requested the higher is its priority to be kept in the cache. Upon a page
replacement LRU evicts the least recently accessed page. LRU is k-competitive
and thus strongly competitive. Its empirical competitive ratio is usually below 4
and thus it is often regarded as the algorithm with the best performance in
practice.

FIFO. The paging algorithm First In First Out evicts upon a page replacement
the page which first entered the cache. Although FIFO is also k-competitive it
performs worse than LRU in practice as regards the number of cache misses.
Nonetheless it has the big advantage that an implementation of this algorithm
needs only a simple FIFO Queue, which handles each request in O(1) time. FIFO
is one of the fastest paging algorithms.



12 Chapter 2. Definitions and Basics

LIFO, MRU, LFU. Last In First Out evicts upon a cache miss the page which
was loaded last in the cache and Most Recently Used replaces the most recently
accessed page. These two strategies can be seen as the counterpart of FIFO and
LRU. Both have in common that their competitive ratio is not bounded by the
cache size k. To see this consider the initial sequence p1, . . . , pk. We continue
requesting pk+1, pk arbitrarily often. The optimal solution can evict p1 and the
whole sequence has cost 1 whereas LIFO and MRU have an unbounded cost. On
real-world traces both strategies have a disastrous performance. Least Frequently
Used has a counter for each page in cache and upon each request of page p it
increases the counter of p. Upon a page replacement the page with the lowest
value of the counter is chosen to be evicted. The competitive ratio of LFU is also
unbounded.

Random. This is the simplest randomized paging algorithm. Whenever a page
needs to be evicted, we choose one uniformly at random from the cache. This
strategy yields a competitive ratio of k [57]. Although it uses randomization
it does not perform better than good deterministic algorithms. Random is a
trackless algorithm.

Mark, FWF. A simple randomized paging algorithm which almost matches
the lower bound of Hk on the competitiveness of paging algorithms is Mark. By
using one bit for each page in the cache, it divides pages into marked and un-
marked. Whenever a page is requested it gets marked. Upon a page replacement,
if not all k pages are marked, Mark evicts one unmarked page uniformly at ran-
dom and the actually accessed page gets marked. In the case where all k pages
are marked, they are first unmarked, one is chosen uniformly at random to be
evicted and the newly requested page gets marked. Since Mark uses information
only about pages in the cache it is also trackless.

A first analysis showed that Mark is 2Hk-competitive [32]. The analysis was
improved later [1] and a tight bound of 2Hk−1 was proven. Due to its simplicity,
the question arises if another probability distribution on the unmarked pages can
improve the competitive ratio. Chrobak et al. [23] addressed this question by
proving that, for any constant ε > 0, no randomized marking algorithm can
perform better than (2− ε)Hk-competitive.

Deterministic marking algorithms evict upon a page replacement one un-
marked page using a deterministic rule. Algorithms in this class are k-competitive.
One special algorithm is FWF (Flush When Full), which evicts all k pages upon a
page replacement. It is often used to point out the limits of competitive analysis,
since it reaches the optimal bound of k but its behaviour in practice is rather
poor compared to LRU and FIFO.
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Partition, Equitable. The randomized algorithm Partition [48] was the first
one that matched the lower bound of Hk. This algorithm is much more compli-
cated than the Mark algorithm. Both memory and runtime are bounded only
by the input size n and not by the cache size k. This was improved by Achliop-
tas et al. [1] who presented the Equitable algorithm which uses O(k2 log k)
bookmarks. Bein et al. [11] further improved the memory requirement, where
a variant of Equitable, denoted Equitable2, uses only 2k bookmarks. Both
variants of Equitable process a page request in O(k2) time.

In order to achieve the optimal bound of Hk, Partition and Equitable
maintain a probability distribution over all valid configurations. Valid configura-
tions are all possible cache contents of the optimal offline algorithm after having
processed the requests so far. Especially if a page is in none of the valid con-
figurations it has 0 probability to be in their cache. Keeping track of all valid
configurations is the main bottleneck for runtime and space of Partition and
Equitable.

Unlike the strongly competitive randomized algorithms we can easily force
Mark to keep a page in the cache with non-zero probability although this page
is not contained in any valid configuration. To see this let us look at the following
request sequence:

(p1, p2, . . . , pk, pk+1, pk+2, p1, p2, . . . , pk−1).

Upon the request of pk+1 the optimal offline algorithm evicts pk and upon the
request of pk+2 it evicts pk+1. After processing the given sequence we know for
sure that the cache of OPT contains p1, p2, . . . , pk−1 and pk+2. Thus we have only
one valid configuration. Right before the last request Mark has the k marked
pages pk+1, pk+2, p1, p2, . . . , pk−2 in its cache. After the last request the page pk+1

has a probability of 1− 1/k to reside in the cache of Mark.

2.2.2 Fault Rate Analysis

As mentioned before, the fault rate is often used in order to evaluate the perfor-
mance of paging algorithms on real-world traces. Reasonable theoretical worst-
case results for the fault rate are not possible if we do not restrict the class of
possible inputs. Observations from practice tell us that request sequences have
regularities which make them easy to handle. The most important behaviour
for the paging problem is called locality of reference, which tells us that there
is a small set of pages that is requested very often within a certain time inter-
val [24,63]. This partially explains the very good performance of LRU in practice.
In the following we present three approaches for modelling locality of reference
and analyzing the fault rate under this parametrization. The Max-Model and
the Average-Model were introduced by Albers et al. [2] and a measure for the
non-locality of reference was proposed by Dorrigiv et al. [30]. Each of them pro-
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Max-Model Average-Model

Online ≥ k−1
f−1(k+1)−2

≥ f(k+1)−1
k

LRU = k−1
f−1(k+1)−2

= f(k+1)−1
k

FIFO ≥ k−1/k
f−1(k+1)−1

, ≤ k
f−1(k+1)−1

= f(k+1)−1
k

Marking ≤ k
f−1(k+1)−1

≤ 4
3
f(k)
k

Table 2.1: Fault rates of online algorithms [2].

vides upper bounds on the fault rate which is based on one easy-to-measure input
parameter.

Locality of Reference [2]. The underlying characterization of locality of ref-
erence is given by a function f which assigns to a window size n the number of
distinct pages requested. The function f is assumed to be increasing and concave.

First we summarize the Max-Model. In the Max-Model an input σ is said
to be consistent with f if during every subsequence of n requests at most f(n)
distinct pages are accessed. The inverse function f−1 is defined as follows:

f−1(m) = min{n ∈ N|f(n) ≥ m}.

The key parameter in the theoretical results on the fault rate (see Table 2.1) is
the value f−1(k + 1), which is the minimal window size for k + 1 distinct page
requests. In the Max-Model it was shown that LRU achieves the best possible
worst-case guarantee for the fault rate of online algorithms. FIFO and FWF were
proven to have worse guarantees than LRU, although the difference is very small.

In the Average-Model an input is consistent with f if the average number of
distinct pages in a window of n requests is at most f(n). The crucial parameter
for the results (see Table 2.1) is f(k+1), the average number of distinct pages in
frames of size k + 1. Although the Average-Model does not separate LRU from
FIFO, the parametrized guarantees are closer to the observed fault rate than in
the case of the Max-Model.

Non-Locality of Reference [30]. This parametrization of the input sequences
reflects the non-locality of reference. For a given input σ the non-locality param-
eter λ̄(σ) is defined as the average of the number of distinct pages between two
consecutive requests to the same page. For the i-th requested page σ[i] let dσ[i]
be k + 1 if page σ[i] was requested for the first time. Otherwise let dσ[i] be the
number of distinct pages requested since the last request to σ[i].

λ̄(σ) =
1

|σ|
∑

1≤i≤|σ|

dσ[i]
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online alg. LRU FIFO FWF LFU LIFO

lower bound λ̄
k+1

λ̄
k+1

λ̄
k+1

2λ̄
k+3

2λ̄
k+3

λ̄
2

upper bound λ̄
2

λ̄
k+1

λ̄
k+1

2̄λ
k+3

- λ̄
2

Table 2.2: Upper and lower bounds on the fault rates of deterministic online
algorithms [30].

One strength of this model is the simple analysis of standard algorithms. LRU
and FIFO both achieve the best possible guarantee on the fault rate. Although
it does not separate LRU from FIFO, it manages to clearly separate LRU from
FWF and LFU, namely by a multiplicative factor of almost 2. Algorithm LIFO
which performs disastrously on inputs with high locality of reference has the worst
possible guarantee. A summary of the theoretical results is given in Table 2.2.

2.2.3 Cache Configurations of OPT

Given the request sequence σ seen so far, in an online setting it is of interest
to know the actual cache content COPT of an optimal offline solution, which
processes the whole input with minimal cost. Although in an online scenario
COPT is not known since it depends also on the future request sequence τ , we
are provided with partial information (from the processed sequence σ) about the
structure of COPT , e.g. it contains for sure the most recently requested page,
and pages not requested in σ are not in COPT . We say that immediately after
processing σ the cache content C of some algorithm A containing k pages is a
valid configuration iff σ has been processed by A with minimal cost. It was shown
that the set of all valid configurations, in the following denoted V, contains all
possible configurations COPT [44] (Lemma 2.3) . This means that an optimal
solution for the whole sequence στ has minimal cost after processing σ. As we
will see in Lemma 2.4, V contains exactly the set of all possible configurations of
the optimal offline algorithm. We give a brief overview of existing representations
of V . We start with one of the first characterizations used in the context of work
functions which can be seen as a mathematical utility for algorithm analysis.
Then we present some changes which lead to representations more favorable for
algorithm design and implementation.

Set Inclusion. One of the first representations of V, denoted in the following
set inclusion, was provided by Koutsoupias and Papadimitriou [44]. It uses a
sequence of non-disjoint sets containing pages which is updated after each request.
It was used to prove that LRU is optimal in the diffuse adversary model.



16 Chapter 2. Definitions and Basics

Lemma 2.1 ( [44], Lemma 2.3) For each request sequence σ there is an in-
creasing sequence of sets S = (S1 ( S2 ( · · · ( Sk), with S1 = {p} the most
recent request, such that V is precisely

{C : |C ∩ Sj| ≥ j for all j ≤ k}.

The sets are initially Sj = {p1, . . . , pj} given that p1, . . . , pk is an arbitrary
order of the first k pairwise distinct requested pages. Note that this initial set
representation is not unique and each of the k! permutations of p1, . . . , pk describes
the same set of valid configurations. If S is the representation of V for input σ, let
Sp denote the representation of V for σp, the sequence resulting from the request
of page p after processing σ. The sets are updated as follows [44]:

Sp =


({p}, S1 ∪ {p}︸ ︷︷ ︸

Sp
2

, S2 ∪ {p}︸ ︷︷ ︸
Sp
3

, . . . , Sj−1 ∪ {p}︸ ︷︷ ︸
Sp
j

, Sj+1, . . . , Sk) p ∈ Sj, p /∈ Sj−1

({p}, S2 ∪ {p}︸ ︷︷ ︸
Sp
2

, S3 ∪ {p}︸ ︷︷ ︸
Sp
3

, . . . , Sk ∪ {p}︸ ︷︷ ︸
Sp
k

), if p /∈ Sk

In the case p ∈ Sk there exists always an index j such that p belongs to
Sj, . . . Sk but not to S1, . . . , Sj−1 due to the property S1 ( S2 ( · · · ( Sk. Since
Sk always contains at least k items we conclude that valid configurations never
contain pages which are not in Sk.

Layer Representation. Having information about the cache content of the
optimal solution is a powerful tool to analyze algorithms in models where the
cost of the online algorithm is compared to the optimal cost. However this in-
formation can also be tracked and used in the design of online algorithms. The
first such algorithms were Partition [48] and Equitable [1]. Both are optimal
randomized algorithms as regards the competitive ratio. Equitable uses a space
efficient version of the set inclusion representation of V , presented in the previous
paragraph. It maintains a sequence of k so-called layers L = (L1|L2| . . . |Lk),
where L1 = S1 and Lj = Sj \ Sj−1. Note that the layer representation provides
complete information to compute each set Sj since Sj = L1 ∪ · · · ∪ Lj.

The initialization and update rule of the layers can be directly adapted from
the set inclusion representation. Initially we have L = (p1|p2| . . . |pk) and upon a
request of a page p the following update rule [1] ensues:

Lp =


({p}|L1| . . . |Lj−1|Lj ∪ Lj+1 \ {p}|Lj+2| . . . |Lk) if p ∈ Lj and j < k

({p}|L1| . . . | . . . |Lk−1) if p ∈ Lk

({p}|L1 ∪ L2|L3| . . . |Lk) if p /∈ L1 ∪ · · · ∪ Lk
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Lemma 2.2 ( [1], Lemma 1) If (L1| . . . |Lk) is the layer representation of the
actual set of valid configurations V, a set C of k pages is a valid configuration iff:

|C ∩ (∪i≤jLi)| ≥ j for all 1 ≤ j ≤ k.

Lemma 2.2 is a direct adaptation of Lemma 2.1 to the layer representation.
Let index r be maximal such that L1, . . . , Lr are singletons. Achlioptas et al. [1]
denote the pages in L1, . . . , Lr as revealed. It follows directly from Lemma 2.2
that revealed pages are always contained in a valid configuration independent
of the future request sequence. Thus revealed pages are always in the cache of
any optimal offline algorithm. Requests to revealed pages play a crucial role in
designing online paging algorithms with few cache misses in practice and low
runtime overhead [51,54].

Inversed Layer Representation. Given a set C of k pages and the layer
representation L of V , we can easily check if C is in V by testing all k conditions
from Lemma 2.2. However if we are given only L and want to construct all valid
configurations it seems there is no simple and intuitively direct way to do so.
The requirement of having to choose at least an amount of j pages from L1, . . . Lj

does not help deciding which page to exclude and which not. We recall that the
configuration C contains exactly k pages, and the k conditions from Lemma 2.2
can be stated the following way:

|C ∩ (∪i>jLi)| ≤ k − j + 1 for all 1 ≤ j ≤ k.

By using the reindexation j = k−j+1 and by adding a new layer L0 containing
all pages not in L1 ∪ · · · ∪Lk we obtain the representation that we introduced in
order to define and analyze OnlineMin [21].

Lemma 2.3 ( [21], Lemma 1) If L = (L0|L1| . . . |Lk) is the inversed layer rep-
resentation of V then a set C of k pages is a valid configuration, iff

|C ∩ (∪i≤jLi)| ≤ j for all 0 ≤ j ≤ k.

Initially each layer Li, where i > 0, consists of one of the first requested k
pairwise distinct pages. The layer L0 contains all pages not in L1, . . . , Lk. Adding
the layer L0 the update rule from the original layer partition (considering the
reindexation) simplifies to only two cases [21]:

Lp =

{
(L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}) if p ∈ L0,

(L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |Lk|{p}) if p ∈ Li, i > 0.

Note that in the inversed representation the revealed pages are the rightmost
singletons. The main strength of this representation is that the layer index j
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bounds the amount of pages from L0 ∪ L1 ∪ · · · ∪ Lj in a valid configuration C.
We provide a priority-based incremental selection process which constructs valid
configurations [21]. The goal is to maintain the cache content of an optimal offline
algorithm under the assumption that the priorities reflect the order of future
requests, namely the higher the priority of a page p, the sooner we assume p to
be requested again in the future. For some set S let minj (S) and maxj (S) denote
the subset of S of size j with the smallest and the largest priorities, respectively.

Definition 2.2 ( [21], Definition 1) We construct iteratively k + 1 selection
sets C0, . . . , Ck from the layer partition L = (L0| . . . |Lk) as follows: we first set
C0 = ∅ and then for j = 1, . . . , k we set Cj = maxj (Cj−1 ∪ Lj).

By construction the set Ck is a valid configuration and thus contains all re-
vealed pages and no page from L0. For designing an online algorithm which stays
in valid configurations it is desirable to have a simple update rule for Ck. Under
the assumption that we change only the priority of the currently requested page,
we show that Ck can be updated the following way without recomputing the
selection process from the beginning:

Theorem 2.1 ( [21], Theorem 1) Let p be the requested page. Given Ck, we
obtain Cp

k as follows:

1. p ∈ Ck: C
p
k = Ck

2. p /∈ Ck and p ∈ L0: Cp
k = Ck \min(Ck) ∪ {p}

3. p /∈ Ck and p ∈ Li, i > 0: Cp
k = Ck \ min(Cj) ∪ {p}, and j ≥ i is the

smallest index with |Cj ∩ Ck| = j.

Initially, the update rule from Theorem 2.1 was used with random priority as-
signment and resulted in the runtime efficient strongly competitive randomized
algorithm OnlineMin. The algorithm class using deterministic priority assign-
ments is denoted OnOPT [54]. Algorithms from this class have been shown to
adapt to easy inputs regarding the attack rate [54]. We use the properties of the
OnOPT class to show that optimal offline algorithms perform cache misses only
on requests to pages in L0.

Lemma 2.4 Let p be the actually requested page and L the inversed layer repre-
sentation of V. Page p is in the cache of an optimal offline algorithm iff p /∈ L0.

Proof. Let COPT denote the cache content of an optimal offline algorithm and
L = (L0|L1| . . . |Lk) be the layer representation after processing σ. Recall that
due to Lemma 2.1 optimal offline algorithms are always in valid configurations.
By Lemma 2.3 we immediately conclude that if p is in L0 it cannot be in COPT .
Now we show that if p is not in L0 it is in the cache of an optimal algorithm.
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We use an (offline) algorithm A from the OnOPT class where we define the
priority assignment to be the following: upon request of page q we assign q
the negated timestamp of its future request as priority. Recall that OnOPT
algorithms use the update rule from Theorem 2.1. Since the cache of an OnOPT
algorithm is identical to the outcome Ck of the priority based selection process
from Definition 2.2 and p has the highest priority of all pages L1, . . . , Lk we
conclude that p is in the cache of A. Since each optimal offline algorithm faults
on requests from L0 and A faults only on requests from L0 we get a contradiction
to the optimality of OPT if we assume p /∈ COPT . 2

Compressed Layer Representation. Given a fixed set of valid configura-
tions V , all the three previously introduced approaches do not have an unique
representation. The simplest way to see this is the initialization step after the
first k pairwise distinct pages p1, . . . , pk have been requested. In this case V con-
tains only the configuration C = {p1, . . . , pk} and does not depend on the request
order. The layer representations use an arbitrary permutation and assign each
page to one layer. Assigning pages with identical characteristics with respect to
V in different layers or sets seems to be counterintuitive. We propose an unique
representation of V . Given the inversed layer representation L, a compressed
representation L [54] is defined which groups all consecutive singletons of L. An
algorithmic description of this compression process is given in Algorithm 1.

Algorithm 1 Layer compression

procedure Layer compression(Layers L = (L0| . . . |Lk)) ◃ Compress L
L0 = L0;
T = ∅;
for i = 1 to k − 1 do

if |Li| = 1 then ◃ Li is singleton
Li = ∅; T = T ∪ Li;

else ◃ Li is not singleton
Li = Li ∪ T ; T = ∅;

end if
end for
Lk = Lk ∪ T ;

end procedure

Here is an example for k = 7:

L = (3, 10|2|5, 7|4|1, 11|8|9|6), L = (3, 10|∅|2, 5, 7|∅|1, 4, 11|∅|∅|6, 8, 9)

We have shown that L is consistent with Lemma 2.3 and thus it inherits all
results for the inversed layer representation excepting the layer update rule. Like
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in the inversed layer representation, L0 contains the pages which are not in any
valid configuration and all revealed pages are grouped in Lk. Unrevealed pages
are pages whose presence in COPT depends not only on σ but also on the future
request sequence. These pages are in L1, . . . ,Lk−1. Note that if a page p is
requested from such a layer it is for sure in the cache of OPT due to Lemma 2.4.

An update rule maintaining the compressed layer representation is also pre-
sented [54]. Initially it assigns Lk the first k pairwise distinct requested pages;
L1, . . . ,Lk−1 contain no pages. Let L and Lp be the compressed representation
of L and Lp respectively. Lp can be obtained directly from L as follows:

Lp =


(L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

(L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |∅|Lk ∪ {p}), if p ∈ Li, 0 < i < k

(L0|L1| . . . |Lk−1|Lk), if p ∈ Lk

The compressed layer representation has the advantage that upon requests to
revealed pages nothing changes. Experiments on real-world traces have shown
that usually more than 99% of the requests are to revealed pages. This leads to
significant runtime improvements of OnOPT algorithms [54]. Another advan-
tage is that the number of non-empty layers is much smaller than k on real-world
traces. This allows for more efficient implementations.



Chapter 3

Contributions

In this chapter the most relevant parts of our published papers are summarized.
We listed for each subsection in Table 3.1 the corresponding published paper and
its location within this thesis.

Subsection Paper Corresponding Chapter
3.1.1. [20], [21], [50] 4,5

3.1.2, 3.1.3 [20], [21] 4
3.1.4 [50], [52] 5

3.2.1, 3.2.2 [51] 6
3.2.3 [54], [53] 7

Table 3.1: Connection between the contents of this chapter and the published
work.

3.1 Randomized Algorithms

The first part of our research focuses on strongly competitive randomized paging
algorithms. We propose algorithms which match the lower bound of the com-
petitive ratio and improve the previous results in terms of runtime [20, 21] and
memory requirement [50]. The memory requirement is usually analyzed in terms
of bookmarks, i.e. the number of pages not in cache that an online algorithm
keeps track of.

Although the tight bound of Hk on the competitive ratio of randomized algo-
rithms is known for decades, known algorithms matching this bound are rather
complex. It is not an easy task to mathematically capture the simplicity of al-
gorithms. Chrobak et al. [23] proposed to limit the memory requirement and
runtime of algorithms in order to make them simpler. In the case of memory
consumption the best case occurs if an algorithm is trackless, namely it does
not use any bookmarks. Bein et al. [9] proved that no trackless randomized

21
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algorithm can be Hk-competitive. The Mark algorithm is trackless and fast,
but it was shown that no variant of this algorithm can perform better than
(2Hk − 1)-competitive [23]. The memory requirement and runtime per request
of the strongly competitive algorithm Partition [48] can be linear in the size of
the request sequence, and thus not bounded by the cache size k. Equitable [1]
uses O(k2 log k) memory and processes a page request in O(k2). A variant of Eq-
uitable, denoted Equitable 2 [11], further improves the memory requirement
to O(k), while the running time still remains O(k2). This memory improvement
solved an open problem stated by Borodin and El-Yaniv [14]. Bein et al. [11]
conjectured that a better result, namely o(k) bookmarks, is possible.

3.1.1 New Results

We propose the algorithm OnlineMin [20] that handles each page request in
O(log k) time in the worst case and we improve it to O(log k/ log log k) [21]. This
is a significant improvement over the fastest known algorithm, Equitable2,
which needs O(k2) time per request.

The key element of our algorithm is a new priority-based incremental selec-
tion process which always yields a cache content, that is identical to the cache
of the optimal offline algorithm under the assumption that page priorities reflect
the order of future requests. The analysis of this process results in a simple
cache update rule which is different from the Equitable algorithms [1, 11], but
leads to the same probability distribution of the cache content for random priori-
ties. A simple implementation of our update rule requires O(k) time per request.
Additionally we design data structures that result in two more efficient implemen-
tations: the first implementation uses pointer-based data structures to achieve
O(log k) worst-case time per page request, whereas the second implementation
exploits the power of the RAM model to achieve O(log k/ log log k) worst-case
time per request. The main contribution concerning the data structures in the
RAM model belongs to my co-author Gerth Stølting Brodal.

In our paper [50] we address the o(k) bookmark conjecture [10]. We first
provide a tighter analysis of algorithm Equitable2 reducing the number of
bookmarks from 2k to ≈ 0.62k, which is the first solution using less than k
bookmarks. We give a negative result showing that Equitable2 cannot achieve
a competitive ratio of Hk using o(k) bookmarks. Nonetheless, we show that it
can trade competitiveness for space: if it is allowed to be (Hk+ t)-competitive, it
requires k/(1+ t) bookmarks. We propose the new algorithm Partition2 which
is a variant of the Partition algorithm. Partition2 improves the bookmark
requirements of Partition from Θ(n) to Θ(k/ log k) where n is the input size.
This proves the o(k) bookmark conjecture.
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request valid configurations
1, 2, 3 {1, 2, 3}
4 {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
5 {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}
4 {1, 4, 5}, {2, 4, 5}, {3, 4, 5}
2 {2, 4, 5}

Table 3.2: An example of valid configurations.

3.1.2 Constructing Valid Configurations

A cache configuration C is a subset of k pages. The Partition and Equitable
algorithms maintain a probability distribution over the set of all possible cache
contents. Ideally only configurations which might correspond to the cache content
of the optimal offline algorithm should have non-zero probability; we call these
configurations valid. An overview on valid configurations including a formal def-
inition is given in Section 2.2.3. In the following we give an intuitive explanation
and restate needed properties from Subsection 2.2.3.

We do not know the precise cache content of OPT since it depends on the
future request sequence but, given the sequence so far, we can restrict the pos-
sible configurations. We give an intuitive example for cache size k = 3 and the
pageset {1, 2, . . . , 6}. Consider the following requests:

σ = 1, 2, 3, 4, 5, 4, 2, . . .

Starting with the initial request sequence 1, 2, 3 we list in Table 3.2 the set of
valid configurations V after each request. If V contains only one configuration
we say that we are in a cone. In a cone we know the precise cache content of
OPT. Given V, we distinguish between three types of pages. A page p is called
OPT-miss if p is not contained in any configuration C ∈ V , which means that p
is for sure not in the cache of OPT (independent of the future request sequence).
In the given example page 6 is always OPT-miss. A page p is called revealed
if it is contained in all configurations C ∈ V , which means that it is for sure
in the cache of OPT. In our example 4, and 5 are pages revealed directly after
the second request of 4. All other pages are called unrevealed. These pages are
contained in at least one configuration but not in all of them.

Inversed Layer Representation. A characterization of the set V of all valid
configurations was first given by Koutsoupias and Papadimitriou [44]. We intro-
duced an equivalent variant of this, denoted inversed layer representation [20,21].
It partitions the pageset into k + 1 sets L0, L2, . . . , Lk denoted layers. Initially
each Li, where i > 0, contains one of the first k requested pages and L0 contains
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request L0 L1 L2 L3

1, 2, 3 4, 5, 6 1 2 3
4 5, 6 1 2, 3 4
5 6 1 2, 3, 4 5
4 6 1, 2, 3 5 4
2 6, 1, 3 5 4 2

Table 3.3: An example of the inversed layer representation.

all the other pages. Upon a request to page p, we use the following update rule:

Lp =

{
(L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}) if p ∈ L0,

(L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |Lk|{p}) if p ∈ Li, i > 0.

Lemma 3.1 ( [20], Lemma 1) If L = (L0|L1| . . . |Lk) is the inversed layer rep-
resentation of V then a set C of k pages is a valid configuration, iff

|C ∩ (∪i≤jLi)| ≤ j for all 0 ≤ j ≤ k.

Let r be minimal such that all layers Li, with i > r, are singletons (contain
exactly one page). The set of revealed pages is given by Lr ∪Lr+1∪· · ·∪Lk. The
layer L0 contains all OPT-miss pages and L1 ∪L2 ∪ · · · ∪Lr−1 are the unrevealed
pages. The set of pages which are not in L0 is denoted support. Consider k = 3,
the pageset {1, 2, . . . , 6} and σ = 1, 2, 3, 4, 5, 4, 2, . . . . Starting with the initial
request sequence 1, 2, 3, in Table 3.3 we list the inversed layer representation
of V after each request.

Selection Process. Using the inversed layer representation we introduce a
priority-based selection process which allows us to construct each valid configu-
ration. We assume that pages have distinct priorities. Let maxj (S) denote the
subset of S containing the j pages with the highest priority.

Definition 3.1 ( [20], Definition 1) We construct iteratively k + 1 selection
sets C0, . . . , Ck from the layer partition L = (L0| . . . |Lk) as follows. We first set
C0 = ∅ and then for j = 1, . . . , k we set Cj = maxj (Cj−1 ∪ Lj).

The outcome of the selection process is Ck and it always contains k pages
which form a valid configuration. Moreover Ck corresponds to the cache content
of an optimal offline algorithm under the assumption that page priorities reflect
the order of future requests, namely the higher the priority of a page p, the sooner
we assume p to be requested again in the future.

Let p be the requested page and assign p a new priority directly after it has
been requested; the priorities of all other pages in the support are not modified.
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Since the layers change upon each request, the outcome Ck of the selection process
might also change. We have shown in [20] that Ck can be updated without
recomputing the selection process from the beginning, as follows:

Theorem 3.1 ( [20], Theorem 1) Let p be the requested page. Given Ck, we
obtain Cp

k as follows:

1. p ∈ Ck: C
p
k = Ck

2. p /∈ Ck and p ∈ L0: Cp
k = Ck \min(Ck) ∪ {p}

3. p /∈ Ck and p ∈ Li, i > 0: Cp
k = Ck \ min(Cj) ∪ {p}, and j ≥ i is the

smallest index with |Cj ∩ Ck| = j.

3.1.3 OnlineMin

Algorithm OnlineMin is Hk-competitive, requires O(k) space and processes a
page in O(log k/ log log k) time .

Algorithm. The cache content of OnlineMin corresponds to the outcome Ck

of the selection process from Definition 3.1. Upon a request to page p the update
rule from Theorem 3.1 is applied followed by the layer update rule. Note that only
the layers L1, L2, . . . , Lk need to be stored. Finally we assign p a new priority,
such that its rank is uniformly distributed within the set of all support pages.

Competitiveness. The probability distribution of the cache content of On-
lineMin can be described the following way: assume that the ranks of priorities
of the pages in the support are uniformly distributed; the probability of con-
figuration C is given by the probability that C is the outcome of the selection
process. We have proven that this probability distribution over the set of valid
configurations is identical to the Equitable algorithms [20,21]. This implies that
OnlineMin and Equitable have the same expected cost and thus OnlineMin
is Hk-competitive.

Space. The update rule for the layers imply that the support can grow arbitrar-
ily large. We apply the forgiveness rule from [11] for the layers; this bounds the
size of the support to 3k and works as follows: if the size of the support reaches
the threshold of 3k and page p is requested from L0 we first artificially insert p
in L1 and perform the update rule, as p was a page not in the cache requested
from L1. By the layer update rule and the fact that layers are never empty this
step does not increase the support above the threshold of 3k. Doing so, we use
an approximation of the actual set of valid functions. Nonetheless Bein et al. [11]
showed that the Equitable distribution over this approximated set still leads
to an Hk-competitive algorithm.
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Runtime. A straightforward implementation can be carried out using an array
to store the layers L1, L2, . . . , Lk. Performing the layer update and cache update
by linear search leads directly to O(k) runtime per page request. In order to
achieve a better runtime, we use the observation that L1, L2, . . . , Lk can be seen
as consecutive time intervals. A page p is in layer Li iff the timestamp of its last
request corresponds to the time interval of Li.

The layer update can be done in O(log k) time using standard data struc-
tures, e.g. AVL-trees. The challenging part appears for the cache update rule,
namely when a page from Li, where i > 0, is requested and it is not in the
cache. We design a tree-based data structure which supports this operation
(and all others) in worst-case runtime O(log k) per request. We refine this data
structure using the power of the RAM model in order to improve the runtime to
O(log k/ log log k) [21]. As already mentioned, this last improvement was brought
my co-author Gerth Stølting Brodal.

3.1.4 Improving Space

All known randomized algorithms which are strongly competitive need to store
information about the pages in the support, e.g. the layer partition. Since the
support can grow arbitrarily large there is no upper bound on the number of
bookmarks if we insist that our algorithm maintains a probability distribution
over the actual set of valid configurations. Thus Partition and the (initial)
Equitable algorithm need Θ(n) bookmarks. The Equitable algorithm was
shown to remain Hk-competitive if an approximation of V with a support size of
at most 3k is used.

This approximation is achieved by applying a so-called forgiveness step in case
the support reaches the size of 3k. We refine the analysis of the Equitable distri-
bution using our priority-based approach and show that this forgiveness step can
be applied when the support size is ≈ 1.62k, which implies ≈ 0.62k bookmarks.
Moreover, we show that Equitable cannot achieve a support size of o(k) and
be Hk-competitive at the same time. In order to confirm the conjecture [10] that
there exists a strongly competitive randomized algorithm using o(k) bookmarks
we introduce another approximation scheme of the valid configurations that we
apply to Partition.

Manipulations of V. Note that the set V determines precisely the cost of the
optimal offline algorithms since a request to a page p leads to a cache miss for OPT
iff p is not contained in any of the valid configurations. Now consider the layer
representation of V from Lemma 3.1. If we artificially insert a page p from L0

into some layer Li, with i > 0, we extend the set of valid configurations. Each
valid configuration remains valid after the modification. This approximation step
leads to an overestimation of the optimal offline cost and we are allowed to use
it in competitive analysis, but only if we charge OPT the cost 0.
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The forgiveness step proposed by Bein et al. [10] does the following: the page p
from L0 is artificially inserted into L1 and then p is requested as a page from L1.
The cache update is performed using the case where p is a page not in the cache
and requested from L1. This leads to the cost of 1 for Equitable and cost 0
for OPT. This step brings a disadvantage in competitive analysis for the online
algorithm but it has the benefit of not increasing the support due to the layer
update rule for L1 and the fact that L1 always contains at least one page.

Equitable. Based on the actual set of valid configurations, Achlioptas et al. [1]
proposed a potential function Φ in order to track the cost of Equitable. The
potential Φ is defined as the cost of a lazy attack sequence, i.e. a sequence of
requests where OPT has 0 cost and we end in a cone. In the same work it was
proven that every lazy attack sequence has the same cost and thus Φ is well-
defined. In terms of the inversed layer representation, Φ can be obtained as
the cost of consecutive requests from L1 until all layers are singletons. For each
request it was shown that the following holds:

∆cost(Eq) + ∆Φ ≤ ∆cost(OPT ) ·Hk.

By the very definition of the potential Φ the inequation holds for lazy requests
since ∆cost(Eq)+∆Φ = 0. Otherwise if p is requested from L0 it was shown that
∆Φ ≤ Hk − 1. If we apply the forgiveness step this analysis does not hold. The
main idea is that ∆Φ is at most Hk − 1 and in the case of growing support this
value decreases, thus occurring the so-called savings. These savings were tracked
by Bein et al. using a second potential Ψ in order to compensate the uncovered
cost in the case of forgiveness.

While the definition of Φ makes one’s life easy when dealing with requests
from the support, no closed form is known for Φ or for its increase upon a request
from L0. The main challenge is a close approximation of ∆Φ in order to maximize
the saving function Ψ, namely the difference between Hk − 1 and ∆Φ. Using our
priority-based characterization of the Equitable distribution we have shown
that the following holds:

Theorem 3.2 ( [50], Theorem 1) For a request to a page p ∈ L0 where no
forgiveness is applied, let i be the largest index with |Li| > 0; i = 0 if we are in a
cone. We have that:

Hk−i −H1 ≤ ∆Φ ≤ Hk −H1 − i/(k + 1).

We keep track of the savings i/(k+1) in a second potential Ψ which is always
greater than or equal to 0 and depends on the differences |Li|−i, where 0 < i < k.
We show for the new saving potential Ψ that the following holds after each request
if we use the forgiveness mechanism already at a support size of ≈ 1.62k:

∆cost(Eq) + ∆Φ +∆Ψ ≤ ∆cost(OPT ) ·Hk.
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Req Layer embedding
- L = (7, 8, 9|1|2|3|4|5|6)
9 L = (7, 8|1|2|3|4|5, 6, ⋆|9)
6 L = (7, 8|1|2|3|4, 5, ⋆|9|6)
8 L = (7|1|2|3|4, 5, ⋆|9, 6, ⋆|8)
1 L = (7|2|3|4, 5, ⋆|9, 6, ⋆|8|1)
9 L = (7|2|3|4, 5, ⋆, 6, ⋆|8|1|9)
6 L = (7|2|3, 4, 5, ⋆, ⋆|8|1|9|6)
3 L = (7|2, 4, 5, ⋆, ⋆|8|1|9|6|3)
5 L = (7, 2, 4|8|1|9|6|3|5)

Figure 3.1: Example for the layer embedding of the set partition.

The saving potential from [11] allows the use of forgiveness at the threshold of 3k.
We conclude that Equitable2 can be implemented using ≈ 0.62k bookmarks.
The following questions arise: how much better can we approximate the savings
and especially can Equitable2 be implemented with o(k) bookmarks? We con-
struct an input which shows that if Equitable2 uses less than 0.25k bookmarks,
it is no longer Hk-competitive.

Partition2. The algorithm Partition uses a different approach in order to
keep track of the set V of valid configurations which we denote set partition.
Like the layer partition the set partition can also have different representations
of the same set V . In contrast to Equitable the probability distribution of
which depends only on the set V , the distribution of Partition depends on
the specific representation of V . We have shown that the set partition can be
embedded in the inversed layer representation the following way. The layers
become ordered sets, which also contain, in addition to pages, a special marker ⋆.
The initialization remains the same. The update rule changes mainly in the case
where p is requested from L0:

Lk−1 = (Lk−1, Lk, ⋆), Lk = {p}.

For the merging operation Li−1 ∪ Li \ {p} in the case p ∈ Li we take p out of Li

and concatenate Li−1 with Li without removing any marker. Upon merging L1

with L0 we delete all markers from the resulting layer L0. An example is given
in Figure 3.1.

The distribution of the cache content C of Partition can be described in the
following way: go from left to right through all layers L1, . . . , Lk. If the element
is a page, add it to C; if it is the symbol ⋆ evict one page from C uniformly at
random.
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Lemma 3.2 ( [50], Lemma 9) If p is requested from Li, where i > 0, the prob-
ability that p is not in the cache of Partition is at most:∑

j≥i

xj

j + 1
.

Provided with the cache miss probability bound from Lemma 3.2 we use the
following potential:

Φ =
k−1∑
j=1

xj · (Hj+1 − 1).

Our new potential depends only on the size of the layers and not on the additional
information given by the layer embedding. Potential Φ is an upper bound on the
maximal cost of a lazy attack sequence. Note that in the case of Partition it
does not hold that all lazy attack sequences have the same cost as it holds for
the Equitable distribution. Unlike for Equitable we do not need a second
potential for the savings in order to apply approximations to V.

We introduce algorithm Partition2 which works identically to Partition
except when the support reaches the threshold of k + 3t where t = Θ(k/ log k)
and a page p ∈ L0 is requested. We distinguish two forgiveness modes: the
regular forgiveness and the extreme forgiveness. If the first t layers contain more
than 2t pages we apply the regular forgiveness, which is an adaptation of the
Equitable2 forgiveness step. We choose the leftmost page from L1 not in the
cache and swap it with p. Then we request p as if it was q. The cost of 1 for
Partition2 is shown to be totally covered by the potential decrease ∆Φ. The
extreme forgiveness mode is applied if |L1| + |L2| + · · · + |Lt| ≤ 2t. We apply
regular forgiveness for each of the following page requests in L0 until we reach
a cone. The main idea in the analysis is that in this case we have at least t
elements in high index layers, which leads to a potential of at least k − 1. This
allows Partition2 to perform k − 1 cache misses even if OPT pays the cost 0.
Together with a potential argument for the cases where no forgiveness is applied,
we obtain our main result in Theorem 3.3.

Theorem 3.3 ( [50] Theorem 5) Partition2 uses Θ( k
logk

) bookmarks and is
Hk-competitive.

As long as a randomized algorithm keeps a bookmark for every page with non-
zero probability, we have shown that it needs Ω(k/ log k) bookmarks. Under this
constraint the memory requirement of Partition2 is asymptotically optimal.

3.2 Deterministic Algorithms

In spite of being frequently criticized, competitive analysis is a natural and simple
model to analyze online algorithms. Recently, many alternatives to competitive
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analysis have been proposed, and most of them led to the conclusion that LRU
is the best or at least among the best online algorithms. Few of these models
were able to provide new ideas in algorithm design, more precisely to point out
new algorithms with few cache misses on real-world inputs. Our research on
the competitive ratio of randomized algorithms encouraged us to look for new
deterministic algorithms in order to outperform LRU. The basic idea we use is
simple: we look at the randomized algorithm OnlineMin as a big collection of
reasonable deterministic algorithms which may contain candidates able to out-
perform LRU. We denote this class of deterministic algorithms OnOPT [51].
Algorithms within this class use a deterministic priority assignment, and keep
the cache content of the optimal offline algorithm under the assumption that the
priority assignment reflects the order of future page requests. A pseudo-code is
provided in Algorithm 2.

Algorithm 2 OnOPT class

procedure OnOPT(Page p, Cache M) ◃ Processes page p
Assign p its priority (deterministically)
if p /∈ M and p ∈ L0 then ◃ Update cache

Evict page in M with smallest priority
else if p /∈ M and p ∈ Li, i > 0 then

Identify j such that j ≥ i and |(L1 ∪ · · · ∪ Lj) ∩M | = j
Evict page in L1 ∪ · · · ∪ Lj having smallest priority

end if
Update the layers ◃ Layers update

end procedure

3.2.1 Input Parametrization

We assume that the reader is familiar with the inversed layer representation of
the set of all valid configurations from Subsection 3.1.2. Consider the request
sequence generated by an adversary who wants to maximize the cost of an online
algorithm and minimize the cost of OPT. The following question arises: which
are evil requests and which are not? Requests from L0 always incur the cost of 1
for OPT and thus the adversary should minimize the number of these requests.
Requests to revealed pages have no cost for the optimal algorithm, but the online
player also knows that these pages are for sure in the cache of OPT. Thus if
the online player is smart and stays within the valid configurations this type of
requests is harmless. Requests to unrevealed pages have no cost for OPT and the
online player might fault on them, because the information whether they are in
the cache of OPT or not depends on future requests.
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Class Comp. ratio
CacheMin ∞

Mark [2r − 1, 2r]
OnOPT r

Algorithm Comp. ratio
LFU, MRU, LIFO ∞

FWF [2r − 1, 2r]
LRU, FIFO r

Table 3.4: The guaranteed competitive ratio for the generic classes (left) and for
classic algorithms (right) from [51].

Definition 3.2 Given some input sequence σ let λr(σ), λu(σ), and λ0(σ) denote
the number of requests in σ to revealed pages, unrevealed pages in the support,
and pages that are not in the support, respectively.

Attack Rate. We use the input parametrization from Definition 3.2 to define
the attack rate.

Definition 3.3 ( [51], Definition 2.1) For some input σ, the attack rate r(σ)

is defined as r(σ) = λ0(σ)+λu(σ)
λ0(σ)

. Also, we denote by I(r) the set of inputs having

an attack rate at most r, i.e. I(r) = {σ|r(σ) ≤ r}.

Since between two requests from L0 there are at most k − 1 consecutive
unrevealed requests we have that the attack rate ranges from 1 to k. The attack
rate can be seen as a measure of the evilness of the adversary. We can perform
competitive analysis under the restriction of the parameter r, which in real-world
traces is much smaller than k (see Figure 3.2). The best possible competitiveness
guarantee for inputs from I(r) is r. We apply competitive analysis on 6 standard
paging algorithms based on parameter r. Moreover we investigate three priority-
based classes of algorithms. We assume pages to have priorities which should
reflect the guessed order of future requests. The simplest one is the CacheMin
class, which evicts the page with the lowest priority whereas the Mark class
replaces the unmarked page with the lowest priority. OnOPT algorithms use
the cache update rule from the randomized algorithm OnlineMin, which always
leads to r-competitive algorithms. The results are summarized in Table 3.4. The
optimal competitive ratio r is achieved by LRU and FIFO but not by FWF.
Like in classical competitive analysis algorithms LFU, MRU, and LIFO have no
bounded competitive ratio.

Fault Rate. The defined attack rate r is useful for competitive analysis, but
it cannot be employed for the analysis of the fault rate. If we request only
pages from L0 we obtain r = 1 and although we have an easy input in terms of
competitive analysis, we have the worst possible fault rate of 1. Nonetheless, if
we also consider the parameter λr (the number of revealed requests) we obtain
the bound from Observation 3.1 on the fault rate of r-competitive algorithms like
LRU, FIFO and all algorithms from the OnOPT class.
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Figure 3.2: The attack rate r in real-world inputs. The x-axis shows the percent-
age of pages that fit in cache, i.e. k, and the y-axis shows the ratio between r
and the cache size k.

Observation 3.1 If A is an r-competitive algorithm, the fault rate is at most

λu + λ0

λu + λ0 + λr

.

This parameterized bound on the fault rate allows us to compare our approach
to the fault-rate analysis based on locality of reference. The Max-Model, Average-
Model [2] and the non-locality model [30] point out that LRU has the best possible
guarantee for online algorithms in the respective model. For a brief overview of
the three models refer to Subsection 2.2.2. We compare the three guarantees
to our fault rate guarantee from Observation 3.1 which we denote of rate. The
results for two data sets are given in Figure 3.3. For all inputs and all cache
sizes our approach gives more realistic upper bounds on the fault rate of LRU
than non-locality of reference and locality of reference in the Average-Model, for
some datasets by huge margins, i.e. factors larger than 100. Typically for cache
sizes smaller than 2/3 of the pageset our parametrization outperforms locality of
reference in the Max-Model, in many cases by factors of thousands. For larger
cache sizes the Max-Model gives the closest upper bounds.

3.2.2 Recency Duration Mix

As previously mentioned, choosing an OnOPT algorithm means always choosing
an r-competitive algorithm staying in valid configurations, no matter its priority
assignment. As a result, we are given the chance to experiment with a wide range
of priority policies. We propose the priority assignment Recency Duration Mix
(RDM) [51], the use of which leads to good performance on real-world inputs.
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Figure 3.3: Our fault rate guarantee of rate = λ0+λu

λ0+λu+λr
, and the three models

based on locality of reference with the actual performance of LRU. The x-axis
shows the cache size and the y-axis shows the fault rate.

Priority Assignment. We use a global counter t, which keeps track of the
number of requests to pages in L0 and unrevealed pages. Thus, before assigning
a priority to the requested page p, we increment t only if p is not revealed. Also,
for each page p in the support we store a variable t0 which keeps the value of t at
the time that p entered the support. More exactly, for any request p from L0 we
set t0(p) = t. The RDM priority (see Definition 3.4) for a page p is a mix between
the timespan p spent in the support t− t0 (duration) and the timestamp t of its
actual request (recency).

Definition 3.4 If page p is requested, RDM assigns p the priority

0.8t+ 0.1(t− t0(p)).

Empirical Competitive Ratio. In order to compare the performance of RDM
with the performance of LRU and two of its variants, namely RLRU [17] and
EELRU [61] which in practice were shown to behave better than LRU, we have
conducted a series of experiments.

For this purpose, we used all the available traces (16) from [39]. The memory
access traces were extracted during the computation of applications running on
Linux and Windows NT operating systems. The 16 applications cover standard
software such as Acrobat Reader, MS PowerPoint or GNU C/C++ compiler. The
page request sequences were generated using 4KB-sized pages while removing
consecutive requests to the same page.

For every dataset and cache size, we determined the empirical competitive
ratio for each of the four algorithms considered, i.e. the number of cache misses
performed, normalized by the performance of OPT. In Figure 3.4 we show the
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results for four datasets. On all traces the performance of RLRU is similar to
LRU, though it outperforms it consistently by very small margins. For almost all
traces and cache sizes EELRU performs at least as good as LRU and RLRU. Our
algorithm RDM outperforms LRU and RLRU on all datasets and for all cache
sizes, except for a narrow range on the gcc dataset. The margins vary among
datasets, with improvements by more than a factor of 100% on three datasets
and more than 10% on most of the remaining datasets if the cache size is not
too large. On cache sizes larger than 75% of the pageset the performance of all
four algorithms is almost identical. It rarely happens that RDM has an empirical
competitive ratio higher than 2. Finally, we note that, except for gnuplot, RDM
outperforms EELRU as well on most cache sizes, in many cases by significant
margins.

We conclude that RDM outperforms LRU, and can even compete with im-
proved variants of LRU, such as RLRU and EELRU.
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Figure 3.4: The empirical competitive ratio on selected datasets for RDM, LRU,
RLRU, and EELRU. The x-axis shows the cache size and the y-axis shows the
competitive ratio.
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3.2.3 An Overall Evaluation

Each cache miss performed leads to a delay in the execution of the program code,
thus the main goal for paging algorithms is to minimize the number of cache
misses. Another necessary property of a good paging algorithm is a fast process-
ing time of page requests since the gain in cache misses can be annihilated by a
very slow runtime of the paging algorithm itself. LRU is a simple paging algo-
rithm which incurs few cache misses on real-world inputs and supports efficient
implementations. FIFO performs more cache misses than LRU but it is faster
than LRU. Algorithms with a potential in reducing cache misses in comparison
to LRU were proposed, among these also our algorithm RDM. All these solutions
have in common that they are more complex than LRU, and it is not known if
there exist implementations with reasonable runtimes. Our work [53] focused on
finding an implementation for RDM such that the processing time is in the league
of LRU and FIFO.

Compressed Layers. One bottleneck when implementing RDM is the layer
update, that needs to be done after each request. Especially the observation that
most of the requests are to revealed pages, which ensures that no cache update
needs to be done, motivated us to find another characterization of the set of valid
configurations. We prove in [53] that the layer update rule from Theorem 3.4 is
equivalent to the update rule of the inversed layer representation. We use again
k+1 layers L0,L1, . . . ,Lk and initially Lk contains the first k pages, L0 contains
all other pages and the remaining layers are empty. We denote this representation
the compressed layer representation.

Theorem 3.4 ( [53], Theorem 1) Let L be the compressed layer representa-
tion. We obtain Lp, the compressed layer representation after the request of
page p, as follows:

Lp =


(L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

(L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |∅|Lk ∪ {p}), if p ∈ Li, 0 < i < k

(L0|L1| . . . |Lk−1|Lk), if p ∈ Lk

The big advantage of the compressed representation is that it groups all re-
vealed pages in layer Lk and upon a request to a revealed page, no update is
needed. Another point is that we have empty layers in this representation. Since
we can store layers as time intervals, it suffices to store only the sequence of
the delimiters of non-empty layers together with a variable which represents the
number of preceding empty layers. Thus the needed merging operation of layers
Li and Li−1 boils down to a decreasing of this variable in the case that Li−1 is
an empty set. Our measurements give evidence that the number of non-empty
layers is far below k (see Figure 3.5).
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Figure 3.5: Maximum (left) and average (right) number of non-empty layers in
the compressed layer partition. The x-axis is the cache size k.

A Simple RDM Implementation. The data structures proposed by us [51]
ensure O(log k) runtime guarantee per request. Although this runtime is (asymp-
totically) reasonable, the constants are rather high. Our experiments show that
most requests (a ratio of about 1 − 1/k ) are to revealed pages [53]. In order
to engineer a fast implementation, we give up the general asymptotic bound of
O(log k) per request and tune our implementation to ensure an O(1) time for
revealed requests at the price of an O(k) update time for the other two request
types. To do so we use the compressed layer representation. For each page we
store the timestamp of its last request and its priority. The non-empty layers
are stored in an array as consecutive time intervals, each with a counter for the
number of preceding empty layers. If p is requested we can compare it to the
layer interval corresponding to Lk. In the case that p is revealed, we just update
its priority. If p is not revealed, the update of the layers (and eventually the
cache) is performed using linear array traversals which takes O(k) time.

Runtime Experiments. This experimental part was intended to measure the
runtime of paging algorithms needed for processing the input sequence of page
requests. Note that cache misses do not cause runtime penalties in this simula-
tion. In order to do so, we first loaded the traces (with a size of up to several
GB) into the main memory and then started the runtime measurement.

We compared the runtime of the new simple RDM implementation to that
of the tree-based implementations of RDM [51]. For the tree-based implementa-
tion we achieved a significant speedup using the compressed layer representation
instead of the uncompressed one. Overall, the simple implementation clearly
outperforms the tree-based implementations. We conclude that the simple im-
plementation is the fastest RDM implementation on the given data sets.

The next step was to compare the fastest RDM implementation with other
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Figure 3.6: The runtime for RDM, two implementations of LRU, and FIFO.

algorithms. We decided to do this using FIFO and two implementations of LRU.
For LRU, the first implementation, denoted LRUlist, uses a linked list storing
the pages in cache sorted by their last request. Keeping for each cached page a
pointer to the corresponding list element, a page request takes O(1) time. The
second implementation, LRUlinear, uses an array of size k to store the cache
contents. On a cache miss, the array is scanned to identify the page to evict.

It is easy to see that FIFO is one of the fastest possible algorithms. On the
other hand it is well-known that LRU is a simple algorithm with a good fault rate.
A first attempt to include algorithms like EELRU or RLRU was discarded since
our implementations were hopelessly slow. Other (maybe trickier and thus faster)
implementations of these algorithms were not available. The fastest algorithm
was in all cases FIFO followed by LRU. Our algorithm RDM was slower than
the fastest LRU implementation by a small margin. The runtime charts for two
traces is given in Figure 3.6.

Overall Cost. We introduced a new approach to evaluate the experimental
performance of paging algorithms. The cost of the algorithm is given by its run-
time plus a penalty for each cache miss. In this scenario a good paging algorithm
needs to have a low fault rate and a reasonable runtime. We have chosen a typi-
cal additional penalty for a cache miss of 9ms [63, Chapter 1.3.3] leading to the
following overall cost: total = runtime + #misses · 9ms. Since it is not pos-
sible to prove that our implementation of FIFO or LRU is the fastest possible
in practice we decided to set their runtime to 0. Despite this handicap RDM
succeeds to outperform LRU for about 48% of the experiments. Further LRU
and RDM outperform FIFO consistently. A detailed trace-by-trace comparison
between LRU and RDM is given in Figure 3.7.
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Trace LRU better (in %) RDM better (in %)
acroread 63.7 36.3
cc1 60.5 39.5
compress 31.5 68.5
espresso 52 48
gcc 57.7 42.3
gnuplot 90.1 9.9
go 39.5 60.5
grobner 34.3 65.7
gs 69.5 30.5
lindsay 90.4 9.6
netscape 41.9 58.1
p2c 5.3 94.7
powerpoint 55.3 44.7
vortex 48.5 51.5
winword 54 46

Figure 3.7: The relative performance of LRU vs RDM for each trace.

3.3 Conclusions

In this thesis we studied paging, one of the most famous online problems, by
combining theoretical analysis, algorithm design, and evaluation on real-world
data.

In our work we have managed to improve the runtime and memory require-
ment of strongly competitive paging algorithms. Although our algorithm On-
lineMin can be implemented in O(log k/ log log k) time per request and uses only
O(k) memory it cannot compete with the Mark algorithm in terms of simplicity
and efficiency. Our second algorithm Partition2 beats OnlineMin in terms of
bookmarks, but a straightforward implementation needs O(k2) time per request.
It is an interesting research issue, whether Partition2 can be implemented in
O(k) time or even better. All known strongly competitive algorithms keep track
of pages with non-zero probability of being in the cache. We have shown that
this approach has its limits as regards the bookmark complexity. One possibility
to overcome this limitation, is to choose randomly the approximation of the set
of valid configurations.

Although none of the strongly competitive randomized algorithms seem to
be interesting for practical use, analyzing them had a significant impact on the
development of the attack rate parametrization, the OnOPT class and the RDM
algorithm.

Our input parametrization leads to more realistic bounds on the competitive
ratio and fault rate. The analysis of deterministic paging algorithms for attack
rate r inherits the simplicity of classical competitive analysis. A natural extension
of this line of research is the analysis of randomized algorithms on inputs with
attack rate r. We assume the competitiveness bounds for randomized algorithms
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to be much closer to the observed performance than in the case of deterministic
algorithms.

A new insight regarding the good performance of LRU is that it can be par-
tially explained by its property of being r-competitive. However this holds for
the whole OnOPT class, and motivates the search for other practical algorithms
herein. We provided an algorithm RDM which clearly outperforms LRU and two
of its improved variants on the tested inputs. We think that it is worth further
investigating the OnOPT class to find other algorithms with an even better per-
formance. Although RDM performs few cache misses it is more complex than
LRU. We provided fast implementations for RDM which prove it to be a realistic
candidate to use in practice.

We conclude that competitive analysis, although often criticized, can be suc-
cessfully employed in designing algorithms not only having theoretical guarantees
but also performing well on realistic inputs.





Chapter 4

OnlineMin: A Fast Strongly
Competitive Randomized Paging
Algorithm

The work OnlineMin: A Fast Strongly Competitive Randomized Paging
Algorithm was published as a conference paper [20] and as a journal paper [21]
(invited for the special issue of the journal Theory of Computing Systems dedi-
cated to WAOA 2011).

[20] G. S. Brodal, G. Moruz, and A. Negoescu. Onlinemin: A fast strongly com-
petitive randomized paging algorithm. In Proc. 9th International Workshop
on Approximation and Online Algorithms:, WAOA 2011, Revised Selected
Papers, pages 164–175. Springer, 2012

[21] G. S. Brodal, G. Moruz, and A. Negoescu. Onlinemin: A fast strongly
competitive randomized paging algorithm. Journal Theory of Computing
Systems, Special issue of the 9th Workshop on Approximation and Online
Algorithms, 2013

The contents of this chapter correspond to the journal version [21] which includes
all results of the conference paper [20]. One of the additions consist of RAM data
structures for the further improvement of the runtime of algorithm OnlineMin.
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OnlineMin: A Fast Strongly Competitive
Randomized Paging Algorithm

Gerth Stølting Brodal∗ , Gabriel Moruz† ‡, and Andrei Negoescu† §

Abstract

In the field of online algorithms paging is one of the most studied prob-
lems. For randomized paging algorithms a tight bound of Hk on the com-
petitive ratio has been known for decades, yet existing algorithms matching
this bound have high running times. We present a new randomized pag-
ing algorithm OnlineMin that has optimal competitiveness and allows
fast implementations. In fact, if k pages fit in internal memory the best
previous solution required O(k2) time per request and O(k) space. We
present two implementations of OnlineMin which use O(k) space, but
only O(log k) worst case time and O(log k/ log log k) worst case time per
page request respectively.

4.1 Introduction

Online algorithms are algorithms for which the input is not provided beforehand,
but is instead revealed item by item. The input is to be processed sequentially,
without assuming any knowledge of future requests. The performance of an online
algorithm is usually measured by comparing its cost against the cost of an optimal
offline algorithm, i.e. an algorithm that is provided all the input beforehand and
processes it optimally. This measure, denoted competitive ratio [41, 60], states
that an online algorithm A has competitive ratio c if for any input sequence its
cost satisfies cost(A) ≤ c · cost(OPT ) + b, where cost(OPT ) is the cost of an
optimal offline algorithm and b is a constant. If A is a randomized algorithm,
cost(A) denotes the expected cost. In particular, an online algorithm is denoted
strongly competitive if its competitive ratio is optimal. While the competitive
ratio is a quality guarantee for the cost of the solution computed by an online
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algorithm, factors such as space complexity, running time, or simplicity are also
important.

In this paper we study paging algorithms, a prominent and well studied ex-
ample of online algorithms. We are provided with a two-level memory hierarchy,
consisting of a cache and a disk, where the cache can hold up to k pages and
the disk size is infinite. When a page is requested, if it is in the cache a cache
hit occurs and the algorithm proceeds to the next page. Otherwise, a cache miss
occurs and the algorithm has to load the page from the disk; if the cache was
full, a page must be evicted to accommodate the new one. The cost is given by
the number of cache misses performed.

Related Work. Paging has been extensively studied over the last decades.
In [12] an optimal offline algorithm, denoted MIN, was given. In [60] a lower
bound of k on the competitive ratio for deterministic paging algorithms was
shown. Several algorithms, such as LRU and FIFO, meet this bound and are
thus strongly competitive. For randomized algorithms, Fiat et al. [32] proved a
lower bound of Hk on the competitive ratio, where Hk =

∑k
i=1 1/i is the k-th

harmonic number. They also gave an algorithm, named Mark, which has a com-
petitive ratio of (2Hk − 1). The first strongly competitive randomized algorithm
being Hk-competitive was Partition [48]. For Partition, the memory require-
ment and runtime per request can reach Θ(n), where n is the number of page
requests, and n can be far greater than k. Partition was characterized in [1] as
counter-intuitive and difficult to understand. The natural question arises if there
exist simpler and more efficient strongly competitive randomized algorithms. The
Mark algorithm can be easily implemented using O(k) memory and has very
fast running time (O(1) dictionary operations) per request, but it is not strongly
competitive. Furthermore, in [23] it was shown that no Mark-like algorithm
can be better than (2Hk − 1)-competitive. The strongly competitive randomized
algorithm Equitable [1] was a first breakthrough towards efficiency, improving
the memory complexity to O(k2 log k) and the running time to O(k2) per page
request. In [11] a modification of Equitable, denoted Equitable21, improved
the space complexity to O(k). Both Equitable algorithms are based on a char-
acterization in [44] in the context of work functions. The main idea is to define a
probability distribution on the set of all possible configurations of the cache and
ensure that the cache configuration obeys this distribution. For each request,
it requires k probability computations, each taking O(k) time. For a detailed
view on paging algorithms, we refer the interested reader to the comprehensive
surveys [2, 14,34].

1In [11] Equitable2 is denoted Ak. Due to its similarity to Equitable we use its original
name of Equitable2.
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Our contributions. In this paper we propose a strongly competitive random-
ized paging algorithm, denotedOnlineMin. We first propose an implementation
for it which handles a page request in O(log k) worst case time, and then we im-
prove this implementation to achieve O(log k/ log log k) time in the worst case
for processing a page request. This is a significant improvement over the fastest
known strongly competitive algorithm, Equitable, which needs O(k2) time per
request2. The space requirement of both our implementations is O(k), due to the
forgiveness technique used in Equitable2.

The main building block of our algorithm is a priority based incremental se-
lection process starting from the same characterization of an optimal solution
in [44] as the Equitable algorithms. The analysis of this process yields a simple
cache update rule which is different from the one in [1,11], but leads to the same
probability distribution of the cache content. A straightforward implementation
of our update rule requires O(k) time per request. Additionally we design appro-
priate data structures that result in two more efficient implementations: the first
implementation uses simple pointer-based data structures to achieve O(log k)
worst case time per page request, whereas the second implementation exploits
the power of the RAM model to achieve O(log k/ log log k) worst case time per
request.

4.2 Randomized Selection Process

In this section we recall the notions of offset functions for paging algorithms in-
troduced in [44]. We then describe in Section 4.2.2 a new priority based selection
process which is the basis of our algorithm OnlineMin. We analyze the selec-
tion process in order to obtain a simple page replacement rule which remains at
all times consistent with the outcome of the selection process. Finally, in Sec-
tion 4.2.3 we prove equivalences between the cache distribution of our selection
process and the Equitable algorithms [1, 11], which implies that OnlineMin
is Hk-competitive.

4.2.1 Preliminaries

Let σ be the request sequence so far. For the construction of a competitive paging
algorithm it is of interest to know the possible cache configurations if σ has been
processed with minimal cost. We call these configurations valid.

For fixed σ and an arbitrary cache configuration C (a set of k pages), the offset
function ω for σ assigns C the difference between the minimal cost of processing σ
ending in configuration C and the minimal cost of processing σ. Thus C is a valid
configuration after processing σ iff ω(C) = 0. In [44] it was shown that the class

2Since no explicit implementation of Equitable2 is provided, due to their similarity we
assume it to be the same as for Equitable.
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of valid configurations V determines the value of ω on any configuration C by
ω(C) = minX∈V{|C \X|}.

Koutsoupias and Papadimitriou [44] showed that ω can be represented by a
sequence of k + 1 disjoint page sets (L0, L1, . . . , Lk), denoted layers, which can
be constructed as follows3. Initially each layer Li, where i > 0, consists of one
of the first requested k pairwise distinct pages. The layer L0 contains all pages
not in L1, . . . , Lk. Since the offset function ω depends on the input sequence it
has to be updated after each request. If ω is the offset function for input σ and
page p is requested next, we denote by ωp the offset function which results for
the input σp and update the layers as follows4:

ωp =

{
(L0 \ {p}, L1, . . . , Lk−2, Lk−1 ∪ Lk, {p}) if p ∈ L0,

(L0, . . . , Li−2, Li−1 ∪ Li \ {p}, Li+1, . . . , Lk, {p}) if p ∈ Li, i > 0.

In [44] the relationship in Lemma 4.1 between the layer representation of ω
and the class of valid configurations V was given.

Lemma 4.1 If (L0, . . . , Lk) is a layer representation of an offset function ω, then
a set C of k pages is a valid configuration, i.e. ω(C) = 0, iff |C ∩ (∪i≤jLi)| ≤ j
for all 0 ≤ j ≤ k.

We give an example of an offset function for k = 3 in Figure 4.1. The support
of ω is defined as S(ω) = L1 ∪ · · · ∪ Lk. In the remainder of the paper, we call
a set with a single element singleton. Also, let u be the smallest index such that
Lu+1, . . . , Lk are all singletons. We distinguish two sets: the set of revealed pages
R(ω) = Lu+1 ∪ · · · ∪ Lk, and the set of unrevealed pages N(ω) = L1 ∪ · · · ∪ Lu.
A valid configuration contains all revealed pages and no page from L0. Note
that when requesting some unrevealed page p in the support, we have R(ωp) =
R(ω)∪{p} and the number of layers containing unrevealed items decreases by one.
Moreover, if p /∈ L1 then N(ωp) = N(ω)\{p} and otherwise N(ωp) = N(ω) \ L1.
Also, the layer representation is not unique and especially each permutation of
the layers containing revealed items describes the same offset function.

Equitable, Equitable2 and the Forgiveness Technique. Given the layer
representation of ω by the sequence requested so far, a probability distribution
over all possible actual cache configurations was proposed in [1]. The probability
that C is the cache content is defined as the probability of being obtained at the
end of the following random process: Starting with C = R(ω) a page p is selected
uniformly at random from N(ω), p is added to C, and ω is set to ωp. This process

3We use a slightly modified, yet equivalent, version of the layer representation in [44].
4For easiness of exposition we refer by ω to both the offset function and its corresponding

layer representation.
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is iterated until C has k pages. A page replacement strategy that maintains this
probability distribution under the constraints that 1) it replaces one page only
upon a cache fault and 2) the cache content does not change upon a cache hit,
was shown to be Hk-competitive [1] . The authors also provide the randomized
algorithm Equitable which handles a page request in O(k2) time and achieves
the desired distribution under both constraints.

Note that by repeatedly requesting pages from L0 the amount of pages in
the support increases. In order to reduce the space requirements forgiveness
techniques can be applied, which use an approximation of the offset function
in order to cap the support size. The intuition behind these techniques is that
a large support implies that the adversary did not play optimally and there is
a large gap between the actual ratio and the worst case ratio of Hk. This gap
cannot be closed by the adversary with future requests, and thus allows the online
algorithm to deviate from the original layer update rule when tracking the offset
function, while still preserving the Hk-competitiveness.

Given an offset function ω, both Equitable and Equitable2 have identical
cache distributions. The difference consists in the forgiveness steps, more pre-
cisely they have different update rules for the offset function ω, when the support
becomes too large. If the support size reaches a threshold Equitable uses an
approximation of the current offset function in order to bound the support size
by O(k2 log k). Equitable2 uses an improved forgiveness step leading to space
requirements of O(k). More precisely whenever the support contains 3k pages
and a page p is requested from L0, Equitable2 adds p to L1 and handles the
update of ω as p would have been requested from L1.

Definition 4.1 Given the current offset function ω = (L0, . . . , Lk) and the page
request p, the update rule for ω including the forgiveness step of Equitable2 is
as follows

ωp =


(L0 \ {p}, L1, . . . , Lk−2, Lk−1 ∪ Lk, {p}) if p ∈ L0, |S(ω)| < 3k,

(L0 \ {p} ∪ L1, . . . , Lk−2, Lk−1, Lk, {p}) if p ∈ L0, |S(ω)| = 3k,

(L0, . . . , Li−2, Li−1 ∪ Li \ {p}, Li+1, . . . , Lk, {p}) if p ∈ Li, i > 0.

Note that by the given update rule the layers L1, . . . , Lk contain each at
least one element. Thus in the case |S(ω)| = 3k the support size decreases by
|L1| ≥ 1 and increases by 1 (the requested page p), and therefore we always have
|S(ω)| ≤ 3k. In [11] it was shown that applying this update rule for ω still leads
to a competitive ratio of Hk.

4.2.2 Selection Process for OnlineMin

If ω is the offset function for the input requested so far, an online algorithm
should have a configuration similar to the cache COPT of an optimal strategy.
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Figure 4.1: Example for updating the layers L0, . . . , Lk and the selection sets
C0, . . . , Ck for k = 3. The initial cache configuration is {2, 4, 5}. The request
sequence is (6, 5, 1, 2, 5) and the priority of a page is its number.

We know that COPT contains all revealed items and no item from L0. Which
non-revealed items are in the cache depends on future requests. To guess the
order of future requests of non-revealed items OnlineMin assigns priorities to
pages when they are requested. It maintains the cache content of an optimal
offline algorithm under the assumption that the priorities reflect the order of
future requests. We introduce a priority based selection process for the layer
representation of ω. Assuming that each order of priorities has equal probability,
we prove that the outcome of the selection process has the same probability
distribution as the Equitable algorithms. Our approach allows an efficient
and easy-to-implement update method for the cache of OnlineMin, which is
consistent with our selection process.

In the following we assume that pages from L1, . . . , Lk have pairwise distinct
priorities. For some set S we denote by minj (S) and maxj (S) the subset of S
of size j having the smallest and largest priorities respectively. Furthermore,
min(S) = min1 (S) and max(S) = max1 (S).

Definition 4.2 We construct iteratively k + 1 selection sets C0(ω), . . . , Ck(ω)
from the layer partition ω = (L0, . . . , Lk) as follows. We set C0(ω) = ∅ and for
j = 1, . . . , k we set Cj(ω) = maxj (Cj−1(ω) ∪ Lj).

When ω is clear from the context, we let Ci = Ci(ω). For a page request p
and offset function ω = (L0, . . . , Lk), denote ωp = (L′

0, . . . , L
′
k) and let C ′

k be the
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result of the selection process on ωp. By the layer update rule each layer contains
at least one element and the following result follows immediately.

Fact 4.1 |Cj| = j for all j ∈ {0, . . . , k}. If |Lj| is singleton then Cj = Cj−1∪Lj.
Moreover, all revealed pages are in Ck.

Updating Ck. We analyze how Ck changes upon a request. First we give
an auxiliary result in Lemma 4.2 and then show in Theorem 4.1 that C ′

k can
be obtained from Ck by at most one page replacement. We get how C ′

k can be
directly constructed from Ck and the layers, without executing the whole selection
process.

Lemma 4.2 Let p be the requested page from layer Li, where 0 < i < k. If for
some j, with i ≤ j < k we have q ∈ Cj and C ′

j−1 = Cj \ {q}, then we get

C ′
j =

{
Cj+1 \ {q} if q ∈ Cj+1 ,

Cj+1 \min{Cj+1} otherwise .

Proof. We have:

C ′
j = max

j
(L′

j ∪ C ′
j−1) = max

j
(Lj+1 ∪ Cj \ {q}) = Cj+1 \ {q} (case: q ∈ Cj+1)

C ′
j = max

j
(L′

j ∪ C ′
j−1) = max

j
(Lj+1 ∪ Cj \ {q}) = max

j
(Cj+1) (case: q /∈ Cj+1)

In both cases, we first use the assumption C ′
j−1 = Cj \ {q} and the partition

update rule L′
j = Lj+1. In the case q ∈ Cj+1 we use Cj+1 = maxj+1 (Lj+1 ∪ Cj) =

maxj (Lj+1 ∪ Cj \ {q})∪{q}, which holds as q ∈ Cj implies q /∈ Lj+1. If q /∈ Cj+1,
we use Cj+1 = maxj+1 (Lj+1 ∪ Cj) = maxj+1 (Lj+1 ∪ Cj \ {q}). We have q ∈ Cj,
q /∈ Cj+1 and |Cj+1| = j+1, which leads to C ′

j = maxj (Cj+1) = Cj+1\min{Cj+1}.
2

Theorem 4.1 Let p be the requested page. Given Ck, we obtain C ′
k as follows:

1. p ∈ Ck: C
′
k = Ck

2. p /∈ Ck and p ∈ L0: C ′
k = Ck \min(Ck) ∪ {p}

3. p /∈ Ck and p ∈ Li, i > 0: C ′
k = Ck \ min(Cj) ∪ {p}, and j ≥ i is the

smallest index with |Cj ∩ Ck| = j.

Before the proof, we note for the third case that the constraint |Cj ∩ Ck| = j
means that all pages in Cj are also in Ck. While in general this constraint does
not hold for all j, it is satisfied for all layers containing revealed pages (and the
rightmost layer containing unrevealed pages) and thus such a j always exists.
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Moreover, |Cj ∩ Ck| = j is equivalent to |(L1 ∪ · · · ∪ Lj) ∩ Ck| = j, since Cj has
elements only in L1 ∪ · · · ∪ Lj and Cj ⊆ Ck.

Proof. First assume that p ∈ L0. In this case, by construction p is not in Ck.
The only layers that change are Lk−1 and Lk: L′

k−1 = Lk−1 ∪ Lk and L′
k = {p}.

Applying the definition of C ′
k, the fact that Ck = maxk−1 (Ck−2 ∪ Lk−1)∪Lk, and

Lk is singleton, we get

C ′
k = C ′

k−1 ∪ {p} = max
k−1

(Ck−2 ∪ Lk−1 ∪ Lk) ∪ {p} = Ck \min (Ck) ∪ {p} .

Now we consider the case when p ∈ Li. We distinguish two cases: p ∈ Ck and
p /∈ Ck. If p ∈ Ck, we have by construction that p is in all sets Ci, . . . , Ck and
we get Ci = maxi (Ci−1 ∪ Li) = maxi−1 (Ci−1 ∪ Li \ {p}) ∪ {p}. Based on this
observation we show that C ′

i−1 = Ci \ {p}. It obviously holds for i = 1 since C ′
0

is empty. If i > 1 we get

C ′
i−1 = max

i−1
(Ci−2 ∪ Li−1 ∪ Li \ {p}) = max

i−1
(Ci−1 ∪ Li \ {p}) = Ci \ {p} .

Using C ′
i−1 = Ci \ {p} and p ∈ Ci, applying Lemma 4.2 we get C ′

i = Ci+1 \ {p}.
Furthermore, using that p is in all sets Ci+1, . . . , Ck, we apply Lemma 4.2 for all
these sets which leads to C ′

k−1 = Ck \ {p} and we obtain C ′
k = C ′

k−1 ∪ {p} = Ck.
Now we assume that p /∈ Ck. This implies that p is a non-revealed page. First

we analyze the structure of C ′
i−1 which will serve as starting point for applying

Lemma 4.2. If p ∈ Ci we argued before that C ′
i−1 = Ci \{p}. Otherwise, we show

that C ′
i−1 = Ci \ min(Ci). It holds for i = 1 since C0 is always empty and by

Fact 4.1 we have |C1| = 1. If i > 1 we get:

C ′
i−1 = max

i−1
(Ci−2 ∪ Li−1 ∪ Li \ {p}) = max

i−1
(Ci−1 ∪ Li \ {p}) = Ci \min(Ci) .

Let j ≥ i be the smallest index such that |Cj∩Ck| = j. By construction, we have
Cj ⊆ Ck. Applying Lemma 4.2 for sets C ′

i−1, . . . , C
′
j−1 we get C ′

j−1 = Cj \ {s},
where s ∈ Cj and either s = p, s = minCj, or s is a page with minimal priority
from a set Cl, with i ≤ l < j. Note that page s is also in Ck by the definition of Cj

and thus s = p can be excluded since p is not in Ck. If s is a page with minimal
priority from some set Cl then all the other pages in Cl are also in Cj and thus
in Ck because all of them have higher priorities than s. This leads to Cl ⊂ Ck

which contradicts the minimality of j. Thus we have s = minCj. Since the page
s = min(Cj) is in all sets Cj, . . . , Ck by Lemma 4.2 we get C ′

k−1 = Ck \min(Cj)
and it follows that C ′

k = Ck \min(Cj) ∪ {p}. 2

4.2.3 Probability Distribution of Ck

Theorem 4.2 Assume that non-revealed pages are assigned priorities such that
the order of the priorities is distributed uniformly at random. For any offset
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function ω, the distribution of Ck over all possible cache configurations is the same
as the distribution of the cache configurations for the Equitable algorithms.

Proof. Let u be the index of the last non-revealed layer, more precisely |Lu| > 1
and |Li| = 1 for all i > u. The set of non-revealed items is N(ω) = L1 ∪ · · · ∪ Lu

and the singletons Lu+1, . . . , Lk contain the revealed items R(ω).

The following selection process is used by both Equitable and Equitable2
to obtain the probability distribution of the cache M . Initially M contains all
k − u revealed items R(ω). Then u elements x1, . . . , xu are added to M , where
xi is chosen uniformly at random from the set of non-revealed items of ωx1,...,xi−1 ,
the offset function obtained from ω after requesting the sequence x1, . . . , xi−1.

We define an auxiliary selection C∗
k(ω) which is a priority based version of

Equitable’s random process and then prove for every fixed priority assignment
that Ck(ω) = C∗

k(ω) holds.

Assume that pages in N(ω) have pairwise distinct priorities, with a uniformly
distributed priority order. Initialize C∗

k(ω) to R(ω) and add elements x∗
1, . . . , x

∗
u

to C∗
k(ω), where x

∗
i is the page with maximal priority from the non-revealed items

of ωx∗
1,...,x

∗
i−1 . Obviously all pages from N(ω) have the same probability to possess

the maximal priority and thus x∗
1 and x1 have the same distribution. Since x∗

1 is
a revealed item in ωx∗

1 , the priority order of pages in N(ωx∗
1) remains uniformly

distributed. This implies inductively that C∗
k(ω) has the same distribution as Eq-

uitable. Note that by the definition of C∗
k we have C∗

k(ω) = C∗
k(ω

x∗
1) because x∗

1

becomes a revealed item in ωx∗
1 .

Now we prove for each fixed priority assignment that Ck(ω) = C∗
k(ω) by

induction on u. For u = 0 both C∗
k and Ck contain all k revealed items. For

u ≥ 1, let x∗
1 be the non-revealed page with the largest priority in ω. For the

auxiliary process, we have already shown that C∗
k(ω) = C∗

k(ω
x∗
1). Also, the index u

for ωx∗
1 is smaller by one than for ω, which by inductive hypothesis leads to

C∗
k(ω) = C∗

k(ω
x∗
1) = Ck(ω

x∗
1). It remains to prove that Ck(ω

x∗
1) = Ck(ω). By the

definition of the selection process for C1, . . . , Ck we have Ck(ω) = Cu(ω) ∪R(ω).
Page x∗

1 has the highest priority from N(ω) = L1∪· · ·∪Lu and thus it is a member
of Cu(ω) and hence also in Ck(ω). Applying the update rule from Theorem 4.1
we get Ck(ω) = Ck(ω

x∗
1), and this concludes the proof. 2

4.3 Algorithm OnlineMin

4.3.1 Algorithm

OnlineMin initially holds in its cache M the first k pairwise distinct pages.
Note that the timestamp of the last request for any page in Li is smaller than
the timestamp of the last request for any page in Li+1.
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Page Replacement. The algorithm maintains the invariant that M = Ck

after each request. To do so, it keeps track of the layer partition ω = (L0, . . . , Lk)
according to Definition 4.1 (including the forgiveness step of Equitable2), where
it suffices to store only the support layers (L1, . . . , Lk). The cache update is
performed according to Theorem 4.15. More precisely, if the requested page p
is in the cache, M remains unchanged. If a cache miss occurs and p is from
L0 the page with minimal priority from M is replaced by p. If p is from Li

with i > 0, and p /∈ M we first identify the set Cj in Theorem 4.1 satisfying
|Cj ∩ M | = j. This can be done as follows. Let p1, . . . , pk be the pages in M
sorted in increasing order by their layer index. We search the minimal index j ≥ i,
such that the condition that the layer index of pj is j, i.e. pj ∈ Lj, is satisfied
(index j is guaranteed to exist, since the condition holds for all revealed pages
and the rightmost unrevealed page). We evict the page with minimal priority
from p1, . . . , pj. The layers are updated after the cache update.

Priorities. To assign priorities, we develop a data structure which maintains a
dynamic random ordered set P of integers. We require at all times that the ranks
of numbers in P correspond to an (equally distributed) random permutation of
{1, . . . , |P |}. Under the assumption that the size of P is bounded by a number u,
we require |P | to support two operations: expand, which adds a new element
to P , and delete(x) which removes element x from P .

We use the universe U = {1, . . . , u} for numbers in P . We start with P = ∅.
Upon an expand operation we choose an element uniformly at random from
U \ P and insert it in P . Upon a delete operation, the element to delete is
simply removed from P . In particular, the expand operation corresponds to a
step in the Fisher-Yates shuffle algorithm (original method) [35]. They showed
that applying u expand operation results in a random permutation of U . In
Lemma 4.3 we show that the two operations can be implemented efficiently and
that the ranks of elements in P form a random permutation.

Lemma 4.3 The ranks of the elements in P represent a random permutation of
{1, . . . , |P |}. The data structure can be implemented in O(1) time per request and
uses O(u) space.

Proof. Let ex = (e1, . . . , ex) be a random variable describing the ranks in the
sequence after x consecutive expand operations. Since after u expand operation
the Fisher-Yates shuffle yields a random permutation. Thus, eu is a random
permutation of U and it follows that ex is a random permutation of {1, . . . , x}. If
ex describes the ranks in P , we get upon an expand operation the distribution ex+1

and upon a delete operation the distribution ex−1. We conclude that ranks in P
correspond to e|P | and thus a random permutation of {1, . . . , |P |}.

5Theorem 4.1 does not explicitly take into account the forgiveness step. According to Defi-
nition 4.1, if p ∈ L0 and forgiveness is applied we treat p as if it was requested in L1.
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The data structure can be implemented using an array A of size u and a list L
of size |P |. We store the elements from P in the first |P | locations of A and the
rest of A contains all elements from U \ P . The element order is given by the
list L. We further assume direct access to the position of any element i ∈ U in A
and in L using additional O(u) space. Initially we set A[i] = i and L = ∅. Upon
an expand operation we choose a random index r in the range [|P | + 1, u] and
append A[r] to L. To reflect this in A we switch the contents of A[|P | + 1] and
A[r]. The deletion of element x is similar, we first look up the index ix of x in A
and swap A[ix] and A[|P |]. We further delete x from L. 2

By the forgiveness mechanism the support size is at all times O(k) and thus
priorities can be maintained using the data structure previously introduced.
When a page enters the support we assign it a priority using the expand op-
eration, and when it leaves the support we use the delete operation. This takes
O(k) space and O(1) time per page request (at most one page is assigned a
new priority at each request) by setting u to the maximal support size which is
guaranteed by the forgiveness technique to be at most 3k.

Time and Space Complexity. Storing the layer partition together with the
page priorities needs O(k) space by applying the forgiveness mechanism of Eq-
uitable2 [11]. A naive implementation storing the layers in an array processes
a page request in O(k) time. In the remainder of the paper we will improve this
naive bound first to O(log k) worst case time per request using simple pointer-
based data structures and then to O(log k/ log log k) time per request using data
structures in the RAM model.

Competitive Ratio. We showed in Theorem 4.2 that the probability distri-
bution over the cache configurations for OnlineMin and Equitable2 are the
same. This holds also when using the forgiveness step, and thus the two algo-
rithms have the same expected cost. This leads to the result in Lemma 4.4.

Lemma 4.4 OnlineMin is Hk-competitive.

4.3.2 Algorithm Implementation

In this section we show that OnlineMin can be implemented using a sorted list
augmented with a series of specific operations. We will later focus only on giving
data structures supporting these operations.

Basic Structure. In the following we represent each page in the support by the
timestamp of its last request. Consider a list L = (l1, . . . , lt), with t ≤ 4k, where L
has two types of elements: k layer delimiters and at most 3k page elements.
Furthermore, we distinguish two types of page elements: cache elements which
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

Figure 4.2: Example for list L: representing pages by timestamps of last requests,
we have L1 = {2, 4}, L2 = {5}, L3 = {8, 10, 11}, L4 = {13, 15}, L5 = {18},
and L6 = {21}. Layer delimiters are emphasized and the memory content is
M = {4, 10, 11, 15, 18, 21}.

are the pages in the cache and support elements which are pages in the support
but not in the cache. We store in L the layers L1, . . . , Lk from left to right,
separated by k layer delimiters. For each layer Li we store its layer delimiter,
followed by the pages in Li. For each list element li, be it page element or layer
delimiter, we store a timestamp ti and a v-value vi with vi ∈ {−1, 0, 1}; for page
elements we also store the priority. For some element li, if it is a layer delimiter
for some layer Lj, we set vi = 1 and ti to the minimum of all page timestamps
in Lj. If li is a page element, then ti is set to the timestamp corresponding to
the last request of the page; we set vi = −1 for cache elements and vi = 0 for
support elements. Note that the layer delimiters always have ti values matching
the first page in their layer. As described before, layer delimiters always precede
page elements. An example is given in Figure 4.2.

Note that the v-values have the property that |Ck ∩ (L1 ∪ · · · ∪Li)| = i iff the
prefix sum of the v-values for the last element in Li is zero. Furthermore, since
|Ck ∩ (L1 ∪ · · · ∪ Li)| ≤ i the prefix sum cannot be negative. This property will
be used when dealing with a cache miss caused by a page from Li, with i > 0.

We show how to implement OnlineMin using the following operations on L:

• find-layer(lp). For some page lp, find its layer delimiter.

• search-page(lp). Check whether lp is a page in L.

• insert(lp), delete(lp). The item lp is inserted (or deleted) in L.

• find-min-prio(lp). Find the cache element lq ∈ (l1, . . . , lp) with minimum
priority.

• find-zero(lp). Find the smallest j, with p ≤ j such that
∑j

l=1 vl = 0,
and return lj.

We note that the prefix sum cannot be negative, and thus for the find-zero
operation it suffices to find the first element to the right having the minimum
prefix sum. For this reason, we refer to find-zero also as find-pref-min.

We describe how to update the list L upon a request for some page p. On-
lineMin keeps in memory at all times the elements in L having the v-value equal
to -1.
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If p /∈ M , we must identify a page to be evicted from M . To evict a page we
set its v-value to zero and to load a page we set its v-value to -1. We first find
the layer delimiter for p. We can have p ∈ Li with 0 < i ≤ k or p ∈ L0. If p ∈ Li,
the page to be evicted is the cache element in L1 ∪ · · · ∪Lj having the minimum
priority, where j ≥ i is the minimal index satisfying |M ∩ (L1 ∪ · · · ∪ Lj)| = j.
This is done using find-zero(lLi

), where lLi
is the layer delimiter of Li, and

the page to be evicted is identified using find-min-prio applied to the value
returned by find-zero. If p ∈ L0 and forgiveness need not be applied, the page
having the smallest priority in M is to be evicted. We identify this page in L
using find-min-prio on the last element in L. If we must apply forgiveness, we
treat p as being a support page in L1.

After updating the cache, we perform in L the layer updates as follows. If
p ∈ Li with i > 0, the layers are updated as follows: Li−1 = Li−1 ∪ Li \ {p},
Lj = Lj+1 for all j ∈ {i, . . . , k − 1}, and Lk = {p}. We first delete the layer
delimiter for Li and the page element for p, which triggers not only the merge
of Li−1 and Li \ {p}, but also shifts all the remaining layers, i.e. Lj = Lj+1 for
all j ≥ i. If we deleted the layer delimiter for L1, we also delete all pages in L1

because in this case L1 is merged with L0. To create Lk = {p}, we simply insert
at the end a new layer delimiter followed by p, both items having as timestamp
the current timestamp.

If p ∈ L0, we first check whether we must apply the forgiveness step, and if
so we apply it by simulating the insertion of p in L1 and then requesting it, as
described in Definition 4.1. If forgiveness need not be applied, we update the
layers Lk−1 = Lk−1 ∪ Lk and Lk = {p} as follows. We first delete the layer
delimiter of Lk, which translates into merging Lk−1 and Lk. Then, we insert a
new layer delimiter having the timestamp of the current request, i.e. create Lk,
and insert p with the same timestamp.

We note that while the priority of each page takes O(log k) space, the times-
tamp for its last request takes O(log n) space. We reduce the space requirement
to O(log k) by simply resetting the timestamps for pages and layers in support
after O(k) operations, setting the new timestamps to 1, . . . , |S|, where |S| is the
support size. The new timestamps are assigned in a left-to-right manner, thus
ensuring that the relative order of the new timestamps reflect the old order. Since
by the forgiveness mechanism we have at all times |S| = O(k), it follows that
O(1) amortized time per page request is required. We further deamortize this by
resetting only c timestamps per page request, in a left-to-right manner, where c
is a constant with c > 2; it is necessary to have c > 2 because at each request
two elements (i.e. the rightmost set delimiter and page) receive new timestamps
according to the current (large) timestamp, and we need to ensure that more
pages receive updated (small) timestamps. At the end of the day, in O(1) worst
case time per request we ensure that the timestamps take also O(log k) space.
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4.3.3 Pointer-Based Structures

We implement all the operations previously introduced using two data structures:
a set structure and a page-set structure. The set structure focuses only on the
find-layer operation, and the page-set data structure deals with the remaining
operations. While most operations can be implemented using standard data
structures, i.e. balanced binary search trees, the key operation for the page-set
structure is find-zero. That is because we need to find in sublinear time the
first item to the right of an arbitrary given element having the prefix sum zero
in the presence of updates, and the item that is to be returned can be as far as
Θ(k) positions in L.

Set Structure. The set structure is in charge only for the find-layer opera-
tion. To do so, it must also support updating the layers. It is a classical balanced
binary search tree, e.g. an AVL tree, built on top of the layer delimiters in L
having as keys the timestamps of the delimiters. Whenever a layer delimiter
is inserted or deleted from L, the set structure is updated accordingly. Each
operation takes O(log k) time in the worst case.

Page-set Structure. It contains all elements of L and supports all the re-
maining operations required on L. We store the elements of L in the leaves of
a regular leaf oriented balanced binary search tree indexed by the timestamps.
For some node u, denote by T (u) the subtree rooted at u and by L(u) the leaves
of T (u). To deal with the priorities, at each node u we store the minimum priority
u.min p of the cache pages in L(u) and a pointer u.idx min p to the leaf having
this priority; if no cache pages exist, u.min p is set to infinity and u.idx min p
to null. For handling the v-values we store at each node u the sum u.sum of the
v-values stored in L(u) and the minimum prefix sum u.pref min of the v-values
restricted on the elements of L(u). More precisely, if L(u) = (p1, . . . , pm), we
have u.pref min = minm

l=1(
∑l

j=1 pj.v). Also, we store a pointer u.idx pref min
to the leaf having the prefix sum u.pref min. All the data stored at each node is
shown in Figure 4.3.

In the following fact it is shown that all values stored at each node can be
computed bottom up in O(1) time per node.

Fact 4.2 For each node u with children u.left and u.right, the following hold:

• u.min p = min{u.left .min p, u.right.min p} and u.idx min p is either
u.left .idx min p or u.right.idx min p depending on the origin of u.min p.

• u.pref min = min{u.left .pref min, u.left .sum+ u.right.pref min} and
u.sum = u.left .sum + u.right.sum. We also have that u.idx pref min is
either u.left .idx pref min or u.right.idx pref min depending on the origin
of the minimum prefix sum computed.
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Figure 4.3: The additional information stored at each node in the page-set struc-
ture.
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Figure 4.4: The page-set data structure for L1 = {2, 4}, L2 = {5}, L3 =
{8, 10, 11}, L4 = {13, 15}, L5 = {18}, and L6 = {21}, and the memory im-
age M = {4, 10, 11, 15, 18, 21}. For each internal node u the (u.sum, u.pref min)
values are shown.

Updates. We discuss how to perform insertions and deletions in the page-set
structure. To insert an element, we create a leaf for the new element and an
internal node, and update the information stored at each internal node on the
path to the root as described in Fact 4.2. For the O(1) nodes per level involved in
rotations due to rebalancing we also recompute these values. Deleting an element
in the page-set structure is done analogously to insertion. We note however that
when requesting a page in L1 we must delete both the layer delimiter and all
page elements in L1 from the data structure which leads to O(log k) amortized
time. We will show later how to improve this bound to O(log k) worst case time
for deletions as well.

Queries. We turn to queries supported by the page-set structure, which are
the queries required on L. The search-page operation is implemented using a
standard search in a leaf-oriented binary search tree.
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For find-min-prio we find the page element having the minimum priority
in l1, . . . , lp by traversing the path from lp to the root in the page-set structure.
For each node u on the path where lp is in the right-subtree, consider its left
child w. For all such nodes w identified and the leaf lp, take the minimum over
all w.min p, and return the corresponding w.idx min p index. Since it does a
bottom-up traversal, this operation takes O(log k) time in the worst case.

It remains to deal with the find-zero operation, where we are given some
leaf storing lp and must return the first leaf to the right which has the prefix sum
of the v-values zero. We do so by traversing the path from lp to the root. For
each visited node u let s denote the sum of v-values of all elements in L(u) to
the right of lp. Also, let ps be the best prefix sum found so far and s idx the
corresponding leaf. Initially s idx = lp and s = ps = lp.v. When advancing to
the parent from the right children no action is required. When advancing to the
parent node u from the left child we first check if s+ u.right.pref min < ps and
if so we have found a better prefix sum, and update ps = s + u.right.pref min
and s idx = u.right.idx pref min. Finally we update s = s + u.right.sum. We
return the identified leaf s idx. This operation requires a bottom-up traversal of
the tree and thus takes O(log k) time in the worst case.

Worst-case Bounds. The only operation taking ω(log k) time is page deletion,
more precisely when a page in L1 is requested all pages in L1 are moved to L0 and
thus should be removed from the support. Instead of deleting the set delimiter
and all the pages corresponding to L1, we delete only the set delimiter. With the
leading set delimiter removed, the list L no longer starts with a set delimiter, but
with at most O(k) elements having the v-value set to 0, since all of these pages
belong to L0 and thus by Definition 4.2 cannot be cache elements. Also, these
pages do not influence the prefix sums for the v-values. When we process a page,
we simply start by checking if the leftmost element in the tree has a v-value of 0,
and if so we delete it. Since each page request adds at most one new element to
the support, the space complexity is still O(k). This way deletions can be done
in O(log k) time in the worst case.

Each page request uses O(1) operations in both data structures. Theorem 4.3
summarizes the time and space complexities for this implementation of Online-
Min.

Theorem 4.3 OnlineMin uses O(k) space and processes a request in O(log k)
time in the worst case.

4.3.4 RAM Model Structures

In this section we provide an alternative implementation for OnlineMin which
handles a page request in O(log k/ log log k) time. In particular,we describe how
the page-set structure operations can be implemented in O(log k/ log log k) time
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in the RAM model and argue that this is the best possible for an approach using
the page-set interface defined in Section 4.3.2.

For the set structure, we use the data structure in [5] which supports updates
and predecessor queries in O(

√
log k/ log log k) time while using O(k) space. A

data structure which supports the search-page, insert, delete, and find-min-prio
operations in O(log k/ log log k) time can be found in [65, Section 5], which adapts
fusion tree ideas [36] to priority search trees [47].

In the following we modify the page-set structure previously introduced to
support both find-min-prio and find-zero operations in O(log k/ log log k)
time. In particular, for the find-min-prio operation we borrow ideas from [65].
Instead of the balanced binary search tree in Section 4.3.3 we use a B-tree [8],
where each node has degree at most ∆ = logε k for some 0 < ε ≤ 1/4.

Again, each node u stores u.min p, u.idx min p, u.sum and u.idx pref min.
Furthermore, to support the find-min-prio operation and to be able to update
u.min p, each node u stores additionally the following:

• A Q-heap u.Q over the w.min p priorities at the children of u.

• A word u.π storing for all the ∆ children the rank of u.child[i].min p
among u.child[1].min p, ..., u.child[∆].min p. Therefore the number of bits
required by u.π is ∆ log∆ = o(log k).

The Q-heap of Fredman and Willard [37, Theorem, page 550], supports in
O(1) time insertions, deletions, predecessor queries (in particular min-queries),
and rank queries (how many elements are smaller than a query element) on sets
having at most (log k)1/4 elements. The data structure requires word size at least
log k and time O(k) to preprocess some global tables.

The Q-heap u.Q allows us to update u.min p in O(1) time when the i’th
child w gets a new w.min p value, by deleting the old w.min p value from u.Q,
inserting the new w.min p into u.Q, and querying u.Q for the new minimum.
When updating u.min p we can also compute the new rank of w.min p among
the children of node u using u.Q, and update u.π using a precomputed table:
T [old π, i, new rank] = new π. Note that old π, i, and new rank in total only
require ∆ log∆+ log∆+ log∆ = o(log k) bits, i.e. the table needs ko(1) precom-
puted entries. To perform find-min-prio we similarly traverse a leaf-to-root
path. At each node u where we now come from the i’th child w, we identify
the minimum of u.child[1].min p, . . . , u.child[i− 1].min p by considering π only,
which again can be answered using a precomputed table T , where T [π, i] stores
the index of the child having the minimum min p value.

To support the find-zero operation we need to efficiently update and query
the prefix sum fields. To this end, we consider the updates in T (u) in phases,
where each phase consists of ∆ updates below u. At each node u we store the
following:
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• A counter u.count in the range 0 . . .∆− 1, counting the number of updates
below u since the start of the phase.

• A word u.τ storing an array of size ∆ with M [i] ∈ [0, . . . ,∆(∆+ 2)] for all
i; this means that u.τ can be stored in ∆(1 + 2 log∆) = o(log k) bits.

• Two arrays m and PS, each of size ∆.

• A word u.ς storing an array dm of size ∆ with dm[i] ∈ [−∆, . . . ,∆], i.e. u.ς
can be stored in ∆ log(2∆ + 1)=o(log k) bits.

At the beginning of a phase for some node u we reset the information stored
at u as follows. The arrays PS and m store the prefix sum and the minimum
prefix sum for the children of u respectively, that is PS[i] =

∑i−1
j=1 u.child[j].sum

and m[i] = u.child[i].pref min + PS[i]. Also, we set dm[i] = 0 for all i. After a
number of updates in a phase for T (u), dm[i] is the value to be added to PS[i]
to get the correct values for PS[i] and m[i].

We let M be an approximation of m which maintains at all times dur-
ing the phase the following invariant: for all i, if m[j] + dm[j] = min(m[i] +
dm[i], . . . ,m[∆] + dm[∆]) then we have that M [j] = min(M [i], . . . ,M [∆]).

At the beginning of a phase we construct M for decreasing index i, while
keeping track of the minimum m[min] where min > i. Initially min = u.degree
and M [u.degree] = ∆2. For i = u.degree − 1 downto 1, we compute M [i] as
follows: ifm[i] ≥ m[min]+∆ thenM [i] = M [min]+∆, and ifm[i] ≤ m[min]−∆,
then M [i] = M [min] −∆; otherwise, M [i] = M [min] +m[i] −m[min]. If after
computing M [i] we have M [i] < M [min] then we set min = i, see e.g. Figure 4.5.
The key idea is that any update can only change the pref min value of a node
by at most one, since the v-values are in {−1, 0, 1}. Therefore, if for some i and
j it holds that |u.child[i].pref min − u.child[j].pref min| > ∆ at the beginning
of the phase, then their relative order does not change during the ∆ updates in
the phase.

To analyze the range of the M [i] values, we note that since M [j] is decreasing
during the construction any assigned value can be at most M [u.degree] +∆, i.e.
∆(∆ + 1). Similarly, each M [i] ≥ M [i + 1] − ∆, i.e. all M [i] ≥ M [u.degree] −
(∆ − 1)∆ = ∆2 −∆2 + ∆ = ∆. Since each update below u during a phase can
change M [i] by at most ±1, it follows that during the ∆ operations in a phase
all M [i] values are within the range [0 . . .∆(∆ + 2)].

During an update where u.child[i].sum is incremented we increment all M [j]
and dm[j] for i < j ≤ u.degree; also, we increment M [i] and m[i] whenever
u.child[i].pref min is incremented. The case when u.child[i].sum is decremented
is treated similarly. The updating of M and dm can be done in O(1) time using
table lookup, i.e. T1[old τ, i] = new τ and T2[old ς, i] = new ς. Since M is
reconstructed only at the beginning of a phase, andM and dm can be constructed
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Figure 4.5: Illustration of the construction of M from m. Circles are the elements
of m. For each i the solid line/circle shows the minimum m to the right of i.
Elements that cannot become the answer during the next ∆ updates are replaced
by the elements pointed to by an arrow. The shaded area are the ranges of the
domain removed in the transformation from m to M .

in O(∆) time, it follows that the amortized cost to update M and dm for an
update below u is amortized O(1).

Updating the u.sum values bottom-up during updates is done by adding (sub-
tracting) the inserted (deleted) value along the leaf-to-root path. The child i
storing the new u.idx pref min = u.child[i].idx pref min can be extracted from
u.M (i.e. u.τ) using a table lookup, and v.pref min = m[i] + dm[i] (we compute
the index of the minimum child before actually knowing the exact value).

A query, i.e. find-zero, is performed bottom-up as in Section 4.3.3, where we
keep track of the minimum prefix sum s so far, except that when reaching node u
from child i, we need to find the child j with minimum prefix sum among children
i+1, . . . , degree(u). This can be extracted from u.M using table lookup in O(1)
time. The minimum prefix sum for u.child[j] is PS[j] = u.m[j]+u.dm[j], which is
compared to the prefix sum from u.child[i] which is PS[i] = s+u.PS[i]+v.dm[i];
s becomes the minimum of PS[i] and PS[j]. If this minimum is PS[j], then
idx pref min is updated to u.child[j].idx pref min.

Inserting a new leaf into the tree might cause a node to get more than ∆
children, in which case we split the affected node into two nodes of degree at
most ∆/2 + 1 each. Whenever a node is split, gets a new child, or loses a child,
we recompute all the information at the node in O(∆) time. This way the total
number of node splits is bounded by O(#insertions/∆) and it follows that the
total cause for splitting and inserting/deleting leaves is O(#insertions ·∆), i.e.
amortized O(∆) per update. To avoid the height of the tree to exceed O(log∆ k),
we globally rebuild the tree and all the associated information from scratch in
O(k) time whenever half of the leaves inserted into the tree have been deleted.
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To achieve worst case bounds we use standard deamortization techniques. We
perform the node splitting and the computation of the appropriate values at the
beginning of each phase incrementally. We simply save the state of the node and
at each update we perform O(1) computations such that after ∆ updates the
updated values in the given node are computed. Similarly, the global rebuilding
can be done incrementally as well, which yields O(1) at each level of the tree for
all operations. Since the tree has height O(log∆ k) where ∆ = logε k, it follows
that all operations can be implemented in O(log k/ log log k) worst case time.

The following results stems from the fact that each page request uses a con-
stant number of operations on the previously introduced data structure.

Theorem 4.4 A page request can be done in O(log k/ log log k) time while using
O(k) space.

Lower Bounds The following cell-probe (RAM) lower bounds (using words
of log k bits) state that for the page-set structure we cannot achieve better
than Ω(log k/ log log k) query time with polylogarithmic deletion bounds. Ac-
cording to [4, Proposition 2] (note after proposition about decremental priority
searching) any data structure supporting delete and find-min-prio requires
Ω(log k/ log log k) time for polylogarithmic deletion time. We note that the given
lower bound applies to the page-set structure in particular and not to the paging
problem in general, not even to the approach taken by OnlineMin. Nonetheless,
they show that to process a page request in o(log k/ log log k) time any imple-
mentation must exploit some particular characteristics of OnlineMin.
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Chapter 5

Improved Space Bounds for Strongly
Competitive Randomized Paging
Algorithms

The work Improved Space Bounds for Strongly Competitive Random-
ized Paging Algorithms was published as a technical report [52] and was
accepted as a conference paper [50] at ICALP 2013.

[52] G. Moruz and A. Negoescu. Improved space bounds for strongly compet-
itive randomized paging algorithms. Technical report, Goethe-Universität
Frankfurt am Main, 2013

[50] G. Moruz and A. Negoescu. Improved space bounds for strongly competitive
randomized paging algorithms. In Proc. 40th International Colloquium on
Automata, Languages, and Programming, ICALP 2013 (to appear)

The contents of this chapter correspond to the technical report [52] which is the
full version of the conference paper [50]. The technical report contains the same
results as the conference paper. In addition to the contents of the conference
paper it contains proofs for:

• Lemmas 5.1-5.4, 5.7, 5.9

• Theorems 5.3, 5.4

which were omitted due to space limitation.
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Improved Space Bounds for Strongly
Competitive Randomized Paging Algorithms

Gabriel Moruz, Andrei Negoescu

Abstract

Paging is one of the prominent problems in the field of online algo-
rithms. While in the deterministic setting there exist simple and efficient
strongly competitive algorithms, in the randomized setting a tradeoff be-
tween competitiveness and memory is still not settled. Bein et al. [10]
conjectured that there exist strongly competitive randomized paging algo-
rithms, using o(k) bookmarks, i.e. pages not in cache that the algorithm
keeps track of. Also in [10] the first algorithm using O(k) bookmarks (2k
more precisely), Equitable2, was introduced, proving in the affirmative
a conjecture in [14].

We prove tighter bounds for Equitable2, showing that it requires less
than k bookmarks, more precisely ≈ 0.62k. We then give a lower bound for
Equitable2 showing that it cannot both be strongly competitive and use
o(k) bookmarks. Nonetheless, we show that it can trade competitiveness
for space. More precisely, if its competitive ratio is allowed to be (Hk + t),
then it requires k/(1 + t) bookmarks.

Our main result proves the conjecture that there exist strongly compet-
itive paging algorithms using o(k) bookmarks. We propose an algorithm,
denoted Partition2, which is a variant of the Partition algorithm by
McGeoch and Sleator [48]. While classical Partition is unbounded in
its space requirements, Partition2 uses Θ(k/ log k) bookmarks. Further-
more, we show that this result is asymptotically tight when the forgiveness
steps are deterministic.

5.1 Introduction

Paging is a prominent and well studied problem in the field of online algorithms.
We are provided with a two-level memory hierarchy consisting of a fast cache
which can accommodate k pages, and a slow memory of infinite size. The input
consists of requests to pages which are processed as follows. If the currently
requested page is in the cache, we say that a cache hit occurs and the algorithm
proceeds to the next page. Otherwise, a cache miss occurs and the requested
page must be brought into cache. Additionally, if the cache was full, a page in
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cache must be evicted to accommodate the new one. The cost of the algorithm
is given by the number of cache misses incurred.

Online algorithms in general and paging algorithms in particular are typically
analyzed in the framework of competitive analysis [41,60]. An algorithm A is said
to have a competitive ratio of c (or c-competitive) if its cost satisfies for any input
cost(A) ≤ c ·cost(OPT )+O(1), where cost(OPT ) is the cost of an optimal offline
algorithm, i.e. an algorithm which is presented with the input in advance and
processes it optimally; for randomized algorithms, cost(A) is the expected cost
of A. An algorithm achieving an optimal competitive ratio is said to be strongly
competitive. For paging, an optimal offline algorithm was proposed decades ago;
upon a cache miss, it evicts the page in cache whose request occurs the furthest
in the future [12]. In the remainder of the paper, we refer to this algorithm as
OPT . For comprehensive surveys on online algorithms in general and paging
algorithms in particular, we refer the interested reader to [2, 14].

Competitive ratio has been often criticized for its too pessimistic quality guar-
antees. Especially in the deterministic setting, the empirically measured perfor-
mance for practical algorithms is far below the theoretical guarantee of k provided
by competitive analysis [68]. This gap is significantly smaller for randomized al-
gorithms, since the best possible competitive ratio is Hk. Although using only the
quality guarantees provided by competitive analysis is a naive way to distinguish
good paging algorithms from bad ones, we have shown in [51] that ideas from
competitive analysis for randomized algorithms can be successfully employed to
design algorithms with good performance on real-world inputs. That is because
an optimal randomized algorithm can be viewed as a collection of reasonable de-
terministic algorithms, and the algorithm designer can simply look for suitable
algorithms in this collection.

Related Work. Randomized competitive paging algorithms have been exten-
sively studied over the past two decades. In [32] a lower bound of Hk on the
competitive ratio of randomized paging algorithms has been given1. Also in [32],
a simple (2Hk − 1)-competitive algorithm, denoted Mark, has been proposed.
In [23] it was shown that no randomized Marking algorithm can achieve a compet-
itive ratio better than (2− ε)Hk for any ε > 0, meaning that Mark is essentially
optimal.

The first strongly competitive paging algorithm, denotedPartition, was pro-
posed in [48]. While it achieves the optimal competitive ratio of Hk, its time and
space requirements are in the worst case proportional to the input size indepen-
dently of the cache size, which makes them hopelessly high. More recent research
has focused on improving these bounds, especially the space requirements. In
the literature, a bookmark refers to a page outside the cache that the algorithm
keeps track of; in particular, an algorithm is denoted trackless if it stores no

1Hk =
∑k

i=1 1/i is the kth harmonic number.



5.2. Preliminaries 67

bookmarks at all. In [1], an Hk-competitive algorithm, denoted Equitable,
was proposed, using only O(k2 log k) bookmarks. Using a better version of Eq-
uitable, denoted Equitable2, this bound was further improved in [11] to 2k
bookmarks. This solved the open question in [14] that there exist Hk-competitive
paging algorithms using O(k) space. In [21] we proposed an algorithm, denoted
OnlineMIN, which further improved Equitable2 by reducing its runtime for
processing a page from O(k2) to O(log k/ log log k) while maintaining its space
requirements.

A distinct line of research for randomized paging algorithms consists of con-
sidering fixed small cache sizes (k = 2 and k = 3 to our best knowledge) to obtain
tighter bounds than for general k. In [9], for k = 2, a 3

2
-competitive algorithm

using only one bookmark was proposed. Also in [9], for trackless randomized
algorithms a lower bound on the competitive ratio of 37

24
≈ 1.5416 was given. Still

for k = 2, a trackless algorithm having an upper bound of ≈ 1.6514 was intro-
duced in [23]. Finally, in [11], strongly competitive randomized paging algorithms
were proposed for k = 2 and k = 3, using 1 and 2 bookmarks respectively.

Our Contributions. This work focuses on the number of bookmarks needed
by randomized algorithms to achieve the optimal competitive ratio of Hk. The
best previously known result is 2k [11]. In [11] it was conjectured that there exist
algorithms that use o(k) bookmarks and are Hk-competitive.

We first give a tighter analysis for Equitable2 improving the amount of
bookmarks from 2k to ≈ 0.62k, which is the first solution using less than k
bookmarks. We give a negative result showing that Equitable2 cannot achieve
a competitive ratio of Hk using o(k) bookmarks. Nonetheless, we show that it
can trade competitiveness for space: if it is allowed to be (Hk + t)-competitive,
it requires k/(1 + t) bookmarks.

We propose an algorithm Partition2 which is a modification of the Parti-
tion algorithm. Partition2 improves the bookmarks requirements from pro-
portional to input size to Θ(k/ log k) and thus proves the o(k) conjecture. For our
analysis we provide a constructive equivalent between the two representations of
the offset functions in [48] and [43]. Since offset functions are the key ingredi-
ent in the design and analysis of optimal competitive algorithms for paging, this
may be of independent interest. Finally, we show that k/Hk is a lower bound
on the number of bookmarks for any strongly competitive algorithm which uses
a deterministic approximation of the offset function. This makes Partition2
asymptotically optimal within this class.

5.2 Preliminaries

In this section we give a brief introduction concerning offset functions for paging,
the Equitable algorithms, and forgiveness as a space bounding technique.
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Offset Functions. In competitive analysis the cost approximation of the op-
timal offline algorithm plays an important role. For the paging problem it is
possible to track online the exact minimal cost using offset functions. For a fixed
input sequence σ and an arbitrary cache configuration C (i.e., a set of k pages),
the offset function ω assigns to C the difference between the minimal cost of
processing σ ending in configuration C and the minimal cost of processing σ. A
configuration is called valid iff ω(C) = 0. In [43] it was shown that the class
of valid configurations V determines the value of ω on any configuration C by
ω(C) = minX∈V{|C \X|}. We can assume that OPT is always in a valid con-
figuration. More precisely, if p is requested and there exists a valid configuration
containing p, then the cost of OPT is 0; otherwise OPT pays 1 to process p.

Layer Representation. In [43] it was shown for the paging problem that the
actual offset function can be represented as a partitioning of the pageset in k+1
disjoint sets L = (L0|L1| . . . |Lk), denoted layers. An update rule for the layers
when processing a page was also provided. Initially, the first k pairwise distinct
requested pages are stored in layers L1, . . . , Lk, one page per layer, and L0 con-
tains the remaining pages. Upon processing page p, let Lp = (Lp

0|L
p
1 . . . |L

p
k) be

the partitioning after processing p; Lp is obtained from L as follows2:

• Lp = (L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

• Lp = (L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |Lk|{p}), if p ∈ Li, i > 0

This layer representation can be used to keep track of all valid configurations.
More specifically, a set C of k pages is valid iff |C ∩ Li| ≤ i holds for all 0 ≤ i ≤
k [43].

For a given L, denote by support S(L) = L1 ∪ · · · ∪ Lk. Also, we call a
layer containing a single page a singleton. Let r be the smallest index such
that Lr, . . . , Lk are singletons. The pages in Lr, . . . , Lk are denoted revealed, the
pages in support which are not revealed are unrevealed, and the pages in L0 are
denoted Opt-miss. OPT faults on a request to p iff p ∈ L0 and all revealed
pages are (independent of the current request) in OPTs cache. If L consists
only of revealed pages it is denoted a cone and we know the content of OPT’s
cache. Although the layer representation is not unique it has an unique signature.
The signature χ(L) is defined as a k-dimensional vector χ = (x1, . . . , xk), with
xi = |Li| − 1 for each i = 1, . . . , k.

Selection Process. In [21] we defined a priority based selection process on L
which is guaranteed to construct a valid configuration. Assume that pages in the
support have pairwise distinct priorities. Our selection process builds a hierarchy
of sets C0, . . . , Ck as follows:

2We use the layer representation introduced in [21], which is equivalent to the ones in [1,43].
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• C0 = ∅

• Ci consists of the i pages in Ci−1 ∪ Li having the highest priorities, for all
i > 0.

Note that, by definition, when cunstructing Ci there are i+xi candidates and
i slots. Also, if Li is singleton we have xi = 0 and Ci = Ci−1 ∪ Li; for singleton
layers and only for singleton layers, all elements in both Ci−1 and Li make it to
Ci and we say that no competition occurs. The outcome Ck contains k pages
and is always a valid configuration. In particular, if the priorities are the negated
timestamps of the next requests (in the future) for the support pages, then Ck is
identical to OPT’s cache.

Equitable and OnlineMin. The cache content of theEquitable algorithms [1,
11] is defined by a probability distribution over the set of all valid configurations.
The cache configuration depends solely on the current offset function. This distri-
bution is achieved by the OnlineMin algorithm using the previously introduced
priority-based selection process, when priorities are assigned to support pages
such that each permutation of the ranks of these pages is equally likely. The
cache content of OnlineMin is at all times the outcome Ck of the selection pro-
cess. Since we use in the remainder of the paper only this selection process, we
do not describe the selection process for Equitable. Nonetheless, the resulting
probability distribution on cache configurations is the same as for Equitable,
and in the rest of the paper we refer to this distribution and the associated
algorithm as Equitable.

Forgiveness. Note that the support size increases only when pages in L0 are
requested, and may decrease only when pages in L1 are requested. As the amount
of Opt-miss requests may be very large, the support size and together with it
the space usage of algorithms, such as Equitable, using it to decide their cache
content may also be arbitrarily large. To circumvent this problem, the forgiveness
mechanism is used. Intuitively, if the support size exceeds a given threshold, then
the adversary did not play optimally and we can afford to use an approximation
of the offset function which is bounded in size.

5.3 Better Bounds for Equitable2

There are two Equitable algorithms, Equitable [1] and Equitable2 [11]3.
For a fixed offset function (both use an approximation of the actual offset func-
tion), they have the same distribution as previously introduced. The difference
between them is given by the forgiveness mechanism used. In this section we

3In [11] Equitable2 is denoted K Equitable. In this paper we use its original name.
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focus on the Equitable2 algorithm using the forgiveness mechanism described
in [11] which works as follows. Whenever the support size reaches a threshold
value and an Opt-miss page is requested, the requested page is artificially in-
serted in L1 and processed as a L1 page. This way, all pages in L1 move to
L0 and the support size never exceeds the designated threshold. The threshold
in [11] is set to 3k, i.e. the algorithm uses 2k bookmarks. We give a tighter
analysis and show that using the same forgiveness the algorithm uses less than
k bookmarks. We also give lower bounds showing that it can not achieve o(k)
bookmarks while preserving its Hk competitive ratio. Finally, we show that it
can trade competitiveness for space. More specifically, if the algorithm is allowed
to be (Hk + t)-competitive, it can be implemented using k/(1 + t) bookmarks,
where t is an arbitrary non-negative value, e.g a function in k.

To accommodate the selection process forOnlineMIN previously introduced,
all pages in support have pairwise distinct priorities, such that each priority
ordering of the support pages is equally likely. We say that some page p has
rank i in a set if its priority is the i’th largest among the elements in the given
set.

Potential. In [1] an elegant potential function, based only on the current offset
function, was introduced. Given the layer representation L, the potential Φ(L)
is defined to be the cost of a so-called lazy attack sequence, that is, a sequence of
consecutive requests to unrevealed pages until reaching a cone. The potential Φ
is well defined because in the case of the Equitable distribution, all lazy attack
sequences have the same overall cost for a given offset function [1].

Initially, we are in a cone and thus Φ = 0. Upon a request to a page
p in support, having cache miss probability pb(p), by definition we have that
∆Φ = −pb(p). On lazy requests OPT does not fault and thus ∆cost + ∆Φ =
∆costOPT = 0. Upon a request from L0 both Equitable and OPT have cost 1
and it was shown that ∆Φ ≤ Hk − 1 [1, 11]. Since upon revealed requests both
algorithms never fault and the offset function does not change we have:

∆cost+∆Φ ≤ Hk ·∆costOPT .

If L is a cone, it is easy to verify that a request in L0 leads to ∆Φ = Hk − 1.
If the support size is strictly larger than k the difference in potential is smaller,
i.e. ∆Φ < Hk − 1. This means that the algorithm pays less than its allowed
cost and thus it can make savings. These savings can be tracked by a second
potential function and are used to pay for the forgiveness step when the support
size becomes large enough. While Φ is very comfortable to use for requests in
support, for arbitrary offset functions there is no known closed form for its exact
actual value or for its exact change upon a request in L0.
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5.3.1 Approximation of Φ

The key ingredient to our analysis is to get a bound as tight as possible for ∆Φ
on requests in L0. That is because a tighter bound for this value implies larger
savings, which in turn means that these savings can pay earlier (i.e. for a smaller
support size) for a forgiveness step, which in the end means fewer bookmarks.
We therefore analyze ∆Φ for requests to pages in L0 when no forgiveness step is
applied. Note that Φ depends only on the signature χ = (x1, . . . , xk) of the layer
representation. We use χ = 0 for the cone signature (0|0| . . . |0) and χ = ei for
the i-th unit vector (0| . . . |xi = 1| . . . |0). If χ = 0 we have Φ = 0. Otherwise,
let i be the largest index such that xi > 0. Since all lazy attack sequences have
the same cost, we get that Φ is the cost of i consecutive requests, each of them to
a page in the (current) first layer. For the layer representation L of the current
offset function, we let cost1(L) denote the probability of cache miss for a page p
in L1, i.e. pb(p /∈ Ck) in the selection process.

We start with a simple case, where all layers are singletons except some
layer Li. The potential Φ for this particular case is easy to calculate and is
given in Lemma 5.1.

Lemma 5.1 Let χ = n · ei be the signature of L, where n > 0 and 0 < i < k.
We have Φ(χ) = n · (Hi+n −Hn).

Proof. Let p be a page in L1. Since there is no competition in the selection
process for Cj, where j ̸= i, we have that p ∈ Ci−1 independent of its priority and
p ∈ Ck iff p ∈ Ci. For the selection in Ci we have i slots and i+n candidates. All
these candidates have the same probability to be selected in Ci, since all layers
L1, . . . , Li are singleton and thus no competition steps happened; note that this
argument holds only if x1 = · · · = xi−1 = 0. This means that the probability of
a cache miss is n

i+n
. Updating the layers leads to χ = n · ei−1. Repeating the

argument we obtain:

Φ =
n

i+ n
+

n

i− 1 + n
+ · · ·+ n

1 + n
= n(Hi+n −Hn) ,

and the claim holds. 2

For some arbitrary values i, n, and κ, where 0 < i < κ ≤ k consider the
signatures χ = n · ei and χ′ = n · ei + eκ−1; let L and L′ be their corresponding
layer representations. We define the difference in the cost for a request in L1:

f(i, n, κ) = cost1(χ
′)− cost1(χ) .

In the special case κ = k it represents ∆cost1 upon a request in L0. The value
for f(i, n, κ) can be computed exactly and is given in Lemma 5.2.

Lemma 5.2 f(i, n, κ) = 1
n+κ

∏κ−1
j=i

j
n+j

.
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Proof. If i = κ−1, we have cost1(χ) = n/(κ−1+n) and cost1(χ
′) = (n+1)/(κ+n),

and the result immediately follows. For the remainder of the proof we assume
i < κ− 1. Consider a priority assignment for χ′ and a request to some page p in
L′
1. By the selection process for OnlineMIN, the value of f(i, n, κ) is given by

the probability that p ∈ C ′
i and p /∈ C ′

κ−1, since if p ∈ C ′
κ−1 then p ∈ C ′

k and the
probability that p ∈ C ′

i is the probability of a cache hit in χ, i.e. if p ∈ Ci then
p ∈ Ck. The scenario p ∈ C ′

i and p /∈ C ′
k−1 happens when p has rank i (i.e. has

the i’th highest priority) among the n+ i pages in L′
1 ∪ · · · ∪ L′

i and all pages in
L′
i+1, . . . , L

′
κ−1 have greater priorities than p. There are (n + i− 1)! possibilities

that p has rank i among the n+ i pages in L′
1 ∪ · · · ∪L′

i. For each of these, there
are i · (i+ 1) · . . . · (κ− 1) possibilities that all the κ− i pages in L′

i+1, . . . , L
′
κ−1

have priorities higher than p. We get that:

f(i, n, κ) =
(n+ i− 1)!

∏κ−1
j=i j

(n+ κ)!
=

1

n+ κ

κ−1∏
j=i

j

n+ j
,

which concludes the proof. 2

We are now ready to move to a more general case. In Lemma 5.3 we show
that f(i, n, κ) is an upper bound on ∆cost1 for a whole class of signatures.

Lemma 5.3 Consider a signature χ = (x1| . . . |xk), and let i be the minimal
index with xj = 0 for all j > i. Also, let χ′ = χ + eκ−1, i < κ ≤ k. For
n = x1 + · · ·+ xi, we have

cost1(χ
′)− cost1(χ) ≤ f(i, n, κ).

Proof. Let g(i, n, κ) = cost1(χ
′) − cost1(χ). Similar to the proof of Lemma 5.2,

the value of g(i, n, κ) is given by the probability that a request p ∈ L′
1 is in C ′

i

and not in C ′
κ−1. Intuitively, the proof is based on the observation that the fact

that p must have exactly rank i among the n+ i pages in L′
1∪· · ·∪L′

i is necessary
but not sufficient, whereas in the proof of Lemma 5.2 this fact was necessary and
sufficient.

Assume i < κ − 1. By the definition of the selection process, if p ∈ C ′
i then

the priority of p is compared against the priorities of all pages in L′
1 ∪ · · · ∪ L′

i,
because p ∈ L′

1; note that this doesn’t necessarily hold if p ∈ L′
j, with j > 1.

This immediately means that p must necessarily have rank i in L′
1∪· · ·∪L′

i. The
number of permutations where p has rank i among the n+ i pages is (n+ i− 1)!.
However, it may not hold that for all of them we have p ∈ C ′

i. Let j1, . . . , jt be
indices smaller than i such that x′

jl
̸= 0 for all jl. To have p ∈ C ′

i, the priority
of p must also be among the largest j1 in L′

1 ∪ · · · ∪ L′
j1
, among the largest j2 in

C ′
j1
∪ L′

j1+1 · · · ∪ L′
j2

and so on; in short, p must overcome t selection processes,
instead of one as in the proof of Lemma 5.2. The set P of permutations on the
(n+ i) pages in the first i layers where p has rank i and p ∈ C ′

i has size at most
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(n+ i− 1)!. Recall that all κ− i elements in L′
i+1 ∪ · · · ∪ L′

κ−1 must have higher
priorities than p. For each permutation in P there are i · (i + 1) · . . . · (κ − i)
possibilities to do so. In total, we get that:

g(i, n, κ) =
|P |

∏κ−1
j=i j

(n+ κ)!
≤

(n+ i− 1)!
∏κ−1

j=i j

(n+ κ)!
= f(i, n, κ) .

If i = κ − 1, we have that g(i, n, κ) is the probability that p ∈ Ci and p /∈ C ′
i.

Let q be an arbitrary page in L′
i. Then g(i, n, κ) is bounded by the probability

that q has rank (i+ 1) in L′
1 ∪ · · · ∪ L′

i and rank i in L′
1 ∪ · · · ∪ L′

i \ {q}. Using a
similar reasoning, there are (n+ i− 1)! · i possibilities for this scenario to occur,
which concludes the proof. 2

Lemma 5.4 provides a useful identity for approximating ∆Φ for a request in
L0.

Lemma 5.4 For any i and κ with i < κ, it holds that
∑i

j=1 f(i − j + 1, 1, κ −
j + 1) = Hκ −Hκ−i − i

κ+1
.

Proof. We first note that:

f(i, 1, κ) =
1

κ+ 1
· i

i+ 1
· i+ 1

i+ 2
· · · κ− 1

κ
=

i

κ(κ+ 1)
.

Denoting by S(i, κ) =
∑i

j=1 f(i−j+1, 1, κ−j+1) and using that i/(κ(κ+1)) =
i/κ− i/(κ+ 1), we have:

S(i, k) = f(i, 1, κ) + · · ·+ f(1, 1, κ− (i− 1))

=
i

κ
− i

κ+ 1
+ · · ·+ 1

κ− (i− 1)
− 1

κ− (i− 2)

=
1

κ
+ · · ·+ 1

κ− (i− 2)
+

1

κ− (i− 1)
− i

κ+ 1
,

which concludes the proof. 2

Theorem 5.1 For a request to a page p ∈ L0 where no forgiveness is applied, let
i be the largest index with xi > 0; i = 0 if we are in a cone. We have that:

Hk−i −H1 ≤ ∆Φ ≤ Hk −H1 − i/(k + 1).

Proof. For i = 0, in a cone we have ∆Φ = Hk − 1 by Lemma 5.1. If i > 0, let
L and L′, and χ and χ′ = χ + ek−1 denote the layers and their corresponding
signatures before and after the request to p respectively. We consider the cost
of a sequence of i consecutive requests p1, . . . , pi, each of these to pages in the
current L1. For each j = 1, . . . , i let χj and χ′j denote the signatures before



74 Chapter 5. Improved Space Bounds

processing pj. After the whole sequence is processed, we have χ = 0 with Φ = 0
and χ′ = ek−i−1 with Φ′ = Hk−i −H1 by Lemma 5.1. We get:

∆Φ = Hk−i −H1 +
i∑

j=1

(
cost1(χ

′j)− cost1(χ
j)
)

Since cost1(χ
′j)− cost1(χ

j) is non-negative, the left inequation holds.
Now we bound cost1(χ

′j) − cost1(χ
j) using Lemma 5.3. Before processing

page pj we have x
j
i−j+1 > 0, xj

l = 0 for all indices l > i− j+1 and χ′j = χj+eκ−1

with κ = k − j + 1 . Denoting nj = xj
1 + · · ·+ xj

i−j+1, we get:

∆Φ ≤
i∑

j=1

f(i− j + 1, nj, k − j + 1) +Hk−i −H1

≤
i∑

j=1

f(i− j + 1, 1, k − j + 1) +Hk−i −H1

= Hk −Hk−i −
i

k + 1
+Hk−i −H1 .

The inequations stem from the fact that f is decreasing in n and nj > 0 for all
j ≤ i, and the equality is the result in Lemma 5.4. 2

5.3.2 Competitiveness and Bookmarks

Having obtained a tighter bound on ∆Φ for requests in L0, we get improved
savings using a second potential Ψ. To define Ψ(L), we first introduce the concept
of chopped signature. For some signature χ = (x1| . . . |xk), let i be the largest
index such that xi > 0. The chopped signature corresponding to χ is χ =
(x1| . . . |xk), where xi = xi − 1 and xj = xj for all j ̸= i. If we are in a cone and
χ = 0 we define χ = χ. Ψ is defined as:

Ψ(L) =
1

k + 1

k−1∑
i=1

i · xi .

Note that Ψ(L) = 0 if χ = 0 or χ = ei and otherwise we have Ψ(L) > 0 .

Fact 5.1 For a request to page p ∈ Li, i > 0, it holds:

∆Ψ = − 1

k + 1

k−1∑
j=i

xj.
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To prove that Equitable2 is Hk-competitive, it suffices to show that for
each request cost + Φ + Ψ ≤ Hk · costOPT , as both Φ and Ψ are non-negative.
We do so by proving for each step the inequation is preserved by considering the
differences in costs and potentials.

Lemma 5.5 If no forgiveness is applied it holds,

∆cost+∆Φ+∆Ψ ≤ Hk ·∆costOPT .

Proof. We first analyze the case for a request p ∈ Li, with i > 0. We have
∆cost+∆Φ = 0 by the definition of Φ and ∆costOPT = 0. By Fact 5.1 ∆Ψ ≤ 0
and we are done.

For requests to pages in L0, both the algorithm and OPT incur a cost of one,
and thus ∆cost = 1 and ∆costOPT = 1. It remains to show that ∆Ψ + ∆Φ ≤
Hk − 1. We analyze separately the case when we are in a cone. In this case, by
definition ∆Ψ = 0, and by Lemma 5.1 we obtain ∆Φ = Hk − 1. In the following
we assume we are not in a cone upon the L0 request. Let i be the largest index
with xi ̸= 0. By the update rule, we get that x′

k−1 = xk−1 + 1 and x′
j = xj for

all j ̸= k − 1. For the chopped signature χ′ this implies x′
j = xj for all j ̸= i and

x′
i = xi + 1, because i ̸= k as Lk is always singleton. It follows ∆Ψ = i/(k + 1).

On the other hand we have by Theorem 5.1 that ∆Φ ≤ Hk −H1 − i/(k + 1). 2

Theorem 5.2 Equitable2 is Hk-competitive and requires 2 +
√
5−1
2

· k book-
marks.

Proof. If the support size reaches the threshold k+x, i.e. x bookmarks, we apply
upon a request from L0 the forgiveness mechanism from [11]. Recall that we move
the requested page artificially into L1. This step does not increase OPT’s overall
cost. Then we process it as if it was requested from L1. We have ∆cost = 1 and
∆costOPT = 0. Like in [11], we need to prove that 1+∆Φ+∆Ψ ≤ 0. Denote by
χ the current signature, and let x =

∑k
i=1 xi be the number of bookmarks used

by the algorithm. We have that ∆Φ = −cost1(χ). We get that 1 + ∆Φ is the
probability that a page in L1 is in the algorithm’s cache, which by the selection
process of OnlineMin is at most k/|S| = k/(x+k). Using the result in Fact 5.1
and the fact that

∑k−1
j=1 xj = x− 1, we need to ensure that:

k

x+ k
− x− 1

k + 1
≤ 0 .

Solving this inequation, we get x ≥ (1− k +
√
5k2 + 6k + 1)/2, which is at most√

5−1
2

k + c for c ≥ 2. Therefore, Equitable2 needs only
√
5−1
2

k + c ≈ 0.62k
bookmarks. The cases where no forgiveness occurs are covered by Lemma 5.5. 2
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Lower Bound. We now show in Theorem 5.3 thatEquitable2 can not achieve
o(k) bookmarks and be Hk-competitive.

Theorem 5.3 If Equitable2 uses t ≤ k/4 bookmarks, it is not Hk-competitive.

Proof. For easiness of exposition we assume that k is divisible by 4. It suffices
to build an input sequence which starts and ends in a cone where the cost of
Equitable2 using t bookmarks exceeds Hk · OPT for arbitrary large k. This
sequence consists of three phases.

In the first phase we bring t additional pages into layer Li (no forgiveness
occurs), where the index i > 0 is determined later. To do so, we request a
page in L0 leading to χ = ek−1 followed by k − i − 1 requests from Li+1. The
resulting signature is ei = (0| . . . |xi = 1| . . . |0). We repeat this step t − 1 more
times and obtain the signature χi = t · ei which by Lemma 5.1 has the potential
Φi = t(Ht+i − Ht). By Theorem 5.1, each request in L0 increases Φ by at least
Hk−i−1, leading to a total amount of potential increases Φ+ = t∗Hk−i− t. Since
Φ decreases upon lazy requests the total cost of Equitable during this phase is

t+ Φ+ − Φi = t · (Hk−i −Ht+i +Ht).

The second phase starts with a request from L0 which forces Equitable2 to
apply forgiveness. This leads to χ = t · ei + ek−1 whereas the signature used by
Equitable2 is χEq = t · ei−1. This means that page q ∈ L1 in the (original)
layer representation is for sure not in cache. We request q. We can repeat the
last request type i− 1 additional times which leads to a total cost in the second
phase of i whereas OPT pays 1. In the third phase we bring the (original) offset
function to a cone, and repeat revealed requests (if needed) such that Equitable
also reaches a cone and we can repeat our attack. The third phase incurs no cost
for OPT. Choosing i = (k − t)/2 we need to show:

tHt + 0.5(k − t)

t+ 1
> Hk.

Setting t = k/4, we get:

1.5 + ·Hk/4 −Hk −
Hk

k/4
> 0.

For the value k = 200 the left side is about 0.0036. The term Hk/4 − Hk is
increasing in k. To see this let k = k + 4. We obtain a difference of 4

k
− 1

k+1
−

1
k+2

− 1
k+3

− 1
k+4

> 0. On the other hand Hk

k/4
is decreasing in k. We conclude that

the inequation is true for k ≥ 200. 2
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Trading Competitiveness for Space. We now show that Equitable2 can
achieve o(k) bookmarks at the expense of competitiveness. This result is given
in Theorem 5.4.

Theorem 5.4 There exist implementations of Equitable2 that are (Hk + c)-
competitive and use k/(1 + c) bookmarks, for k > 1 and c ≥ 1.

Proof. Again, we consider two functions Φ and Ψ, both initially set to zero, and
for each request we prove that:

∆cost+∆Φ+∆Ψ ≤ (Hk + c)∆costOPT .

As before, Φ is the cost of a lazy sequence of requests in the support ending in a
cone. However, Ψ is defined differently: Ψ = c

k+1

∑k−1
j=1 j · xj.

For requests in L0 when no forgiveness step is applied, we have ∆cost = 1,
∆costOPT = 1, and, by Theorem 5.1, we get ∆Φ ≤ Hk−H1− i/(k+1), where i is
the largest index having xi > 0. Also, similarly to Lemma 5.5, we get ∆Ψ ≤ ci

k+1
,

which, using i < k, leads to 1 + ∆Φ +∆Ψ ≤ Hk + c.
For pages in support, we analyze the request to a page p ∈ Li. By definition of

Φ, we have ∆cost+∆Φ = 0. The result in Fact 5.1 can be adapted straightforward
to obtain ∆Ψ = − c

k+1

∑k−1
j=i xj. Altogether, we get ∆cost+∆Φ+∆Ψ ≤ 0.

For requests in L0 , when forgiveness must be applied, we use the same for-
giveness mechanism from [11], where the requested page is artificially inserted in
L1 and processed as a page in L1. Again, in this case, the algorithm is charged
a cost of 1, and OPT is charged 0. We have that 1 + ∆Φ is the probability of
a cache hit for a page in L1, which is at most k

x+k
, where x =

∑k
j=1 xj is the

amount of bookmarks allowed. Using ∆Ψ = − c
k+1

(x−1), we need to ensure that
k

x+k
≤ cx

k+1
. Solving the inequation, we get that it holds for x ≥ −k

2
+

√
c2k2+4kc

2c
.

Enforcing x = k/(1 + c), the result follows. 2

We note that the result in Theorem 5.4 gives a range of algorithms whose
performance is between the classic Equitable and Marking algorithms, with
respect to competitiveness and space usage; in particular, the interesting values
for c are such that c = ω(1) and c < Hk− 1. That is because, classic Equitable
is Hk-competitive but uses Θ(k) bookmarks, while Marking uses no bookmarks,
but is 2Hk − 1 competitive.

5.4 Partition

In this section we prove in the affirmative the conjecture in [11] that there exists
a strongly competitive paging algorithm using o(k) bookmarks. We propose a
variation of the Partition algorithm [48], that we call Partition2, which uses
O(k/ log k) bookmarks. We furthermore give a simple lower bound showing that
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for anyHk-competitive randomized paging algorithm, the number of pages having
non-zero probability of being in cache must be at least k + k/Hk. This leads to
a lower bound of k/Hk bookmarks for all algorithms which store all non-zero
probability pages, i.e. representation of the approximated offset function, and
have a deterministic forgiveness step. Note that this bound holds for all known
Hk-competitive algorithms with bounded space usage, i.e. depending only on k.

5.4.1 Algorithm

In this section we give a brief description of the Partition algorithm in [48].
A crucial difference between Partition and Equitable is that while the dis-
tribution of the cache configurations depends only on the current offset function
for Equitable, Partition is defined on a special, more detailed, representation
of the offset function, which we denote in the following set-partition. We show
in Observation 5.1 that the offset function alone does not suffice to determine
the probability distribution for the cache of Partition4. It partitions the whole
pageset into a sequence of disjoint sets Sα, Sα+1, . . . , Sβ−1, Sβ and each set Si with
i < β has a label ki. Initially β = α + 1, Sβ contains the first k pairwise distinct
pages, the remaining pages are in Sα, and kα = 0. Throughout the computation
Sβ contains all revealed pages (pages which are in OPT’s cache independent of
the future requests) and Sα all the pages which are not in OPT’s cache. Upon
a request to page p the set-partition is updated as follows. If p ∈ Sβ nothing
changes. If p ∈ Sα the following assignments are done:

Sα = Sα \ {p}, Sβ+1 = {p}, kβ = k − 1, β = β + 1.

The last case covers p ∈ Si, where α < i < β:

Si = Si \ {p}, Sβ = Sβ ∪ {p}, kj = kj − 1 (i ≤ j < β).

Additionally, if there are labels which become zero, let j be the largest index such
that kj = 0; the following assignments are performed:

Sj = Sα ∪ · · · ∪ Sj, α = j.

In [48] it was shown that the following invariants on the labels hold: kα = 0 and
ki > 0 for all i > 0; kβ = k − |Sβ−1|. Furthermore, it holds at all times that:

ki = (ki−1 + |Si|)− 1.

4Previous work [1] gave a simplified and intuitive description of Partition, but which is
not fully accurate.
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Probability Distribution of Cache Configurations. The probability dis-
tribution of the cache content can be described as the outcome of the following
selection process on the set-partition:

• Cα = ∅

• For α < i < β choose p uniformly at random from Ci−1 ∪ Si and set
Ci = (Ci−1 ∪ Si) \ {p}

• Cβ = Cβ−1 ∪ Sβ.

Note that, whereas for the selection process of OnlineMIN the size of Ci is
given by i, for Partition we have that |Ci| = ki. The following result was given
in [48, Lemma 3].

Lemma 5.6 If p is requested from Si, where α < i < β, the probability that p is
not in the cache of Partition is at most∑

i≤j<β

1

kj + 1
.

Cache Replacement. Apart from obeying the cache distribution previously
introduced, Partition must satisfy two constraints, namely it must not evict
pages upon a cache hit and it must not evict more than one page upon a cache
miss. For any set Ci, the membership of a page to Ci is encoded with a marking
system on pages as follows. If a page is in set Si, where α < i < β, it has either
no mark or a series of marks i, i+1, . . . , j−1, j. If p has no mark then p /∈ Ci and
otherwise it is in the selection sets Ci, Ci+1, . . . , Cj−1, Cj. The cache of Partition
is at all times Cβ, with |Cβ| = k. For a page p ∈ Si it suffices to store the value
mp of the highest mark or i− 1 if p has no mark.

Initially there are only the two sets Sα and Sβ and thus no marks. If the
requested page p ∈ Sβ nothing changes. If p ∈ Sα first the set-partition is
updated, where β is increased by 1 and we have to determine Cβ−1. A page q is
chosen uniformly at random from the k elements Cβ−2 ∪ Sβ−1 (the cache content
before the request), and this element is the only one not receiving a β − 1 mark.
The page q is replaced in the cache by the requested page p. We now turn to
the case p ∈ Si, where α < i < β. If p is in cache then mp = β − 1 and we
do nothing. Otherwise let j ≤ β − 1 be the lowest index such that p /∈ Cj. We
choose uniformly at random a page q ∈ Cj and set mp = mq and mq = j − 1, i.e.
p steals the marks of q. We repeat this until mp = β − 1. The page which loses
its β− 1 mark is replaced in cache by p. Afterwards the set-partition is updated.

Observation 5.1 The probability distribution of Partition does not depend on
the offset function alone.
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Proof. To illustrate the claim, we give two scenarios leading to the same offset
function where there exist a page having different probabilities of being in cache.
In the first scenario, we start with the cone L1 = (p1| . . . |pk−1|q1) and request
two pages from L0, namely q2 and q3. Since upon a request in L0 Partition
evicts a page uniformly at random from cache, the probability that q1 is in cache
after processing q3 is (k − 1)2/k2. In the second scenario, we start with offset
function L2 = (p1| . . . |pk−1|q2) and we request q1 and q3, both of which are in L0.
This leads to the same layer representation of the offset function as in the first
scenario, but the probability that q1 is in cache is now only (k − 1)/k, which
concludes the proof. 2

5.4.2 Partition2

In this section we describe the Partition2 algorithm. As implied by its name,
it is a variant of Partition which uses (deterministic) forgiveness to reduce
the space usage from arbitrarily high bookmarks to O(k/ log k) bookmarks. A
lower bound is provided which shows that this bound is asymptotically optimal
for algorithms using deterministic forgiveness. Unlike previous works, when a
forgiveness step must be applied, we distinguish between two cases and apply
two distinct forgiveness rules accordingly. The first of them is the same one
used by Equitable2 and covers only a single request, and the second one is a
forgiveness phase which spans consecutive requests. To apply the forgiveness step
of Equitable2, we first provide an embedding of the set-partition into the layer
representation of the offset function. Based on this embedding, we give a simple
potential function which depends only on the signature of the offset function.

Layer Embedding. In the following we provide an embedding of the set-
partition into the layer representation of the offset functions, as used by Eq-
uitable. The layers become ordered sets and contain pages and set identifiers,
the latter of which we visualize by ⋆. The initialization does not change and no
set identifiers are present. The update rule changes mainly for the case p ∈ L0:

Lk−1 = (Lk−1, Lk, ⋆), Lk = {p}.

Upon the merge operation Li−1∪Li \ {p} in the case p ∈ Li we remove p from Li

and concatenate Li−1 with Li without removing any set identifier. Upon merging
L1 into L0 we delete all set identifiers from the resulting layer L0. An example is
given in Figure 5.1. The following fact follows inductively.

Fact 5.2 For Li, with i > 0 and |Li| = 1 + xi, it holds

• Li contains exactly xi set identifiers,

• if xi > 0 then the last element in Li is a set identifier.
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We describe how to obtain the sets of the set-representation. Let j be maximal
such that xj > 1. We have Sβ = Lj+1 ∪ · · · ∪ Lk and Sα = L0. A set Sα+j,
where 1 < j < β − α consists of all pages between the (j − 1)-th and the j-th
set identifier; for j = 1, Sα+1 consists of all support pages until the first set
identifier. We say that each set Sα+j, 0 < j < β − α, is represented by the
j’th set identifier. As long as no pages are moved into Sα, the correspondence
between the layer representation and the set-partition follows immediately from
the update rules. Otherwise, by Lemma 5.7 and noticing that each Li with xi > 0
ends in a set delimiter, we obtain that p is in L1 and moreover the pages moved
to Sα correspond to L1 \ {p}.

Lemma 5.7 Let Sa, Sa+1, . . . , Sb be the sets whose identifiers are in layer Li,
i ≥ 0. We have:

kb = i, ka+j ≥ i for 0 ≤ j < b− a .

Proof. We show that the invariant remains true after each update of the set-
partition. Let p be the currently requested page; also let L and L′ be the layer
representation and S and S ′ the corresponding set-partition before and after
processing p respectively.

If page p ∈ Sβ nothing (except a shift of the revealed layers in L) changes.
If p ∈ Sα we also have p ∈ L0. Page q ∈ Lk followed by a new set identifier
(representing the set Sβ′−1) is appended to Lk−1 and L′

k = {p}. All sets except
for Sβ′−1 are not affected. The set-partition update rule assigns kβ′−1 = k − 1.
Since the identifier of Sβ′−1 is the rightmost element in L′

k−1, the result holds.
Now we turn to the case p ∈ Si∗ , where α < i∗ < β. Let Li be the layer

containing p. if Li is singleton, then for all sets Sj∗ , j
∗ ≥ i∗ we have that both kj∗

and its corresponding layer index decrease by 1. Since the relevant parameters
for the remaining sets don’t change, the result holds. If Li is not singleton, by
construction Li ends in a set identifier; this set identifier represents a set Sj∗ ,
j∗ ≥ i∗. By inductive hypothesis, we get kj∗ = i. By the update rules, k′

j∗ = i−1
and it is the last set identifier in L′

i−1. All other set identifiers in Li represent sets
having labels at least i, which might decrease by at most 1. All these identifiers
are moved to L′

i−1 and the result follows. 2

Lemma 5.8 If p is requested from Li, where i > 0, the probability that p is not
in the cache of Partition is at most∑

j≥i

xj

j + 1

Proof. If p ∈ Sβ, then it is in a revealed layer Li and thus xj = 0 for all j ≥ i
and the result holds. Let Si∗ be the set with p ∈ Si∗ , α < i∗ < β. Then by
Lemma 5.6 we have the probability bounded by

∑
i∗≤j∗<β

1
kj∗+1

. All sets S∗
j ,
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Req Offset function
- L = (7, 8, 9|1|2|3|4|5|6)

S = {7, 8, 9}0{1, 2, 3, 4, 5, 6} (α = 1, β = 2)
9 L = (7, 8|1|2|3|4|5, 6, ⋆|9)

S = {7, 8}0 {1, 2, 3, 4, 5, 6}5 {9} (α = 1, β = 3)
6 L = (7, 8|1|2|3|4, 5, ⋆|9|6)

S = {7, 8}0 {1, 2, 3, 4, 5}4 {9,6} (α = 1, β = 3)
8 L = (7|1|2|3|4, 5, ⋆|9, 6, ⋆|8)

S = {7}0 {1, 2, 3, 4, 5}4 {9, 6}5 {8} (α = 1, β = 4)
1 L = (7|2|3|4, 5, ⋆|9, 6, ⋆|8|1)

S={7}0 {2, 3, 4, 5}3 {9, 6}4 {8, 1} (α = 1, β = 4)
9 L = (7|2|3|4, 5, ⋆, 6, ⋆|8|1|9)

S = {7}0 {2, 3, 4, 5}3 {6}3 {8, 1, 9} (α = 1, β = 4)
6 L = (7|2|3, 4, 5, ⋆, ⋆|8|1|9|6)

{7}0 {2, 3, 4, 5}3 {}2 {8, 1, 9, 6} (α = 1, β = 4)
3 L = (7|2, 4, 5, ⋆, ⋆|8|1|9|6|3)

S = {7}0 {2, 4, 5}2 {}1 {8, 1, 9, 6, 3} (α = 1, β = 4)
5 L = (7, 2, 4|8|1|9|6|3|5)

{7, 2, 4}0 {8, 1, 9, 6, 3, 5} (α = 3, β = 4)

Figure 5.1: Example for the layer embedding of the set-representation.

where i∗ ≤ j∗ < β have their identifier in some layer Lj with j ≥ i and using
Lemma 5.7 we obtain 1

kj∗+1
≤ 1

j+1
. Since each layer Lj contains exactly xj

identifiers the statement follows. 2

Forgiveness. Forgiveness is applied when the support size reaches a threshold
of k + 3t (we define t later) and a page in L0 is requested. Depending on the
support we have two kinds of forgiveness: regular forgiveness and an extreme
forgiveness mode. The regular forgiveness is applied if |L1|+ · · ·+ |Lt| > 2t and
is an adaptation of the forgiveness step of Equitable2. If a page p is requested
from L0 (equivalent to Sα), we first identify a page q satisfying that q ∈ Sα+1∩L1.
Note that there always exists such a page, since kα+1 ≥ 1 and |S1| = k1 + 1 and
at least one of them is in L1. We move q to L0 and replace it, together with
its marks, by p. Then we perform the set-partition and mark update where p is
requested from Sα+1. We stress that in terms of the layer representation of the
offset function (used by e.g. Equitable), we replace the requested page with
an existing page in L1, and replacing q ∈ L1 by p and requesting p leads to the
same offset function when the forgiveness step in [11] is applied. This has a cost
of 1 for Partition and a cost of 0 for OPT. The size of the support decreases
by |L1| − 1 ≥ 0.
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The extreme forgiveness mode is applied if |L1|+ · · · + |Lt| ≤ 2t. We simply
apply regular forgiveness for any page request in L0 starting with the current
one. This extreme forgiveness mode ends when reaching a cone.

Competitive Ratio and Bookmarks We use Partition with the forgive-
ness rule for t = ⌈ k

ln k
⌉ from the previous paragraph if k > 10 and denote the

resulting algorithm Partition2. For k ≤ 10 we apply the the regular forgive-
ness if the support size reaches 2k.

Theorem 5.5 Partition2 uses Θ( k
logk

) bookmarks and is Hk-competitive.

Proof. The space bound follows from the fact that the support size never exceeds
k + 3t for k > 10, where t = ⌈ k

ln k
⌉. It remains to show that Partition2 is still

Hk-competitive. We use the following potential on the layer representation of the
offset function:

Φ =
k−1∑
j=1

xj · (Hj+1 − 1)

We denote by cost the cost of Partition2 and by OPT the cost of the optimal
offline algorithm. We have to show that cost ≤ Hk ·OPT holds after each request.
In all cases except the extreme forgiveness we show that the following holds before
and after each request

Φ + cost ≤ Hk ·OPT .

This leads to cost ≤ Hk ·OPT since Φ ≥ 0. When applying the extreme forgive-
ness we assume that the potential inequation holds before the phase and show
that it holds at the end of the phase, but not necessary during the phase. For
requests during the phase we argue directly that it always holds cost ≤ Hk ·OPT .

Let p be the requested page. If p ∈ L0 without forgiveness, ∆OPT = 1 and
xk−1 increases by 1, which implies that ∆Φ +∆cost = Hk − 1 + 1 = 1 ·Hk.

If p is from some layer Li, where 0 < i ≤ k, we use the bound on the cache
miss probability from Lemma 5.8

∆Φ +∆cost ≤ −
∑
j≥i

xj

j + 1
+
∑
j≥i

xj

j + 1
≤ 0 ≤ Hk ·∆OPT.

Now we analyze the cases where forgiveness occurs for k > 10. Assume that
|L1| + · · · + |Lt| ≥ 2t + 1 which implies that x1 + · · · + xt ≥ t + 1. We perform
just one forgiveness step, yielding ∆cost = 1 and ∆OPT = 0. We have to show
that ∆Φ ≤ −1.

∆Φ = −
k−1∑
j=1

xj

j + 1
≤ −

t∑
j=1

xj

t+ 1
= −t+ 1

t+ 1
= −1.
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Now assume that xt+1 + · · ·+ xk−1 ≥ 2t. Before we start the extreme forgiveness
mode, we have that

Φ ≥
k−1∑

j=t+1

xj(Hj+1 − 1) ≥ 2t(Ht+2 − 1)

By the choice of t = ⌈ k
ln k

⌉ and the approximation Hx ≥ lnx we obtain

Φ ≥ 2k

ln k
(ln k − ln ln k − 1) ≥ k, if k > 10.

Right before the phase starts we have cost+Φ ≤ Hk ·OPT , where Φ ≥ k which
is equivalent to cost ≤ Hk · OPT − k. Reaching the next cone implies at most
k−1 unrevealed requests and thus the cost during this phase is bounded by k−1.
This implies that cost ≤ Hk ·OPT holds. Since in a cone Φ = 0 we also have at
the end of the phase the invariant cost+ Φ ≤ Hk ·OPT .

For the case k ≤ 10 the analysis of the extreme forgiveness does not hold. In
this case we use only the regular forgiveness step if we have k bookmarks. Using
x1 + · · ·+ xk−1 = k the same argument as before leads to ∆Φ ≤ −1. 2

Lemma 5.9 For any Hk-competitive algorithm A there exists an input such that
the maximal number of pages with non-zero probability of being in A‘s cache is at
least k + k/Hk.

Proof. We assume that A is Hk-competitive and the number of pages with non-
zero probability is always less than k+k/Hk. We start in a cone (p1|p2| . . . |pk) and
request q1, q2, . . . , qα, where α = k/Hk and all qi have never been requested before.
Thus OPT and A perform each α page faults. The resulting work function has the
signature (0| . . . |0|α|0) and the support has size k+ α. By our assumption there
exists at least one page from the support on which A faults with probability 1.
Since for the next k− 1 requests the support does not change we can force k− 1
page faults on A each with cost 0 for OPT. Afterwards we continue the request
sequence to reach a cone and repeat our attack. We conclude that A is not Hk

competitive
cost(A)

cost(OPT )
=

k − 1 + α

α
= 1 +

k − 1

k/Hk

> Hk ,

and the proof follows. 2

5.5 Conclusions

We have shown that Partition2 improves the bookmark complexity from O(k)
to O(k/ log k) and thus proved the conjecture that there exist Hk-competitive
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randomized paging algorithms using o(k) bookmarks. This is the best possi-
ble for algorithms using deterministic forgiveness techniques and store the whole
representation of the (approximated) offset function. One possible direction to
improve this bound is to use randomization at the forgiveness step. The more
LRU-like distribution of Partition and its simple potential in the layer embed-
ding seems to be the more promising candidate.

We stress that the forgiveness used for Partition2 does not lead to o(k)
bookmarks for the distribution of Equitable. Nonetheless, Equitable is in-
teresting due to its O(log k) runtime and the elegant potential definition. More-
over, the priority-based selection process in [21] gives an alternate approach to
analyzing the Equitable distribution by employing elementary combinatorics.





Chapter 6

Outperforming LRU via Competitive
Analysis

The workOutperforming LRU via Competitive Analysis on Parametrized
Inputs for Paging was published as a conference paper [51].

[51] G. Moruz and A. Negoescu. Outperforming LRU via competitive analy-
sis on paramterized inputs for paging. In Proc. 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1669–1680, 2012

The contents of this chapter correspond to the published conference version [51]
except for minor layout changes.
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Outperforming LRU via Competitive Analysis
on Parametrized Inputs for Paging∗

Gabriel Moruz†, Andrei Negoescu†

Abstract

Competitive analysis was often criticized because of its too pessimistic
guarantees which do not reflect the behavior of paging algorithms in prac-
tice. For instance, many deterministic paging algorithms achieve the op-
timal competitive ratio of k, yet LRU and its variants clearly outperform
the rest in practice. In this paper we aim to reuse and refine insights from
the competitive analysis to obtain new algorithms that cause few cache
misses in practice. We propose a new measure of the “evilness” of the
adversary, which results in a parametrization of the input that we denote
attack rate. This measure is based on the characterization in [44] of the
optimal offline algorithm and uses the fact that a number of pages are for
sure in its memory. We show that the attack rate r is a tight bound on the
competitive ratio of deterministic paging algorithms and give experimental
results which show that r is usually much smaller than the cache size k
and thus provides more realistic upper bounds for the competitive ratio of
existing algorithms. Furthermore, we show that our input parametrization
compares favorably concerning the fault rate with approaches based on
locality of reference by Albers et al. [3] and Dorrigiv et al. [30]. We use
a priority-based framework, which always yields r-competitive algorithms
regardless of the priority assignment. In this framework, LRU can be ob-
tained under a certain priority assignment and is thus only one algorithm
among many other r-competitive ones. Using the enhanced flexibility given
by this framework, we give a priority policy which leads to an algorithm
outperforming LRU, RLRU and other practical algorithms on a wide se-
lection of real-world cache traces.

6.1 Introduction

Paging has a strong practical motivation and is one of the most studied problems
in the field of online algorithms. We are provided with a cache of size k and a

∗Partially supported by the DFG grants ME 3250/1-3 and MO 2057/1-1, and by
MADALGO.

†Institut für Informatik, Goethe-Universität Frankfurt am Main, Robert-Mayer-Str. 11-15,
60325 Frankfurt am Main, Germany. Email: {gabi,negoescu}@cs.uni-frankfurt.de.
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memory of infinite size, and must process page requests online, i.e. without any
knowledge about future requests. If the requested page is in cache, a cache hit
occurs and the algorithm proceeds at no cost. Otherwise, a cache miss occurs
and the algorithm must load the page in the cache. If the cache was full, one page
must be evicted to accommodate the one requested. The cost of the algorithm is
given by the number of cache misses.

Traditionally, the quality of online algorithms in general and paging in par-
ticular is measured by comparing their cost against the cost of an optimal offline
algorithm, i.e. an algorithm that is provided with the input beforehand and pro-
cesses it optimally. This measure, denoted competitive ratio [41, 60], states that
some online algorithm A is c-competitive if for any input sequence it holds that
cost(A) ≤ c · cost(OPT ) + b, where cost(A) and cost(OPT ) denote the cost of
A and the optimal cost respectively, and b is a constant. For deterministic pag-
ing algorithms, a lower bound of k on the competitive ratio was shown in [60].
Several algorithms, such as LRU (Least Recently Used), FIFO (First In First
Out), and FWF (Flush When Full) match this lower bound and are strongly
competitive, while other algorithms, such as LIFO (Last In First Out) and LFU
(Least Frequently Used) have no upper bounds on the competitive ratio [14]. For
randomized algorithms, Fiat et al. [32] proved a lower bound of Hk on the com-
petitive ratio and gave an algorithm, denoted Mark, which is 2Hk−1 competitive.
A series of algorithms achieving the optimal bound of Hk on the competitive ratio
were proposed in [1,11,20,48], each of them improving over its predecessors with
respect to space complexity and running time for processing a page, up to O(k)
space and O(log k) time [20].

Perhaps the biggest drawback of competitive analysis is that it provides worst-
case guarantees which happen for inputs that are encountered in practice next-
to-never. In practice, it is common knowledge that some algorithms consistently
outperform others by wide margins, despite the same competitive ratios. For
instance, it is well established that LRU achieves at most four times as many
cache misses as the optimal algorithm [68], which makes it (together with its
variants) very popular in practice [63]. This means upper bounds provided by
competitive analysis on the performance of paging algorithms are of little use in
practice. Nonetheless, competitive analysis is a simple and useful tool towards
gaining insights regarding algorithm behavior. In particular, a structure keep-
ing track of the behavior of an optimal offline algorithm is at the heart of all
strongly competitive randomized paging. We use this characterization to obtain
algorithms performing few cache misses.

Related Work. To address the gaps between the theoretical guarantees pro-
vided by competitive analysis and the observed behavior in practice, a variety
of models have been proposed. One line of research is concerned with restricted
versions of competitive analysis, such as the diffuse adversary [44] or loose compet-
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itiveness [68]. Other approaches consider comparing algorithms directly, without
relating them to an optimal offline algorithm. Relevant examples include the
Max/Max ratio [13], the random order ratio [42], the relative worst order ra-
tio [17], and bijective analysis and average analysis [6].

A characteristic of real-world inputs that the competitive analysis fails to take
into account is locality of reference, which means that typically a small number
of distinct pages is accessed during some time interval. Motivated by this input
behavior, several models to reflect locality of reference have been proposed. In
the working set model [26, 27] the paging strategy takes into account the most
recently used pages, denoted working set. The access graph model [15, 31, 38]
restricts input sequences by confining the next request to a restricted set of pages
depending on the current request. In [3, 30] locality of reference is a function on
the input and algorithms are analyzed using the cache size and this function.

Many of these approaches are concerned with separating existing paging al-
gorithms to explain the differences observed in practice. In particular, several
approaches (e.g. diffuse adversary, bijective analysis combined with locality of
reference [7]) single out LRU as the best algorithm in the respective setting. In
certain cases, these models also resulted in the design of new algorithms. Ex-
amples include RLRU (Retrospective LRU) [17] and FARL (Farthest-To-Last-
Request) [14,33] which were designed according to the relative worst order ratio
and access graph model respectively.

Another paging algorithm, developed in the systems community, is EELRU
(Early Eviction LRU) [61]. It simulates many algorithms and chooses the most
promising one when deciding which page to evict. This allows it to outperform
LRU on many real-world traces.

Our Contributions. Our contributions are three-fold. Motivated by proper-
ties of existing real-world input traces from various applications, we first propose
an input parametrization that we denote attack rate, which quantifies the “evil-
ness” of the adversary. It is based on the characterization of the optimal solution
using offset functions in [44] and uses the fact that for certain requests we know
for sure whether they are in the memory of OPT or not. We give empirical results
showing that real-world inputs exhibit a low attack rate compared to worst-case
inputs.

Secondly, we analyze the competitive ratio of deterministic algorithms with
respect to the attack rate. We show that algorithms with unbounded competi-
tive ratio like LIFO and LFU do not profit from a low attack rate. For inputs
with attack rate at most r, we provide a lower bound of r on the competitive
ratio. This is matched by a class of algorithms, that we denote OnOPT, which
maintain their cache content as close to an optimal offline solution as possible.
LRU belongs to this class. Conversely, in general marking algorithms are shown
to benefit less on inputs with low attack rates. Although the attack rate inherits
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the simplicity of classical competitive analysis, the obtained bounds are more
realistic. Our input parametrization further implies upper bounds on the fault
rate for r-competitive algorithms, which usually lie far below 1%. We show ex-
perimentally that our parametrized bound for LRU outperforms the fault rate
prediction using parametrizations based on locality of reference for various set-
tings, especially for not too large cache sizes.

Finally, motivated by the optimal competitive guarantees and the fault rate
analysis for the class OnOPT, we use a priority based framework to construct
potential candidates in OnOPT to outperform LRU. We propose an algorithm
from this class, denoted RDM, which outperforms LRU and two of its variants,
RLRU and EELRU, on many real-world traces. This contrasts many models that
single out LRU as the best paging algorithm. SinceOnOPT contains determinis-
tic algorithms we extracted from the strongly competitive randomized algorithm
Equitable [1,11], this shows that insights from classical competitive analysis can
help to design algorithms with low fault rate on real world inputs.

6.2 Input Parametrization

A classical optimal offline algorithm, denoted LFD (Longest Forward Distance),
has been proposed in [12], and works by evicting, upon a cache miss, the page
in cache which is requested farthest in the future. However, when designing an
on-line algorithm we do not know the future requests. One approach is to keep
the cache content of the online algorithm as close as possible to the one of LFD.
An elegant characterization of the possible cache content of LFD is given in the
context of work functions in [44]. Based on the request sequence seen thus far,
the page currently requested can fall in one of the three categories below.

1. Requests to revealed pages, this are requests to pages we know for sure that
they are in LFDs cache.

2. Requests to unrevealed pages, which might be in the cache of LFD, depend-
ing on the future requests.

3. Requests to pages which are for sure not in the cache of LFD and thus LFD
faults on them.

Intuitively, we can fault on revealed pages only if we do not take advantage
of the information from the sequence seen so far. If we view paging as a game,
where the players are the online algorithm and the adversary constructing the
input, requests to revealed pages do not turn out to be attacks, if the online
algorithm keeps all revealed items in cache. An online algorithm which exhibits
this property is LRU. Requests to type III pages, i.e. on which LFD faults, are
due to the hardness of the input as the adversary pays as well. For the unrevealed
requests the algorithm inflicts cache misses if it mispredicts the future.



6.2. Input Parametrization 93

Our experimental analysis of several real world traces (without consecutive
identical requests) lead us to two observations. First, very many requests (regu-
larly above 99%) are to revealed pages, and second, the ratio between requests to
unrevealed pages and type III requests is quite small. Given a class of algorithms
maintaining a good approximation of LFDs cache content, the first observation
leads to very small bounds of the fault rate and the second results in good guar-
antees for the empirical competitive ratio. This lead us to suspect that such a
class may contain promising algorithms outperforming the existing ones.

6.2.1 Preliminaries

For some algorithm A, we denote by cache configuration the set of pages that
are in the cache of A. For a fixed input sequence σ and some cache configuration
C, the offset function ω maps C to the difference between the minimum cost
of processing σ ending in C and the minimum cost of processing σ. A cache
configuration C is denoted valid iff ω(C) = 0. In [44] it was shown that an offset
function can be represented by k + 1 disjoint sets L0, . . . , Lk, denoted layers, as
follows. Initially, each layer in L1, . . . , Lk contains one of the first k pairwise
distinct pages and L0 contains all the remaining pages. Denoting by ωp the
partition after processing p, we have the following:1

ωp =

{
(L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

(L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |Lk|{p}), if p ∈ Li, i > 0

The support of the offset function ω is defined as S(ω) = ∪k
i=1Li. Denoting

by singleton a set having a single element, let r be the smallest index such that
all layers Lr, . . . , Lk are singletons. We denote by revealed pages the set R(ω) =
∪k

i=rLi. Intuitively, the layer representation keeps track of the possible cache
configurations of the optimal offline algorithm. To this end, in [44] it has been
shown that a cache configuration is valid iff it holds that for each i ∈ {1, . . . , k}
we have |C∩(∪i

j=1Lj)| ≤ i. This implies that any valid configuration will contain
all revealed pages and no page from L0. If the support contains only revealed
pages, we know exactly the content of the cache of LFD and we say we are in a
cone.

Fact 6.1 Between two requests in L0, at most k − 1 pairwise distinct pages are
requested. Moreover, LFD faults on some page p iff p ∈ L0.

6.2.2 Attack Rate

As previously stated, any valid configuration contains all revealed pages and no
item from L0, and thus the remaining k − |R(ω)| pages are unrevealed elements

1We use a different, yet equivalent notation to the one in [44].
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from the support. Since revealed pages can be identified by an online algorithm, it
is desirable for algorithms not to have cache misses on requests to revealed pages.
Given some input sequence σ let λr(σ), λu(σ), and λ0(σ) denote the number of
requests in σ to revealed pages, unrevealed pages in the support, and pages that
are not in support respectively.

Definition 6.1 For some input σ, the attack rate r(σ) is defined as r(σ) =
λ0(σ)+λu(σ)

λ0(σ)
. Also, we denote by I(r) the set of inputs having an attack rate at

most r, i.e. I(r) = {σ|r(σ) ≤ r}.

Taking into account that LFD always faults on requests in L0, our attack rate
is an upper bound on the competitive ratio for any algorithm that does not fault
on revealed pages. We note that the attack rate r ∈ Q is in the range [1, k] and
thus I(k) contains all possible inputs. We get r = 1 when λu = 0 and we obtain
r = k by requesting a page in L0 followed by k − 1 requests to unrevealed pages
in the support.

Attack Rate in Real-World Inputs. We conduct experiments on a collection
of cache traces extracted from various applications2 from both Linux and Win-
dows NT operating systems, ranging from gcc compiler to an AI program playing
the game “Go”, and from a formula-rewrite program (grobner) to MSPowerpoint.
We compare the observed attack rate r against k for all these traces, as r is an
upper bound on the competitive ratio for algorithms that are always in a valid
configuration, while k is the best upper bound in the classical model. The results
in Figure 6.1 show that in practice r is significantly smaller than the cache size
and converges to 1 as the cache sizes increases (and more pages fit in memory).
Moreover, for most ranges and applications r is below 0.2k, meaning that algo-
rithms that are always in a valid configuration should improve the worst case
guarantees on the number of cache misses given by standard competitive analysis
by 500%, though in many cases the improvement is much larger.

Fault Rate. The fault rate is a practical measure of the efficiency of paging
algorithms and is defined as the ratio between the number of cache misses and
the input size. Unfortunately, competitive analysis by itself does not capture this
measure, as it is easy to construct inputs and algorithms which achieve the same
competitive ratio and very different fault rates. In our setting, for algorithms
that are always in a valid configuration the fault rate is at most λu+λ0

λu+λ0+λr
; this

bound extends trivially to all r-competitive algorithms. We stress that this is a
guaranteed upper bound on the fault rate, however certain algorithms perform
less than this amount. Empirical results showed that in practice the value of λr

2We used all the available original reference traces from http://www.cs.amherst.edu/

~sfkaplan/research/trace-reduction/index.html.
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Figure 6.1: The attack rate r in real-world inputs. The x-axis shows the percent-
age of pages that fit in cache, i.e. k, and the y-axis shows the ratio between r
and the cache size k. The constant line f(x) = 1 corresponds to r = k and is the
upper bound on the competitive ratio by standard competitive analysis.

is very large, typically amounting to more than 99% of the requests, and thus
our upper bound on the fault rate is usually smaller than 1%.

We compare our guaranteed upper bound on the fault rate against other
approaches using input parametrization, based on locality of reference. We recall
that for decades it is known that real-life inputs exhibit locality of reference [26].
To quantify the locality of reference in the input, Albers et al. [3] proposed
two ways of dealing with locality of reference by inspecting all subintervals of
the input having size n and measuring the maximum and average numbers of
distinct pages in these sliding windows respectively. For these settings, denoted
Max-model and Average-model respectively, they analyzed the fault rate on which
they gave upper bounds for several text-book algorithms, such as LRU, FIFO,
and Marking. More recently, Dorrigiv et al. [30] gave a measure quantifying the
non-locality existent in the input and also gave upper bounds on the fault rate of
many classical algorithms. Perhaps the biggest drawback of the approaches based
on (non-)locality of reference is that they do not distinguish between revealed and
unrevealed pages and thus include revealed pages in their predicted upper bounds
even though algorithms that are always in a valid configuration never fault on
such pages (and LRU is one such algorithm). This tends to result in predicting
higher upper bounds than necessary, especially for not too large cache sizes.

We conduct experiments which show the fault rate as predicted by the four
approaches, together with the actual fault rate of LRU. In Figure 6.2 we give
the results for all datasets. They show that for all inputs and all cache sizes
our approach gives more realistic upper bounds on the fault rate of LRU than
non-locality of reference and locality of reference in the average model, for some
datasets by huge margins, i.e. factors larger than 100. Typically for cache sizes
smaller than 1/3 of the pageset our parametrization clearly outperforms locality
of reference in the Max setting, in many cases by factors of thousands. Up to
2/3 of the cache size our approach still outperforms it but by smaller margins,
whereas for cache sizes exceeding approximately two thirds of the pageset the
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locality of reference in the Max model gives the best upper bounds, though by
very small margins. On the one hand, the Max model allows good theoretical
bounds because it is based on a worst case parameter of the input. On the other
hand, even small subintervals without locality of reference cause bad predictions
for the whole input. The larger the input sequence, the higher the probability to
find such an interval. This happens for example if the working set of a program
changes3. We conclude that overall our parametrization provides tighter bounds
than existent locality of reference for r-competitive algorithms in general and
LRU in particular.

6.3 Input-Parametrized Competitive Ratio

6.3.1 Priority-Based Paging Algorithms

Most paging algorithms can be viewed as consisting of two components: a predic-
tor and an eviction policy. The predictor assigns priorities to pages in an attempt
to guess the order of future requests. Based on the predictor, the strategy decides
which page is to be evicted upon a cache miss. Without loss of generality we as-
sume the smaller the priority of a page, the more in the future its next request
is predicted. For instance, LRU may assign as priority for the current page the
current timestamp and evict the page having the smallest priority. Depending
on the eviction policy, we consider three classes of algorithms introduced below,
namely CacheMin, Marking, and OnOPT.

CacheMin. Upon a cache miss, an algorithm in this class evicts the page in
cache that is predicted to occur the farthest in the future, i.e. that has the
smallest priority. Most text-book deterministic algorithms belong to this class.
Setting for each request the current timestamp as priority yields LRU; if we set
the priority to the negated current timestamp we obtain MRU. Similarly, setting
the priority of a page to the last timestamp it faulted we obtain FIFO, and the
negated of this value yields LIFO. Assigning for a page the request frequency as
priority results in LFU.

Marking. The marking algorithms assign marks to pages and work in phases
as follows. A phase begins when all pages in cache are marked and a cache miss
occurs. In this case all pages are unmarked, the page in cache predicted to be
requested farthest in the future is evicted, and the new page is loaded in cache
and marked. For each request to some page p within a phase, if p is a cache hit

3For all datasets we considered the full input to compute the parameters for locality of
reference in the Max model, as opposed to [3] where they truncated inputs longer than 107

requests; in our experiments the input size ranges from 7 · 106 to 5 · 108, hence the slightly
different behavior compared to [3] for the same application.
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it gets marked and if it’s a cache miss the unmarked page in cache predicted to
be requested farthest in the future is evicted, after which p is loaded in the cache
and marked.

OnOPT. The algorithms in this class are based on the layer partition in [44]
previously described. They always have a cache configuration identical to LFD if
the priority assignment reflects future requests. This implies that they are always
in a valid configuration according to the current work function. These algorithms
maintain the layer partition and process some page p by first applying an eviction
policy in the case of a cache miss followed by updating the layers, as shown in [20].
The eviction policy is implemented as follows. If p is in the cache then nothing
needs to be done. If p is not in the cache we distinguish between two cases: p ∈ L0

and p ∈ Li with i > 0. If p ∈ L0 then the page in cache having the smallest
priority is evicted. If p ∈ Li and p triggers a cache fault, we first identify the
layer Lj with j ≥ i such that the cache contains exactly j pages in L1 ∪ · · · ∪Lj,
i.e. |M ∩ (∪j

l=1Ll)| = j. The page in cache from L1 ∪ · · · ∪Lj having the smallest
priority is evicted. This eviction policy ensures that in the case that the priority
assignment reflects the future requests, the cache contents of the online algorithm
and LFD are identical.

We note that, since implementations are given, each of the three classes can
be viewed as a framework which, provided with a priority assignment, results in
a paging algorithm. Assuming that the only priority change happens for the cur-
rent request, algorithms in all three classes support very fast implementations and
thus are not prohibitively expensive in practice. Algorithms in the CacheMin
and Marking classes can be easily implemented using a dictionary and a pri-
ority queue, which take O(k) space and O(log k) time per page request. For the
algorithms in the OnOPT class we showed in [20] how to implement them in
O(m) space and O(logm) time per request where m is the size of the pageset.
A variant with similar behavior and supporting a faster implementation can be
achieved by using the forgiveness mechanism introduced in [11]. The resulted im-
plementation uses O(k) space and O(log k) time per request as well, however the
theoretical guarantees are compromised. Nonetheless, experimental results show
that the number of cache misses done by the two implementations is virtually
identical. However the bounds provided are generic and apply to all algorithms
in a given framework, but certain algorithms can be implemented significantly
faster, e.g. FIFO takes O(1) time per request.

6.3.2 Competitive Analysis

In this section we give lower and upper bounds on the competitive ratio for
deterministic paging algorithms, as a function of the attack rate r. The results
are summarized in Table 6.1.
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Class Competitive ratio
CacheMin ∞
Marking [2r − 1, 2r]
OnOPT r

Algorithm Competitive ratio
LFU, MRU, LIFO ∞

FWF [2r − 1, 2r]
LRU, FIFO r

Table 6.1: The guaranteed competitive ratio for the generic classes (left) and for
classic algorithms (right).

Lemma 6.1 The competitive ratio for any deterministic paging algorithm on an
input in I(r), for any arbitrary rational r ∈ [1 . . . k], is at least r.

Proof. Recall that I(r) contains all inputs having the attack rate at most r.
Consider some arbitrary deterministic algorithm A. To prove the claimed bound
we build an input sequence on which A is guaranteed to perform r times more
cache misses than LFD. We consider a set containing k + 1 pages, on which we
build a subsequence which starts in a cone and ends in a cone. We first use
the standard lower bound construction from classical competitive analysis and
request k pages such that for each request A does a cache miss and λ0 = 1. We
then request as many unrevealed pages as necessary until we end in a cone. Since
the only first request is in L0 and we end in a cone, for each such subsequence
we have λ0 = 1 and λu = k − 1. Also, by construction A does at least k cache
misses.

We request this subsequence n1 times using the same set of k + 1 pairwise
distinct pages, followed by n2 requests to pages in L0 that were never requested.
For such an input, we have λ0 = n1 + n2 and λu = (k − 1)n1, which leads to
an attack ratio r = kn1+n2

n1+n2
. Using the fact that LFD faults only on requests

in L0, the competitive ratio is at least kn1+n2

n1+n2
= r. Combining different values

for n1 and n2 we obtain any possible rational value for r ∈ [1, k] and the proof
concludes. 2

Fact 6.2 Any algorithm is 1-competitive on inputs in I(1).

CacheMin; LIFO, MRU, and LFU. Both LIFO and LFU belong to the
CacheMin class, and for both of them the arguments from the standard com-
petitive analysis carry on to our parametrized inputs. For LIFO, after the first
k-pairwise distinct pages we request two new pages x and y alternately and in-
finitely, i.e. the input sequence σ = p1, . . . , pk, (xy)

∗. LIFO does a cache miss on
each request while OPT does only 2 cache misses (we exclude the first k pairwise
distinct pages). We note that we used an input having attack ratio of 3/2, but it
can be easily extended to any value r > 1. The same argument holds for MRU.
For LFU, we request the first k pairwise distinct items n times each and then we
cyclically request two new pairwise distinct pages n−1 times each, i.e. the input
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is σ = (p1, . . . , pk)
n(pk+1, pk+2)

n−1. Similarly to LIFO and MRU, LFU faults on
each page while OPT incurs 2 misses. For infinitely large n the competitive ratio
is unbounded. Similarly to LIFO, the attack rate is 3/2 but can be extended to
any value in (1 . . . k].

Marking algorithms. For the marking algorithms, we first show that they are
2r-competitive and then we show that there exist priority assignments which are
very close to this bound. Although FWF is not in our Marking framework, the
following result applies to it as well, both for the lower and upper bounds.

Lemma 6.2 The competitive ratio for any marking algorithm on an input in
I(r) is at most min(2r, k); there exist marking algorithms which are at least
min(2r − 1, k)-competitive for any value of r.

Proof. For the upper bound we recall a property of marking algorithms, namely
that for a sequence of k pairwise distinct pages there can be at most two cache
misses on any given page p. We divide the request sequence in consecutive phases
which start with a request from L0 and contain all following consecutive requests
in the support until the next request in L0. Since by Fact 6.1 at most k pairwise
distinct pages are requested during a phase, a page p requested in this phase
causes at most two cache misses. If page p triggers one or two cache misses, it
implies that it was requested in this phase either from L0 or from an unrevealed
layer, since the phase starts with a request from L0 which unreveals all pages in
the support. Mapping the at most two cache misses on p to its request from either
L0 or an unrevealed layer leads to the upper bound of 2r. The upper bound of k
comes from classical competitive analysis.

For the lower bound, we consider Mark having MRU as priority assignment,
i.e. when a page is requested we assign as priority the negated of the current
timestamp and construct inputs which achieve the bounds. We consider three
types of inputs which we will combine to show the claimed bound. For each of
them we count the number of cache misses done by Mark (MK) and OPT (λ0),
and the number of requests λu to unrevealed pages. Type I input performs a
request to an item in L0 and we have MK = λ0 = 1 and λu = 0. The type II
input is a classical attack starting and ending in a cone with all pages marked
and it proceeds as follows. We first request a page in L0 and then request k − 1
support pages in reverse order of their last requests so that the MRU assignment
faults on each request, which yields MK = k. Also, we have λu = k − 1 because
the first request to the page in L0 unreveals all pages in the support. Also, we
have only one request in L0 meaning λ0 = 1. The type III input starts and ends
in a cone and Mark has all pages marked. Let {p1, . . . , pk} be the pages in the
cone, which are also the (marked) pages in the cache of Mark. We request the
sequence (pk+1, pk+2, pk, pk−1, . . . , p3, p2, p3, . . . , pk, pk+2), where pk+1 and pk+2 are
new pages. On this input Mark does a cache miss on each request and thusMK =
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2k. We now analyze the offset function ω. Initially, we have ω = (p1| . . . |pk) and
after the first request to pk+2 we have ω = (p1| . . . |pk2 |pk−1, pk, pk+1|pk+2). After
the request to p2 we have ω = (pk+2|pk| . . . |p3|p2), and all further requests are to
revealed pages. We thus have two requests in L0 and k − 1 to unrevealed pages
in the support, which yields λu = k − 1 and λ0 = 2.

We now combine the three types of inputs to obtain the lower bound for any
value of r. In case 2r−1 < k the input is a sequence of n3 type III inputs followed
by n1 type I inputs. We have λu = (k − 1)n3 and λ0 = n1 + 2n3, which means

the attack rate is r = n1+(k+1)n3

n1+2n3
. The number of cache misses done by Mark and

OPT is n1 + 2kn3 and n1 + 2n3 respectively and we obtain that the competitive
ratio is n1+2kn3

n1+2n3
= 2r − 1.

If 2r − 1 ≥ k we build the input as a sequence of n3 type III inputs followed
by n2 type II inputs. We have λu = (k − 1)n2 + (k − 1)n3 and λ0 = n2 + 2n3,

which yields an attack rate r = kn2+(k+1)n3

n2+2n3
. For the competitive ratio, OPT does

n2+2n3 cache misses and Mark faults kn2+2kn3 times, leading to a competitive
ratio of kn2+2kn3

n2+2n3
= k. Since by choosing various values for n1, n2, and n3 we

obtain arbitrary values of r, the bound holds for any r. 2

OnOPT and FIFO. By construction, the algorithms in the OnOPT class
never fault on revealed items and are thus r-competitive on inputs in I(r). Since
LRU is inOnOPT, it is also r-competitive. In what concerns FIFO, we show that
it is r-competitive in spite of the fact that it is not always in a valid configuration.
It is indeed possible to build input sequences for which FIFO faults on revealed
page.

Lemma 6.3 FIFO is r-competitive on any input in I(r).

Proof. Similarly to Marking algorithms, we split the input in phases where each
phase starts with a request in L0 and finishes just before the next request in L0.
By Fact 6.1 each phase consists of at most k pairwise distinct pages. We note
that a page can fault at most once during a phase, since k more pairwise distinct
pages are required until the same page faults again. Since at the beginning of a
phase all pages, except for the request in L0 starting the phase, are unrevealed,
this immediately implies that each page in this phase is requested exactly once
from L0 or from an unrevealed layer. We thus can charge each cache miss on a
page to a request to the same page in L0 or an unrevealed layer. We obtain that
overall FIFO does λu + λ0 cache misses, which combined to the λ0 done by OPT
concludes the proof.

2



6.4. An Algorithm Better than LRU 101

6.4 An Algorithm Better than LRU

In this section we first give a priority assignment to be used in the framework
of OnOPT algorithms previously introduced, which leads to an algorithm that
we denote Recency Duration Mix (RDM). As its name implies, it combines two
priority policies, one based on recency and the other on the time-frame that pages
spend in support. We then conduct experiments which demonstrate that for most
inputs and cache sizes our algorithm outperforms not only LRU, but also two of
its variants shown to behave well in practice.

6.4.1 RDM

We recall that the framework of OnOPT algorithms ensures that regardless of
the priority assignment we get an r-competitive algorithm which is always in a
valid configuration. This gives us the freedom to explore various priority policies.
Furthermore, this framework can be implemented efficiently with respect to both
space and running time to give it practical value.

We use a global counter t, which keeps track of the amount of requests to pages
in L0 and unrevealed layers. Thus before assigning a priority to the requested page
p, we increment t only if p is not revealed. We do so because requests to revealed
pages trigger only a permutation of the revealed layers. More precisely, only
the layer representation of the offset function changes, but not the function itself.
Thus, such requests do not provide any new information about the possible states
of an optimal solution and consequently should not affect the priority assignment.
Also, for each page p in the support we store a value t0 which stores the value of
t at the time that p entered the support. More exactly, for any request p from L0

we set t0(p) = t. We describe the two priority assignment strategies that we will
later combine into a new priority assignment which we plug into the OnOPT
framework to obtain RDM.

Recency. We assign each page upon request the current counter t as priority.
It is inspired by LRU in that it assigns for each page p the current counter as
priority, but unlike LRU our counter ignores requests to revealed pages.

Duration. A major drawback of LRU is that it performs very bad when re-
peatedly requesting the same sequence having more than k pages, e.g. repeatedly
scanning an array. This priority policy addresses this drawback taking into ac-
count the time that a page spent in the support. When requested, each page is
assigned as priority the value t− t0. The intuition behind this strategy is that if
a page is frequently requested during a period, it remains in OPTs cache during
this period and gets a high priority. A particular strength of this strategy is the
fact that it adapts to repeatedly requesting the same sequence of more than k
pages. After the first iteration all the pages are in the support, at the second
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iteration the first k−1 requests become revealed and get their priorities increased
while the remaining ones are evicted from the support and at their next request
they are assigned a new t0 value which gets them low priorities, thus avoiding an
LRU-like behavior.

We have empirically determined that assigning priorities according to the
duration policy alone outperforms LRU for certain datasets and cache sizes.
However, using a linear combination of recency and duration the performance
improves significantly. Overall, we have achieved the best results when assigning
for each page upon request the value 0.8t+0.1(t−t0) as priority, and this priority
is used in the experimental results.

6.4.2 RDM on Real-World Traces

We conduct experiments to compare the performance of RDM against the per-
formance of LRU and two of its variants which were shown to behave better than
LRU in practice, namely RLRU [17] and EELRU [61].

RLRU (Retrospective LRU) was proposed in [17], where it was also proven
to be better than LRU with respect to the relative worst order ratio. It is a
marking-like algorithm which assigns marks based on what OPT would have in
cache and evicts unmarked pages using a LRU strategy. Empirical results over
various datasets showed RLRU to perform fewer cache misses than LRU, though
the differences observed were small (mostly up to 5% improvement). EELRU
(Early Eviction LRU) is an adaptive paging algorithm from a less theoretical
direction. It simulates a large collection of about 256 parametrized instances of
an algorithm which is a mix of LRU and MRU (Most Recently Used). To decide
which page to evict EELRU consults the results of these 256 instances for the
recent past, and the most promising is simulated on the actual request. If none
is promising, it switches to LRU and it is guaranteed by construction that it can
never be worse than a factor of three compared to LRU. In [61] it was shown that
EELRU achieves good performance compared to LRU in practice, outperforming
LRU on many datasets, at times by significant amounts.

For each dataset and cache size, we measure for each of the four algorithms
considered the competitive ratio, i.e. the number of cache misses performed nor-
malized by the performance of OPT. In Figure 6.3 we give the results for all
datasets. The results show that on all datasets and for all cache sizes RLRU has
a similar performance to LRU, though it outperforms it consistently by small
margins. For EELRU, we note that gnuplot is the only dataset on which it out-
performs all other algorithms by large margins. For all the remaining inputs,
except for certain cache sizes on the espresso and lindsay datasets, EELRU is at
least as good as LRU and RLRU; however, on several datasets (e.g. compress,
gcc, grobner) there are cache sizes for which it outperforms LRU by factors rang-
ing from two to four. In what concerns RDM, it outperforms LRU and RLRU on
all datasets and for all cache sizes, except for a narrow range on the gcc dataset.
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The margins vary among datasets, with improvements by more than a factor of
100% on three datasets (compress, grobner, and go) and more than 10% on most
of the remaining datasets. Moreover, it rarely happens that RDM has a com-
petitive ratio of more than two. Finally, we note that, except for gnuplot, RDM
outperforms EELRU as well on most cache sizes, in many cases by significant
margins.

6.5 Conclusions

The parametrization using a characterization of the optimal solution leads to
more realistic predictions for bounds on the competitive ratio and the fault rate.
OnOPT algorithms adapt optimally to the “easiness” of the input. Marking
algorithms profit from easy inputs, though not optimally, while algorithms like
LIFO or LFU do not profit at all. It is interesting that the good performance
of LRU can be partially explained by its property of always being in optimal
cache configurations. However this holds for the whole OnOPT class, and this
motivates searching for other practical algorithms in this class. We provided
an algorithm (RDM) among these which clearly outperforms LRU on the tested
inputs. Our algorithm can even compete with improved variants of LRU, such as
RLRU and EELRU. It is interesting whether other priority assignments or using
adaptiveness like EELRU can further improve the fault rate.
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Figure 6.2: The predicted fault rate by offset function of = λ0+λu

λ0+λu+λr
, the locality

of reference in the Max- and Average-model, and the non-locality of reference,
together with the actual performance of LRU for the first twelve datasets. The
x-axis shows the cache size and the y-axis shows the fault rate.
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Figure 6.3: The empirical competitive ratio on various inputs for RDM, LRU,
RLRU, and EELRU. The x-axis shows the cache size and the y-axis shows the
competitive ratio.





Chapter 7

Engineering Efficient Paging Algorithms

The work Engineering Efficient Paging Algorithms was published as a con-
ference paper [54] and as a journal paper [53] (invited for the special issue of the
Journal of Experimental Algorithmics dedicated to SEA 2012).

[54] G. Moruz, A. Negoescu, C. Neumann, and V. Weichert. Engineering effi-
cient paging algorithms. In Proc. 11th International Symposium on Exper-
imental Algorithms, pages 320–331, 2012

[53] G. Moruz, A. Negoescu, C. Neumann, and V. Weichert. Engineering ef-
ficient paging algorithms. Journal of Experimental Algorithmics, Special
issue of SEA 2012 (to appear)

The contents of this chapter correspond to the journal version [53] which includes
all results of the conference paper [20]. It extends the conference paper by more
detailed experimental results and proofs omitted due to lack of space.
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Engineering Efficient Paging Algorithms∗

Gabriel Moruz † , Andrei Negoescu†, Christian Neumann†, Volker Weichert†

Abstract

In the field of online algorithms paging is a well studied problem. LRU
is a simple paging algorithm which incurs few cache misses and supports ef-
ficient implementations. Algorithms outperforming LRU in terms of cache
misses exist, but are in general more complex and thus not automatically
better, since their increased runtime might annihilate the gains in cache
misses. In this paper we focus on efficient implementations for theOnOPT
class described in [51], particularly on an algorithm in this class, denoted
RDM, that was shown to typically incur fewer misses than LRU. We pro-
vide experimental evidence on a wide range of cache traces showing that
our implementation of RDM is competitive to LRU with respect to run-
time. In a scenario incurring realistic time penalties for cache misses, we
show that our implementation consistently outperforms LRU, even if the
runtime of LRU is set to zero.

7.1 Introduction

Paging is a prominent, well studied problem in the field of online algorithms. It
also has significant practical importance, since the paging strategy is an essential
efficiency issue in the field of operating systems. Formally, the problem is defined
as follows. Given a cache of size k and a memory of infinite size, the algorithm
must process pages online, i.e. make decisions based on the input sequence seen
so far. If the page to be processed is in cache, the algorithm simply proceeds to
the next page. However, if the page requested is not in the cache, a cache miss
occurs and the page must be loaded in the cache; additionally, if the cache was
full, some page must be evicted to accommodate the new one. The goal is to
minimize the number of cache misses.

Traditionally, when evaluating the performance of paging algorithms, most
work focuses exclusively on the number of misses incurred. However, in practice,

∗This work is partially supported by the DFG grants ME 3250/1-3 and MO 2057/1-1, and by
MADALGO (Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation).

†Department of Computer Science, Goethe University Frankfurt am Main,
Robert-Mayer-Str. 11-15, 60325 Frankfurt am Main, Germany. Email:
{gabi,negoescu,neumann,weichert}@cs.uni-frankfurt.de.
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apart from cache misses, factors such as runtime and space usage have a major
impact in deciding which algorithms to use [63, Section 3.4]. In particular, the
fact that LRU (Least Recently Used) and its variants are widely popular stems
not only from the fact that they incur few cache misses (typically no more than
a factor of four more than the optimal cost [68]), but also because they have
efficient implementations with low overhead in terms of space and runtime.

Typically, online algorithms in general and paging algorithms in particular
are analyzed using competitive analysis [41, 60], where the online algorithm is
compared against an optimal offline algorithm. An algorithm is c-competitive
if the number of misses incurred is up to a factor of c away from an optimal
offline solution. Any deterministic paging algorithm has a competitive ratio of at
least k [60], and several k-competitive algorithms are known. Examples include
LRU, FIFO, and FWF (Flush When Full); furthermore, all these algorithms
can be implemented efficiently in terms of space and runtime. For randomized
algorithms, in [32] a lower bound of Hk on the competitive ratio was shown1,
and a 2Hk-competitive algorithm, denoted Mark, was proposed. Subsequently,
several Hk-competitive paging algorithms were proposed, namely Partition [48],
Equitable and Equitable2 [1, 11], and OnMIN [20].

Based on the layer partition in [44], we proposed in [51] a measure quantifying
the “evilness” of the adversary that we denoted attack rate. For inputs having at-
tack rate r, we introduced a class of r-competitive algorithms, denoted OnOPT,
and we showed that these algorithms achieve a small fault rate on many practical
inputs (LRU is also in OnOPT). Finally, we singled out an algorithm in this
class, denoted Recency Duration Mix (in short RDM), which we showed
to consistently outperform LRU and some of its variants with respect to cache
misses on most inputs and cache sizes considered, at times by more than a factor
of two.

Our Contributions. In this work we focus on the runtime of paging algorithms
that, together with the cache misses, is an important factor in practice. We
propose a compressed representation of the layer partition in [20, 44]. Based on
this and on the fact that typically most requests are to so-called revealed pages
(pages that are for sure in the cache of an optimal algorithm), we engineer a
fast implementation of the OnOPT class. If the fraction of revealed requests is
1−O(1/k) our implementation yields an amortized runtime of O(1) per request
with very small constant factors. We show on real-world input traces2 that, for
the particular case of RDM, the new implementation outperforms the tree based
approach in [20]. Moreover, we compare the runtime of RDM with that of LRU
and FIFO and show that the runtimes of RDM and LRU are comparable, albeit

1Hk =
∑k

i=1 1/i is the kth harmonic number.
2We used all the available original reference traces from http://www.cs.amherst.edu/

~sfkaplan/research/trace-reduction/index.html.
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slower than FIFO. Finally, we use a more general performance measure for paging
algorithms, namely the sum of runtime and cache miss penalties. Assuming a
realistic cache miss penalty of 9ms, the fact that RDM typically incurs fewer
misses than both LRU and FIFO ensures that it achieves better performance for
many traces and cache sizes, even if we charge LRU and FIFO a runtime of zero.
This shows that OnOPT algorithms in general and RDM in particular may be
of practical value.

Related Work. Although competitive analysis seems too pessimistic, some of
its refinements have lead to paging algorithms with low fault rates on traces ex-
tracted during the execution of real-world programs. In [33], heuristics motivated
by the access graph model from [15] outperformed LRU. These perform an on-
line approximation of the access graph, which models the page access pattern.
Another algorithm, RLRU (Retrospective LRU), was proposed in [17], where it
was proven to be better than LRU with respect to the relative worst order ra-
tio. RLRU uses information about the optimal offline solution for its decisions.
EELRU (Early Eviction LRU) [39] is an adaptive paging algorithm from a less
theoretical direction, which simulates a large collection of about 256 parametrized
instances of an algorithm which is a mix of LRU and MRU (Most Recently Used).
All of these algorithms, including the OnOPT class, have in common that they
are more complex than classical algorithms like LRU and FIFO. Because of this
it is not obvious whether there exist fast implementations such that the savings
in cache misses compensate for the higher runtime overhead.

7.1.1 Preliminaries

Layer Partitioning. Given the request sequence σ seen so far, in an online
scenario it is of interest to know the actual cache content COPT of the optimal
offline algorithm LFD (Longest Forward Distance), which evicts, upon a cache
miss, the page in cache which is re-requested farthest in the future [12]. Although
in general COPT is not known since it depends also on the future request sequence
τ , we are provided with partial information (from σ) about the structure of COPT ,
e.g. it contains for sure the most recently requested page, and pages not requested
in σ are not in COPT . We say that immediately after processing σ a set C of
k pages is a valid configuration iff there exists a future request sequence τ such
that LFD’s cache content equals C. A precise mathematical characterization of
all possible valid configurations was given by Koutsoupias and Papadimitriou [44]
and an equivalent variant of this characterization is used by the OnOPT algorithm
class [51]. It consists of a partition L = (L0| . . . |Lk) of the pageset in k+1 disjoint
sets, denoted layers. Initially, each layer in L1, . . . , Lk contains one of the first
k pairwise distinct pages and L0 contains all the remaining pages. If L is the
layer partition for input σ, let Lp denote the layer partition for σp, the sequence
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σ L0 L1 L2 L3

7,1,3 2,4,9 7 1 3
7,1,3,7 2,4,9 1 3 7
7,1,3,7,3 2,4,9 1 7 3
7,1,3,7,3,9 2,4 1 3,7 9
7,1,3,7,3,9,4 2 1 3,7,9 4
7,1,3,7,3,9,4,3 2 1,7,9 4 3
7,1,3,7,3,9,4,3,1 2,7,9 4 3 1

Figure 7.1: Application of layer update rules for k = 3 and request sequence σ.

resulting by the request of page p. The layers are updated as follows (an example
is given in Figure 7.1):

Lp =

{
(L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

(L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |Lk|{p}), if p ∈ Li, i > 0

In [44] it has been shown that a cache configuration C is valid iff it holds that
for each i ∈ {1, . . . , k} we have |C ∩ (∪i

j=1Lj)| ≤ i.

The support of L is defined as L1 ∪ · · · ∪ Lk. Denoting singleton a layer with
one element, let r be the smallest index such that Lr, . . . , Lk are singletons; the
pages in Lr ∪ · · · ∪ Lk are denoted revealed. We denote by Opt-miss pages the
pages in L0, while the remaining pages, i.e. pages in support that are not revealed,
are unrevealed pages. A valid configuration contains all revealed pages and no
page from L0. Note that by the layer update rule all layers are non-empty.

OnOPT Algorithms. Algorithms from the OnOPT class use the layer par-
tition as a subroutine. The currently requested page is assigned a priority which
reflects the rank of its next request among the other pages. For a priority based
future prediction the cache update rule ensures that their cache content is always
identical to LFD’s, given that the prediction is correct. Algorithms in this class
differ only in the priority strategy. The pseudo-code is given in Algorithm 3. We
note that LRU is also in OnOPT, and is obtained by setting the current times-
tamp as priority for the currently requested page. The fact that no cache misses
are performed on revealed requests guarantees a reasonable performance for all
OnOPT algorithms, due to the high percentage of revealed requests in the input.
In OnOPT we singled out RDM, which combines two priority policies, one based
on recency and the other on the time-frame that pages spent in support. RDM
achieves good results, outperforming LRU on many real-world traces and cache
sizes [51].
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Algorithm 3 OnOPT algorithms

procedure OnOPT(Page p, Cache M) ◃ Processes page p
Assign p its priority
if p /∈ M and p ∈ L0 then ◃ Update cache

Evict page in M with smallest priority
else if p /∈ M and p ∈ Li, i > 0 then

Identify j such that j ≥ i and |(L1 ∪ · · · ∪ Lj) ∩M | = j
Evict page in L1 ∪ · · · ∪ Lj having smallest priority

end if
Update the layers ◃ Layers update

end procedure

7.1.2 Revealed Requests

We give experimental evidence that a very high percentage of requests are to
revealed pages, which is the main motivation for the OnOPT implementations
we propose in this paper. For the remainder of the paper we use a collection of
cache traces extracted from various applications for our experiments. Detailed
information about these traces is given in Table 7.2.

Application #pages #requests OS / Collected by Description
grobner 68 7787835 Linux / VMTrace Grobner basis functions
espresso 78 326938361 Linux / VMTrace circuit simulator
p2c 133 30722431 Linux / VMTrace Pascal to C transformer
go 268 106790719 Windows NT / Etch AI program playing “Go”
compress 397 129116176 Windows NT / Etch Compression utility
gcc 459 37524334 Linux / VMTrace GNU C/C++ compiler
lindsay 522 123690749 Linux / VMTrace hypercube simulator
gs 559 134371942 Linux / VMTrace Postscript interpreter
cc1 717 263765501 Windows NT / Etch Compiler core for gcc
winword 984 114359299 Windows NT / Etch MS Word
powerpoint 1000 37384786 Windows NT / Etch MS Powerpoint
netscape 1038 22077106 Windows NT / Etch Netscape web browser
acroread 1904 94794501 Windows NT / Etch Acrobat Reader
vortex 4276 543247591 Windows NT / Etch Database program
gnuplot 7719 68458509 Linux / VMTrace Plotting utility

Figure 7.2: Details on the cache traces we ran experiments on – the number of
pairwise distinct pages requested, the total number of requests, the operating
system under which the application was run, the tool used to collected the trace,
and a description of the given application. The page size was 4KB [39].

The charts in Figure 7.3 show that if enough pages fit in memory (usually
about 10%), almost all the requests are to revealed pages. In these cases the
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ratio of revealed requests in the input is about (k − 1)/k, which we approximate
by 1 − O(1/k). For the remainder of the paper we will focus on how to process
these requests as fast as possible at the expense of increasing the worst case time
for processing requests to Opt-miss and unrevealed pages.
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Figure 7.3: The ratio of revealed requests for all cache traces. For decently large
cache sizes the ratio of revealed requests is about (k − 1)/k for all traces.

7.2 Compressed Layers

We simplify the layer partition with the main purpose of reducing the runtime for
layer updates. The layer partition can be seen as a sequence of conditions that
a valid configuration must fulfill. Consider the initial partition, where each Li

contains exactly one page pi. The partition implies the constraints that a valid
configuration contains at most one element from {p1}, two elements from {p1, p2}
and so on. Since each layer has only one page, these k conditions can be reduced
to one, namely at most k pages from {p1, . . . , pk}. We generalize this example as
follows. Given the original layer partition L, we define a compressed partition L
which groups all consecutive singletons of L into the first non-singleton layer to
the right. An algorithmic description of this process is given in Algorithm 4, an
example for k = 7 is provided in Figure 7.4.

The compressed partition L may contain empty sets and describes the same
valid configurations as L. For L we provide a corresponding update rule, which
has the advantage that upon revealed requests nothing changes, leading to signif-
icant runtime improvements of OnOPT algorithms. Another advantage is that
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Algorithm 4 Layer compression

procedure Layer compression(Partition L = (L0, . . . , Li)) ◃ Compress L
T = ∅;
for i = 1 to k − 1 do

if |Li| = 1 then ◃ Li is singleton
Li = ∅; T = T ∪ Li;

else ◃ Li is not singleton
Li = Li ∪ T ; T = ∅;

end if
end for
Lk = Lk ∪ T ;

end procedure

on the cache traces considered the number of non-empty layers is much smaller
than k, which allows for more efficient implementations.

Denoting Si = L1 ∪ · · · ∪ Li, a set of k pages is a valid configuration iff
|C ∩ Si| ≤ i for all i. Similarly, let Si = L1 ∪ · · · ∪ Li.

Lemma 7.1 The compressed partition L describes the same valid configurations
as L, more precisely it holds for all i: |C ∩ Si| ≤ i iff |C ∩ Si| ≤ i.

Proof. Let x and y, x < y, be two indices such that |Lx| > 1, |Ly| > 1, and
Lx+1, . . . , Ly−1 are singletons. Further let L′ be the partially compressed layer
partition up to the iteration step i = x. We assume that L′ and L describe
the same valid configurations and show that this also holds for L′′, the latter
resulting from iterating up to i = y. For j ≤ x or j ≥ y it holds S ′

j = S ′′
j and thus

|C ∩ S ′
j| ≤ j iff |C ∩ S ′′

j | ≤ j. It remains to prove the equivalence for x < j < y.
Assume that C is a valid configuration in L′. This means |C ∩ S ′

x| ≤ x < j and
S ′′
j = S ′′

j−1 = · · · = S ′′
x = S ′

x resulting in |C ∩ S ′′
j | < j.

Now let C be a valid configuration in L′′ implying |C ∩ S ′′
x | ≤ x. We have

|C ∩ S ′
j| = |C ∩ (S ′

x ∪ Lx+1 ∪ · · · ∪ Lj)| ≤ x + (j − x) = j. The last inequality
results from S ′

x = S ′′
x and the fact that Lx+1, . . . , Lj are singletons. 2

Given the compressing mechanism which shows how to construct L from L
we adapt the update rule of L for L. Let p1, . . . , pk be the first k pairwise distinct
pages. We initially set Lk to the set of these k pages, L0 contains all other pages
and the remaining layers are empty. The update rule of L is given in Theorem 7.1.

L1 L2 L3 L4 L5 L6 L7 L8

Uncompressed 10,3 2 7,5 4 1,11 8 9 6
Compressed 10,3 2,7,5 4,1,11 8,9,6

Figure 7.4: Example of a layer representation and its compressed version.
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Theorem 7.1 Let L and Lp be the compressed partition of L and Lp respectively.
Lp can be obtained directly from L as follows:

Lp =


(L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

(L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |∅|Lk ∪ {p}), if p ∈ Li, 0 < i < k

(L0|L1| . . . |Lk−1|Lk), if p ∈ Lk

Proof. Initially the first requested k pairwise distinct pages are distributed as
singletons in L1, . . . , Lk and thus Lk contains all these k pages and L1, . . . ,Lk−1

are empty sets by construction. For all three cases we first identify the layer index
in L which contains the requested page p, apply the update rule in L to obtain
Lp and determine the changes in L such that Lp is the compressed partition of
Lp.

If p ∈ L0 then p is in L0. We distinguish two cases: |Lk| = 1 and |Lk| > 1.
If |Lk| = 1 then |Lk−1| > 1 and Lk = Lk. The update of L modifies only two
layers: Lp

k−1 = Lk−1 ∪ Lk and Lp
k = {p}. This affects Lp in the following way:

Lp
k−1 = Lk−1 ∪ Lk = Lk−1 ∪ Lk and Lp

k = Lp
k = {p}. Now assume |Lk| > 1 which

implies that Lk−1 and Lk are singletons and Lk−1 = ∅. After the update of L
we have Lp

k−1 = Lk−1 ∪ Lk, L
p
k = {p} and |Lp

k−1| = 2 which leads to Lp
k−1 = Lk,

which is equivalent to Lp
k−1 = Lk−1 ∪ Lk since Lk−1 = ∅. Finally, Lp

k = {p}.
The next case is p ∈ Li, 0 < i < k. Since Li is non-empty it implies that

|Li| > 1. First we assume |Li−1| > 1, which implies Li = Li and p ∈ Li. The
update in L results in Lp

i−1 = Li−1 ∪ Li \ {p}, Lp
k = {p} and the index of the

layers Li+1, . . . , Lk is decreased by 1. Thus it still holds |Lp
i−1| > 1 leading to

Lp
i−1 = Li−1 ∪ Li \ {p} = Li−1 ∪ Li \ {p}. The decrease of the layer index is

applied straightforward in L. Since the layer Lp
k = {p} extends the rightmost

sequence of singletons in L we obtain Lp
k = Lk ∪ {p}. The case |Li−1| = 1 differs

by the fact that p is not necessarily from Li. In this case there exists an index
x < i where |Lx| > 1 and Lx+1 = · · · = Li−1 are singletons. Page p is in one of
the layers Lx+1, . . . , Li. Independent of the the exact layer index in L, after the
update rule we have that Lp

x+1, . . . , L
p
i−2 are singletons and |Lp

i−1| > 2 leading to
Lp

i−1 = Li \ {p} = Li−1 ∪ Li \ {p}, since Li−1 = ∅.
In the last case p ∈ Lk, which implies that p is requested from one layer which

is part of the rightmost consecutive singleton sequence in L. The update rule for
L just permutes this singleton sequence, which does not affect the compressed
partition L. 2

7.3 Engineering an implementation for RDM

In this section we first engineer a novel implementation for OnOPT algorithms
in general and RDM in particular, with the goal of obtaining runtimes as fast
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as possible. We then provide experimental results which support that, for the
particular case of RDM, our improved implementation not only significantly out-
performs the original approaches from [21], but is also competitive with LRU and
FIFO in terms of runtime.

7.3.1 Implementation

Given the overwhelming amount of requests to revealed pages in practical inputs,
our implementation mainly focuses on processing these as fast as possible. We
first recall that RDM is an OnOPT algorithm which assigns to each requested
page the priority 0.8t+0.1(t− t0), where t is the current timestamp and t0 is the
timestamp when the page lastly entered the support. Moreover, t is not increased
upon revealed requests.

Throughout this section we denote by n the input size (the number of re-
quests), by nl the number of non-empty layers (at the current request time), and
by m the page-set size (the number of pairwise distinct pages in the input).

Structure. We require that for each page p in the support the following infor-
mation is stored: p.t – the timestamp of the last request, p.prio – the priority
of the page, and any additional fields that might be required for computing the
priority (e.g., in the case of RDM p.t0 – the timestamp when p entered the sup-
port). To do so we use direct addressing, i.e. an array a of page-set size where for
a page p the associated information is accessed by a look-up at the corresponding
element a[p]. We note that an alternative implementation using a hash table has
the advantage of using space proportional to the support size, but this increases
the runtime via higher constant factors.

We first note that new layers are created only upon requests to Opt-miss
pages, i.e. pages in L0. When this happens, we assign to the newly created layer
a timestamp t equal to the current timestamp. This value is not modified while
the layer is in support, i.e. until it is merged with L0. We store in a layer structure
information only about the non-empty layers in the support. We do so using an
array of layer identifiers (l1, . . . , lnl) where li corresponds to the ith non-empty
layer and nl is the number of non-empty layers. Note that we do not store the
empty layers – it suffices for each non-empty one to keep the number of empty
layers preceding it. For each layer identifier li, corresponding to layer Lj, we keep
the following: the timestamp li.t, a value li.v which is at all times equal to 1+ ei
where ei is the number of consecutive empty layers preceding Lj, and li.mem
which stores the number of pages in Lj that are in cache, see e.g. Figure 7.5.

Lemma 7.2 For each layer Li having timestamp t and for any pages p ∈ Li and
q ∈ Lj with j < i, it holds that t ≤ p.t and t > q.t.
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Proof. By construction, for each i with 0 ≤ i < k we have that the last request
time for any page in Li is smaller than the last request time of any page in Li+1.
2

By Lemma 7.2, we have that l1.t < l2.t < · · · < lnl.t. Therefore, identifying
the layer that a certain page belongs to can be done using binary search with its
last request time as key. Also, layers can be inserted and deleted in O(nl) time.
Finally, it supports a find-layer-j operation, which, given a layer index i, returns
the leftmost layer identifier lj, with j ≥ i such that |M ∩(L1∪· · ·∪Lj)| = j. This
layer is identified as the first lj with j > i, satisfying

∑j
i=1 li.v =

∑j
i=1 li.mem.

We note that, asymptotically, a search tree augmented with fields for prefix
sum computations is much more efficient than an array. Nonetheless, we chose the
array structure because of the particular characteristics of the layers: insertions
are actually appends and take O(1) time, there are typically few non-empty
layers, and the constants involved are small.

Finally, we store the pages contained in the cache in an (unsorted) array of
size k, where page replacements are done by overwriting.

3
3

2
3

3
2

14 217

L8

t
v

mem
L5L3

Figure 7.5: Example for L = (∅|∅|2, 3, 5, 10|∅|1, 4, 7, 11|∅|∅|6, 8, 9) for the cache
M = (2, 10, 1, 4, 11, 6, 8, 9). Pages are not stored in the layer structure.

Implementing OnOPT. We implement OnOPT algorithms using the struc-
tures described above. The pseudo-code is given in Algorithm 5.

If a page is revealed, no replacement is done because it is in cache. Moreover,
no layer changes are required. A page is revealed iff its last request time is greater
than or equal to lnl.t. Therefore, processing a revealed page takes O(1) time.

If the requested page is an Opt-miss page, it is not in the cache and we
first evict the page having the smallest priority. We identify the victim page
by scanning the cache array for the minimum priority. Finally, we replace the
selected page with the requested one. To update the layers, we first merge Lk−1

and Lk as follows: if lnl.v > 1 then set lnl.v = lnl.v − 1 as Lk−1 was empty;
otherwise, i.e. lnl.v = 1, delete this layer. Afterwards, we simply append a new
layer lnl with lnl.t set to the current timestamp, lnl.v = 1, and lnl.mem = 1: there
are no empty sets before the last layer and the new Lk has one element which is
in memory. Altogether, processing an Opt-miss page takes O(k) time.

It remains to deal with requests to unrevealed pages. If a cache miss occurs we
first identify a page to evict as follows. We look up the page’s layer li in the layer
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Algorithm 5 The pseudo-code for OnOPT algorithms on compressed layers.

procedure OnOPT(Page p, Cache M) ◃ Processes page p
Assign p its priority and update last request time
if p is revealed then return ◃ Nothing to be done
end if
if p ∈ L0 then ◃ p is Opt-miss page

Evict page in M with smallest priority
Update layers

else ◃ p is unrevealed
if p /∈ M and p ∈ Li, i > 0 then

Identify minimal j, with j ≥ i, satisfying |(L1 ∪ · · · ∪ Lj) ∩M | = j
Evict page in (L1 ∪ · · · ∪ Lj) ∩M having smallest priority

end if
Update layers

end if
end procedure

structure. Using the operation find-layer-j, we identify the layer lj, and then by
scanning the cache array find and evict the page with the smallest priority among
the pages having last request time strictly less than lj+1.t. This ensures that the
selected page is in the first j layers. To update the layers, we set li.v = li.v − 1
if li.v > 1 and delete li otherwise. This not only sets Li−1 = Li−1 ∪ Li, but
also ensures the necessary left shifts of the layers to the right. Finally, we set
lnl.v = lnl.v + 1 to reflect a new empty layer before Lk. After updating the last
request time for the requested page, it becomes revealed since this value is greater
than lnl.t. Thus, processing an unrevealed page takes O(nl) time for a cache hit
and O(k) time for a cache miss.

Theorem 7.2 Assuming m pairwise distinct pages are requested, a cache of
size k, and nl non-empty layers, our implementation uses O(m) space and pro-
cesses a revealed page in O(1) time and an Opt-miss page in O(k) time. Unre-
vealed pages take O(nl) time for cache hits and O(k) time for cache misses.

Corollary 7.1 Assuming that a ratio of 1−O(1/k) requests are to revealed pages,
our implementation processes a request in O(1) amortized time.

Note that to decide the page to be evicted upon a cache miss we need a fully
dynamic (i.e., supporting inserts and deletions) data structure which, given a
timestamp t, finds the page having the smallest priority among the pages whose
last request time is at most t. This can be achieved in O(log k) worst case time
using a priority search tree, as was used in [20]. Unfortunately, this requires that,
for each request the priority of the requested page to be updated, which takes
Θ(log k) worst case time. Thus, this would undermine the very idea of processing
the overwhelming amount of revealed requests as fast as possible.
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7.3.2 Experimental results

In this section we conduct experiments which demonstrate empirically that our
implementation for RDM is competitive with both LRU and FIFO, which leads
us to believe that algorithms in this class incurring few cache misses, such as
RDM, are of practical interest.

Experimental Setup. For OnOPT algorithms, apart from the engineered
version previously introduced we implemented the two versions described in [20].
The first one uses linked lists and processes a page in O(|S|) time and the second
uses a binary search tree which takes O(log |S|) time per page, where |S| is the
support size. Furthermore, for each of these implementations we also developed
versions using the compressed layer partition. We also consider two implementa-
tions for LRU and one for FIFO. Similarly to the OnOPT implementations, we
assume that for each page we associate O(1) information which can be accessed
in O(1) time. This is done by direct addressing, i.e. we store an m-sized array
where the ith entry stores data about page i. For LRU, the first implementation,
denoted LRUlist, uses a linked list for recency information and takes O(1) time
per request. The second LRU implementation, LRUlinear, uses an array of size
k to store the cache contents. On a cache miss, the array is scanned to identify
the page to evict. The first implementation treats a cache miss much faster than
the second one but pays more time per cache hit to update the recency list. The
pseudo-code for the two LRU implementations is given in Figure 7.6. For FIFO, a
circular array stores the FIFO queue. We note that we first measure the runtime
of the paging algorithms alone, i.e. ignoring the time for a page replacement, and
then we will address a scenario where each cache miss incurs a time penalty.

All the experiments were conducted on all cache traces on a regular Linux
computer having an Intel i7 hex-core CPU at 3.20 GHz, 10 GB of RAM, kernel
version 3.1, and the sources were compiled using gcc version 4.5.3 with opti-
mization -O3 enabled. For each data set and each cache size the runtimes were
obtained as the median of five runs. The source code, the charts, and the input
traces are available online at www.ae.cs.uni-frankfurt.de/sea12.

We note that RDM is not the only algorithm outperforming LRU with re-
spect to the number of cache misses incurred. Examples in this direction include
RLRU [17] and EELRU [39]. RLRU (Retrospective LRU) was shown to outper-
form LRU on traces extracted from database applications. It is a mark-like algo-
rithm which tries to keep in its cache the pages that OPT would have. EELRU
(Early Eviction LRU) takes a different approach in that it simulates 256 paging
algorithms which evict pages based on their recency (i.e. amount of pairwise-
distinct pages requested since their last request), and selects the algorithm in
this collection which works best. Unfortunately, we were unable to find efficient
implementations for these algorithms which would render them competitive with
the engineered version of RDM. Nonetheless, experimental data for the number
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of cache misses incurred by both algorithms on the traces considered is given
in [51]. Our implementations for these algorithms were significantly slower than
RDM, i.e. by factors of at least 50. For RLRU, the number of misses incurred
is virtually the same as LRU, however an implementation competitive with LRU
seems highly unlikely. On the other hand, on most traces EELRU consistently
outperforms LRU, however RDM typically incurs fewer misses. Even though
there could be room for improvement for EELRU, by simulating a large collec-
tion of algorithms it must spend time to update the state of all of them upon
each page request. Since this requires extensive time, we are skeptic that it could
be implemented faster than RDM. Since we are unable to conclusively implement
these two algorithms as best as possible, we refrain from giving experimental data
for them; nonetheless, given their complexity and the number of misses incurred
for the traces considered, we think it is unlikely they would outperform RDM.

LRUList(Page p, List M)
if p ∈ M then

Move p to head of M
else

Delete tail of M
Add p as head of M

end if

LRULinear(Page p, Array M)
if p ∈ M then

return
else

Scan M to identify LRU page q
Replace q by p

end if

Figure 7.6: Pseudo-code for LRUList (left) and LRULinear (right).

Non-empty Layers. We first compare the number of non-empty layers that
we use in our implementation against the k layers used in the non-compressed
one. In Figure 7.7 it is shown that typically both the maximum and the average
number of layers are much smaller than k. As an extreme example, the gnuplot
trace has a page-set of nearly 8000 pages, yet the maximum number of layers
never exceeds 7, and the average is mostly between 2 and 3. This greatly reduces
the runtime for updating the layers.

OnOPT Implementations. We compare the runtime for the five OnOPT
variants, namely the one that we engineered as previously described together
with the two implementations in [20], each of them using the compressed and
uncompressed layer partition; as priority assignment, we used RDM. Surprisingly,
both implementations using the binary trees were hopelessly slow, mainly because
they require for each request, revealed or not, to update the path in the binary tree
from the requested page to the root. To improve the binary search tree version
which uses the compressed layer partitioning, we use an approximation of RDM
where for revealed requests priorities do not change and this update becomes
unnecessary and is not performed; the results shown are for this approximation.
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Figure 7.7: Maximum (left) and average (right) number of non-empty layers in
the compressed layer partition, and the number of layers in the uncompressed
partition. The x-axis is the cache size k.

The runtime results for all the traces are given in Figures 7.9, 7.10, and 7.11. As
expected, our new implementation outperforms the previous ones, for small cache
sizes by significant factors. Also, the implementations using the compressed layer
partition significantly outperform their non-compressed counterparts.

OnOPT vs. LRU and FIFO. Having established that our new implemen-
tation is the fastest for OnOPT algorithms in general and RDM in particular,
we compare it against FIFO and the two LRU implementations. The results in
Figures 7.12, 7.13, and 7.14 show that typically FIFO is the fastest algorithm
while the LRUlist is the slowest. While FIFO being the fastest is expected
due to its processing pages in O(1) time with very small constants, the fact that
LRUlinear outperforms LRUlist despite its worst case of O(k) time per page
is explained by the overwhelming amount of cache hits (over the observed ratio of
1− O(1/k) of revealed requests). For these requests, LRUlinear only updates
the last request time for the requested page, whereas LRUlist moves elements
in the recency list which triggers higher constants in the runtime, and, at times,
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data cache misses. Finally, we note that RDM typically is slower than algorithm
LRUlinear by small margins, which can be explained by the fact that both
algorithms process revealed requests very fast and cache misses by scanning the
memory; RDM has a slight overhead in runtime to update the layers and assign
priorities. An interesting behavior is that for large cache sizes RDM is slightly
faster than LRULinear, which we explain by a machine-specific optimization
which does not write a value in a memory cell if the cell already stores the given
value. Essentially, LRUlinear always updates the last request time for the cur-
rent page, while RDM does not increase the time counter upon revealed requests
meaning that no data associated with pages changes if many consecutive revealed
requests occur. This typically happens for large cache sizes.

Misses with Time Penalty. We now simulate a scenario where for each cache
miss we inflict a time penalty. We choose a typical cost for a cache miss of
9ms [63, Chapter 1.3.3]. Again, we compare RDM to LRUlinear and FIFO,
where the runtime of the algorithm is given by its actual runtime plus the penalty
of 9ms for each miss, i.e. total = runtime +#misses · 9ms. Moreover, for both
LRU and FIFO we set the runtime to zero, so they only pay the penalty for
cache misses. In this scenario the total cost is often dominated by the penalty for
cache misses. The results in Figures 7.15, 7.16, and 7.17 show that both LRU and
RDM outperform FIFO consistently. Despite the zero runtime for LRU, RDM
still outperforms it for about 48% of the experiments (for each trace we considered
about 100 equally distanced cache sizes; for traces having less than 100 pages all
were considered). A more detailed trace-by-trace comparison between LRU and
RDM is given in Figure 7.8. In particular, LRU wins for traces where its number
of misses is almost equal to or better than RDM, e.g. lindsay or gnuplot, or for
large cache sizes (typically larger than 75% of the pageset size), when very few
misses occur and the runtime component becomes significantly more important.
In most of these cases, the fact that the runtime of LRU is ignored becomes
decisive.

7.4 Conclusions

In this paper we considered an integrated view of paging algorithms, where the
focus is not only on the number of misses incurred, but the actual runtime of
the page replacement strategy is also included. In general, algorithms with good
theoretical quality guarantees outperforming LRU and FIFO in terms of page
faults on real-world traces are rather complex. In the case of RDM we show that
there exist implementations with realistic chances to compete in practice. These
implementations can be used for arbitrary algorithms in the OnOPT class. For an
OnOPT algorithm, as long as the priority assignment is not too expensive and the
cache miss behavior is good, our implementation yields an algorithm with a good
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Trace LRU better (in %) RDM better (in %)
acroread 63.7 36.3
cc1 60.5 39.5
compress 31.5 68.5
espresso 52 48
gcc 57.7 42.3
gnuplot 90.1 9.9
go 39.5 60.5
grobner 34.3 65.7
gs 69.5 30.5
lindsay 90.4 9.6
netscape 41.9 58.1
p2c 5.3 94.7
powerpoint 55.3 44.7
vortex 48.5 51.5
winword 54 46

Figure 7.8: The relative performance of LRU vs RDM for each trace, i.e. the
number of cache sizes (in %) for which each of these algorithms is better, when
cache misses incur a penalty of 9ms and the runtime for LRU is set to zero.

overall performance. For the given traces our engineered implementation of RDM
was clearly the best compared to the other RDM implementations. Yet we believe
that for traces with larger page set size e.g. 106 tree-based implementations
(existent or new) may become competitive.
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Figure 7.15: The total runtime, cal-
culated as actual time plus cache miss
penalty, of RDM and LRU compared
to FIFO when a cache miss costs 9ms.
The actual runtime for LRU and FIFO
is set to zero.
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Figure 7.16: The total runtime, cal-
culated as actual time plus cache miss
penalty, of RDM and LRU compared
to FIFO when a cache miss costs 9ms.
The actual runtime for LRU and FIFO
is set to zero.
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Figure 7.17: The total runtime, cal-
culated as actual time plus cache miss
penalty, of RDM and LRU compared
to FIFO when a cache miss costs 9ms.
The actual runtime for LRU and FIFO
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Design of Competitive Paging Algorithms

with Good Behaviour in Practice

von Andrei Laurian Negoescu

Diese Dissertation befasst sich mit theoretischen und praktischen Aspekten
des Paging-Problems. Das Problem ist Teil der Speicherverwaltung in Systemen
mit einer Speicherhierarchie, in der schneller Speicher teuer und dadurch knapp
ist. Seitenersetzungsstrategien verwalten die Anordnung von Daten zwischen zwei
Speicherebenen. Wir unterscheiden zwischen einem schnellen, kleinen Speicher
(Cache) und einem langsamen, aber sehr großen Speicher (Disk). Wenn auf Daten
zugegriffen wird, ist es wünschenswert diese bereits im Cache zu haben, um lange
Zugriffszeiten auf den langsamen Speicher zu vermeiden. Wir gehen davon aus,
dass die Daten in gleichgroße Stücke aufgeteilt sind, die Speicherseiten genannt
werden. Mit k bezeichnen wir die Anzahl der Seiten, die in den Cache passen.

Das wichtigste Anwendungsgebiet stellt die Verwaltung des virtuellen Spei-
chers durch Betriebssysteme dar [18, 24, 59, 63]. In diesem Anwendungsszenario
entspricht der Cache dem schnellen Arbeitsspeicher. Wenn die Gesamtmenge an
Daten die Kapazität des Arbeitsspeichers überschreitet, müssen Speicherseiten
auf der viel langsameren Festplatte ausgelagert werden. Wird auf eine Spei-
cheradresse zugegriffen und die entsprechende Seite befindet sich im Cache, so
haben wir einen Treffer und sind fertig. Andernfalls sagen wir, dass ein Sei-
tenfehler auftritt und die entsprechende Seite muss von der Festplatte in den
Arbeitsspeicher geladen werden. Ein Seitenfehler verursacht zeitaufwendige I/O
Operationen. Ist der Cache beim Auftreten eines Seitenfehlers voll, so muss ein
Paging-Algorithmus entscheiden, welche Seite aus dem Cache auf der Festplat-
te ausgelagert wird. Das Ziel ist die Minimierung der Anzahl der Seitenfehler.
Andere Beispiele für die Anwendung von Paging Algorithmen zur Verwaltung
von Daten zwischen Arbeitsspeicher und Festplatte sind z.B. Datenbanksyste-
me [22, 55, 58, 62], Web-Caching [19, 56, 64] und Werkzeuge für Externspeicher-
Algorithmen wie die C++ Bibliothek STXXL [25].

Wettbewerbsfaktor. Eine optimale Seitenersetzungsstrategie lagert die Seite
aus dem Cache aus, die am entferntesten in der Zukunft wieder angefragt wird.
Diese Strategie ist jedoch nicht praktisch durchführbar aufgrund der Tatsache,
dass normalerweise nur wenig oder überhaupt nichts über zukünftige Zugriffsmus-
ter bekannt ist. Deshalb ist Paging eines der am meisten untersuchten Probleme
auf dem Gebiet der Online-Algorithmen. Bei Online-Algorithmen handelt es sich
um Algorithmen, die ohne vorherige Kenntnis der gesamten Eingabe unwiderruf-
liche Entscheidungen treffen müssen.

Der erste Teil dieser Dissertation behandelt die theoretische Analyse von ran-
domisierten Paging-Algorithmen. Wir benutzen das klassische Evaluierungsmo-
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dell der Kompetitiven Analyse [60]. Ein deterministischer Algorithmus A ist c-
kompetitiv oder hat den Wettbewerbsfaktor c, wenn für jede Eingabesequenz gilt,
dass

cost(A) ≤ c · cost(OPT ) + b.

Dabei entspricht cost(A) der Anzahl Seitenfehler von A, cost(OPT ) der Anzahl
Seitenfehler der optimalen offline Lösung und b ist eine Konstante. Beachte, dass
ein offline Algorithmus bei seinen Entscheidungen Zugriff auf die gesamte Einga-
be hat. Ist A ein randomisierter Algorithmus so bezeichnet cost(A) die erwartete
Anzahl Seitenfehler und die Definition des Wettbewerbsfaktors folgt analog. Ein
Online-Algorithmus ist optimal kompetitiv, wenn dieser den bestmöglichen Wett-
bewerbsfaktor hat.

Im Fall von deterministischen Algorithmen ist für den Wettbewerbsfaktor
die untere Schranke von k bekannt [60]. Mehrere Algorithmen haben diesen op-
timalen Wettbewerbsfaktor, unter den bekanntesten sind LRU (Least Recently
Used), FIFO (First In First Out) and FWF (Flush When Full) [60]. Rando-
misierte Algorithmen haben einen Wettbewerbsfaktor von mindestens Hk [32],
wobei Hk =

∑k
i=1 1/i die k-te harmonische Zahl ist. In derselben Arbeit wurde

der randomisierte Algorithmus Mark vorgestellt und bewiesen, dass dieser 2Hk-
kompetitiv ist. Obwohl Mark nicht den optimalen Wettbewerbsfaktor erreicht,
hat es den Vorteil ein einfacher und schneller Algorithmus zu sein. Später ha-
ben Achlioptas et al. [1] den exakten Wettbewerbsfaktor von 2Hk − 1 für Mark
bestimmt.

Der erste Hk-kompetitive randomisierte Algorithmus Partition wurde von
McGeoch and Slater [48] vorgestellt. Speicherbedarf und Laufzeitkomplexität von
Partition sind nicht durch die Größe k des Caches begrenzt. Obwohl die Mini-
mierung der Anzahl von Seitenfehlern bei der kompetitiven Analyse im Vorder-
grund steht, spielen für den Einsatz in der Praxis Speicherbedarf und Laufzeit
eine wichtige Rolle. Der erste optimal kompetitive Algorithmus, der einen Fort-
schritt in Richtung Effizienz darstellte, war Equitable [1]. Equitable kann
in O(k2) Zeit eine Seitenanfrage bearbeiten und hat einen Speicherbedarf von
O(k2 log k).

Borodin and El-Yaniv haben in ihrem Buch [14] das offene Problem aufgelis-
tet, ob es Hk-kompetitive Algorithmen gibt, die mit einem Speicherbedarf von
O(k) auskommen. Bein et al. [10] haben dieses Problem gelöst, indem sie den Al-
gorithmus Equitable2 vorgestellt haben. Dieser ist eine Variante von Equita-
ble welcher nur 2k Bookmarks benutzt, sich also Informationen über maximal 2k
Seiten merkt, die nicht im Cache sind. In derselben Arbeit wurde die Vermutung
aufgestellt, dass o(k) Bookmarks möglich sind. Obwohl Equitable2 nur O(k)
Speicherbedarf hat, wird weiterhin im worst-case O(k2) Zeit für die Verarbeitung
einer Seitenanfrage benötigt.
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Ergebnisse I. In dieser Dissertation stellen wir den optimal kompetitiven Al-
gorithmusOnlineMin vor, der eine Seitenanfrage in worst-case Zeit O(log k) [20]
verarbeitet und einen Speicherbedarf von O(k) hat. Wir verbessern die Laufzeit
auf O(log k/ log log k) in [21] durch Ausnutzen der Mächtigkeit des RAMModells.
Die beste vorher bekannte Laufzeit bei gleichem Speicherbedarf war O(k2) [10] .

Weiterhin verbessern wir die Analyse von Equitable2 und zeigen, dass nur
ungefähr 0.62k Bookmarks notwendig sind, beweisen jedoch dass o(k) Bookmarks
im Fall von Equitable2 nicht möglich sind. Stattdessen führen wir eine Variante
von Partition ein, welche wir Partition2 bezeichnen. Wir zeigen dass Par-
tition2 optimal kompetitiv ist und Θ(k/ log k) Bookmarks benötigt. Dadurch
beweisen wir die o(k) Bookmark Vermutung [10].

Theorie vs. Praxis. Der zweite Teil dieser Arbeit befasst sich mit der Diskre-
panz zwischen Theorie und Praxis im Fall des Paging-Problems. Die Kompetitive
Analyse wird oft für die zu pessimistischen Qualitätsgarantien von determinis-
tischen Paging-Algorithmen kritisiert. Young [67] hat den empirischen Wettbe-
werbsfaktor untersucht, d.h. das Verhältnis zwischen den Kosten eines Online-
Algorithmus und den Kosten eines optimalen Offline-Algorithmus auf Eingaben
aus der Praxis. Der empirische Wettbewerbsfaktor von LRU ist eine, von k un-
abhängige, kleine Konstante (≈ 4), wohingegen die Kompetitive Analyse einen
Wettbewerbsfaktor von k ergibt. Unterschiede von Faktor 100 und mehr wur-
den zwischen den experimentellen Ergebnissen und der theoretischen Schranke
beobachtet. Ein anderer Kritikpunkt ist die Tatsache, dass die Kompetitive Ana-
lyse den Algorithmus LRU nicht von FWF oder FIFO separiert, obwohl aus der
Praxis bekannt ist, dass LRU deutlich besser abschneidet als die beiden anderen
Algorithmen [14].

Die aktuelle Forschung beschäftigt sich intensiv mit alternativen Modellen
zur Evaluierung von Online-Algorithmen im allgemeinen und Paging im Spe-
ziellen. Eine Forschungsrichtung macht Einschränkungen über die Eingabe bei
der kompetitiven Analyse, wie Diffuse Adversary [44] oder Loose Competitiven-
ess [68]. Andere Ansätze vergleichen Online-Algorithmen direkt miteinander, oh-
ne einen direkten Vergleich mit der optimalen offline Lösung. Relevante Beispiele
umfassen Max/Max Ratio [13], Random Order Ratio [42], Relative Worst Or-
der Ratio [17], Bijective Analysis und Average Analysis [6]. Einen ausführlichen
Überblick über alternative Evaluierungsmethoden liefert die Arbeit von Dorri-
giv [29]. Die meisten der neuen Ansätze sind damit beschäftigt, bereits existie-
rende Online-Algorithmen nach ihrer Performance zu ordnen, so dass diese Ord-
nung mit den Beobachtungen aus der Praxis übereinstimmt. Insbesondere gilt
für viele Ansätze (z.B. Diffuse Adversary, Bijective Analysis kombiniert mit der
Lokalitätseigenschaft [7]), dass sie LRU als den besten Algorithmus im jeweiligen
Modell ausmachen. Nur selten haben die alternativen Modelle das Design neuer
Algorithmen mit einer niedrigen Anzahl an Seitenfehlern in der Praxis motiviert.
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Beispiele dafür sind RLRU (Retrospective LRU) [17] und FARL (Farthest-To-
Last-Request) [14,33], welche durch die Relative Worst Order Ratio und entspre-
chend das Access Graph Modell [15, 31,38] motiviert wurden.

Ergebnisse II. Wir führen die Attack Rate r ein [51]. Dabei handelt es sich
um eine Parametrisierung der Eingabe für die kompetitive Analyse des Paging-
Problems. Der Parameter r ist abhängig von der Eingabe, variiert zwischen 1 und
k und entspricht in etwa dem Grad an Ungewissheit, welche Seiten der optimale
Offline-Algorithmus im Cache hat. Im Gegensatz zu vielen anderen Ansätzen ma-
chen wir nicht die LRU-freundliche Annahme der Lokalitätseigenschaft. Wir be-
weisen, dass r eine untere und obere Schranke für den Wettbewerbsfaktor von de-
terministischen Online-Algorithmen ist. Der optimale Wettbewerbsfaktor r wird
von LRU und FIFO erreicht, aber nicht von FWF. Experimente auf Anfragese-
quenzen aus der Praxis zeigen, dass der Wert von r meistens sehr viel kleiner als
k ist. Somit ist für LRU und FIFO der Unterschied zwischen dem empirischen
Wettbewerbsfaktor und r deutlich kleiner als in der klassischen kompetitiven
Analyse.

Eine in der Praxis geläufigere Kennzahl für die Güte eines Paging-Algorithmus
ist das Verhältnis zwischen Anzahl Seitenfehler und der Länge der Eingabe, die
so genannte Fehlerrate. Unsere Parametrisierung führt zu oberen Schranken für
die Fehlerrate von r-kompetitiven Algorithmen. Experimente zeigen, dass unsere
parametrisierte Schranke die niedrige Fehlerrate von LRU deutlich besser erklärt
als die parametrisierten Schranken von Albers et al. [3] und Dorrigiv et al. [30],
welche auf dem Lokalitätsprinzip beruhen.

Bekannte Algorithmen nach ihren Resultaten in der Praxis zu ordnen und/oder
ihre Performance abzuschätzen ist eine Aufgabe von Evaluierungsmodellen, wel-
che von vielen (zumindest teilweise) erfolgreich gemeistert wird. Eine andere
wünschenswerte Eigenschaft ist die Anregung neuer Algorithmen, welche eine
gute Performance in der Praxis liefern. Wir entwerfen die OnOPT Klasse, wel-
che r-kompetitive Algorithmen enthält, und LRU beinhaltet. Aus dieser Klasse
extrahieren wir den neuen Algorithmus RDM und führen Experimente auf praxis-
relevanten Eingabesequenzen durch. Die experimentellen Ergebnisse zeigen, dass
RDM die Leistung von LRU und einige seiner Varianten auf vielen Eingaben
übertrifft. Dies steht im Gegensatz zu neueren Modellen, die LRU als den besten
Algorithmus herausstellen. Es ist zu beachten, dass die OnOPT Klasse stark
durch die klassische kompetitive Analyse inspiriert ist. Dies zeigt, dass Einblicke
aus der kompetitiven Analyse helfen kann, neue Algorithmen zu entwerfen, die
gute Ergebnisse auf praxisrelevanten Eingaben liefern.

Das Hauptziel von Paging-Algorithmen ist die Minimierung der Anzahl von
Seitenfehlern, da ein Seitenfehler zu einer Verzögerung von mehreren Millisekun-
den in der Programmausführung führen kann. Man darf jedoch nicht die Laufzeit
des Paging-Algorithmus selbst vernachlässigen. Haben wir einen Algorithmus mit
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wenigen Seitenfehlern, der jedoch eine immense Berechnungszeit verschlingt, so
kann es von Vorteil sein stattdessen einen einfachen Algorithmus mit mehr Seiten-
fehlern zu benutzen, wie z.B. FIFO. Wir entwickeln eine effiziente Implementie-
rung von RDM und vergleichen diesen mit anderen Algorithmen bezüglich ihrer
Gesamtleistung [54]. Die Gesamtleistung besteht aus der Laufzeit des Paging-
Algorithmus und einer üblichen Zeitstrafe von 9 ms für jeden Seitenfehler. Die
Experimente zeigen, dass RDM die zwei Algorithmen LRU und FIFO auch in
der Gesamtleistung übertrifft, sogar wenn wir den Konkurrenten von RDM eine
idealistische Laufzeit von 0 ms anrechnen.

Publikationen. Die Ergebnisse dieser Dissertation basieren auf vier Konfe-
renzpapiere und zwei Journal-Publikationen (alle 6 peer-reviewed). Ich war bei
allen sechs Publikationen Hauptautor.

[20] G. S. Brodal, G. Moruz, and A. Negoescu. Onlinemin: A fast strongly com-
petitive randomized paging algorithm. In Proc. 9th International Workshop
on Approximation and Online Algorithms:, WAOA 2011, Revised Selected
Papers, pages 164–175. Springer, 2012

[51] G. Moruz and A. Negoescu. Outperforming LRU via competitive analy-
sis on paramterized inputs for paging. In Proc. 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1669–1680, 2012

[54] G. Moruz, A. Negoescu, C. Neumann, and V. Weichert. Engineering effi-
cient paging algorithms. In Proc. 11th International Symposium on Expe-
rimental Algorithms, pages 320–331, 2012

[21] G. S. Brodal, G. Moruz, and A. Negoescu. Onlinemin: A fast strongly
competitive randomized paging algorithm. Journal Theory of Computing
Systems, Special issue of the 9th Workshop on Approximation and Online
Algorithms, 2013

[53] G. Moruz, A. Negoescu, C. Neumann, and V. Weichert. Engineering ef-
ficient paging algorithms. Journal of Experimental Algorithmics, Special
issue of SEA 2012 (to appear)

[50] G. Moruz and A. Negoescu. Improved space bounds for strongly competitive
randomized paging algorithms. In Proc. 40th International Colloquium on
Automata, Languages, and Programming, ICALP 2013 (to appear)

Aufbau. Die Dissertation ist folgendermaßen aufgebaut: In Kapitel 2 führen wir
die wichtigsten Konzepte von Online-Algorithmen ein. Wir beschreiben die wich-
tigsten Paging-Algorithmen und nehmen Bezug auf ihren Wettbewerbsfaktor.
Als einen vorbereitenden Schritt für unsere experimentellen Ergebnisse, führen
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wir drei existierende Modelle zur Analyse der Fehlerrate ein. Dieses Kapitel endet
mit einem Überblick über die Zustände des optimalen Offline-Algorithmus, einem
wichtigen Bestandteil unserer Ergebnisse. In Kapitel 3 werden die Resultate un-
serer Forschung präsentiert. Wir beginnen mit den theoretischen Ergebnissen zur
Laufzeit [20,21] und dem Speicherverbrauch [50] von Algorithmen mit optimalem
Wettbewerbsfaktor. Als nächstes führen wir die Attack Rate r ein [51] sowie den
Algorithmus RDM. Wir schließen das dritte Kapitel mit der Beschreibung einer
effizienten Implementierung von RDM ab [53, 54]. Kapitel 4-7 enthalten unsere
wissenschaftlichen Arbeiten.
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