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Abstract

We propose a new framework for modelling time dependence in duration
processes on financial markets. The well known autoregressive conditional
duration (ACD) approach introduced by Engle and Russell (1998) will be
extended in a way that allows the conditional expectation of the duration
process to depend on an unobservable stochastic process which is modelled via
a Markov chain. The Markov switching ACD model (MSACD) is a very flexible
tool for description and forecasting of financial duration processes. In addition,
the introduction of an unobservable, discrete valued regime variable can be
justified in the light of recent market microstructure theories. In an empiri-
cal application we show that the MSACD approach is able to capture several
specific characteristics of inter trade durations while alternative ACD models fail.
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1 INTRODUCTION 1

1 Introduction

The enormous progress concerning the computer technology makes it possible to collect

higher frequency measurements of the economy. Especially, on financial markets it

is customary that every single transaction of an asset is recorded electronically with

detailed information about the time of occurrence, price and volume and other relevant

characteristics. Recently, many of these ultra high frequency data sets have become

available at relative low cost for academic research. The fullness of theoretical and

empirical contributions related to the analysis of market microstructure issues are based

on transaction data sets.

The introduction of new econometric methods comes along with the development

of the relevant theory. One of the most promising new approaches is the autoregres-

sive conditional duration model (ACD) introduced by Engle and Russell (1998) which

focuses on the time elapsed between the occurrences of arbitrary trading events. The

ACD model combines elements of time series models1 and econometric tools for the

analysis of transition data2. Therefore, it is perfectly suited for the analysis of high

frequency data sets which unlike most other time series used before in finance and

economics are characterized by their irregularly spacing. This means that the time

between successive observations is not a deterministic constant but rather a random

variable itself from which information contents can be exploited. Following the seminal

contribution of Engle and Russell (1998), a new branch in the econometric literature

quickly emerged that tried to extend their original work in several directions.

Bauwens, Giot, and Grammig (2000) conduct a comparison of the forecast accuracy

of various ACD models with respect to a range of duration processes of interest. Despite

the resulting variety of competing duration models, until now no satisfactory ACD

model in terms of forecast accuracy has been reported that could be used for the

prediction of the trading process itself. The main problem is the inability of existing

1The ACD approach is related to the GARCH class of models introduced by Engle (1982) and
Bollerslev (1986). Many GARCH properties are transferable to ACD models.

2For a basic reference see Lancaster (1990).
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ACD models to forecast observations in the tails of their distribution, especially very

short trade durations, appropriately.

Our intention is to introduce a new reasonable statistical framework for time series

of intraday trade durations that can be used for forecasting purposes as well as for

tests of the implications of market microstructure models. This will be achieved by

the introduction of an additional latent, discrete valued regime variable whose evo-

lution in time is governed by a Markov chain. By the way, the inclusion of a latent

regime variable in the ACD model can be justified in the light of several recent market

microstructure models. The Markov switching ACD model (MSACD) provides a very

flexible framework which allows to model trade durations resulting from different data

generating mechanisms depending on the state of the latent regime and nests many of

the existing ACD models as special cases.

This paper is structured as follows: A brief review of the current state of art in

ACD modelling will be given in Section 2. Afterwards in Section 3, the MSACD model

is introduced and compared to related work on regime switching autoregressive models.

Also, we suggest a robust estimation procedure for MSACD models and discuss their

applicability and modify test procedures developed by Fernandes and Grammig (2000)

and Diebold, Gunther, and Tay (1997) so that they can be applied to MSACD models.

In an empirical application in Section 4 we compare the estimation results obtained

with the MSACD model to a selection of alternative ACD models. Finally, in Section

5 we summarize our main results and give a perspective on possible issues for future

research.

2 The ACD model

The class of autoregressive conditional duration (ACD) models introduced by Engle

and Russell (1998) is designed to account for autocorrelation patterns observed in time

series of arrival times between successive occurrences of certain events associated with

the trading process. The definition of the trading event depends on the specific aim of
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the study. Examples include the time between successive trades, the time until a price

change occurs or until a prespecified number of shares has been traded.3

Let xn = tn − tn−1 be the observed time interval between the (n− 1)th and the nth

trading event with conditional mean

(1) E(xn|Fn−1) = ψn(Fn−1; θψ) ≡ ψn

which depends on lagged dependent as well as lagged and contemporary exogenous

variables, gathered in the filtration Fn−1 = (x1, . . . , xn−1, y1, . . . , yn−1, yn), and on the

corresponding parameter set θψ that determines the conditional mean function. All

of the time dependence of the duration process is captured by the conditional mean.

The ACD model is defined by some parameterization of this conditional mean and the

following decomposition

(2) εn =
xn

ψn

where the stochastic process εn is assumed to be i.i.d. with density function g (·; θε)

determined by parameters θε and support on the positive real line and an unconditional

expectation equal to unity. The choice of g(εn; θε) determines the density fn (xn | Fn; θ)

with θ = (θψ, θε) and will always belong to the same family of distributions as g(·).

The flexibility of the ACD model can be altered in at least two ways: by modifying the

distributional assumption for the residuals εn or the functional form of the conditional

mean function ψn.

An assortment of admissible distributions arises from the exponential over the

Weibull up to the generalized Gamma and Burr distribution respectively. Exponen-

tially distributed random variables are of fundamental importance for modelling wait-

ing times between events from which the families of Weibull, Gamma and generalized

Gamma distributions can be derived. Duration data can also be modelled by mix-

ing a specific parametric family of duration distributions with respect to individual

3Naturally, the price and volume duration processes arise from the trade duration series by dropping
intervening observations from the sample, thus yielding a ’thinned’ or ’weighted’ duration process.
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heterogeneity. The Burr distribution results as a Gamma mixture of Weibull distri-

butions.4 Instead of the restrictive exponential and Weibull ACD models originally

introduced by Engle and Russell (1998) the use of the generalized Gamma distribution

is rather preferred by Lunde (1999) while Grammig and Maurer (2000) propose the

Burr distribution for ACD modelling.

In the most simple case an ACD(p, q) model arises when the conditional mean

function is determined by a linear autoregressive specification which in analogy to

the GARCH model can be transformed into an ARMA (max(p, q), p) representation

from which expressions for the unconditional mean and variance, as well as for the

autocorrelation function of the duration process can easily be derived. Alternatively,

Bauwens and Giot (2000) suggest a logarithmic specification that closely resembles the

EGARCH model of Nelson (1991), implying that the analytical expressions for the

unconditional moments of xn are quite cumbersome in computation as pointed out in

Bauwens, Galli, and Giot (2001). Besides the advantage in estimation it allows for

more flexibility when additional explanatory variables are included in the model. A

transformation of the conditional duration process according to Box and Cox (1964) in

addition with an asymmetric shock impact curve which can be justified from empirical

findings result in a family of augmented ACD models introduced by Fernandes and

Grammig (2001).

3 The Markov switching ACD model

3.1 Regime switching models in econometrics

Apart from the literature on testing for structural changes (e.g. Chow (1960), Gold-

feld and Quandt (1965)), models that allow for repeated, discrete changes of regime

have been used to model macroeconomic time series with differential behavior in re-

cessions and in expansion phases. In switching regression models, first appeared in

4The Burr(µ, κ, σ2) distribution results when Weibull distributions with random scale parameter

(V · µ)
1

κ and location parameter κ are mixed according to the Gamma( 1
σ2 ,

1
σ2 ) distributed V .
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Goldfeld and Quandt (1973), changes in the regime are modelled as the outcome of an

unobserved, discrete random variable which identifies the state of the economy in each

period. Extensions of this approach lead to models where the regime variable itself is

an autoregressive process whose behavior is governed by a hidden Markov chain.

Hamilton (1989) has combined the Markov chain approach for the latent regime with

autoregressive dynamics in the observed economic time series. His Markov switching

autoregressive model (MSAR) has often been used to model macroeconomic and fi-

nancial time series (Engel and Hamilton (1990), and Dewachter (2001)). The common

link between the MSAR model and the earlier literature on static switching regression

models is that both imply that the data generating process of the dependent variable

can be described by a discrete mixture density. The regime specific density of the de-

pendent variable is specified to be from some known family of distributions, usually the

Gaussian, while the density of the regime variable is left unspecified. The MSAR model

has experienced some extensions by allowing for time-varying transition probabilities

in the Markov chain as suggested by Filardo (1994) and Gray (1996) or changes in the

conditional variances in an ARCH model as proposed by Cai (1994) and Hamilton and

Susmel (1994).

Specifically, there are conditional duration approaches which are related to the

Markov switching ACD model (MSACD). The treshold ACD model introduced by

Zhang, Russell, and Tsay (2001) allows subsamples to have different dynamics for which

switchings between them are governed by observables. In order to capture the random

flow of nearly unobservable information events on the market Bauwens and Veredas

(1999) develop a double stochastic conditional duration model so that in opposite to

the origin ACD model expected durations are of random nature as well. Ghysels,

Gouriéroux, and Jasiak (1997) propose the stochastic volatility model which accounts

for heterogeneity in variances. All these approaches, also including the MSACD frame-

work, imply a mixture distribution model for duration data. The advantage of the

flexible MSACD model can be seen in its exquisite ability to reproduce a broad range



3 THE MARKOV SWITCHING ACD MODEL 6

of different dynamics. It provides dynamics with frequent changes of regimes and

likewise it accounts for sudden rare changes.

Starting from the relationship between statistical mixture models for counts of trade

events and sequential trade models in the style of Easley, Kiefer, O’Hara, and Paper-

man (1996) expatiated by ?, much importance can also be attached to the MSACD

model from a theoretical point of view. The MSACD model can be regarded as a gen-

eralized sequential trade model which implies that trading evolves in different velocities

depending on informational regimes.

3.2 The MSACD model

For financial duration processes, the MSACD framework as a statistical model will

be introduced. The general idea is that the conditional mean of the duration time

series depends on an unobserved random variable sn which is regarded as the regime

the process is in at time tn. Formally, the discrete valued stochastic process sn can

assume any value from the set J = {j | 1 ≤ j ≤ J, J ∈ N}. In its most general

formulation, the MSACD model assumes that the decomposition (2) holds in the sense

that E (εn | Fn−1) = 1. The conditional mean function depends on the unobserved

regime variable sn in the following manner

(3) ψn =

J
∑

j=1

p (sn = j | Fn−1; θ) · ψ
(j)
n

where p (sn = j | Fn−1; θ) is the probability that sn is in state j given the filtration

Fn−1. The regime specific conditional mean ψ
(j)
n ≡ E (xn | sn = j,Fn−1; θ) depends on

an associated set of parameters θ and may have a linear or nonlinear autoregressive

specification according to the dynamic of an ordinary ACD model.

The regime variable sn switches between the states according to a Markov chain

which is characterized by a transition matrix P with typical element pji equal to the

transition probability pji = p (sn = j | sn−1 = i). Thus, the state of the process at time

tn depends only on the state of the previous observation.
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We assume that the conditional density of the observed duration fn(xn | sn =

j,Fn−1; θ) depends only on the current regime sn and on Fn−1. Any of the densities we

discussed in Section 2 for ordinary ACD models can be used as a conditional density in

the MSACD model. Since we cannot observe the realization of the current regime, the

relevant density for statistical inference is the marginal density fn(xn | Fn−1; θ) of the

observed duration. In order to evaluate this marginal density in a Markov switching

model the filtered regime probability

(4) ξ
(j)
n+1|n ≡ p(sn+1 = j | Fn; θ)

plays a crucial role. It represents the ex-ante probability for regime j at time tn+1

conditional on information available up to time tn. Filtered regime probabilities can

be obtained from a two-step recursion as follows5

ξ
(j)
n|n =

ξ
(j)
n|n−1 · fn (xn | sn = j,Fn−1; θ)

J
∑

k=1

ξ
(k)
n|n−1 · fn (xn | sn = k,Fn−1; θ)

(5)

ξ
(j)
n+1|n =

J
∑

i=1

pji · ξ
(i)
n|n.(6)

With a given set of start values ξ
(j)
1|0 and a given parameter vector θ, one can calculate

the regime probabilities iteratively. Note, that even though the transition probabilities

pji are constant, the regime probabilities ξ
(j)
n|n and ξ

(j)
n+1|n are time-varying. A static

mixture model can be regarded as a special case of the Markov switching model. It is

based on a restricted transition matrix where the elements of the j-th row are by pairs

equal, meaning that πj ≡ pj1 = . . . = pjJ holds. This implies time invariant regime

probabilities ξ
(j)
n+1|n = πj but ξ

(j)
n|n remains still varying in time.

An issue that has to be addressed, is the specification of the conditional mean

function ψ
(j)
n . There are in principle two possible ways in which lagged forecasts can

appear. In the simple case, the current forecast ψ
(j)
n is at least a function of ψ

(j)
n−1.

Another possible specification is to make ψ
(j)
n a function of past forecasts that are

5See Hamilton (1994), pp. 692-694 for a proof.
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regime independent. However, when regime independent lagged expectations appear

in the forecast function, the problem of path dependence arises. In this case, the regime

dependent expected duration ψ
(j)
n depends on the entire sequence of realizations for

(s1, s2, . . . , sn). Since we cannot observe this sequence, we have to consider all Jn

possible paths. An evaluation of all possible paths is prohibitively expensive in terms

of computational effort even for a moderate sample size . Therefore we apply a heuristic

solution based on an aggregation of regime specific conditional means that has been

used in the context of Markov switching GARCH models by Gray (1996) and Fong and

See (2001). The unconditional expected duration ψn is computed by summing over all

regime specific conditional expectations ψ
(j)
n according to equation (3).

3.3 Inference on the latent regime

Beside the ability to produce forecasts on future durations, in many applications the

regimes themselves can be the quantity that the researcher wants to draw inference on.

For example, in macroeconomic applications, the regimes can be associated with reces-

sion and boom phases in the business cycle. In marketing applications, the inclination

to buy certain goods may be related to unobserved heterogeneity among a sample of

consumers. Analogously, in financial applications estimates of the regime variable sn

may provide evidence on the presence of agents with private information.

In principle, the regime probabilities given in equation (5) could be employed. A

superior inference on the state of the regime may however be obtained by ex-post

use of the full sample information. This will provide us with smoothed inferences

ξ
(j)
n|N = p(sn = j | xN ,FN−1; θ). These may be evaluated using the algorithm of Kim

(1994) which consists of a backward recursion starting with the filtered inference ξ
(j)
N |N

obtained from (5) and progressing according to

(7) ξ
(j)
n|N = ξ

(j)
n|n ·

J
∑

k=1

pkj · ξ
(k)
n+1|N

ξ
(k)
n+1|n

.

Application of this algorithm is valid only when sn follows a first-order Markov chain
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and when the conditional density of xn depends only on the current state sn and on

the filtration Fn−1.

3.4 ML-estimation of the MSACD model

In the case of regime switching models there are several ways in which estimates of θ

may be obtained. The usual approach maximizes the likelihood function based on the

marginal density of xn which is also known as maximizing the incomplete likelihood

LI(θ), since this likelihood is based on observable quantities only while realizations of

the regime variable are unobservable. Thus we estimate θ with an incomplete data set.

The log-likelihood function lnLI(θ) for the MSACD model

(8) lnLI(θ) =
N
∑

n=1

ln [fn(xn | Fn−1; θ)]

has to be maximized numerically under the linear constraints
∑J

k=1 pkj = 1 for all

j ∈ {1, ..., J} and additional restrictions for nonnegativity, stationarity6 and eventually

for distributional parameters.

The likelihood function for switching models may have more than one local maxi-

mum and these may be located in boundary regions of the parameter space. It is well

known that standard maximization algorithms such as the Newton-Raphson may fail

or produce nonsensical estimates. In such cases the maximization procedure may be

started anew with different start values. It is recommended that estimation should

always be repeated several times with different start values in order to make sure that

a global maximum has been found.

3.5 The EM-algorithm for the MSACD model

An alternative way of obtaining ML-estimates for Markov Switching models is based

on the Expectation-Maximization (EM) algorithm introduced by Dempster, Laird, and

6Local stationarity which follows from classical stationarity constraints within each regime is not
necessary to guarantee the global stationarity. As shown by Francq and Zakoian (2001), the existence
of explosive regimes does not conflict with strict stationarity.
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Rubin (1977). Its numerical robustness offers an advantage over standard maximization

methods. The basis for the EM-algorithm is the hypothetical situation where we can

observe the realization of the sequence of regimes. Defining the random variables

z
(j)
n = 1 if sn = j and z

(ji)
n = 1 if sn = j and sn−1 = i and zero otherwise, the complete

log-likelihood function lnLC(θ) is given by7

lnLC(θ) =
N
∑

n=1

J
∑

j=1

z(j)
n · ln[fn(xn | sn = j,Fn−1; θ)] +

N
∑

n=2

J
∑

j,i=1

z(ji)
n · ln[pji].(9)

The evaluation of the expected complete log-likelihood function lnLEC(θ, θ0) ≡

E[lnLC(θ) | XN ; θ0] constitutes the first part of the EM-algorithm and is commonly

referred to as the E-step. In the E-step latent variables, in our case the realizations of

the regime indicators, are replaced by their expectations conditional on the observed

sample data XN = (x1, . . . , xN , y1, . . . , yN) and evaluated using an arbitrary guess for

the parameter vector θ0. The associated M-step consists of maximizing lnLEC(θ, θ0)

with respect to the parameter vector θ, yielding an updated guess for the parameter

vector θ̂1. The same restrictions as in the case of the incomplete log-likelihood func-

tion have to be imposed. By repeating these two steps until a prespecified convergence

criterion8 is fulfilled the ML-estimates are found. It can be shown that the final es-

timates θ̂ maximize both the expected complete log likelihood function as well as the

incomplete log likelihood function.9

Application of the EM-algorithm has the advantage that the maximization of

lnLEC(θ, θ0) with respect to the parameters of the ACD model and the transition prob-

abilities can be conducted separately if the equality ∂ fn(xn|sn=j,Fn−1;θ)
∂ pmk

= 0, ∀ j,m, k ∈

(1, . . . J) is satisfied10. The first order conditions lead to the estimator for the tran-

7The likelihood contribution of the initial state of the regime s1 can be included in the set of
parameters to be estimated. However, it is more convenient to work with a conditional likelihood
function, taking the state of the first observation as given.

8Often it is suggested to stop the the iteration as soon as | θ̂i+1 − θ̂i |≤ δ is reached, with δ as a
very small number. The EM-algorithm converges slow so that many iterations are necessary to obtain
the parameter estimate. Therefore, Aitken acceleration device presented in Böhning, Dietz, Schaub,
Schlattman, and Lindsay (1994) can be used.

9See Hamilton (1990) for a proof.
10This is the case when the regime specific mean function ψ

(j)
n is not dependent on past forecasts

ψn−1 that are regime independent.
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sition probabilities11 which is essentially equal to the estimator for pji that we would

obtain if the regime variables sn were observable (i.e. the frequency of observing a

transition from state i to state j relative to the frequency of observing state i), again

with unobserved quantities replaced by appropriate probabilistic inferences.

3.6 Statistical inference

When conducting specification tests in static mixture and Markov switching models,

some care has to be exercised in order to avoid incorrect decisions as a result of the

nonstandard distributions of the test statistics involved. An example is testing whether

a given data set may be described by a N -regime model or whether (N−1) regimes are

sufficient. As argued by Böhning, Dietz, Schaub, Schlattman, and Lindsay (1994) the

corresponding likelihood ratio statistic will not have the usual χ2-distribution, but differ

from it substantially even in large samples. Another example is the usual t-statistic for

H0 : pji = 0 against HA : pji > 0. Under the null hypothesis the transition probability

pji lies on the boundary of the admissible parameter space, thus violating one of the

regularity conditions needed in order to derive the asymptotic normal distribution for

the t-statistic.

On the other hand, when the number of regimes is known, the maximum like-

lihood estimate of the parameter vector θ has asymptotically a normal distribution

with covariance matrix derived from the usual estimates of the information matrix.

Hypothesis tests may be conducted in the usual fashion, as long as non of the main-

tained hypothesis violates the regularity conditions. Therefore, t-statistics for testing

whether a particular regression parameter βjk is significantly different from zero may

be compared to tabulated critical values of the t-distribution.

Fernandes and Grammig (2000) have introduced a specification test for ordinary

ACD models which are based on the discrepancy between the observed and the theoret-

ical density function of the residuals and are, with minor refinements, applicable to the

11See Hamilton (1989).
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MSACD model as well. In ordinary ACD models the test statistic is easily calculated

by noting that the residuals εn are independently identically distributed. In contrast

to ordinary ACD models the MSACD assumes that residuals follow a known mixture

distribution with mean equal to one and time varying higher moments. Therefore, the

null hypothesis is

(10) H0 : ∃ θ ∈ Θ such that g(ε; θ) ≡
1

N
·
N
∑

n=1

gn(ε | Fn−1; θ̂) = g(ε)

where g(ε) is the true but unknown density of the residuals and g(ε; θ) is the density

implied by the parametric MSACD model. In order to make this test operational, a

kernel density estimate ĝ(ε̂) of the density of the estimated residuals is used and the

theoretical density is calculated based on the estimated parameter vector. Thus the

observed mean squared distance Dg between the two densities is given by

(11) Dg =
1

N

N
∑

n=1

[

g(ε̂n; θ̂) − ĝ(ε̂n)
]2

.

Under the null hypothesis (10) the statistic FG has asymptotically a standard normal

distribution. FG is given by

(12) FGε =
N · h0.5 ·Dg − h−0.5 · ÊDg

√

V̂Dg

,

where h is the bandwidth used for density estimation and is of order o(N−2/5s) when

s is the order of the kernel function employed12, ÊDg and V̂Dg are consistent estimates

of

EDg =

∫

u

K2(u)du ·

∫

ε

[g(ε)]2 dε

VDg =

∫

v





∫

u

K(u) ·K(u+ v)du





2

dv ·

∫

ε

[g(ε)]4 dε,

12A kernel function K(u) is said to be of order s if its first s− 1 moments are zero, while the s-th

moment is finite and unequal to zero. The Gaussian kernel K(u) = 1√
2π

· exp
(

−u
2

2

)

is of order s = 2.

In our empirical application, we used the bandwidth selector h = 1.06 · ρ̂ε̂ · (ln(N))−1 ·N−0.2, where
N is the sample size and ρ̂ε̂ is an estimate of the standard deviation of the estimated residuals ε̂, as
suggested to us by J. Grammig in personal communication.
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and K(·) is the chosen Kernel function. The test is conducted as a one sided test so

that large, positive values of FG lead to rejection of H0.

As a second specification test we apply a method advanced by Diebold, Gunther,

and Tay (1997) to test the forecast performance of the MSACD model. Denote by

{fn(xn | Fn−1; θ̂)}
N
n=1 the sequence of one-step-ahead density forecasts evaluated us-

ing parameter estimates θ̂ from some parametric model and by {fn(xn | Fn−1; θ)}
N
n=1

the sequence of densities corresponding to the true, but unobservable data generating

process of xn. As shown by Rosenblatt (1952), under the null hypothesis

(13) H0 : {fn(xn | Fn−1; θ̂)}
N
n=1 = {fn(xn | Fn−1; θ)}

N
n=1

the sequence of conditional empirical distribution functions defined by

(14) ζ̂n =

xn
∫

−∞

fn(u | Fn−1; θ̂) du

is uniform i.i.d. on the unit interval. The recommendation of Diebold, Gunther, and

Tay (1997) is to supplement statistical tests for i.i.d. uniformity by graphical tools.

Departures from uniformity can easily be detected using a histogram plot based on

the sequence of ζ̂n while the autocorrelogram for ζ̂n can be used in order to assess

the maintenance of the i.i.d. property. By exploiting the statistical properties of the

histogram under the null hypothesis of i.i.d. uniformity a straightforward goodness of

fit test can be conducted. The ratio test RTζ

RTζ = −2 ln

(

K
∏

k=1

ς
Nk
k

ς̂
Nk
k

)

∼ χ2
k−1,(15)

with Nk as the number of observations ζ̂n falling into the kth bin, confronts the observed

relative frequency ς̂k = Nk
N

with the theoretical frequency ςk. In order to test that all

sample autocorrelations are simultaneously equal to zero one can apply the Ljung Box

test statistic.
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4 Empirical application

4.1 The data set

The data used in our empirical application consists of transactions of the common

stock of Boeing recorded on the New York stock exchange (NYSE) from the trades

and quotes database (TAQ) provided by the NYSE Inc. The sampling period spans

22 trading days from thursday August 1st until friday August 30st, 1996. We used all

trades observed during the regular trading day (9:30 - 16:00). The trading times have

been recorded with a precision measured in seconds. Observations occurring within

the same second have been aggregated to one trade by summing the corresponding

volumes and computing a volume weighted average of their prices. In the final data

set we removed censored durations.13

Seasonality effects, such as the opening and closing of exchanges and lunch breaks,

are meaningful reasons for strong dependence in transaction duration data. The desea-

sonalization of the raw durations and then the estimation of the model on the adjusted

durations is a usual treatment of the seasonality in the duration process. A deseason-

alized duration series xn has been obtained by dividing the raw duratios x̃n through an

appropriate estimate of the time of day function according to Eubank and Speckman

(1990).14 In contrast to this two step way, Veredas, Rodriguez-Poo, and Espasa (2002)

propose an alternative approach for estimating jointly the duration dynamic and the

intradaily seasonality.

Descriptive information about sample moments and Ljung Box statistics of the orig-

inal and the seasonally adjusted duration data are reported in Table 1. As expected,

the adjusted duration series has a mean of approximately one. Both time series exhibit

overdispersion relative to the exponential distribution which has standard error equal

to mean. Another characteristic of the data is the presence of strong, positive autocor-

13Durations from the last trade of the day until the close and durations from the open until the
first trade of the day are declared to be censored.

14A Fourier series expansion accommodated by polynomials in the regressor variables is used to
approximate the unknown time of day function.
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Raw durations x̃n Adjusted durations xn

Figure 1: Autocorrelation function for durations

relation in the trade durations. Even after seasonal adjustment, the Ljung Box tests

for no autocorrelation up to 50 lags are rejected at the 5% significance level. Having

regard to Figure 1 this means that there are periods with rare incidence of transactions

implying successive long durations and periods with an amassment of transactions with

very short time intervals between transactions. Therefore, an autoregressive approach

appears to be appropriate as a model for the durations. In order to assess the out-of-

sample forecast quality of the MSACD model, we divided our initial data set consisting

of deseasonalized durations into two subperiods. The column titled "In-sample" con-

tains the descriptive statistics for the first two thirds of the total sample which are

used to estimate parameters. The rest of the data set is used to compute out-of-sample

forecasts based on the estimated parameters. Durations in both subsamples appear

to have similar characteristics, except for the occurrence of very large durations which

tend to appear more concentrated in the first subsample.

4.2 The flexible scope of the MSACD model

For a given number of regimes equal to J , the parameter set θ
(j)
ψ determines the recur-

sive linear or nonlinear regime specific mean function while θ
(j)
ε contains parameters

which constitute the distribution of the residuals and the transition probabilities are

gathered in θP . In the MSACD framework different restrictions on the parameter
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Table 1: Descriptive Statistics for trade durations

Subsamples

Statistic x̃n xn In-sample Out-sample

Mean 67.7012 0.9993 0.9826 1.0326

Standard deviation 89.7997 1.2682 1.2625 1.2789

Overdispersion 119.1114 1.6095 1.6221 1.5839

Minimum 1.0000 0.0103 0.0127 0.0103

1st Quartile 13.0000 0.2045 0.1927 0.2320

Median 36.0000 0.5516 0.5433 0.5827

3rd Quartile 85.0000 1.2836 1.2526 1.3448

Maximum 1021.0000 15.5619 15.5619 10.6631

Interquartile range 72.0000 1.0791 1.0599 1.1127

N 7526 752 5016 2510

Ljung Boxa 2747.1840 1887.3830 1704.5290 333.4175

a The Ljung Box statistic is based on 50 lags. For a significance
level of 5% the tabulated critical value is 67.1671.

vector θ = (θ
(1)
ψ , . . . , θ

(J)
ψ , θ

(1)
ε , . . . , θ

(J)
ε , θP ) can be imposed.

First, the transition matrix P can be restricted in a way that the probability

for regime j is independent of the state prevailed before, formally verbalized by

πj ≡ pj1 = . . . = pjJ . This implies a static mixture duration model which will be

characterized by the restriction RP . On the other hand, if we assume for each regime

a particular duration process emerged from the same scope of a chosen ACD dynamic,

different specifications also result from restrictions on the remaining distributional pa-

rameters and parameters describing the mean function. We refer to the specification

Rε when the regime specific distributional parameters are restricted to be equal by

pairs, i.e. θ
(1)
ε = . . . = θ

(J)
ε . When in addition the restriction θ

(1)
ψ = . . . = θ

(J)
ψ is im-

posed the resulting model has no different regime specific dynamics and the transition

matrix stays unidentified. In such a case an ordinary ACD model can be used for data

description. In the Rψ specification where θ
(1)
ψ = . . . = θ

(J)
ψ is valid the mean function

is independent of the regime in which the process resides.

In principle, the regime specific mean function can be parameterized in two ways.

The simple variant Sψ is characterized by the feature that lags of the regime specific

conditional mean appear in the forecast function, yielding e.g. the following functional

specification ψ
(j)
n = Υ

(

ψ
(j)
n−1, ψ

(j)
n−2, . . . , ψ

(j)
n−p

)

while the more complex variant ¬Sψ
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includes lags of the regime independent conditional mean obtained by aggregation of

regime specific means in the forecast function so that ψ
(j)
n = Υ (ψn−1, ψn−2, . . . , ψn−p).

When the restriction Rψ is imposed the specifications Sψ and ¬Sψ are congruent. In

the complex case ¬Sψ the pairwise identical regime specific mean functions implied

through Rψ are aggregated to a regime unspecific mean function ψn corresponding to

ψ
(j)
n . In this case the time-consuming aggregation procedure is not necessary so that

the choice of the simple variant Sψ provides a great advantage in estimation.

The different restrictions in combination define a large repertory of MSACD models.

For J ≥ 2 each realization of the vector (rψ, rε, rP , sψ), with binary elements rz = 1

if restriction Rz is imposed and sψ = 1 in the case of a simple mean specification Sψ,

determines one of all together 10 possible variants of interest.15 When in addition the

regime specific mean function ψ
(j)
n is restricted to be independent from lagged means

than both the simple variant Sψ and the aggregation variant ¬Sψ effectuate the same

estimation result. In this case the number of models shortens.

4.3 Estimation results

Beside the estimation of ordinary ACD models we estimated the MSACD model in its

different variants for feasible number of regimes (J = 2 and J = 3). For each regime

j ≤ J we assume a duration process emerged from an ordinary logarithmic ACD process

based on the Burr distribution. More concrete, the regime specific mean function is of

the form lnψ
(j)
n = ω(j) +

p
∑

k=1

β
(j)
k ln(ψ

(j)
n−1) +

q
∑

k=1

α(j) ln(xn−1) in the simple case while it

is lnψ
(j)
n = ω(j) +

p
∑

k=1

β(j) ln(ψn−1) +
q
∑

k=1

α(j) ln(xn−1) in the opposite case. Both, the

lag orders p and q in the recursive mean functions are chosen to be zero or one. The

regime specific distribution of the duration xn | sn = j is chosen to be from the Burr

family of distributions with distributional parameters κ(j), σ(j)2, and ξ
(j)
n depending

itself on (ψ
(j)
n , κ(j), σ(j)2) so that E[xn | sn = j,Fn−1] = ψ

(j)
n . The in-sample results of

15Effective, there are 24 = 16 models. Because of congruence between (1, 0, ·, 1) and (1, 0, ·, 0) two
specifications can be left out from estimation. Models with restrictions characterized by (1, 1, ·, ·) do
not account for regime specific dynamics so that in addition four models are superfluous.
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the specification tests, values of the log-likelihood function and different information

criteria for all models we estimated are gathered in Table 2.

Table 2: In-sample specification tests for MSACD models

Lag orders Restriction lnLI AIC BIC P (RTζ ) P (LBζ ) P (FGε) P (LBε)
(

rψ, rε, rP , sψ
)

1 Regime Model

p = 0, q = 1 (1, 1, · , · ) -4698.34 9404.692 9430.774 0.0000 0.0000 0.0000 0.0000
p = 1, q = 0 (1, 1, · , · ) -4764.74 9537.484 9563.566 0.0000 0.0000 0.0000 0.0000
p = 1, q = 1 (1, 1, · , · ) -4556.32 9122.642 9155.244 0.0000 0.0013 0.0000 0.1417

2 Regime Model

p = 0, q = 1 (0, 1, 1, · ) -4585.55 9185.101 9230.743 0.0000 0.0000 0.0000 0.0000
(1, 0, 1, · ) -4560.47 9134.958 9180.601 0.0291 0.0000 0.0308 0.0000
(0, 0, 1, · ) -4539.76 9097.523 9156.206 0.0104 0.0000 0.0049 0.0000

(0, 1, 0, · ) -4566.20 9148.403 9200.566 0.0000 0.0000 0.0045 0.0000
(1, 0, 0, · ) -4543.29 9102.587 9154.750 0.0000 0.0000 0.0000 0.0000
(0, 0, 0, · ) -4525.53 9071.062 9136.266 0.1360 0.0000 0.0013 0.0000

p = 1, q = 0 (0, 1, 1, 1) -4605.89 9225.793 9271.436 0.0000 0.0000 0.0000 0.0000
(0, 1, 1, 0) -4642.15 9298.313 9343.956 0.0000 0.0000 0.0000 0.0000
(1, 0, 1, · ) -4576.69 9167.389 9213.032 0.0002 0.0000 0.0000 0.0000
(0, 0, 1, 1) -4555.09 9128.194 9186.878 0.0001 0.0000 0.0000 0.0000
(0, 0, 1, 0) -4603.60 9225.219 9283.903 0.0111 0.0000 0.0002 0.0000

(0, 1, 0, 1) -4560.86 9137.732 9189.895 0.0000 0.0000 0.0000 0.0000
(0, 1, 0, 0) -4569.87 9155.742 9207.905 0.0000 0.0000 0.0000 0.0000
(1, 0, 0, · ) -4543.77 9103.542 9155.705 0.0000 0.0000 0.0000 0.0000
(0, 0, 0, 1) -4505.23 9030.465 9095.668 0.0001 0.0000 0.0014 0.0000
(0, 0, 0, 0) -4443.05 8906.101 8971.305 0.0158 0.0000 0.0005 0.0000

p = 1, q = 1 (0, 1, 1, 1) -4452.30 8922.617 8981.301 0.0000 0.0008 0.0000 0.0984
(0, 1, 1, 0) -4450.89 8919.789 8978.473 0.0000 0.0001 0.0000 0.1013
(1, 0, 1, · ) -4435.42 8886.844 8939.007 0.0949 0.0010 0.1972 0.0227
(0, 0, 1, 1) -4408.98 8839.973 8911.697 0.1062 0.0006 0.0217 0.0755
(0, 0, 1, 0) -4409.11 8840.228 8911.952 0.0418 0.0002 0.0046 0.0994

(0, 1, 0, 1) -4442.56 8905.137 8970.341 0.0000 0.0561 0.0000 0.3319
(0, 1, 0, 0) -4449.91 8919.822 8985.026 0.0000 0.0002 0.0000 0.0388
(1, 0, 0, · ) -4425.25 8868.518 8927.201 0.0312 0.1126 0.0299 0.0042
(0, 0, 0, 1) -4399.72 8823.458 8901.702 0.0768 0.0577 0.0077 0.1453
(0, 0, 0, 0) -4409.09 8842.193 8920.437 0.0639 0.0002 0.0039 0.0762

3 Regime Model

p = 0, q = 1 (0, 1, 1, · ) -4525.67 9071.344 9136.548 0.0131 0.0000 0.3624 0.0000
(1, 0, 1, · ) -4549.95 9119.914 9185.118 0.5132 0.0000 0.7523 0.0000
(0, 0, 1, · ) -4507.99 9043.996 9135.282 0.5810 0.0000 0.9115 0.0000

(0, 1, 0, · ) -4494.05 9016.112 9107.397 0.0048 0.0000 0.0066 0.0000
(1, 0, 0, · ) -4469.29 8966.580 9057.866 0.8053 0.0000 0.0093 0.0000
(0, 0, 0, · ) -4445.72 8927.450 9044.817 0.7413 0.0000 0.9910 0.0000

p = 1, q = 0 (0, 1, 1, 1) -4559.05 9138.106 9203.310 0.0095 0.0000 0.0030 0.0000
(0, 1, 1, 0) -4594.68 9209.373 9274.577 0.1749 0.0000 0.0619 0.0000
(1, 0, 1, · ) -4576.69 9173.389 9238.593 0.0002 0.0000 0.0000 0.0000
(0, 0, 1, 1) -4527.61 9083.223 9174.509 0.0394 0.0000 0.1033 0.0000
(0, 0, 1, 0) -4579.33 9186.669 9277.955 0.5158 0.0000 0.3803 0.0000

(0, 1, 0, 1) -4509.79 9047.581 9138.867 0.0000 0.0000 0.0017 0.0000
(0, 1, 0, 0) -4454.68 8937.366 9028.651 0.0001 0.0002 0.0007 0.0000
(1, 0, 0, · ) -4482.68 8993.372 9084.657 0.5433 0.0000 0.0893 0.0000
(0, 0, 0, 1) -4449.65 8935.305 9052.672 0.8896 0.0000 0.8658 0.0000
(0, 0, 0, 0) -4419.18 8874.362 8991.729 0.1166 0.0001 0.1613 0.0000

p = 1, q = 1 (0, 1, 1, 1) -4399.87 8825.755 8910.520 0.1058 0.0010 0.7599 0.2557
(0, 1, 1, 0) -4393.43 8812.868 8897.633 0.1670 0.0003 0.2769 0.0477
(1, 0, 1, · ) -4435.42 8892.844 8964.569 0.1057 0.0007 0.1973 0.0179
(0, 0, 1, 1) -4367.22 8768.452 8879.299 0.4762 0.0775 0.8628 0.7762
(0, 0, 1, 0) -4388.76 8811.522 8922.368 0.4939 0.0028 0.4727 0.1001

(0, 1, 0, 1) -4387.36 8808.724 8919.571 0.0433 0.0100 0.0680 0.2393
(0, 1, 0, 0) -4386.41 8806.836 8917.682 0.6634 0.0005 0.0385 0.0616
(1, 0, 0, · ) -4389.28 8808.576 8906.381 0.4317 0.3380 0.2783 0.0000
(0, 0, 0, 1) -4358.77 8759.542 8896.470 0.3914 0.1832 0.6620 0.5311
(0, 0, 0, 0) -4368.00 8778.017 8914.945 0.9164 0.0005 0.1382 0.0655

lnLI is the value of the incomplete log-likelihood function, AIC is the Akaike’s information criterion, computed as as

−2 · lnLI + 2 · k, where k is the number of estimated parameters, BIC is the Bayesian information criterion, computed

as −2 · lnLI + ln(N) · k, where k is the number of estimated parameters, P (RTζ) is the p-value of the ratio test for

the i.i.d. uniformity of ζ, using an histogram estimator for its density based on 20 equal bins, P (LBζ) is the p-value

corresponding to the Ljung-Box statistic for 50 lags of ζ, P (FGε) is the p-value of the nonparametric Fernandes and

Grammig test statistic, P (LBε) is the p-value corresponding to the Ljung-Box statistic for 50 lags of ε. All LB-statistics

have been compared to critical values from a χ2 distribution with 50 − (p + q + k) degrees of freedom where k is the

number of estimated transition probabilities.

For a given number of regimes and a mean function chosen to be of order p = 1
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and q = 1 the specifications implied by the restriction (0, 0, ·, 1), i. e. the most flexible

models with different regime specific mean functions without aggregation and regime

specific distributional parameters, perform most suitable in terms of Akaike’s informa-

tion criterion AIC and Bayesian information criterion BIC. Note, that this plausible

fact holds true either in the static mixture or in the Markov switching environment.

In the static mixture type of the MSACD model with p = 0 and q = 1 and J ∈ {2, 3},

it is always the variant (0, 0, 1, ·) which is outstanding with regard to AIC and BIC.

In analogy, pure MSACD models with p = 0 and q = 1 perform best when no equality

restrictions on θ
(j)
ψ and θ

(j)
ε are assumed. By way of an exception, it is the variant

with aggregation procedure which is preferred by AIC or BIC if no lagged observed

durations appear in the mean function (p = 1, q = 0) for either two or three regimes

considered in the pure Markov switching model. Definitive, the three regime Markov

switching model with lag orders p = 1 and q = 1 in the simple mean function and no

restrictions on parameters at all is stamped by the lowest value of the AIC. Because

of the abundance of parameters in the transition matrix the BIC supports the three

regime static mixture model with p = 1 and q = 1 in the simple mean function and

flexibility in the remaining parameters. Strictly, the AIC and BIC do not support

the ordinary ACD models which are nested with J = 1 as special cases in the MSACD

framework.

Also, none of the specification tests we discussed supports the ordinary ACD mod-

els. Neither the nonparametric FG test for the residuals εn nor the RT test for the

integral transforms ζn is passed at conventional significance levels as the p-values of the

corresponding test statistics indicate. From the plots of the density estimates of the

residuals, as well as from the histogram of the series of integral transforms combined in

Figure 2 on the left side, we find exemplary that a one regime duration model has se-

vere problems to describe very small durations appropriately. Especially, the adjusted

trade durations smaller than one contribute to this enormous misspecification in the

one regime specification.
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1-regime specification 3-regime specification

Figure 2: Results of the specification tests for 1-regime versus 3-regime MSACD models
with p = 1 and q = 1. First row: Estimates of the density of the log residuals and
corresponding theoretical density of log residuals implied by the estimated in-sample
model. Second row: Histogram plots of the cumulative forecast density and 90%
confidence intervals. Third row: Autocorrelation function and 95% confidence band
for integral transforms.

In the two regime case for lag orders p = 1 and q = 1 in the regime specific mean

functions, models with distributional parameters restricted to be equal across regimes,

i. e. (0, 1, ·, ·)-specifications, have p-values of RTζ and FGε equal to zero. This means

that there are further on grave deficiencies to capture distributional features of the

duration process while the enormous autocorrelation in the adjusted data data can be

eliminated to a greater or lesser extent as the high p-values of the Ljung Box statistics

for the residuals εn and integral transforms ζn indicate. In the opposite case when only
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parameters determining the mean functions are restricted to be equal across regimes,

i. e. (1, 0, ·, ·)-specifications, the hypothesis of i.i.d. uniformity in the ζ-series cannot

be rejected at a significance level not less than 3%. Similarly, the null hypothesis that

the unknown true distribution of the residuals equals their parametric distribution

implied by the model cannot be rejected at a significance level not less than 3% again.

This means that the enormous distributional problems of the origin ACD models (one

regime models) can be removed in a satisfactory way when a mixture distribution for

the duration data is assumed and in general the hypothesis of no autocorrelation in the

ζ- and ε-series cannot be rejected as well. But more frugal specifications with either

p = 0 or q = 0 in the mean functions, characterized by the restrictions (1, 0, ·, ·) and

(0, 1, ·, ·) respectively, come off very badly even in sense of no remaining autocorrelation

in the duration process as it can be seen from the extremely low p-values of the Ljung

Box statistics.

Within the scope of three regime models specifications with restricted distributional

parameters, i.e variants of the form (0, 1, ·, ·), do not necessarily cause a mouldy good-

ness of fit. It will change for the better when at least the distributional parameters κ(j)

and σ(j)2 of the chosen Burr distribution are allowed to be fully unrestrained. Therefor,

the p-values of RTζ and FGε will raise up to 91%. The hypothesis of no autocorre-

lation in the residuals and integral transforms will be statistical significant as soon as

p = 1 and q = 1 is assumed. The right side of Figure 2 demonstrates the excellence of

the MSACD model for a specification with no distributional limitations and different

regime specific dynamics in the mean functions without aggregation.

An objection raised to the use of chi-square tests is that information is thrown away

by the grouping. So, it is not astonishing when sometimes the RT test supports the

estimated model while at the same time it will be rejected through the FG test. There

are two extreme cases, i. e. the specification (0, 0, 0, ·) for J = 2 and the specification

(1, 0, 0, ·) for J = 3, both with lag orders p = 0 and q = 0 in the mean functions, where

at a significance level of 10% the RT test retains the hypothesis of correct in-sample
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specification, but the FG test rejects it at the 1% significance level.

Table 3: Out-sample specification tests for MSACD models

Lag orders Restriction MSE MAE P (RTζ ) P (LBζ) P (FGε) P (LBε)
(

rψ, rε, rP , sψ
)

1 Regime

p = 0, q = 1 (1, 1, · , · ) 1.6201 0.8536 0.0000 0.0000 0.0000 0.0000
p = 1, q = 0 (1, 1, · , · ) 1.6359 0.8576 0.0000 0.0000 0.0006 0.0000
p = 1, q = 1 (1, 1, · , · ) 1.5939 0.8501 0.0002 0.3905 0.2310 0.4682

2 Regime

p = 0, q = 1 (0, 1, 1, · ) 1.6193 0.8637 0.0000 0.0000 0.0000 0.0000
(1, 0, 1, · ) 1.6548 0.9324 0.0000 0.0000 0.0000 0.0000
(0, 0, 1, · ) 1.6190 0.8605 0.0000 0.0000 0.0000 0.0000

(0, 1, 0, · ) 1.6178 0.8607 0.0000 0.0000 0.0133 0.0000
(1, 0, 0, · ) 1.6619 0.9358 0.0549 0.0011 0.0613 0.0000
(0, 0, 0, · ) 1.6160 0.8760 0.0010 0.0000 0.0000 0.0000

p = 1, q = 0 (0, 1, 1, 1) 1.6886 0.8487 0.0000 0.0000 0.0000 0.0000
(0, 1, 1, 0) 1.6360 0.8697 0.0000 0.0000 0.0000 0.0000
(1, 0, 1, · ) 1.6956 0.9110 0.0000 0.0000 0.0001 0.0000
(0, 0, 1, 1) 1.6797 0.8454 0.0000 0.0000 0.0001 0.0000
(0, 0, 1, 0) 1.6359 0.8742 0.0000 0.0000 0.0000 0.0000

(0, 1, 0, 1) 1.6737 0.8409 0.0000 0.0000 0.0029 0.0000
(0, 1, 0, 0) 1.5969 0.8479 0.0217 0.2124 0.2769 0.0146
(1, 0, 0, · ) 1.6800 0.9496 0.0246 0.0009 0.0060 0.0000
(0, 0, 0, 1) 1.6675 0.8368 0.0000 0.0000 0.1496 0.0000
(0, 0, 0, 0) 1.6004 0.8641 0.0000 0.3580 0.0000 0.0007

p = 1, q = 1 (0, 1, 1, 1) 1.5967 0.8567 0.0013 0.3083 0.0000 0.2984
(0, 1, 1, 0) 1.5960 0.8552 0.0001 0.2349 0.0000 0.3620
(1, 0, 1, · ) 1.6360 0.9217 0.0020 0.3685 0.0000 0.1328
(0, 0, 1, 1) 1.5950 0.8566 0.0000 0.3051 0.0000 0.2983
(0, 0, 1, 0) 1.5953 0.8485 0.0001 0.2976 0.0000 0.3871

(0, 1, 0, 1) 1.5920 0.8549 0.0007 0.4674 0.0000 0.3544
(0, 1, 0, 0) 1.5966 0.8558 0.0000 0.2814 0.0000 0.2956
(1, 0, 0, · ) 1.6319 0.9196 0.0052 0.6080 0.0018 0.0196
(0, 0, 0, 1) 1.5921 0.8582 0.0001 0.5073 0.0000 0.2706
(0, 0, 0, 0) 1.5954 0.8490 0.0001 0.3049 0.0000 0.3415

3 Regime

p = 0, q = 1 (0, 1, 1, · ) 1.6195 0.8496 0.0000 0.0000 0.0000 0.0000
(1, 0, 1, · ) 1.7219 0.9923 0.0002 0.0000 0.0001 0.0000
(0, 0, 1, · ) 1.6198 0.8493 0.0000 0.0000 0.0000 0.0000

(0, 1, 0, · ) 1.5970 0.8579 0.0015 0.0245 0.0470 0.0001
(1, 0, 0, · ) 1.6956 0.9744 0.0257 0.0692 0.0005 0.0000
(0, 0, 0, · ) 1.5967 0.8435 0.0080 0.0562 0.0047 0.0010

p = 1, q = 0 (0, 1, 1, 1) 1.6872 0.8418 0.0000 0.0000 0.0096 0.0000
(0, 1, 1, 0) 1.6371 0.8538 0.0000 0.0000 0.0000 0.0000
(1, 0, 1, · ) 1.6956 0.9110 0.0000 0.0000 0.0001 0.0000
(0, 0, 1, 1) 1.6738 0.8162 0.0000 0.0000 0.0000 0.0000
(0, 0, 1, 0) 1.6362 0.8664 0.0007 0.0000 0.0013 0.0000

(0, 1, 0, 1) 1.5940 0.8556 0.0486 0.0863 0.0253 0.0000
(0, 1, 0, 0) 1.5972 0.8616 0.0007 0.1867 0.0000 0.0019
(1, 0, 0, · ) 1.7711 1.0269 0.0763 0.0597 0.0002 0.0000
(0, 0, 0, 1) 1.5992 0.8462 0.0153 0.1304 0.1503 0.0005
(0, 0, 0, 0) 1.5817 0.8610 0.0001 0.3768 0.0000 0.2821

p = 1, q = 1 (0, 1, 1, 1) 1.5939 0.8460 0.0009 0.2022 0.0369 0.2131
(0, 1, 1, 0) 1.5933 0.8490 0.0265 0.1814 0.1076 0.2497
(1, 0, 1, · ) 1.6360 0.9217 0.0022 0.3303 0.0000 0.1124
(0, 0, 1, 1) 1.5885 0.8475 0.0057 0.2288 0.0147 0.1301
(0, 0, 1, 0) 1.6176 0.8996 0.0021 0.2575 0.0037 0.3638

(0, 1, 0, 1) 1.5909 0.8492 0.0557 0.2165 0.3275 0.0608
(0, 1, 0, 0) 1.5956 0.8439 0.0038 0.2103 0.1898 0.2962
(1, 0, 0, · ) 1.6468 0.9357 0.0205 0.7075 0.0633 0.0001
(0, 0, 0, 1) 1.5876 0.8447 0.0290 0.3790 0.6146 0.0046
(0, 0, 0, 0) 1.5963 0.8397 0.0169 0.2381 0.4425 0.3249

MSE = N−1
∑

(xn − ψ̂n)2, MAE = N−1
∑

|xn − ψ̂n|. P (RTζ) is the p-value of the ratio test for

the i.i.d. uniformity of ζ, using an histogram estimator for its density based on 20 equal bins, P (LBζ)
is the p-value corresponding to the Ljung-Box statistic for 50 lags of ζ, P (FGε) is the p-value of the

nonparametric Fernandes and Grammig test statistic, P (LBε) is the p-value corresponding to the Ljung-

Box statistic for 50 lags of ε. All LB-statistics have been compared to critical values from a χ2 distribution

with 50 − (p + q + k) degrees of freedom where k is the number of estimated transition probabilities.

In order to examine the suitability of forecasts the in-sample estimators have been

applied to the out-sample trade duration data. Table 3 contains the p-values of several
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test statistics as well as the values of the mean squared error (MSE) and mean absolute

error (MAE) which are used to form an opinion about the out-sample fit.

Except for one case, it comes out that for a given combination (p, q) in all regime

specific mean functions there are always both two and three regime specifications with

mean errors (MSE and MAE) smaller than the corresponding value in the origin ACD

model. Starting from an ordinary ACD model, where lagged observed and expected

durations determine the (simple) mean function (p = 1, q = 1), a slight improvement

of the two forecast errors can be achieved when a crossover to a multiple regime en-

vironment will be executed with restricted distributional parameters. Reciprocal, a

marginal deterioration of forecast performance is noticeable when the mean functions

do not consist of regime specific dynamics. As a consequence, the predominance of the

MSACD model is due to the introduction of a regime variable.

Concerning the hypothesis of i.i.d. uniformity for integral transforms ζn the stan-

dard ACD models provide p-values equal to zero. This finding persists also for static

two and three regime models with mean functions characterized either by lag orders

of p = 0, q = 1 or p = 1, q = 0. But the p-values P (RTζ) will increase up to 7.6% in

the case of fully flexible transition probabilities for the Markov chain. In principle, this

statement based on the RT test can be carried forward to the distributional features of

the residuals. Even in the out-sample case, the MSACD framework is able to produce

high p-values up to 61% for the hypothesis that the true but unknown distribution of

the residuals εn equals a distribution implied by the estimated model.

As it can be seen from the p-values of the Ljung Box statistic, even for a moderate

ACD model with p = 1 and q = 1 the hypothesis of no autocorrelation in the integral

transforms and residuals cannot be rejected at a significance level more than 10%. This

means that the mean dynamic is modelled adequately. Patterns of dependencies still

exist when in principle a parsimonious specification of the mean function is chosen.

Recapitulating, the choice of the best model was based on the principle of parsimony

and also on the ultimate goal to find a specification that yields a famous in-sample fit as
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well as a reasonable out-sample forecast performance for trade durations. With regard

to the in-sample results, the three regime specification (0, 0, 0, 1) with p = 1 and q = 1

preforms best in terms of the AIC, and the p-values of all specification tests are much

greater than 10%. Furthermore this model also showed to be good in the out-sample

forecast performance among all models that we considered as indicated by the extreme

low values of the mean errors. And in general, the consideration of two or three regimes

in the MSACD framework with adequate and sufficient regime specific dynamics yields

reasonable results. This fact can be seen as a link to market microstructure theory. For

example, following the sequential trade model of Easley, Kiefer, O’Hara, and Paperman

(1996) the occurrence of different types of unobservable information events implies

that trading evolves in different velocities and effectuates the price setting behavior

of a market maker. It is based on the restrictive assumption that the arrival rate

of sell orders under bad news equals the arrival rate of buy orders under good news.

Furthermore it is assumed that buy and sell orders are equal when no news occur.

From all, it follows that the data generating process of trade durations is a mixture of

exponential distributions. This situation can be reproduced by a two regime MSACD

model subject to extremely strict constrains in the parameter vector. Our application

of the MSACD model can be regarded as a generalization of the sequential trade model

which assumes that (i) the conditional density of the trade duration given the regime is

not independent exponential but rather follows a logarithmic ACD model with marginal

Burr density, (ii) the arrival rates are not restricted, and (iii) the information regime

is not necessarily independent in time.
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5 Conclusions

In this paper we proposed a new framework for modelling autocorrelated inter trade

duration time series obtained from high frequency data sets from asset markets. The

class of Markov switching models has been in use in econometrics for quite a while, but

until now these models were based on marginal Gaussian processes. We showed that

by analogy this framework may be used to estimate models based on non-Gaussian

marginal distributions as well, and we described two alternative estimation techniques

that may be employed in this context.

The MSACD model introduced in this paper was shown to be a successful tool

for forecasting time series of intraday transaction durations. We showed that the

MSACD model yields better in-sample fit and quite reasonable out-of-sample forecast

performance compared to alternative ACD models. A further asset of the MSACD

model is its interpretation in the context of recent market microstructure models.

Recently, the ACD-framework has been extended to the multivariate case as well

(see Russell and Engle (1999) and Russell (1999)). A promising strategy for future

research would be to combine the Markov switching approach with a multivariate

extension of the ACD model. This would allow one to develop a more natural test of

implications of many related microstructure models, as we might be able to explain

the evolution of buyer and seller initiated trades as a bivariate duration process that

depends on the unobservable stochastic information process.
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