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1 Introduction

1.1 Pólya Urn models

In 1923, George Pólya and Florian Eggenberger published their paper “Über die

Statistik verketteter Vorgänge”[11]. They proposed an urn model to describe depen-

dent events and used the monthly number of deaths from smallpox in Switzerland as

an example. The urn contains balls in two colors. In each step, a ball is drawn at

random from the urn and a fixed number of balls of the same color are added to or

removed from the urn. They show that this model fits their data much better than

the assumption that the events are independent.

Although similar models had already been discussed before, this model and some

extensions thereof are usually called Pólya (or Pólya-Eggenberger) urn models. Such

models have been used to model various problems in a wide variety of scientific

domains and they have been investigated using various stochastic methods. Interesting

accounts of the history of urn models in general and more specifically Pólya urn

models can be found for example in the monographs of Johnson and Kotz [18] and

Mahmoud [23].

More generally, a Pólya urn model consists of an ‘urn’ containing a number of ‘balls’

of different ‘colors’, and a set of ‘rules’. In each step, a ball is drawn at random from

the urn, its color is observed and the ball is put back into the urn. Depending on

the color of the drawn ball some balls are now added to or removed from the urn

according to the given rules. This rules may include some further randomness, for

example throwing a coin to determine the color of the added balls, but may not

depend on the contents of the urn. If balls are removed, there must always be enough

balls in the urn to execute this step.

A classical problem is to identify the asymptotic behavior of the numbers of balls of

each color as the number of steps tends to infinity. The literature on this problem, in
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2 1 Introduction

particular on limit laws for the normalized numbers of balls of each color, is vast. We

refer again to the two monographs of Johnson and Kotz [18] and Mahmoud [23] and

the references and comments on the literature in the papers of Janson [15], Flajolet

et al. [13] and Pouyanne [30].

Several approaches have been used to analyze the asymptotic behavior of Pólya urn

models, most notably the method of moments, discrete time martingale methods,

embeddings into continuous time multitype branching processes, and methods from

analytic combinatorics based on generating functions. All these methods use the

“forward” dynamic of the urn process by exploiting that the distribution of the

composition at time n given time n− 1 is explicitly accessible.

In this dissertation, an approach based on a “backward” decomposition of the urn

process is proposed. We construct an embedding of the evolution of the urn into an

associated combinatorial random tree structure growing in discrete time, see chapter

2. Our associated tree can be decomposed at its root (time 0) such that the growth

dynamics of the subtrees of the root resemble the whole tree in distribution. More

precisely, we have different types of distributions for the associated tree, one type

for each possible color of its root. The decomposition of the associated tree into

subtrees gives rise to a system of distributional recurrences for the numbers of balls

of each color. To extract the asymptotic behavior from such systems, we develop an

approach in the context of the contraction method in chapter 3 and 4.

1.2 Contraction Method

The contraction method is well known in the probabilistic analysis of algorithms.

It was introduced by Rösler [32] and first developed systematically in Rachev and

Rüschendorf [31]. A rather general framework with numerous applications to the

analysis of recursive algorithms and random trees was given by Neininger and

Rüschendorf [26]. The contraction method has been used for sequences of distributions

of random variables (or random vectors or stochastic processes) that satisfy an

appropriate recurrence relation. In this dissertation, a system of such recurrence

relations is considered. To the best of our knowledge the method has not yet been

used for such systems of recurrence relations, the only exception being Leckey et al.

[22] where tries are analyzed under a Markov source model. In the last chapter,
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an approach more in the spirit of earlier applications of the contraction method is

described. We will see that this has some drawbacks compared to the approach

developed in chapters 2–4.

1.3 Scope

The aim of this dissertation is not to compete with other techniques with respect to

generality under which urn models can be analyzed. Instead, we discuss our approach

in a few examples, illustrating the contraction framework in three frequently occurring

asymptotic regimes: normal limit laws, non-normal limit laws and regimes with

oscillating distributional behavior. We also discuss the case of random entries in the

replacement matrix. Our proofs are generic and can easily be transferred to other

urn models or be developed into more general theorems when asymptotic expansions

of means (respectively means and variances in the normal limit case) are available,

cf. the types of expansions of the means in section 3.

We consider an urn with balls in a finite number m ≥ 2 of different colors, numbered

by 1, . . . ,m. The replacement rules of the urn are encoded by an m×m replacement

matrix R = (aij)1≤i,j≤m which is given in advance together with an initial (time 0)

composition of the urn with at least one ball. Time evolves in discrete steps. In

each step, one ball is drawn uniformly at random from the urn. If it has color i, it is

placed back into the urn together with aij balls of color j for all j = 1, . . . ,m. The

steps are iterated.

Throughout this dissertation, we assume that in each step a fixed number K ≥ 2 of

balls are put into the urn.1 Therefore, the replacement matrix is balanced, i.e.

m∑
j=1

aij =: K − 1 for all i = 1, . . . ,m.

For the associated tree process, which lies at the core of our approach, this balance

condition implies that asymptotically, the growths of the subtrees can jointly be

captured by Dirichlet distributions. This leads to characterizations of the limit

distributions in all cases (normal, non-normal and oscillatory limits) by systems,

1The notation K is unfortunate since this integer is not random and mainly chosen to have similarity

in notation with earlier work on the contraction method.
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cf. (3.1)–(3.3) below, of distributional fixed-point equations where all coefficients

are powers of components of a Dirichlet distributed vector, see also the discussion

in section 3. It may be an interesting aspect of the present approach that all

three regimes are governed by these quite similar types of systems of distributional

fixed-point equations.

1.4 Outline and Notation

In the next chapter, the associated trees are introduced and the embedding of the urn

models is described in detail. Furthermore, the systems of distributional recurrences

for the numbers of balls of a certain color are derived from the recursive properties

of the associated trees.

In chapter 3, we outline the types of systems of fixed-point equations that emerge from

the distributional recurrences after proper normalization. To make these recurrences

and fixed-point equations accessible to the contraction method, in chapter 3.1 we

first introduce spaces of probability distributions and appropriate cartesian product

spaces together with metrics on these product spaces. The metrics in use are product

versions of the minimal Lp metrics and product versions of the Zolotarev metrics. In

chapter 3.2, we use these spaces and metrics to show that our systems of distributional

fixed-point equations uniquely characterize vectors of probability distributions via a

contraction property.

Using these results, we discuss examples of limit laws for Pólya urn schemes within

our approach in chapter 4. Furthermore, our convergence proofs are worked out

there, again based on the product versions of the minimal Lp and Zolotarev metrics.

The contents of chapters 2–4 have been submitted for publication and are available

on arXiv.org [20].

In chapter 5 we investigate a variant of our approach, working with one recurrence

for random vectors instead of the system of recurrences for (one-dimensional) random

variables. This seemed the natural way for the application of the contraction method

at first, but led to several problems. After working this out in detail for one of

the examples, an extension of the main theorem of Neininger and Rüschendorf

[26, Thm 4.1] is presented which might also be useful for other applications of the

contraction method.
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Notation. By
d−→ convergence in distribution is denoted. For the normal distri-

bution on R with mean µ ∈ R and variance σ2 ≥ 0, the notation N (µ, σ2) is used.

In the case σ2 = 0, this degenerates to the Dirac measure in µ. Throughout the

dissertation, Bachmann-Landau symbols are used in asymptotic statements. By

log(x) for x > 0, the natural logarithm of x is denoted. We denote the imaginary

unit by i and for any x = a+ ib ∈ C we denote its complex conjugate by x := a− ib.





2 A recursive description of Pólya urns

In this chapter, the embedding of urn processes into associated combinatorial random

tree structures growing in discrete time is explained in detail. The distributional

self-similarity within the subtrees of the roots of these associated trees leads to

systems of distributional recurrences which constitute the core of our approach.

2.1 The Pólya urn

For illustration, we first consider an urn model with two colors, black and white, and

a deterministic replacement matrix R. In the sequel, an extension of this approach

to urns with more than two colors and replacement matrices with random entries is

discussed as well. However, the assumption that the sums of the entries in each row

are the same is crucial for our method, the reason also being explained below. To be

definite, we use the replacement matrix

R =

[
a b

c d

]
with a, d ∈ N0 ∪ {−1} and b, c ∈ N0 (2.1)

with

a+ b = c+ d = K − 1 ≥ 1.

Hence, after drawing a black ball, this ball is placed back into the urn together with

a new black balls and b new white balls. If a white ball is drawn, it is placed back

into the urn together with c black balls and d white balls. A diagonal entry a = −1

(or d = −1) implies that a drawn black (or white) ball is not placed back into the

urn while balls of the other color are still added to the urn. As initial configurations,

we consider both, one black ball or one white ball. We denote by Bb
n the number

of black balls after n steps when initially starting with one black ball, by Bw
n the

number of black balls after n steps when initially starting with one white ball. Hence,

we have Bb
0 = 1 and Bw

0 = 0.

7



8 2 A recursive description of Pólya urns

2.2 The associated tree

We encode the urn process by a discrete time evolution of a random tree with nodes

colored black or white. This tree is called associated tree. The initial urn with one

ball, say a black one, is associated with a tree with one root node of the same (black)

color. The ball in the urn is represented by this root node. Now drawing the ball

and placing it back into the urn together with a new black balls and b new white

balls is encoded in the associated tree by adding a+ b+ 1 = K children to the root

node, a+ 1 of them being black and b being white. The root node then no longer

represents a ball in the urn, whereas the K new leaves of the tree now represent the

K balls in the urn.

Now, we iterate this procedure: At any step, a ball is drawn from the urn. It is

represented by one of the leaves, say node v in the tree. The urn follows its dynamic.

If the ball drawn is black, the (black) leaf v gets K children, a+ 1 black ones and

b white ones. Similarly, if the ball drawn is white, the (white) leaf v gets c black

children and d+ 1 white children. In both cases v no longer represents a ball in the

urn. The ball drawn and the new balls are represented by the children of v. The

correspondence between all other leaves of the tree and the other balls in the urn

remains unchanged.

For an example of the evolution of an urn and its associated tree see Figure 2.1.

Hence, at any time, the balls in the urn are represented by the leaves of the associate

tree, where the colors of balls and representing leaves match. Each node of the tree

is either a leaf or has K children. We could as well emulate the urn process by only

running the evolution of the associated tree as follows: Start with one root node of

the color of the initial ball of the urn. At any step, choose one of the leaves of the

tree uniformly at random, inspect its color, add K children to the chosen leaf and

color these children as defined above. Then after n steps, the tree has n (K − 1) + 1

leaves. The number of black leaves is distributed as Bb
n if the root node was black

and distributed as Bw
n if the root node was white.

Subsequently, it is important to note the following recursive structure of the associated

tree: For a fixed replacement matrix of the Pólya urn with two colors, we consider

the two initial compositions of one black respectively one white ball and their two

associated trees. We call these the b-associated (respectively, w-associated) tree.

Consider one of these associated trees after n ≥ 1 steps. It has n (K − 1) + 1 leaves,
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Figure 2.1: A realization of the evolution of the Pólya urn with replacement matrix [ 1 2
2 1 ]

and initially one white ball. The arrows indicate which ball is drawn (resp. node

is replaced) in each step. Below each urn its associated tree is shown. Leaf

nodes correspond to the balls in the urn, non-leaf nodes (crossed out) do no

longer correspond to balls in the urn. However, their color still matters for the

recursive decomposition of the associated tree.

and each subtree rooted at a child of the associated tree’s root (we call them simply

only subtrees) has a random number of leaves according to how often a leaf node has

been chosen for replacement in the subtree. We condition on the numbers of leaves of

the subtrees to be ir (K − 1) + 1 with ir ∈ N0, for r = 1, . . . ,K. Note that we have∑K
r=1 ir = n− 1, the −1 resulting from the fact that in the first step of the evolution

of the associated tree, the subtrees are being generated, only afterwards they start

growing. From the evolution of the b-associated tree, it is clear that, conditioned on

the subtrees’ numbers of leaves being ir (K − 1) + 1, the subtrees are stochastically

independent and the r-th subtree is distributed as an associated tree after ir steps.

Whether it has the distribution of the b- or the w-associated tree depends on the

color of the subtree’s root node.

To summarize, conditioned on their numbers of leaves, the subtrees of the associated

trees are independent and distributed as associated trees of corresponding size, their

type inherited from the color of their root node.
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2.3 Growth of subtrees

In our analysis, the asymptotic growth of the K subtrees of the associated tree is

used. We denote by I(n) =
(
I
(n)
1 , . . . , I

(n)
K

)
the vector of the numbers of draws of

leaves from each subtree after n ≥ 1 draws in the full associated tree. In other

words, I
(n)
r (K − 1) + 1 is the number of leaves of the r-th subtree after n ≥ 1 steps.

We have I(1) = (0, . . . , 0), and I(2) is a vector with all entries being 0 except for

one coordinate which is 1. To describe the asymptotic growth of I(n), we need the

Dirichlet distribution Dirichlet
(
(K − 1)−1 , . . . , (K − 1)−1

)
: It is the distribution of

a random vector (D1, . . . , DK) with
∑K

r=1Dj = 1 and such that (D1, . . . , DK−1) has

a Lebesgue-density supported by the simplex

SK :=

{
(x1, . . . , xK−1) ∈ [0, 1]K−1

∣∣∣∣ K−1∑
r=1

xr ≤ 1

}
and given for x = (x1, . . . , xK−1) ∈ SK by

x 7→ cK

(
1−

K−1∑
r=1

xr

)2−K
K−1 K−1∏

r=1

x
2−K
K−1
r , cK =

Γ
(

(K − 1)−1
)1−K

K − 1
,

where Γ denotes Euler’s Gamma function. In particular, D1, . . . , DK are identically

distributed, having a beta
(
(K − 1)−1, 1

)
distribution, i.e., with Lebesgue-density

x 7→ (K − 1)−1 x
2−K
K−1 , x ∈ [0, 1].

We have the following asymptotic behavior of I(n):

Lemma 2.1. Consider a Pólya urn with constant row sum K − 1 ≥ 1 and its

associated tree. For the numbers of balls I(n) =
(
I
(n)
1 , . . . , I

(n)
K

)
drawn in each subtree

of the associated tree when n balls have been drawn in the whole associated tree, we

have, as n→∞, (
I
(n)
1

n
, . . . ,

I
(n)
K

n

)
−→

(
D1, . . . , DK

)
almost surely and in any Lp, where (D1, . . . , DK) has the Dirichlet distribution

L
(
D1, . . . , DK

)
= Dirichlet

(
1

K − 1
, . . . ,

1

K − 1

)
.
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Proof. The sequence
(
I
(n)
1 (K − 1)+1, . . . , I

(n)
K (K − 1)+1

)
n∈N0

has an interpretation

by another urn model, which we call the subtree-induced urn: For this, we give

additional labels to the leaves of the associated tree. The set of possible labels is

{1, . . . ,K} and we label a leaf j if it belongs to the j-th subtree of the root (any

ordering of the subtrees of the root is fine). Hence, all leaves of a subtree of the

associated tree’s root get the same label, leaves of different subtrees get different

labels. The subtree-induced urn now has balls of colors 1, . . . ,K. At any time,

the number of balls of each color is identical with the number of leaves with the

corresponding label. Hence, the dynamics of the subtree-induced urn are that of a

Pólya urn with initially K balls, one of each color. Whenever a ball is drawn, it

is placed back into the urn together with K − 1 balls of the same color. In other

words, the replacement matrix for the dynamic of the subtree-induced urn is a K×K
diagonal matrix with all diagonal entries equal to K − 1. After n steps, we have

I
(n)
r (K − 1)+1 balls of color r. The dynamic of the subtree-induced urn as a K-color

Pólya-Eggenberger urn is well-known, cf. Athreya [1, Corollary 1], we have for n→∞(
I
(n)
1 (K − 1) + 1

n (K − 1) + 1
, . . . ,

I
(n)
K (K − 1) + 1

n (K − 1) + 1

)
−→

(
D1, . . . , DK

)
almost surely and in Lp for any p ≥ 1, where the random vector (D1, . . . , DK) has a

Dirichlet
(
(K − 1)−1 , . . . , (K − 1)−1

)
distribution. This implies the assertion.

Subsequently we only consider balanced urns such that we have the asymptotic

behaviour of I(n)/n in Lemma 2.1 available. The assumption of balance does only

enter our subsequent analysis via Lemma 2.1. It seems feasible to apply our approach

also to unbalanced urns that have an associated tree such that I(n)/n converges to a

non-degenerate limit vector V = (V1, . . . , VK) of random probabilities, i.e. of random

V1, . . . , VK ≥ 0 such that
∑K

r=1 Vr = 1 almost surely and P[max1≤r≤K Vr < 1] > 0.

It seems that the contraction argument may even allow that the distribution of V

depends on the color of the ball the urn is started with. We leave these issues for

future research.

2.4 System of recursive equations

We set up recursive equations for the distributions of the quantities Bb
n and Bw

n : For

Bb
n, we start the urn with one black ball and get a b-associated tree with a black
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root node. Now, Bb
n is distributed as the number of black leaves in the associated

tree after n steps which, for n ≥ 1, we express as the sum of the numbers of black

leaves of its subtrees. As discussed above, conditioned on I(n) =
(
I
(n)
1 , . . . , I

(n)
K

)
, the

vector of the numbers of balls drawn in each subtree, these subtrees are independent

and distributed as b-associated trees or w-associated trees of the corresponding size,

depending on the color of their roots. In a b-associated tree, the root has a+ 1 black

and b = K − (a+ 1) white children. Hence, we obtain

Bb
n
d
=

a+1∑
r=1

B
b,(r)

I
(n)
r

+
K∑

r=a+2

B
w,(r)

I
(n)
r

, n ≥ 1, (2.2)

where
d
= denotes that left and right hand side have an identical distribution and

we have that (B
b,(1)
k )0≤k<n, . . . , (B

b,(a+1)
k )0≤k<n, (B

w,(a+2)
k )0≤k<n, . . . , (B

w,(K)
k )0≤k<n,

and I(n) are independent, and for k = 0, . . . , n− 1 and the respective values of r, the

B
b,(r)
k are distributed as Bb

k and the B
w,(r)
k are distributed as Bw

k .

Similarly, we obtain a recursive distributional equation for Bw
n . We have

Bw
n

d
=

c∑
r=1

B
b,(r)

I
(n)
r

+
K∑

r=c+1

B
w,(r)

I
(n)
r

, n ≥ 1, (2.3)

with conditions on independence and identical distributions as in (2.2). Note that

with the initial value (Bb
0 , B

w
0 ) = (1, 0), the system of equations (2.2)–(2.3) defines

the sequence of pairs of distributions
(
L
(
Bb
n

)
,L(Bw

n )
)
n≥0.

2.5 Extensions of the model

As mentioned above, our approach can be extended to urn models with more than two

different colors. We can also cover the case of a random replacement matrix where

for each row, the entries add up to a deterministic and fixed integer K − 1 ≥ 1.

General number of colors The approach above for urns with two colors extends

directly to urns with an arbitrary number m ≥ 2 of colors. We denote the replacement

matrix by R = (aij)1≤i,j≤m with

aij ∈

{
N0, for i 6= j,

N0 ∪ {−1}, for i = j,
and

m∑
j=1

aij =: K − 1 ≥ 1 for i = 1, . . . ,m.
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The colors (subsequently also called types) are now denoted by numbers 1, . . . ,m and

we focus on the number of balls of color 1 after n steps. When starting with one ball

of color j, we denote by B
[j]
n the number of color 1 balls after n steps. To formulate

a system of distributional recurrences generalizing (2.2) and (2.3), we further denote

the intervals of integers

Jij :=



[
1 +

∑
k<i

akj ,
∑
k≤i

akj

]
∩ N0, for i < j,

[
1 +

∑
k<i

akj , 1 +
∑
k≤i

akj

]
∩ N0, for i = j,

[
2 +

∑
k<i

akj , 1 +
∑
k≤i

akj

]
∩ N0, for i > j,

(2.4)

with the convention [x, y] = ∅, if x > y. Then, we have

B[j]
n

d
=

m∑
i=1

∑
r∈Jij

B
[i],(r)

I
(n)
r

, n ≥ 1, j ∈ {1, . . . ,m}, (2.5)

where, for each j ∈ {1, . . . ,m} we have that the family{(
B

[i],(r)
k

)
0≤k<n

∣∣∣∣ r ∈ Jij , i ∈ {1, . . . ,m}} ∪ {I(n)}
is independent, I(n) has the distribution as above in Lemma 2.1, and B

[i],(r)
k is

distributed as B
[i]
k for all i ∈ {1, . . . ,m}, 0 ≤ k < n, and r ∈ Jij .

Random entries in the replacement matrix The case of a replacement matrix with

random entries such that all rows sum up to a deterministic and fixed K − 1 ≥ 1 can

be covered by an extension of the system (2.5). Instead of a deterministic replacement

matrix R, in this case, we are given a distribution on the space of all matrices of the

respective size with integer entries such that each row sums up to K − 1. For each

draw from the urn, a matrix is drawn according to this distribution, independently

of everything else. Instead of formulating such an extension explicitly, we discuss an

example in section 4.2.
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We outline how systems of the form (2.5) are used subsequently. Crucial are the

expansions of the means

µ[j]n := E
[
B[j]
n

]
, j = 1, . . . ,m.

We only consider cases where these means grow linearly. Note however, that even

balanced urns can have quite different growth orders. An example is the replacement

matrix [ 4 0
3 1 ], see Kotz et al. [21] for this example or Janson [16] for a comprehensive

account of urns with triangular replacement matrix.

Type (a). Assume that we have expansions of the form, as n→∞,

µ[j]n = cµn+ djn
λ + o

(
nλ
)
, j = 1, . . . ,m,

with a constant cµ > 0 independent of j, with constants dj ∈ R and an exponent

1/2 < λ < 1. We call this scenario of type (a). This suggests that the variances are

of the order n2λ and a proper scaling is

X [j]
n :=

B
[j]
n − µ[j]n
nλ

, n ≥ 1, j = 1, . . . ,m.

Deriving from (2.5) a system of recurrences for the X
[j]
n and letting formally n→∞

(this is done explicitly in the examples in chapter 4), we obtain the system of

fixed-point equations

X [j] d
=

m∑
i=1

∑
r∈Jij

Dλ
rX

[i],(r) + b[j], j = 1, . . . ,m, (3.1)

where all X [i],(r) and (D1, . . . , DK) are independent, each X [i],(r) is distributed as

X [i], (D1, . . . , DK) is distributed as in Lemma 2.1, and each b[j] is a function of

15
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(D1, . . . , DK). It turns out that such a system, when restricted to centered X [j]

with finite second moments, has a unique solution on the level of distributions

(Theorem 3.1). This identifies the weak limits of the X
[j]
n . Examples can be found in

sections 4.1 and 4.2. One can as well obtain the same system (3.1) with b[j] = 0 for

all j by only centering the B
[j]
n by cµn instead of the exact mean. In this case, system

(3.1) has to be solved subject to finite second moments and appropriate means.

Type (b). Assume that we have, for n→∞, expansions of the form

µ[j]n = cµn+ o
(√
n
)
, j = 1, . . . ,m,

with a constant cµ > 0 independent of j. We call this scenario of type (b). This

suggests that the variances are of linear order and a proper scaling is

X [j]
n :=

B
[j]
n − µ[j]n√
Var
(
B

[j]
n

) , n ≥ 1, j = 1, . . . ,m

(or

√
Var
(
B

[j]
n

)
replaced by

√
n ). The corresponding system of fixed-point equations

in the limit is

X [j] d
=

m∑
i=1

∑
r∈Jij

√
DrX

[i],(r), j = 1, . . . ,m, (3.2)

with conditions as in (3.1). Under appropriate assumptions on moments, we find

that the only solution is all X [j] being standard normally distributed (Theorem 3.2).

This leads to asymptotic normality of the X
[j]
n . Examples are given in sections 4.1

and 4.2. The case

µ[j]n = cµn+ Θ
(√
n
)
, j = 1, . . . ,m,

leads to the same system of fixed-point equations (3.2). However, here the variances

typically are of order n logδ(n) with a positive δ.

Type (c). Assume that we have, as n→∞, expansions of the form

µ[j]n = cµn+ <
(
κjn

iµ
)
nλ + o

(
nλ
)
, j = 1, . . . ,m,
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with a constant cµ > 0 independent of j, 1/2 < λ < 1, constants κj ∈ C and

µ ∈ R \ {0}. (By i the imaginary unit is denoted.) We call this scenario of type (c).

This suggests oscillating variances of the order n2λ. The oscillatory behavior of mean

and variance can typically not be removed by proper scaling to obtain convergence

towards a limit distribution. Using the scaling

X [j]
n :=

B
[j]
n − cµn
nλ

, n ≥ 1, j = 1, . . . ,m,

it turns out that the oscillating behavior of the X
[j]
n can be captured by the system

of fixed-point equations

X [j] d
=

m∑
i=1

∑
r∈Jij

Dω
rX

[i],(r), j = 1, . . . ,m, (3.3)

with conditions as in (3.1) and ω := λ+ iµ. Under appropriate moment assumptions,

this has a unique solution within distributions on C (Theorem 3.3). An example of a

corresponding distributional approximation is given in section 4.3.

Note that the approach of embedding urn models into continuous time multitype

branching processes, see [2, 15], also leads to characterizations of the non-normal

limits similar to (3.1) and (3.3). However, the form of the fixed-point equations

is different, see the system in equation (3.5) in Janson [15]. Properties of such

fixed-points have been studied in Chauvin et al. [9, 7, 8].

3.1 Spaces of distributions and metrics

In this section, we define cartesian products of spaces of probability distributions

and metrics on these products. These metric spaces will be used below to first

characterize limit distributions of urn models (section 3.2) and then prove convergence

in distribution of the scaled numbers of balls of a certain color (section 4).
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Spaces. We denote by MR the space of all probability distributions on R with the

Borel σ-field. Moreover, we consider the subspaces

MR
s :=

{
L(X) ∈MR

∣∣∣ E[|X|s] <∞} , s > 0,

MR
s (µ) :=

{
L(X) ∈MR

s

∣∣∣ E[X] = µ
}
, s ≥ 1, µ ∈ R

MR
s

(
µ, σ2

)
:=
{
L(X) ∈MR

s (µ)
∣∣∣ Var(X) = σ2

}
, s ≥ 2, µ ∈ R, σ ≥ 0.

We need the d-fold cartesian products, d ∈ N, of these spaces, denoted by(
MR

s

)×d
:=MR

s × · · · ×MR
s︸ ︷︷ ︸

d times

,

and analogously
(
MR

s (µ)
)×d

and
(
MR

s

(
µ, σ2

))×d
.

We also use probability distributions on the complex plane C. By MC, the space of

all probability distributions on C with the Borel σ-field is denoted. Moreover, for

γ ∈ C, we use the subspaces and product space

MC
s :=

{
L(X) ∈MC

∣∣∣ E[|X|s] <∞} , s > 0,

MC
2 (γ) :=

{
L(X) ∈MC

2

∣∣∣ E[X] = γ
}
,

(
MC

2 (γ)
)×d

:=MC
2 (γ)× · · · ×MC

2 (γ)︸ ︷︷ ︸
d times

.

To cover the different behavior of the urns, two types of metrics are constructed,

extensions of the Zolotarev metrics ζs and the minimal Lp-metric `p to the product

spaces defined above.

Zolotarev metric. The Zolotarev metric has been introduced and studied in [37, 38].

The contraction method based on the Zolotarev metric was systematically developed

in [26] and, for issues that go beyond what is needed in this paper, in [19] and [28].

We only need the following properties:
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For distributions L(X), L(Y ) ∈ MR, the Zolotarev distance ζs, s > 0, is defined

by

ζs(X,Y ) := ζs
(
L(X) ,L(Y )

)
:= sup

f∈Fs

∣∣∣E[f(X)− f(Y )
]∣∣∣ , (3.4)

where s = m+ α with 0 < α ≤ 1, m ∈ N0, and

Fs :=

{
f ∈ Cm(R,R)

∣∣∣∣ ∣∣∣f (m)(x)− f (m)(y)
∣∣∣ ≤ |x− y|α}, (3.5)

the space of m times continuously differentiable functions from R to R such that the

m-th derivative is Hölder-continuous of order α with Hölder-constant 1.

We have ζs(X,Y ) <∞, if all moments of orders 1, . . . ,m of X and Y are equal and if

the s-th absolute moments of X and Y are finite. Since later on the cases 1 < s ≤ 3

are used, we have two basic cases: First, for 1 < s ≤ 2, we have ζs(X,Y ) <∞ for

L(X), L(Y ) ∈MR
s (µ) for any µ ∈ R. Second, for 2 < s ≤ 3, we have ζs(X,Y ) <∞

for L(X), L(Y ) ∈ MR
s

(
µ, σ2

)
for any µ ∈ R and σ ≥ 0. Moreover, the pairs(

MR
s (µ) , ζs

)
for 1 < s ≤ 2 and

(
MR

s

(
µ, σ2

)
, ζs
)

for 2 < s ≤ 3 are complete metric

spaces; for the completeness see [10, Theorem 5.1].

Convergence in ζs implies weak convergence on R. Furthermore, ζs is (s,+) ideal,

i.e., we have

ζs(X + Z, Y + Z) ≤ ζs(X,Y ) , ζs(cX, cY ) = csζs(X,Y ) , (3.6)

for all Z being independent of (X,Y ), and all c > 0. Note that, for X1, . . . , Xn

independent and Y1, . . . , Yn independent such that respective ζs distances are finite,

this implies that

ζs

(
n∑
i=1

Xi,
n∑
i=1

Yi

)
≤

n∑
i=1

ζs(Xi, Yi) . (3.7)

On the product spaces
(
MR

s (µ)
)×d for 1 < s ≤ 2 and

(
MR

s

(
µ, σ2

))×d for 2 < s ≤ 3,

our first main tool is

ζ∨s
(
(ν1, . . . , νd), (µ1, . . . , µd)

)
:= max

1≤j≤d
ζs(νj , µj), (3.8)

where (ν1, . . . , νd), (µ1, . . . , µd) ∈
(
MR

s (µ)
)×d and ∈ (MR

s

(
µ, σ2

))×d respectively.

Note that ζ∨s is a complete metric on the respective product spaces and induces the

product topology.
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Minimal Lp-metric `p. First, for probability metrics on the real line, the minimal

Lp-metric `p, 1 ≤ p <∞ is defined by

`p(ν, %) := inf
{∥∥V −W∥∥

p

∣∣∣ L(V ) = ν,L(W ) = %
}
, ν, % ∈MR

p ,

where ‖V −W‖p :=
(
E
[
|V −W |p

])1/p
is the usual Lp-norm. The spaces

(
Mp, `p

)
and

(
Mp(µ) , `p

)
for 1 ≤ p <∞ are complete metric spaces, see [6]. The infimum in

the definition of `p is in fact a minimum. Random variables V ′, W ′ with distributions

ν and % respectively such that `p(ν, %) = ‖V ′ −W ′‖p are called optimal couplings.

They do exist for all ν, % ∈ MR
1 . We use the notation `p(X,Y ) := `p(L(X) ,L(Y ))

for random variables X and Y . Subsequently also the following inequality between

the `p and ζs metrics is used (see [10, Lemma 5.7]):

ζs(X,Y ) ≤
((

E
[
|X|s

])1−1/s
+
(
E
[
|Y |s

])1−1/s)
`s(X,Y ) , 1 < s ≤ 3, (3.9)

where, for 1 < s ≤ 2, we need L(X),L(Y ) ∈ MR
s (µ) for some µ ∈ R and, for

2 < s ≤ 3, we need L(X),L(Y ) ∈MR
s (µ, σ2) for some µ ∈ R and σ ≥ 0.

On the product space
(
MR

2 (0)
)×d

, we define

`∨2
(
(ν1, . . . , νd), (%1, . . . , %d)

)
:= max

1≤j≤d
`2(νj , %j) ,

where (ν1, . . . , νd), (µ1, . . . , µd) ∈
(
MR

2 (0)
)×d

. Note that
(
(MR

2 (0))×d, `∨2
)

is a com-

plete metric space as well.

Second, on the complex plane, the minimal Lp-metric `p is defined similarly by

`p(ν, %) := inf
{
‖V −W‖p

∣∣∣ L(V ) = ν, L(W ) = %
}
, ν, % ∈MC

p ,

with the analogous definition of the Lp-norm. The respective metric spaces are

complete as in the real case and optimal couplings exist as well. On the product

space
(
MC

2 (0)
)×d, we use

`∨2 ((ν1, . . . , νd), (%1, . . . , %d)) := max
1≤j≤d

`2(νj , %j) ,

where (ν1, . . . , νd), (µ1, . . . , µd) ∈
(
MC

2 (0)
)×d. Note that

(
(MC

2 (0))×d, `∨2
)

is a com-

plete metric space as well.
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Preview on the use of spaces and metrics. The guidance on which space and

metric to use in which asymptotic regime of Pólya urns is as follows. We come back

to the three types (a)–(c) of urns from the previous section:

(a) Urns that after scaling lead to convergence to a non-normal limit distribution.

Typically such a convergence holds almost surely, however we only discuss

convergence in distribution.

(b) Urns that after scaling lead to convergence to a normal limit. Such a convergence

typically does not hold almost surely, but at least in distribution.

(c) Urns that even after a proper scaling do not lead to convergence. Instead there

is an asymptotic oscillatory behavior of the distributions. Such oscillatory

behavior can be captured almost surely, we discuss a (weak) description for

distributions.

The cases of type (a) can be dealt with on the space
(
MR

2 (µ)
)×d with appropriate

µ ∈ R and d ∈ N, where, by centering, one can always achieve the choice µ = 0. One

can either use the metric ζ∨2 or `∨2 which lead to similar results, although based on

different details in the proofs. We will only present the use of ζ∨2 , since we do not

see any advantage of `∨2 here.

The cases of type (b) can be dealt with on the space
(
MR

s

(
µ, σ2

))×d with 2 < s ≤ 3

and appropriate µ ∈ R, σ > 0 and d ∈ N. By normalization, one can always achieve

the choices µ = 0 and σ = 1. Since, in the context of urns, third absolute moments

in type (b) cases typically do exist, one can use s = 3 and the metric ζ∨3 . We do not

know how to use the `∨p metrics in type (b) cases.

The cases of type (c) can be dealt with on the space
(
MC

2 (γ)
)×d with appropriate

γ ∈ R and d ∈ N. The metric of choice for the type (c) cases is the complex version

of `∨2 . In our example below, we will however use MC
2 (γ1) × · · · × MC

2 (γd) with

γ1, . . . , γd ∈ C to be able to work with a more natural scaling of the random variables,

the metric still being `∨2 .
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3.2 Associated fixed-point equations

We fix d, d′ ∈ N, a d× d′ matrix
(
Air
)

of random variables and a vector (b1, . . . , bd)

of random variables. Either all of these random variables are real or all of them

are complex. Furthermore, we are given a d × d′ matrix
(
π(ir)

)
with all entries

π(ir) ∈ {1, . . . , d}. First, we consider the case where all Air and all bi are real. We

associate a map

T :
(
MR

)×d
→
(
MR

)×d
(µ1, . . . , µd) 7→

(
T1(µ1, . . . , µd) , . . . , Td(µ1, . . . , µd)

)
(3.10)

Ti(µ1, . . . , µd) := L
( d′∑
r=1

AirZir + bi

)
(3.11)

with
(
Ai1, . . . , Aid′ , bi

)
, Zi1, . . . , Zid′ independent, and Zir distributed as µπ(ir) for

r = 1, . . . , d′ and all components i = 1, . . . , d.

In the case where the Air and bi are complex random variables, we define a map T ′

similar to T :

T ′ :
(
MC

)×d
→
(
MC

)×d
(3.12)

(µ1, . . . , µd) 7→
(
T ′1(µ1, . . . , µd) , . . . , T

′
d(µ1, . . . , µd)

)
with T ′i (µ1, . . . , µd) defined as for Ti in (3.11).

For the three regimes discussed in the preview within section 3.1, we use the following

three theorems (Theorem 3.1 for type (a), Theorem 3.2 for type (b), and Theorem 3.3

for type (c)) on existence of fixed-points of T and T ′.

Theorem 3.1. Assume that in the definition of T in (3.10) and (3.11) the Air and

bi are square integrable real random variables with E[bi] = 0 for all 1 ≤ i ≤ d and

1 ≤ r ≤ d′ and

max
1≤i≤d

d′∑
r=1

E
[
A2
ir

]
< 1. (3.13)

Then the restriction of T to
(
MR

2 (0)
)×d

has a unique fixed-point.
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Theorem 3.2. Assume that in the definition of T in (3.10) and (3.11) for some

ε > 0 the Air are L2+ε-integrable real random variables and bi = 0 for all 1 ≤ i ≤ d
and 1 ≤ r ≤ d′, and that

d′∑
r=1

A2
ir = 1 for all i = 1, . . . , d, (3.14)

and

min
1≤i≤d

P
(

max
1≤r≤d′

|Air| < 1

)
> 0. (3.15)

Then, for all σ2 ≥ 0, the restriction of T to
(
MR

2+ε

(
0, σ2

))×d has the unique fixed-

point
(
N
(
0, σ2

)
, . . . ,N

(
0, σ2

))
.

Theorem 3.3. Assume that in the definition of T ′ in (3.12), the Air and bi are

square integrable complex random variables for all 1 ≤ i ≤ d and 1 ≤ r ≤ d′, and

that, for γ1, . . . , γd ∈ C, we have

E[bi] +
d′∑
r=1

γπ(ir)E[Air] = γi, i = 1, . . . , d. (3.16)

If moreover

max
1≤i≤d

d′∑
r=1

E
[
|Air|2

]
< 1, (3.17)

the restriction of T ′ to MC
2 (γ1)× · · · ×MC

2 (γd) has a unique fixed-point.

Note that a special case of Theorem 3.1 was used in the proof of [15, Thm. 3.9 (iii)]

with a similar proof technique as in our proof of Theorem 3.3.

The rest of this section contains the proofs of Theorems 3.1–3.3.

Proof (Theorem 3.1). First note that for (µ1, . . . , µd) ∈
(
MR

2 (0)
)×d, by independence

in definition (3.11) and E[bi] = 0, we have Ti(µ1, . . . , µd) ∈ MR
2 (0) for i = 1, . . . , d.

Hence, the restriction of T to
(
MR

2 (0)
)×d maps into

(
MR

2 (0)
)×d.

Next, we show that the restriction of T to
(
MR

2 (0)
)×d is a (strict) contraction with

respect to the metric ζ∨2 : For (µ1, . . . , µd), (ν1, . . . , νd) ∈
(
MR

2 (0)
)×d, we first fix

i ∈ {1, . . . , d}. Let Zi1, . . . , Zid′ and Z ′i1, . . . , Z
′
id′ be real random variables such that
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Zir is distributed as µπ(ir) and Z ′ir is distributed as νπ(ir). Moreover, assume that

both families
{

(Ai1, . . . , Aid′ , bi), Zi1, . . . , Zid′
}

and
{

(Ai1, . . . , Aid′ , bi), Z
′
i1, . . . , Z

′
id′
}

are independent. Then we have

Ti(µ1, . . . , µd) = L
( d′∑
r=1

AirZir + bi

)
,

Ti(ν1, . . . , νd) = L
( d′∑
r=1

AirZ
′
ir + bi

)
.

(3.18)

Conditioning on
(
Ai1, . . . , Aid′ , bi

)
and denoting this vector’s distribution by Υ, we

obtain

ζ2
(
Ti(µ1, . . . , µd), Ti(ν1, . . . , νd)

)
= sup

f∈F2

∣∣∣∣∣
∫
f

( d′∑
r=1

αrZir + β

)
− f

( d′∑
r=1

αrZ
′
ir + β

)
dΥ(α1, . . . , αd′ , β)

∣∣∣∣∣
≤
∫

sup
f∈F2

∣∣∣∣∣f
( d′∑
r=1

αrZir + β

)
− f

( d′∑
r=1

αrZ
′
ir + β

)∣∣∣∣∣ dΥ(α1, . . . , αd′ , β)

=

∫
ζ2

( d′∑
r=1

αrZir + β,

d′∑
r=1

αrZ
′
ir + β

)
dΥ(α1, . . . , αd′ , β) (3.19)

Since ζ2 is (2,+) ideal, we obtain from (3.6) that

ζ2

( d′∑
r=1

αrZir + β,

d′∑
r=1

αrZ
′
ir + β

)
≤

d′∑
r=1

α2
r ζ2
(
Zir, Z

′
ir

)
. (3.20)

Hence, we can further estimate

ζ2
(
Ti(µ1, . . . , µd) , Ti(ν1, . . . , νd)

)
≤
∫ d′∑

r=1

α2
r ζ2
(
Zir, Z

′
ir

)
dΥ(α1, . . . , αd′ , β)

=

∫ d′∑
r=1

α2
r ζ2
(
µπ(ir), νπ(ir)

)
dΥ(α1, . . . , αd′ , β)

≤
( d′∑
r=1

E
[
A2
ir

])
ζ∨2
(
(µ1, . . . , µd), (ν1, . . . , νd)

)
. (3.21)
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Now, taking the maximum over i yields

ζ∨2
(
T (µ1, . . . , µd), T (ν1, . . . , νd)

)
≤
(

max
1≤i≤d

d′∑
r=1

E
[
A2
ir

])
ζ∨2
(
(µ1, . . . , µd), (ν1, . . . , νd)

)
. (3.22)

Hence, condition (3.13) implies that the restriction of T to
(
MR

2 (0)
)×d is a contraction.

Since the metric ζ∨2 is complete, Banach’s fixed-point theorem implies the assertion.

Proof (Theorem 3.2). This proof is similar to the previous proof of Theorem 3.1.

Let ε > 0 be as in Theorem 3.2 and σ > 0 be arbitrary. First note that for

(µ1, . . . , µd) ∈
(
MR

2+ε

(
0, σ2

))×d, by independence in definition (3.11), condition (3.14),

and bi = 0, we have Ti(µ1, . . . , µd) ∈ MR
2+ε

(
0, σ2

)
for i = 1, . . . , d. Hence, the

restriction of T to
(
MR

2+ε

(
0, σ2

))×d maps into
(
MR

2+ε

(
0, σ2

))×d.
We set s := (2 + ε) ∧ 3. For (µ1, . . . , µd), (ν1, . . . , νd) ∈

(
MR

2+ε

(
0, σ2

))×d, we choose

Zi1, . . . , Zid′ and Z ′i1, . . . , Z
′
id′ as in the proof of Theorem 3.1 such that we have (3.18).

Note that with our choice of s, we have ζs
(
Ti(µ1, . . . , µd) , Ti(ν1, . . . , νd)

)
<∞. With

an estimate analogous to (3.19)–(3.22), using now that ζs is (s,+) ideal, we obtain

ζ∨s
(
T (µ1, . . . , µd), T (ν1, . . . , νd)

)
≤
(

max
1≤i≤d

d′∑
r=1

E
[
|Air|s

])
ζ∨s
(
(µ1, . . . , µd), (ν1, . . . , νd)

)
. (3.23)

Note that s > 2 and the conditions (3.14) and (3.15) imply that
∑d′

r=1 E[|Air|s] < 1

for all i = 1, . . . , d. Hence, the restriction of T to
(
MR

2+ε

(
0, σ2

))×d is a contraction

and the completeness of ζ∨s implies the existence of a unique fixed-point. Using

the convolution property N
(
0, σ21

)
∗ N

(
0, σ22

)
= N

(
0, σ21 + σ22

)
for σ1, σ2 ≥ 0, one

can directly check that
(
N
(
0, σ2

)
, . . . ,N

(
0, σ2

))
is a fixed-point of T in the space(

MR
2+ε

(
0, σ2

))×d.
Proof (Theorem 3.3). Let γ1, . . . , γd be as stated in Theorem 3.3 and abbreviate

P :=MC
2 (γ1)× · · · ×MC

2 (γd). First note that for (µ1, . . . , µd) ∈ P from indepen-

dence in the definition of T ′i (µ1, . . . , µd) and the finite second moments of the Air
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and bi, we obtain T ′i (µ1, . . . , µd) ∈ MC
2 for all i = 1, . . . , d. For a random variable

W with distribution T ′i (µ1, . . . , µd), we have

E[W ] =

d′∑
r=1

E[Air] γπ(ir) + E[bi] = γi

by condition (3.16). Hence, the restriction of T ′ to P maps into P.

Next, we show that the restriction of T ′ to P is a contraction with respect to

the metric `∨2 : For (µ1, . . . , µd), (ν1, . . . , νd) ∈ P, we first fix i ∈ {1, . . . , d}. Let

(Zir, Z
′
ir) be an optimal coupling of µπ(ir) and νπ(ir) for r = 1, . . . , d′ such that

(Zi1, Z
′
i1), . . . , (Zid′ , Z

′
id′), (Ai1, . . . , Aid′ , bi) are independent. Then we have

T ′i (µ1, . . . , µd) = L
( d′∑
r=1

AirZir + bi

)
,

T ′i (ν1, . . . , νd) = L
( d′∑
r=1

AirZ
′
ir + bi

)
.

(3.24)

Denoting by γ the complex conjugate of γ ∈ C, we obtain

`22
(
T ′i (µ1, . . . , µd) , T

′
i (ν1, . . . , νd)

)
≤ E

[∣∣∣∣ d′∑
r=1

Air
(
Zir − Z ′ir

)∣∣∣∣2
]

= E

[
d′∑
r=1

|Air|2
∣∣Zir − Z ′ir∣∣2

]
+ E

[∑
r 6=t

Air
(
Zir − Z ′ir

)
Ait (Zit − Z ′it)

]

=

d′∑
r=1

E
[
|Air|2

]
`22
(
µπ(ir), νπ(ir)

)
(3.25)

≤
( d′∑
r=1

E
[
|Air|2

])(
`∨2
(
(µ1, . . . , µd), (ν1, . . . , νd)

))2
.

For equality (3.25) we firstly use that Zir − Z ′ir and Zit − Z ′it are independent and

centered factors, implying that the expectation of the sum over all r 6= t is 0.

Furthermore, (Zir, Z
′
ir) are optimal couplings of

(
µπ(ir), νπ(ir)

)
which in turn ensures

that E
[
|Zir − Z ′ir|

2] = `22(µπ(ir), νπ(ir)).
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Now, taking the maximum over i yields

`∨2
(
T ′(µ1, . . . , µd), T

′(ν1, . . . , νd)
)

≤
(

max
1≤i≤d

d′∑
r=1

E
[
|Air|2

])1/2
`∨2
(
(µ1, . . . , µd), (ν1, . . . , νd)

)
. (3.26)

Hence, condition (3.17) implies that the restriction of T ′ to P is a contraction. Since

the metric `∨2 is complete, Banach’s fixed-point theorem implies the assertion.





4 Convergence and examples

In this chapter, a couple of concrete Pólya urns are considered and convergence of the

normalized numbers of balls of a color is shown with respect to the product metrics

defined in chapter 3.1. The proofs are generic in order that they can easily be applied

to other urns of the types (a)–(c) in chapter 3. We always consider limit laws for the

initial compositions of the urn with one ball of (arbitrary) color. Limit laws for other

initial compositions can be obtained from these by appropriate convolution with

coefficients which are powers of components of an independent Dirichlet distributed

vector. The details are left to the reader.

4.1 2× 2 deterministic replacement urns

A discussion of urns with a general balanced 2× 2 replacement matrix as in (2.1) is

given in Bagchi and Pal [3]. Subsequently, we assume the conditions in (2.1) and,

as in [3], that bc > 0. As shown in [3], asymptotic normal behavior occurs for these

urns when a − c ≤ (a + b)/2 (type (b) in chapter 3.1), whereas a − c > (a + b)/2

leads to limit laws with non-normal limit distributions (type (a) in chapter 3.1). In

this chapter we show how to derive these results by our contraction approach. With

Bb
n and Bw

n as in the beginning of chapter 2 we denote expectations by µb(n) and

µw(n). These values can be derived exactly, see [3],

µb(n) =
c (a+ b)

b+ c
n+

bΓ
(

1
a+b

)
(b+ c) Γ

(
1+a−c
a+b

) Γ
(
n+ 1+a−c

a+b

)
Γ
(
n+ 1

a+b

) +
c

b+ c
, (4.1)

µw(n) =
c (a+ b)

b+ c
n−

cΓ
(

1
a+b

)
(b+ c) Γ

(
1+a−c
a+b

) Γ
(
n+ 1+a−c

a+b

)
Γ
(
n+ 1

a+b

) +
c

b+ c
. (4.2)

29
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Non-normal limit case. We first discuss the non-normal case a − c > (a + b)/2.

Note that with λ := (a−c)/(a+b) and excluding the case bc = 0, we have 1/2 < λ < 1

and, as n→∞,

µb(n) = cbn+ dbn
λ + o(nλ), µw(n) = cwn+ dwn

λ + o(nλ) (4.3)

with

cb = cw =
c (a+ b)

b+ c
, db =

bΓ
(

1
a+b

)
(b+ c) Γ

(
1+a−c
a+b

) , dw = −
cΓ
(

1
a+b

)
(b+ c) Γ

(
1+a−c
a+b

) . (4.4)

We use the normalizations X0 := Y0 := 0 and

Xn :=
Bb
n − µb(n)

nλ
, Yn :=

Bw
n − µw(n)

nλ
, n ≥ 1. (4.5)

Note that we do not have to identify the order of the variance in advance. It turns

out that it is sufficient to use the order of the error terms dbn
λ and dwn

λ in the

expansions (4.3). From the system (2.2)–(2.3) we obtain for the scaled quantities

Xn, Yn the system, for n ≥ 1,

Xn
d
=

a+1∑
r=1

(
I
(n)
r

n

)λ
X

(r)

I
(n)
r

+
K∑

r=a+2

(
I
(n)
r

n

)λ
Y

(r)

I
(n)
r

+ bb(n) , (4.6)

Yn
d
=

c∑
r=1

(
I
(n)
r

n

)λ
X

(r)

I
(n)
r

+

K∑
r=c+1

(
I
(n)
r

n

)λ
Y

(r)

I
(n)
r

+ bw(n) , (4.7)

where

bb(n) = db

(
−1 +

a+1∑
r=1

(
I
(n)
r

n

)λ)
+ dw

K∑
r=a+2

(
I
(n)
r

n

)λ
+ o(1) , (4.8)

bw(n) = db

c∑
r=1

(
I
(n)
r

n

)λ
+ dw

(
−1 +

K∑
r=c+1

(
I
(n)
r

n

)λ)
+ o(1) , (4.9)

with conditions on independence and identical distributions analogously to (2.2) and

(2.3).
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In view of Lemma 2.1, this suggests for limits X and Y of Xn and Yn respectively,

X
d
=

a+1∑
r=1

Dλ
rX

(r) +

K∑
r=a+2

Dλ
r Y

(r) + bb, (4.10)

Y
d
=

c∑
r=1

Dλ
rX

(r) +
K∑

r=c+1

Dλ
r Y

(r) + bw, (4.11)

with

bb = db

(
−1 +

a+1∑
r=1

Dλ
r

)
+ dw

K∑
r=a+2

Dλ
r ,

bw = db

c∑
r=1

Dλ
r + dw

(
−1 +

K∑
r=c+1

Dλ
r

)
,

where (D1, . . . , DK), X(1), . . . , X(K), Y (1), . . . , Y (K) are independent, and the ran-

dom variables X(r) are distributed as X, the r.v. Y (r) are distributed as Y , and

(D1, . . . , DK) is as in Lemma 2.1. Note that the moments E
[
Dλ
r

]
and the form of db

and dw given in (4.4) imply E[bb] = E[bw] = 0. From λ > 1/2 and
∑K

r=1Dr = 1, we

obtain

K∑
r=1

E
[
D2λ
r

]
< 1.

Hence, Theorem 3.1 can be applied to the map associated with the system (4.10)–

(4.11) and implies that there exists a unique solution
(
L(Λb) ,L(Λw)

)
in the space

MR
2 (0)×MR

2 (0). The following convergence proof resembles ideas from Neininger

and Rüschendorf [26].

Theorem 4.1. Consider a Pólya urn with replacement matrix (2.1) for which

a− c > (a+ b)/2 and bc > 0. Furthermore, let Xn and Yn be the normalized numbers

of black balls as in (4.5). We denote by (L(Λb),L(Λw)) the solution of (4.10)–(4.11)

which is unique in MR
2 (0)×MR

2 (0). Then, as n→∞,

ζ∨2
(
(Xn, Yn), (Λb,Λw)

)
→ 0.

In particular, as n→∞,

Xn
d−→ Λb, Yn

d−→ Λw. (4.12)
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Proof. We first define, for n ≥ 1, the accompanying sequences

Qb
n :=

a+1∑
r=1

(
I
(n)
r

n

)λ
Λ
(r)
b +

K∑
r=a+2

(
I
(n)
r

n

)λ
Λ(r)
w + bb(n) , (4.13)

Qw
n :=

c∑
r=1

(
I
(n)
r

n

)λ
Λ
(r)
b +

K∑
r=c+1

(
I
(n)
r

n

)λ
Λ(r)
w + bw(n) , (4.14)

with bb(n) and bw(n) as in (4.8) and the Λ
(r)
b , Λ

(r)
w and I(n) being independent.

All Λ
(r)
b are distributed as Λb and all Λ

(r)
w are distributed as Λw for the respective

values of r. Note that Qb
n and Qw

n are centered with finite second moment since

L(Λb),L(Λb) ∈MR
2 (0). Hence, ζ2 distances between Xn, Yn, Q

b
n, Q

w
n ,Λb, and Λw are

finite. To bound

∆(n) := ζ∨2
(
(Xn, Yn), (Λb,Λw)

)
we look at the distances

∆b(n) := ζ2(Xn,Λb) and ∆w(n) := ζ2(Yn,Λw).

We start with the estimate

ζ2(Xn,Λb) ≤ ζ2
(
Xn, Q

b
n

)
+ ζ2

(
Qb
n,Λb

)
. (4.15)

We first show for the second summand in (4.15) that ζ2
(
Qb
n,Λb

)
→ 0, as n → ∞:

With inequality (3.9), we have

ζ2(Q
b
n,Λb) ≤

(∥∥Qb
n

∥∥
2

+ ‖Λb‖2
)
`2

(
Qb
n,Λb

)
.

Moreover, ‖Λb‖ 2 is finite since L(Λb) ∈ MR
2 . By definition of Qb

n and using that∣∣∣I(n)r /n
∣∣∣ ≤ 1, we get that

∥∥Qb
n

∥∥
2

is uniformly bounded in n. Hence, it is sufficient to

show `2(Q
b
n,Λb)→ 0. The independence properties in (4.13) and (4.10) imply that

`2

(
Qb
n,Λb

)
≤

a+1∑
r=1

∥∥∥∥∥
(
I
(n)
r

n

)λ
−Dλ

r

∥∥∥∥∥
2

∥∥∥Λ
(r)
b

∥∥∥
2

+

K∑
r=a+2

∥∥∥∥∥
(
I
(n)
r

n

)λ
−Dλ

r

∥∥∥∥∥
2

∥∥∥Λ(r)
w

∥∥∥
2

+
∥∥bb(n)− bb

∥∥
2
. (4.16)
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Lemma 2.1 implies that
∥∥(I(n)r /n

)λ −Dλ
r

∥∥
2
→ 0 as n → ∞, which in turn implies∥∥bb(n)− bb

∥∥
2
→ 0. Hence, we obtain `2(Q

b
n,Λb)→ 0 and ζ2(Q

b
n,Λb)→ 0.

Next, we bound the first summand ζ2
(
Xn, Q

b
n

)
in (4.15) by conditioning on I(n).

Note that, conditionally on I(n), the toll term bb(n) is deterministic and, for the

integration, denoted by β = β
(
I(n)

)
. Defining i := (i1, . . . , iK) and denoting the

distribution of I(n) by Υn, this yields

ζ2

(
Xn, Q

b
n

)
≤
∫
ζ2

(
a+1∑
r=1

( ir
n

)λ
X

(r)
ir

+

K∑
r=a+2

( ir
n

)λ
Y

(r)
ir

+ β,

a+1∑
r=1

( ir
n

)λ
Λ
(r)
b +

K∑
r=a+2

( ir
n

)λ
Λ(r)
w + β

)
dΥn(i)

≤
∫ a+1∑

r=1

( ir
n

)2λ
ζ2

(
X

(r)
ir
,Λ

(r)
b

)
+

K∑
r=a+2

( ir
n

)2λ
ζ2

(
Y

(r)
ir
,Λ(r)

w

)
dΥn(i)

=

a+1∑
r=1

E

[(
I
(n)
r

n

)2λ
∆b

(
I(n)r

)]
+

K∑
r=a+2

E

[(
I
(n)
r

n

)2λ
∆w

(
I(n)r

)]

≤
K∑
r=1

E

[(
I
(n)
r

n

)2λ
∆
(
I(n)r

)]
,

where, for the second inequality, we use that ζ2 is (2,+) ideal, as well as (3.7).

Altogether, the estimate started in (4.15) yields

∆b(n) ≤
K∑
r=1

E

[(
I
(n)
r

n

)2λ
∆
(
I(n)r

)]
+ o(1) .

With the same argument we obtain the same upper bound for ∆w(n). Thus, using

also that I
(n)
1 , . . . , I

(n)
K are identically distributed, we have

∆(n) ≤ KE

[(
I
(n)
1

n

)2λ
∆
(
I
(n)
1

)]
+ o(1) . (4.17)
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Now, a standard argument implies ∆(n)→ 0 as follows: First from (4.17) we obtain

with I
(n)
1 /n→ D1 in L2 and, by λ > 1/2, with ϑ := KE[D2λ

1 ] < 1 that

∆(n) ≤ K E

[(
I
(n)
1

n

)2λ]
max

0≤k≤n−1
∆(k) + o(1)

≤
(
ϑ+ o(1)

)
max

0≤k≤n−1
∆(k) + o(1) .

Since ϑ < 1, this implies that the sequence (∆(n))n≥0 is bounded. We denote

supn≥0 ∆(n) by η and lim supn→∞∆(n) by ξ. For any ε > 0, there exists an n0 ≥ 0

such that ∆(n) ≤ ξ + ε for all n ≥ n0. Hence, from (4.17) we obtain

∆(n) ≤ K E

[
1{

I
(n)
1 <n0

}(I(n)1

n

)2λ]
η +K E

[
1{

I
(n)
1 ≥n0

}(I(n)1

n

)2λ]
(ξ + ε) + o(1) .

With n→∞ this implies

ξ ≤ ϑ (ξ + ε) .

Since ϑ < 1 and ε > 0 is arbitrary, this implies ξ = 0. Hence, as n → ∞, we have

ζ∨2
(
(Xn, Yn), (Λb,Λw)

)
→ 0. Since convergence in ζ2 implies weak convergence, this

implies (4.12) as well.

The normal limit case. Now, we discuss the normal limit case a− c ≤ (a+ b)/2,

where we first consider the case with the strict inequality a− c < (a+ b)/2. (The

remaining case a − c = (a + b)/2 is similar with more involved expansions for the

first two moments.) The formulae (4.1), (4.2) now imply

µb(n) = cbn+ o
(√
n
)
, µw(n) = cwn+ o

(√
n
)

(4.18)

with cb and cw as in (4.4). As usual when using the contraction method for proving

normal limit laws based on the metric ζ3, we also need an expansion of the variance.

We denote the variances of Bb
n and Bw

n by σ2b(n) and σ2w(n). Additionally to bc = 0

we exclude the case a = c. (In this case there is a trivial, non-random evolution of

the urn). From [3], we have as n→∞:

σ2b(n) = fbn+ o(n) , σ2w(n) = fwn+ o(n) , (4.19)
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with

fb = fw =
bc (a− c)2(

a+ b− 2a−ca+b

)
(a+ b) (b+ c)

> 0.

We use the normalizations X0 := Y0 := X1 := Y1 := 0 and

Xn :=
Bb
n − µb(n)

σb(n)
, Yn :=

Bw
n − µw(n)

σw(n)
, n ≥ 2. (4.20)

From the system (2.2)–(2.3), we obtain for the scaled quantities Xn, Yn the system,

for n ≥ 1,

Xn
d
=

a+1∑
r=1

σb
(
I
(n)
r

)
σb(n)

X
(r)

I
(n)
r

+
K∑

r=a+2

σw
(
I
(n)
r

)
σw(n)

Y
(r)

I
(n)
r

+ eb(n) , (4.21)

Yn
d
=

c∑
r=1

σb
(
I
(n)
r

)
σb(n)

X
(r)

I
(n)
r

+

K∑
r=c+1

σw
(
I
(n)
r

)
σw(n)

Y
(r)

I
(n)
r

+ ew(n) , (4.22)

with conditions on independence and identical distributions analogously to (2.2)

and (2.3). We have ‖eb(n) ‖∞, ‖ew(n) ‖∞ → 0 since the leading linear terms in the

expansions (4.18) cancel out and the error terms of order o(
√
n) are asymptotically

eliminated by the scaling of order 1/
√
n. In view of Lemma 2.1, this suggests for

limits X and Y of Xn and Yn respectively

X
d
=

a+1∑
r=1

√
DrX

(r) +
K∑

r=a+2

√
DrY

(r), (4.23)

Y
d
=

c∑
r=1

√
DrX

(r) +

K∑
r=c+1

√
DrY

(r), (4.24)

where (D1, . . . , DK), X(1), . . . , X(K), Y (1), . . . , Y (K) are independent, and the X(r)

are distributed as X and the Y (r) are distributed as Y . To the map associated to the

system (4.23)–(4.24) we can apply Theorem 3.2. The conditions (3.14) and (3.15) are

trivially satisfied. Hence (N (0, 1),N (0, 1)) is the unique fixed-point of the associated

map in the space MR
3 (0, 1)×MR

3 (0, 1).

Theorem 4.2. Consider the Pólya urn with replacement matrix (2.1) satisfying

a− c < (a+ b)/2 and bc > 0. Denote by Xn and Yn the normalized numbers of black

balls as in (4.20). Then, as n→∞,

ζ∨3

(
(Xn, Yn),

(
N (0, 1),N (0, 1)

))
→ 0.
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In particular, as n→∞,

Xn
d−→ N (0, 1) , Yn

d−→ N (0, 1) . (4.25)

Proof. The proof of this theorem can be done along the lines of the proof of The-

orem 4.1. However, more care has to be taken in the definition of the quantities

corresponding to Qb
n and Qw

n in (4.13) in order to assure finiteness of the ζ3 distances.

A possible choice is, for n ≥ 2,

Q̃b
n :=

a+1∑
r=1

1{
I
(n)
r ≥2

}σb(I(n)r

)
σb(n)

Nr +
K∑

r=a+2

1{
I
(n)
r ≥2

}σw(I(n)r

)
σw(n)

Nr + eb(n) , (4.26)

Q̃w
n :=

c∑
r=1

1{
I
(n)
r ≥2

}σb(I
(n)
r )

σb(n)
Nr +

K∑
r=c+1

1{
I
(n)
r ≥2

}σw(I(n)r

)
σw(n)

Nr + ew(n) , (4.27)

with eb(n) and ew(n) as in (4.21)–(4.22) and N1, . . . , NK , I(n), independent, where

the Nr are standard normally distributed for r = 1, . . . ,K. A comparison of the

definition of Q̃b
n and Q̃w

n with the right hand sides of (4.21) and (4.22) and the scaling

(4.20) yields that we have E
[
Q̃b
n

]
= E

[
Q̃w
n

]
= 0 and Var

(
Q̃b
n

)
= Var

(
Q̃w
n

)
= 1 for all

n ≥ 2. Obviously, we also have
∥∥Q̃b

n

∥∥
3
,
∥∥Q̃w

n

∥∥
3
< ∞. Hence, ζ3 distances between

Xn, Yn, Q̃b
n, Q̃w

n , and N (0, 1) are finite for all n ≥ 2. Denoting

∆̃b(n) := ζ3
(
Xn,N (0, 1)

)
,

∆̃w(n) := ζ3
(
Yn,N (0, 1)

)
,

∆̃(n) := ζ∨3

(
(Xn, Yn),

(
N (0, 1),N (0, 1)

))
,

we again start with

ζ3
(
Xn,N (0, 1)

)
≤ ζ3

(
Xn, Q̃

b
n

)
+ ζ3

(
Q̃b
n,N (0, 1)

)
.

Analogously to the proof of Theorem 4.1, we obtain ζ3
(
Q̃b
n,N (0, 1)

)
→ 0 as n→∞.

The bound for ζ3
(
Xn, Q̃

b
n

)
is also analogous to the proof of Theorem 4.1, now using

that ζ3 is (3,+) ideal instead of (2,+) ideal. This yields

ζ3
(
Xn, Q̃

b
n

)
≤

a+1∑
r=1

E

[(
σb
(
I
(n)
r

)
σb(n)

)3
∆̃
(
I(n)r

)]
+

K∑
r=a+2

E

[(
σw
(
I
(n)
r

)
σw(n)

)3
∆̃
(
I(n)r

)]
.
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Then we argue as in the previous proof to obtain, analogous to (4.17),

∆̃(n) ≤
a+1∑
r=1

E

[(
σb
(
I
(n)
r

)
σb(n)

)3
∆̃
(
I(n)r

)]
+

K∑
r=a+2

E

[(
σw
(
I
(n)
r

)
σw(n)

)3
∆̃
(
I(n)r

)]
+ o(1) .

From this estimate, we can deduce ∆̃(n)→ 0 as for ∆(n) in the proof of Theorem 4.1.

For this, we need to use that from the expansions (4.19) and Lemma 2.1 we obtain,

as n→∞, that

a+1∑
r=1

E

[(
σb
(
I
(n)
r

)
σb(n)

)3]
+

K∑
r=a+2

E

[(
σw
(
I
(n)
r

)
σw(n)

)3]
→

K∑
r=1

E
[
D3/2
r

]
< 1. (4.28)

Remarks. (1) Note that the proof of Theorem 4.2 cannot be done in the ζ∨2 metric

since the term corresponding to (4.28) then is

a+1∑
r=1

E

[(
σb
(
I
(n)
r

)
σb(n)

)2]
+

K∑
r=a+2

E

[(
σw
(
I
(n)
r

)
σw(n)

)2]
→

K∑
r=1

E[Dr] = 1,

where a limit < 1 is required to obtain ∆̃(n)→ 0. This is the reason for using ζ∨3 . It

is possible to use ζ∨s for any 2 < s ≤ 3 leading to the limit
∑K

r=1 E
[
Ds
r

]
< 1.

(2) The case a− c = (a+ b)/2 differs in the error terms in (4.18) which then become

O(
√
n). Since the variances in (4.19) get additional logarithmic factors, we still

obtain the system (4.23)–(4.24) and the same proof technique can be applied.

(3) The condition bc > 0 cannot be dropped. In our approach, this would lead to

degenerate systems of limit equations that do not identify limit laws. It is known

that under bc = 0 different asymptotic behavior appears, see [16].

4.2 An urn with random replacements

As an example for an urn model with random entries in the replacement matrix R,

we consider a simple model with two colors, black and white. In each step, when

drawing a black ball, a coin is independently tossed to decide whether the black ball

is placed back together with another black ball or together with another white ball.
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The probability for success (a second black ball) is denoted by 0 < α < 1. Similarly,

if a white ball is drawn, a coin with probability 0 < β < 1 is tossed to decide whether

a second white ball or a black ball is placed back together with the white ball.

This type of urn has been used to model the assignment of patients to different

treatment groups in clinical trials in cases when (due for example to ethical reasons)

it is desirable to adapt the number of patients in each group to the efficacy of the

corresponding treatment. When a new patient arrives, a ball is drawn at random

from the urn and its color determines which treatment is used. The coin flips then

model the success or failure of the corresponding treatment. In the course of the trial,

compared to a purely random assignment, more patients are assigned to the more

successfull treatment. This urn model has been studied together with generalizations

in [35, 36, 34, 33, 24, 4, 5, 15].

We denote the replacement matrix by

R =

[
Fα 1− Fα

1− Fβ Fβ

]
, (4.29)

where Fα and Fβ denote Bernoulli random variables being 1 with probabilities α and

β respectively, otherwise 0. The row sums of R in (4.29) are both deterministically

equal to one, hence the urn is balanced. Again, the number of black balls after n

draws starting with an initial composition with one black ball is denoted by Bb
n,

when starting with a white ball by Bw
n . According to our approach in chapter 2 we

obtain the recursive equation

Bb
n
d
= B

b,(1)
In

+ FαB
b,(2)
Jn

+ (1− Fα)Bw
Jn , n ≥ 1, (4.30)

where
(
B

b,(1)
k

)
0≤k<n,

(
B

b,(2)
k

)
0≤k<n,

(
Bw
k

)
0≤k<n, Fα and In are independent, and

B
b,(1)
k and B

b,(2)
k are distributed as Bb

k for k = 0, . . . , n − 1. Furthermore, In is

uniformly distributed on {0, . . . , n − 1} while Jn := n − 1 − In. (The uniform

distribution of In follows from the uniform distribution of the number of balls in the

[ 1 0
0 1 ]-Pólya urn when starting with one ball of each color.) Similarly, we obtain for

Bw
n that

Bw
n

d
= B

w,(1)
In

+ FβB
w,(2)
Jn

+ (1− Fβ)Bb
Jn , n ≥ 1, (4.31)

with conditions on independence and identical distributions similar to (4.30). Together

with the initial value
(
Bb

0 , B
w
0

)
= (1, 0), the system of equations (4.30)–(4.31) again
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defines the sequence of pairs of distributions
(
L
(
Bb
n

)
,L(Bw

n )
)
n≥0. As a special case

of Lemma 2.1, we have, for n→∞,

(In, Jn)→ (U, 1− U) , (4.32)

almost surely, where U is uniformly distributed on [0, 1]. Furthermore, for n ≥ 0, we

use the notation

µb(n) := E
[
Bb
n

]
, µw(n) := E

[
Bw
n

]
. (4.33)

These means have been studied before. We have the following exact formulae:

Lemma 4.3. For µb(n) and µw(n) as in (4.33) with 0 < α, β < 1, we have

µb(n) =
1− β

2− α− β
n+

1− α
2− α− β

Γ(n+ α+ β)

Γ(α+ β) Γ(n+ 1)
+

1− β
2− α− β

, (4.34)

µw(n) =
1− β

2− α− β
n− 1− β

2− α− β
Γ(n+ α+ β)

Γ(α+ β) Γ(n+ 1)
+

1− β
2− α− β

. (4.35)

Proof. An elementary proof is based on matrix diagonalization and can be done

along the lines of the proof of Lemma 4.7 below.

As in the example in section 4.1, we have two different types of limit laws, with

normal limit for α+ β ≤ 3/2 and with non-normal limit for α+ β > 3/2.

The non-normal limit case. We assume that λ := α+β−1 > 1/2. From Lemma 4.3,

we obtain asymptotic expressions for the expectation, as n→∞,

µb(n) = c′bn+ d′bn
λ + o

(
nλ
)
,

µw(n) = c′wn+ d′wn
λ + o

(
nλ
)
,

with constants

c′b = c′w =
1− β
1− λ

, d′b =
1− α

(1− λ) Γ(λ+ 1)
, d′w = − 1− β

(1− λ) Γ(λ+ 1)
. (4.36)

We use the normalizations X0 := Y0 := 0 and

Xn :=
Bb
n − µb(n)

nλ
, Yn :=

Bw
n − µw(n)

nλ
, n ≥ 1. (4.37)
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As in the non-normal case of the example in section 4.1, it is sufficient to use the

order of the error term of the mean for the scaling. From (4.30)–(4.31) we obtain,

for n ≥ 1,

Xn
d
=

(
In
n

)λ
X

(1)
In

+ Fα

(
Jn
n

)λ
X

(2)
Jn

+ (1− Fα)

(
Jn
n

)λ
YJn + b′b(n) , (4.38)

Yn
d
=

(
In
n

)λ
Y

(1)
In

+ Fβ

(
Jn
n

)λ
Y

(2)
Jn

+ (1− Fβ)

(
Jn
n

)λ
XJn + b′w(n) , (4.39)

where

b′b(n) = d′b

((
In
n

)λ
+ Fα

(
Jn
n

)λ
− 1

)
+ d′w (1− Fα)

(
Jn
n

)λ
+ o(1) ,

b′w(n) = d′w

((
In
n

)λ
+ Fβ

(
Jn
n

)λ
− 1

)
+ d′b (1− Fβ)

(
Jn
n

)λ
+ o(1) ,

with conditions on independence and identical distributions analogous to (4.30)–(4.31).

In view of (4.32), this suggests for limits X and Y of Xn and Yn that

X
d
= UλX(1) + Fα (1− U)λX(2) + (1− Fα) (1− U)λ Y (1) + b′b, (4.40)

Y
d
= UλY (1) + Fβ (1− U)λ Y (2) + (1− Fβ) (1− U)λX(1) + b′w, (4.41)

with

b′b = d′b

(
Uλ + Fα(1− U)λ − 1

)
+ d′w (1− Fα) (1− U)λ ,

b′w = d′w

(
Uλ + Fβ(1− U)λ − 1

)
+ d′b (1− Fβ) (1− U)λ ,

where X(1), X(2), Y (1), Y (2) and U are independent and X(1), X(2) are distributed

as X, whereas Y (1), Y (2) are distributed as Y .

To check that Theorem 3.1 can be applied to the map associated to the sys-

tem (4.40)–(4.41), first note that the form of d′b and d′w in (4.36) implies that

E
[
b′b
]

= E
[
b′w
]

= 0. To check condition (3.13), note that we have

E
[
U2λ

]
+ E

[
Fα (1− U)2λ

]
+ E

[
(1− Fα) (1− U)2λ

]
=

2

2λ+ 1
< 1,



4.2 An urn with random replacements 41

since λ > 1/2. Analogously, we have

E
[
U2λ

]
+ E

[
Fβ (1− U)2λ

]
+ E

[
(1− Fβ) (1− U)2λ

]
=

2

2λ+ 1
< 1.

Together, this verifies condition (3.13). Hence, Theorem 3.1 can be applied and

yields that the system (4.40)–(4.41) has a unique fixed-point
(
L(Λ′b) ,L(Λ′w)

)
in

MR
2 (0)×MR

2 (0).

Theorem 4.4. Consider the Pólya urn with random replacement matrix (4.29) with

α, β ∈ (0, 1) and α+β > 3/2. Furthermore, let Xn and Yn be the normalized numbers

of black balls after n steps as in (4.37). We denote by
(
L(Λ′b) ,L(Λ′w)

)
the unique

solution of (4.40)–(4.41) in MR
2 (0)×MR

2 (0). Then, as n→∞,

Xn
d−→ Λ′b, Yn

d−→ Λ′w.

Proof. Analogous to the proof of Theorem 4.1.

The normal limit case. Now, we discuss the normal limit case λ := α+β−1 ≤ 1/2.

We first assume λ := α+ β − 1 < 1/2. The expansions from Lemma 4.3 now imply,

as n→∞

µb(n) = cbn+ o
(√
n
)
, µw(n) = cwn+ o

(√
n
)

(4.42)

with cb and cw given in (4.36). As in the normal limit cases in the examples in

section 4.1, we first need asymptotic expressions for the variances. We denote the

variances of Bb
n and Bw

n by σ̂2b(n) and σ̂2w(n) respectively. These can be obtained

from a result of Matthews and Rosenberger [24] for the number of draws of each

color as follows:

Lemma 4.5. For the variances of Bb
n and Bw

n , we have, as n→∞,

σ̂2b(n) = f ′bn+ o(n) , σ̂2w(n) = f ′wn+ o(n) , (4.43)

with

f ′b = f ′w =
(1− α) (1− β)

(1− λ)2

(
1

1− 2λ
− 2λ (1 + λ)

)
> 0.
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Proof. For the present urn model, Matthews and Rosenberger [24] study the number

Nn of draws, within the first n draws, in which a black ball is drawn. Starting with

one black ball, it is established there that, as n→∞,

E [Nn] =
1− β
1− λ

n+ o(n) ,

Var(Nn) , =
(1− α) (1− β) (3 + 2λ)

(1− λ)2 (1− 2λ)
n+ o(n) .

For each black ball in the urn, exactly one of the following three statements is true:

It may be either the first ball, or has been added after drawing a black ball and

having success in tossing the corresponding coin, or added after drawing a white ball

and having no success in tossing the coin. Therefore, we can directly link Nn to Bb
n:

Denoting the coin flips after drawing black balls by
(
F b
j

)
1≤j≤Nn

, the coin flips after

drawing white balls by
(
Fw
j

)
1≤j≤(n−Nn)

, we have

Bb
n = 1 +

Nn∑
j=1

F b
j +

n−Nn∑
j=1

(
1− Fw

j

)
.

Using that all coin flips are independent, we obtain from the law of total variance by

conditioning on Nn that

σ̂2b (n) = E
[
Var
(
Bb
n

∣∣ Nn

)]
+ Var

(
E
[
Bb
n

∣∣ Nn

])
=

(1− α) (1− β)

(1− λ)2

( 1

1− 2λ
− 2λ (1 + λ)

)
n+ o(n) .

When starting with one white ball, a similar argument gives the corresponding

result.

We use the normalizations X0 := Y0 := 0 and

Xn :=
Bb
n − µb(n)

σ̂b(n)
, Yn :=

Bw
n − µw(n)

σ̂w(n)
, n ≥ 1. (4.44)

From the system (4.30)–(4.31), we obtain for the scaled quantities Xn, Yn the system,

for n ≥ 1,

Xn
d
=
σ̂b(In)

σ̂b(n)
X

(1)
In

+ Fα
σ̂b(Jn)

σ̂b(n)
X

(2)
Jn

+ (1− Fα)
σ̂w(Jn)

σ̂w(n)
YJn + e′b(n) ,

Yn
d
=
σ̂w(In)

σ̂w(n)
Y

(1)
In

+ Fβ
σ̂w(Jn)

σ̂w(n)
Y

(2)
Jn

+ (1− Fβ)
σ̂b(Jn)

σ̂b(n)
XJn + e′w(n) ,
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with conditions on independence and identical distributions analogous to (4.30)–

(4.31). We have
∥∥e′b(n)

∥∥
∞,
∥∥e′w(n)

∥∥
∞ → 0, since the leading linear terms in the

expansions (4.42) cancel out and the error terms of order o(
√
n ) are asymptotically

eliminated by the scaling of order 1/
√
n. In view of (4.32), this suggests for limits X

and Y of Xn and Yn respectively

X
d
=
√
UX(1) + Fα

√
1− UX(2) + (1− Fα)

√
1− UY (1), (4.45)

Y
d
=
√
UY (1) + Fβ

√
1− UY (2) + (1− Fβ)

√
1− UX(1), (4.46)

where X(1), X(2), Y (1), Y (2) and U are independent and X(1), X(2) are distributed

as X whereas Y (1), Y (2) are distributed as Y . We can apply Theorem 3.2 to the

map associated to the system (4.45)–(4.46), because the conditions (3.14) and (3.15)

are trivially satisfied. Hence,
(
N (0, 1) ,N (0, 1)

)
is the unique fixed-point of the

associated map in the space MR
3 (0, 1)×MR

3 (0, 1).

Theorem 4.6. Consider the Pólya urn with random replacement matrix (4.29) with

α, β ∈ (0, 1) and α + β < 3/2. Furthermore, denote by Xn and Yn the normalized

numbers of black balls as in (4.44). Then, as n→∞,

Xn
d−→ N (0, 1) , Yn

d−→ N (0, 1) . (4.47)

Proof. Analogous to the proof of Theorem 4.2.

Remark. The case α+β = 3/2 differs in the error terms in (4.42) which then become

O(
√
n). Since the variances in (4.43) get additional logarithmic factors (cf. [24]), we

still obtain the system (4.45)–(4.46) and our proof technique still applies.
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4.3 Cyclic urns

We fix an integer m ≥ 2 and consider an urn with balls of types 1, . . . ,m. After

drawing a ball of type j, it is placed back into the urn together with a ball of type

j + 1 if 1 ≤ j ≤ m− 1 and together with a ball of type 1 if j = m. Such urn models

are called cyclic urns. Thus, the replacement matrix of a cyclic urn has the form

R =

0 1 0 0

0

0 1

1 0 0




. (4.48)

We denote by R
[j]
n the number of type-1 balls after n draws when initially one ball of

type j is contained in the urn. Our recursive approach described above yields the

system of recursive distributional equations

R[1]
n

d
= R

[1]
In

+R
[2]
Jn
,

R[2]
n

d
= R

[2]
In

+R
[3]
Jn
,

...

R[m]
n

d
= R

[m]
In

+R
[1]
Jn
,

(4.49)

where, on the right hand sides, In and R
[j]
k for j = 1, . . . ,m, k = 0, . . . , n − 1 are

independent, In uniformly distributed on {0, . . . , n− 1} and Jn = n− 1− In.

We denote the imaginary unit by i and use the primitive roots of unity

ω := exp

(
2πi

m

)
=:λ+ iµ (4.50)

with λ, µ ∈ R. Note that for 2 ≤ m ≤ 6, we have λ ≤ 1/2, while for m ≥ 7, we have

λ > 1/2. Asymptotic expressions for the means of R
[j]
n can be found (together with

further analysis) in [14, 15, 29]. To keep this section self-contained, we give an exact

formula for later use:
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Lemma 4.7. Let R
[j]
n be the number of balls of color 1 after n draws in a cyclic urn

with m ≥ 2 colors, starting with one ball of color j. Then, with ω = ωm as in (4.50),

we have

E
[
R[j]
n

]
=
n+ 1

m
+

1

m

∑
k∈{1,...,m−1}

k 6=m/2

Γ(n+ 1 + ωk)

Γ(n+ 1) Γ(ωk + 1)
ωk(j−1). (4.51)

In particular, we have E
[
R

[j]
n

]
= 1

m n+ O(1) for m = 2, 3, 4. For m > 4, we have, as

n→∞,

E
[
R[j]
n

]
=

1

m
n+ <

(
κjn

iµ
)
nλ + o

(
nλ
)
, κj :=

2ωj−1

mΓ(ω + 1)
. (4.52)

Proof. Using the system (4.49), we obtain by conditioning on In, for any 1 ≤ j ≤ m,

E
[
R[j]
n

]
=

1

n

n−1∑
i=0

E
[
R

[j]
i

]
+

1

n

n−1∑
i=0

E
[
R

[j+1]
i

]

=
1

n

(
E
[
R

[j]
n−1

]
+ E

[
R

[j+1]
n−1

])
+
n− 1

n
E
[
R

[j]
n−1

]

= E
[
R

[j]
n−1

]
+

1

n
E
[
R

[j+1]
n−1

]
.

Using the column vector Rn :=
(
R

[1]
n , . . . , R

[m]
n

)t
, the replacement matrix R in (4.48),

and the identity matrix Idm, we can rewrite this to get

E
[
Rn
]

=

(
Idm +

1

n
R

)
E
[
Rn−1

]
=

n∏
k=1

(
Idm +

1

k
R

)
E
[
R0

]
.

The eigenvalues of the replacement matrix R are all m-th roots of unity ω` := ω`,

` = 1, . . . ,m. and a possible eigenbasis is v` := 1
m

(
ω0
` , . . . , ω

m−1
`

)t
, ` = 1, . . . ,m.

Decomposing the mapping induced by R into the projections πv` onto the respective

eigenspaces, we obtain

n∏
k=1

(
Idm +

1

k
R

)
=

m∑
l=1

n∏
k=1

(
1 +

1

k
ωl

)
πvl

= (n+ 1) πvm +
∑

l∈{1,...,m−1}
l 6=m/2

Γ(n+ 1 + ωl)

Γ(ωl + 1)Γ(n+ 1)
πvl .
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Moreover, πvj
(
E[R0]

)
= vj and vm = 1

m (1, . . . , 1), hence the j-th component of the

latter display implies (4.51).

The asymptotic expansion in (4.52) can now directly be read off: Note that the

roots of unity come in conjugate pairs ω` = ωm−`. If m is even, ωm/2 = ωm/2 = −1,

otherwise only ωm = 1 is real. Combining the summands for such conjugate pairs

and using that Γ(z) = Γ(z), we obtain the terms

Γ(n+ 1 + ω`) ω
j−1
`

Γ(n+ 1) Γ(ω` + 1)
+

Γ(n+ 1 + ω`) ω`
j−1

Γ(n+ 1) Γ(ω` + 1)
= 2<

(
ωj−1` Γ(n+ 1 + ω`)

Γ(ω` + 1) Γ(n+ 1)

)
. (4.53)

Therefore, the expectation can be rewritten as

E
[
R[j]
n

]
=
n+ 1

m
+

2

m

b(m−1)/2c∑
l=1

<
(

Γ(n+ 1 + ω`)

Γ(n+ 1) Γ(ω` + 1)
ωj−1`

)
+ 1{m even}

(−1)j−1

mn
.

By Stirling’s approximation, the asymptotic growth order of the term in (4.53) is

<(nω`), hence the dominant asymptotic term is the one for the conjugate pair with

largest real part, ω and ωm−1. This implies (4.52) for m > 4. For m = 3, 4 the

periodic term is o(1) respectively O(1), whereas for m = 2 there is no periodic

fluctuation.

We do not discuss limit laws for the cases 2 ≤ m ≤ 6 in detail. They lead to

asymptotic normality as has been shown with different proofs in Janson [14] and

Janson [15, Example 7.9]. These cases can be covered by our approach similarly

to the normal cases in sections 4.1 and 4.2. For 2 ≤ m ≤ 6, the system of limit

equations is

X [1] d
=
√
UX [1] +

√
1− UX [2],

X [2] d
=
√
UX [2] +

√
1− UX [3],

...

X [m] d
=
√
UX [m] +

√
1− UX [1],

and Theorem 3.2 applies.
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We now assume m ≥ 7. In particular, we have the asymptotic expansion (4.52) of

the means of the R
[j]
n with λ > 1/2. We define the normalizations X

[j]
0 = 0 and

X [j]
n :=

R
[j]
n − 1

mn

nλ
, n ≥ 1. (4.54)

Hence, we obtain for n ≥ 1 the system

X [1]
n

d
=

(
In
n

)λ
X

[1]
In

+

(
Jn
n

)λ
X

[2]
Jn
− 1

mnλ
,

X [2]
n

d
=

(
In
n

)λ
X

[2]
In

+

(
Jn
n

)λ
X

[3]
Jn
− 1

mnλ
,

...

X [m]
n

d
=

(
In
n

)λ
X

[m]
In

+

(
Jn
n

)λ
X

[1]
Jn
− 1

mnλ
,

where, on the right hand sides, In and X
[j]
k for j = 1, . . . ,m and k = 0, . . . , n− 1 are

independent. To describe the asymptotic periodic behavior of the distributions of

the X
[j]
n , we use the following related system of limit equations:

X [1] d
= UωX [1] + (1− U)ωX [2],

X [2] d
= UωX [2] + (1− U)ωX [3],

...

X [m] d
= UωX [m] + (1− U)ωX [1].

Since ω is complex, this now has to be considered as a system to solve for distributions

L
(
X [1]

)
, . . . ,L

(
X [m]

)
on the complex plane C. The corresponding map T̄ is a special

case of T ′ in (3.12):

T̄ :
(
MC

)×m
→
(
MC

)×m
(
µ1, . . . , µm

)
7→
(
T̄1(µ1, . . . , µm) , . . . , T̄m(µ1, . . . , µm)

)
T̄j(µ1, . . . , µm) := L

(
UωV [j] + (1− U)ωV [j+1]

)
(4.55)

for j = 1, . . . ,m with U, V [1], . . . , V [m+1] independent, U uniformly distributed on

[0, 1] and L
(
V [j]

)
= µj for j = 1, . . . ,m and L

(
V [m+1]

)
= µ1.
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Lemma 4.8. Let m ≥ 7. The restriction of T̄ to MC
2 (κ1) × · · · ×MC

2 (κm) has a

unique fixed-point.

Proof. We verify the conditions of Theorem 3.3: First note that condition (3.16) for

T̄ in (4.55) is

E
[
Uω
]
κj + E

[
(1− U)ω

]
κj+1 = κj , j = 1, . . . ,m, (4.56)

with κm+1 := κ1. Since E[Uω] = E
[
(1− U)ω

]
= (1 + ω)−1 and κj+1 = ωκj , we find

that (4.56) is satisfied. Condition (3.17) for T̄ is

E
[∣∣U2ω

∣∣]+ E
[∣∣(1− U)2ω

∣∣] < 1.

The left-hand side is equal to 2/(1 + 2λ) and, since m ≥ 7, we have λ > 1/2. Hence,

Theorem 3.3 applies and implies the assertion.

The fixed-point in Lemma 4.8 has a particularly simple structure as follows:

Lemma 4.9. Let m ≥ 7 and
(
L
(
Λ[1]
)
, . . . ,L

(
Λ[m]

))
be the unique fixed-point in

Lemma 4.8. Furthermore, let L(Λ) be the (unique)fixed-point of

X
d
= UωX + ω (1− U)ωX ′ in MC

2

(
2

mΓ(ω + 1)

)
, (4.57)

where X, X ′ and U are independent, U is uniformly distributed on [0, 1] and X and

X ′ have identical distributions. Then we have

Λ[j] d
= ωj−1Λ, j = 1, . . . ,m.

Proof. We abbreviate γ := 2/
(
mΓ(ω + 1)

)
. For X, X ′ and U independent, U uni-

formly distributed on [0, 1] and X and X ′ identically distributed with EX = γ, we

have

E
[
UωX + ω (1− U)ωX ′

]
=

1

1 + ω
(γ + ωγ) = γ,

hence the map of probability measures on C associated to (4.57) maps MC
2 (γ) into

itself. The argument of the proof of Theorem 3.3 implies that this map is a contraction

on
(
MC

2 (γ) , `2
)
. Hence it has a unique fixed point L(Λ). We have(

L(Λ) ,L(ωΛ) , . . . ,L
(
ωm−1Λ

))
∈MC

2 (κ1)× · · · ×MC
2 (κm) ,
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and, by plugging into (4.55), we find that this vector is a fixed-point of T̄ . Since,

by Lemma 4.8, there is only one fixed-point of T̄ in MC
2 (κ1)× · · · ×MC

2 (κm), the

assertion follows.

The asymptotic periodic behavior in the following theorem has already been shown

almost surely by martingale methods in [29, Section 4.2], see also [15, Theorem 3.24].

Our contraction approach adds the characterization of L(Λ) as the fixed-point in

(4.57). The proof is based on the complex version of the `2 metric and resembles

ideas from Fill and Kapur [12], see also [17, Theorem 5.3].

Theorem 4.10. Let m ≥ 7 and X
[j]
n as in (4.54) and L(Λ) be the unique fixed-point

in Lemma 4.9. Then, for all j = 1, . . . ,m, we have

`2

(
X [j]
n ,<

(
ei(µ log(n)+2π j−1

m )Λ
))
→ 0 (n→∞). (4.58)

Proof. Let Λ[1], . . . ,Λ[m] be independent random variables such that the vector of

their distributions
(
L
(
Λ[1]
)
, . . . ,L

(
Λ[m]

))
is the unique fixed-point as in Lemma 4.8.

Set Λ[m+1] := Λ[1] and note that for the random variable within the real part in (4.58)

with Lemma 4.9, we have

ei(µ log(n)+2π j−1
m )Λ = niµωj−1Λ

d
= niµΛ[j]. (4.59)

The fixed-point property of Λ[j] implies

<
(
niµΛ[j]

)
d
= <

(
niµUωΛ[j]

)
+ <

(
niµ (1− U)ω Λ[j+1]

)
(4.60)

for all j = 1, . . . ,m and n ≥ 0. Note that here and in the following we silently

identify m+ 1 and 1.

Now, we assume that for all n ≥ 1, allX
[j]
n and Λ[j] for 1 ≤ j ≤ m, In, and U appearing

in (4.54) and (4.55) are defined on one probability space such that
(
X

[j]
n ,<

(
niµΛ[j]

))
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are optimal `2-couplings for all n ≥ 0 and all 1 ≤ j ≤ m and such that In = bnUc.
Then we have

∆j(n) := `2

(
X [j]
n ,<

(
niµΛ[j]

))
= `2

((
In
n

)λ
X

[j]
In

+

(
Jn
n

)λ
X

[j+1]
Jn
− 1

mnλ
, <
(
niµUωΛ[j]

)
+<
(
niµ(1− U)ωΛ[j+1]

))

≤

∥∥∥∥∥
{(

In
n

)λ
X

[j]
In
−<

(
Iωn
nλ

Λ[j]

)}
+

{(
Jn
n

)λ
X

[j+1]
Jn

−<
(
Jωn
nλ

Λ[j+1]

)}∥∥∥∥∥
2

+

∥∥∥∥<(IωnnλΛ[j]

)
−<

(
niµUωΛ[j]

)∥∥∥∥
2

+

∥∥∥∥<(Jωnnλ Λ[j+1]

)
−<

(
niµUωΛ[j+1]

)∥∥∥∥
2

+
1

mnλ

=:S1 + S2 + S3 +
1

mnλ
. (4.61)

First note that the summands S2 and S3 tend to zero: We have (In/n)ω → Uω

almost surely by In = bnUc. Since Λ[j] and Λ[j+1] have finite second moments, we

can apply dominated convergence to obtain S2, S3 → 0 as n→∞.

For the estimate of the first summand S1, we abbreviate

W [j]
n :=

(
In
n

)λ
X

[j]
In
−<

(
Iωn
nλ

Λ[j]

)
,

W [j+1]
n :=

(
Jn
n

)λ
X

[j+1]
Jn

−<
(
Jωn
nλ

Λ[j+1]

)
.

Then we have

S2
1 = E

[(
W [j]
n

)2]
+ E

[(
W [j+1]
n

)2]
+ 2E

[
W [j]
n W [j+1]

n

]
. (4.62)
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Conditioning on In and using that
(
X

[j]
k ,<(kiµΛ[j])

)
are optimal `2-couplings, we

obtain

E
[(
W [j]
n

)2]
=

n−1∑
k=0

1

n
E

{(k
n

)λ
X

[j]
k −<

(
kλkiµ

nλ
Λ[j]

)}2


=
n−1∑
k=0

1

n

(
k

n

)2λ
E
[{
X

[j]
k −<

(
kiµΛ[j]

)}2
]

=

n−1∑
k=0

1

n

(
k

n

)2λ
∆2
j (k)

= E

[(
In
n

)2λ
∆2
j (In)

]
.

Analogously, we have

E
[(
W [j+1]
n

)2]
= E

[(
Jn
n

)2λ
∆2
j+1(Jn)

]
.

To bound the mixed term in (4.62), note that by expansion (4.52) and normalization

(4.54) we have E
[
X

[j]
n

]
= <

(
κjn

iµ
)

+ rj(n), with rj(n) → 0 as n → ∞ for all

j = 1, . . . ,m. In particular, we have ‖rj‖∞ <∞. Together with E
[
Λ[j]
]

= κj , this

implies E
[
W

[j]
n

]
= E

[
(In/n)λ rj(In)

]
and

E
[
W [j]
n W [j+1]

n

]
= E

[(
In
n

Jn
n

)λ
rj(In) rj+1(Jn)

]
. (4.63)

To show that the latter term tends to zero, let ε > 0. Then there exists k0 ∈ N
such that rj(k) < ε and rj+1(k) < ε for all k ≥ k0. For all n > 2k0, we obtain, by

considering the event
{
k0 ≤ In ≤ n− 1− k0

}
and its complement,

E
[
W [j]
n W [j+1]

n

]
≤ 2k0

n
‖rj‖∞ ‖rj+1‖∞ + ε2.

Hence, we obtain that the mixed term (4.63) tends to zero.
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Altogether, we obtain from (4.61), as n→∞, that

∆j(n) ≤

{
E

[(
In
n

)2λ
∆2
j (In)

]
+ E

[(
Jn
n

)2λ
∆2
j+1(Jn)

]
+ o(1)

}1/2

+ o(1)

≤

{
2E

[(
In
n

)2λ
∆2(In)

]
+ o(1)

}1/2

+ o(1) ,

for all j = 1, . . . ,m, where

∆(n) := max
1≤j≤m

∆j(n) .

Hence, we have

∆(n) ≤

{
2E

[(
In
n

)2λ
∆2(In)

]
+ o(1)

}1/2

+ o(1) . (4.64)

Now, we can obtain ∆(n)→ 0 in the same way as in the proof of Theorem 4.1: First,

from (4.64), we obtain with In/n→ U almost surely that

∆(n) ≤

{
2E

[(
In
n

)2λ]
max

0≤k≤n−1
∆2(k) + o(1)

}1/2

+ o(1)

≤
{(

2

1 + 2λ
+ o(1)

)
max

0≤k≤n−1
∆2(k) + o(1)

}1/2
+ o(1) .

Since λ > 1/2, this implies that the sequence (∆(n))n≥0 is bounded. We denote

η := supn≥0 ∆(n) and ξ := lim supn→∞∆(n). For any ε > 0, there exists an n0 ≥ 0

such that ∆(n) ≤ ξ + ε for all n ≥ n0. Hence, from (4.64) we obtain

∆(n) ≤

{
2E

[
1{In<n0}

(
In
n

)2λ]
η2 + 2E

[
1{In≥n0}

(
In
n

)2λ]
(ξ + ε)2+o(1)

}1/2

+ o(1) .

With n→∞, this implies

ξ ≤
√

2

1 + 2λ
(ξ + ε).

Since
√

2/(1 + 2λ) < 1 and ε > 0 is arbitrary, this implies ξ = 0.



5 Two-dimensional recursion

Our first approach to showing convergence for the urn models was to state a recurrence

relation for a vector (instead of the system of equations used in the last chapters)

and try to use the general convergence theorems in Neininger [25] and Neininger and

Rüschendorf [26]. In this chapter, we will discuss the problems we encountered when

trying to use this approach for the example of the urn with random replacements

described in section 4.2. We also state an extension of the above theorem which

enables us to prove convergence for this example. We achieve this by changing the

norm on Rd, replacing the Euclidean norm by a p-norm for appropriate p ∈ [1,∞].

Neininger and Rüschendorf [27] discusses applications of the multidimensional ap-

proach and, amongst other things, pros and cons of using `2 or Zolotarev metric

ζ2 for the non-normal limit cases. Our extension of their general limit theorem,

especially when using the supremum norm, removes both major disadvantages of the

ζ2-variant: we can weaken the condition on the expectation of the operator norm of

the coefficients even below what is needed for `2 convergence and at the same time,

the new condition is often even easier to check, as for any nonnegative matrix, the

operator norm with respect to the supremum norm is just the maximum of the row

sums of the matrix.

In section 5.1, we will first describe the two-dimensional model for the example of

section 4.2. We will then give an account of the result of Neininger and Rüschendorf

[26, Thm 4.1] and show that its direct application in this case does not ensure

convergence for all relevant values of α and β. In section 5.3, we show that using

a p-Norm (p ∈ [1,∞]) on Rd as underlying norm for the definition of the Zolotarev

metric allows us to extend the scope of the theorem. In section 5.4, we use this result

to show convergence in the non-normal case and give an outline of the proof for the

other cases.

53
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5.1 Two-dimensional recursive equation

In the following, we will work with bivariate recurrences for the random vector

Bn :=
(
Bb
n, B

w
n

)t
. Note that in the previous discussion the random variable Bb

n and

Bw
n did not need to be defined on a common probability space. Hence, first of all,

only the marginals of
(
Bb
n, B

w
n

)
are determined by the urn process and we have the

choice of a joint distribution for
(
Bb
n, B

w
n

)
respecting these marginals. We could keep

the components independent or choose appropriate couplings. We choose a version

with a coupling defined recursively by B0 := (1, 0)t and, for n ≥ 1,

Bn
d

:=

(
1 0

0 1

)
BIn +

(
Fα 1− Fα

1− Fβ Fβ

)
B′Jn (5.1)

where (Bk)0≤k<n , (B
′
k)0≤k<n , (Fα, Fβ), and In are independent and Bn

d
= B′n for

all n ≥ 0. As in section 4.2, In is uniformly distributed on {0, . . . , n − 1} and

Jn := n−1−In, while Fα and Fβ are Bernoulli random variables being 1 with prob-

abilities α and β respectively, otherwise 0. Note that for any joint distribution of

(Fα, Fβ), definition (5.1) leads to a sequence (Bn)n≥1 with correct marginals L
(
Bb
n

)
and L(Bw

n ). A particular joint distribution will be chosen later.

5.2 Multivariate convergence theorem and application

For random vectors satisfying multivariate recurrences as the one stated above,

Neininger [25] and Neininger and Rüschendorf [26] state general transfer theorems of

the form that appropriate convergence of the coefficients (after scaling) together with

some technical requirements implies weak convergence of the random vector to a limit

distribution which can be characterized as the unique solution of a distributional

fixed-point equation. We will discuss here the problems we encountered when trying

to apply the transfer theorem of Neininger and Rüschendorf [26, Thm 4.1] to the

example of the urn with random replacements described in section 4.2. For this we

first give an account of the general setting and assertion of the theorem, restricted

to the cases relevant here. We then investigate the requirements of the theorem for

the mentioned example.
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5.2.1 Spaces of distributions and metrics

To work in the multidimensional setting we first have to specify the space of dis-

tributions we are working in. This is similar to section 3.1, but we now directly

consider (multidimensional) probability distributions on Rd and corresponding subsets

thereof.

Spaces. Instead of the cartesian product
(
MR)×d, which we used in the first

chapters, we now work in MRd
, the space of all probability distributions on Rd with

the Borel σ-field, and its subspaces

MRd

s :=
{
L(X) ∈MRd ∣∣ E[‖X‖s] <∞}, s > 0, (5.2)

MRd

s (µ) :=
{
L(X) ∈MRd

s

∣∣ E[X] = µ
}
, s ≥ 1, µ ∈ Rd, (5.3)

MRd

s (µ,C) :=
{
L(X) ∈MRd

s (µ)
∣∣ Cov(X) = C

}
, s ≥ 2, µ ∈ Rd, (5.4)

where C is a symmetric positive semidefinite d× d matrix.

Zolotarev metric. On MRd
, the Zolotarev metric can be defined similar to (3.4).

We first define the version of the Zolotarev metric ζs used by Neininger and Rüschen-

dorf [26],

ζs(X,Y ) := ζs
(
L(X),L(Y )

)
:= sup

f∈Fs

∣∣E[f(X)− f(Y )]
∣∣ , (5.5)

where s = m+ α with 0 < α ≤ 1, m ∈ N0 and

Fs :=

{
f ∈ Cm

(
Rd,R

) ∣∣∣ ∀ x, y ∈ Rd :
∥∥∥f (m)(x)− f (m)(y)

∥∥∥
op
≤ ‖x− y‖α

}
. (5.6)

The properties of ζs cited in section 3.1 also hold for the multidimensional setting,

including (s,+)-ideality of ζs, completeness of the corresponding spaces and the

implication of weak convergence on Rd, see Neininger and Rüschendorf [26] and

Drmota et al. [10, Theorem 5.1].



56 5 Two-dimensional recursion

5.2.2 General Transfer Theorem

Neininger and Rüschendorf [26, Thm 4.1] gives a general limit theorem for random

vectors satisfying certain recurrence relations. Their theorem states requirements on

the coefficients of the recurrence relation and implies weak convergence. For simplicity,

we give a restriction of the theorem to the cases relevant here (two-dimensional, two

summands, and no toll term).

Let therefore (Yn)n≥0 be a sequence of two-dimensional random vectors satisfying

the recurrence

Yn
d
= A1(n)YIn +A2(n)Y ′Jn , n ≥ n0, (5.7)

where
(
A2(n) , A2(n) , I(n)

)
, (Yn) and (Y ′n) are independent, A1(n) and A2(n) are

random 2×2 matrices, (In, Jn) is a vector of random cardinalities In, Jn ∈ {0, . . . , n}
and (Y ′n) is identically distributed as (Yn). Furthermore n0 ≥ 1, and in the case

2 < s ≤ 3, we assume that Cov(Yn) is positive definite for n ≥ n1 ≥ n0.

We have to control the moments of order up to s, so we normalize Yn by setting

Xn := C−1/2n (Yn −Mn) , n ≥ 0, (5.8)

where Mn := E[Yn]. In the case 1 < s ≤ 2, Cn is a positive definite square matrix,

whereas in the case 2 < s ≤ 3, we set

Cn :=

Id2 0 ≤ n < n1,

Cov(Yn) n ≥ n1.

The normalized quantities (Xn) then satisfy the modified recurrence

Xn
d
= A

(n)
1 XIn +A

(n)
2 X ′Jn + b′(n) , n ≥ n1, (5.9)

with

A
(n)
1 := C−1/2n A1(n)C

1/2
In

A
(n)
2 := C−1/2n A2(n)C

1/2
Jn

b′(n) := C−1/2n (A1(n)MIn +A2(n)MJn −Mn) .
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Theorem 5.1 (Neininger and Rüschendorf [26, Thm 4.1]). Let Xn be given as in

(5.8) and be s-integrable, 1 < s ≤ 3. We assume that(
A

(n)
1 , A

(n)
2 , b′(n)

)
`s→ (A1, A2, b) , (5.10)

E
[
‖A1‖sop

]
+ E

[
‖A2‖sop

]
< 1, (5.11)

E
[
1{In<l}∪{In=n}

]
+ E

[
1{Jn<l}∪{Jn=n}

]
→ 0 (5.12)

for all l ∈ N. Then Xn converges weakly to a limit X with distribution characterized

by the fixed-point equation

X
d
= A1X +A2X

′ + b′, (5.13)

where (A1, A2, b
′), X, and X ′ are independent and X ′ is distributed as X. In the

case 1 < s ≤ 2, the distribution L(X) is given as the unique solution of this equation

in MRd

s (0), whereas in the case 2 < s ≤ 3, the fixed-point is unique in MRd

s (0, Id2).

5.2.3 Application

The approach described in the last section can now be used for the example of the

urn with random replacements of section 4.2. We will see that the requirements on

the coefficients, especially condition (5.11), are too restrictive and only satisfied for

a fraction of the possible values of α and β. For the normal limit case, a further

disadvantage of this approach, when compared to the method used in the preceding

chapters, is that one needs the covariance of the random vector. We will not discuss

how to get this, but merely investigate the consequences of a reasonable assumption.

The non-normal limit case. Assume that λ := α+β− 1 > 1/2 and denote by µ(n)

the vector consisting of the expectations µb(n) and µw(n), as defined in (4.33) and

given explicitely in Lemma 4.3. For n→∞, this implies that

µ(n) = c′n+ d′nλ + o
(
nλ
)
,

with constants as in (4.36),

c′ =

(
c′b
c′w

)
=

1− β
1− λ

(
1

1

)
, d′ =

(
d′b
d′w

)
=

1

(1− λ) Γ(λ+ 1)

(
1− α
β − 1

)
. (5.14)
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We use the normalization X0 := (0, 0)t and

Xn :=
1

nλ
(
Bn − µ(n)

)
, n ≥ 1. (5.15)

From recursion (5.1), we obtain for the normalized quantity, and n ≥ 1, the recursive

equation

Xn
d
=

(
In
n

)λ
XIn +

(
Jn
n

)λ( Fα 1− Fα
1− Fβ Fβ

)
X ′Jn + b′(n) , (5.16)

where

b′(n) =

((
In
n

)λ
− 1

)
d′ +

(
Jn
n

)λ( Fα 1− Fα
1− Fβ Fβ

)
d′ + o(1)

with conditions on independence and identical distributions analogous to (5.1). This

suggests for the limit X of Xn the fixed-point equation

X
d
= UλX + (1− U)λ

(
Fα 1− Fα

1− Fβ Fβ

)
X ′ + b′, (5.17)

with

b′ =
(
Uλ − 1

)
d′ + (1− U)λ

(
Fα 1− Fα

1− Fβ Fβ

)
d′, (5.18)

where X, X ′, U , and (Fα, Fβ) are independent and X
d
= X ′.

When investigating the requirements of Theorem 5.1 with s = 2, conditions (5.10)

and (5.12) are clearly satisfied in our case. For condition (5.11), we have to check

that

ξ2 := E
[
U2λ

]
+ E

[
(1− U)2λ

]
E

∥∥∥∥∥
(

Fα 1− Fα
1− Fβ Fβ

)∥∥∥∥∥
2

op

 < 1. (5.19)

The replacement matrix has a quite simple form which enables us to easily determine

the operator norm, getting for any s > 0:

E

∥∥∥∥∥
(

Fα 1− Fα
1− Fβ Fβ

)∥∥∥∥∥
s

op

 = E
[
(1 + |Fα − Fβ|)s/2

]
(5.20)
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We minimize this by choosing an appropriate joint distribution of Fα and Fβ : Let V

be uniformly distributed on the unit interval, independent of everything else, and set

Fα = 1{V≤α} and Fβ = 1{V≤β}. Then for any s > 0,

E
[
(1 + |Fα − Fβ|)s/2

]
= 1 + |α− β|

(
2s/2 − 1

)
, (5.21)

so condition (5.19) is satisfied for s = 2 if

ξ2 =
2 + |α− β|

2λ+ 1
< 1, (5.22)

which, for λ > 1/2, is always true if α = β but does not hold for all possible values

of α and β with α+ β − 1 > 1/2. In figure 5.1, the values for which this condition is

satisfied are marked grey. Note that the condition in the `2-variant of the theorem

(cf. Neininger [25, Thm 4.1]), although weaker in general, leads to exactly the same

condition for this example.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

α

β α+β < 3/2

ξ2 <1

ξ2 >1

ξ2 >1

Figure 5.1: Valid combinations of α and β for which condition (5.11) of the multivariate

limit theorem of Neininger and Rüschendorf [26, Thm 4.1] (or the corresponding

condition in Neininger [25, Thm 4.1]) is satisfied for s = 2
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Remark. One idea to get convergence for the remaining combinations of α and β

might be to increase s. As in the normal limit case below, this would require to find

the covariance matrix of Bn. Furthermore, even for s = 3, condition (5.11) requires

ξ3 =
2 + |α− β|

(
23/2 − 1

)
3λ+ 1

< 1, (5.23)

which is in fact a weaker condition than (5.22), but again is not satisfied for all

possible combinations of α and β, as indicated in figure 5.2.
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α+β < 3/2

ξ3 <1
ξ3 >1

ξ3 >1

Figure 5.2: Valid combinations of α and β for which condition (5.11) of the multivariate

limit theorem of Neininger and Rüschendorf [26, Thm 4.1] is satisfied for s = 3
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The normal limit case. We only outline the case λ := α + β − 1 < 1/2. The

expansions in Lemma 4.3 imply, for n→∞, that

µ(n) = c′n+ o
(√
n
)
,

with a constant c′ derived from (4.36)

c′ =

(
c′b
c′w

)
=

1− β
1− λ

(
1

1

)
. (5.24)

Analogously to the normal limit cases in the examples in chapter 4, we have to work

with the Zolotarev metric with index s > 2 on MR2

s (µ,C). This requires finding the

covariance matrix of Bn, which also depends on the joint distribution of Fα and Fβ .

Note that in chapter 4 we only needed the variance of the components.

We will not give an expression for the covariance here but only assume that a linear

expression can be found at least for the case with joint distribution of Fα and Fβ

as used in the non-normal limit case above. More precisely, we will assume that a

symmetric, positive definite 2× 2 matrix f ′ can be found, such that asymptotically

Cov(Bn) = f ′n+ o(n) . (5.25)

This implies that Cov(Bn) is positive definite for all n ≥ n1 for appropriate n1. We

now define

Cn :=

Id2 0 ≤ n < n1

Cov(Bn) n ≥ n1
(5.26)

and use this for the normalization. We set X0 := (0, 0)t and for n ≥ 1

Xn := C−1/2n (Bn − µ) . (5.27)

According to (5.9), we get for the scaled quantity a recursive equation of the form

Xn
d
= A

(n)
1 XIn +A

(n)
2 X ′Jn + b′(n) , n ≥ n1, (5.28)

where

A
(n)
1 =

(
In
n

)1/2
+ g1(n)

A
(n)
2 =

(
Jn
n

)1/2 (
f ′
)−1/2( Fα 1− Fα

1− Fβ Fβ

)(
f ′
)1/2

+ g2(n) .
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The matrix f ′ is symmetric and positive definite and therefore can be diagonalized,

i.e. there is an orthogonal matrix S and a positive definite diagonal matrix D such

that f ′ = SDSt. For powers of f ′, we have (f ′)α = SDαSt, where Dα is just the

power α applied to each diagonal element of D. Substituting this in the expression

for A
(n)
2 and using that for any square matrix A multiplication by a diagonal matrix

is commutative, DA = AD, we get the recursive equation

Xn
d
=

(
In
n

)1/2

XIn +

(
Jn
n

)1/2
(

Fα 1− Fα
1− Fβ Fβ

)
X ′Jn + e′(n) , (5.29)

with conditions on independence and identical distributions analogous to (5.1).

Similarly to section 4.2, e′(n) vanishes in the limit. This suggests for the limit X of

Xn the fixed-point equation

X
d
=
√
UX +

√
1− U

(
Fα 1− Fα

1− Fβ Fβ

)
X ′, (5.30)

where X, X ′, U , and (Fα, Fβ) are independent and X ′ is distributed as X.

To show convergence using Theorem 5.1, this time using s = 3, it remains to check

that

ξ := E
[
U3/2

]
+ E

[
(1− U)3/2

]
E

∥∥∥∥∥
(

Fα 1− Fα
1− Fβ Fβ

)∥∥∥∥∥
3

op

 < 1. (5.31)

With joint distribution of Fα and Fβ as in the non-normal case and using (5.20) and

(5.21) for s = 3, we get for ξ the expression

ξ =
2

5

(
2 + |α− β|

(
23/2 − 1

))
. (5.32)

This implies that, similar to the non-normal limit case, the condition is satisfied only

for a fraction of the possible combinations of α and β satisfying α + β ≤ 3/2. In

figure 5.3, the respective combinations are marked grey.

5.3 Extension of the convergence theorem

The Zolotarev metric, as proposed by Zolotarev [37, 38], can be defined for distribu-

tions not only on Euclidean space but more generally on Banach spaces. It turns out

that endowing Rd with a p-norm for p ∈ [1,∞] allows us to extend Theorem 5.1 in

such a way that it covers our example of an urn with random replacement.
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Figure 5.3: Valid combinations of α and β for which condition (5.11) of the multivariate

limit theorem of Neininger and Rüschendorf [26, Thm 4.1] is satisfied for s = 3

Zolotarev metric. We first define our version of the Zolotarev metric which is used

subsequently. For p ∈ [1,∞] and x = (x1 . . . , xd) ∈ Rd the p-norm is denoted by

‖x‖p :=

( d∑
j=1

|xj |p
)1/p

, 1 ≤ p <∞, and

‖x‖∞ := max
1≤j≤d

|xj |

We use the concept of m times (Fréchet-)differentiable functions from Rd to R:

Definition 5.2 (Fréchet-differentiability). Let (V, ‖·‖V ) and (W, ‖·‖W ) be Banach

spaces and U ⊂ V an open subset of V . A function f : U → W is called Fréchet-

differentiable in x ∈ U , if there exists a bounded linear operator Ax : V →W such

that

lim
h→0

‖f(x+ h)− f(h)−Ax(h)‖W
‖h‖V

= 0.
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Further, f is called differentiable in U , if it is differentiable in every x ∈ U .

In general, this definition depends on the norms used on the Banach spaces. However,

the p-norms on Rd are equivalent: for any p, q ∈ [1,∞] there exist constants cp,q > 0

such that

‖x‖p ≤ cp,q ‖x‖q for all x ∈ Rd. (5.33)

So if a function f : Rd → R is Fréchet-differentiable with respect to some p-norm

or some other norm on Rd, this is true for any p ≥ 1 and any other norm and the

resulting derivatives are equal. Therefore the space Cm
(
Rd,R

)
of all real-valued

functions on Rd which are m times continuously differentiable is well defined and

does not depend on our choice of p.

The mth derivative of f is a function from Rd into the space L
((
Rd
)m

,R
)

of

multilinear mappings
(
Rd
)m → R. So Hölder-continuity of order α with Hölder-

constant 1 of the mth derivative translates into the condition∥∥∥f (m)(x)− f (m)(y)
∥∥∥
op(p)

≤ ‖x− y‖αp (5.34)

for all x, y ∈ Rd, where ‖·‖op(p) denotes the operator norm with respect to the p-norm,

defined for any multilinear mapping L ∈ L
((
Rd
)m

,R
)

by

‖L‖op(p) := sup
‖h1‖p,...,‖hm‖p≤1

|L(h1, . . . , hm)| .

Therefore, we now define the family of test functions Fs,p, depending on p ∈ [1,∞],

as

Fs,p :=

{
f ∈ Cm

(
Rd,R

) ∣∣∣ ∀x, y ∈ Rd :
∥∥∥f (m)(x)− f (m)(y)

∥∥∥
op(p)
≤ ‖x− y‖αp

}
.

Using this, we can define the Zolotarev metric ζs,p as before, using Fs,p as family of

test functions:

ζs,p(X,Y ) := ζs,p
(
L(X),L(Y )

)
:= sup

f∈Fs,p

∣∣E[f(X)− f(Y )]
∣∣ , (5.35)

where s = m+ α with 0 < α ≤ 1, m ∈ N0 and p ∈ [1,∞].

It follows from general results on Zolotarev metrics on Banach spaces, see [37, 38],

that for any p ∈ [1,∞] and for 0 < s ≤ 1, we have that ζs,p(X,Y ) < ∞ for
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all L(X) ,L(Y ) ∈ MRd

s and
(
MRd

s , ζs,p
)

is a metric space. For 1 < s ≤ 2, we

have that ζs,p(X,Y ) < ∞ for all L(X) ,L(Y ) ∈ MRd

s (µ) and any µ ∈ Rd and that(
MRd

s (µ) , ζs,p
)

is a metric space. Finally, for 2 < s ≤ 3, we have that ζs,p(X,Y ) <∞
for any L(X) ,L(Y ) ∈MRd

s (µ,C) for any µ ∈ Rd and symmetric, positive semidefinite

matrix C and also that
(
MRd

s (µ,C) , ζs,p
)

is a metric space.

We have the following estimates between the metrics ζs,p for different p:

Lemma 5.3. Let ζs,p be defined as in (5.35) and p, q ∈ [1,∞]. Then for constants

cp,q with (5.33) we have

ζs,p ≤ csp,qζs,q.

Proof. For the operator norm of any multilinear mapping L we get, using constants

with (5.33),

‖L‖op(q) = sup
‖h1‖q ,...,‖hm‖q≤1

∣∣L(h1, . . . , hm)
∣∣

= sup
‖cp,qh1‖q ,...,‖cp,qhm‖q≤1

∣∣L(cp,qh1, . . . , cp,qhm)
∣∣

= cmp,q sup
cp,q‖h1‖q ,...,cp,q‖hm‖q≤1

∣∣L(h1, . . . , hm)
∣∣

≤ cmp,q sup
‖h1‖p,...,‖hm‖p≤1

∣∣L(h1, . . . , hm)
∣∣

= cmp,q ‖L‖op(p) .

For any function f ∈ Fs,p we can conclude that for any q ≥ 1

∥∥∥f (m)(x)− f (m)(y)
∥∥∥
op(q)

≤ cmp,q
∥∥∥f (m)(x)− f (m)(y)

∥∥∥
op(p)

≤ cmp,q ‖x− y‖
α
p

≤ cmp,q · cαp,q ‖x− y‖
α
q

= csp,q ‖x− y‖
α
q .
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This implies in particular for any f ∈ Fs,p that c−sp,qf ∈ Fs,q, or vice versa that if

csp,qf ∈ Fs,p then f ∈ Fs,q. Using this relation, we get for any Rd-valued random

variables X and Y , that

ζs,p(X,Y ) = sup
f∈Fs,p

∣∣E[f(X)− f(Y )]
∣∣

= sup
csp,qg∈Fs,p

∣∣∣E[csp,qg(X)− csp,qg(Y )
]∣∣∣

= csp,q · sup
csp,qg∈Fs,p

∣∣E[g(X)− g(Y )]
∣∣

≤ csp,q · sup
g∈Fs,q

∣∣E[g(X)− g(Y )]
∣∣

= csp,q ζs,q(X,Y ) .

The properties of ζs cited in section 3.1 also hold for ζs,p for any p ∈ [1,∞]. In

particular, the corresponding spaces are complete and convergence with respect to

ζs,p implies weak convergence on Rd, see also [10, Theorem 5.1].

Careful inspection of the proof of the multivariate limit theorem of Neininger and

Rüschendorf [26, Thm 4.1] shows that the theorem still holds for ζs,p using the

operator norm with respect to the p-norm.

Theorem 5.4. Theorem 5.1 also holds when condition (5.11) is replaced by

E
[
‖A1‖sop(p)

]
+ E

[
‖A2‖sop(p)

]
< 1, (5.36)

for any p ∈ [1,∞].

Remark. Using the supremum norm (p =∞) significantly simplifies the computa-

tion for condition (5.36). The operator norm with respect to the supremum norm

is just the maximum of the absolute row sums of the matrix, i.e. the sums of the

absolute values of the entries in each row.
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5.4 Convergence

Using theorem 5.4 we can now prove weak convergence for the non-normal limit case.

In the normal limit case, condition (5.36) is also satisfied. However, to finish the

proof an expression for the covariance matrix of Bn would be needed.

The non-normal limit case. Recall that λ := α+β−1 > 1/2. Starting as in section

5.2.3, we use the normalization (5.15) to get the recursive equation (5.16) which in

turn suggest for the limit X the fixed-point equation

X
d
= UλX + (1− U)λ

(
Fα 1− Fα

1− Fβ Fβ

)
X ′ + b′, (5.37)

with

b′ =
(
Uλ − 1

)
d′ + (1− U)λ

(
Fα 1− Fα

1− Fβ Fβ

)
d′ (5.38)

where X, X ′, U , and (Fα, Fβ) are independent and X
d
= X ′.

To use theorem 5.4 with s = 2 it remains to check that

E
[
U2λ

]
+ E

[
(1− U)2λ

]
E

∥∥∥∥∥
(

Fα 1− Fα
1− Fβ Fβ

)∥∥∥∥∥
2

op(p)

 < 1. (5.39)

Using the operator norm with respect to the p-norm, we can replace (5.20) for s > 0

by

E

∥∥∥∥∥
(

Fα 1− Fα
1− Fβ Fβ

)∥∥∥∥∥
s

op(p)

 =

E
[
(1 + |Fα − Fβ|)s/p

]
1 ≤ p <∞

1 p =∞,
(5.40)

so if we use the supremum norm on Rd, (5.39) is clearly satisfied. At the same time,

we could couple Fα and Fβ as before, and get for any s > 0,

E
[
(1 + |Fα − Fβ|)s/p

]
= 1 + |α− β|

(
2s/p − 1

)
. (5.41)

Using this, condition (5.39) is satisfied if

2 + |α− β|
(
22/p − 1

)
2λ+ 1

< 1, (5.42)
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which, for λ > 1/2, is always true if α = β and otherwise can be ensured by

choosing

p >
2 log 2

log
(

1 + 2λ−1
|α−β|

)
which is always possible as long as λ > 1/2.

The normal limit case. We only sketch the case λ := α + β − 1 < 1/2. Starting

as in section 5.2, we use the normalization (5.27) leading to the recursive equation

(5.29) and suggesting for the limit X the fixed-point equation (5.30).

To show convergence using theorem 5.4, this time using s = 3, it remains to check

that

E
[
U s/2

]
+ E

[
(1− U)s/2

]
E

∥∥∥∥∥
(

Fα 1− Fα
1− Fβ Fβ

)∥∥∥∥∥
s

op(p)

 < 1. (5.43)

Using (5.40) it is easy to see that this is satisfied when using the supremum norm on

Rd. For 1 ≤ p <∞ this condition is satisfied for s = 3 if and only if

2

5

(
2 + |α− β|

(
23/p − 1

))
< 1, (5.44)

which can be ensured for any combination of α and β satisfying α + β ≤ 3/2 by

choosing p ≥ 6.

Comparing the results in this chapter with the approach in the first chapters using a

system of recurrence relations, the main disadvantage of this approach is that in the

normal limit case the covariance matrix of the random vector is needed. Furthermore,

when thinking of future applications of the approach, it is not clear if it is possible

to find a suitable p in all cases where it might be possible to prove convergence

using the approach using a system of recurrence equations. On the other hand, if

the conditions of Theorem 5.4 are satisfied, proving convergence is possible in a

straightforward way.
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Zusammenfassung

Pólya-Urnenmodelle haben vielfältige Einsatzmöglichkeiten und wurden, abhängig

von der jeweiligen Fragestellung, bereits mit verschiedensten Methoden untersucht.

So kann zum Beispiel die Entwicklung der Anzahl der Blätter in einem Binärsuch-

baum durch eine Urne modelliert und das asymptotische Verhalten aus allgemeineren

Resultaten über Urnenmodelle abgelesen werden. In dieser Arbeit wird der umge-

kehrte Weg beschritten und die Entwicklung der Urne mit der Entwicklung eines

geeigneten Baumes assoziiert, dessen rekursive Struktur dann zur Analyse genutzt

wird. Dieser Zugang bietet insbesondere den Vorteil, dass mit elementaren Mitteln

alle drei grundsätzlich verschiedenen Möglichkeiten für das Langzeitverhalten, die in

diesem Modell möglich sind, herausgearbeitet werden können.

Das hier untersuchte Urnenmodell besteht dabei aus einer Urne, die zu Beginn eine

Kugel enthält, die eine von m Farben hat. Die Urne entwickelt sich schrittweise,

indem jeweils eine Kugel rein zufällig aus der Urne gezogen wird. Abhängig von der

Farbe der gezogenen Kugel wird diese zusammen mit einer festen Anzahl K − 1 an

weiteren Kugeln, möglicherweise in verschiedenen Farben, zurückgelegt. Die Farben

der nachgelegten Kugeln werden durch eine Nachlegematrix beschrieben, in der die

Zeilen jeweils der Farbe der gezogenen Kugel entsprechen und die Spalten den Farben

der nachgelegten Kugeln. Die Einträge der Matrix können von einer zusätzlichen

Zufallsquelle abhängen, ihre Verteilung muss jedoch zu Beginn festgelegt werden. Die

Zeilensummen sind stets deterministisch gleich K − 1.

Die zugrundeliegende Idee für die Analyse ist nun, die Entwicklung der Urne durch

die Entwicklung eines vollständigen K-nären Baumes zu beschreiben und die dadurch

sichtbar werdende rekursive Struktur zu nutzen, um mit Hilfe der Kontraktions-

methode Aussagen über das Langzeitverhalten zu machen.

Im assoziierten Baum entspricht jedes Blatt einer Kugel in der Urne. Wird eine

Kugel aus der Urne gezogen, so wird das entsprechende Blatt im Baum zum inneren
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Knoten. Die inneren Knoten im Baum entsprechen nicht (mehr) bestimmten Kugeln

in der Urne, ihre Farbe ist jedoch für die Zerlegung noch wichtig. Für die zurück-

bzw. nachgelegten Kugeln werden K Blätter an diesen Knoten angefügt, deren Farbe

durch die Nachlegematrix bestimmt wird. Das folgende Bild zeigt die Enwicklung

einer Pólya-Urne mit zwei Farben, weiß und schwarz, und Nachlegematrix [ 1 2
2 1 ], sowie

den zugeordneten Baum. Die Pfeile zeigen jeweils an, welche Kugel gezogen wird.

1

1

1 2
3

4

1

1 2 3 4

1 2 4
35 6 7

1

1 2 3

5 6 3 7

4

1 2 4
35 6 7

8 9 A

1

1 2 3

5 6 3 7

8 9 7 A

4

Je nach Farbe der Startkugel gibt es verschiedene Typen dieser assoziierten Bäume.

Um eine rekursive Darstellung zu erhalten, zerlegt man den Baum an der Wurzel in

die K Teilbäume für die direkten Kinder. Bedingt auf die jeweilige Anzahl der Blätter

sind die Teilbäume unabhängige assoziierte Bäume der entsprechenden Größe, deren

Typ durch die Farbe der jeweiligen Wurzel festgelegt ist. Die Anzahl der Blätter in

den jeweiligen Teilbäumen kann durch eine Pólya-Urne modelliert werden, bei der die

Nachlegematrix gerade das (K−1)-fache der Einheitsmatrix ist. Für diese ist bekannt,

dass die Anteile der jeweiligen Farben fast sicher gegen einen Dirichlet-verteilten

Zufallsvektor konvergieren.

Für die Verteilungen der assoziierten Bäume kann nun ein System von Rekursions-

gleichungen aufgestellt werde. Wenn man dabei mehr als zwei Farben zulässt, bietet
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es sich an, diese mit Zahlen 1, . . . ,m zu bezeichnen. Die Nachlegematrix hat dann

die Form R = (aij)1≤i,j≤m mit

aij ∈

{
N0, for i 6= j,

N0 ∪ {−1}, for i = j,
und

m∑
j=1

aij =: K − 1 ≥ 1 for i = 1, . . . ,m.

Sei nun B
[j]
n die Anzahl der Blätter mit Farbe 1 nach n Schritten in einem Baum,

dessen Wurzel die Farbe j hat, und I(n) = (I
(n)
1 , . . . , I

(n)
K ) der Vektor der Anzahlen der

Blätter in den jeweiligen Teilbäumen. Um die Rekursionsgleichungen zu formulieren,

führen wir ferner die Intervalle

Jij :=



[
1 +

∑
k<i akj ,

∑
k≤i akj

]
∩ N0, for i < j,[

1 +
∑

k<i akj , 1 +
∑

k≤i akj

]
∩ N0, for i = j,[

2 +
∑

k<i akj , 1 +
∑

k≤i akj

]
∩ N0, for i > j,

ein, mit der Konvention, dass [x, y] = ∅ falls x > y. Damit ergibt sich für den

assoziierten Baum mit Wurzel in Farbe j die Rekursionsgleichung

B[j]
n

d
=

m∑
i=1

∑
r∈Jij

B
[i],(r)

I
(n)
r

, n ≥ 1, j ∈ {1, . . . ,m},

wobei für jedes j ∈ {1, . . . ,m} die Familie{(
B

[i],(r)
k

)
0≤k<n

∣∣∣ r ∈ Jij , i ∈ {1, . . . ,m}} ∪ {I(n)}
unabhängig ist, B

[i],(r)
k dieselbe Verteilung hat wie B

[i]
k für alle i ∈ {1, . . . ,m},

0 ≤ k < n und r ∈ Jij . Der Vektor I(n) ist dabei asymptotisch Dirichlet-verteilt.

Dieses Modell kann auch auf zufällige Nachlegematrizen erweitert werden, d.h. in

jedem Schritt werden die Einträge gemäß einer gegebenen Verteilung neu festgelegt.

Ein Beispiel hierfür wird in Abschnitt 4.2 diskutiert.

Abhängig von der Nachlegematrix können drei typische Fälle für das asymptotische

Verhalten auftreten, wobei wir nur solche Urnen untersuchen, für die die Anzahl der

schwarzen Kugeln asymptotisch linear wächst:
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(a) Die Erwartungswerte haben für n→∞ die Form

µ[j]n = cµn+ djn
λ + o(nλ), j = 1, . . . ,m,

mit einer Konstanten cµ > 0, die nicht von der Anfangsfarbe j abhängt und

reellwertigen Konstanten dj und einem Exponenten 1/2 < λ < 1. Die Varianzen

sind hier typischerweise von der Größenordnung n2λ und nach geeigneter

Skalierung bietet sich für den Grenzwert das System von Fixpunktgleichungen

X [j] d
=

m∑
i=1

∑
r∈Jij

Dλ
rX

[i],(r) + b[j], j = 1, . . . ,m (1)

an, wobei X [i],(r) und (D1, . . . , DK) unabhängig sind, X [i],(r) dieselbe Vertei-

lung wie X [i] hat, (D1, . . . , DK) Dirichlet-verteilt ist und die b[j] Funktionen

von (D1, . . . , DK) sind. Die Verteilungen der X [j] sind in diesem Fall keine

Normalverteilungen.

(b) Die Erwartungswerte haben für n→∞ die Form

µ[j]n = cµn+ o(
√
n), j = 1, . . . ,m,

mit einer Konstante cµ > 0, die nicht von der Startfarbe j abhängt. Die

Varianzen sind hier linear und nach geeigneter Skalierung bietet sich für den

Grenzwert das System von Fixpunktgleichungen

X [j] d
=

m∑
i=1

∑
r∈Jij

√
DrX

[i],(r), j = 1, . . . ,m (2)

an, mit Bedingungen wie bei (1). Unter geeigneten Annahmen an die Momente

hat dieses System eine eindeutige Lösung: alle X [j] sind standardnormalverteilt

(Satz 3.2). Dasselbe gilt für den Fall, dass

µ[j]n = cµn+ Θ(
√
n), j = 1, . . . ,m,

bei dem jedoch die Größenordnung der Varianzen n logδ(n) ist, mit δ > 0.

(c) Für Urnen mit mehr als zwei Farben ist es auch möglich, dass die Erwartungs-

werte für n→∞ die Form

µ[j]n = cµn+ <
(
κjn

iµ
)
nλ + o(nλ), j = 1, . . . ,m,
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haben, mit einer Konstante cµ > 0, die unabhängig von der Startfarbe ist,

einem Exponenten 1/2 < λ < 1 und Konstanten κj ∈ C und µ ∈ R. Obwohl die

Oszillation von Erwartungswert und Varianz typischerweise nicht durch geeig-

nete Skalierung beseitigt werden kann und dadurch eine Konvergenz gegen eine

feste Grenzverteilung verhindert wird, kann durch Übergang auf die Komplexe

Zahlenebene der Grenzwert durch das System von Fixpunktgleichungen

X [j] d
=

m∑
i=1

∑
r∈Jij

Dω
rX

[i],(r), j = 1, . . . ,m (3)

beschrieben werden, wobei wiederum die Bedingungen aus (1) gelten und zudem

ω := λ+ iµ. Unter geeigneten Annahmen an die Momente hat dieses System

eine eindeutige Lösung unter den Verteilungen auf C (Satz 3.3).

Um die Existenz und Eindeutigkeit der Lösungen zu zeigen, wird das d-fache kar-

tesische Produkt des Raumes der s-integrierbaren reellwertigen Zufallsvariablen

(mit der Borel’schen σ-Algebra) MR
s (bzw. entsprechend MC

s für komplexwertige

Zufallsvariablen) mit einer Produkt-Version der Zolotarevmetrik (ζ2 bzw. ζ3) oder

der minimalen L2-Metrik (`2) ausgestattet. Die Teilräume (mit fixiertem erstem bzw.

zweitem Moment) werden so gewählt, dass die Metrik endlich und der metrisierte

Raum vollständig ist und daher mit dem Banach’schen Fixpunktsatz geschlossen

werden kann.

Dieselben Metrischen Räume werden auch verwendet, um für drei Beispiele die

Konvergenz gegen die Grenzverteilung zu zeigen (Kapitel 4). Bei der Urne mit zwei

Farben treten nur die Fälle (a) und (b) auf. Dies gilt sowohl für das erste Beispiel mit

deterministischer Nachlegematrix, als auch für das zweite, bei dem die Nachlegematrix

zufällig ist. Im dritten Beispiel sind mehr als zwei Farben möglich und auch Fall (c)

kann eintreten. Die Beweise sind möglichst allgemein gehalten, so dass sie auch auf

andere Beispiele übertragen werden können.

Im letzten Kapitel wird noch eine etwas andere Herangehensweise untersucht, die

näher an bisherigen Anwendungen der Kontraktionsmethode liegt. Dazu wird an-

stelle eines Systems von Rekursionsgleichungen nur eine einzige Rekursion für einen

mehrdimensionalen Zufallsvektor formuliert. Für solche mehrdimensionalen Rekur-

sionsgleichungen gibt es einen Satz von Neininger and Rüschendorf [26, Thm. 4.1],

der Bedingungen an die Koeffizienten aufstellt und dann Existenz und Eindeutigkeit

des Grenzwertes und (schwache) Konvergenz liefert.
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Eine direkte Anwendung dieses Satzes auf das zweite Beispiel scheitert daran, dass

die Voraussetzungen des Satzes nicht für jede zulässige Kombination der Parameter

erfüllt sind. Durch eine Veränderung der zugrundeliegenden Metrik lässt sich jedoch

zeigen, dass der Satz dennoch auf diesen Fall angewendet werden kann. Allerdings

bleiben die Voraussetzungen stärker, als für die in den ersten Kapiteln beschriebene

Herangehensweise. Insbesondere muss im Fall (b) nicht nur die Varianz der einzelnen

Zufallsvariablen, sondern die Kovarianzmatrix kontrolliert werden, was in Anwen-

dungen ein deutliches Hindernis darstellen kann. Andererseits ist die vorgestellte

Erweiterung des Konvergenzsatzes von Neininger und Rüschendorf auch für andere

Anwendungen interessant, da die veränderten Bedingungen an die Koeffizienten nicht

nur schwächer, sondern im Allgemeinen auch einfacher nachzuweisen sind.
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