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Financial Network Systemic Risk Contributions ∗

Nikolaus Hautsch Julia Schaumburg Melanie Schienle

Abstract

We propose the realized systemic risk beta as a measure for financial companies’
contribution to systemic risk given network interdependence between firms’ tail risk
exposures. Conditional on statistically pre-identified network spillover effects and
market as well as balance sheet information, we define the realized systemic risk
beta as the total time-varying marginal effect of a firm’s Value-at-risk (VaR) on the
system’s VaR. Statistical inference reveals a multitude of relevant risk spillover chan-
nels and determines companies’ systemic importance in the U.S. financial system.
Our approach can be used to monitor companies’ systemic importance allowing for
a transparent macroprudential supervision.

Keywords: Time-varying systemic risk contribution, systemic risk network, network
topology estimation, Value at Risk
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1. Introduction

The financial crisis 2007-2009 has shown that cross-sectional dependencies between as-

sets and credit exposures can cause risks of individual banks to cascade and build up to a

substantial threat for the stability of an entire financial system.1 Under certain economic

conditions, company-specific risk cannot be appropriately assessed in isolation without

accounting for potential risk spillover effects from other firms. In fact, it is not just its

size and idiosyncratic risk but also its interconnectedness with other firms which deter-

mines a company’s systemic relevance, i.e., its potential to significantly increase the risk

of failure of the entire system – which we denote as systemic risk.2 While there is a broad

consensus that any prudential regulatory policy should account for the consequences of

network interdependencies in the financial system, in practice, however, any attempt of

a transparent implementation must fail, as long as suitable empirical measures for firms’

individual risk, risk spillovers and systemic relevance are not available. In particular, it

is unclear how to quantify individual risk exposures and systemic risk contributions in an

appropriate but still parsimonious and empirically tractable way for a prevailing under-

lying network structure. Moreover, there is an apparent need for respective empirically

feasible measures which only rely on available data of publicly disclosed balance sheet

and market information but still account for the complexity of the financial system.

A general empirical assessment of systemic relevance cannot build on the vast theo-

retical literature of financial network models and financial contagion, since these results

typically require detailed information on intra-bank asset and liability exposures (see,

e.g., Allen and Gale, 2000, Freixas, Parigi, and Rochet, 2000, and Leitner, 2005). Such

data is generally not publicly disclosed and even supervision authorities can only collect

partial information on some sources of inter-bank linkages. Available empirical studies

linked to this literature can therefore only partially contribute to a full picture of compa-

1For a thorough description of the financial crisis, see, e.g., Brunnermeier (2009).
2Bernanke (2009) and Rajan (2009) stress the danger induced by institutions which are “too intercon-

nected to fail” or ”too systemic to fail” in contrast to the insufficient focus on firms which are simply “too
big too fail”.
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nies’ systemic relevance as they focus on particular parts of specific markets at a partic-

ular time under particular financial conditions (see, e.g., Upper and Worms, 2004, and

Furfine, 2003, for Germany and the U.S., respectively).3 Furthermore, assessing risk in-

terconnections on the basis of multivariate failure probability distributions has proven to

be statistically complicated without using restrictive assumptions driving the results (see,

e.g., Boss, Elsinger, Summer, and Thurner, 2004, or Zhou, 2009, and references therein).

Finally, for banking supervisors it is often unclear, how complex structures ultimately

translate into dynamic and predictable measures of systemic relevance.

The objective of this paper is to develop an easily and widely applicable measure of

a firm’s systemic relevance, explicitly accounting for the company’s interconnectedness

within the financial sector. We assess companies’ risk of financial distress on the ba-

sis of share price information which directly incorporates market perceptions of a firm’s

prospects, publicly accessible market data as well as balance sheet data. Our measure

quantifies the risk of distress of individual companies and the entire system according to

the tails of the corresponding asset return distributions, and is thus based on respective

extreme conditional quantiles. In this sense, it builds on the concept of conditional Value-

at-Risk (VaR), which is a popular and widely accepted measure for tail risk.4 For each

firm, we identify its so-called relevant (tail) risk drivers as the minimal set of macroe-

conomic fundamentals, firm-specific characteristics and risk spillovers from competitors

and other companies driving the company’s VaR. Detecting with whom and how strongly

any institution is connected allows us to construct a tail risk network of the financial sys-

tem. A company’s contribution to systemic risk is then defined as the induced total effect

of an increase in its individual tail risk on the VaR of the entire system, conditional on the

3See also Cocco, Gomes, and Martins (2009) for parts of the financial sector in Portugal, Elsinger,
Lehar, and Summer (2006) for Austria, and Degryse and Nguyen (2007) for Belgium. A rare exception is
the unique data set for India with full information on the intra-banking market studied in Iyer and Peydrió
(2011).

4Note that the VaR is a coherent risk measure in realistic market settings, i.e., in cases of return distri-
butions with tails decaying faster than those of the Cauchy distribution, see Garcia, Renault, and Tsafack
(2007). In principle, our methodology could also be adapted to other tail risk measures such as, e.g., ex-
pected shortfall. Such a setting, however, would involve additional estimation steps and complications,
probably inducing an overall loss of accuracy in results given the limited amount of available data.
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firm’s position within the financial network as well as overall market conditions. 5 Fur-

thermore, by assessing a company’s conditional VaR in dependence of respective tail risk

drivers, we obtain a reliable measure of a company’s idiosyncratic risk in the presence of

network spillovers.

The underlying statistical setting is a two-stage quantile regression approach: In the

first step, firm-specific VaRs are estimated as functions of firm characteristics, macroe-

conomic state variables as well as tail risk spillovers of other banks which are captured

by loss exceedances. Hereby, the major challenge is to shrink the high-dimensional set

of possible cross-linkages between all financial firms to a feasible number of relevant

risk connections. We address this issue statistically as a model selection problem in in-

dividual institution’s VaR specifications which we solve in a pre-step. In particular, we

make use of novel Least Absolute Shrinkage and Selection Operator (LASSO) techniques

(see Belloni and Chernozhukov, 2011) which allows us identifying the relevant tail risk

drivers for each company in a fully automatic way. The resulting identified risk intercon-

nections are best represented in terms of a network graph as illustrated in Figure 1 (and

discussed in more detail in the remainder of the paper) for the system of the 57 largest

U.S. financial companies. In the second step, for measuring a firm’s systemic impact, we

individually estimate the VaR of a value-weighted index of the financial sector as func-

tion of the firm’s estimated VaR while controlling for the pre-identified company-specific

risk drivers as well as macroeconomic state variables. We derive standard errors which

explicitly account for estimation errors resulting from the pre-estimation of regressors in

quantile relations. As the generally available sample sizes of balance sheet and macroe-

conomic information make the use of large-sample inference questionable, we provide

(non-standard) bootstrap methods to construct finite-sample-based parameter tests.

We determine a company as systemically relevant if the marginal effect of its individ-

ual VaR on the VaR of the system is detected as statistically significant. In analogy to an

5Note that we focus our analysis on dependencies of extreme tail risks to evaluate the systemic impact
of the riskiness of a specific firm. Though the presented econometric methodology is readily extendable
to also detect system tail risk consequences from non-extreme individual shocks by including individual
VaR’s around e.g. the 25% or even closer to the 50% level.
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Figure 1: Risk network of the U.S. financial system schematically highlighting key companies
in the system in 2000-2008. Details on all other firms in the system only appearing as unlabeled
shaded nodes will be provided later in the paper. Depositories are marked in red, broker dealers
in green, insurance companies in black, and others in blue. An arrow pointing from firm j to
firm i reflects an impact of extreme returns of j on the VaR of i (V aRi) which is identified as
being relevant employing statistical selection techniques presented in the remainder of the paper.
VaRs are measured in terms of 5%-quantiles of the return distribution. The effect of j on i is
measured in terms of the impact of an increase of the return Xj on V aRi given Xi is below its
10% quantile, i.e., i’s so-called loss exceedance. The size of the respective increase in V aRj given
a 1% increase of the loss exceedance of i is reflected by the thickness of the respective arrowhead
where we distinguish between three categories: thin arrowheads display an increase up to 0.4,
medium size of 0.4-0.8, and thick arrowheads of greater than 0.8. The thickness of the line of
the arrow is chosen along the same categories. If arrows point in both directions, the thickness of
the line corresponds to the bigger one of the two effects. The graph is constructed such that the
total length of all arrows in the system is minimized. Accordingly, more interconnected firms are
located in the center.

(inverted) asset pricing relationship in quantiles we call the measure systemic risk beta. It

corresponds to the system’s marginal risk exposure due to changes in the tail of a firm’s

loss distribution. For comparing the degree of systemic importance of companies across

the system, however, it is necessary to compute the induced total increase in systemic

risk. We therefore rank companies according to their ”realized” systemic risk beta corre-

sponding to the product of a company’s systemic risk beta and its VaR. The systemic risk

beta - and therefore also its realized version - is modeled as a function of firm-specific

characteristics, such as leverage, maturity mismatch and size. Accordingly, a firm’s tail
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risk effect on the system can vary with its economic conditions and/or its balance sheet

structure changing its marginal systemic importance even though its individual risk level

might be identical at different time points.
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Figure 2: Systemic importance of five exemplary firms in the U.S. financial system at two time
points before and at the height of the financial crisis, 2008. Systemic relevance is determined by
the statistical significance and positivity of ”systemic risk betas” quantifying the marginal increase
of the VaR of the system given an increase in a bank’s VaR while controlling for the bank’s (pre-
identified) risk drivers. All VaRs are computed at the 5% level and are by definition positive. We
depict the degree of systemic relevance by the size of respective “realized” versions of the systemic
risk beta corresponding to the product of a risk beta and the corresponding VaR representing
a company’s total effect on systemic risk. Connecting lines are added to graphically highlight
changes between the two time points but do not mark real evolutions. The size of the elements in
the graph reflects the size of the VaR of the respective company at each of the two time points.
We use the following scale: the element is k times the standard size with k = 1 for V aR ≤ 0.05,
k = 1.5 for V aR ∈ (0.05, 0.1], k = 2 for V aR ∈ (0.1, 0.15], k = 3 for V aR ∈ (0.2, 0.25]
and k = 5.5 for V aR ∈ (0.65, 0.7]. Attached numbers inside the figure mark the position of the
respective company in an overall ranking of the 57 largest U.S. financial companies for each of
the two time points.

Our empirical results reveal a high degree of tail risk interconnectedness among U.S. fi-

nancial institutions. In particular, we find that these network risk interconnection effects

are the dominant risk drivers in individual risk. The detected channels of potential risk

spillovers can to a large part be attributed to direct credit or liquidity exposures, but in

some cases especially for mutual effects, they might also result from common, e.g., sector

or business model specific factors, not covered by the fundamental firm specific controls

in the model. In any case, these links contain fundamental information for supervision

authorities but also for company risk managers. Based on the topology of the systemic
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risk network, we can categorize firms into three broad groups according to their type and

extent of connectedness with other companies: main risk transmitters, risk recipients and

companies which both receive and transmit tail risk. From a supervisory point of view,

the second group of pure risk recipients has the least systemic impact. Monitoring their

condition, however, might still convey important accumulated information on potentially

hidden problems in those companies which act as their risk drivers. In any case, the inter-

nal risk management of these companies should account for the possible threat induced

by the large degree of dependence on others. The highest attention of supervision au-

thorities should be attracted by firms which mainly appear as risk drivers or are highly

interconnected risk transmitters in the system. These are particularly firms in the center

of the network which appear as “too interconnected to fail”, but also large risk producers

at the boundary which are linked to only a few but heavily connected risk transmitters.

While the systemic risk network yields qualitative information on risk channels and

roles of companies within the financial system, estimates of systemic risk betas allow to

quantify the resulting individual systemic relevance and thus complement the full picture.

Ranking companies based on (realized) systemic risk betas shows that large depositories

are particularly risky. After controlling for all relevant network effects, they have the

overall strongest impact on systemic risk and should be regulated accordingly. Confirm-

ing general intuition, time evolutions of (realized) systemic risk betas indicate that most

companies’ systemic risk contribution sharply increases during the 2007/08 financial cri-

sis. These effects are particularly pronounced for firms, which indeed got into financial

distress during the crisis and are (ex post) identified as being clearly systemically risky by

our approach. Figure 2 exemplarily illustrates the evolutions of their marginal systemic

contributions – as reflected by systemic risk betas – as well as their exposure to idiosyn-

cratic tail risk – as quantified by their VaR. A detailed pre-crisis case study confirms the

validity of our methodology since firms such as, e.g., Lehman Brothers are ex-ante iden-

tified as being highly systemically relevant. It is well-known that their subsequent failure

has indeed had a huge impact on the stability of the entire financial system. Likewise, the

extensive bail-outs of American International Group (AIG), Freddie Mac and Fannie Mae
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can be justified given their high systemic risk betas and high interconnectedness by the

end of 2007.

The remainder of the paper is structured as follows. Section 2 describes the paper’s

link to related literature and presents the underlying data. In Section 3, we present the

model and estimation procedure for individual companies’ VaRs which are the basis for

determining the systemic tail-risk network structure. The realized systemic risk beta is

formally introduced in Section 4 and is identified for each firm in an individually tailored

parsimonious partial equilibrium setting. The section also contains the corresponding

estimation procedure and valid inference for a two-step quantile regression setting. Em-

pirical results are presented in form of systemic risk rankings. In Section 5, we robustify

and validate our model and results. In particular, in a case study using only pre-crisis data,

we illustrate that the realized systemic risk beta works well in predicting the distress and

systemic relevance of five large financial institutions that were affected by the financial

crisis. Section 6 concludes.

2. Literature and data

2.1. Relation to the recent empirical literature

Our paper relates to several strands of recent empirical literature on systemic risk con-

tributions. Building on VaR, Adrian and Brunnermeier (2011) were the first to model

systemic risk contributions based on balance sheet characteristics. Their systemic impact

measure, ∆CoV aR, builds on deviations of a firm’s CoVaR from a respective median

benchmark. While CoVaR also aims at measuring the impact of a firm’s individual risk

on the system VaR, there are, however, substantial conceptional differences to our real-

ized systemic risk beta: The latter is the direct marginal effect of the individual VaR on

the VaR of the system, while for CoVaR, the respective marginal effect is determined

from the return and only evaluated at the VaR. As returns are in (1 − q)% of the time
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below its VaR(q)6, the corresponding estimated coefficient of marginal systemic impor-

tance of CoVaR is generally larger and tends to systematically overrate firms with lower

average returns for identical risk levels in contrast to the systemic risk beta. Furthermore,

CoVaR can by definition only vary over time through the channel of individual VaRs

which can, however, due to multicollinearity effects, solely be modeled as functions of

macroeconomic market variables. Consequently, changes in a firm’s systemic relevance

in CoVaR ultimately only result from variations in underlying macroeconomic indicators.

Thus, particularly variations in a firm’s leverage or maturity mismatch as well as in its

interdependence with other institutions have no direct effect. Instead, we account for net-

work interconnections in the individual VaR and in its effect on the system. In addition,

we identify network spillovers as crucial elements for measuring individual risk and for

unbiased estimation of systemic relevance. This is illustrated in a robustness study in

Subsection 3.3.1. Moreover, our realized systemic risk beta also captures variations in

firms’ marginal systemic importance driven by changes in firm-specific characteristics.

Our work also complements papers measuring a company’s systemic relevance in

terms of the size of potential bail-out costs, such as Acharya, Pedersen, Philippon, and

Richardson (2010), Brownlees and Engle (2012) and Acharya, Engle, and Richardson

(2012). Such approaches cannot detect spillover effects driven by the topology of the

risk network and might tend to under-estimate the systemic importance of very intercon-

nected companies. Moreover, while Brownlees and Engle (2012) study the situation of

an individual firm given distress of the system, we investigate the reverse relation and

measure the effect on the system given an individual firm is in financial trouble. Taking

complementary perspectives, both approaches measure different dimensions of systemic

risk. However, as our model is based on economic state variables and loss exceedances,

it by construction automatically adjusts and prevails in distress scenarios under shocks

in externalities. This is a clear advantage compared to pure time series approaches (cp.

e.g., White, Kim, and Manganelli, 2010, and Brownlees and Engle, 2010) and empirically

results in realized systemic risk betas indicating the raise in systemic relevance of some

6The VaR(q) is defined as the negative q-conditional return quantile.
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companies earlier than in competing settings. We illustrate these effects in the validity

case study in Section 5.2.

Furthermore, our work also complements and augments research of Billio, Getman-

sky, Lo, and Pelizzon (2012) who present a collection of different systemic risk measures.

These approaches mainly build on regressions in (conditional) means of returns. How-

ever, assessing and predicting systemic risk and firm-specific risk requires regression ap-

proaches in the (left) tails of asset return distributions, rather than in the center. Thus we

quantify extreme tail situations of financial distress, which is in clear contrast to a cor-

relation type analysis as in Billio, Getmansky, Lo, and Pelizzon (2012). Moreover, their

determination of causality and resulting network links is entirely based on pairwise re-

lations. This approach produces misleading results in a high-dimensional interconnected

system as it is impossible to identify whether one firm drives another or if they are both

driven by a third company. Instead, our approach yields consistent results for a mul-

tivariate tail-risk network, while satisfying the Granger-causality argument in quantiles

through optimal backtest performance in overall fit. Our results are also complementary

to network analysis focusing on volatility spillovers in vector autoregressive systems such

as in Diebold and Yilmaz (2012) and Diebold and Yilmaz (2013).

Finally, we complement macroeconomic approaches which have a more aggregated

view as, e.g., the literature on systemic risk indicators (e.g., Segoviano and Goodhart,

2009, Giesecke and Kim, 2011) or papers on early warning signals (e.g., Schwaab, Koop-

man, and Lucas, 2011, and Koopman, Lucas, and Schwaab, 2011).

2.2. Data

Our analysis focuses on publicly traded U.S. financial institutions. The list of included

companies in Table 1 (see Appendix B) comprises depositories, broker dealers, insurance

companies and Others.7 To assess a firm’s systemic relevance, we use publicly acces-

7Companies are classified into these groups according to their two-digit SIC codes, following the cate-
gorization in Adrian and Brunnermeier (2011), Appendix C.
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sible market and balance sheet data. In particular, the forward-looking nature and real-

time availability of equity market data serves well to provide an immediate, actionable

and transparent measure of systemic risk. The advantage of timeliness will even pre-

vail if new financial regulation might force institutions to reveal information on mutual

credit and liquidity linkages and leverage to supervisory authorities. At the moment, data

on connections between firms’ assets and obligations is largely proprietary and far from

comprehensive even for supervisors.

Daily equity prices are obtained from Datastream and are converted to weekly log

returns. To account for the general state of the economy, we use weekly observations

of seven lagged macroeconomic variables, M t−1, as suggested and used by Adrian and

Brunnermeier (2011) (abbreviations as used in the remainder of the paper are given in

brackets): the implied volatility index, VIX, as computed by the Chicago Board Options

Exchange (vix), a short term ”liquidity spread”, computed as the difference of the 3-

month collateral repo rate (available on Bloomberg) and the 3-month Treasury bill rate

from the Federal Reserve Bank of New York (repo), the change in the 3-month Treasury

bill rate (yield3m) and the change in the slope of the yield curve, corresponding to the

spread between the 10-year and 3-month Treasury bill rate (term). Moreover, we utilize

the change in the credit spread between BAA rated bonds and the Treasury bill rate (both

at 10 year maturity) (credit), the weekly equity market return from CRSP (marketret) and

the one-year cumulative real estate sector return, computed as the value-weighted average

of real estate companies available in the CRSP data base (housing).8

Moreover, to capture characteristics of individual institutions predicting a bank’s propen-

sity to become financially distressed, Ci
t−1, we follow Adrian and Brunnermeier (2011)

and use (i) leverage, calculated as the value of total assets divided by total equity (in book

values) (LEV), (ii) maturity mismatch, measuring short-term refinancing risk, calculated

as short term debt net of cash divided by the total liabilities (MMM), (iii) the market-to-

8We found that this set of aggregate financial market variables provides sufficient explanatory power
which cannot be augmented by additional controls such as, e.g., Fama-French type factors (see Subsection
3.3.1 for details).
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book value, defined as the ratio of the market value to the book value of total equity (BM),

(iv) market capitalization, defined by the logarithm of market valued total assets (SIZE)

and (v) the equity return volatility, computed from daily equity return data (VOL). The

system return is chosen as the return on the financial sector index provided by Datastream.

It is computed as the value-weighted average of prices of 190 U.S. financial institutions.9

As balance sheets are available only on a quarterly basis, we interpolate the quar-

terly data to a daily level using cubic splines, and then aggregate them back to calendar

weeks.10 We focus on 57 financial institutions existing through the period from beginning

of 2000 to end of 2008, resulting into 467 weekly observations on individual returns. This

excludes companies which defaulted during the financial crisis, but which are addressed

separately in a shorter sample case study. Thus in order to validate and robustify our ap-

proach, we re-estimate the model over a sub-period ending before the financial crisis and

including, among others, the investment banks Lehman Brothers and Merrill Lynch that

were massively affected by the crisis.

3. A tail risk network

3.1. Determining drivers of firm-specific tail risk

We measure the tail risk of a company with asset return X i
t at time t as its conditional

Value-at-Risk (VaR), V aRi
q,t, given a set of company-specific tail risk drivers W(i)

t

Pr(−X i
t ≥ V aRi

q,t|W
(i)
t ) = Pr(X i

t ≤ Qi
q,t|W

(i)
t ) = q (1)

9See Adrian and Brunnermeier (2011), Appendix C, who explicitly show that this induces no inherent
endogeneity in the model.

10For in-sample estimation this interpolation step captures changes in balance sheet characteristics in a
smoother way than the use of plain data. For forecasting purposes, however, interpolation is not possible.
See Hautsch, Schaumburg, and Schienle (2013) for details.
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with V aRi
q,t = V aRi

q,t(W
(i)
t ) = −Qi

q,t denoting the (negative) conditional q-quantile

of X i
t .

11 The relevant i-specific tail risk drivers are determined out of a large set of

potential regressors Wt containing lagged macroeconomic state variables Mt−1, lagged

firm-specific characteristics Ci
t−1, the i-specific lagged return X i

t−1, and influences of all

other companies apart from i, E−it = (Ej
t )j 6=i. We capture these intra-system influences

via contemporaneous loss exceedances, where the loss exceedance of a firm j is defined

as Ej
t = Xj

t 1(Xj
t ≤ Q̂j

0.1) and Q̂0.1 is the unconditional 10% sample quantile of Xj .

Hence, company j only affects the VaR of company i if the former is under pressure.

We model the conditional VaR of firm i at time point t = 1, . . . , T as a linear function

of the i-specific tail risk drivers W(i)
t ,

V aRi
q = W(i)′ξiq . (2)

This could be estimated from a corresponding linear model in the respective return quan-

tile

X i
t = −W(i)

t

′
ξiq + εit, with Qq(ε

i
t|W

(i)
t ) = 0 (3)

if we knew the i-relevant risk drivers W(i) selected out of W. Then, estimates ξ̂iq of ξiq

could be obtained according to standard linear quantile regression (Koenker and Bassett,

1978) by minimizing
1

T

T∑
t=1

ρq

(
X i
t + W(i)

t

′
ξiq

)
(4)

with loss function ρq(u) = u(q − I(u < 0)), where the indicator I(·) is 1 for u < 0 and

zero otherwise, and

V̂ aR
i

q,t = W(i)
t

′
ξ̂
i

q . (5)

However, the relevant risk drivers W(i) for firm i are unknown and must be determined

from W in advance. This model selection should not be imposed but should be data-

11Defining VaR as the negative p-quantile ensures that the Value-at-Risk is positive and is interpreted as
a loss position.
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driven. Appropriate econometric techniques are not straightforward in the given setting

as tests on the individual significance of single variables do not account for the (possibly

high) collinearity between the covariates. Moreover, sequences of joint significance tests

have too many possible variations to be easily checked in case of more than 60 variables.

We choose the relevant covariates in a data-driven way by employing a statistical shrink-

age technique known as the least absolute shrinkage and selection operator (LASSO).

LASSO methods are standard for high-dimensional conditional mean regression prob-

lems (see Tibshirani, 1996), and have recently been adapted to quantile regression by

Belloni and Chernozhukov (2011). Accordingly, we run an l1-penalized quantile regres-

sion and calculate for a fixed individual penalty parameter λi,

ξ̃
i

q = argminξi
1

T

T∑
t=1

ρq
(
X i
t + W′

tξ
i
)

+ λi
√
q(1− q)
T

K∑
k=1

σ̂k|ξik| , (6)

with the set of potentially relevant regressors Wt = (Wt,k)
K
k=1, which are demeaned,

componentwise variation σ̂2
k = 1

T

∑T
t=1(Wt,k)

2 and the loss function ρq as in (4). The

key idea is to select relevant regressors according to the absolute value of their respec-

tive estimated marginal effects (scaled by the regressor’s variation) in the penalized VaR

regression (6). Regressors are eliminated if their shrunken coefficients are sufficiently

close to zero. Here, all firms in W with absolute marginal effects |ξ̃
i
| below a thresh-

old τ = 0.0001 are excluded keeping only the K(i) remaining relevant regressors W(i).

Hence, LASSO de-selects those regressors contributing only little variation. Due to the

additional penalty term in (6), all coefficients ξ̃
i

q are generally downward biased in finite

samples. Therefore, we re-estimate the unrestricted model (4) only with the selected rele-

vant regressors W(i) yielding the final estimates ξ̂iq. This post-LASSO step produces finite

sample estimates of coefficients ξiq which are superior to the original LASSO estimates

or plain quantile regression results without penalization suffering from overidentification

problems (see the original paper by Belloni and Chernozhukov (2011) for the consistency

proof of the post LASSO step).
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The selection of relevant risk drivers via LASSO crucially depends on the choice of

the company-specific penalty parameter λi. The larger λi is chosen, the more regressors

are eliminated. Conversely, in case of λi = 0, we are back in the standard quantile

regression setting (4) without any de-selection. For each institution, we determine the

appropriate penalty level λi in a completely data-driven way such that it dominates a

respective measure of noise in the sample criterion function. In particular, we use the

supremum norm of a rescaled gradient of the sample criterion function evaluated at the

true parameter value as in Belloni and Chernozhukov (2011)12. In this sense, number

and elements of the set of relevant risk drivers are determined only from the data without

any restrictive pre-assumptions. For further details on the empirical procedure we refer to

Appendix A.2.

Evaluating the goodness of fit of conditional VaR model specifications should take into

account how well the model captures the specific percentile of the return distribution but

also how well the model predicts size and frequency of losses. The latter issue cannot

be captured, for instance, by quantile-based modifications of the conventional R2. We

therefore consider a VaR specification as inadequate if it either fails producing the correct

empirical level of VaR exceedances but also if the sequence of exceedances is not inde-

pendently and identically distributed over the considered time period. This ensures that

VaR violations today do not contain information about VaR violations in the future and

both occur according to the same distribution. The respective formal test uses a likelihood

ratio (LR) version of the dynamic quantile (DQ) test developed in Engle and Manganelli

(2004) and described in detail in Appendix A.3. Berkowitz, Christoffersen, and Pelletier

(2011) show that this likelihood ratio (LR) test has superior size and power properties

compared to competing conditional VaR backtesting methods which dominate plain un-

conditional level tests (as e.g. Kupiec (1995)).

We estimate VaR specifications with q = 0.05 for all companies employing the LASSO

selection procedure described above.13 Exemplary V aRi (post-)LASSO regression re-

12See Appendix A.2 Step 1 for the scaling and the exact formula.
13Due to the limited number of observations, we refrain from considering more extreme probabilities.
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sults for firms in the four industrial sectors depositories, insurances, brokers and others

are provided in Table 2. It turns out that the main relevant drivers of company-specific

VaRs are loss exceedances of other firms. In their presence, macroeconomic variables and

firm-specific characteristics often do not have any statistically significant influence and

are not selected by the LASSO procedure. In Table 2, only for Torchmark (TMK) and

Regions Financial (RF) regressors other than cross-firm links are selected. In contrast,

VaR specifications of Goldman Sachs (GS), Morgan Stanley (MS), JP Morgan (JPM) and

AIG exclusively contain loss exceedances from other firms. The general importance of

cross-firm effects as main drivers of individual tail risks is confirmed by joint significance

test of the individually selected loss exceedances E−it and by the superior VaR forecast

performance. Please see the robustness Subsection 3.3 for details.

With our procedure we statistically detect “relevant” directional risk connections in

the financial sector. Certainly, there might be several types of economic causes for a link

between two companies which can, however, empirically not be further identified from

publicly disclosed market data.14 By including firm-specific characteristics and macroe-

conomic state variables in our model, we do prevent, however, that determined risk con-

nections result from common economic conditions or common risk factors. Hence, we

rule out that tail dependencies are driven, for instance, by periods of high volatility, flatten-

ing of yield curves or falling overall credit quality. Accordingly, risk links are attributed

to remaining factors which are most likely direct or indirect credit or liquidity exposures

or, in some cases, business model commonalities or sector specific risk factors. In this

sense, connections between close competitors, such as Goldman Sachs and Morgan Stan-

ley and the influence of mortgage company Freddie Mac (FRE) on AIG both confirm

market evidence.
14Note that a valid empirical classification into different types of linkages would require comprehensive

data on direct and indirect credit and liquidity exposures of firms. Such information, however, is in large
part not publicly available.
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3.2. Network model and structure

We constitute a tail risk network of the system from individually selected loss exceedances

reflecting cross-firm dependencies.15 Taking all firms as nodes in such a network, there

is an influence of firm j on firm i, if Ej is LASSO-selected in (6) as a relevant risk

externality of firm i in V aRi
q. In particular, if Ej is part of W(i) as its k-th component,

then the corresponding coefficient ξiq,k in ξiq marks the risk impact of firm j on firm i in

the network. If Ej is not selected as relevant risk driver of firm i, there is no network

arrow from firm j to firm i.

As in the previous subsection, we use VaR specifications with q = 0.05. An overview

of the identified tail risk connections between all companies is provided in Table 3 re-

porting which company’s loss exceedance affects which others’ VaR and vice versa. We

observe that the number of risk connections substantially varies over the cross-section of

companies. While some firms such as, e.g. , Morgan Stanley, Bank of America (BAC),

American Express (AXP) as well as Bank of New York Mellon (BK), are strongly inter-

connected with many other companies, there are institutions, such as Fannie Mae (FNM),

AIG (AIG) and a couple of further insurances revealing significantly less cross-firm de-

pendencies. In order to effectively illustrate identified risk connections and directions, we

graphically depict the resulting network of companies in Figure 6. The layout and allo-

cation of the network is chosen such that the sum of cross-firm distances is minimized.

Consequently, the most connected firms are located in the center of the network while the

less involved companies are placed on its boundary.

The resulting network topology reveals different roles of companies within the finan-

cial network. We distinguish between three major categories: The first group contains

companies with only few incoming arrows but numerous outgoing ones and thus mainly

act as risk drivers within the system. These are institutions whose potential failure might

affect many others but, conversely, which are themselves relatively unaffected by the dis-

15In the Bayesian network literature, networks which build on direct one-step influences constitute a
so-called Markov blanket assumed to contain all relevant information for predicting the node’s role in the
network (see Friedman, Geiger, and Goldszmidt, 1997).
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tress of other firms. They should be the focus of close monitoring by supervisory authori-

ties as a failure of such a company might induce substantial systemic risk through multiple

channels into the financial network. Our results show that only few firms belong to this

category. Examples are State Street Corporation (STT), one of the top ten U.S. banks,

Leucadia National Corporation (LUK), a holding company which is, among others, en-

gaged in banking, lending and real estate, and SEI Investments Company (SEIC), a finan-

cial services firm providing products and service in asset and investment management.

Financial distress of these banks obviously has wide-spread consequences. For instance,

State Street influences the financial services companies American Express and Northern

Trust (NTRS), the Bank of New York Mellon and Morgan Stanley. Leucadia affects Cit-

igroup (C), one of the biggest banks in the U.S., and Freddie Mac, one of the two largest

U.S. mortgage companies. Finally, SEI Investments has links to various big institutions,

such as Bank of America, American Express, Morgan Stanley and the online broker TD

Ameritrade (AMTD).

The second group contains companies which mainly are risk takers within the system.

These companies are not necessarily systemically risky but might severely suffer from

distress of others and should account for such spillovers in their internal risk manage-

ment. According to Table 3 and Figure 6 these firms are primarily insurance companies.

Examples are Cincinnati Financial Corporation (CINF), a company for property and casu-

alty insurance, Humana Incorporation (HUM) managing health insurances or Progressive

Corporation Ohio (PGR) providing automobile insurance and other property-casualty in-

surances.

The third group is the largest category within the network. It consists of companies

which serve as both risk recipients and risk transmitters amplifying tail risk spillovers by

further disseminating risk into new channels. Due to their role as risk distributors, such

companies are key systemic players and should be supervised accordingly.

We further distinguish between strongly and less connected firms. The focus of super-

vision authorities should be on a close monitoring of the first subgroup. Examples are
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Goldman Sachs, Citigroup, Morgan Stanley, AON Corporation (AON), Bank of America,

American Express, Freddie Mac as well as the insurance company MBIA (MBI), among

others. Bank of America and Citigroup are among the five largest banks in the U.S. and

reveal strong connections to various other big institutions, such as Morgan Stanley, JP

Morgan, Goldman Sachs, American Express, Regions Financial and AIG. Details on the

specific role of Citigroup and Morgan Stanley within the system are highlighted in Figure

7. Morgan Stanley, with strong links to many companies, such as Goldman Sachs, Bank

of America, the savings bank Hudson City Bancorporation (HCBK), and the insurance

company AON, are examples for deeply connected firms located in the center of the net-

work. Likewise, Freddie Mac is strongly involved and was particularly affected by the

2008 credit crunch in the mortgage sector. Accordingly, also MBIA realized severe losses

during the financial crisis due to investments in mortgage backed securities.

The second subgroup might be technically easier to monitor with companies revealing

risk connections with only very few other firms. Still, a close and detailed supervision

is not less important than for the first subgroup. Examples are Fannie Mae and AIG.

Fannie Mae reveals significant bilateral risk connections to its main competitor Freddie

Mac. AIG holds significant positions in mortgage backed securities and as a consequence

is closely connected to both Fannie Mae and Freddie Mac. Probably due to the same

reason, we also observe bilateral tail risk dependencies between AIG and MBIA. Even

though their number of relevant risk connections within the network is limited, such firms

can still have a crucial overall impact on the system. In case of the 2008 financial crisis,

the dependence between Freddie Mac and Fannie Mae as well as their interaction with

AIG had severe systemic consequences.

Figure 8 indicates that it is not sufficient to focus on sector-specific subnetworks only.

Indeed interconnectedness of institutions occurs to a large proportion between industrial

sectors. In these circle layout network graphs, companies are grouped according to in-

dustries with risk outflows for each group being highlighted. We observe that tail risks

of depositories, insurances and others are relatively equally distributed among all other

industry groups. Depositories are most strongly connected and also reveal the strongest
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tail risk links among each other. This is in contrast to the other industries where cross-firm

connections within a group are less strong. Moreover, in contrast to other industry cate-

gories, the risk outflow of broker dealers is clearly more concentrated. They particularly

affect big banks such as Bank of America and Citigroup as well as financial service com-

panies such as American Express or SEI. Only very few direct connections to insurance

companies are revealed.

3.3. Robustness

3.3.1. Network model validity

Given our data set, it is sensible to base our tail-risk networks on VaR levels of q = 5%.

More extreme probabilities are theoretically feasible but require a larger amount of ob-

servations for sufficient statistical precision. We have also experimented with different

thresholds in the loss exceedances but found that for the present data, the 10% quantile

optimally balances the trade-off between requiring sufficient number of nonzero observa-

tions in E−it and a sufficient number of extreme losses.

The significance of network effects in the individual VaR specifications can be formally

tested via a joint significance test of the individually selected loss exceedances E−it in the

respective quantile regression (2). We have performed this analysis based on a quantile

regression version of the F -test for joint linear hypotheses developed by Koenker and

Bassett (1982). Our results show that the selected tail risk spillovers are highly significant

in all but very few cases. See Table 3 for an overview of all cross-effects. The detailed

test results are available upon request.

The importance of including other companies’ loss exceedances as potential risk drivers

for a company i is also illustrated by a simple comparison of the (in-sample) forecast per-

formance of our LASSO-selected VaR specifications to corresponding models for V aRi

only using macroeconomic variables as in Adrian and Brunnermeier (2011). According

to the employed backtests, specifications allowing for cross-firm dependencies reveal a
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Figure 3: Boxplots of backtesting p-values indicating the in-sample model fit (i.e., test-
ing the null hypothesis of formal statistical adequacy) of VaR specifications including
macroeconomic regressors only (left) and VaR specifications resulting from the LASSO
selection procedure (6) (right).

strong predictive ability and are significantly superior to more simplistic models including

macroeconomic regressors only (and ignoring network linkages). Figure 3 illustrates the

distributions of the backtesting p-values implied by both models. Hence, inter-company

linkages add crucial explanatory power in VaR specifications.

Network effects also remain important when altering the set of economic state vari-

ables M by typical equity risk premium factors. In particular, we re-estimated the model

including four lagged weekly asset pricing factors, including the three Fama-French fac-

tors and the momentum factor according to Carhart (1997).16 However, in the presence

of network exceedances, these factors have been de-selected in all cases by the LASSO

method and thus have had no additional relevance for our model specification. This indi-

cates that the tails of asset returns are driven by other sources than the equity risk premium

(associated with return’s conditional mean).

Our results show that the major information about cross-company dependencies in

tail risks is primarily contained in contemporaneous loss exceedances E−it . In contrast,

alternative VaR specifications utilizing contemporaneous returns X−jt or lagged loss ex-

ceedances E−it−1 imply significantly inferior backtest performances with the regressors be-

16The data are downloaded from the website of Kenneth French on
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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ing mostly not significant in joint F-tests.17 Moreover, linking VaR forecasts and thus

predictions of hypothetical losses to already realized loss exceedances allows measur-

ing mutual dependencies between companies without requiring a simultaneous system

of equations in conditional quantiles. In particular, observed bi-directional relationships

between conditional quantiles and realized loss exceedances of different firms (e.g., be-

tween Goldman Sachs and Morgan Stanley) do not reflect simultaneities as feedbacks are

not contemporaneous: For instance, a highly negative (realized) return of company j in-

creases the conditional loss quantile and therefore increases the VaR of firm i. However,

a higher conditional VaR of i does not necessarily directly increase the absolute realized

loss return of i but just makes it more likely. Avoiding an explicit treatment of simultane-

ities in quantiles while still addressing network dependencies is an important advantage

of our approach.18

3.3.2. Accuracy of the LASSO selection step

The firm-specific LASSO penalty parameter λi is a crucial parameter in our approach as it

determines the denseness of the risk network, and also influences the outcomes from the

second stage systemic risk measure in Section 4. It is chosen in a completely data-driven

procedure, such that a backtest criterion is optimized (see Sections 3.1 and A.2). To vali-

date this model selection step and to assess whether the procedure prevents overfitting, we

analyze the consequences of increasing the LASSO penalty parameter. Note that higher

values of λi lead to selections of smaller models. If our procedure had a tendency to overfit

the tails, the overall goodness of fit would increase for higher values of λi. This possi-

bility is checked by increasing all penalty parameters by 10% and 20%, and analyzing

two different measures of fit for the resulting models.19 Firstly, according to our backtest

17The corresponding results are available upon request and omitted here for sake of brevity.
18Econometrically it is an open question how to handle such a system in conditional quantiles in general.

In contrast to relations in (conditional) means, it is unclear how marginal q-quantiles constitute the respec-
tive quantile in the joint distribution under appropriate independence assumptions. Only in lags, restricted
to very small dimensions and under strong assumptions, solutions have been obtained via CaViAR type
structures (see White, Kim, and Manganelli (2010)).

19It turns out that increasing the penalties beyond 20% is not advisable as for a number of VaRs, no
regressors are selected anymore.
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criterion, the overall goodness of fit deteriorates substantially, which is demonstrated by

three boxplots and exemplary illustrations of individual p-values shown in Figure 12. It

turns out that for higher values of λi, the p-values decrease and thus the statistical support

for the null hypothesis of a good model fit declines. Likewise, joint significance tests do

not support the exclusion of additional regressors due to higher penalties. In particular, it

turns out that the additionally de-selected regressors are mostly significant (jointly with

the selected ones). This finding is further robustified by a second goodness of fit measure

corresponding to a Bayesian Information Criterion (BIC) for quantile models proposed

by Lee, Noh, and Park (2013). As shown by Figure 12, the BIC is increasing and thus

indicates a less favorable model if the penalty parameter is increased. These evaluations

support our choice of penalization and indicate that there is no evidence for a tendency of

overfitting the tails.

3.3.3. Network characteristics

Besides graphical illustration and inflow-outflow categorizations, standard network char-

acteristics can provide a more comprehensive picture of the interconnectedness and the

role of each network node in the system. In Figure 4, we depict firms’ pagerank co-

efficient (see Brin and Page (1998)) which does not plainly count links but empirically

weights their importance in an iterative scheme.20 Confirming the visual impression based

on Figure 6, the most connected firms are Lincoln National Corporation, AON, Bank of

America, TD Ameritrade and Morgan Stanley. The graph confirms our finding above that

depositories tend to be slightly stronger involved than other industry groups. Particularly

insurances reflect a separation into a group of highly connected firms, such as Lincoln

National Corp., AON and MBI, and a group of companies being less connected, such as

AIG, Humana Incorp. , Unum Group (UNM) and Cincinnati Financial Corp.

20The key idea is to assign a weight to each node (i.e., a company in our context) which is increasing
with the number of connections to others and the relative importance thereof. The more connected a firm
is, the higher its importance and thus the higher the importance of its neighbor. The computation of the
pagerank coefficient can be understood as an eigenvalue problem which can be solved iteratively. For more
details, see Berkhin (2005).
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Figure 4: The left figure displays pagerank coefficients based on the estimated tail risk network
computed as in Berkhin (2005) with ordering of institutions according to sectors. On the right,
pagerank coefficients are plotted versus realized systemic risk contributions measured as average
realized systemic risk betas (8) for all companies which are classified as systemically relevant
for the years 2000-2008 according to Subsection 4.3. The regression line shows only a small
correlation between the pagerank coefficent and the realized systemic risk beta, supported by the
respective R2 of 0.0265 of the regression. Colors and acronyms are as in Figure 1.

Note that pagerank coefficients such as other network metrics can only assess the local

impact and centrality of firms in the network containing relevant but not all information

for judging overall systemic relevance. Therefore, a risk network does not allow to fully

quantitatively assess the systemic relevance of a financial institution. Nevertheless, the

degree of firms’ interconnectedness and the specific topology of the network or corre-

sponding sub-networks allows identifying possible risk channels in the system. These

interlinkages are central but not comprehensive for macroprudential regulation reflecting

the particular role of a firm as risk recipient, transmitter or distributor of tail risk. To ex-

plicitly quantify a firm’s marginal systemic relevance, we propose the concept of systemic

risk betas presented in the following section.

4. Quantifying systemic risk contributions

4.1. Measuring and estimating systemic risk betas

Besides valuable information on financial network structures, the focus of supervision

authorities is on an accurate but parsimonious measure of an institution’s systemic impact.

We quantify the latter as the effect of a marginal change in the tail risk of firm i on the

24



tail risk of the system given the underlying network structure of the financial system. As

for firm’s tail risk in equation (1), system tail risk is measured as the respective Value-at-

Risk V aRs
p,t of the system return Xs

t conditional on V aRi
q,t and other controls. Then, we

define the systemic risk beta as the marginal effect of firm i’s tail risk on the system tail

risk given by
∂V aRs

p,t(V
(i)
t , V aR

i
q,t)

∂V aRi
q,t

= βs|ip,q, (7)

where V
(i)
t are firm-specific control variables.21 It can be interpreted in analogy to an in-

verse asset pricing relationship in quantiles, where bank i’s q-th return quantile drives the

p-th quantile of the system given network-specific effects and firm-specific and macroe-

conomic state variables. We classify the systemic relevance of institutions according to

their statistical significance of βs|ip,q at a given level and the size of their total effect

β̄s|ip,q := βs|ip,qV aR
i
t , (8)

which we denote as realized systemic risk contribution since it is computed based on

market realizations. In contrast to the marginal systemic risk beta, the realized version

captures the full partial effect of a tail risk increase of bank i on V aRs
t and is thus cross-

sectionally comparable across banks.

Focusing on an unbiased estimate of a firm’s marginal effect, we employ for each

company a tailored i-specific model for V aRs in (7) which allows correctly evaluating

the desired effect βs|ip,q. In particular, in each of this partial system VaR models, it is nec-

essary but sufficient to control for firms which are relevant i-specific risk drivers in the

network in V aRs. Conversely, variables unrelated to V aRi do not affect firm i’s systemic

risk contribution and can be omitted in a respective parsimonious model.22 In this way, we

circumvent involved theoretical specification issues and econometric feasibility and preci-

21Note that we only study the immediate effect of an exogenous risk shock in company i for the system.
We do not infer about further steps which should then also account for converse effects of increases of
system risk causing firm-specific risk to raise. This would require a further involved dynamic modeling
step which is beyond the scope of this analysis.

22See Angrist, Chernozhukov, and Fernández-Val (2006) for a simple Frisch-Waugh-type argument in
quantile regressions.
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sion problems of alternative comprehensive structural general equilibrium models. Even

if correctly specified, such complete models would suffer from the high dimensionality

and interconnectedness of the financial system in the presence of limited data availability.

See Section 5 for an empirical comparison.

Consequently, we estimate the firm-i-specific systemic risk beta βs|iq,p based on a linear

model for the system VaR of the form

V aRs
p,t = V(i)

t

′
γsp + βs|ip,qV aR

i
q,t, (9)

where the vector of regressors V(i)
t = (1,Mt−1,VaR(−i)

q,t ) includes a constant effect,

lagged macroeconomic state variables and the VaRs of all companies which are identi-

fied as risk drivers for firm i via LASSO in Section 3.

Systemic risk betas in (9) are moreover allowed to be explicitly time-varying, account-

ing for periods of turbulence where not only banks’ risk exposures change but also their

marginal importance for the system might vary. In particular, we model potential time-

variation of βs|i through a linear model in observable factors Zi which characterize a

bank’s propensity to get in financial distress. As a function of lagged characteristics, such

conditional systemic risk betas and thus corresponding systemic risk rankings are pre-

dictable which is important for forward-looking monitoring and supervision of the finan-

cial system. Furthermore, linearity of βs|ip,q,t in firm-specific distress indicators Zi
t−1 yields

stable main effects, given the quarterly reporting frequency of these factors. The quality

of generally available data limits the expected potential for improvements stemming from

other functional forms or nonparametric estimates which would in any case substantially

increase the statistical complexity and computational burden within the two-step model.

Thus we set

β
s|i
p,q,t = β

s|i
0,p,q + Zi

t−1

′
ηs|ip,q, (10)

where ηs|ip,q are the parameters driving the time-varying effects.
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The firm-specific time-varying systemic risk beta βs|ip,q,t can then be estimated from

the (second step) quantile model (9) for V aRs
p with time variation according to (10).

The respective quantile regression becomes operational when using post-LASSO pre-

estimates V̂ aR
i

t and V̂aR
(−i)
q,t from (6) in the respective components of V(i) for those

regressors not directly observed in the data.23 Hence,

Xs
t = −βs|i0,p,qV̂ aR

i

q,t − (V̂ aR
i

q,t · Zi
t−1)

′
ηs|ip,q − V̂(i)

′

tγ
s
p + εst , (11)

where Qp(ε
s
t |V̂ aR

i

q,t, V̂
(i)

t ,Z
i
t−1) = 0. Then, as in the first-step regressions in Section 3,

estimates of all components of βs|ip,q,t are obtained via quantile regression minimizing

1

T

T∑
t=1

ρp (Xs
t + V′tξ

s) (12)

in the unknown parameters ξs where Bt ≡ (V aRi
t, V aR

i
t · Zi

t−1,V
(i)
t ) is the compound

vector of all regressors in V aRs
p. This yields the resulting estimate of the full time-varying

marginal effect β̂s|ip,q in (10),

β̂
s|i
p,q,t = β̂

s|i
0,p,q + Zi

t−1

′
η̂p,q

s|i
, (13)

for given values Zi
t−1. Constant systemic risk betas can obviously be obtained as a special

case under the restriction ηs|ip,q = 0 in the estimation (12) yielding β̂s|ip,q,t = β̂
s|i
0,p,q = β̂

s|i
p,q.

The realized beta (8) is estimated as ̂̄βs|ip,q,t := β̂
s|i
p,q,tV̂ aR

i

t.

For valid inference, however, the fact that certain regressors are not observed but only

pre-estimated has crucial consequences. In particular, the quantile regression asymptotic

standard errors of usual software packages based on Koenker and Bassett (1978) are gen-

23Note that a direct one-step plug-in version of the proposed two-step estimation strategy is not feasible
and leads to an identification problem. Inserting the linear individual VaR (2) into the linear sytem VaR
model (9) yields a full model for the system’s tail risk in observable characteristics. But model selection
based on such a full model for V aRs in observables is infeasible since correlation effects among the huge
number of regressors would produce unreliable results. Furthermore, individual parameters βs|i

0,p,q and ηs|i
p,q

could not be identified without additional identification condition Qq(εit|W
(i)
t ) = 0, implicitly bringing

back the first-step estimation and model selection step.
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erally too small not accounting for the pre-step. In contrast to mean regressions, such

two-step results are non-standard in a quantile setting and are therefore provided in detail

in Appendix A.1. Up to our knowledge, they are new to the literature.

4.2. Determining systemic relevance

We determine systemic relevance and potential time variation thereof via formal statistical

significance tests. Though, respective quantile versions of asymptotic t- or F-tests are not

valid in finite samples and simple direct bootstrap adaptations yield incorrect results for

quantiles.24 Therefore, we propose to base a finite sample test for any linear hypothesis

H of β̂s|ip,q,t on the type of test statistic statistic given by

ST = min
ξs∈Ω

T∑
t=1

ρp(X
s
t + B′tξ

s)− min
ξs∈RKB

T∑
t=1

ρp(X
s
t + B′tξ

s), (14)

with regressors Bt and corresponding KB-parameter vector ξs as in the system VaR spec-

ification (12), and Ω referring to the constrained set of parameters of β̂s|ip,q,t under H . This

test is an adaptation to the quantile setting of a method proposed by Chen, Ying, Zhang,

and Zhao (2008) for median regressions. Direct operationalization of the test is com-

plicated by the fact that the asymptotic distribution of 14 involves unknown terms, and

by the non-smooth objective function of the quantile regression causing inconsistency of

conventional resampling techniques. Therefore, following Chen, Ying, Zhang, and Zhao

(2008), we provide an adjusted “wild-type” bootstrap method, which is described in detail

in Appendix A.4. We generally consider effects as being significant if p-values are below

10%.

We define a company as systemically relevant if an increase in its possible loss posi-

tion, given all economic state variables and i-specific risk inflows from other companies,

24Generally, asymptotic distributions often only provide a poor approximation to the true distribution of
the (scaled) difference between the estimator and the true value if sample sizes are not sufficiently large.
In case of quantile regressions, this effect is even more pronounced, since valid estimates for the asymp-
totic variance have poor non-parametric rates and thus require even larger sample sizes to obtain the same
precision.
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induces a significantly higher potential systemic loss. This requires its systemic risk beta

to be significant and nonnegative.25 The potentially time-varying degree of systemic rel-

evance is then measured according to the size of its realized beta at the respective point

in time. We can thus determine if a company is systemically relevant by testing for the

significance of the respective systemic risk beta, which is the joint significance of all

components of βs|it . Thus, we test the hypothesis

H1 : β
s|i
0 = η

s|i
MMM = η

s|i
SIZE = η

s|i
LEV = η

s|i
BM = η

s|i
V OL = 0.

Whether marginal effects on the system are indeed time-varying in firm-specific char-

acteristics can be tested by the joint hypothesis

H2 : η
s|i
MMM = η

s|i
SIZE = η

s|i
LEV = η

s|i
BM = η

s|i
V OL = 0.

If H2 is not rejected, we re-specify the systemic risk beta as being constant (βs|it = βs|i),

re-estimate the model without interaction variables and test the hypothesis H3 : βs|i = 0.

4.3. Empirical results and robustness of systemic risk betas and risk

rankings

We estimate potentially time-varying systemic risk betas according to (12). As in the first-

step estimations, we choose q = 0.05, i.e., we model the loss which will not be exceeded

with 95% probability. For notational convenience, we suppress the quantile index as

we set p = q. As potential drivers of time-variation in systemic risk betas, we take

all firm-specific tail risk drivers, i.e., Zi
t = Ci

t, since size, leverage, maturity mismatch,

book-to-market ratio and volatility might not only affect a bank’s VaR, but also directly
25Since we do not impose a priori non-negativity restrictions, systemic risk betas can become negative at

certain points in time. In a few cases we can directly attribute these effects to sudden time variations in one
of the (interpolated) company-specific characteristics Zi

t−1 driving systemic risk betas temporarily into the
negative region. These effects might be reduced by linking βs|i in (10) to (local) time averages of Zi

t−1.
This stabilizes systemic risk betas but at the cost of a potentially high loss of information. We see this as an
alternative approach which, however, is not pursued in the given context.
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determine its marginal systemic effect. As a consequence, systemic risk contributions

of two companies with the same exposure to macroeconomic risk factors and financial

network spillovers may still differ due to their balance sheet structures.26

We find that the majority of firms have a significant systemic risk beta, which is clas-

sified as being time-varying in approximately 50% of all cases. In contrast, for approx-

imately 25% of all firms, we do not find systemic risk betas which are significantly dif-

ferent from zero. Table 4 reports the p-values of the respective underlying tests which

are performed using the wild bootstrap procedure illustrated in Appendix A.4 based on

2, 000 resamples of the test statistic.27 Table 5 lists all systemically relevant companies

for the period from 2000 to 2008, ranked according to their average realized systemic risk

contributions ˆ̄βs|i. The top positions of the systemically most risky companies are taken

by JP Morgan, American Express, Bank of America and Citigroup. According to our

network analysis above, these firms are also categorized into the group of risk amplifiers

which are strongly interconnected and should thus be closely monitored.

Obtained realized systemic risk betas, however, contain information on systemic rel-

evance beyond a company’s network interconnectedness. This is illustrated in Figure 4

revealing only slightly positive dependencies between pagerank coefficients and realized

systemic risk betas. Thus, more connected firms tend to be systemically more risky, see

e.g. , Bank of America and American Express. With an R2 of 2% in the regression, the

relationship, however, is not very strong indicating that the quantification of a firm’s inter-

connectedness is not sufficient to assess its systemic relevance which directly depends on

firm-specific and macroeconomic conditions. The latter is captured by realized systemic

risk contributions but not necessarily by pagerank coefficients.

26Note that we keep the set of regressors M parsimonious as described in Section 2.2. According to
Subsection 3.3.1) the increase in explanatory power stemming from additional factors such as, e.g., Fama-
French/Carhart factors is low in the presence of network effects and thus can be neglected.

27Because of multi-collinearity of time variation effects in firm characteristics for systemic risk betas,
the interpretation of individual coefficients η might be misleading. Therefore, we refrain from reporting
respective estimates.
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As a first rough validity benchmark of our assessment, we compare our results with the

outcomes of the Supervisory Capital Assessment Program (SCAP) conducted by the Fed-

eral Reserve in spring 2009, right after the end of our sample period. While we only rely

on publicly available market data, the Fed could instead draw on extensive non-public

confidential balance sheet information revealing credit- and other risk interconnection

channels among the the 19 largest U.S. bank holding companies.28 The financial insti-

tution with the biggest potential lack of capital buffer according to the SCAP, Bank of

America, ranks among our highest systemically relevant companies leading the ranking

in June 2008 (Table 6 b). In addition, we identify six out of eight banks contained in

our database which, according to the SCAP results, were threatened by financial distress

under more adverse market conditions.29 As we could in advance detect systemic risk-

iness of the majority of companies that were later found to face capital shortages in the

stress test scenario of the SCAP, this suggests that our method could also generally help

supervisory agencies to respectively target the collection of detailed data beyond publicly

available information within the entire banking system. For a more detailed validity study

of the realized systemic risk beta, see the section below. We particularly refer to Subsec-

tion 5.2 presenting a pre-crisis case study which also provides direct comparisons to other

empirical systemic risk contribution measures. Moreover, statistical robustness checks of

an adapted realized systemic risk beta in a forecasting setting are provided in Hautsch,

Schaumburg, and Schienle (2013).

While average systemic risk betas deliver a rough aggregated picture of systemic im-

portance, the evolution of realized systemic risk betas over time provides additional com-

pany and sector date-specific information on systemic relevance which also incorporates

28For details on SCAP, see Federal Reserve System (2009). The Fed’s measure for systemic relevance
uses the proprietary information of risk interconnections within the system in order to determine requested
individual capital buffers under different market scenarios. We relate the grouped results of the two network
based measures along the following line of reasoning: As in Huang, Zhou, and Zhu (2010), companies with
the highest detected systemic relevance in 2000-2008 should carry the highest share of hypothetical loss
insurance premia and should thus also be found to face the highest requested increase in individual capital
buffers in 2009.

29We detect Citigroup, FifthThird Bancorp, Morgan Stanley, PNC, Regions Financial and Wells Fargo as
systemically relevant. Due to a lack of data, we cannot include KeyCorp and GMAC in our analysis which
also have been found to be financially distressed in a critical macroeconomic environment.
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market feedback. We focus on respective systemic risk rankings at two specifically illus-

trative time points: Table 6a gives the systemic risk ranking for the last week in March

2007, which was a relatively ”calm” time before the start of the financial crisis. Table 6b,

on the other hand, shows the ranking at the end of June 2008, shortly before the collapse

of Lehman Brothers. Comparing the pre-crisis and crisis rankings, we observe that gener-

ally systemic risk betas and thus the magnitude of systemic risk contributions significantly

increased during the crisis. This is particularly pronounced for American Express, Bank

of America, JP Morgan, Regions Financial and State Street. Exceptions are Citigroup and

Morgan Stanley.

During the crisis, we detect Bank of America (BAC) as systemically most relevant.

Among all systemically relevant companies, it is also the most interconnected firm accord-

ing to the pagerank coefficient in Figure 4 mutually influencing and influenced by other

companies in the center of the network as Morgan Stanley, American Express, Citigroup

and Wells Fargo (see Table 3 and Figure 6). Figure 9 shows that BAC’s systemic risk beta

has been relatively stable before the financial crisis but significantly dropped after the is-

suance of the Federal Reserve’s rescue packages. Its realized systemic risk contribution,

however, strongly increased during the crisis driven by the individual VaR channel which

is determined entirely by corresponding network exceedances.30 In this sense, the high

systemic relevance of BAC can mainly be attributed to network effects. This is in contrast

to AIG, where the systemic realized beta after its (anticipated) government-bailout from

the beginning of 2008 is governed by a strong decline in its marginal systemic risk con-

tribution (see Figure 9). Here, network effects entering through the increasing individual

VaR, play a secondary role during this crisis period. We find that market data seem to

incorporate bail-out information into the systemic risk beta well in advance to the actual

government intervention in fall 2008.31 In particular, the measured systemic relevance of

AIG already rapidly declines from the beginning of 2008 on to the point where AIG is

30The detailed BAC results for the post-LASSO coefficients in Table 2 are omitted for the sake of brevity
but are available on request.

31For details on the USD 150 billion rescue packages from the Federal Reserve, see Schich (2009).
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no longer systemically important by the end of 2008. Thus both systemic risk beta and

realized beta tend appear being forward-looking.

By construction, realized systemic risk contributions β̄s|it might vary over time through

two channels: a time-varying beta, βs|it and a time-varying Value-at-Risk, V aRi
t. For se-

lected companies, these effects are schematically depicted before and within the crisis in

Figure 2 in the introduction. As for BAC, in many cases shown in Table 6, we observe

increases of realized systemic risk contributions which are mainly due to rising individ-

ual VaRs, while companies’ marginal contribution to the system VaR remain widely un-

changed (see, e.g., American Express). In most of these cases, the strong increase in VaR

is mainly attributed to tail risk spillovers in the network (see also Table 2).

In several cases, increasing individual VaRs coincide with rising systemic risk betas.

The most pronounced effect can be observed for Wells Fargo which was not even identi-

fied as systemically relevant in 2007 but faces a dramatic increase of both its systemic risk

beta and its idiosyncratic tail risk making it highly systemically risky in 2008. Other ex-

amples include State Street, Progressive Ohio and Marshall & Isley. Here, direct sources

for increasing systemic relevance can only be partially found in the network structure (see,

e.g., State Street which does not face significant risk spillovers from other companies but

a high systemic relevance). For two central nodes in the network, Citigroup and Morgan

Stanley, however, declining systemic risk betas overcompensate increasing VaRs result-

ing in an overall declining systemic relevance. Similarly to AIG, for these firms, network

effects play a minor (direct) role.

The above results illustrate that realized systemic risk contributions conveniently con-

dense information on banks’ systemic importance. Though, the underlying driving forces

of a bank’s variation in systemic relevance can be quite different. Therefore, only si-

multaneously analyzing and monitoring (i) network effects, (ii) sensitivity to micro- and

macroeconomic conditions, and (iii) time-variations in systemic risk betas, provides the

full picture of companies’ specific role in the network and thus builds a solid basis for

supervision authorities.

33



5. Model validation

5.1. A simplistic benchmark

Our measure for systemic relevance requires for each firm a two-step quantile regression

with an initial LASSO selection step. Hence, instead of a global comprehensive model

for the system VaR, it builds on a collection of tailored partial models which vary for each

company to ensure a consistent estimation of individual marginal effects (i.e., systemic

risk betas). In this subsection, we illustrate the advantages of our methodology in com-

parison with a direct one-step estimation of a single global model for the system VaR. In

the competing approach, we model the system VaR as a function of all companies’ loss

exceedances and the set of macroeconomic state variables. 32 Companies are classified

as systemically relevant if they are selected as relevant risk drivers for the system VaR.

We compare the two techniques along the sets of companies determined as systemically

relevant.

In the benchmark case, the system VaR is thus modeled as

V aRs
p,t = αs1 + E(s)

t

′
αs2 + M(s)

t−1

′
αs3, (15)

where E(s)
t and M(s)

t−1 are the relevant companies among all 57 possible loss exceedances

and the relevant macro-economic indicators, respectively. Positive values of the unkonwn

quantile-specific coefficients (αs1,α
s
2
′,αs3

′)′ indicate the degree of systemic relevance of

each firm. Note that the use of the (standard) LASSO selection mechanism according to

Section 3.1 for the benchmark model would result in an unfair comparison as it would

only use oneglobal penalty for all coefficients and all companies. Conversely, our two-

step procedure implicitly assigns firm-specific LASSO penalties. We therefore use an

32Note that LASSO selection in a global system VaR model based on all institutions’ pre-estimated VaRs
would lead to largely imprecise results due to the vast amounts of pre-estimated regressors and inherent
multicollinearity effects. We therefore do not include individual (pre-estimated) VaRs but loss exceedances.
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adaptive version of the automatic LASSO procedure in (15) which uses regressor-specific

weights in the penalty.33

Figure 11 summarizes how the group of systemically relevant companies identified

by the simplistic benchmark estimation34 compares to the one determined by our firm-

specific two-step approach reported in Table 5. First, there is a considerable overlap of

companies which are systemically relevant according to both methods comprising mostly

large depositories and insurance companies (group 1). In particular, 17 out of 21 loss ex-

ceedances selected by the LASSO in specification (15) also belong to companies whose

VaRs also have a systemically relevant effect in our network approach. The four firms

which are identified as being relevant only in the benchmark case (group 2) correspond

to relatively small companies which appear being “overweighted” by the simplistic ap-

proach. The fact that they have been selected may indeed point towards a spurious effect

due to co-movements with others. For example, corresponding to our network results,

Eaton Vance’s (EV) VaR is driven by 12 loss exceedances (see Table 3), but our signif-

icance test identifies it as not systemically relevant (see equation (9)). Similar findings

hold for ETFC an the two others. The third group of companies comprises those which

are not detected as relevant in the simplistic benchmark case, but which showed a sig-

nificant positive systemic risk beta. Almost all of them are deeply interconnected with

other companies, see Table 3. Prominent examples are Morgan Stanley (MS) and Wells

Fargo (WFC). In summary, a one-step approach for the system VaR (15) may only serve

as a rough tool for a first impression on systemic relevant firms in a moderately intercon-

nected system. As it is, however, not able to capture indirect network effects, it appears to

systematically falsely reject systemic relevance of firms gaining their importance mainly

33The adaptive LASSO criterion thus minimizes
1
T

∑T
t=1 ρq

(
Xs

t + α1 + E′tα2 + M′t−1α3

)
+ λ

√
q(1−q)
T

∑65
k=1 wkσ̂k|αk|. The weights wk are computed

as inverses of the absolute values of coefficients from an unrestricted quantile regression, σ̂k is as in (6), λ
is determined as in Section A.2., where c is chosen via the in-sample VaR backtest of Berkowitz, Christof-
fersen, and Pelletier (2011) (see Section A.3.). For details on the adaptive LASSO, see Wu and Liu (2009).

34In addition to the selected exceedances, also the change in the short-term interest rate (yield3m) was
chosen as a regressor. The detailed results with obtained coefficients are available from the authors upon
request.
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from their position within the network. Conversely, it tends to falsely attribute systemic

relevance to firms with insignificant marginal effects when controlling for the network.

5.2. Case-study: Pre-crisis period

In the course of the financial crisis 2007-2009, a number of large institutions defaulted,

were overtaken by others or supported by the government. As for our general empirical

study, we required data for all considered institutions to be available over the entire period

from beginning of 2000 to end of 2008, some of these companies could not be included.

Nevertheless, to validate and robustify our findings, we perform an additional analysis

by re-estimating the model for the time period of January 1, 2000, to June 30, 2007 and

including the investment banks Lehman Brothers and Merrill Lynch.

Because of the shorter estimation period, differences between estimated systemic risk

contributions might be less significant as in the analysis covering the full time period.

Therefore, as a sharp ranking of companies might not be very meaningful and hard to

interpret in this context, Table 7 rather categorizes firms into groups according to quartiles

of the distribution of realized systemic risk betas. Accordingly, we distinguish between

four broad classes: The first group of highest systemic importance comprises 9 companies

with VaRs that significantly influence the system VaR and are among the 25% largest

average realized betas. Its most prominent members are AIG, Lehman Brothers, Morgan

Stanley, JP Morgan and Goldman Sachs. The second group with “medium” size consists

of systemically risky firms with significant systemic impact and average realized betas in

the third quartile of the distribution. It mainly contains large depositories and investment

banks including Bank of America, Merrill Lynch, Citigroup and Regions Financial, but

also the mortage company Freddie Mac. In the third group all companies with small but

significant average systemic risk betas are included, in particular those below the median.

Finally, the firms which are not detected as systemically risky during the analyzed time

period, are collected in the last group.
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In detail, we focus on four companies which were massively affected by the crisis:

Lehman Brothers became insolvent on September 15, 2008, and was liquidated after-

wards. Merrill Lynch announced a merger with Bank of America in September 2008,

which was executed on January 1, 2009. Furthermore, excluding the crisis period itself

may reveal the systemic relevance of the mortgage firm Freddie Mac, which is closely

connected to the second largest real estate financing company Fannie Mae. Both were

placed under conservatorship by the U.S. government during the course of the financial

crisis. Finally, it is interesting to investigate the systemic riskiness of AIG, which faced

major distress during the crisis and whose bailout was very expensive for the tax payers.

As shown by Table 7 (with the specific companies marked in bold), all of these firms be-

long to the group of systemically relevant firms with high or mid-sized average systemic

risk betas.

Table 8 summarizes the results of our empirical analysis for the four case study can-

didates using only the pre-crisis data. Our network analysis reveals that almost all of the

companies are subject to loss spillovers from direct competitors. See, e.g., the mutual

link of Freddie Mac and Fannie Mae, as well as dependencies between Lehman and both

Morgan Stanley and Goldman Sachs. Moreover, Merrill Lynch influences Citigroup, and

TD Ameritrade Holding as well as E Trade Financial have mutual links to Lehman and

Merrill Lynch within the large online broker market. Furthermore, AIG stands out as the

by far most interconnected firm in this case study: Its VaR is affected by the tail risks

of eight competing insurers and Lehman Brothers while its losses in turn drive VaRs of

Citigroup, Aflac, Human, Unum and three other insurance companies.

All four companies of interest have a significant impact on the system. The time evo-

lution of their respective realized betas just prior to the crisis in Figure 10 clearly depicts

their increasing systemic riskyness. The exemplary case of Merrill Lynch shows over a

longer horizon that the network based idiosyncratic VaR even gradually decreases despite

rising systemic importance with a realized risk beta increasing by more than 100% from

mid of 2006 to mid of 2007. Moreover, Figure 5 shows that the overall high systemic
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Figure 5: Exemplary time evolution of systemic importance in terms of quarterly realized
systemic risk betas from 2004-2007 for the two companies AIG and Lehman Brothers
(LEH) belonging to the group of the on average most systemically risky companies. We
depict quarterly averages reflecting the quarterly observation frequency of balance sheet
characteristics smoothing the exceedance effects in the VaR’s.

relevance of Lehmann and AIG can be attributed to very different time evolutions of their

realized systemic risk betas well in advance to the crisis. While the systemic relevance

of Lehman brothers grows almost monotonically towards the begin of the crisis, the real-

ized beta of AIG already faces a significant high around 2005. It is well documented that

from the 1980s on, AIG accumulated vast amounts of complex interconnected positions

in credit default swaps (CDS) and other credit securitization derivatives and amounted to

the largest holder and issuer of such products. Investigations after the fraud scandal re-

lated to the reinsurer Gen Re in 2005 already revealed the large scale systemic impact of

the firm. This also induced a rating downgrade and resulted in a reduction of some highly

leveraged positions which ultimately build up again towards the crisis. If we compare

our results to the findings in Table 4 (page 45 in the Appendix) of Brownlees and En-

gle (2012), according to their SRISK measure, they also find systemic relevance of LEH,

FRE and ML. Though, it is notable that in their 2007 rankings, AIG does not even appear
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on the top 10 positions, then amounting slowly from mid 2008 to the top five ranks only

until January 2009. In this case, our measure incorporates important market information

substantially quicker, thus providing a better forward-looking monitoring tool. Likewise,

also the high systemic relevance of JPM before the crisis is only picked up by SRISK with

a significant time delay.

Our findings clearly show that in June 2007 all four companies were relevant for the

stability of the U.S. financial system. They indicate that bailouts during the crisis were jus-

tified for Freddie Mac (and the closely tied Fannie Mae) and AIG. Also a failure of Merrill

Lynch would have led to harsh systemic consequences which could be prevented by its

merger with Bank of America in 2008. Secondly, the increasing systemic importance

of Lehman Brothers could have been monitored and thus the impact of its bankruptcy

could have been anticipated to a certain extent. The direct bi-directional linkage to JP

Morgan, as well as the connections to Morgan Stanley and Goldman Sachs, which in turn

are deeply interconnected, indicate a high risk for contagion as a result of Lehman’s fail-

ure. Furthermore, our estimates show that Lehman’s systemic risk contribution is only

slightly lower than that of AIG, while it is substantially higher than that of, e.g., Fred-

die Mac. Given these results, bailing out the latter but not the former is not necessarily

justifiable from a systemic risk management point of view.

6. Conclusion

The worldwide financial crisis 2007-2009 has revealed that there is a need for a better

understanding of systemic risk. Particularly in situations of distress, it is the intercon-

nectedness of financial companies which plays a major role but challenges quantitative

analysis and the construction of appropriate risk measures.

In this paper, we propose a measure of firms’ systemic relevance which accounts for

dependence structures within the financial network given market externalities. Our anal-

ysis allows to statistically identify relevant channels of potential tail risk spillovers be-
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tween firms constituting the topology of the financial network. Based on these relevant

company-specific risk drivers, we measure a firm’s idiosyncratic tail risk by explicitly ac-

counting for its interconnectedness with other institutions. Our measure for a company’s

systemic risk contribution quantifies the impact on the risk of distress of the system in-

duced by an increase in the risk of the specific company in a network setting. Both mea-

sures exclusively rely on publicly observable balance sheet and market characteristics and

can thus be used for prudent supervisory decisions in a stress test scenario.

Our empirical results show the interconnectedness of the U.S. financial system and

clearly mark channels of relevant potential risk spillovers. In particular, we can clas-

sify companies into major risk producers, transmitters or recipients within the system.

Moreover, at any specific point in time, firms can be ranked according to their estimated

contribution to systemic risk given their role and position in the network. Monitoring

companies’ systemic relevance over time, thus allows to detect those firms which are

most central for the stability of the system. In a case study, we highlight that our ap-

proach could have served as a solid basis for sensible forward-looking monitoring tool

before the start of the financial crisis in 2007.

Our approach is readily extendable in several directions. In particular, although the

financial system is dominated by the U.S, it truly is a global business with many firms

operating internationally. Detecting inter- and intra-country risk connections and mea-

suring firms’ global systemic relevance, should be straightforward with our proposed

methodology. Moreover, whenever additional (firm-specific or market-wide) informa-

tion is available as, e.g., reported to central banks, it can be directly incorporated into

our measurement procedure. The data-driven selection step of relevant risk drivers then

determines if and how this would increase the precision of results.
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Appendix A. Econometric methodology

A.1. Asymptotic results for two-step quantile estimation

Under the adaptive choice of penalty parameter as described in the text, the LASSO selection

method is consistent with rate OP (

√
K(i)
T log(max(K,T )), and with high probability the coeffi-

cients selected of W, contain the the true coefficients also in finite samples. These results follow
directly from Belloni and Chernozhukov (2011). Furthermore, V aRi is consistently estimated
by the post-LASSO method described in the text which re-estimates the unrestricted model with
W(i). In particular, for all q ∈ I with I ∈ (0, 1) being compact,

ξ̂
i

q − ξiq ≤ OP (

√
K(i)

T
log(max(K,T ))), (A1)

since in our setting it is safe to assume that the number of wrongly selected components of W is
stochastically bounded by the number K(i) of components of W contained in the true model for
V aRi (see equation (2.16) in Belloni and Chernozhukov (2011)). We write in a slight abuse of
notation YT ≤ OP (rT ), with YT being either OP (rT ) or even oP (rT ) for any random sequence
YT and deterministic rT → 0. Note that in general for T → ∞, both K and K(i) might grow
only extremely slowly in T , such that they can be treated close to being constants implying the

standard oracle bound OP (

√
log(T )
T ) in (A1).

If the true model is selected, we find for the asymptotic distribution of the individual VaR
estimates for any q ∈ [0, 1],35√

1

T

(
ξ̂
i

q − ξiq
)′
→ N

(
0,

q(1− q)
g2(G−1(q))

E[W(i)W(i)′]−1

)
, (A2)

where g(G−1(q)) denotes the density of the corresponding error εi distribution at the qth quantile.
This result is standard (see Koenker and Bassett, 1978). For the second step estimates, we derive
the asymptotic distribution analogously to the two-step median results in Powell (1983)√

K(i)

T

(
(β̂
s|i
0,p,q, η̂

s|i
p,q, γ̂

s
p)
′
− (β

s|i
0,p,q,η

s|i
p,q,γ

s
p)
′)

(A3)

→ N
(

0, Q−1E
[

p(1− p)
f2(F−1(p))

ρp(ε
s
t )−

p(1− p)
g2(G−1(p))

βs|ip,q

′ (
ρp(ε

i
t), ρ

v
p(Zt−1ε

i
t)
)])

, (A4)

where in the scalar factor, f(F−1(p)) is the density of the corresponding error εs at the pth quan-
tile, the function ρvp of a vector applies ρp to each of its components, and βs|ip,q = (β

s|i
0,p,q,η

s|i
p,q). The

remaining main part Q in the variance is given by Q = H ′E[AA′]H with A = (W(i), vec(Zt−1 ·
35Required assumptions of Belloni and Chernozhukov (2011) and quantile analogies to Powell (1983)

are fulfilled in our setting.
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W(i)′),VaR(−i)). Denote by I and 0 identity and null matrices, respectively, and by 1 a vector of
ones of appropriate dimension. Then,

H ′ =


diag(ξiq,2) 0 · · ·0 · · · · · ·0 · · ·

0 diag(ξiq,1) · · ·0 · · · · · ·0 · · ·
0 0 diag(vec(1dz · ξiq

′
)) · · ·0 · · ·

I 0 · · ·0 · · · · · ·0 · · ·
0 0 · · ·0 · · · Id(−i)×d(−i)


where dZ is the dimension of Z which is 3 in our application, d(−i) is the dimension of VaR(−i)

t ,
and coefficients ξiq,2 are those components of ξiq for regressors which appear both in the first and
the second step. Correspondingly, ξiq,1 are coefficients of regressors which just appear in the first
step of the individual VaR regression. Note that in the variance matrix there is a distinction in γ
for parts of V which are also controls in V aRi and VaR(−i)

t , which just appear in V aRs.

A.2. Choice of the company-specific LASSO penalty parameter λi

We determine λi in a data-driven way following a bootstrap type procedure as suggested by Belloni
and Chernozhukov (2011):

Step 1 Take T iid draws from U [0, 1] independent of W1, . . . ,WT denoted as U1, . . . , UT . Con-
ditional on observations of W, calculate the corresponding value of the random variable,

Λi = T max
1≤k≤K

1

T

∣∣∣∣∣
T∑
t=1

Wt,k(q − I(Ut ≤ q))
σ̂k
√
q(1− q)

∣∣∣∣∣ .
Step 2 Repeat step 1 for B=500 times generating the empirical distribution of Λi conditional on

W through Λi1, . . . ,Λ
i
B . For a confidence level α ≤ 1/K in the selection, set

λi = c ·Q(Λi, 1− α|Wt),

whereQ(Λi, 1−α|Wt) denotes the (1−α)-quantile of Λi given Wt and c ≤ 2 is a constant.

The choice of α is a trade-off between a high confidence level and a corresponding high regulariza-
tion bias from high penalty levels in (6). As in the simulation results in Belloni and Chernozhukov
(2011), we choose α = 0.1, which suffices to get optimal rates of the post-penalization estimators
below. Finally, the parameter c is selected in a data-dependent way such that the in-sample pre-
dictive ability of the resulting VaR specification is maximized. (Belloni and Chernozhukov (2011)
proceed in a similar way). The latter is evaluated in terms of its best backtesting performance
according to the procedure described in Subsection A.3 below.

A.3. Backtest for the model fit for V aRi

As suggested by Berkowitz, Christoffersen, and Pelletier (2011), for each institution i, we measure
VaR exceedances as Iit ≡ I(Xi

t < −V aRiq,t). If the chosen model is correct, then,

E[Iit |Ωt] = q , (A5)
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where Ωt is the information set up to t. The VaR is estimated correctly, if independently for
each day of the covered period, the probability of exceeding the VaR equals q. Similar to Engle
and Manganelli (2004), Kuester, Mittnik, and Paolella (2006) and Taylor (2008), we include a
constant, three lagged values of It and the current VaR estimate in the information set Ωt. Then,
condition (A5) can be checked by estimating a logistic regression model

Iit = α+ A′tθ + Ut,

with covariates At = (Iit−1, I
i
t−2, I

i
t−3, V̂ aR

i

t−1)′. Denote by Īi the sample mean of the binary
response Iit and define Flog(·) as the cumulative distribution function of the logistic distribution.
Then, under the joint hypothesis

H0 : α = q and θ1 = · · ·θ4 = 0,

the asymptotic distribution of the corresponding likelihood ratio test statistic is

LR = −2(lnLr − lnLu)
a∼ χ2

5 . (A6)

Here, lnLu =
∑n

t=1

[
Iit lnFlog(α+ A′tθ) + (1− Iit) ln

(
1− Flog(α+ A′tθ)

)]
is the unrestricted

log likelihood function which under H0 simplifies to lnLr = nĪi ln(q) + n(1− Īi) ln(1− q).

A.4. Bootstrap procedure for the joint significance test

The asymptotic distribution of the test statistic introduced in Subsection 4.1,

ST = min
ξs∈Ω0

T∑
t=1

ρp(X
s
t − B′tξ

s)− min
ξs∈RKB

T∑
t=1

ρp(X
s
t − B′tξ

s), (A7)

involves the probability density function of the underlying error terms and is not feasible. Further-
more, bootstrapping ST directly would yield inconsistent results. Therefore, we re-sample from
the adjusted statistic

S∗T = min
ξs∈Ω0

T∑
t=1

wtρp(X
s
t − B′tξ

s)− min
ξs∈RKB

T∑
t=1

wtρp(X
s
t − B′tξ

s)

−

(
T∑
t=1

wtρp(X
s
t − B′tξ̂

s

c)−
T∑
t=1

wtρp(X
s
t − B′tξ̂

s
)

)
, (A8)

where ξ̂
s

c denotes the constrained estimate of ξs, and {wt} is a sequence of standard exponentially
distributed random variables, having both mean and variance equal to one. According to Chen,
Ying, Zhang, and Zhao (2008), the empirical distribution of S∗T provides a good approximation of
the distribution of ST . Thus, if the test statistic ST exceeds some large quantile of the re-sampling
distribution of S∗T , the null hypothesis is rejected.

The proposed testing method does not require re-sampling of observations but is entirely based
on the original sample. This provides significant gains in accuracy in the two-step regression set-
ting as opposed to standard pairwise bootstrap techniques as a further alternative. A pre-analysis
shows that this wild bootstrap type procedure is valid in the presented form as any serial de-
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pendence in the data is sufficiently captured by the regressors in the reduced-form relation not
requiring block-bootstrap techniques.36

Appendix B. Tables and figures

Table 1: Included financial institutions in alphabetical order within sectors.

Depositories (21) Others (11) Insurance Comp. (20)
BB T Corp (BBT) American Express Co (AXP) AFLAC Inc (AFL)
Bank of New York Mellon (BK) Eaton Vance Corp (EV) Allstate Corp (ALL)
Bank of America Corp (BAC) Fed. Home Loan Mortg. Corp (FRE) American International Group (AIG)
Citigroup Inc (C) Fed. National Mortgage Assn (FNM) AON Corp (AON)
Comerica Inc (CMA) Fifth Third Bancorp (FITB) Berkley WR Corp (WRB)
Hudson City Bancorp Inc. (HCBK) Franklin Resources Inc (BEN) CIGNA Corp (CI)
Huntington Bancshares Inc. (HBAN) Legg Mason Inc (LM) C N A Financial Corp. (CNA)
JP Morgan Chase & Co (JPM) Leucadia National Corp (LUK) Chubb Corp (CB)
M & T Bank Corp. (MTB) SEI Investments Company (SEIC) Cincinnati Financial Corp (CINF)
Marshall & Ilsley Corp (MI) TD Ameritrade Holding Corp (AMTD) Coventry Health Care Inc (CVH)
NY Community Bankcorp (NYB) Union Pacific Corp (UNP) Hartford Financial (HIG)
Northern Trust Corp (NTRS) HEALTH NET INC (HNT)
Peoples United Financial Inc. (PBCT) Broker-Dealers (7) Humana Inc (HUM)
PNC Financial Services Group (PNC) E Trade Financial Corp (ETFC) Lincoln National Corp. (LNC)
Financial Corp New (RF) Goldman Sachs Group Inc (GS) Loews Corp (L)
S L M Corp. Lehman Brothers (LEH)∗ Marsh & McLennan Inc. (MMC)
State Street Corp (STT) Merrill Lynch (ML)∗ MBIA Inc (MBI)
Suntrust Banks Inc (STI) Morgan Stanley Dean Witter & Co (MS) Progressive Corp Ohio (PGR)
Synovus Financial Corp (SNV) Schwab Charles Corp New (SCHW) Torchmark Corp (TMK)
Wells Fargo & Co (WFC) T Rowe Price Group Inc. (TROW) Unum Group (UNM)
Zions Bancorp (ZION)

∗ included only in the case study

36Pairwise block-bootstrap yields block lengths of one according to the standard procedure of Lahiri
(2001). Results are available upon request.
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Table 3: Tail risk cross dependencies: For each company i, we list direct risk drivers and risk recipients
within the network topology. Respective risk drivers are loss exceedances selected by the LASSO
technique (6) as “relevant” regressors for the V aRi-model (q = 0.05) (’Influencing companies’). Direct
risk recipients (’Influenced companies’) are companies for which the loss exceedance of company i
appears as relevant via LASSO in their corresponding V aRj .

Name Influencing companies Influenced companies
Broker Dealers

ETFC AMTD,GS,MS AMTD,C
GS C,JPM,LM,MS,SCHW BEN,C,ETFC,JPM,LM,MS,SCHW
MS AIG,AON,BAC,EV,GS,HBAN,HCBK,MTB,SCHW,SEIC,STT AMTD,BAC,EV,GS,HUM,LNC,ETFC,SEIC
SCHW AMTD,GS,JPM,NTRS,TROW AMTD,MS,GS,JPM
TROW AMTD,BEN,EV,JPM,LUK,NTRS,SEIC,SNV AON,MBI,MMC,AMTD,AXP,BEN,EV,NTRS,SCHW

Depositories
BAC AON,AXP,C,HBAN,LM,MS,MTB,PBCT,PNC,SEIC,STI,WFC AXP,BBT,C,CMA,HCBK,JPM,LM,MBI,MS,MTB,PNC,STI,WFC
BBT BAC,FITB,MTB,NTRS,STI,TMK,UNP,WFC AXP,BEN,CMA,FRE,MTB,RF,TMK,UNP,WFC,ZION
BK AXP,JPM,MTB,NTRS,SNV,STT,WFC CMA,JPM,NTRS,SEIC,SNV
C BAC,ETFC,FITB,GS,JPM,LNC,LUK,MBI,MTB BAC,GS,JPM,LUK
CMA AON,BAC,BBT,BK,HBAN,RF,SNV,WFC AON,PNC,SNV,ZION
HBAN AON,LNC,RF,STI,ZION AON,BAC,CMA,EV,LNC,MS,PBCT,RF,ZION
HCBK AON,BAC,MBI,MTB,NYB MS,MTB
JPM BAC,BK,C,GS,PNC,SCHW BK,C,GS,SCHW,SEIC,TROW
MI MMC,TMK HIG,MMC
MTB BAC,BBT,HCBK,NYB,SNV,ZION AON,BAC,BBT,BK,HCBK,MS,SNV,WFC,ZION,C
NTRS BEN,BK,LUK,MMC,SEIC,STT,TROW AFL,AMTD,BBT,BEN,BK,HIG,MMC,PGR,SCHW,TMK,TROW,LUK,STT
NYB PBCT,WFC MTB,SLM,WFC,HCBK,PBCT
PBCT HBAN,NYB AON,BAC,CB,NYB,RF
PNC BAC,CMA,STT,TMK,WFC,ZION BAC,JPM,ZION
RF AMTD,AON,BBT,FITB,HBAN,PBCT,STI,ZION AIG,AON,CMA,EV,FITB,HBAN,MBI,SNV,STI,ZION
SLM AON,AXP,FRE,MBI,NYB AON,AXP,BEN,EV,FITB,MBI
SNV BK,CMA,FITB,MTB,RF,ZION BEN,BK,CMA,FITB,MTB,TROW
STI AON,BAC,FITB,LNC,RF,WFC,ZION AFL,AON,BAC,BBT,FITB,HBAN,RF,ZION,CINF,HUM,UNM,WFC
STT AXP,NTRS AXP,BK,NTRS,PNC,MS
WFC BAC,BBT,CB,LNC,MTB,NYB,STI FITB,PNC,STI,AFL,BAC,BBT,BK,CMA,NYB
ZION BBT,CMA,HBAN,MTB,PNC,RF,STI AON,RF,FITB,HBAN,LNC,MTB,PNC,SNV,STI

Insurance Companies
AFL ALL,AON,CNA,EV,NTRS,SEIC,STI,TMK,WFC AXP,CB,EV,PGR,TMK,UNM
AIG FRE,MBI,RF,TMK FNM,MBI,MS
ALL CB,CNA,L,LNC,TMK AFL,PGR,TMK,UNM
AON CMA,HBAN,MBI,MTB,PBCT,RF,SLM,STI,TROW,ZION AFL,BAC,BEN,CMA,EV,FITB,HBAN,HCBK,LM,MBI,MS,RF,SLM,STI
CB AFL,L,LNC,PBCT,PGR ALL,CINF,EV,HIG,L,WFC,WRB
CI CNA,HNT,HUM,LNC HNT,HUM,LNC
CINF CB,MBI,STI AXP,LM
CNA EV,L,LNC,MBI AFL,ALL,CI,L,LNC,MBI
CVH HUM SEIC
HIG CB,L,LNC,MI,NTRS,TMK HUM,LNC,TMK
HNT CI,EV,HUM,LM,LNC,PGR CI,HUM,LM
HUM CI,HIG,HNT,MS,STI CI,HNT
L CB,CNA,LNC,TMK,UNP ALL,AXP,CB,CNA,HIG,LNC,UNM,UNP
LNC CI,CNA,EV,HBAN,HIG,L,MS,SEIC,TMK,ZION ALL,C,CB,CNA,HBAN,HIG,HNT,L,SEIC,STI,TMK,UNM,WFC,CI
MBI AIG,AON,BAC,BEN,CNA,FRE,RF,SLM,TROW AIG,AON,BEN,C,CINF,HCBK,SLM,CNA,LM
MMC MI,NTRS,PGR,SEIC,TROW,UNM MI,NTRS,UNM
PGR AFL,ALL,NTRS,WRB MMC,CB,HNT,WRB
TMK AFL,ALL,BBT,HIG,LNC,NTRS,SEIC,UNM,UNP AFL,BBT,EV,L,LNC,MI,PNC,AIG,ALL,HIG
UNM AFL,ALL,L,LNC,MMC,STI TMK,MMC
WRB BEN,CB,PGR PGR

Others
AMTD ETFC,MS,NTRS,SCHW,SEIC,TROW ETFC,RF,SCHW,TROW
AXP AFL,BAC,BBT,BEN,CINF,EV,L,SEIC,SLM,STT,TROW BAC,BEN,BK,EV,SLM,STT
BEN AON,AXP,BBT,EV,GS,LM,MBI,NTRS,SLM,SNV,TROW AXP,EV,LM,MBI,NTRS,TROW,WRB
EV AFL,AON,AXP,BEN,CB,HBAN,MS,RF,SEIC,SLM,TMK,TROW AFL,AXP,BEN,CNA,FRE,HNT,LM,LNC,MS,TROW
FITB AON,LUK,RF,SLM,SNV,STI,WFC,ZION BBT,C,FRE,RF,SNV,STI
FNM AIG,FRE FRE
FRE BBT,EV,FITB,FNM,LUK AIG,MBI,SLM,FNM
LM AON,BAC,BEN,CINF,EV,GS,HNT,MBI BAC,BEN,GS,HNT,LUK
LUK C,LM,NTRS C,FITB,FRE,NTRS,TROW
SEIC BK,CVH,JPM,LNC,MS AFL,AMTD,AXP,BAC,EV,LNC,MMC,MS,NTRS,TMK,TROW
UNP BBT,L BBT,TMK,L
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Table 4: Classification of companies with significant and/or time-varying systemic risk betas according
to p-values of the respective significance tests. In all cases, the test level is taken as 10% and firms are in
alphabetical order within each category. P-values pH1 for the test on significance of systemic risk betas in the
time period 2000-2008 are depicted in column one (see Hypothesis H1 in Section 4.3). If β̂s|i is detected as
being significant, then a second test on time-variation of β̂s|i in firm-specific characteristics Zi

t is performed
yielding p-values pH2 (see Hypothesis H2 in Section 4.3). For firms with a significant but not a time-varying
systemic risk beta (lower panel on the left, marked with stars), we re-estimate the systemic risk beta without
time-varying interaction terms and test again for its significance. These results (pH3) are included in parentheses
in the second column (see Hypothesis H3 in Section 4.3).

Companies with significant βs|i

Name pH1 pH2 (pH3)
AMERICAN EXPRESS 0.001 0.006
AMERICAN INTL.GP. 0.002 0.000
BANK OF AMERICA 0.002 0.001
CHARLES SCHWAB 0.019 0.013
CHUBB 0.017 0.015
CIGNA 0.001 0.013
CINCINNATI FINL. 0.010 0.004
CITIGROUP 0.026 0.066
COMERICA 0.016 0.020
FANNIE MAE 0.001 0.000
FIFTH THIRD BANCORP 0.039 0.021
FRANKLIN RESOURCES 0.028 0.030
FREDDIE MAC 0.098 0.092
HARTFORD FINL.SVS.GP. 0.001 0.001
HUDSON CITY BANC. 0.043 0.035
HUNTINGTON BCSH. 0.010 0.011
LEGG MASON 0.026 0.060
LEUCADIA NATIONAL 0.041 0.016
LINCOLN NAT. 0.062 0.026
M & T BK. 0.033 0.021
MARSH & MCLENNAN 0.003 0.002
MARSHALL & ILSLEY 0.020 0.019
MORGAN STANLEY 0.041 0.095
PNC FINANCIAL SVS. GP 0.012 0.012
PROGRESSIVE OHIO 0.007 0.003
REGIONS FINANCIAL 0.034 0.029
STATE STREET 0.054 0.049
T ROWE PRICE GP. 0.090 0.076
TORCHMARK 0.002 0.001
UNION PACIFIC 0.040 0.035
UNUM GROUP 0.079 0.097
W R BERKLEY 0.007 0.037
WELLS FARGO & CO 0.015 0.027
ZIONS BANCORP. 0.095 0.100
AON* 0.063 0.192 (0.135)
E TRADE FINANCIAL* 0.072 0.160 (0.233)
JP MORGAN CHASE & CO.* 0.014 0.237 (0.047)
NY.CMTY.BANC.* 0.040 0.132 (0.088)
SEI INVESTMENTS* 0.014 0.115 (0.025)
TD AMERITRADE HOLDING* 0.049 0.131 (0.188)

Companies with insignificant βs|i
Name pH1
AFLAC 0.220
ALLSTATE 0.114
BANK OF NEW YORK MELLON 0.199
BB &T 0.120
CNA FINANCIAL 0.410
COVENTRY HEALTH CARE 0.257
EATON VANCE NV. 0.276
GOLDMAN SACHS GP. 0.667
HEALTH NET 0.371
HUMANA 0.189
LOEWS 0.276
MBIA 0.235
NORTHERN TRUST 0.305
PEOPLES UNITED FINANCIAL 0.105
SLM 0.391
SUNTRUST BANKS 0.213
SYNOVUS FINL. 0.289
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Table 5: Ranking of companies according to average realized systemic risk betas over the years 2000-2008 Q3.
Most systemic risk contributions are detected as time-varying in systemic risk betas - exceptions with constant̂̄βs|i
av are marked by ∗. The underlying significance tests are performed as described in Table 4. The third column

lists relevant risk drivers for the corresponding firm within the systemic tail risk network. They are determined
via the LASSO selection technique (6) as “relevant” loss exceedances to be included in the respective company’s
V aRi-regression.

Rank Name ̂̄βs|i
av · 102 influencing companies

1 JP MORGAN CHASE & CO 1.41∗ BAC,BK,C,GS,PNC,SCHW
2 AMERICAN EXPRESS 1.22 AFL,BAC,BBT,BEN,CINF,EV,L,SEIC,SLM,STT,TROW
3 BANK OF AMERICA 1.01 AON,AXP,C,HBAN,LM,MS,MTB,PBCT,PNC,SEIC,STI,WFC
4 CITIGROUP 0.87 BAC,ETFC,FITB,GS,JPM,LNC,LUK,MBI,MTB
5 LEGG MASON 0.83 AON,BAC,BEN,CINF,EV,GS,HNT,MBI
6 REGIONS FINANCIAL 0.72 AMTD,AON,BBT,FITB,HBAN,PBCT,STI,ZION„
7 MARSHALL & ILSLEY 0.65 MMC,TMK
8 MARSH & MCLENNAN 0.63 MI,NTRS,PGR,SEIC,TROW,UNM
9 MORGAN STANLEY 0.62 AIG,AON,BAC,EV,GS,HBAN,HCBK,MTB,SCHW,SEIC,STT
10 AMERICAN INTL.GP. 0.61 FRE,MBI,RF,TMK
11 PROGRESSIVE OHIO 0.58 AFL,ALL,NTRS,WRB
12 STATE STREET 0.55 AXP,NTRS
13 ZIONS BANCORP 0.51 BBT,CMA,HBAN,MTB,PNC,RF,STI,
14 FIFTH THIRD BANCORP 0.49 AON,LUK,RF,SLM,SNV,STI,WFC,ZION
15 NY.CMTY.BANC. 0.49∗ PBCT,WFC
16 PNC FINANCIAL SVS. GP 0.47 BAC,CMA,STT,TMK,WFC,ZION
17 FANNIE MAE 0.45 AIG,FRE
18 FRANKLIN RESOURCES 0.34 AON,AXP,BBT,EV,GS,LM,MBI,NTRS,SLM,SNV,TROW
19 CHARLES SCHWAB 0.33 AMTD,GS,JPM,NTRS,TROW
20 CHUBB 0.30 AFL,L,LNC,PBCT,PGR
21 WELLS FARGO & CO 0.28 BAC,BBT,CB,LNC,MTB,NYB,STI
22 FREDDIE MAC 0.19 BBT,EV,FITB,FNM,LUK
23 HARTFORD FINL.SVS.GP. 0.19 CB,L,LNC,MI,NTRS,TMK
24 CINCINNATI FINL. 0.16 CB,MBI,STI
25 TORCHMARK 0.12 AFL,ALL,BBT,HIG,LNC,NTRS,SEIC,UNM,UNP,
26 UNUM GROUP 0.04 AFL,ALL,L,LNC,MMC,STI
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Table 6: Rankings of relevant systemic risk contributions based on estimated realized systemic risk

betas ̂̄βs|i
t at two specific points in time. In addition, estimated systemic risk betas and VaRs are listed,

illustrating the different sources of variation in ̂̄βs|i
t . Most systemic risk contributions are detected as

being time-varying in systemic risk betas - exceptions with constant ̂̄βs|i
t are marked by ∗. The underlying

significance tests are performed as described in Table 4.

a) End of March 2007 (before the beginning of the financial crisis)

Rank Name ̂̄βs|i
2007 · 102 β̂

s|i
2007 V̂ aR

i

2007

1 CITIGROUP 1.78 0.263 0.068
2 AMERICAN EXPRESS 1.35 0.387 0.035
3 BANK OF AMERICA 1.16 0.304 0.038
4 JP MORGAN CHASE & CO. 1.05∗ 0.265 0.040
5 MORGAN STANLEY 1.01 0.146 0.069
6 LEGG MASON 0.98 0.205 0.048
7 MARSH & MCLENNAN 0.83 0.222 0.037
8 REGIONS FINANCIAL 0.78 0.202 0.038
9 PNC FINANCIAL SVS. GP 0.77 0.248 0.031

10 CHUBB 0.74 0.240 0.031
11 AMERICAN INTL.GP. 0.61 0.143 0.043
12 FRANKLIN RESOURCES 0.60 0.143 0.042
13 STATE STREET 0.51 0.114 0.045
14 FIFTH THIRD BANCORP 0.50 0.104 0.048
15 PROGRESSIVE OHIO 0.42 0.092 0.046
16 NY.CMTY.BANC. 0.41∗ 0.090 0.045
17 MARSHALL & ILSLEY 0.40 0.088 0.045
18 TORCHMARK 0.39 0.173 0.023
19 HARTFORD FINL.SVS.GP. 0.38 0.099 0.039
20 ZIONS BANCORP. 0.26 0.115 0.054
21 CHARLES SCHWAB 0.25 0.042 0.060
22 FREDDIE MAC 0.23 0.057 0.041
23 LEUCADIA NATIONAL 0.19 0.057 0.033
24 CINCINNATI FINL. 0.13 0.026 0.050
25 FANNIE MAE 0.09 0.019 0.049
26 UNUM GROUP 0.23 0.045 0.051
27 T ROWE PRICE GP. 0.06 0.014 0.043
28 LINCOLN NAT. 0.04 0.010 0.036

b) End of June 2008 (during the financial crisis)

Rank Name ̂̄βs|i
2008 · 102 β̂

s|i
2008 V̂ aR

i

2008

1 BANK OF AMERICA 2.86 0.186 0.154
2 AMERICAN EXPRESS 2.78 0.278 0.100
3 WELLS FARGO & CO 2.51 0.186 0.135
4 MARSHALL & ILSLEY 2.31 0.516 0.045
5 JP MORGAN CHASE & CO. 2.22∗ 0.265 0.084
6 PROGRESSIVE OHIO 1.97 0.380 0.052
7 LEGG MASON 1.96 0.137 0.143
8 REGIONS FINANCIAL 1.86 0.107 0.173
9 MARSH & MCLENNAN 1.76 0.471 0.037

10 STATE STREET 1.44 0.171 0.084
11 NY.CMTY.BANC. 1.12∗ 0.090 0.125
12 PNC FINANCIAL SVS. GP 1.09 0.153 0.071
13 CHUBB 1.07 0.176 0.061
14 TORCHMARK 1.00 0.177 0.057
15 CHARLES SCHWAB 0.91 0.149 0.060
16 CITIGROUP 0.90 0.072 0.124
17 MORGAN STANLEY 0.61 0.074 0.083
18 ZIONS BANCORP. 0.58 0.058 0.100
19 UNUM GROUP 0.34 0.033 0.104
20 UNION PACIFIC 0.27 0.047 0.056
21 HARTFORD FINL.SVS.GP. 0.24 0.012 0.201
22 FRANKLIN RESOURCES 0.17 0.026 0.064
23 T ROWE PRICE GP. 0.01 0.001 0.102
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Table 7: Group ranking of systemic risk contributions for the pre-crisis period 2000 - mid 2007. The
upper part, group 1 (’high’), contains companies with significant average realized systemic risk betas
in the highest quartile: ˆ̄β

s|i
av · 100 ∈ [0.5, 1.3]. Group 2 refers to the third quartile (’medium’) with

ˆ̄β
s|i
av ·100 ∈ [0.03, 0.49] and Group 3 to realized systemic risk betas lower than the median value (’small’),

for which ˆ̄β
s|i
av · 100 < 0.01. Group 4 includes companies not determined to be systemically risky during

the estimation period, i.e., those with insignificant systemic risk betas. Case study companies are marked
in bold.

Systemic risk contributions Companies
Group 1 ’high’ AIG, LEH, MS, JPM, GS,STT, CINF, LM, PBCT
Group 2 ’medium’ FRE, ML, BAC, C, RF, AXP, PNC,CNA, TROW, NTRS

Group 3 ’low’ FNM, WFC, EV, TMK, BBT, AFL, HUM, MI, CMA, BK,
LNC, ALL, HNT, CB, CVH, SLM, ETFC

Group 4
AMTD, AON, BEN, CI, FITB, HBAN, HCBK, HIG, L, LUK,
MBI, MMC, MTB, NYB, PGR, SCHW, SEIC, SNV, STI, UNM,
UNP, WRB, ZION

Table 8: Summary of estimation and test results for the four case study companies: loss exceedances
influencing each company’s VaR, the most important other VaRs influenced, joint significance tests on
β
s|i
t = 0 and estimated average systemic risk contributions as well as betas. Estimation period: January

2000 - June 2007.

Name influenced by mainly influencing overall sign. average ̂̄βs|i
t · 100 average β̂s|i

t
FRE AON, BBT, EV, FITB, FNM, HUM, MBI BBT, FNM 0.048 0.38 0.092∗
ML AMTD, CB, CNA, HCBK, L, NYB, WRB C 0.051 0.03 0.030∗
LEH AMTD, AON, BEN, GS, JPM, LM, LUK, MI, MS AIG, AXP, ETFC, JPM 0.041 0.79 0.176∗
AIG ALL, C, CB, CNA, ETFC, HIG, LEH, LNC, MBI, AFL, C, CNA, HIG, 0.026 0.73 0.210∗

MMC, SCHW, STT, TMK HUM, MMC, UNM
∗ time-varying betas
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Figure 7: Full Network graphs of Citigroup (C) and Morgan Stanley (MS) highlighting risk drivers and
risk recipients directly connected to the respective companies with bold arrows according to the respective
size of the effect. Arrows, colors and acronyms are as in Figure 6. For simplicity, all other links just mark
spillover effects without referring to size. The list of firm acronyms is contained in Table 1.
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Figure 9: For each of the two institutions, American International Group (AIG) and Bank of America
(BAC), the respective column comprises three time series panels which depicts from top to bottom the time-

varying systemic risk beta β̂s|i
t , the time-varying VaR V̂ aR

i

t, and the realized systemic risk beta β̂s|i
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i

t

of the firm.
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Figure 10: Time evolution of systemic importance for all companies in the focus of the
case study. The left column of the panel depicts quarterly averaged realized systemic risk
betas of AIG, Freddie Mac (FRE), and Lehman Brothers (LEH) during the period imme-
diately before the crisis. The right column shows quarterly averaged realized systemic
risk betas of Merrill Lynch (ML) for the longer time period from 2004 on in comparison
to its respective VaR.
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Figure 11: The schematic figure depicts companies classified as being systemically relevant according to
our two-step network technique in comparison to a simplistic one-step model with exceedances based on
LASSO for (15). Companies in the dotted area are selected by the simplistic model as systemically relevant,
firms in the gray area have a significant systemic impact in our network model according to Table 4. Denote
the overlay region as group 1 with companies whose tail risks are determined as relevant for the system’s
risk in both settings. Group 2 are companies in the dotted but non-gray area only selected by the simplistic
model. Systemically relevant firms in the gray non-dotted region can be classified as either group 3 being
deeply interconnected with other companies with more than 6 links according to Table 3 (upper larger only
gray set in the figure) or as group 4 with few, but crucial risk links according to Table 3 (lower only gray set
in the figure with three elements).
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Figure 12: The left panel shows exemplary evolvements of p-values from the V aRi backtest described in
Section 3.3.2 when the individual-specific LASSO penalty parameters λi are increased by 10% and 20%.
The respective leftmost p-value corresponds to the original choice. The right panel shows boxplots of all
p-values obtained from backtesting all the 57 VaR time series. Higher p-values indicate better model fits.
At the bottom of the right panel, average values of an additional goodness-of-fit measure, the Bayesian
Information Criterion (BIC) for quantiles, are reported. Lower values imply better model fits.
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