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Abstract

We study the price-setting problem of market makers under perfect compe-
tition in continuous time. Thereby we follow the classic Glosten-Milgrom
model [GM85] that defines bid and ask prices as the expectation of a true
value of the asset given the market makers partial information that includes
the customers trading decisions. The true value is modeled as a Markov
process that can be observed by the customers with some noise at Poisson
times.

We analyze the price-setting problem by solving a non-standard filtering
problem with an endogenous filtration that depends on the bid and ask
price process quoted by the market maker. Under some conditions we show
existence and uniqueness of the price processes. In a different setting we
construct a counterexample to uniqueness. Further, we discuss the behavior
of the spread by a convergence result and simulations.
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Iulia Stanciu, Kai Kellner, Christian Trabandt and Timo de Wolff.

Finally, I thank Katharina Eckert, Inga Rohweder and Björn Ulbricht for
proofreading parts of this work.

iii



iv



Contents

Abstract i

Acknowledgement iii

1 Introduction 1

1.1 Liquidity and its price . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Glosten-Milgrom prices . . . . . . . . . . . . . . . . . . . . . 3

1.3 Insiders and the Kyle model . . . . . . . . . . . . . . . . . . . 5

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Filtering 7

2.1 The filter equation . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Proof of the filter equation . . . . . . . . . . . . . . . . . . . . 10

3 A static Glosten-Milgrom model 19

3.1 The static model . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Existence, uniqueness and counterexamples . . . . . . . . . . 22

3.3 Noise with density . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Insider and noise trader . . . . . . . . . . . . . . . . . . . . . 28

4 The continuous-time model 31

4.1 The general framework . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Glosten-Milgrom pricing strategies . . . . . . . . . . . . . . . 34

v



vi CONTENTS

4.3 The process of conditional probabilities . . . . . . . . . . . . 37

4.4 The solution as fixed point . . . . . . . . . . . . . . . . . . . 40

5 Noise with density 45

5.1 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Insider/noise trader model 55

6.1 A counterexample to uniqueness . . . . . . . . . . . . . . . . 56

7 Convergence 63

8 Simulations 69

8.1 The size of the spread . . . . . . . . . . . . . . . . . . . . . . 70

8.2 A conjecture for Brownian motion . . . . . . . . . . . . . . . 75

Deutsche Zusammenfassung 79

Bibliography 89



Chapter 1

Introduction

The aim of this thesis is to discuss the existence and uniqueness of price
functions in the Glosten-Milgrom model [GM85]. In this introductory chap-
ter we want to give an overview of the economic context of our topic. This
survey of market microstructure theory does not have the aim to be com-
plete, but wants to give an overview for readers that are not familiar with
this branch of the literature. For a full synopsis of the topic we recommend
the book by O’Hara [O’H07] or the article by Madhavan [Mad00]. Further,
we refer to recent contributions to the mathematical literature that applies
methods that are similar or related to ours on this topic.

1.1 Liquidity and its price

By liquidity we understand the ability to buy or sell some asset whenever
a market participant wishes to do so. The demand for liquidity is filled by
market participants that supply liquidity by offering to trade over a positive
period of time in the future at prices they specify. Thus, they set the price
of the asset.

This can happen in many different trading environments. In this thesis
we will focus on specialist markets, where one or several market makers
(also called specialists) provide liquidity by offering to buy or to sell the
respective asset at any time. They quote both a bid price at which they
commit themselves to buy and a higher ask price at which they sell. Their
counterparts are market participants that use this trading opportunities and
that we will call customers in the following.

These two groups have different interests in the market. While we assume
that customers have an interest in the long-term value of the asset, the
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2 CHAPTER 1. INTRODUCTION

market maker obtains his profit by earning the spread, i.e. the difference
between bid and ask price. The actual value is not important to the market
maker as long as he can sell assets that he bought earlier at a price at which
he makes a profit (or at least no loss).

Before we discuss why this service of the market makers actually costs some-
thing, i.e. why he can ask for a charge in form of the spread, we make a short
excursion to limit order markets, which are the most common trading envi-
ronments in todays electronic markets. There are no distinguished groups of
traders in this market but there are two types of orders that can be submit-
ted by all traders. In order to submit a limit order the trader has to specify
whether he wants to buy or sell, further he has to determine at which price
and how much he we wants to trade. The orders are then stored in the limit
order book and the trader can cancel it as long it is not executed. The order
might be, but does not need to be, executed against a market order (or a
matching limit order) in the course of trading. This second type of buy or
sell order is always executed immediately against the best limit order in the
book.

In limit order markets there is typically also a spread, i.e. a difference be-
tween the best bid and the best ask price and it can, as in the specialist
market, be interpreted as the price of liquidity. The limit order market
is complex to analyze since it contains many interdependencies and allows
complicated trading strategies. There is, however, a correspondence between
the market maker as price setter and liquidity supplier and the limit order
traders on the one side and customers and market order traders on the other
side. In this respect the market maker we will speak about in the following
can also be seen as an entirety of all limit order traders of such markets.

When the market makers commit themselves to buy or sell at the prices
they publish, they face certain risks for which they are compensated by the
bid-ask spread. The risk can be decomposed mainly into two components:
inventory and information risk.

Inventory risk describes the risk that market makers or other liquidity
providers might accumulate large positive or negative inventories in the re-
spective asset and then prices move against them. In a continuous time
framework this was studied by Ho and Stoll [HS81] and, more recently, fur-
ther developed as optimal stochastic control problems by Avellaneda and
Stoikov [AS08], Guilbaud and Pham [GP13], Veraart [Ver10] and Cartea
and Jaimungal [CJ13] among others.

The second risk market makers take is information risk, i.e. the risk that at
least part of the customers have superior (or insider) information about the
hidden true value of the asset and trade strategically to their own advantage
and therefore to the disadvantage of the market maker. Thus, the market
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maker faces an adverse selection problem.

Although the nature of the two types of risk is quite different, their effects are
somehow similar. Namely, if a customer buys assets, the market maker will
most likely raise both his bid and his ask price. On the one hand, because
he wants to avoid further buying and stimulate the sell-side to control his
inventory, and on the other hand because he believes that the purchase of
the customer has conveyed some good news about the true value of the asset.
It seems therefore difficult to model both risks simultaneously.

1.2 Glosten-Milgrom prices

In this thesis, we concentrate on information risk, which was first studied
by Copeland and Galai [CG83] and more general and in continuous time by
Glosten and Milgrom [GM85], who describe the prices as expectations of a
hidden true value. This zero expected profit condition can be explained by
risk neutrality and perfect competition among market makers.

We develop a continuous time model in Chapter 4 that is very similar to the
one in Glosten and Milgrom [GM85]. The focus of this work is to discuss
existence and uniqueness of the price functions in a mathematically rigorous
way. Glosten and Milgrom who assume that these properties hold state in
their paper that “General existence of such functions would be difficult to
show, since it involves a ’rational expectations’ type fixed point condition”
(see [GM85, p. 79]).

Already in a static (or one-period) model that we discuss in Chapter 3
showing or disproving the existence or the uniqueness of Glosten-Milgrom
prices is a non-trivial issue and there are only a few substantial contributions.
Bagnoli, Viswanathan and Holden [BVH01] derive necessary and sufficient
conditions for the existence of a so-called linear equilibrium in a one-period
model with several strategically behaving insiders. Linearity means that,
after observing the size of the arriving market order, the market maker
quotes a price per share which is affine linear, but not constant, in the order
size. In contrast to our model, the market maker can thus draw conclusions
from the size of the order about the type of trader submitting the order. It
turns out that linear equilibria only exist in special cases.

Glosten and Milgrom describe the prices as the expectation of a true value
that does not change during the trading. As an extension we model the
true value as a Markov process with finite state space and again bid and
ask prices of the market maker are determined by the zero profit condition
given his information about the time-dependent true value of the asset. The
introduction of a true value process is to our knowledge new to the Glosten-
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Milgrom literature.

However, this information, i.e. the filtration, depends again on the prices
the market maker sets, thus he influences the learning environment by set-
ting bid and ask prices and there appears the aforementioned fixed point
problem. If, for example, the market maker sets a very large spread, there
will be only a small amount of trades on which he can base his estimation
of the true value. Mathematically this means that we are faced with a filter
problem w.r.t. a filtration that is not exogenously given but that is part
of the solution. The filtration depends on the bid and ask price processes
which have for their part to be predictable w.r.t. the filtration.

This predictability w.r.t. the filtration of the market makers partial infor-
mation is central to the idea of Glosten-Milgrom prices (although not for-
mulated in those words in their paper), since it means that prices have to be
set by the market maker before a customer can use the opportunity to trade.
Since the market maker can differentiate (by the two different prices) be-
tween buys and sells he anticipates the information gained by a forthcoming
trade in the prices and thus a spread emerges.

The predictability w.r.t. a dependent filtration is an essential difference to
other filter problems in market microstructure models with a not directly
observable true value of the asset where, however, also point processes are
used, see e.g. the article by Zeng [Zen03].

Filtering problems with an endogenous filtration appear in many arti-
cles, see Back [Bac92], Back and Baruch [BB04], Lasserre [Las04], Aase,
Bjuland, and Øksendal [ABØ12], and Biagini, Hu, Meyer-Brandis, and
Øksendal [BHMBØ12], among others. But the inherent fixed point problem
which is solved in a Brownian setting is fundamentally different (to the prob-
lem we solve) as accumulated purchases and sells are continuous processes
and new information arises continuously.

We show that Glosten-Milgrom bid and ask price processes are fixed points
of certain functionals acting on the set of stochastic processes and they are
given by some deterministic functions of the conditional probabilities of the
true value process (under the resulting partial information of the market
maker). The conditional probabilities can be obtained as the solution of a
system of SDEs.

To our knowledge there have been no previous results on the issue of exis-
tence and uniqueness in a continuous time model. Back and Baruch [BB04]
derive (in)equalities under which they prove the existence of an equilibrium
in the continuous time Gloston-Milgrom model with a strategically behaving
insider and two possible states of the true asset value. Then, it is shown
numerically that the (in)equalities obtain a solution and an equilibrium is
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constructed.

1.3 Insiders and the Kyle model

The Glosten-Milgrom prices are the expectation of a hidden true value given
the market maker’s information of past trades. This only makes sense if the
history is somehow connected with the true value, i.e. if customers behave
in such way that they transfer information to the market maker. However,
there also have to be some customers who behave irrationally, since otherwise
the profit of the market maker is strictly negative as was shown by Milgrom
and Stokey [MS82].

This decision making of the customers in our model is very similar to
Das [Das05, Das08], who also provides methods to simulate the Glosten-
Milgrom price process in a discrete time model and examines some statisti-
cal properties of the prices in the market model numerically. We explain the
mechanism and the corresponding noise parameter ε in detail in Chapter 3.

In this thesis we treat two cases, both in the static case and in continuous
time. Firstly, if we assume that the information is assigned smoothly to
all customers, which means that the noise parameter ε in our model has a
density and we further assume that this density fulfills certain conditions,
we can show in Chapter 5 that existence and uniqueness of Glosten-Milgrom
prices hold for this case as we showed in Kühn and Riedel [KR13].

Secondly, another idea concerning decision making is the concept of insiders
and noise traders, where the former have superior information of the true
value and the latter trade for exogenous reasons. We treat this case in Chap-
ter 6 and show that under certain conditions there are at least two possible
Glosten-Milgrom prices by constructing a counterexample to uniqueness.

This might be surprising and to some extent unpleasant since the distinc-
tion of insiders and noise traders is a common idea in market microstruc-
ture models. Actually, it is central to the second important information risk
model which was developed in the same year as the Glosten-Milgrom model
by Kyle [Kyl85]. In the one-period case noise traders (randomly) choose a
quantity they want to trade, then the insiders can decide how much they
want to trade while maximizing their profit from superior information. The
risk neutral market maker observes only the accumulated quantity and then
sets prices under a zero profit condition. Kyle shows that there is an equilib-
rium and also introduces a model with continuous trading which was further
developed by Back [Bac92].

There are several differences between the Kyle model and the Glosten-
Milgrom model. Quantity plays an essential role in the Kyle model and
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prices are determined after these quantities have been observed by the mar-
ket maker, while in Glosten-Milgrom models the prices are for a fixed num-
ber of assets (most of the time one) and the market maker can revise his
prices only after a trade. Also, Kyle models a single price process and can
therefore, in contrast to Glosten-Milgrom, not explain the bid-ask spread.

Interestingly, a connection between the Kyle model with continuous trading
and the Glosten-Milgrom model was established by Krishnan [Kri92] and
more general by Back and Baruch [BB04]. Çetin and Xing [ÇX13] generalize
these results and consider the Glosten-Milgrom-type model of Back and
Baruch in depth. For a strategically behaving insider who is able to react
on the noise trader’s action without being seen by the market maker they
show the existence of the Glosten-Milgrom equilibrium by constructing a
bridge proces.

1.4 Overview

In Chapter 2 we give a short introduction to the methods of the filtering
theory applied in this thesis.

In Chapter 3 we introduce the static model and discuss decision making
of the customers. We show existence and uniqueness for static Glosten-
Milgrom prices in the two cases we consider, namely, ’noise with density’
and the insider/noise trader model.

In the subsequent chapter we present a continuous time model of market
making which is the one we will work with in the subsequent part of the
thesis. We define admissible prices and characterize Glosten-Milgrom pricing
strategies in a rigorous way. Further we define the process of conditional
probabilities and characterize any solution of the pricing problem as a fixed
point of a functional on the stochastic processes.

Chapter 5 proves the existence and uniqueness in the case of ’noise with den-
sity’ and Chapter 6 gives a counterexample to uniqueness in the insider/noise
trader case.

In Chapter 7 we show that the prices converge to a true value, if the true
value does not change via a martingale convergence argument. In the final
chapter we show in some simulations how the spread depends on model
parameters and also via simulations we make a conjecture for the behavior
in a model related to ours.



Chapter 2

Filtering

During the proofs of this thesis we will rely on results in stochastic filtering
theory. In this chapter we will give a short overview about the innovations
approach of stochastic filtering. The chapter can be skipped by readers who
are familiar with it.

2.1 The filter equation

When we proof our main results we will heavily depend on filtering tech-
niques and the resulting filtering equations. In the following we want to give
a brief summary over this techniques in the context of our model. Thereby
we follow [Bré81], although our notation is different. Before we formulate
the main result of this chapter precisely in Theorem 2.4 we summarize the
idea of filtering.

In filtering problems there is an underlying process Z on a probability space
(Ω,F , P ) that is adapted to the filtration F = (Ft)t≥0.

However, we do not observe F but a smaller filtration G = (Gt)t≥0 with
Gt ⊂ Ft for all t ≥ 0. This filtration is generated by a process N , i.e.

Gt = σ(Ns, s ≤ t).

We call N the observation process. As the notation suggests we are here
considering observation processes that are point process. There are also
models of the Brownian motion-type. For a discussion of these cases we
refer to [BC08]. We develop the theory here for one-dimensional N . The
extension to the multidimensional case (that we use in the following chap-
ters) complicates notation significantly but can be obtained easily.

7



8 CHAPTER 2. FILTERING

We are interested in the estimate of Zt given the information conveyed by
N up to time t, hence we want to calculate

Ẑt = E[Zt|Gt].

The target is to derive a filter equation that describes how Ẑ changes over
time and when N changes. Hence the filter equation has the form

dẐt = ftdt+ htdNt,

where f and h are appropriate functions.

Obviously, this only makes sense if N carries some information about Z.
This information is assumed to be disturbed by some measurement noise
that also has a point process structure and which introduces more random-
ness into the model. In other words N is a (quite complex) function of Z
and the measurement noise. The aim of filtering is to filter out this noise.

We will now repeat some maybe well-known definitions and then formulate
the filtering result precisely in the subsequent theorem.

Definition 2.1. Let F = (Ft)t≥0 be a filtration on (Ω,F , P ). We say that
a real-valued process Y is an F-martingale if Y is adapted to F, if it is
integrable and if for all s, t ≥ 0 with s < t

E[Yt|Fs] = Ys P − a.s.

Definition 2.2. We say that the process Y is F-progressive (or F-pro-
gressively measurable) if for all t ≥ 0 the mapping on [0, t] × Ω defined
by (s, ω) 7→ Ys(ω) is B([0, t])⊗Ft-measurable.

Definition 2.3. Let N be a point process adapted to some filtration F and
let λ be a nonnegative F-progressive process such that for all t ≥ 0∫ t

0
λsds <∞ P − a.s.

If for all nonnegative F-predictable processes C it holds true that

E

[∫ ∞
0

CsdNs

]
= E

[∫ ∞
0

Csλsds

]
we say that N has F-intensity λ.

Theorem 2.4. Let there be given a complete probability space (Ω,F , P ) and
on it two filtrations F = (Ft)t≥0 and G = (Gt)t≥0 such that
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Gt ⊂ Ft, for all t ≥ 0, where Gt = σ(Ns, s ≤ t).

Thereby, N is a nonexplosive point process with F-intensity λ and G-
intensity λ̂. Let Z be real-valued, adapted to F, bounded and of the form

Zt = Z0 +

∫ t

0
fsds+mt,

where fs is a F-progressive process with

E

[∫ t

0
|fs|ds

]
<∞

and m is a F-martingale with mean 0 and with paths of bounded variation
on finite intervals. Then, there exists a càdlàg process Ẑ with

Ẑt = E[Zt|Gt] P -a.s.

for all t and

Ẑt = E[Z0] +

∫ t

0
f̂sds+

∫ t

0
Ks(dNs − λ̂sds), (2.1)

where f̂s is a G-progressive process satisfying

E

[∫ t

0
Csfsds

]
= E

[∫ t

0
Csf̂sds

]
(2.2)

for all nonnegative bounded G-progressive processes C and K is a G-
predictable process defined by

Kt = Ψ1,t −Ψ2,t + Ψ3,t,

where Ψ1,t,Ψ2,t,Ψ3,t are G-predictable and satisfy
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E

[∫ t

0
CsZsλsds

]
= E

[∫ t

0
CsΨ1,sλ̂sds

]
E

[∫ t

0
CsZsλ̂sds

]
= E

[∫ t

0
CsΨ2,sλ̂sds

]

E

 ∑
0<s≤t

Cs∆ms∆Ns

 = E

[∫ t

0
CsΨ3,sλ̂sds

] (2.3)

for all nonnegative bounded G-predictable processes C and all t ≥ 0. It holds
that Ψ2,t = Ẑt− and Ψ3,t = 0 if the observation N and the process Z never
jump at the same time a.s..

(2.1) is called the filter equation. We prove this Theorem in Lemmas 2.5,
2.8 and 2.9.

2.2 Proof of the filter equation

In a first step we consider the projection of Z on the smaller filtration G up
to a fixed time n ∈ N.

Lemma 2.5. (comp. [Bré81] IV, T1) Let the filtrations F and G be de-
fined as in Theorem 2.4 and let Z be an integrable real-valued process with
representation

Zt = Z0 +

∫ t

0
fsds+mt, (2.4)

where fs is a F-progressive process with

E

[∫ t

0
|fs|ds

]
<∞

and m is a F-martingale with mean 0. Let n ∈ N be fixed. Then there exists
a càdlàg process Ẑ = (Ẑt)t∈[0,n] with Ẑt = E[Zt|Gt] and

Ẑt = E[Z0] +

∫ t

0
f̂sds+ m̂n

t , (2.5)

where f̂s is a G-progressive process satisfying

E

[∫ t

0
Csfsds

]
= E

[∫ t

0
Csf̂sds

]
(2.6)
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for all nonnegative bounded G-progressive processes C and m̂n is a càdlàg
G-martingale, also with mean 0.

Proof. We define

Mn := E[Z0|Gn]− E[Z0] + E

[∫ n

0
fsds

∣∣∣∣Gn]− ∫ n

0
f̂sds+ E[mn|Gn] (2.7)

By [JS87], Theorem 1.42 (b) there exists a uniformly integrable, càdlàg
martingale m̂n such that

m̂n
t = E[Mn|Gt] (2.8)

for t ∈ [0, n]. Note that for this result the completion of the filtration (which
is not given here) is not necessary and that the authors include the property
to be càdlàg in the definition of martingales (see Definition 1.36 in [JS87]).

We now want to show that m̂n
t has the form

m̂n
t = E[Z0|Gt]− E[Z0] + E

[∫ t

0
fsds

∣∣∣∣Gt]− ∫ t

0
f̂sds+ E[mt|Gt], (2.9)

since this is equivalent to

E

[
Z0 +

∫ t

0
fsds+mt

∣∣∣∣Gt] = E[Z0] +

∫ t

0
f̂sds+ m̂n

t ,

which proves (2.5) and hence the lemma. Note that here the version of
t 7→ E[Zt|Gt] depends technically on n, thus we denote them by Ẑn. But
we can define a right-continuous version of E[Zt|Gt] on R+ by piecing this
Versions together via

Ẑt =
∑
n∈N

Ẑnt 1{n−1≤t<n}.

Also it is clear that m̂n
0 = 0 and hence we have a mean 0 martingale. To

see (2.9) we consider the first, second and last term of Mn that is defined
in (2.7) and it is clear that

E [E[Z0|Gn]− E[Z0] + E[mn|Gn]| Gt] = E[Z0|Gt]− E[Z0] + E[mt|Gt]
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Hence, it remains to show that for t < n it holds that

E

[
E

[∫ n

0
fsds

∣∣∣∣Gn]− ∫ n

0
f̂sds

∣∣∣∣Gt] = E

[∫ t

0
fsds

∣∣∣∣Gt]− ∫ t

0
f̂sds,

which is equivalent to

E

[∫ n

0
fsds−

∫ t

0
fsds

∣∣∣∣Gt] = E

[∫ n

0
f̂sds−

∫ t

0
f̂sds

∣∣∣∣Gt] ,
since f̂ is G-progressive. This again holds true iff for all A ∈ Gt

E

[
1A

∫ n

t
fsds

]
= E

[
1A

∫ n

t
f̂sds

]
,

or iff for Cs(ω) = 1A(ω)1(t,n](s)

E

[∫ n

0
Csfsds

]
= E

[∫ n

0
Csf̂sds

]
.

Since C is a nonnegative bounded G-progressive processes this holds by (2.6)
and the proof is completed.

The existence of f̂ can be secured since it can be defined as a Radon-
Nikodym derivative. This definition is independent of n in the last lemma.
Therefore, consider the progressive σ-Algebra on R+ × Ω that we denote
by ProgG and which contains all sets P ⊂ R+ × Ω such that the indicator
function 1{(t,ω)∈P} is progressively measurable in the sense of Definition 2.2.
Further we have the two measures

µ2(dt× dω) = ft(ω)dtP (dω)

and

µ1(dt× dω) = dtP (dω).

We then can define f̂ as the derivative of µ2 with respect to µ1, where we
restrict both measures to the progressive σ-Algebra, hence

f̂ :=
dµ2|ProgG
dµ1|ProgG

.
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For C G-progressive we obtain

E

[∫ t

0
Csf̂sds

]
=

∫
[0,t]×Ω

Cf̂dµ1 =

∫
[0,t]×Ω

Cdµ2 = E

[∫ t

0
Csfsds

]
.

If there is a version of s 7→ E[fs|Gs] that is G-progressively measurable, then
this version can be choosen as f̂ . For details see [Bré81], remarks (α)− (γ).

(2.5) already describes the structure of the filter equation (2.1) in the fi-
nal form. The remaining task lies in the characterization of m̂n and the
generalization to R+.

To do this we firstly remark that in Theorem 2.4 we assume that N has an
intensity. The following lemma states that this intensity can be assumed to
be predictable.

Lemma 2.6. (comp. [Bré81] II, T13) Let N be a point process with F-
intensity λ. Then one can find an F-intensity λ̃ that is predictable.

Proof. Define λ̃ as the Radon-Nikodym derivative of the restriction on the
predictable sigma-field on F of P (dω)λt(ω)dt with respect to the restriction
on the predictable sigma-field on F of P (dω)dt. It follows that λ̃ is an
intensity and F-predictable.

Given this (predictable) intensity we can define

M̂t := Nt −
∫ t

0
λ̂sds. (2.10)

It can be seen easily that M̂ is a martingale with mean 0 that also generates
G. We will represent m̂n by this martingale with the use of a martingale
representation theorem. We state a common form (without the complex and
technical proof) in the following.

Theorem 2.7. (comp. [Bré81] III, T9) Let N be a nonexplosive point pro-
cess and the filtration G = (Gt)t≥0 given by Gt = σ(Ns, s ≤ t). Suppose
that N has the G-predictable intensity λ̂. Now let M be a right-continuous
G-martingale of the form Mt = E[M∞|Gt], where M∞ is some integrable
random variable. Then for each t ≥ 0

Mt = M0 +

∫ t

0
Hs(dNs − λ̂sds) P − a.s., (2.11)

where Hs is a G-predictable process such that for all t ≥ 0
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∫ t

0
|Hs|λ̂sds <∞ P − a.s.

We will apply this theorem in the following to the process m̂n from (2.5).
Two important requirements are fulfilled for this setting. Firstly, there exists
a terminal random variable, which is given by Mn in (2.7). Secondly, the
martingale m̂n is right-continuous by its definition in (2.8).

Both points seem to be difficult to fulfill if one tries to treat the problem on
R+ since the existence of a terminal random variable is hard to establish.
As a consequence also the right-continuity turns out to be problematic since
G0 does not contain all P -null sets of G. Hence, the usual assumptions that
are subsumed under the “usual conditions” are not fulfilled.

However, in the following Lemma we are able to proof a martingale repre-
sentation on R+.

Lemma 2.8. There exists G-predictable process K such that for all t ≥ 0

∫ t

0
|Ks|λ̂sds <∞ P − a.s. (2.12)

and

Ẑt = E[Z0] +

∫ t

0
f̂sds+

∫ t

0
Ks(dNs − λ̂sds) P − a.s.

for all t ≥ 0.

Proof. Again, we first consider the situation on I := [0, n] for n ∈ N. By
Lemma 2.5 we have that

Ẑt = E[Z0] +

∫ t

0
f̂sds+ m̂n

t ,

for all t ∈ I, where m̂n is a G-martingale. Now, by Theorem 2.7 there exists
a G-predictable process Hn on I with∫ t

0
|Hn

s |λ̂sds <∞ P − a.s.

and

m̂n
t = m̂n

0 +

∫ t

0
Hn
s (dNs − λ̂sds) P − a.s.,



2.2. PROOF OF THE FILTER EQUATION 15

for all t ∈ I. Since m̂n has mean zero we have that

m̂n
t =

∫ t

0
Hn
s (dNs − λ̂sds) P − a.s.,

again for all t ∈ I. Now define K on R+ by

Kt :=
∑
n∈N

Hn
t 1{n−1<t≤n}.

Then K is G-predictable and it is clear that (2.12) holds.

For t ≥ 0, let l := sup{n ∈ N|n < t}. Then

Ẑt = E[Z0] +

∫ t

0
f̂sds+ m̂l+1

t ,

As m̂0
0 = 0 and for k, n ∈ N with k < n it holds by (2.9) that m̂n

k = m̂k
k

P -a.s. we have

m̂l+1
t = m̂l+1

t +

(
l∑

n=0

−m̂n+1
n + m̂n

n

)

= m̂l+1
t − m̂l+1

l +

(
l∑

n=1

m̂n
n − m̂n

n−1

)

=

∫ t

0
H l+1
s (dNs − λ̂sds)−

∫ l

0
H l+1
s (dNs − λ̂sds)

+
l∑

n=1

∫ n

0
Hn
s (dNs − λ̂sds)−

∫ n−1

0
Hn
s (dNs − λ̂sds)

=

∫ t

l
H l+1
s (dNs − λ̂sds) +

l∑
n=1

∫ n

n−1
Hn
s (dNs − λ̂sds)

=

∫ t

0
Ks(dNs − λ̂sds)

which proofs the lemma.

The remaining task is to show that the innovations gain K satisfies (2.3).
We do this in the following Lemma and thus conclude the proof of Theorem
2.1.
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Lemma 2.9. The innovations gain K that exists by Theorem 2.8, i.e. the
G-predictable process such that Ẑ satisfies

Ẑt = E[Z0] +

∫ t

0
f̂sds+

∫ t

0
Ks(dNs − λ̂sds), (2.13)

is given by

Kt = Ψ1,t −Ψ2,t + Ψ3,t, (2.14)

where Ψ1,t,Ψ2,t,Ψ3,t satisfy

E

[∫ t

0
CsZsλsds

]
= E

[∫ t

0
CsΨ1,sλ̂sds

]
E

[∫ t

0
CsZsλ̂sds

]
= E

[∫ t

0
CsΨ2,sλ̂sds

]

E

 ∑
0<s≤t

Cs∆ms∆Ns

 = E

[∫ t

0
CsΨ3,sλ̂sds

] (2.15)

for all nonnegative bounded G-predictable processes C and all t ≥ 0.

The functions Ψi, i = 1, 2, 3 exist since they can be defined as Radon-
Nikodym derivatives. With this definition it can be seen that they are also
unique in the class of predictable processes.

Proof. Since the existence of K and the Ψi is given, it only remains to show
that (2.14) holds true. We first consider a process U of the form

Ut :=

∫ t

0
HsdM̂s

where H is a G-predictable process such that U is a bounded G-martingale
that satisfies E[

∫ t
0 |HsKs|λ̂sds] < ∞ for all t ≥ 0. We will later consider a

concrete choice for H. It holds that

E [ZtUt] = E
[
ẐtUt

]
, (2.16)

since
E [ZtUt] = E [E [ZtUt|Gt]] = E [E [Zt|Gt]Ut] = E

[
ẐtUt

]
.

We now derive both sides of (2.16). By integration by parts for functions
with bounded variation on finite intervals we obtain
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ZtUt =

∫ t

0
Zs−dUs +

∫ t

0
UsdZs

=

∫ t

0
Zs−HsdM̂s +

∫ t

0
Us(dms + fsds)

=

∫ t

0
Zs−Hs(dNs − λ̂sds) +

∫ t

0
Usfsds+

∫ t

0
Usdms

=

∫ t

0
Zs−Hs(dNs − λsds) +

∫ t

0
Zs−Hs(λs − λ̂s)ds

+

∫ t

0
Usfsds+

∫ t

0
Us−dms +

∑
s≤t

Hs∆Ns∆ms

Since the first and the fourth term are martingales we obtain

E[ZtUt] = E

[∫ t

0
Usfsds

]
+ E

∫ t

0
Zs−Hs(λs − λ̂s)ds+

∑
s≤t

Hs∆Ns∆ms

 ,
and by the definition of the Ψi in (2.15) we have

E[ZtUt] = E

[∫ t

0
Usfsds

]
+ E

[∫ t

0
Hs(Ψ1,s −Ψ2,s + Ψ3,s)λ̂sds

]
. (2.17)

In the same way we consider ẐU and obtain

ẐtUt =

∫ t

0
Ẑs−dUs +

∫ t

0
UsdẐs

=

∫ t

0
Ẑs−HsdM̂s +

∫ t

0
Us(KsdM̂s + f̂sds)

=

∫ t

0
Ẑs−HsdM̂s +

∫ t

0
Usf̂sds+

∫ t

0
UsKsdM̂s

=

∫ t

0
Ẑs−HsdM̂s +

∫ t

0
Usf̂sds+

∫ t

0
Us−KsdM̂s +

∑
s≤t

HsKs∆Ns

Again the first and third term are martingales and we have
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E
[
ẐtUt

]
= E

∫ t

0
Usf̂sds+

∑
s≤t

HsKs∆Ns

 ,
and since N has intensity λ̂ (comp. Definition 2.3) we get

E
[
ẐtUt

]
= E

[∫ t

0
Usf̂sds

]
+ E

[∫ t

0
HsKsλ̂sds

]
.

By (2.16), (2.17) and (2.2) we obtain

E

[∫ t

0
HsKsλ̂sds

]
= E

[∫ t

0
Hs(Ψ1,s −Ψ2,s + Ψ3,s)λ̂sds

]
(2.18)

for all t ≥ 0 and all H as described at the brginning of the proof. We now
consider H of the form

Ht = Ct1{t≤Sn},

where C is any nonnegative bounded G-predictable process and Sn is a
G-stopping time defined by

Sn := inf{t ≥ 0|Nt ≥ n or

∫ t

0
(1 + |Ks|)λ̂sds ≥ n}

Since this H fullfils the requirements and since (2.18) holds true for all
nonnegative bounded G-predictable process C we have that

Kt(ω)1{t≤Sn(ω)} = (Ψ1,t(ω)−Ψ2,t(ω)+Ψ3,t(ω))1{t≤Sn(ω)} ν(dt×dω)−a.e.

for all n, where ν(dt × dω) = λ̂t(ω)dtP (dω) or dNt(ω)P (dω). For n → ∞
and thus Sn →∞ P -a.s. we obtain the result of the Lemma.



Chapter 3

Glosten-Milgrom prices in a
static model

The aim of this thesis is to consider Glosten-Milgrom prices in continuous
time, as they were introduced in the original paper [GM85]. It is, however,
very useful to examine another situation first which we call the static model.

In this model a market maker or specialist is obligated to publish a bid
and an ask price, i.e. two real numbers, at which he will buy or sell the
asset respectively. His counterpart is a potential customer who can decide
whether he accepts one of the offers to trade given his information about a
true value of the asset. The customer may decide not to trade at all, but will
never accept both offers, since the ask price will be always higher than or
equal to the bid price (otherwise the market maker will suffer a secure loss).
Note that, even though the order of actions (price-setting of market maker,
reaction of customer) is fixed, there is no time dimension in the model, thus,
we call it static.

We describe the decision making of both market participants in the first
section of this chapter and also discuss the economic motivation and impli-
cations in detail, since they are also valid for the continuous time model.
The decision making of the customers depends on a random variable ε. In a
second section we will show that for some choices of ε the price setting ratio-
nale of the market maker does not have a solution or its result is not unique.
In the then following two sections we consider two explicit choices for ε, first
a model where ε has a density that fulfills certain conditions and then the
so called insider/noise trader model. In both models we show existence and
uniqueness of the market makers prices.

19
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3.1 The static model

Let X be a real-valued random variable which represents the true value of
the asset. We assume that X is unknown to all market participants, but
the customer has a disturbed valuation given by X + ε, where the random
variable ε is R ∪ {±∞}-valued and independent of X. The market maker
only knows the distribution of X and ε.

In the continuous time model that we present in the subsequent chapters
we assume that the corresponding process (Xt)t≥0 has finite state space
{x1, . . . , xn} ⊂ R, n ≥ 2 where xmin = x1 < . . . < xn = xmax. Hence this
case is of special interest here. In this chapter, unless otherwise stated, we
assume X to be a real-valued random variable.

For the rest of this chapter we will only consider ask prices, since a theory
for bid prices can be developed completely analogous and the both sides of
the market do not interfere with each other. Sometimes we will, however,
introduce some notation for the bid side of the market that will be used
later.

We assume that a potential customer buys if his valuation is higher than
the ask price s, i.e. if X + ε ≥ s. Thus, the profit of the market maker is
given by

(s−X)1{X+ε≥s}.

The central idea of the Glosten-Milgrom model is, that motivated by risk-
neutrality and perfect competition, the price-setting must satisfy a zero-
expected-profit condition.

Definition 3.1. We say that s is a static Glosten-Milgrom ask price if

E[(s−X)1{X+ε≥s}] = 0. (3.1)

Before we proceed and think about existence and uniqueness of such prices
we want to make some comments on the economic motivation and implica-
tions of this model.

Firstly, we remark that risk-neutrality means that the market maker values
the possible profit (s−X)1{X+ε≥s} with this number and not with

u
(
(s−X)1{X+ε≥s}

)
,

where u is some concave risk-measure.
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Further, the zero-expected-profit condition (3.1) is motivated by perfect
competition, since market makers are assumed to undercut each others prices
as long as they make a profit in expectation. The rationale of this assump-
tion is explained in depth in [O’H07, p. 60]. The concept of perfect compe-
tition thus requires a multitude of market makers that compete with each
other. Throughout this work we will however only speak of “the” market
maker. We can justify this by the following considerations. If there are per-
fectly competitive market makers, they will all quote the same competitive
zero-expected-profit prices. If the customer chooses one of the market mak-
ers independently from his valuation of the true value this does not influence
the price-setting of the market maker(s) at all. Since we do not allow the
market makers to interact in our model we can also just consider one market
maker that fills all trades.

Another point we need to comment is the decision making of the customers.
We remark that we follow Das [Das05] in defining a buy to occur if X+ε ≥ s.
In the original Glosten-Milgrom paper [GM85] a buy occurs if ρE[X|A] ≥
s, where ρ is an independent random variable which plays the role of ε
in our model, even though in a multiplicative instead in an additive way.
The sigma-algebra A represents the partial information of the insider. For
A = σ(X), the models, including possible interpretation of ε and ρ, are
quite similar. This interpretation can be given in two ways. ε or ρ can be
seen as an error in the valuation process of the customers. A large ε or ρ
then represents an overvaluation because of a mistake. A high variance (if
existing) then means that the customers spend not much effort or are not
able to estimate the value of the asset correctly. Moreover, a large ε or ρ
can be seen as the result of the impatience of the customer. Although he
might know the value of the asset correctly he overvalues the asset knowingly
because he is impatient to buy it at that very moment. In other words, he
has a high demand in the buy side liquidity provided by the market maker,
for example because he needs to buy a certain amount of assets in a fixed
period and he does not know when his next opportunity to trade will come.
A high variance then means that there is more impatience in the market.

The definition of the behavior of the customer in a situation where his
valuation exactly matches the price of the market maker is a question of
taste. We assume that the customer still buys. The whole model would also
make sense if we define a buy to occur if X + ε > s.

We also note that the behavior of the customer is not rational. A rational
exploitation of the given information would be to buy if

E[X|X + ε] ≥ s.

A high realization of X + ε might simply mean that ε is large, which the
costumer may be well aware of if he knows the distributions of X and ε
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separately. It was shown by Milgrom and Stokey [MS82] that there has to
be some irrational behavior for a price to exist, since otherwise we end up
with a no-trade equilibrium.

Finally, note that the volume of each trade is set to one. Hence, we ignore
any volume effect.

3.2 Existence, uniqueness and counterexamples

We now turn to the question whether solutions to (3.1) exist and if so,
whether they are unique. Generally this question is more difficult to answer
than it might look at first sight. It seems that a general statement is hard
to formulate, but the numerical simulations that we carried out seemed to
support the quite vague statement that a Glosten-Milgrom price exists and
is unique if the tails of ε are “heavy enough“ in comparison to those of X. In
other words, there need to be enough badly informed or impatient customers
who are prepared to offset the possible losses that the market maker might
make due to his imprecise knowledge of the true value X.

We will not further discuss this matter in a general way. In the following we
will only consider two choices of ε: The model where ε has a density and the
insider/noise trader model in the subsequent sections. But first we give two
simple examples that show cases of nonexistence and non-uniqueness. In the
one for nonexistence we assume that the customers are perfectly informed.

Example 3.2. Let ε = 0 and X not essentially bounded from above. Then
there exist no s ∈ R+ with

E[(s−X)1{X≥s}] = 0,

since the integrand is always non-positive and negative with positive prob-
ability. For ε = 0 and X essentially bounded by xmax only s = xmax is a
(trivial) solution.

But also if Glosten-Milgrom prices exist the question of uniqueness is not
trivial as the following simple example shows.

Example 3.3. Let

ε =

{
1 with probability 1

2

−1 1
2

and

X =

{
1 with probability 3

4

3 1
4
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Then the static Glosten-Milgrom ask price is not unique.

To see this we check (3.1) for s = 3, which is a trivial solution, and s = 9
5

and obtain

E

[(
9

5
−X

)
1{X+ε≥ 9

5
}

]
=

(
9

5
− 1

)
3

4

1

2
+

(
9

5
− 3

)
1

4
=

4

5

3

8
− 6

5

1

4
= 0

Before we will discuss the question of existence and uniqueness in the model
where ε has a density and the insider/noise trader model we want to make
some general definitions that help to characterize this problem and will be
also central in the subsequent chapters.

Definition 3.4. We indicate the distribution of X by π. For s such that
P [X + ε ≥ s] > 0 we define

g(s, π) := E[X|X + ε ≥ s] :=
E
[
X1{X+ε≥s}

]
P [X + ε ≥ s]

,

where E is according to π. In the same way we define for later use

h(s, π) := E[X|X + ε ≤ s] :=
E
[
X1{X+ε≤s}

]
P [X + ε ≤ s]

,

for all s such that P [X + ε ≤ s] > 0.

In most situations in this chapter π will be fixed and thus we will sometimes
omit it. As mentioned earlier we are most interested in the case where X
has a finite state space {x1, . . . , xn}. We then can think of π = (πi)i=1..n

simply as a vector of probabilities P [X = xi] = πi.

A central point of proving existence and uniqueness in the static as well as
in the continuous time model lies in the fact that the zero-profit condition
(3.1) of the static Glosten-Milgrom ask prices translates to a fixed point
problem in the following sense.

Lemma 3.5. If π is given and g is well-defined (i.e. P [X + ε ≥ s] > 0),
then s is a static Glosten-Milgrom ask price (a solution of (3.1)) iff it is a
fixed point of g, i.e.

g(s, π) = s.

Proof. This can be seen by the fact that

g(s, π) =
E
[
X1{X+ε≥s}

]
P [X + ε ≥ s]

= s
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is equivalent to

E
[
X1{X+ε≥s}

]
= E

[
s1{X+ε≥s}

]
,

which gives (3.1).

If the Glosten-Milgrom price exists and is unique we can describe them also
as a function of the distribution π.

Definition 3.6. If for a class of distributions Π of X the Glosten-Milgrom
ask price exists and is unique for all π ∈ Π, we define G : Π 7→ R by

G(π) = s

where s solves (3.1) or, if g is well-defined,

g(s, π) = s.

In the same way and under analog conditions we define H to be the function
that maps the distribution π of X to its corresponding Glosten-Milgrom bid
price H(π).

3.3 Noise with density

We will now consider the case where the distribution of the noise ε has
a density that satisfies some conditions. This is a more general version of
Das [Das05] who assumes ε to be normally distributed. Moreover, we assume
that the true value X is bounded in both directions. We formulate the next
Lemma that secures that g in Definition 3.4 is well-defined for s ≤ xmax.

Lemma 3.7. Let X be bounded between xmin and xmax a.s. and define
C := xmax−xmin. Let Φ(y) := P [ε ≥ y] be the inverted distribution function
of ε. If Φ is differentiable (i.e. the distribution of ε has density −Φ′) on
[−C,C], Φ(0) > 0 and

−Φ′(y) ≤ K

C
Φ(y) (3.2)

for all y ∈ [−C,C] and a constant K < 1, it follows that Φ(C) > 0, which
implies that P [X+ ε ≥ s] > 0 i.e. the probability that a buy occurs is strictly
larger than 0 for all prices s ≤ xmax.
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Proof. Note that Φ is in [0, 1] and decreasing by definition. We have

Φ(C) =

∫ C

0
Φ′(t)dt+ Φ(0)

≥ K

C

∫ C

0
−Φ(t)dt+ Φ(0)

≥ −K
C
CΦ(0) + Φ(0)

≥ (1−K)Φ(0)

> 0

since K < 1 and Φ(0) > 0. Furthermore we have

P [X + ε ≥ s] = P [ε ≥ s−X] ≥ P [ε ≥ xmax − xmin] = Φ(C) > 0.

Under the same assumptions as of Lemma 3.7 we can now give a first state-
ment of existence and uniqueness.

Theorem 3.8. Let all assumptions of Lemma 3.7 be fulfilled. Then there
exists an unique static Glosten-Milgrom ask price in [xmin, xmax].

Proof. Since π is fixed we omit it. We consider the derivative of

g(s) = E[X|X + ε ≥ s] =
E[XΦ(s−X)]

E[Φ(s−X)]

for xmin ≤ s ≤ xmax which is given by

g′(s) =
EX [XΦ′(s−X)]EZ [Φ(s− Z)]− EZ [ZΦ(s− Z)]EX [Φ′(s−X)]

(EX [Φ(s−X)])2

=
EX [EZ [XΦ′(s−X)Φ(s− Z)− ZΦ(s− Z)Φ′(s−X)]]

EX [EZ [Φ(s−X)Φ(s− Z)]]

=
EX [EZ [−Φ′(s−X)Φ(s− Z)(Z −X)]]

EX [EZ [Φ(s−X)Φ(s− Z)]]

≤ EX [EZ [−Φ′(s−X)Φ(s− Z)|Z −X|]]
EX [EZ [Φ(s−X)Φ(s− Z)]]

≤ CEX [EZ [−Φ′(s−X)Φ(s− Z)]]

EX [EZ [Φ(s−X)Φ(s− Z)]]

≤ CK
C

EX [EZ [Φ(s−X)Φ(s− Z)]]

EX [EZ [Φ(s−X)Φ(s− Z)]]

= K
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Hence, 0 ≤ g′(s) ≤ K < 1 for all s ∈ [xmin, xmax] and therefore

|g(s)− g(t)| ≤ K|s− t|. (3.3)

This implies that g is a contraction which has a unique fixed point by the
Banach fixed-point theorem. Together with Lemma 3.5 this yields the The-
orem.

For parametric classes of distributions of ε the central condition (3.2) can
usually be secured by choosing parameters such that the variance is high.
In economic terms this corresponds to informed traders whose information
is less precise. Since we need the differentiability only on [−C,C], it is still
possible that ε takes the values ±∞.

Note that we make no assumptions on the distribution of X apart from the
boundedness but quite explicit assumptions on the distribution of ε. The
fact that we have existence and uniqueness for a whole class of distributions
will be central in the continuous time model. This also implies that the
functions G and H from Definition 3.6 are well-defined on all distributions
such that X is bounded between xmin and xmax .

We have already seen that g is Lipschitz-continuous in s with parameter
K < 1 in (3.3). If X has finite state space we further obtain Lipschitz-
continuity in the distribution π in the following sense.

Lemma 3.9. Let all assumptions of Lemma 3.7 be fulfilled. In addition
assume that X takes only finitely many values, i.e. there exist xmin = x1 <
... < xn = xmax and π = (π1, ..., πn) such that P [X = xi] = πi for all i and∑n

i=1 πi = 1. Then

|g(s, π)− g(s̃, π̃)| ≤ K|s− s̃|+ L
n∑
i=1

|πi − π̃i|

for K from (3.2) and L = 2xmax
Φ(C)2

< ∞, all s, s̃ ∈ [xmin, xmax] and all distri-

butions π, π̃.

Proof. First, we see that

|g(s, π)− g(s̃, π̃)| = |g(s, π)− g(s, π̃) + g(s, π̃)− g(s̃, π̃)|
≤ |g(s, π)− g(s, π̃)|+K|s− s̃|

by (3.3). It remains to show that

|g(s, π)− g(s, π̃)| ≤ L
n∑
i=1

|πi − π̃i|.
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To shorten notation we write

α(f(X), π) := E[f(X)Φ(s−X)] =

n∑
i=1

πif(xi)Φ(s− xi).

Hence, we have

g(s, π) =
α(X,π)

α(1, π)

and

|g(s, π)− g(s, π̃)| =
∣∣∣∣α(X,π)

α(1, π)
− α(X, π̃)

α(1, π̃)

∣∣∣∣
=
|α(X,π)α(1, π̃)− α(X, π̃)α(1, π)|

α(1, π)α(1, π̃)

≤|α(X,π)α(1, π̃)− α(X,π)α(1, π)|
α(1, π)α(1, π̃)

+
|α(X,π)α(1, π)− α(X, π̃)α(1, π)|

α(1, π)α(1, π̃)

=
|α(X,π)

∑n
i=1(π̃i − πi)Φ(s− xi)|

α(1, π)α(1, π̃)

+
|α(1, π)

∑n
i=1(πi − π̃i)xiΦ(s− xi)|
α(1, π)α(1, π̃)

≤L
n∑
i=1

|πi − π̃i|.

The last inequality follows from xiΦ(s− xi) ≤ xmax <∞ and Φ(s− xi) ≤ 1
for all i and α(1, π) ≥ Φ(s− xmin) ≥ Φ(C) > 0. This proofs the lemma.

Lemma 3.10. Let all assumptions of Lemma 3.9 be fulfilled. Then G is
Lipschitz-continuous.

Proof. Let s, s̃ by such that G(φ) = s, i.e. g(s, φ) = s and G(φ̃) = s̃. We
have

|s− s̃| =
∣∣∣g(s, φ)− g(s̃, φ̃)

∣∣∣
≤K|s− s̃|+ L

n∑
i=1

|φi − φ̃i|
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by Lemma 3.9, where K < 1 and L <∞. By rearranging we get

|G(φ)−G(φ̃)| = |s− s̃| ≤ L

1−K

n∑
i=1

|φi − φ̃i|.

It is easy to see, that the restrictions 1 > Φ(0) and

−Φ′(y) ≤ K̃

C
(1− Φ(y))

for all y ∈ [−C,C] and a constant K̃ < 1 (together with the differentiability
of Φ) are those that we need to obtain unique static Glosten-Milgrom bid
prices and similar results to Lemma 3.9 for h and Lemma 3.10 for H. If we
merge this with the assumptions of Lemma 3.7 this results in exactly the
assumptions of Theorem 5.1 which states existence and uniqueness in the
continuous time model.

3.4 Insider and noise trader

Another classical approach in insider information models such as the Kyle-
model [Kyl85] is to assume that there are two types of customers. On the
one hand there are insiders that know the exact value of the asset, thus
ε = 0 and there are noise traders that trade for exogenous liquidity reasons
and whose behavior does not depend on the quoted prices. This results in
ε = ±∞ since they buy (or sell) at every price. However, it is not known to
the market maker which sort of customer he is trading with, but only the
distribution of the two (or three) types. Hence, for µ, ν ∈ (0, 1) we consider
the distribution

ε =


∞ with probability µ

0 ν

−∞ 1− µ− ν.
(3.4)

This model describes a limiting case of the model we considered in the
last section where customers have all kinds of noise or preference in their
valuation. The advantage of this modelling is that the irrationality is clearly
assigned to the noise traders that trade in any case, i.e. for every value of X
and more important at any price. The insiders behave rational, since they
maximize their profit at every opportunity to trade, which is then (for a
buy) given by
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(X − s)1{X≥s}.

This rationality is a fundamental requirement when we think about the opti-
mal behavior of the insiders, which is the aim of all the Kyle-type literature.

However, it is questionable whether the distinction between the two groups
is so clear in real markets. Also it seems an unnatural hard assumption
that the only source of less demand at higher prices on the buy side are
insiders that are offset by these higher prices. It seems plausible that also
the liquidity demand of the noise trader is influenced by the prices.

Let us remark that g from Definition 3.4 is well defined, since

P [X + ε ≥ s] ≥ P [ε =∞] = µ > 0

for all s. However, let X have some atom at x, i.e. P [X = x] = p > 0, then

g(x, π) =
µE[X] + νpx+ νE[X1{X>x}]

µ+ νp+ νP [X > x]
(3.5)

and for δ > 0

g(x+ δ, π) =
µE[X] + νE[X1{X≥x+δ}]

µ+ νP [X ≥ x+ δ]
. (3.6)

For δ → 0 the last terms of the numerator and denominator of (3.6) tend to
those of (3.5). As the terms resulting from x do not appear this shows that
g is not even continuous. Hence it is neither Lipschitz nor a contraction.
Thus, we cannot argue as in Theorem 3.8 where we used the Banach fixed-
point theorem. It is nevertheless possible to show existence and uniqueness
with different methods.

Theorem 3.11. Let ε be as in (3.4) and X integrable. Then there exists
an unique static Glosten-Milgrom ask price.

Proof. If we consider (3.1) for the given ε we have

E[(s−X)1{X+ε≥s}] = µ(s− E[X]) + νE[(s−X)1{X≥s}] = 0

which is equivalent to

s = E[X] +
ν

µ
E[(X − s)1{X≥s}]. (3.7)
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Thus, here the question of existence and uniqueness is equivalent to the
question whether

f(s) = E[X] +
ν

µ
E[(X − s)1{X≥s}]

has a unique fixed point. For s < t we have

f(s)− f(t) =
ν

µ
E[(X − s)1{X≥s} − (X − t)1{X≥t}]

=
ν

µ
E[(X − s)1{X≥s} − (X − s)1{X≥t} + (t− s)1{X≥t}]

=
ν

µ
E[(X − s)1{0≤X−s<t−s} + (t− s)1{X−t≥0}].

(3.8)

It follows that f(s)− f(t) ≥ 0 which implies that f is decreasing. Further-
more f is continuous, since

|f(s)− f(t)| = ν

µ
E[(X − s)1{0≤X−s<t−s} + (t− s)1{X−t≥0}]

≤ ν

µ
(t− s)E[1{0≤X−s<t−s} + 1{X−t≥0}]

≤ 2
ν

µ
|s− t|.

Hence, there exists a unique solution of (3.7) and an unique static Glosten-
Milgrom ask price.

Note that for any distribution π of X the expression G(π) from Definition
3.6 is well-defined and it satisfies

G(π) = E[X] +
ν

µ
E[(X −G(π))1{X≥G(π)}]

where E is according to π. This equation has the very nice interpretation,
that the Glosten-Milgrom ask price is the expectation of X plus some term
that contains the ratio of uniformed and insiders and an expectation of the
possible losses if the market maker trades with an insider.



Chapter 4

The continuous-time model

In this chapter we will introduce the general continuous time model in the
first section. For the rest of this thesis we will discuss this model. We
then characterize the Glosten-Milgrom pricing strategies (GMPS) in two
equivalent ways in Definition 4.4 and Theorem 4.5 in the second section. In
the third section we introduce the process of conditional probabilities and
derive the associated filter equations in Lemma 4.10 with the help of the
results in Chapter 2. Finally, we describe the GMPS as a fixed point of
some functional F that is defined on the admissible pricing strategies (see
Theorem 4.14).

4.1 The general framework

In the following we will develop a general model in continuous time for a
specialist market, i.e. a market where a market maker or specialist offers to
buy or sell at any point in time to the bid and ask prices he quotes.

All random variables that we introduce live on the probability space
(Ω,F , P ) whereas different filtrations are considered. We assume that the
càdlàg process X = (Xt)t≥0, interpreted as the time-dependent true value
of the asset, is a time-homogeneous Markov process with finite state space
{x1, . . . , xn}, n ≥ 2 where xmin = x1 < . . . < xn = xmax, and has transition
kernel

q(i, j) := lim
t→0

1

t
P [Xt = xj | X0 = xi] (4.1)

for i 6= j and q(i, i) = −
∑

j 6=i q(i, j).

The market maker knows the distribution of X but does not know the actual

31
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value. The only source of information which is available to the market maker
are the trades that take place at the prices he sets.

To model the customer flow, let N be a Poisson process with rate λ > 0.
We denote the ordered jump times of N by τ1 < τ2 < τ3 . . .. We assume
that at these times potential customers arrive at the market (unseen by the
market maker). As in the static model the customers have some disturbed
information about the true value of the asset which is given by Xτi + εi for
the i-th customer where (εi)i∈N is a sequence of i.i.d. random variables. We
assume that X, N , and (εi)i∈N are independent of each other.

We further assume that the market maker sets a pair of prices according
to an F ⊗ B([0,∞))-measurable mapping S : Ω × [0,∞) → R2. We write
S = (S, S) to denote ask and bid prices and we only admit prices with
St(ω) > St(ω) for all (ω, t). To be economically meaningful the strategy S
has to satisfy some predictability condition that will be given in Definition
4.3.

A potential customer buys one asset if Xτi + εi ≥ Sτi and sells one asset if
Xτi + εi ≤ Sτi . He does nothing if his valuation is within the spread. The
motivation of this behavior is the same as in the static case. We studied its
interpretation and implications in the first section of Chapter 3.

Definition 4.1. Let B0 = C0 = T0 = 0. We introduce the sequence of
random times of actual buys by

Bi := inf{τj |τj > Bi−1, Xτj + εj ≥ Sτj}, i ≥ 1,

the sequence of actual sells by

Ci := inf{τj |τj > Ci−1, Xτj + εj ≤ Sτj}, i ≥ 1.

and the sequence of actual transactions (i.e. buys or sells) by

Ti := inf{τj |τj > Ti−1, Xτj + εj ≥ Sτj or Xτj + εj ≤ Sτj}, i ≥ 1.

In addition we define the counting processes of actual buys and sells by

NB
t :=

∑
i≥1

1{Bi≤t} (4.2)

and NC and NT accordingly.
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It is a crucial question which information the market maker has when he
is setting prices. We assume that he is only observing the history of past
trades. The prices at which the trades take place (transaction prices) contain
no information since they are set by the market maker himself. The market
maker does not observe any direct signal of X such as X + ε but only the
reaction of the customers to his prices. This is a crucial point because the
market maker thus influences how much information he gets by the setting
of his prices.

Definition 4.2. The filtration of the market maker is given by FS =
(FSt )t≥0, where

FSt := σ({Bi ≤ s}, {Ci ≤ s}, s ≤ t, i ∈ N) = σ
(
NB
s , N

C
s , s ≤ t

)
.

Since FS is generated by counting processes, it is a right-continuous filtration
(see Theorem I.25 in [Pro04]). However, it does not in general satisfy the
usual conditions, since the null sets are not necessarily included.
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Figure 4.1: The black line represents the true value X and some quoted
prices S > S (here not at equilibrium) are given by the dotted red lines. All
potential trades Xτi + εi are given by the bullets, which are filled if a trade
takes place at S or S. Here, X only jumps to the neighboring state, which
is not a general restriction. The εi are normally distributed.

From an economic viewpoint pricing strategies of market makers make sense
only if they are FS-predictable, as FS is the information flow of the market
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maker.

Definition 4.3. We say that S is an admissible pricing strategy if it is
FS-predictable and xmax ≥ St(ω) > St(ω) ≥ xmin for all (ω, t) ∈ Ω× R+.

We impose the restriction that the prices lie between xmin and xmax because
otherwise there would be either arbitrage opportunities or no trades at all.
Note that the definition is quite implicit, since the filtration FS depends
itself on S.

4.2 Glosten-Milgrom pricing strategies

The model stated above gives a natural, though complex, framework to
examine the price-setting of market makers. We now proceed to consider a
certain type of price-setting which involves the Glosten-Milgrom idea of risk
neutrality and perfect competition between market makers.

Definition 4.4. We say that an admissible pricing strategy S is a Glosten-
Milgrom pricing strategy (GMPS) if

E

∑
Bi≤τ

(SBi −XBi)

 = 0 and E

∑
Ci≤τ

(SCi −XCi)

 = 0 (4.3)

for every bounded FS-stopping time τ .

Each summand in (4.3) is bounded by xmax − xmin and the sequence of
Bi and Ci is included in the Poisson times. This yields integrability of
the sums. We assume that in no stochastic time interval it is possible to
make a gain in expectation. Note that this definition implies that not only
the whole business makes zero profits but both the buy-side and sell-side
business separately. This is necessary to comply with the idea of perfect
competition. Otherwise the market maker could offset losses on one side
with gains on the other side of the market. But this is not possible because
other market makers will undercut the price on the side that makes gains.

The Glosten-Milgrom prices can also be characterized by another condition
as stated in the following theorem.

Theorem 4.5. S is a GMPS iff it is admissible and

SBi = E[XBi |FSBi ] and SCi = E[XCi |FSCi ] P − a.s.

for all i.
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This means that all trades in a GMPS are executed at a price which is the
expectation of X given the information available to market makers at that
point of time. The interesting point about this characterization of GMPS is
that a trade which occurs at that very moment is included in the filtration
but its occurrence and especially its direction is not predictable (but so is
S). We also see the connection to the static model. By Lemma 3.5 the
Glosten-Milgrom ask price in the static model satisfies

s = E[X|X + ε ≥ s].

Proof of Theorem 4.5. We only consider buys. Let SBi = E[XBi |FSBi ] for
all i then

E

∑
Bi≤τ

(SBi −XBi)

 =
∞∑
i=1

E
[
1{Bi≤τ}(SBi −XBi)

]
=
∞∑
i=1

E
[
E
[
1{Bi≤τ}(SBi −XBi)|FSBi

]]
=
∞∑
i=1

E
[
1{Bi≤τ}(SBi − E

[
XBi |FSBi

]
)
]

= 0.

Now let S be a GMPS. For fixed i ∈ N and t ∈ R+ we consider

C := {Bi−1 ≤ t < Bi} ∩A

for A ∈ FSt . For n ∈ N, n > t, let

κn(ω) =

{
Bi(ω) ∧ n if ω ∈ C
t ω /∈ C,

(4.4)

hence t ≤ κn and both are bounded FS-stopping times. Thus, we have

0 = E

 ∑
Bj≤κn

(SBj −XBj )

− E
∑
Bj≤t

(SBj −XBj )


= E

 ∑
t<Bj≤κn

(SBj −XBj )1C

 = E
[
(SBi −XBi)1C∩{Bi≤n}

]
for all n > t and therefore
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E
[
(SBi −XBi)1C

]
= 0.

Note that FSBi− is generated by sets of the form {t < Bi}∩A, where A ∈ FSt
and t ∈ R+which can be written as

{t < Bi} ∩A = ∪t≤tn∈Q{Bi−1 ≤ tn < Bi} ∩A.

Hence, as A ∈ FSt ⊂ FStn for tn ≥ t the sets of the form like C generate FSBi−
and since S is predictable it follows that

SBi = E
[
XBi |FSBi−

]
.

To show that FSBi− = FSBi we consider the marked point process (Tn, Zn)n∈N,
where T are the times of trades defined in Definition 4.1 and

Zn =

{
1 if Tn = Bi for some i

−1 Tn = Ci.
(4.5)

We can now write

FSBi = {A|A = ∪n∈NAn ∩ {Bi = Tn} for An ∈ FSTn for all n}

and

FSBi− = {A|A = ∪n∈NAn ∩ {Bi = Tn} for An ∈ FSTn− for all n}.

The first equation can be seen easily. For ”⊂“ of the second it suffices to
show that sets of the form A∩{t < Bi}, A ∈ FSt are in the set on the RHS.
This can be done by choosing An = A ∩ {t < Tn}. For ”⊃“ it again suffices
to consider sets of the form An = Ãn ∩ {t < Tn}, Ãn ∈ FSt . It then remains
to show that {Bi = Tn} ∈ FSBi−. However,

{Tn < Bi} = ∪q∈Q{Tn < q} ∩ {q < Bi} ∈ FSBi−
and thus

{Bi = Tn} = {Tn−1 < Bi} ∩ {Tn < Bi}c ∈ FSBi−.

Now, by Theorem III, T2 in [Bré81] applied to the marked point process
(Tn, Zn)n∈N any An ∈ FSTn can be written as
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An = (M1 ∩ {Zn = 1}) ∪ (M2 ∩ {Zn = −1})

for M1,M2 ∈ FSTn−. Since for fixed i {Bi = Tn} = {Zn = 1}, we have

An ∩ {Bi = Tn} = M1 ∩ {Bi = Tn}

and FSBi− = FSBi follows.

4.3 The process of conditional probabilities

As we mentioned earlier the filtration of the market maker FS does not
satisfy the usual conditions, since it does not contain all null sets. We now
define the completion F̃S of FS .

Definition 4.6. For any F ⊗ B([0,∞))-measurable process S = (S, S) let
the filtration F̃S be defined by

F̃St := FSt ∨N ,

where N are all P -null sets of F .

F̃S will be used in the proof of the following lemma, but note that it is not
needed to state our results.

Lemma 4.7. For any F ⊗ B([0,∞))-measurable process S = (S, S), there
exists a unique (up to indistinguishability) F̃S-adapted càdlàg process πS

with
πSτ =

(
P
[
Xτ = xi|FSτ

])
i=1,...,n

P -a.s. (4.6)

for all finite stopping times τ .

Proof. Since F̃S satisfies the usual conditions, we can apply Theorems 2.7
and 2.9 of [BC08] to the process

(
1{Xt=xi}

)
i=1,...,n

, which gives us a càdlàg

optional projection πS that is F̃S-adapted and satisfies

πSτ =
(
P
[
Xτ = xi|F̃Sτ

])
i=1,...,n

P -a.s.

for all finite stopping times τ . Since E[ · |Fτ ] and E[ · |F̃τ ] only differ by a
P -null set, (4.6) follows.
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We now define a larger filtration F = (Ft)t≥0 by

Ft := σ
(
Xs, Ns, εi1{τi≤s}, s ≤ t, i ∈ N

)
∨N ,

which contains all information up to time t.

Definition 4.8. We define Φ,Ψ : R 7→ [0, 1] by

Φ(x) = P [ε1 ≥ x] and Ψ(x) = P [ε1 ≤ x].

The following lemma describes the intensity of the jump process NB that
counts actual buys (for a given pricing strategy S) as given in Definition 4.1.

Lemma 4.9. The F-intensity of NB (in the sense of Definition 2.3) is given
by λΦ(S −X−).

Proof. Let C be a nonnegative F-predictable process. Then

E

[∫ ∞
0

CsdN
B
s

]
= E

[ ∞∑
i=1

Cτi1{Xτi+εi≥Sτi}

]

=
∞∑
i=1

E
[
E
[
Cτi1{Xτi+εi≥Sτi}

|Fτi−
]]

=
∞∑
i=1

E
[
CτiΦ(Sτi −Xτi−)

]
= E

[∫ ∞
0

CsΦ(Ss −Xs−)dNs

]
= E

[∫ ∞
0

CsλΦ(Ss −Xs−)ds

]
where we use Xτi = Xτi− P − a.s. for the third equation.

We now derive the filter equation of πS that is of central importance for the
analysis in the following and is based on Theorem 2.4 in Chapter 2.
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Lemma 4.10. The process πS satisfies the following SDE

dπS,it =πS,it−

(
Φ(St − xi)∑

j π
S,j
t− Φ(St − xj)

− 1

)
dNB

t

+ πS,it−

(
Ψ(St − xi)∑

j π
S,j
t− Ψ(St − xj)

− 1

)
dNC

t

−

λπS,it
Ψ(St − xi) + Φ(St − xi)

−
∑
j

πS,jt
(
Ψ(St − xj) + Φ(St − xj)

)
−
∑
j

πS,jt q(j, i)

 dt.

for all t ≥ 0, up to indistinguishability, with initial condition πS,i0 = P [X0 =
xi], where Φ and Ψ are given in Definition 4.8.

Proof. We can derive the filter equation for πS as it is done in Theorem 2.4.
The filter equation has the form

πSt = πS0 +

∫ t

0
KB
s dN

B
s +

∫ t

0
KC
s dN

C
s +

∫ t

0

(
−KB

s λ̂
B −KC

s λ̂
C + fs

)
ds,

where λ̂B and λ̂C are the FS-intensities of NB and NC respectively, f is the
FS-compensator of X, which is given by

∑
j π

S,jq(j, ·) here. The innovations
gain K is described in Theorem 2.4 by three summands. The theorem also
states that the last one is zero if the observation process and the underlying
process do not jump at the same time a.s., which is the case here and that
the second one is the left limit of the process that is to be described. Hence,
KB
s can be expressed as ΨB

s − πSs− and KC
s = ΨC

s − πSs− respectively, where
ΨB
s is the unique (up to a (P ⊗λ)-null set) FS-predictable process satisfying

E

[∫ t

0
Cs1{Xs=xi}λ

B
s ds

]
= E

[∫ t

0
CsΨ

B,i
s λ̂Bs ds

]
(4.7)

for all FS-predictable nonnegative bounded processes C, i = 1, . . . , n and all
t ≥ 0 where λB, λ̂B are the F,FS-intensities of NB respectively. A similar
equation holds for ΨC

s .

From Lemma 4.9 we have that λB = λΦ(S −X−) and
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E
[
λB|FSs

]
=

n∑
i=1

E
[
1{Xs−=xi}λΦ(S − xi)|FSs

]
=

n∑
i=1

λΦ(S − xi)E
[
1{Xs−=xi}|F

S
s

]
P -a.s..

Since, for fixed s ∈ R+, Xs = Xs− P -a.s., λ
∑n

i=1 π
S,i
s−Φ(Ss−xi) is a version

of λ̂Bs . From this and as πS,i− is the FS-compensator of 1{X=xi} it follows
that

ΨB,i
s =

πS,is−Φ(Ss − xi)∑n
j=1 π

S,j
s−Φ(Ss − xj)

solves (4.7) which gives us KB
s and analog KC

s as stated in the lemma.

For the buy-side part of the dt-term we get

−KB,i
s λ̂B = −

(
πS,is−Φ(Ss − xi)∑n
j=1 π

S,j
s−Φ(Ss − xj)

− πS,is

)
λ

n∑
j=1

πS,js−Φ(Ss − xj)

which simplifies to

−λπS,is−Φ(Ss − xi) + λπS,is−

n∑
j=1

πS,js−Φ(Ss − xj).

Together with f and the similar results for the sell-side we obtain the dt-term
as stated in the Lemma which completes the proof.

4.4 The solution as fixed point

Since πS is càdlàg , πSt− is well defined and we can now define the following
functional.

Definition 4.11. For admissible S we define F (S) : Ω× [0,∞)→ R2 by

F (S)t :=
(
F (S)t, F (S)

t

)
:=
(
g
(
St, π

S
t−
)
, h
(
St, π

S
t−
))

where g and h are defined in Definition 3.4 and πS in (4.6).
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As a continuous function of FS-predictable processes F (S) is FS-predictable.
By definition of g and h and the fact that S is admissible it follows that
F (S)t(ω) ≥ F (S)

t
(ω) for all (ω, t). However, F (S) is not necessarily admis-

sible, since in general FS 6= FF (S).

x m
in

x m
ax

●

●

●

●

●

●

●

●

●

●

●

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11

●

●

●

●

●

●

●

●

B1 B2C1 C2 C3 C4 C5 C6

Figure 4.2: We add F (S) to Figure 4.1 which are the fictitious Glosten-
Milgrom-prices (i.e. zero-expected-profits) of the market maker if actually
prices S are quoted and the market reacts with buys and sells to them.

We now can prove the following Lemma.

Lemma 4.12. We have

F (S)Bi = E[XBi |FSBi ] and F (S)
Ci

= E[XCi |FSCi ] P -a.s.

for all i.

Proof. By the filter equation in Lemma 4.10 and the fact that NB and NC

have no common jumps it follows that

πS,kBi =
πS,kBi−Φ(SBi − xk)∑n
j=1 π

S,j
Bi−Φ(SBi − xj)

, for all k. (4.8)
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By definition and (4.8) we have

F (S)Bi = g
(
SBi , π

S
Bi−
)

=

∑n
j=1 xjπ

S,j
Bi−Φ(SBi − xj)∑n

j=1 π
S,j
Bi−Φ(SBi − xj)

=
n∑
j=1

xjπ
S,j
Bi

= E[XBi |FSBi ].

The same holds true at the times when a sell occurs.

The importance of that assertion becomes clear if we compare it with The-
orem 4.5, which states that for a GMPS E[XBi |FSBi ] is equal to SBi . This
leads to an intuitive description of F . F (S) are the Glosten-Milgrom-prices
(i.e. zero-expected-profits) a market maker would have in mind if actually
prices S are quoted and the market reacts with buys and sells to them.

Definition 4.13. We say that S is a fixed point of F , if S = F (S) P⊗λ-a.e.
(where λ denotes the Lebesgue-measure on R+).

Theorem 4.14. An admissible strategy S is a solution of the GMPS-
problem iff S is a fixed point of F .

Proof. Identity of predictable sets B up to a P ⊗ λ null set is equivalent to
equality at Poisson times, since

P ⊗ λ(B) =
∞∑
j=1

P [(ω, τj(ω)) ∈ B].

Let S be a fixed point of F . With Lemma 4.12 we obtain

SBi = F (S)Bi = E[XBi |FSBi ] P -a.s.

for all i. Lemma 4.5 now yields that S is a solution.

Now let S be a solution of the GMPS-problem and j be fixed. We consider
the set

A :=
{
Sτj 6= F (S)τj

}
which is in Fτj− since S and F (S) are FS-predictable and hence F-
predictable.

Since S is a solution and εj is independent of Fτj− we have
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0 = P
[
SBi 6= F (S)Bi for some i

]
≥ P [{τj = Bi for some i} ∩A] = P [{Xτj + εj ≥ Sτj} ∩A]

≥ P [{εj ≥ C} ∩A] = P [A]P [εj ≥ C].

Since by Lemma 3.7 P [εj ≥ C] > 0 it follows that P [A] = 0, in other words,
for all τj we have

Sτj = F (S)τj P -a.s..

Corollary 4.15. For any GMPS S it holds up to a P ⊗ λ-null set that

S = (G(πS−), H(πS−)),

where πS− is the left-continuous version of the process of the conditional
probabilities belonging to S and where G and H are the functions that give
the static solutions defined in Definition 3.6.

Proof. Let S be a solution. Then up to a P ⊗ λ-null set it holds that

St = F (S)t = g
(
St, π

S
t−
)

by Theorem 4.14 and the definition of F . From this it follows that

St = G(πSt−)

by the definition of G in Definition 3.6.
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Chapter 5

Noise with density

In this chapter we show that for a special choice of the εi the GMPS exists
and is unique. This choice corresponds to the assumptions in the static case
in Section 3.3, but here we treat buys and sells simultaneously. The result is
formulated in the following theorem, which is also the main result of [KR13].

Theorem 5.1. Let C := xmax − xmin and Φ(y) := P [ε1 ≥ y] for y ∈ R as
in Definition 4.8. Assume that Φ is differentiable (i.e. the distribution of ε1
has density −Φ′) on [−C,C], 1 > Φ(0) > 0, and

−Φ′(y) ≤ K

C
min{Φ(y), 1− Φ(y)}

for all y ∈ [−C,C] and a constant K < 1. Then, there exists a Glosten-
Milgrom pricing strategy and it is unique up to a (P ⊗ λ)-null set, where λ
denotes the Lebesgue measure on R+.

The rest of the chapter proves this theorem. In the first section we show
that F from Definition 4.11 is a contraction (see Lemma 5.4) which can be
used to verify uniqueness. In the second section we show by construction
that F possesses a fixed point, which is necessary as F does in general not
map into the set of admissible strategies and the contraction holds only for
admissible sets. Hence, we cannot use a Picard iteration.

5.1 Uniqueness

We first show uniqueness of the solution by proving that F is a contraction.
Let S and T be admissible pricing strategies.

Definition 5.2. For given pricing strategies S, T let

A1
s := {Xτi + εi /∈ [min{Sτi , T τi},max{Sτi , T τi}) for all τi ≤ s}.

45
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A1
s is the event that until s no buy occurred only in one of the two pricing

scenarios S and T .

Lemma 5.3. We have that

P
[
(A1

s)
c
]
≤ λME

[∫ s

0
|Su − T u|du

]
where M := max{Φ′(x)|x ∈ [−C,C]}

Proof. Let Y be the process that counts the number of buys that only occur
for one pricing strategy, i.e.

Yt :=
∑
i∈N

1{τi≤t,Xτi+εi∈[min{Sτi ,T τi},max{Sτi ,T τi})}.

We now show (essentially with the methods of the proof of Lemma 4.9) that
the F-intensity of Y is given by

λYt :=λ(Φ(min{St, T t} −Xt−)− Φ(max{St, T t} −Xt−)) ≤ λM |St − T t|.

Let C be a nonnegative F-predictable process. As S and T are F-predictable
and P [Xτi = Xτi−] = 1, we obtain

E

[∫ ∞
0

CsdYs

]
= E

[ ∞∑
i=1

Cτi1{min{Sτi ,T τi}≤Xτi+εi<max{Sτi ,T τi}}

]

=
∞∑
i=1

E
[
E
[
Cτi1{min{Sτi ,T τi}≤Xτi+εi<max{Sτi ,T τi}}

|Fτi−
]]

=
∞∑
i=1

E
[
Cτiλ

Y
τi

]
= E

[∫ ∞
0

Csλ
Y
s ds

]
.

We define τY := inf{t ≥ 0 | Yt = 1} and get

P [(A1
s)
c] = P [Ys 6= 0] = E

[∫ s

0
1{τY ≥u}dYu

]
= E

[∫ s

0
1{τY ≥u}λ

Y
u du

]
≤ E

[∫ s

0
λYu du

]
≤ λME

[∫ s

0
|Su − T u|du

]
.
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The same holds true for sells. Hence for

A2
s := {Xτi + εi /∈ (min{Sτi , T τi},max{Sτi , T τi}] for all τi ≤ s}

we obtain a similar estimate and for As := A1
s ∩A2

s, which is the event that
the same buys and sells are observed in the two pricing strategies S and T
we have

P [Acs] ≤ 2λME

[∫ s

0
‖Su − Tu‖ du

]
where (5.1)

‖Su − Tu‖ := max
{
|Su − T u|, |Su − T u|

}
.

Lemma 5.4. There is a constant K1 <∞ such that

E

[∫ t

0
‖F (S)s − F (T )s‖ ds

]
≤ (K + tK1)E

[∫ t

0
‖Ss − Ts‖ ds

]
for all t ≥ 0 and for K from Theorem 5.1.

Proof. First we estimate the difference of the conditional distributions of
the true value resulting from different pricing strategies. We obtain

E
[∣∣πS,is − πT,is

∣∣] = E
[∣∣P [Xs = xi|FSs

]
− P

[
Xs = xi|FTs

]∣∣ (1As + 1Acs
)]

≤ E
[∣∣E [1{Xs=xi}|FSs ]− E [1{Xs=xi}|FTs ]∣∣ 1As]
+ E

[
1Acs
]

= P [Acs] + E[
∣∣E [1{Xs=xi} (1Acs + 1As

)∣∣FSs ]
− E

[
1{Xs=xi}

(
1Acs + 1As

)
|FTs

]
|1As ]

≤ 3P [Acs] + E[|E
[
1{Xs=xi}1As |F

S
s

]
− E

[
1{Xs=xi}1As |F

T
s

]
|1As ]

= 3P [Acs] , i = 1, . . . , n.
(5.2)

The last equation holds true since FSs ∩As = FT ∩As. The equality of the
trace σ-algebras holds due to

FSs ∩As = σ({BS
i ≤ u}, {CSi ≤ u}, u ≤ s, i ∈ N) ∩As,

and obviously

{BS
i ≤ u} ∩As = {BT

i ≤ u} ∩As and {CSi ≤ u} ∩As = {CTi ≤ u} ∩As
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respectively for all i ∈ N and u ≤ s. Putting (5.1) and (5.2) together we
obtain

E

[∫ t

0

n∑
i=1

|πS,is − πT,is |ds

]
=

∫ t

0

n∑
i=1

E
[
|πS,is − πT,is |

]
ds

≤
∫ t

0

n∑
i=1

3P [Acs] ds

≤ 6nλM

∫ t

0
E

[∫ s

0
‖Su − Tu‖ du

]
ds

≤ 6nλMtE

[∫ t

0
‖Ss − Ts‖ ds

]
.

Finally, we have

E

[∫ t

0

∣∣∣F (S)s − F (T )s

∣∣∣ ds] = E

[∫ t

0

∣∣g (Ss, πSs−)− g (T s, πTs−)∣∣ ds]
≤ E

[∫ t

0
K|Ss − T s|+ L

n∑
i=1

|πS,is − πT,is |ds

]

≤ E
[∫ t

0
K|Ss − T s|+ 6LnλMt ‖Ss − Ts‖ ds

]
,

where the first inequality is due to Lemma 3.9 for K < 1 defined in Theo-
rem 5.1 and L = 2xmax

Φ(C)2
. A similar estimate can be obtained for

E

[∫ t

0

∣∣∣F (S)
s
− F (T )

s

∣∣∣ ds] .
We then get the desired result with K1 = 12LnλM .

Proof of uniqueness in Theorem 5.1. Let S, T be two solutions of the GMPS
problem. By Theorem 4.14 every solution is a fixed point of F . Applying
Lemma 5.4 with some t > 0 s.t. K + tK1 < 1 we obtain that S and T
coincide P ⊗ λ|[0,t]-a.e.. Note that K and K1 only depend on xmin, xmax,
the distribution of the εi and λ, but it is independent of the probabilities
P [X0 = xi].

But if S = T P ⊗ λ|[0,t]-a.e. so are the P -completions of FSt and FTt .
Iteratively it follows that S and T are equal on [0,∞) as all arguments from
above hold true also for a non-trivial F0.
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5.2 Existence

To show existence we will proceed as follows. We will define an n-
dimensional process φ as a pathwise solution of a stochastic integral equa-
tion, which is what we assume the conditional distribution of the true value
under the filtration of a GMPS could look like. We then define prices as the
static solutions for every (ω, t), plugging in the conditional distribution of
the true value, and construct the corresponding market maker’s filtration.
Then, we show that, under the constructed filtration, φ is adapted and
solves the filter equation of the conditional distribution of the true value.
This shows with the results in Section 4.4 that we have indeed constructed
a GMPS.

We recall Definition 3.6. Let φ ∈ [0, 1]n such that
∑n

i=1 φi = 1 that we
interpret as probabilities of a random variable with state space x1, . . . , xn.
With G(φ) and H(φ) we denote the unique solutions s of

g(s, φ) = s and h(s, φ) = s

respectively where g and h are defined in Definition 3.4. The existence and
uniqueness of that solution is secured by Theorem 3.8.

We also recall Definition 4.8 of Φ(x) = P [ε1 ≥ x] and Ψ(x) = P [ε1 ≤ x].

Proof of existence in Theorem 5.1. Step 1: For φ : Ω × [0,∞) → [0, 1]n we
consider the SDE

φit = φi0 +
∑
τk≤t

φiτk−

(
Φ(G(φτk−)− xi)∑

j φ
j
τk−Φ(G(φτk−)− xj)

− 1

)
1{Xτk+εk≥G(φτk−)}

+
∑
τk≤t

φiτk−

(
Ψ(H(φτk−)− xi)∑

j φ
j
τk−Ψ(H(φτk−)− xj)

− 1

)
1{Xτk+εk≤H(φτk−)}

−
∫ t

0

λφis
Ψ(H(φs)− xi) + Φ(G(φs)− xi)

−
∑
j

φjs (Ψ(H(φs)− xj) + Φ(G(φs)− xj))


−
∑
j

φjsq(j, i)

 ds

(5.3)
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with initial condition φi0 = P [X0 = xi] for all i = 1, . . . , n. In a first step
we consider this SDE only pathwise and show that it has a unique solution
with càdlàg paths (we do not have a filtration yet).

G (and H) are Lipschitz-continuous by Lemma 3.10. Further, the functions
Φ and Ψ are differentiable and the derivative is bounded by K

C <∞ on the
compact set [−C,C]. In addition, Φ and Ψ are bounded by one. By the
product rule, it follows that the ds-term in (5.3) considered as a function
in φ can be modified to a function f(φ) that is Lipschitz-continuous and f
coincides with the original function for all φ ∈ Rn with φi ≥ 0 and

∑n
i=1 φ

i =
1. Then, the system of ordinary differential equations only consisting of
the modified ds-terms has a unique solution and, by construction of the
ODEs, the solution stays in the set of probabilities. Thus, it also solves the
differential equations with the original ds-terms, i.e.

dψit =−

λψit
Ψ(H(ψt)− xi) + Φ(G(ψt)− xi)

−
∑
j

ψjt (Ψ(H(ψt)− xj) + Φ(G(ψt)− xj))


−
∑
j

ψjt q(j, i)

 dt.

We can now construct a candidate for the original problem up to τ1 by this
solution, i.e. φt := ψt for all t < τ1, and

φiτ1 =ψiτ1− + ψiτ1−

(
Φ(G(ψτ1−)− xi)∑

j ψ
j
τ1−Φ(G(ψτ1−)− xj)

− 1

)
1{Xτ1+ε1≥G(ψτ1−)}

+ ψiτ1−

(
Ψ(H(ψτ1−)− xi)∑

j ψ
j
τ1−Ψ(H(ψτ1−)− xj)

− 1

)
1{Xτ1+ε1≤H(ψτ1−)}.

We also obtain a solution ψ̃ of the ordinary differential equation above for
every state of φiτ1 as initial condition. Considered as a parameter-depending
differential equation, the solution is continuous in the initial condition. We
then define a solution of the original problem on (τ1, τ2) by

φt = ψ̃t−τ1

and so on. Iteratively we obtain a process that satisfies (5.3) up to all τi.
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Then, one may define φit(ω) = 1/n for t ∈ R+ with t ≥ supi∈N τi(ω). As τi
are Poisson times, this definition of course only affects a P -null set, but the
construction ensures measurability (see Step 2) without needing the usual
conditions and without the additional assumption that supi∈N τi(ω) = ∞
for all ω ∈ Ω. The process φ : Ω × R+ 7→ Rn has càdlàg paths at least on
[0, supi∈N τi(ω)).

Step 2: We now define

St := (G(φt−), H(φt−))

on (0, supi∈N τi(ω)) (and maybe S = (xmax, xmin) elsewhere) and with it
NB, NC (with jump times Bk respectively Ck) and FS according to Defini-
tions 4.2 and 4.2 respectively. It follows that the jumps in (5.3) only take
place at actual buys and sells with prices S. Therefore and by the construc-
tion of φ (using the continuity in the initial condition), for every t ∈ R, φt
can be written as a measurable function of Bk1{Bk≤t} and Ck1{Ck≤t}, k ∈ N.

Thus φt is FSt -measurable, i.e. φ is FS-adapted.

It follows that the process S that is left-continuous on (0, supi∈N τi(ω)) is
FS-predictable and hence admissible in the sense of Definition 4.4. Note
that by the pathwise construction we obtain pricing strategies that are FS-
predictable and not only predictable w.r.t. the completed filtration F̃S that
satisfies the usual conditions. By (4.2) we can write (5.3) as

dφit =φit−

(
Φ(St − xi)∑

j φ
j
t−Φ(St − xj)

− 1

)
dNB

t

+ φit−

(
Ψ(St − xi)∑

j φ
j
t−Ψ(St − xj)

− 1

)
dNC

t

−

λφit
Ψ(St − xi) + Φ(St − xi)

−
∑
j

φjt
(
Ψ(St − xj) + Φ(St − xj)

)
−
∑
j

φjtq(j, i)

 dt.

(5.4)

Step 3: We described the filter equation of πS,it = P
[
Xt = xi|FSτ

]
in
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Figure 5.1: Glosten-Milgrom-prices for the same scenario ω as in Figure 4.1.

Lemma 4.10. It is given by

dπS,it =πS,it−

(
Φ(St − xi)∑

j π
S,j
t− Φ(St − xj)

− 1

)
dNB

t

+ πS,it−

(
Ψ(St − xi)∑

j π
S,j
t− Ψ(St − xj)

− 1

)
dNC

t

−

λπS,it
Ψ(St − xi) + Φ(St − xi)

−
∑
j

πS,jt
(
Ψ(St − xj) + Φ(St − xj)

)
+
∑
j

πS,jt q(j, i)

 dt.

(5.5)

Note that S depends on φ and is fixed in (5.5). In terms of πS (5.5) has a
unique solution and φ is obviously a solution of this equation (uniqueness
follows as the dt-term considered as a function of πS is Lipschitz-continuous,
thus the arguments are similar but simpler as for (5.3)). Thus, as φ and πS
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are both càdlàg , they are indistinguishable. Since S is then given by

St := (G(πt−), H(πt−))

the result follows from Corollary 4.15.
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Chapter 6

Insider/noise trader model

In the static case the existence and uniqueness of Glosten-Milgrom prices for
both choices of ε were quite easy to obtain (see Theorem 3.8 and Theorem
3.11, respectively). For the insider/noise trader model, where ε obtains only
the values 0 or ±∞, we have this result for the broadest imaginable class
of distributions of X. Transferring this to the continuous-time model we
have (for fixed t) unique prices given the conditional distribution of Xt up
to a null set Nt that depends on t. It is a common observation in stochastic
analysis that the union of this sets over all t > 0 is not necessarily a null set
any more.

In the last chapter we showed that existence and uniqueness hold for the
“noise with density”- model. However, the pathwise construction of a so-
lution that we did in Step 1 in the proof in Section 5.2 does not work in
the insider/noise trader model, since the functions Φ and Ψ are by the na-
ture of the distribution of ε not Lipschitz-continuous, but have jumps at
zero. The behavior at the points where this discontinuity is relevant are the
points where the prices hit the states of X, because then a regime change
will occur. It might be possible to take this points into account during the
construction. We will not do this here, but focus on the uniqueness aspect
of the problem.

The uniqueness result in the last chapter depends on the Lipschitz-continuity
of g in the first argument in Lemma 5.4. This requirement is not fulfilled
here as we showed in (3.5) and (3.6).

Also Lemma 5.3 that is central to the uniqueness argument does not hold
as is shown in the following. Remember that

A1
s := {Xτi + εi /∈ [min{Sτi , T τi},max{Sτi , T τi}) for all τi ≤ s}

55
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is the event that until s no buy occurred only in one of two pricing scenarios
S and T . Lemma 5.3 states that the probability of the complement of this
event, i.e. there is at least one buy only in one of the two scenarios, is small
if the difference of S and T is small. Broadly speaking, if the pricing is
about the same, also the same things will happen. However, if S is constant
and equal to some state xi of the true value process and T = xi+η for some
η > 0 then its clear that

E

[∫ s

0
|Su − T u|du

]
= E

[∫ s

0
ηdu

]
= sη

can be chosen to be arbitrarily small by the choice of η, whereas

P
[
(A1

s)
c
]
≥ P [τ1 < s]P [ε = 0]P [Xτ1 = xi]

does not depend on η. Hence, the Lemma does not hold for this choice of ε.

Furthermore, in the following we will give an example that the insider/noise
trader model implies some surprising results. We construct two pricing
scenarios up to the stopping time min{T1, t̃} where T1 is the first transaction
and t̃ > 0 is a constant defined below such that both are GMPS in a certain
sense. It is not clear whether we can extend this pricing strategies to GMPS
on R+, but since the two prices are symmetric this is a strong indication
that the prices are not generally unique in the insider/noise trader model.

6.1 A counterexample to uniqueness

We choose ε to be distributed like

ε =


∞ with probability µ = 1

3

0 ν = 1
3

−∞ 1− µ− ν = 1
3 .

(6.1)

and we consider the state space

{x1, x2, x3, x4} = {−5,−1, 1, 5} (6.2)

and the vector

π0 =

(
1

4
,
1

4
,
1

4
,
1

4

)
(6.3)
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which we define as the the initial distribution of the process Xt, i.e.
P [X0 = xi] = 1

4 for all i. Further we assume that the transition kernel
(see (4.1) for the definition) of X is given by


0 0 0 0
q −q 0 0
0 0 −q q
0 0 0 0

 , (6.4)

which means that X jumps with rate q from x2 to x1 and from x3 to x4 and
stays otherwise constant. We assume that

q <
λ

6
, (6.5)

where λ is the rate of the customer arrival process. Note, that this setting
is symmetric around zero. In the following we will construct a solution that
is not symmetric. It is clear that this solution reflected at zero is also a
solution.

However, before we start to consider how this model can evolve, note that x3

is the static Glosten-Milgrom ask price in the initial situation. Remember
that by G(φ) we denote the unique solution for given φ. G(φ) must by (3.7)
and the definition of µ and ν confine

G(φ) = E[X] + E[(X −G(φ))1{X≥G(φ)}]. (6.6)

We verify that G(π0) = 1 = x3 by

G(π0) = 0 +
(
π3

0(x3 − x3) + φ4
0(x4 − x3)

)
=

1

4
(5− 1) = 1.

For analog reasons x2 is the Glosten-Milgrom bid price at the initial situa-
tion. Thus, we are faced with the situation that both prices are at a state
which are the points where Φ and Ψ are not Lipschitz-continuous.

The aim of the following is not to construct a general GMPS in the sense
of Definition 4.4, but rather we construct it for a special stopping time
τ ≤ min{T1, t̃} where T1 is the first transaction and t̃ > 0 is a constant.
In this way we avoid the problems that originate from the fact that the
distribution functions are not Lipschitz. Hence, we impose the condition
that

E
[
1{B1≤τ}(SB1 −XB1)

]
= 0 and E

[
1{C1≤τ}(SC1

−XC1)
]

= 0 (6.7)
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for every FS-stopping time τ ≤ min{T1, t̃}. Of course the filter equation
from Lemma 4.10 and the fact that for fixed t any solution is the static
solution (Corollary 4.15) still hold true.

We define an ordinary differential equation for φ ∈ R4 which we can think
of conditional probabilities of X = xi up to τ . Let φ0 = π0 and

dφ1
t

dt
= −λ

3
φ3
tφ

1
t + qφ2

t

dφ2
t

dt
= −λ

3
φ3
tφ

2
t − qφ2

t

dφ3
t

dt
=
λ

3
φ3
t (1− φ3

t )− qφ3
t

dφ4
t

dt
= −λ

3
φ3
tφ

4
t + qφ3

t .

(6.8)

This ordinary differential equation with Lipschitz-continuous coefficients has
a unique solution that we will also denote by φ. We now consider the process

γ(t) := Γ(φt) :=

∑4
i=1 φ

i
txi + φ4

tx4

1 + φ4
t

, (6.9)

which will be the ask price up to time τ later. In the following we want to
calculate γ′(0). (6.9) can be rewritten as

γ(t)(1 + φ4
t ) =

4∑
i=1

φitxi + φ4
tx4

and differentiation yields

γ′(t)(1 + φ4
t ) + γ(t)

dφ4
t

dt
=
d
(∑4

i=1 φ
i
txi + φ4

tx4

)
dt

. (6.10)

We calculate the RHS and obtain

d
(∑4

i=1 φ
i
txi + φ4

tx4

)
dt

=

(
−λ

3
φ3
tφ

1
t + qφ2

t

)
(−5) +

(
−λ

3
φ3
tφ

2
t − qφ2

t

)
(−1)

+

(
λ

3
φ3
t (1− φ3

t )− qφ3
t

)
+ 2

(
−λ

3
φ3
tφ

4
t + qφ3

t

)
5.

For t = 0, i.e. φ0 =
(

1
4 ,

1
4 ,

1
4 ,

1
4

)
in (6.10) we obtain
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γ′(0)
5

4
+ γ(0)

(
−λ

3

1

16
+
q

4

)
=
λ

3

5

16
− 5q

4
+
λ

3

1

16
+
q

4

+
λ

3

3

16
− q

4
− λ

3

10

16
+

10q

4

=
5q

4
− λ

3

1

16
.

Since γ(0) = 1 we have

γ′(0) =

(
5q

4
− λ

3

1

16
+
λ

3

1

16
− q

4

)
4

5
=

4

5
q.

Further we consider the process

δ(t) := ∆(φt) :=

∑4
i=1 φ

i
txi + φ1

tx1 + φ2
tx2

1 + φ1
t + φ2

t

, (6.11)

which will be the bid price up to time τ later. Again we want to calculate
δ′(0). We write (6.11) as

δ(t)
(
1 + φ1

t + φ2
t

)
=

4∑
i=1

φitxi + φ1
tx1 + φ2

tx2

and differentiate to obtain

δ′(t)
(
1 + φ1

t + φ2
t

)
+ δ(t)

(
dφ1

t

dt
+
dφ2

t

dt

)
=
d
(∑4

i=1 φ
i
txi + φ1

tx1 + φ2
tx2

)
dt

.

(6.12)

The RHS is given by

d
(∑4

i=1 φ
i
txi + φ1

tx1 + φ2
tx2

)
dt

=2

(
−λ

3
φ3
tφ

1
t + qφ2

t

)
(−5)

+ 2

(
−λ

3
φ3
tφ

2
t − qφ2

t

)
(−1)

+

(
λ

3
φ3
t (1− φ3

t )− qφ3
t

)
+

(
−λ

3
φ3
tφ

4
t + qφ3

t

)
5.

For t = 0, i.e. φ0 =
(

1
4 ,

1
4 ,

1
4 ,

1
4

)
in (6.12) we get
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δ′(0)
6

4
+ δ(0)

(
−λ

3

1

16
+
q

4
− λ

3

1

16
− q

4

)
=
λ

3

10

16
− 10q

4
+
λ

3

2

16
+

2q

4

+
λ

3

3

16
− q

4
− λ

3

5

16
+

5q

4

=
λ

3

10

16
− q.

As δ(0) = −1 we obtain

δ′(0) =

(
λ

3

10

16
− q − λ

3

2

16

)
4

6
=
λ

9
− 2

3
q.

It follows that γ′(0) = 4
5q > 0 and δ′(0) = λ

9 −
2
3q, which is positive by (6.5).

Since the process of probabilities φ is continuous and γ and δ are continuous
functions of φ, it follows that γ and δ are continuous functions in t with
positive derivative at zero. Hence, there exists a time t̃ > 0 up to which γ
and δ are strictly increasing and such that γ(t) ∈ (1, 5) and δ(t) ∈ (−1, 1)
for all t < t̃. Remember that γ(0) = 1 and δ(0) = −1.

Hence for the prices St = (γ(t), δ(t)) we can filter for the conditional prob-
abilities πS,it = P

[
Xt = xi|FSt

]
up to τ = min{T1, t̃}. Since we are before

T1 = min{B1, C1} we only need to consider the dt-term in Lemma 4.10.
We will do this in detail only for π1 since the other process of conditional
probabilities are analog. The differential equation is given by

dπ1
t

dt
=− λπ1

t

Ψ(δ(t)− x1) + Φ(γ(t)− x1)

−
∑
j

πjt (Ψ(δ(t)− xj) + Φ(γ(t)− xj))


+
∑
j

πjt q(j, i).

Now

Ψ(δ(t)− xj) + Φ(γ(t)− xj) = 1 for j ∈ {1, 2, 4}

and

Ψ(δ(t)− x3) + Φ(γ(t)− x3) =
2

3
.
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By the Definition of the transition matrix in (6.4) it is clear that

∑
j

πjt q(j, i) = π2
t q.

Altogether we get

dπ1
t

dt
= −λπ1

t

(
1− π1

t − π2
t −

2

3
π3
t − π4

t

)
+ π2

t q = −λ
3
π1
t π

3
t + π2

t q.

Thus the process of conditional probabilities is equal to φ. Further we see
that the functions Γ and ∆ describe the solution of the static problem for
given conditional distributions and under the condition that S ∈ (1, 5) and
S ∈ (−1, 1). It is then clear that if there is a buy or sell before t̃ which
happens with positive probability the conditions for Glosten-Milgrom prices
are satisfied. This construction proofs the following theorem.

x 2
=

−
1

x 3
=

1

t

Figure 6.1: The ask and bid prices S and S of the counterexample that is
constructed here are shown in red. No buy or sell has yet occurred. The
second solution that is symmetric to the first one is indicated by the dashed
grey lines. Both strategies fulfill the GMPS condition at τ and thus are valid
strategies. The market maker can choose one of them. Hence, the GMPS is
not unique.
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Theorem 6.1. For the setting described by (6.1) - (6.5) the modified GMPS-
problem described by (6.7) that is a subproblem of the original problem has at
least two solutions. The first solution is described by the differential equation
(6.8) and S = Γ(φ) and S = ∆(φ) (see (6.9) and (6.11) for Definitions).
By symmetry a second solution is given by S = −∆(φ) and S = −Γ(φ).



Chapter 7

Convergence

In this chapter we will present a convergence result for the Glosten-Milgrom
prices, if existence and uniqueness hold. The result is not directly connected
with the discussion above, but gives a first idea of the characteristics of the
prices in our model. It also motivates some of the simulations that we do in
the next chapter.

As in most of the literature, we consider the case where Xt = X0 for all t, in
other words, in this chapter X stays constant after it was chosen randomly
at the beginning. We just write X0 = X in the following. We further assume
that the rate of buys and sells is always larger than a constant that is larger
than zero, which implies that the sequence of actual buys does not break
off.

Definition 7.1. Via the times of actual buys Bi (see Definition 4.1) we
define the expectation of X at those time (pi)i∈N by

pi = E[X|FSBi ],

which by Theorem 4.5 coincides with the ask prices SBi. Further, we define
the ultimate knowledge of the market maker by

FS∞ = σ
(
∪i∈NFSBi

)
.

We remind the reader of the definition of the process of the conditional
probabilities in Lemma 4.7. Since X stays constant in this chapter π satisfies

πSτ =
(
P
[
X = xi|FSτ

])
i=1,...,n

P -a.s.

for all finite stopping times τ .
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Since there are always buys, FS∞ also contains the information about the
sells that happen in between buys. For the same reason we also have

FS∞ = σ
(
FSt , t ≥ 0

)
.

We immediately obtain the following results.

Lemma 7.2. The process (pi)i∈N is a martingale in discrete time and con-
verges a.s. and in L1 to an FS∞-measurable random variable p∞ such that

pi = E[p∞|FSBi ].

Also, (πt)t≥0 is a martingale in continuous time and converges a.s. and in
L1 to an FS∞-measurable random variables π∞ such that

πt = E[π∞|FSt ].

Proof. It is easy to see that

E[pi+1|FsBi ] = E[E[X|FsBi+1
]|FsBi ] = E[X|FsBi ] = pi,

which shows that (pi)i∈N is a martingale. As it is bounded by xmax there
is a FS∞-measurable random variables πj∞ that fulfills the assertion of the
lemma by classical martingale convergence results (see for example [Kle08, p.
220f]). The same argument holds true for π and continuous-time martingale
theory (see for example [JS87], Theorem 1.42).

It is, however, not clear that the prices SBi = pi converge to the true value.
As a quite trivial counterexample consider a pure noise trader model such
as

ε =

{
∞ with probability 1

2

−∞ 1
2

(7.1)

and

X =

{
1 with probability 1

2

0 1
2 ,

(7.2)

then both Glosten-Milgrom ask and bid price will be 1
2 = E[X] immediately

and for all time.
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We need some condition that secures that the market maker is actually
learning something.

For this we go back to the static model, where it is easy to derive from
the static fixed point equation (3.1) that for any static Glosten-Milgrom ask
price s it holds that s ≥ E[X] and by analogy for the bid price we obtain
that the expectation of X lies always in the spread. If X = x a.s. for some
x ∈ R then it is trivial that s = x = E[X]. Further we have the following
Lemma.

Lemma 7.3. Assume that X has finite state space x1 < . . . < xn and
distribution π = (π1, . . . , πn). Further assume that Φ, which is given by
Φ(x) = P [ε ≥ x], is strictly decreasing on [−C,C]. If the Glosten-Milgrom
ask prices G(π) satisfies G(π) = E[X] =

∑n
i=1 xiπi then X = G(π) a.s. and

πj ∈ {0, 1} for all j.

Note that this implies that G(π) is one of the xi and that the bid price is
also equal to G(π).

Proof. Define qj , j = 1 . . . n by

qj = Φ(G(π)− xj).

By the monotonicity of Φ this implies that qj − qk > 0 for all j < k. By
Definition 3.6 of G it holds that G(π) = g(G(π), π) (see Lemma 3.5). Again
with the Definition 3.4 of g the equation g(G(π), π) = E[X] can be rewritten
as

∑n
j=1 πjxjqj∑n
k=1 πkqk

=
n∑
j=1

πjxj

which is equivalent to

0 =
n∑
j=1

πjxjqj −
n∑
i=j

πjxj

n∑
k=1

πkqk

=

n∑
j=1

n∑
k=1

πjπkxj(qj − qk)

=
∑
j<k

πjπk(xj − xk)(qj − qk).

Since qj − qk > 0 and xj − xk < 0 for j < k it follows that πj ∈ {0, 1} for all
j. Thus, X = xj a.s. for some j and G(π) = xj .
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We can now proof the following result of convergence.

Theorem 7.4. Let Φ be strictly decreasing on [−C,C], then the sequence
of actual ask prices SBi converges to the true value X, i.e.

lim
i→∞

SBi = X a.s..

Of course, by analogy also the bid prices converge, i.e.

lim
i→∞

SCi = X a.s..
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Figure 7.1: The different possible states of X are indicated by the grey lines.
The true value X (represented by the black line) is the fourth lowest level,
while the initial distribution is centered around the middle value. The bid
and ask price (in red) converge to the true value. The bullets mark the
customers valuation of the asset.

Proof. By Theorem 4.5 we have that SBi = E[X|FSBi ]. Hence, pi = SBi and
by Lemma 7.2 it follows that

lim
i→∞

SBi = p∞ = E[X|FS∞].

From Corollary 4.15 it follows that SBi = G(πBi−) a.s. and since G is
continuous by Lemma 3.10 it follows that
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E[X|FS∞] = lim
i→∞

G(πBi−) = G( lim
i→∞

πBi−).

Since Bi → ∞ as i → ∞ and πt is càdlàg we can replace the limit by
limt→∞ πt. As πt converges to π∞ we have

G(π∞) = E[X|FS∞] = E

[
n∑
i=1

xi1{X=xi}|F
S
∞

]
=

n∑
i=1

xiπ
i
∞,

where we again choose the version of π that is càdlàg . The statement of
Lemma 7.3 holds then for every ω ∈ Ω and it follows that

πj∞ ∈ {0, 1} a.s. for all j.

This means that with the information FS∞ we know X a.s., more precisely

P [{X = xk} ∩ {πj∞ = 1}] = E[E[1{X=xk}1{πj∞=1}|F
S
∞]]

= E[1{πj∞=1}π
k
∞] = E[δj,kπ

k
∞] = δj,kE[πk∞].

It follows that {X = xk} ⊂ {πk∞ = 1} P -a.s. and for all k, hence

{X = xk} = {πk∞ = 1}.

From this it follows that X =
∑n

k=1 xkπ
k
∞ = p∞ a.s., hence

lim
i→∞

SBi = X a.s..
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Figure 7.2: For the same scenario as in Figure 7.1 we illustrate the condi-
tional probabilities where red represents a probability equal zero and blue a
probability equal one (via yellow and green). Each stripe represents a state
of X. Over time the conditional probabilities concentrate at the true value.



Chapter 8

Simulations

In our type of Glosten-Milgrom model many interesting effects and depen-
dencies can be studied by simulations. How does the rate of customer arrivals
λ influence the spread, its size, the actual trading intensities or the infor-
mation content of the trades? How does the distribution of the εi influence
those outcomes? How does the initial distribution of X? Can anything be
said about how the transition kernel q affects the results? To which extent
do the prices reflect the true value? How long does it take after a large jump
in X (probably caused by some sort of shock) until the prices reflect again
the true value reasonably good?

Obviously, we can not answer all these questions. Or, to put it differently,
we can not check whether simulation results fit to the plenty of already
existing economic literature to all of this points. Hence, we will consider
only one setting, in which we assume that εi is normally distributed with
mean 0 and standard deviation σ and X is an approximation of Brownian
motion in discrete space. This means that X is only allowed to jump to the
neighboring states with a rate such that

V ar[Xt] = V ar[Wt]

for all t ≥ 0 if W is a Brownian motion. Since the state space is bounded
we assume that X is reflected at the boundaries xmin and xmax.

In the first section of this chapter we concentrate on the parameters λ and
σ and how they influence the size of the spread. Our model here can also be
seen as a discretized version of a model with continuous state space with X
being Brownian motion. We discuss this in the second section and conclude
the thesis with a conjecture for this model.
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8.1 The size of the spread

Our aim in this section is to study the dependence of the size of the spread on
the parameters λ, which is the rate of customer arrivals, and σ, the standard
deviation of the error terms εi. But before we present our simulation setting
and the results we want to make some general remarks on the size of the
spread and the information flow.

It is clear that to some extent the spread reflects the information the market
maker has. If he has full knowledge of the true value Xt at time t the spread
will be zero. If his information is imprecise the spread will typically be large.
There are two effects on the spread:

Firstly, at the trades the market maker learns something about the true
value, his information about X increases and the spread typically decreases.
We showed in the last chapter that if the true value stays constant, then,
under some conditions, both prices converge to the true value and the spread
tends to zero. Thus, the market maker collects more and more information
and since X does not change, he can identify the true value.

Secondly, in the times when nothing (new) can be observed by the market
maker the true value will change as described in the transition kernel q of
the process X. Since the market maker corrects for this effect, typically a
widening of the spread will be the result. But this is not necessarily so.
If the spread is large the market maker can also learn that its quite likely
that customers leave the market without trading because the true value is
inside the spread. This may lead to a narrowing of the spread. Thus, the
effect of no trades over a certain amount of time is not clear. It depends
on the transition kernel q and on the effects a change in the conditional
probabilities has on the prices, thus, on the functions G and H. However,
this relation is hard to capture.

When X is constant the learning effect dominates. In the situation where
no trades happen at all (which has zero probability), it is clear that the con-
ditional probabilities will tend to the stationary distribution of the process
X and the according prices and spread will be obtained. It is an interesting
question whether one of the two effects dominates or whether there might
be some sort of equilibrium where the two effects counterbalance each other.

However, it seems clear that it is very hard to make such assertions in
a rigorous and general way because the behavior depends heavily on the
nature of q. Thus we confine ourselves with the following simulation.

We choose the state space to be [0, 10] divided by steps of 0.1, i.e. we
have 101 different states. The time runs from 0 to 5 in steps of size 0.001.
We choose X0 to be distributed like a discretized version of the Normal
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distribution with mean 5 and standard deviation 1. The standard deviation
is chosen freely here.
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Figure 8.1: The rate of customer arrivals is λ = 5, the standard deviation
of εi is σ = 1.5.

Our interest lies in the size of the spread. As described above there are two
effect and as it turns out in simulations they more or less balance each other.
Thus, we consider the spread only after some time of balancing. For our
very simple statics in the following we only consider outcomes after t = 1.

We start with a setting where the rate of customer arrivals is λ = 5 and the
standard deviation of εi is σ = 1.5. In the scenario shown in Figure 8.1 the
average spread for t ∈ [1, 5] is 1.12850 with an empirical variance of 0.03047.

In a first step we increase the rate of customer arrival to λ = 20 as shown
in Figure 8.2. In the otherwise same scenario as in Figure 8.1 the average
spread after t = 1 decreases to 0.46888 and the empirical variance to 0.00717.

If we further increase λ to 100, we see that the spread becomes even smaller
(see Figure 8.3) and is in average 0.20411 with an empirical variance of
0.00073. This is no surprise sinceX is piecewise constant and in that case the
convergence result of Theorem 7.4 dominates. The information gathering
effect more and more dominates the disturbance effect of q. However, it
seems difficult to formulate this mathematically rigorous, since we can not
describe the rate of convergence in Theorem 7.4 explicitly. This is due to the
fact that this theorem uses the martingale convergence theorem for which
little is known in terms of the rate of convergence.
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Figure 8.2: The rate of customer arrivals is λ = 20, the standard deviation
of εi is still σ = 1.5. We omit the bullets that show the customers valuations
for reasons of clarity.
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Figure 8.3: The rate of customer arrivals is λ = 100, the standard deviation
of εi is again σ = 1.5. For large λ the prices seem to converge against the
true value.
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We now go back to the case where λ is 5 as in Figure 8.1 but increase
the standard deviation from 1.5 to 3. The outcome can be seen in Figure
8.4. The average spread in this scenario obtains a value of 0.9028 and an
empirical variation of 0.01327. Hence, it is smaller than in the case with
σ = 1.5.

If we increase σ further as in Figure 8.5 we have an average spread of 0.7922
and an empirical variation of 0.01581. The effect that with increasing σ the
spread decreases can be explained by the following considerations. If σ is
large customers are more of a noise-type, i.e. their behavior is only connected
marginally with the state of X and hence the information content for the
market maker is smaller, the business of the market maker is less risky and
he thus quotes smaller spreads.
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Figure 8.4: The rate of customer arrivals is λ = 5. We increased the standard
deviation of εi to σ = 3.

However, this does not mean that the market makers prices reflect the true
value as our last concrete example shows. In Figure 8.6 we now increase
both, the rate of the customers λ to 100 and the standard deviation σ to
5. The result are price processes that have a small spread but little to do
with the true value process. Actually, it is clear that the prices are mostly
a random walk. They go up at every buy and down at the sells, but this
behavior is triggered mostly by the outcome of the respective εi, which are
iid, and has little to do with the current value of X.



74 CHAPTER 8. SIMULATIONS

0 1 2 3 4 5

0
2

4
6

8
10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 8.5: For λ = 5 and σ = 5 the spread further decreases.
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Figure 8.6: For λ = 100 and σ = 5 the spread is small, but the market
makers prices do not reflect the prices at all.
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8.2 A conjecture for Brownian motion

Throughout this thesis we assumed that X has a finite state space x1 <
. . . < xn. Given the assumptions of the last section it is natural to ask,
whether we can formulate our model if X is a process defined on R instead.
If we reconsider Sections 4.1 and 4.2 that describe the definition of the model
this seems to be possible. However, all methods in the subsequent work that
are aimed to prove existence and uniqueness are based on the consideration
of the process of conditional probabilities π (see Lemma 4.7). An extension
to a real-valued process X faces several problems:

• It is essential that there is an existence and uniqueness result in the
static case (such as Theorem 3.8). This clearly requires some restric-
tions on the class of conditional distributions that occur, but in ad-
vance, i.e. before we know that they exist, little is known how they
look like.

• The results that we present in Chapter 5 are much harder to achieve
in this setting. There are still general results in filter theory, such
as that for a fixed pricing strategy the conditional distributions exist
(see [BC08], Theorem 2.1). However, a pathwise construction as in
Section 5.2 seems very difficult, since we can not work with results on
multidimensional differential equations.

• Also, it is essential for our arguments on uniqueness in Section 5.1 that
there is a Lipschitz-continuity of G in π (see Lemma 3.10), i.e. similar
conditional distributions lead to similar ask (and bid) prices. It is not
clear how to formulate this adequately in a continuous state space.

However, let us look at some simulations in which we pretend to be already
in the case of real Brownian motion (actually, one could question whether
Brownian motion is a good process to represent the true value process since
it does not exhibit any jumps).

We stick to the model described in the last section with the setting that we
considered initially, i.e. λ = 5, σ = 1.5 and the initial distribution is normal
with mean 5 and standard deviation 1. In Figure 8.7 we see the conditional
probabilities represented by color and in Figure 8.8 at times t = 3, 4, 5.
The pictures heavily suggest that the conditional distributions are (at least
approximately) normal.

This also seems to hold true (in the limit) if the initial distribution is not
normal. In Figures 8.9 and 8.10 we see the same pictures of conditional
distributions as described above for another scenario but with an uniform
initial distribution. Again the pictures suggest that the distributions are
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Figure 8.7: The true value, which is an approximation to Brownian motion,
is given by the black line, the Glosten-Milgrom prices by the red lines. In
the background the conditional probabilities are shown, where red indicates
a probability equal zero, blue and purple indicate a high probability.
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Figure 8.8: The conditional probabilties at all 101 states at different times
t = 3, 4, 5 are given by the bullets. The red line is the density of a mean-
variance fitted normal distribution.
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normal. If all conditional distributions are approximately normal at least
an existence and uniqueness result in the static case might be obtainable.
The second and third points seems still to be difficult to solve.

Figure 8.9: A similar simulation to Figure 8.7 but with an uniform initial
distribution.
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Figure 8.10: The conditional probabilities at all 101 states at different times
t = 3, 4, 5 are given by the bullets. The red line is the density of a mean-
variance fitted normal distribution. After some time of balancing the con-
ditional distributions seem to be normal.



Deutsche Zusammenfassung

Ziel dieser Doktorarbeit ist es, die Existenz und Eindeutigkeit von Glosten-
Milgrom Preisstrategien zu untersuchen. Diese Strategien kennzeichnen im
klassischen Modell von Glosten und Milgrom [GM85] das Preissetzungsver-
halten eines Market Makers. Dieser tritt als alleiniger Liquiditätsanbieter
für das zu untersuchende Wertpapier auf, das heißt alle anderen Marktteil-
nehmer, die im Folgenden als Kunden bezeichnet werden, können nur mit
ihm handeln.

Die ökonomische Kernfrage ist nun, wie der Market Maker seine Preise wählt
und warum und in welcher Höhe er für seine Leistung entschädigt wird. Der
Market Maker trägt im Wesentlichen zwei Risiken, nämlich das Inventar-
und das Informationsrisiko, wobei wir uns hier auf letzteres konzentrieren.
Eine Übersicht über die verschiedenen Ansätze zu diesen Problemen und
aktuelle Forschungsergebnisse sind in Kapitel 1 dargestellt.

Das Informationsrisiko besteht darin, dass die Kunden mit denen der Mar-
ket Maker handelt besser über den wahren Wert X informiert sind als er
selbst. Sie entscheiden anhand der vom Market Maker gesetzten Preise und
einer eigenen, privaten Information über den Wert des Papieres darüber, ob
sie kaufen oder verkaufen. Die private Information setzt sich aus besagtem
wahren Wert X und Störtermen εi zusammen. Dabei modellieren wir X
nicht wie in der bisherigen Literatur als über die Zeit konstante Zufallsvari-
able sondern als Markov-Prozess.

Der Market Maker kann allerdings aus dem Verhalten der Kunden, nämlich
aus deren Käufen und Verkäufen, etwas über den wahren Wert X des Pa-
pieres lernen. Die zentrale Glosten-Milgrom Bedingung ist nun, dass die
Preise S = (S, S) des Market Makers dem Erwartungswert des wahren
Wertes X unter seiner Information FS , also den vergangenen Käufen und
Verkäufen, entsprechen. Es handelt sich also um einen risikoneutralen Mar-
ket Maker bei vollständigem Wettbewerb. Dabei antizipiert der Ask Preis S
des Market Makers weiterhin, dass die nächste Transaktion ein Kauf eines
Kunden ist, bzw. der Bid Preis S, dass es sich bei der nächsten Transak-
tion um einen Verkauf durch einen Kunden handelt (siehe auch Theorem 3

79
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unten).

Hieraus ergibt sich ein Endogenitätsproblem, da die gewonnene Informa-
tion FS von den Preisen S abhängt, die Preise sich aber wiederum aus der
Information erklären. Ziel der Arbeit ist es, das daraus resultierende Fix-
punktproblem zu untersuchen, was damit nach unserem Wissensstand zum
ersten Mal auf mathematisch rigorose Weise geschieht. Diese Art von Endo-
genitätsproblem scheint in Modellen mit Poisson-Prozessen eine Neuerung
darzustellen.

Ein wichtiges Hilfsmittel in dieser Arbeit stellt die Theorie des stochastischen
Filterns dar. Diese Theorie wird in Kapitel 2 zunächst für Punktprozesse
in Anlehnung an [Bré81] dargestellt. Hauptergebnis ist die Herleitung der
Filtergleichung für diese Art von Problemen.

Das zeitstetige Modell, das wir auch im Folgenden näher betrachten wollen,
wird in Kapitel 4 ausführlich beschrieben. In der Arbeit wird zunächst in
Kapitel 3 der statische Fall, d.h. ein Einperiodenmodell, behandelt, welches
die Situation an festen Zeitpunkten beschreibt. Für dieses Modell werden,
für verschiedene Vorraussetzungen an ε, Existenz- und Eindeutigkeitsaus-
sagen bewiesen (siehe Theorem 3.8 und 3.11), die später im stetigen Fall
benutzt werden.

Das zeitstetige Modell und allgemeine Resultate

Auf dem Wahrscheinlichkeitsraum (Ω,F , P ) betrachten wir zunächst den
càdlàg Prozess X = (Xt)t≥0, der den wahren Wert des Wertpapieres
beschreibt. Wir nehmen an, dass dieser ein zeithomogener Markov-Prozess
mit endlichem Zustandsraum {x1, . . . , xn}, n ≥ 2 ist, wobei

xmin = x1 < . . . < xn = xmax.

Der Übergangskern wird mit q bezeichnet.

Der Market Maker kennt X nicht, sondern beobachtet nur die aus X und
seinen Preisen resultierenden Käufe und Verkäufe. Diese werden wie folgt
modelliert: Sei N ein Poisson-Prozess mit konstanter Rate λ > 0. Die
Sprungzeiten von N bezeichnen wir mit τ1 < τ2 < τ3 . . .. Zu diesen Zeiten
erreichen Kunden den Markt und erhalten eine gestörte Information Xτi +εi
über den wahren Wert des Papiers. Dabei bezeichnet die Folge (εi)i∈N den
Störterm, der als unabhängig identisch verteilte Folge von Zufallsvariablen
modelliert wird. Außerdem wird angenommen, dass X, N , und (εi)i∈N wech-
selseitig unabhängig sind.
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Sei S : Ω×[0,∞)→ R2 eine gegebene, F⊗B([0,∞))-messbare Preisfunktion
des Market Makers. Wir bezeichnen mit S = (S, S) jeweils Ask und Bid
Preis und nehmen an, dass St(ω) > St(ω) für alle (ω, t). Ein Kunde kauft
ein Wertpapier, falls Xτi + εi ≥ Sτi und verkauft falls Xτi + εi ≤ Sτi . Er
handelt nicht, falls seine Bewertung im Spread liegt.

x m
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Figure 1: Die schwarze Linie bezeichnet X, die roten gestrichelten Linien die
beiden Preise S > S. Die Bewertungen der Kunden Xτi + εi sind durch die
Punkte markiert, die schwarz sind, falls ein Kauf oder Verkauf stattgefunden
hat.

Wir erhalten so die Folge der tatsächlich stattgefundenen Käufe und
Verkäufe (Bi)i∈N und (Ci)i∈N als Teilfolge von (τi)i∈N, die zugehörigen
Zählprozesse NB und NC (vergl. Definition 4.1 und 4.2) und die Filtra-
tion des Market Makers FS , die von diesen Ereignissen erzeugt wird (siehe
Definition 4.2).

Definition 1. Wir bezeichnen S als zulässige Preisstrategie, falls sie FS-
vorhersehbar ist und xmax ≥ St(ω) > St(ω) ≥ xmin für alle (ω, t) ∈ Ω×R+.

Dabei ist die (im ökonomischen Sinne) wesentliche Eigenschaft die Vorher-
sehbarkeit bezüglich FS . Wir betrachten dann Glosten-Milgrom Preise, die
sich wie folgt beschreiben lassen.

Definition 2. Eine zulässige Preisstrategie S ist eine Glosten-Milgrom
Preisstrategie (GMPS), falls
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E

∑
Bi≤τ

(SBi −XBi)

 = 0 und E

∑
Ci≤τ

(SCi −XCi)

 = 0

für jede beschränkte FS-Stoppzeit τ .

Eine GMPS zeichnet sich also dadurch aus, dass der Erwartungswert der
Summen der Profite des Market Makers, jeweils aus Käufen und Verkäufen,
bewertet am stattfindenden Zeitpunkt, gleich 0 ist. Wir zeigen zunächst
folgende Äquivalenz.

Theorem 3. S ist eine GMPS genau dann, wenn sie zulässig ist und

SBi = E[XBi |FSBi ] und SCi = E[XCi |FSCi ] P − f.s.

für alle i.

Die Ask Preise S zu den Kaufzeitpunkten Bi entsprechen also dem Er-
wartungswert von X zum gleichen Zeitpunkt, gegeben die Information
FSBi . Diese enthält alle vergangenen Transaktionszeitpunkte und die Art
der Transaktion, insbesondere auch die Information, dass gerade ein Kauf
stattgefunden hat. Gleiches gilt für den Bid Preis S und Verkaufszeitpunkte
Ci.

Zentraler Teil des Kapitels 4 ist die Konstruktion eines Funktionals F auf
dem Raum der (nicht notwendigerweise zulässigen) Preisstrategien, für das
wir folgendes Theorem beweisen.

Theorem 4. Eine zulässige Preisstrategie S ist eine GMPS genau dann,
wenn S ein Fixpunkt von F ist.

Dabei sagen wir, dass S ein Fixpunkt von F ist, falls S = F (S) P ⊗ λ-f.ü.
(λ bezeichnet das Lebesgue-Maß auf R+). Wir benötigen hierzu zum einen
eine Existenz- und Eindeutigkeitsaussage für den statischen Fall, wie sie
bereits in Kapitel 3 gezeigt wird, und außerdem den Prozess der bedingten
Wahrscheinlichkeiten πS , der durch folgendes Lemma beschrieben wird.

Lemma 5. Für jeden F ⊗B([0,∞))-messbaren Prozess S = (S, S) existiert
ein (bis auf Ununterscheidbarkeit) eindeutiger F̃S-adaptierter càdlàg Prozess
πS mit

πSτ =
(
P
[
Xτ = xi|FSτ

])
i=1,...,n

P -f.s.

für alle endlichen Stoppzeiten τ .

Hier bezeichnet F̃S die Vervollständigung von FS . Für πS können wir mit
den Resultaten aus Kapitel 2 bei gegebenem S explizit die Filtergleichung
berechnen, für welche die Vervollständigung nicht nötig ist.
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Lemma 6. Sei Φ(x) = P [ε1 ≥ x] und Ψ(x) = P [ε1 ≤ x]. Der Prozess πS

genügt folgender Stochastischer Differentialgleichung:

dπS,it =πS,it−

(
Φ(St − xi)∑

j π
S,j
t− Φ(St − xj)

− 1

)
dNB

t

+ πS,it−

(
Ψ(St − xi)∑

j π
S,j
t− Ψ(St − xj)

− 1

)
dNC

t

−

λπS,it
Ψ(St − xi) + Φ(St − xi)

−
∑
j

πS,jt
(
Ψ(St − xj) + Φ(St − xj)

)
−
∑
j

πS,jt q(j, i)

 dt.

für alle t ≥ 0, bis auf Ununterscheidbarkeit, mit Anfangsbedingung πS,i0 =
P [X0 = xi].

Betrachtung für verschiedene Verteilungen von ε1

Wir betrachten das Modell für verschiedene Verteilungen der Störterme, die
unabhängig und identisch zu ε1 verteilt sind. Zunächst zeigen wir in Kapitel
5 für den Fall, dass ε1 eine Dichte hat und weitere Annahmen erfüllt sind,
folgende Aussage.

Theorem 7. Sei C := xmax − xmin und Φ(y) := P [ε1 ≥ y], y ∈ R. Sei Φ
differenzierbar (d.h. die Verteilung von ε1 hat die Dichte −Φ′) auf [−C,C],
1 > Φ(0) > 0, und

−Φ′(y) ≤ K

C
min{Φ(y), 1− Φ(y)}

für alle y ∈ [−C,C] und eine Konstante K < 1. Dann existiert eine
Glosten-Milgrom Preisstrategie und diese ist eindeutig bis auf eine (P ⊗ λ)-
Nullmenge.

Die wesentliche Idee des Eindeutigkeitsteils des Beweises in Abschnitt 5.1
besteht darin zu zeigen, dass F unter den Vorraussetzungen dieses Satzes
eine Kontraktion ist, was für hinreichend kleines t durch folgendes Lemma
gegeben ist.
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Lemma 8. Es existiert eine Konstante K1 <∞ so, dass

E

[∫ t

0
‖F (S)s − F (T )s‖ ds

]
≤ (K + tK1)E

[∫ t

0
‖Ss − Ts‖ ds

]
für alle t ≥ 0 und für K aus Theorem 7.

Daraus lässt sich dann die Eindeutigkeit herleiten. Allerdings liefert
dies nicht die Existenz, da der Raum der Preisstrategien unter F nicht
abgeschlossen ist. Eine Lösung kann aber in Abschnitt 5.2 pfadweise kon-
struiert und damit die Existenz gezeigt werden. Diese Rückführung auf
den deterministischen Fall macht Gebrauch von der Tatsache, dass für eine
Differentialgleichung mit Lipschitz-stetigen Koeffizienten eine eindeutige
Lösung existiert. Die allgemeinen Resultate und die Resultate für diese
Wahl von ε sind Inhalt von [KR13].

In Kapitel 6 betrachten wir eine andere Verteilung von ε1, das sogenannte
Insider/Noise Trader Modell. Hierbei beobachten die Kunden entweder den
WertX ungestört, also εi = 0 (wir sprechen in diesem Fall von einem Insider)
oder die Kunden kaufen rein zufällig. Im zweiten Fall entspricht dies εi =
±∞ und wir bezeichnen diese Kunden als Noise Trader. Wir betrachten
also für µ, ν ∈ (0, 1)

ε1 =


∞ mit Wahrscheinlichkeit µ

0 ν

−∞ 1− µ− ν.

Eine Existenzaussage ist für dieses Modell schwierig, da die pfadweise Kon-
struktion fehlschlägt. Grund dafür ist die Unstetigkeit der Verteilungsfunk-
tion von ε1, die sich in der Weise fortsetzt, dass das zugehörige determinis-
tische Problem bei pfadweiser Betrachtung keine Lipschitzkoeffizienten mehr
aufweist.

Wir betrachten dann das GMPS-Problem bis zu einer Stoppzeit τ =
min{T1, t̃}, wobei T1 der erste Transaktionszeitpunkt ist, also entweder B1

oder C1 und t̃ eine deterministische Konstante echt größer 0. Für diese Sit-
uation, in der alle vorherigen Resultate über die Gestalt der Preise gültig
sind (insbesondere Theorem 4), können wir zwei gültige und symmetrische
GMPSen konstruieren. Dies stellt also ein Gegenbeispiel zur Eindeutigkeit
dar.
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Konvergenz und Simulationen

Die letzten beiden Kapitel beschäftigen sich nicht mit der Existenz- und Ein-
deutigkeitsfrage, sondern betrachten das Modell und dessen Eigenschaften.
Eine Kernfrage der ökonomischen Literatur ist die Größe des Spreads und
seine Abhängigkeit von bestimmten Parametern. Zunächst betrachten wir
in Kapitel 7 den Fall, dass X zwar zufällig, aber über die Zeit konstant ist.
In diesem Fall lernt der Market Maker (unter gewissen Vorraussetzungen)
immer mehr über den wahren Wert und seine Preise konvergieren gegen X.

Theorem 9. Sei Φ streng monoton fallend auf [−C,C], dann konvergiert
die Folge der tatsächlichen Kaufspreise SBi gegen den wahren Wert X, d.h.

lim
i→∞

SBi = X f.s..

Gleiches gilt natürlich auch für die Verkaufspreise SCi .

In Kapitel 8 untersuchen wir die Abhängigkeit des Spreads von den Para-
metern für ein Modell, dass für X eine Näherung an die Brownsche Bewe-
gung annimmt und die εi normalverteilt sind.

Dabei zeigt sich in den Simulationen, dass je größer die Ankunftsrate der
Kunden beim Market Maker λ, desto kleiner der Spread ist. Außerdem
entsprechen die Preise bei höherem λ eher dem wahren Wert. Dies kann mit
der Konvergenz aus dem vorherigen Kapitel erklärt werden. Abschnittsweise
ist X konstant, wenn nun das Lernen des Market Makers durch viele
Transaktionen schnell verläuft, nähern sich die Preise dem wahren Wert.

In einem zweiten Teil betrachten wir die Abhängigkeit des Spreads von der
Varianz der Fehlerterme εi. Bei hoher Varianz ist der Spread klein. Dies
kann so erklärt werden, dass einerseits der Market Maker zwar weniger aus
den Transaktionen lernen kann, da die Kunden willkürlicher handeln, er
aber andererseits weniger Risiko eingeht, da die Kunden eher auch zu für sie
ungünstigen Preisen zu handeln bereit sind. Die Verringerung des Spreads
geht dabei aber nicht mit einer besseren Schätzung des wahren Wertes ein-
her. In der Tat können beide erheblich differieren.

Im letzten Abschnitt wird untersucht, wie die bedingten Verteilungen in
einem völlig “normalen” Modell, das heißt falls X eine Brownsche Bewe-
gung ist, aussehen könnten. Dieses passt zwar nicht in unserer theoretisches
Modell, da wir in dieser Arbeit einen endlichen Zustandsraum des Prozesses
X vorraussetzen (statt R), dennoch ergeben sich interessante Resultate.
Die bedingten Verteilungen scheinen auf lange Sicht näherungsweise nor-
malverteilt zu sein.
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