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Abstract
In this paper we discus the concept of ambiguity of context—free
languages and grammars. We prove the existence of constant ambigu-
ous, exponential ambiguous and polynomial ambiguous languages and

we give examples for these classes of ambiguity
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1 Introduction

The concept of ambiguity plays a fundamental role in formal language theory.
Measuring the amount of ambiguity in context—free grammars is well known;
see for example [1, Section 7.3]. We define the ambiguity as a function of the

word length

2 Preliminaries

We use the following notations and definitions of grammars and languages

as introduced in [5]:

2.1 context—free grammar

A context—free grammar (CFG) is a quadruple G=(N, 3, P, S) where N and
> are finite disjoint sets of nonterminals and terminals respectively; P is a
finite set of productions of the form A — o where A € N and o € (N U X)*;
S € N is the start symbol. If A — «aisin P and oy, ag are in (N UX)*, then
we write a; Aoy = ajaae. — is the i fold product, — is the transitive,
= the reflexive and transitive closure of =>. The context—free language
(CFL) generated by G is L(G):= {w € ¥*|S == w}.

A language L is termed context—free if L=L(G) for a CFG G. #,(w)

denotes the number of a’s in w, |w| the length of w.
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2.2 O—-Notations

Let f,g: N — R, be functions

g=0(f) &= (FceRy,3In,eN):

g=Q(f) & (BceRy,In,eN):(Vn>ny):
g=0(f) = g=0(f) g=(f)

g=2°" o (3ceR,,In, eN):

g= PALCONNEPEN

g=2°" o ¢ =200 gpd g =290

2.3 Ogden’s Lemma

(3c € Ry, 3n, € N) 1 (V> ng) : (g(n) > 2)

[5] Let G=(N, 3, P, S) be a CFG. Then there is a constant h=h(G), such

that for every word z € L(G) with at least h marked positions, there is a

factorization z=uvwxy with:

1. w contains at least one of the marked positions

2. FEither u and v both contain marked positions, or x and y both contain

marked positions
3. vwx has at most h marked positions

4. JAeN such that

S =5 uAy== uwvAxy== ... == wwlAzly == uwwlwaly €L(G) for all

integers q> 0

Remark 2.1 Point (4) of OGDEN’s Lemma (on page 4) says, that each

derivation tree of z=uvwxy in G has a subtree rooted at A which could be
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pumped to obtain a derivation tree of uvlwzdy in G for ¢ > 0. We call such

a subtree a A—pumptree. (see Figure 1 on page 5)

S S
u A y pump the A-pumptree q times u A y
T ] /’\
v A x v A af
| |
w W

Figure 1: derivation trees and A—pumptrees

3 Ambiguity

Measuring the amount of ambiguity in context—free grammars is well known,
see for example, [1, Section 7.3]. We define the ambiguity as a function of

the word length n.

Definition 3.1 (Ambiguity of CFG) Let k > 0 be an arbitrary integer,
f N —= R, be a non constant function and @ € {O,Q,0}.

o The ambiguity dag(w) of a word w in a CFG G is dag(w):=number of

derivation trees (leftmost derivations)* of w in G.

e The ambiguity dag (n) of a CFG G is dag (n):=sup{dag(w)|w € ¥* and

jw| <nj.

'For the definition of derivation and leftmost derivation see [5]
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G is at least k-ambiguous <= There is a word in L(G) for which there

1s at least k distinct derivation trees in Q.

G is at most k—ambiguous < There is a word with at most k derivation

trees in G.

G is k-ambiguous < (G is at least k-ambiguous) and (G is at most

k—-ambiguous).

G is polynomial of degree k ambiguous = dag(n) = O(n*).

G is exzponential ambiguous = dag(n) = 2°M .

o Gis ®(f(n))-ambiguous & dag(n) = @(f(n)).

G is 22U —ambiguous = dag(n) = 22U ™),

Definition 3.2 (Ambiguity of CFL) Let k > 0 be an arbitrary integer

and f: N — R, be a non constant function.

e A CFL L is k—ambiguous :< each CFG for L is at least k—ambiguous

and there is an at most k-ambiguous CFG for L.

e A CFL L is polynomial of degree k ambiguous < each CFG for L is

Q(n*)-ambiguous and there is a O(n*)-ambiguous CFG for L.

e A CFL L is exponential ambiguous < each CFG for L is 2% -

ambiguous and there is a 2° —ambiguous CFG for L.

e A CFL L is ©(f(n))-ambiguous = each CFG for L is Q(f(n))-
ambiguous and there is a O(f(n))-ambiguous CFG for L.
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Theorem 3.1 For all cycle—free* CFG G, dag(n) < 2 for some ¢ > 0.

Proof Let G=(N, X, P, S) be a cyclefree CFG.

The number of derivation trees, which can be obtained in i leftmost deriva-
tions steps, is at most |P|".

For every cycle-free grammar there are integers a, b such that (A:i>w)
implies (i < a|w| + b) [2, Theorem 4.1].

Thus the number of derivation trees of a word w in a cycle—free CFG G
is at most | P|vI+t = 2(an+b)log|Pl " where n := |w| and log denotes the binary

logarithm.H

Remark 3.1 e By Theorem 3.1 there isn’t any CFL which has an am-
biguity bigger than 2™ (e. g.O(n")).

e WICH [6] has proven, that there isn’t any grammar (and so there isn’t
any language) with ambiguity bigger than polynomial but smaller than

proper exponential (e. g. ©(2V"))

4 Constant ambiguous languages

MAURER [3] has proven the existence of context—free languages which are
inherently ambiguous of any degree. We reprove this result using OGDEN’s

Lemma (on page 4) and another (less complicated) language

Theorem 4.1 Let k be a constant from N.
Ly = {a™b"by? .. b Im,my,ma,...,my > 1,3 0 with m = m;} is

k—ambiguous.

2A CFG is cycle-free if there is no derivation of the form A=A for any nonterminal

A.
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Proof For k=1 we obtain the well known unambiguous language L, :=
{a™b"|m > 1}.

Let k > 2, L, = L(G) for some CFG G=(N, X, P, S) and h be the
constant for G from OGDEN’s Lemma (on page 4). Now we consider the

words

h , ifj=1

2 = a"biOh b with by =
h+h! | otherweise

where all the a’s are marked. It’s not difficult to prove, that for every

factorization z; = u;v;w;x;y; satisfying conditions (1)-(4) of OGDEN’s Lemma

(on page 4)
u; = a" 1<r;<h-—2,
v; = a’ 1<s;,<h—2,
w; = al sl il 0<t; <h-1,

_ ph—s;—t;ph+h! h+h!

Since
+ + +
S = u; Ayyi = w0 ATy = wVWwTY; = Zi,
every derivation tree B; of z; in G has an A;—pumptree (see Figure 2 on

page 9)

yfor i=1,...
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S
Uy A; Yi
|
. h—si—tiph+h!  ph+h!
a” by LT
v, A; x;
| |
a’ w; by
|
al s g b
Figure 2: derivation tree B; with A,—pumptree for 2z =
ghpHhl | pheh b?b?i1h! o bz+h!
We pump the A;—pumptree (of the derivation tree B;) ¢; := 2 + 1 times,

Si

we obtain a derivation tree Tj for the word z := a"Ppithipbtht - phthlin G,

Since i=1, ...k, we obtain k derivation trees T}, T5, ..., T} for the word
2= @R it i G

We now prove that these k derivation trees are distinct.

Suppose there are 7,5 € {1,...,k} withi # jbut T, =T; = T.

The derivation tree T must have both nodes A; (because T' = T;) and
nodes A; (because T' = Tj).

Case 1: Neither A; nor A; appears (in the tree T) as a descendant of
the other.

w. L. 0. g. A; appears on the left of A; (see Figure 3 on page 10)

The frontier of T is a word in which b’s would precede a’s and hence is
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not in Ly, a contradiction (see Figure 3 on page 10)

S
U; A; W Aj Yj
qi qi a;j . a;
v W v wp
b a’

Figure 3: A; on the left of A; in the tree T

Case 2: Either A; or A; appears (in the tree T) as a descendant of the
other

w. . 0. g. A; is a descendant of A;. (see Figure 4 on page 11)
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S
U A Yj
v;]] A, mjj
u A; y

Figure 4: A; is a descendant of A; in the tree T for z=a" M Mpht  phtht

We obtain:
S :+> Uj A]’ yj
= ujv?j ijgj Y;
= v uAyzy;
=+ U, v?j vl wixg"ym?j Y;

A Lk
where #,(2) = #p.(2) =h+h! Vre{l,....i,...,7,..., k}
But if we pump the A,—pumptree of the A;,—pumptree (in the tree T),
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then we obtain:

S = wAy,
== ujU?jHij?ijj
== ujv?jJrluAiyxngyj
= ujv?ﬁluv?iﬂwixg"ﬂyx?ﬁlyj
= zZel
where:
#a(2) = #a(2) + |vj| + |vi| = h+ B!+ [vs] + [vs]
#u,(2) = F#u,(2) + |zl =h+ b+ v
#o;(2) = #,(2) + |zl = h+ Bl + |y
#i,.(2) = #h,.(2) =h+h!
Thus

Vr € {1,... k}, #.(2) #+ #,,(2), a contradiction  of

q;+1 i+1
wjv? Tyl

i+l g+l
J i " Yx:

W;T; j

Each CFG for Ly is therefore at least k—ambiguous.ll
It is not difficult to give an at most k—ambiguous CFG for L;. An at
most k-ambiguous CFG for Ly can be found in [4].

5 Exponential ambiguous languages

Theorem 5.1 Let L = {a'b'c’|i,j > 1}U{a't'c|i,j > 1} . L* is exponential

ambiguous.

Proof Let L*=L(G) for a CFG G=(N, X, P, S) and h be the constant from

OGDEN’s Lemma (on page 4) for G. We consider the words of L* of the form
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Z = 212y... 2, where z; € {a"b"c M ahbh R ch) i € {1,. .., k} and mark all
the a’s. Since the number of the marked positions in each z; is equal to h, for
each given i we can find a factorization z = u;v;w;x;y; and we can construct
a path 7; in each derivation tree B(z) for z in G (with the same idea as the

well known proof of OGDEN’s Lemma [5, Theorem 2.24]) such that:
1. w; contains at least one of the marked positions of z;

2. Fither u; and v; both contain marked positions of z;, or z; and y; both

contain marked positions of z;.

3. v;w;x; has at most h marked positions of z;.

4.
F a4 oA
. .
=
T Gl A s
= uulAxly;
= tvlwxly; € L* for all integers g > 0

The situation is depicted in Figure (see Figure 5 on page 13)

Figure 5: Illustration of the path m; and the factorization z= d;viw;z]y;



5 EXPONENTIAL AMBIGUOUS LANGUAGES 14

We can further prove:

| A~
2z = ahbhPth G =2z
v; = a’
wi — ah—?'i—sibh—si—ti

€Tr; = b%

A

Yi = YiZit1 .- Rk

| A~
2z = albPtheh s =2z
v; = a’
w; = ah*ﬂ'fsibh+hlcti

T; =c*

~

Yi = YiZir1--- Rk

u=a""and 1 <r; <h-—2,
]_SSZSh—Q,

0<t; <h-1,

yi = bich+h!,

u=a"and 1 <r; <h-—2,
]_SSlSh—Q,

yi — Ch_ti_si.

The proof is straightforward and will be omitted here, you can see [4]

Since A; = v;A;x;, the derivation tree B(z) has an A;—pumptree, whose

frontier v;w;z; is a subword of z;. We can use this argumentation for each

i €{1,...,k}, thus the derivation tree B(z) consists of the k A;—, Ay—, ...,

Aj—pumptrees, which are in B(z) parallel to themselves. (see Figure 6 on

page 15)
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S
Uy Al A2 Ak
v A o vy Ay xo vy Ap xp
| | |
w1 Wa Wi,

Figure 6: a derivation tree B(z) for a word z from {a"bhci ™ ghphthich)k

If we pump each A;—pumptree in the tree B(z) ¢; := ? + 1 times, we will

h+h!bh+hlch+h!

obtain a derivation tree T(z) for the word (a )k (see Figure 7 on

page 15)
S
Uy Al A2 Ak
vt Ay alt WP Ay a® ol Ay al
| | |
w1 W Wi

Figure 7: derivation tree T(z) for the word(a" ™ p+hich+ht)k
Since there are 2* words of the form z = 2z1zy...2, where z €
a™b"c" " a c i€{1,2,...,k}, there are erivation trees of the
hphhth! ghphthich v 1,2 k}, th 2% derivation t f th

form T(z) for the word (a*™ph+h ch+ht)k,
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We now prove that these 2¥ derivation trees are distinct. Suppose there
are z = 2129...2, and Z = Z1%5...%, where z;,% € {a"bhchtM ahph M}
with 2 £ Z but T(2) =T(2) = T(z, 2).

z # Z implies there is i € {1,...,k} with z; # 2z, . W. L o. g let
2 = a"breh Y and z = ahbh i e,

The tree T'(z, Z) must have both an A;—pumptree (because T'(z, 2)=T(z))
and an A;-pumptree (because T(z, 2)=T(%)). We discuss the two following
cases.

Case 1: Neither the 4;—pumptree nor the A;—pumptree is a subtree of
the other.

w. 1. 0. g. the A;—pumptree is on the left of the A,—pumptree in the tree

T(z, 2) (see Figure 8 on page 16)

S
| | Ni— ~ 1 ~ ! | Nk—1
(ahthphthlhthtyizly, A; ywi; A, G (@I ph Rt hthty k=i
qi qi ~G; ~ ~Gi
vt owp o xy” vt ow; Xy

Figure 8: the A, pumptree is on the left of the A, pumptree in T'(z, Z)

The frontier of the tree T'(z, Z) would have at least (k+1) subwords of the
form g"+hiphthich+ht - But the frontier of T'(z, 2) is the word (a My hthtyk
a contradiction.

Case 2: Either the A;—pumptree or the A;—pumptree is a subtree of the
other
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w. 1. 0. g. A; is a descendant of A; (see Figure 9 on page 17)

S
| | Ni—1 ~ 1 ~ | | N\ k—i
(ah+h.bh+h.ch+h.)z 1“1’ Az yi(a“h'bh*h'ch*h')k 7
ﬁl% AZ :I’/:Zqz'
u Az y
qi . qi
v; w; I,

Figure 9: A; is a descendant of flz

We obtain here:

g :+> (athh!thrh!cthh!)ifldiﬁidiﬁil?i(fz‘ 7 (ah+h!bh+hlch+h!)k4
:+> (ah—i-h!bh—i-hlch—i-h!)i—ldiﬁiq}uAiy:Eiq} gi(ah-&-h!bh-&-hlch-&-h!)k—i
:+> (ah—i-h!bh—f—h!ch—f—h!)i—lﬁiﬁiq}uv;h Aix?iy.fi(ii gi<ah+h!bh+h!ch+h!)kz—i
% (ah+h!bh+h!ch+h!)i71 0 ~iuU;Iiwixgiyfiq~i Ui (ah+h!bh+hlch+h!)k4

-~

t1
| | 1NG— | ! N\k—i
_ (alh—i-h.bh—i-h‘ch—i-h‘)z ltl (ah—i-h‘bh—&—h.ch—&-h.)k =2

Since the frontier of T(z,2) is the word (atMprthichthtyk ¢, =

1 ! !
ah+h'bh+h'ch+h'.



6 POLYNOMIAL AMBIGUOUS LANGUAGES 18

However if we pump the A;—pumptree and the A,—pumptree in the tree

T(z, %), then we obtain:

! | | ! ! Nk—i
ah+h.bh+h.ch+h i— lu lA o qﬁ-ly ( h+h.bh+h‘ch+h‘)k 7

gi+1

= )

. (ah-i-h!bh—f—h! Ch+h'>z L6, 5 A, s y~,<ah+h!bh+h! Ch+h!)k—i

- (ah+hz phth! Ch+h')z L 0,0i+ qz+1 A, xqv.""ly:fi(fﬂrlgi( qh+hph+h! Ch+h!)1H
Sy (ah+mbh+m ch+h')z T uv;}ﬁlwﬂgri—ly:ﬁidﬁ-lgi(ah+h!bh+h! Ch+h!)1H'

g

to
— (ah+h!bh+h!ch+h!)i—1t2 (ah+h!bh+h!ch+h!)k—i c L*.

H#alta) = F#alty) + 10| + |vi| = h+ bl + |55] + |vi]
H#i(te) = F#a(t1) + |zi] = h+ Al + v
#H(ta) = #Halt1) + |7 = h+ bl + 7]

Thus #,(t2) # #(t2) and #,(t2) # #.(t2) and therefore to & L.
A contradiction of = (a"+h'phthichthtyi=ly, (qh+hiphthichthtk=i ¢ [* We can
now conclude, that the 2¥ derivation trees are distinct, and each CFG for L*
is therefore 22" -ambiguous. By Theorem 3.1 (on page 7) and Remark 3.1
(on page 7) there isn’t any language, which has an ambiguity bigger than

29" Thus L* is exponential ambiguous.H

6 Polynomial ambiguous languages

Theorem 6.1 Let L := {a™b™cb™c...b™clp € N; m,my,mg,...,m, €

N; 3 € {1,2,...,p} with m = m;} . L¥ is polynomial of degree k ambiguous.

Proof Let LF = L(G) for some CFG G=(N, X, P, S) and h be the constant

for G from OGDEN’s Lemma (on page 4). Now we consider the words of L*
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of the form z = z;, 2, ...z, where z;, = a"(b"c)s=1pre (P e)r—i, j=1,
....kand ¢; = 1,...,p and mark all the a’s in each z;, with a € {1,2,...,k}.
Similar to the proof of Theorem 6.1 we can prove, that each derivation tree
B(z) for z in G consists of k A;,—, A;,—, A;,—pumptrees, which are parallel to
themselves in the tree B(z). (see Figure 10 on page 19)

S
Uiy Ah Ai2 Alk
(%R Azl Tip Uiy AiQ Ty Uiy, Alk Lij,
w’Ll wi2 wlk

Figure 10: a derivation tree B(z) for a word z = z;, 2, . .. 2,

We now pump each A; ~pumptree of the tree B(z) ¢;; = % + 1 times, we
obtain a derivation tree T(z) for the word (a"*"(b"*"c)P)*. (see Figure 11

on page 20)
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S
A Ay, A;,
ai ai ai ai ai i
U’ill Ail :Cill U’LQQ AiZ xiQQ Uikk Azk ikk
| | |
Wy, Wi, Wy,
Figure 11: a derivation tree T(z) for the word (a"*" (ph+"c)P)*
Since there are p* words of the form z = z,2;,. .. %, Where
zi, = a(b"he)iT (b M= j=1, ...k and i; = 1,...,p, there

are p* derivation trees of the form T(z).

We now prove, that these p* derivation trees of the form T(z) are distinct.

Suppose there are

! ;. 1 .
Z =2y %y .. 2y, where  z; = al(htM )i =Ly e (bt c)p=is
and

5 o o . e h(phth! Nij—1ph o ph+R! D\ p—i;
Z=27,...%, where z =a"(0" ") (D" )P

z # Z implies there is j such that i; # ;.

The tree T'(z, Z) must have both an A;,~pumptree (because T'(z, 2)=T(z))
and an A; ~pumptree (because T'(z, 2)=T'(2). We discuss the two following



6 POLYNOMIAL AMBIGUOUS LANGUAGES 21

cases.

Case 1: Neither the A;,—pumptree nor the A;jfpumptree is a subtree of

the other
w. 1. o. g. the A;—pumptree is on the left of the Agjfpumptree in the

tree T'(z, Z) (see Figure 12 on page 21)

S
h4h! (h+h! \p\ij—1,,. ) ) R N _ (A h4R!(ph+R! \p\k—i;
(a (b C) )J u'Lj Azj yljwuij AZJ yll(a/ (b C) ) !
) v "
J J % 1 L 15

Figure 12: A;; on the left of A; in T'(z, 2)

The frontier of the tree T'(z,Z) would have at least (k+1) subtrees of
the form a"*™(b"*"'c)P. But the frontier of the tree T'(z,Z) is the word
(a"+h (Bh M )PYE | a contradiction.

Case 2: FEither the A;,—pumptree or the A;j—pumptree is a subtree of
the other

w. I 0. g. A;; is a descendant of A;j (see Figure 13 on page 22)
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S

(&h+h!(bh+h!c)p)€j—1u7. A- v;, (ah—i-h!(bh—s—h!c)p)k—%j

Figure 13: A;; is a descendant of A;
We obtain here:

-1, % hethl (Bhth! \p\k—i;
u]vr_ TA; 962 yz (@™ (" e)P)
u~ U YA, y:c~ yz (a h+h'(bh+h' )P )k—ij

ij—1u~]U~ uv; JAZJ:UZ y‘% y;( h+h!(bh+hlc)p>k—z‘j

bl b

Es v~ g, ww% yiv~ Ty, (T (B )Y

g

t1
(ah+h!<bh+hlc)p)%j—1tl(ah+h!(bh+h!0)p)k—€j c Lk

Since the frontier of T(z,%) is the word (a"(B"*Mc)P)r t, =

ah+h! (bh+h!c)p.

if we pump however the A;—pumptree and the A,—pumptree in the tree

T(z, %), then we obtain:
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S :+> (ah+h!(bh+h!C)p)%j—1u%jU:j+1A%jx§?j+1yg ( h+h!(bh+hlc)p)k—%j
£ (ah-i-h!(bh-‘rh!C)p)%j_lusz;jj+1uAZ'jyxgjj v (a h+hi(bh+h' )P )k—ij
:+> (ah-‘rh!(bh-‘rh!c)p)gj—lu%jv;;j+1uv;1'ij+1Aijxi +1ygl;;1;j+1y2 ( h+h'(bh+h' )p)k—zj
. (ah+h!(bh+h!c)p)€j_1u%jvgjj+1uvg;j+1wijx;1;j+1y$gj +1 y@ (ah+ht (ph+hle )p)k—ij

(ah+h!(bh+h!c)p)%j—1t2(ah+h!(bh+h!c)p)k—%j c Lk

#a(la) = #a(tr) + |vg,| + ;| = b+ B+ [og [+ oy

The number of the b’s in each b-Block of ¢, is either h+h! or A+h!+|z; |

or h+ h! 4 |z;,| and therefore unequal to the numbere of the a’s in ¢,. Thus

bl
This is a contradiction to (a" (BhHhe)P)ii—Le,(ahth! (phthlc)p)k—is ¢ Lk

We can conclude, that the word a*" (b ¢)P)* has at least p* derivation
trees in G.
Since n := |(a" M (VM e)P)E| = k(p(h+h!+1)+h+h!), dag(n) = Q(n*).A
The grammar with the productions:
S — E*
E — aTbcAlaTbe
T — aTble|A
A — bA|bcAlbe
produces L* and is O(n*)-ambiguous. [4]
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7 Conclusion

From this work we obtain the following classes of CFL:

e constant ambiguous  languages: e.g. Ly, =
{a™b" by . bR mymy,ma, . my, > 1,3 4 with mo=my}
e polynomial ambiguous languages: e.g. LF where L =

{a™b™cb™c.. b clp €  Nym,my,mq,...,m, € N;Ji €

{1,2,...,p} with m =m;}

e “subbexponential” ambiguous languages (e.g. ©(2V")-ambiguous lan-

guages): There isn’t any language

e exponential ambiguous languages: e.g. L* where L = {a'b'c’|i,j >

1 U {aibiclli, j > 1}

e Languages, whose ambiguity bigger than exponential (e.g. O(n")-

ambiguous languages): There isn’t any language

However there remain the following questions:

1. Is there any ©(n")—ambiguous languages, where r is a non natural num-

ber?

2. Is there any “sublinear” ambiguous languages (e. g. ©(log(n))-

ambiguous languages)?
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