Ambiguity of context-free languages as a function of the word length

Mohamed NAJI
Email: MohamedNaji@web.de
WWW: http://www.mohamednaji.de.vu
Mobile +49-160-1127558

November 1998

Abstract

In this paper we discus the concept of ambiguity of context-free languages and grammars. We prove the existence of constant ambiguous, exponential ambiguous and polynomial ambiguous languages and we give examples for these classes of ambiguity

Contents

1 Introduction 3
2 Preliminaries 3
2.1 context-free grammar 3
2.2 O-Notations 4
2.3 Ogden's Lemma 4
3 Ambiguity 5
4 Constant ambiguous languages 7
5 Exponential ambiguous languages 12
6 Polynomial ambiguous languages 18
7 Conclusion 24
references 24
Index 25

List of Figures

1 derivation trees and A-pumptrees 5
2 derivation tree B_{i} with A_{i}-pumptree for $z_{i} \quad:=$ $a^{h} b_{1}^{h+h!} \ldots b_{i-1}^{h+h!} b_{i}^{h} b_{i+1}^{h+h!} \ldots b_{k}^{h+h!}$ 9
$3 \quad A_{i}$ on the left of A_{j} in the tree T 10
$4 A_{i}$ is a descendant of A_{j} in the tree T for $\mathrm{z}=a^{h+h!} b_{1}^{h+h!} b_{2}^{h+h!} \ldots b_{k}^{h+h!}$ 11
5 Illustration of the path π_{i} and the factorization $\mathrm{z}=\hat{u_{i}} v_{i}^{q} w_{i} x_{i}^{q} \hat{y_{i}}$ 13
6 a derivation tree $\mathrm{B}(\mathrm{z})$ for a word z from $\left\{a^{h} b^{h} c^{h+h!}, a^{h} b^{h+h!} c^{h}\right\}^{k}$ 15
7 derivation tree $\mathrm{T}(\mathrm{z})$ for the $\operatorname{word}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k}$ 15
8 the A_{i}-pumptree is on the left of the \tilde{A}_{i}-pumptree in $T(z, \tilde{z})$ 16
$9 \quad A_{i}$ is a descendant of \tilde{A}_{i} 17
10 a derivation tree $\mathrm{B}(\mathrm{z})$ for a word $z=z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}$ 19
11 a derivation tree $\mathrm{T}(\mathrm{z})$ for the word $\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k}$ 20
$12 A_{i_{j}}$ on the left of $A_{\tilde{i}_{j}}$ in $T(z, \tilde{z})$ 21
$13 \quad A_{i_{j}}$ is a descendant of $A_{\tilde{i}_{j}}$ 22

1 Introduction

The concept of ambiguity plays a fundamental role in formal language theory. Measuring the amount of ambiguity in context-free grammars is well known; see for example [1, Section 7.3]. We define the ambiguity as a function of the word length

2 Preliminaries

We use the following notations and definitions of grammars and languages as introduced in [5]:

2.1 context-free grammar

A context-free grammar (CFG) is a quadruple $\mathrm{G}=(\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S})$ where N and Σ are finite disjoint sets of nonterminals and terminals respectively; P is a finite set of productions of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in(N \cup \Sigma)^{*}$; $S \in N$ is the start symbol. If $A \rightarrow \alpha$ is in P and α_{1}, α_{2} are in $(N \cup \Sigma)^{*}$, then we write $\alpha_{1} A \alpha_{2} \Longrightarrow \alpha_{1} \alpha \alpha_{2} . \xlongequal{i}$ is the i-fold product, $\xlongequal{+}$ is the transitive, $\xlongequal{*}$ the reflexive and transitive closure of \Longrightarrow. The context-free language (CFL) generated by G is $\mathrm{L}(\mathrm{G}):=\left\{w \in \Sigma^{*} \mid S \xlongequal{*} w\right\}$.

A language L is termed context-free if $\mathrm{L}=\mathrm{L}(\mathrm{G})$ for a CFG G . $\#_{a}(w)$ denotes the number of a's in $w,|w|$ the length of w.

2.2 O-Notations

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}_{+}$be functions

$$
\begin{aligned}
g=O(f) & : \Leftrightarrow \quad\left(\exists c \in \mathbb{R}_{+}, \exists n_{o} \in \mathbb{N}\right):\left(\forall n \geq n_{0}\right):(g(n) \leq c f(n)) \\
g=\Omega(f) & : \Leftrightarrow \quad\left(\exists c \in \mathbb{R}_{+}, \exists n_{o} \in \mathbb{N}\right):\left(\forall n \geq n_{0}\right):(g(n) \geq c f(n)) \\
g=\Theta(f) & : \Leftrightarrow \quad g=O(f) g=\Omega(f) \\
g=2^{O(n)} \quad & \Leftrightarrow \quad\left(\exists c \in \mathbb{R}_{+}, \exists n_{o} \in \mathbb{N}\right):\left(\forall n \geq n_{0}\right):\left(g(n) \leq 2^{c n}\right) \\
g=2^{\Omega(n)} \quad & \Leftrightarrow \quad\left(\exists c \in \mathbb{R}_{+}, \exists n_{o} \in \mathbb{N}\right):\left(\forall n \geq n_{0}\right):\left(g(n) \geq 2^{c n}\right) \\
g=2^{\Theta(n)} & : \Leftrightarrow \quad g=2^{O(n)} \text { and } g=2^{\Omega(n)}
\end{aligned}
$$

2.3 Ogden's Lemma

[5] Let $\mathrm{G}=(\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S})$ be a CFG. Then there is a constant $\mathrm{h}=\mathrm{h}(\mathrm{G})$, such that for every word $z \in L(G)$ with at least h marked positions, there is a factorization $\mathrm{z}=$ uvwxy with:

1. w contains at least one of the marked positions
2. Either u and v both contain marked positions, or x and y both contain marked positions
3. vwx has at most h marked positions
4. $\exists \mathrm{A} \in \mathrm{N}$ such that
$S \xlongequal{+} \mathrm{uAy} \xlongequal{+} \mathrm{uvAxy} \stackrel{+}{\Longrightarrow} \ldots \xlongequal{+} u v^{q} A x^{q} y \xlongequal{+} u v^{q} w x^{q} y \in \mathrm{~L}(\mathrm{G})$ for all integers $\mathrm{q} \geq 0$

Remark 2.1 Point (4) of Ogden's Lemma (on page 4) says, that each derivation tree of $z=u v w x y$ in G has a subtree rooted at A which could be
pumped to obtain a derivation tree of $u v^{q} w x^{q} y$ in G for $q>0$. We call such a subtree a A-pumptree. (see Figure 1 on page 5)

Figure 1: derivation trees and A-pumptrees

3 Ambiguity

Measuring the amount of ambiguity in context-free grammars is well known, see for example, [1, Section 7.3]. We define the ambiguity as a function of the word length n .

Definition 3.1 (Ambiguity of CFG) Let $k>0$ be an arbitrary integer, $f: \mathbb{N} \rightarrow \mathbb{R}_{+}$be a non constant function and $\otimes \in\{O, \Omega, \Theta\}$.

- The ambiguity $d a_{G}(w)$ of a word w in a $C F G G$ is $d a_{G}(w):=$ number of derivation trees (leftmost derivations) ${ }^{1}$ of w in G.
- The ambiguity $d a_{G}(n)$ of a $C F G G$ is $d a_{G}(n):=\sup \left\{d a_{G}(w) \mid w \in \Sigma^{*}\right.$ and $|w| \leq n\}$.

[^0]- G is at least k-ambiguous $: \Leftrightarrow$ There is a word in $L(G)$ for which there is at least k distinct derivation trees in G.
- G is at most k-ambiguous $: \Leftrightarrow$ There is a word with at most k derivation trees in G.
- G is k-ambiguous $: \Leftrightarrow$ (G is at least k-ambiguous) and (G is at most k-ambiguous).
- G is polynomial of degree k ambiguous $: \Leftrightarrow d a_{G}(n)=\Theta\left(n^{k}\right)$.
- G is exponential ambiguous $: \Leftrightarrow d a_{G}(n)=2^{\Theta(n)}$.
- G is $\otimes(f(n))$-ambiguous $: \Leftrightarrow d a_{G}(n)=\otimes(f(n))$.
- G is $2^{\otimes(f(n))}$-ambiguous $: \Leftrightarrow d a_{G}(n)=2^{\otimes(f(n))}$.

Definition 3.2 (Ambiguity of CFL) Let $k>0$ be an arbitrary integer and $f: \mathbb{N} \rightarrow \mathbb{R}_{+}$be a non constant function.

- A CFL L is k-ambiguous $: \Leftrightarrow$ each CFG for L is at least k-ambiguous and there is an at most k-ambiguous $C F G$ for L.
- A CFL L is polynomial of degree k ambiguous $: \Leftrightarrow$ each CFG for L is $\Omega\left(n^{k}\right)$-ambiguous and there is a $O\left(n^{k}\right)$-ambiguous $C F G$ for L.
- A CFL L is exponential ambiguous $: \Leftrightarrow$ each CFG for L is $2^{\Omega(n)}-$ ambiguous and there is a $2^{O(n)}$-ambiguous CFG for L.
- A CFL L is $\Theta(f(n))$-ambiguous : \Leftrightarrow each $C F G$ for L is $\Omega(f(n))$ ambiguous and there is a $O(f(n))$-ambiguous $C F G$ for L.

Theorem 3.1 For all cycle-free ${ }^{2} C F G G, d a_{G}(n) \leq 2^{c n}$ for some $c>0$.

Proof Let $\mathrm{G}=(\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S})$ be a cycle-free CFG.
The number of derivation trees, which can be obtained in i leftmost derivations steps, is at most $|P|^{i}$.

For every cycle-free grammar there are integers a, b such that $(A \xlongequal{i} \mathrm{w})$ implies $(i \leq a|w|+b)[2$, Theorem 4.1].

Thus the number of derivation trees of a word w in a cycle-free CFG G is at most $|P|^{a|w|+b}=2^{(a n+b) \log |P|}$, where $n:=|w|$ and \log denotes the binary logarithm.

Remark 3.1 - By Theorem 3.1 there isn't any CFL which has an ambiguity bigger than $2^{\Theta(n)}$ (e. g. $\Theta\left(n^{n}\right)$).

- Wich [6] has proven, that there isn't any grammar (and so there isn't any language) with ambiguity bigger than polynomial but smaller than proper exponential (e. g. $\Theta\left(2^{\sqrt{n}}\right)$)

4 Constant ambiguous languages

Maurer [3] has proven the existence of context-free languages which are inherently ambiguous of any degree. We reprove this result using Ogden's Lemma (on page 4) and another (less complicated) language

Theorem 4.1 Let k be a constant from \mathbb{N}.

$$
L_{k}:=\left\{a^{m} b_{1}^{m_{1}} b_{2}^{m_{2}} \ldots b_{k}^{m_{k}} \mid m, m_{1}, m_{2}, \ldots, m_{k} \geq 1, \exists i \text { with } m=m_{i}\right\} \text { is }
$$

k-ambiguous.

[^1]Proof For $\mathrm{k}=1$ we obtain the well known unambiguous language $L_{1}:=$ $\left\{a^{m} b_{1}^{m} \mid m \geq 1\right\}$.

Let $k \geq 2, L_{k}=L(G)$ for some CFG $\mathrm{G}=(\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S})$ and h be the constant for G from OgDEn's Lemma (on page 4). Now we consider the words
$z_{i}:=a^{h} b_{1}^{h_{1}} b_{2}^{h_{2}} \ldots b_{k}^{h_{k}}$ with $\quad h_{j}:=\left\{\begin{aligned} h \quad, & \text { if } j=i \\ h+h! & , \text { otherweise }\end{aligned} \quad\right.$, for $i=1, \ldots, k$
where all the a's are marked. It's not difficult to prove, that for every factorization $z_{i}=u_{i} v_{i} w_{i} x_{i} y_{i}$ satisfying conditions (1)-(4) of OGDEN's Lemma (on page 4)

$$
\begin{array}{ll}
u_{i}=a^{r_{i}} & 1 \leq r_{i} \leq h-2, \\
v_{i}=a^{s_{i}} & 1 \leq s_{i} \leq h-2, \\
w_{i}=a^{h-s_{i}-r_{i}} b_{1}^{h+h!} \ldots b_{i-1}^{h+h!} b_{i}^{t_{i}} & 0 \leq t_{i} \leq h-1, \\
x_{i}=b_{i}^{s_{i}} & \\
y_{i}=b_{i}^{h-s_{i}-t_{i}} b_{i+1}^{h+h!} \ldots b_{k}^{h+h!} &
\end{array}
$$

Since
$S \xlongequal{+} u_{i} A_{i} y_{i} \xlongequal{+} u_{i} v_{i} A_{i} x_{i} y_{i} \xrightarrow{+} u_{i} v_{i} w_{i} x_{i} y_{i}=z_{i}$,
every derivation tree B_{i} of z_{i} in G has an A_{i}-pumptree (see Figure 2 on page 9)

Figure 2: derivation tree B_{i} with A_{i}-pumptree for z_{i} := $a^{h} b_{1}^{h+h!} \ldots b_{i-1}^{h+h!} b_{i}^{h} b_{i+1}^{h+h!} \ldots b_{k}^{h+h!}$

We pump the A_{i}-pumptree (of the derivation tree B_{i}) $q_{i}:=\frac{h!}{s_{i}}+1$ times, we obtain a derivation tree T_{i} for the word $z:=a^{h+h!} b_{1}^{h+h!} b_{2}^{h+h!} \ldots b_{k}^{h+h!}$ in G.

Since $\mathrm{i}=1, \ldots, \mathrm{k}$, we obtain k derivation trees $T_{1}, T_{2}, \ldots, T_{k}$ for the word $z:=a^{h+h!} b_{1}^{h+h!} b_{2}^{h+h!} \ldots b_{k}^{h+h!}$ in G.

We now prove that these k derivation trees are distinct.
Suppose there are $i, j \in\{1, \ldots, k\}$ with $i \neq j$ but $T_{i}=T_{j}=T$.
The derivation tree T must have both nodes A_{i} (because $T=T_{i}$) and nodes A_{j} (because $T=T_{j}$).

Case 1: Neither A_{i} nor A_{j} appears (in the tree T) as a descendant of the other.
w. l. o. g. A_{i} appears on the left of A_{j} (see Figure 3 on page 10)

The frontier of T is a word in which b's would precede a's and hence is
not in L_{k}, a contradiction (see Figure 3 on page 10)

Figure 3: A_{i} on the left of A_{j} in the tree T

Case 2: Either A_{i} or A_{j} appears (in the tree T) as a descendant of the other
w. l. o. g. A_{i} is a descendant of A_{j}. (see Figure 4 on page 11)

Figure 4: A_{i} is a descendant of A_{j} in the tree T for $\mathrm{z}=a^{h+h!} b_{1}^{h+h!} b_{2}^{h+h!} \ldots b_{k}^{h+h!}$

We obtain:

$$
\begin{aligned}
S & \xlongequal{\not} u_{j} A_{j} y_{j} \\
& \xlongequal{+} u_{j} v_{j}^{q_{j}} A_{j} x_{j}^{q_{j}} y_{j} \\
& \xlongequal{\Longrightarrow} u_{j} v_{j}^{q_{j}} u A_{i} y x_{j}^{q_{j}} y_{j} \\
& \xlongequal{\not} u_{j} v_{j}^{q_{j}} u v_{i}^{q_{i}} w_{i} x_{i}^{q_{i}} y x_{j}^{q_{j}} y_{j} \\
& =z \in L_{k}
\end{aligned}
$$

where $\#_{a}(z)=\#_{b_{r}}(z)=h+h!\forall r \in\{1, \ldots, i, \ldots, j, \ldots, k\}$
But if we pump the A_{i}-pumptree of the A_{j}-pumptree (in the tree T),
then we obtain:

$$
\begin{aligned}
S & \xlongequal{+} u_{j} A_{j} y_{j} \\
& \xlongequal{+} u_{j} v_{j}^{q_{j}+1} A_{j} x_{j}^{q_{j}+1} y_{j} \\
& \xlongequal{+} u_{j} v_{j}^{q_{j}+1} u A_{i} y x_{j}^{q_{j}+1} y_{j} \\
& \xlongequal{\not} u_{j} v_{j}^{q_{j}+1} u v_{i}^{q_{i}+1} w_{i} x_{i}^{q_{i}+1} y x_{j}^{q_{j}+1} y_{j} \\
& :=\tilde{z} \in L_{k}
\end{aligned}
$$

where:

$$
\begin{aligned}
\#_{a}(\tilde{z}) & =\#_{a}(z)+\left|v_{j}\right|+\left|v_{i}\right|=h+h!+\left|v_{j}\right|+\left|v_{i}\right| \\
\#_{b_{i}}(\tilde{z}) & =\#_{b_{i}}(z)+\left|x_{i}\right|=h+h!+\left|v_{i}\right| \\
\# b_{j}(\tilde{z}) & =\#_{b_{j}}(z)+\left|x_{j}\right|=h+h!+\left|v_{j}\right| \\
\# b_{r}(\tilde{z}) & =\#_{b_{r}}(z)=h+h!
\end{aligned}
$$

Thus
$\forall r \in\{1, \ldots, k\}, \#_{a}(\tilde{z}) \quad \neq \quad \#_{b_{r}}(\tilde{z})$, a contradiction of $u_{j} v_{j}^{q_{j}+1} u v_{i}^{q_{i}+1} w_{i} x_{i}^{q_{i}+1} y x_{j}^{q_{j}+1} y_{j}:=\tilde{z} \in L_{k}$.

Each CFG for L_{k} is therefore at least k -ambiguous.
It is not difficult to give an at most k -ambiguous CFG for L_{k}. An at most k-ambiguous CFG for L_{k} can be found in [4].

5 Exponential ambiguous languages

Theorem 5.1 Let $L=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 1\right\} \cup\left\{a^{i} b^{j} c^{i} \mid i, j \geq 1\right\}$. L^{*} is exponential ambiguous.

Proof Let $L^{*}=\mathrm{L}(\mathrm{G})$ for a $\mathrm{CFG} \mathrm{G}=(\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S})$ and h be the constant from Ogden's Lemma (on page 4) for G. We consider the words of L^{*} of the form
$z=z_{1} z_{2} \ldots z_{k}$, where $z_{i} \in\left\{a^{h} b^{h} c^{h+h!}, a^{h} b^{h+h!} c^{h}\right\} \forall i \in\{1, \ldots, k\}$ and mark all the a's. Since the number of the marked positions in each z_{i} is equal to h , for each given i we can find a factorization $z=\hat{u_{i}} v_{i} w_{i} x_{i} \hat{y_{i}}$ and we can construct a path π_{i} in each derivation tree $\mathrm{B}(\mathrm{z})$ for z in G (with the same idea as the well known proof of Ogden's Lemma [5, Theorem 2.24]) such that:

1. w_{i} contains at least one of the marked positions of z_{i}
2. Either \hat{u}_{i} and v_{i} both contain marked positions of z_{i}, or x_{i} and $\hat{y_{i}}$ both contain marked positions of z_{i}.
3. $v_{i} w_{i} x_{i}$ has at most h marked positions of z_{i}.
4.

$$
\begin{aligned}
S & \stackrel{+}{u_{i}} A_{i} \hat{y}_{i} \\
& \xlongequal{+} \hat{u}_{i} v_{i} A_{i} x_{i} \hat{y}_{i} \\
& \xlongequal{\not} \ldots \\
& \neq \hat{u}_{i} v_{i}^{q} A_{i} x_{i}^{q} \hat{y}_{i} \\
& \nRightarrow \hat{u}_{i} v_{i}^{q} w_{i} x_{i}^{q} \hat{y}_{i} \in L^{*} \text { for all integers } q \geq 0
\end{aligned}
$$

The situation is depicted in Figure (see Figure 5 on page 13)

Figure 5: Illustration of the path π_{i} and the factorization $\mathrm{z}=\hat{u_{i}} v_{i}^{q} w_{i} x_{i}^{q} \hat{y_{i}}$

We can further prove:

$$
\begin{array}{lll}
z_{i}=a^{h} b^{h} c^{h+h!}: & \hat{u_{i}}=z_{1} \ldots z_{i-1} u_{i} & u_{i}=a^{r_{i}} \text { and } 1 \leq r_{i} \leq h-2, \\
& v_{i}=a^{s_{i}} & 1 \leq s_{i} \leq h-2, \\
& w_{i}=a^{h-r_{i}-s_{i}} b^{h-s_{i}-t_{i}} & 0 \leq t_{i} \leq h-1, \\
& x_{i}=b^{s_{i}} & \\
& \hat{y}_{i}=y_{i} z_{i+1} \ldots z_{k} & y_{i}=b^{t_{i}} c^{h+h!} . \\
z_{i}=a^{h} b^{h+h!} c^{h}: & \hat{u_{i}}=z_{1} \ldots z_{i-1} u_{i} & u_{i}=a^{r_{i}} \text { and } 1 \leq r_{i} \leq h-2, \\
& v_{i}=a^{s_{i}} & 1 \leq s_{i} \leq h-2, \\
& w_{i}=a^{h-r_{i}-s_{i}} b^{h+h!} c^{t_{i}} & 0 \leq t_{i} \leq h-1, \\
& x_{i}=c^{s_{i}} & \\
& \hat{y_{i}}=y_{i} z_{i+1} \ldots z_{k} & y_{i}=c^{h-t_{i}-s_{i}} .
\end{array}
$$

The proof is straightforward and will be omitted here, you can see [4]
Since $A_{i} \xlongequal{+} v_{i} A_{i} x_{i}$, the derivation tree $\mathrm{B}(\mathrm{z})$ has an A_{i}-pumptree, whose frontier $v_{i} w_{i} x_{i}$ is a subword of z_{i}. We can use this argumentation for each $i \in\{1, \ldots, k\}$, thus the derivation tree $\mathrm{B}(\mathrm{z})$ consists of the $\mathrm{k} A_{1^{-}}, A_{2^{-}}, \ldots$, A_{k}-pumptrees, which are in $\mathrm{B}(\mathrm{z})$ parallel to themselves. (see Figure 6 on page 15)

Figure 6: a derivation tree $\mathrm{B}(\mathrm{z})$ for a word z from $\left\{a^{h} b^{h} c^{h+h!}, a^{h} b^{h+h!} c^{h}\right\}^{k}$

If we pump each A_{i}-pumptree in the tree $\mathrm{B}(\mathrm{z}) q_{i}:=\frac{h!}{s_{i}}+1$ times, we will obtain a derivation tree $\mathrm{T}(\mathrm{z})$ for the word $\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k}$ (see Figure 7 on page 15)

Figure 7: derivation tree $\mathrm{T}(\mathrm{z})$ for the $\operatorname{word}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k}$

Since there are 2^{k} words of the form $z=z_{1} z_{2} \ldots z_{k}$ where $z_{i} \in$ $\left\{a^{h} b^{h} c^{h+h!}, a^{h} b^{h+h!} c^{h}\right\} \forall i \in\{1,2, \ldots, k\}$, there are 2^{k} derivation trees of the form $\mathrm{T}(\mathrm{z})$ for the word $\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k}$.

We now prove that these 2^{k} derivation trees are distinct. Suppose there are $z=z_{1} z_{2} \ldots z_{k}$ and $\tilde{z}=\tilde{z}_{1} \tilde{z}_{2} \ldots \tilde{z}_{k}$ where $z_{i}, \tilde{z}_{i} \in\left\{a^{h} b^{h} c^{h+h!}, a^{h} b^{h+h!} c^{h}\right\}$ with $z \neq \tilde{z}$ but $T(z)=T(\tilde{z})=T(z, \tilde{z})$.
$z \neq \tilde{z}$ implies there is $i \in\{1, \ldots, k\}$ with $z_{i} \neq \tilde{z}_{i}$. W. l. o. g. let $z_{i}=a^{h} b^{h} c^{h+h!}$ and $\tilde{z}_{i}=a^{h} b^{h+h!} c^{h}$.

The tree $T(z, \tilde{z})$ must have both an A_{i}-pumptree (because $T(z, \tilde{z})=\mathrm{T}(\mathrm{z})$) and an \tilde{A}_{i}-pumptree (because $T(z, \tilde{z})=T(\tilde{z})$). We discuss the two following cases.

Case 1: Neither the A_{i}-pumptree nor the \tilde{A}_{i}-pumptree is a subtree of the other.
w. l. o. g. the A_{i}-pumptree is on the left of the \tilde{A}_{i}-pumptree in the tree $T(z, \tilde{z})$ (see Figure 8 on page 16)

Figure 8: the A_{i}-pumptree is on the left of the \tilde{A}_{i}-pumptree in $T(z, \tilde{z})$

The frontier of the tree $T(z, \tilde{z})$ would have at least ($\mathrm{k}+1$) subwords of the form $a^{h+h!} b^{h+h!} c^{h+h!}$. But the frontier of $T(z, \tilde{z})$ is the word $\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k}$, a contradiction.

Case 2: Either the \tilde{A}_{i}-pumptree or the A_{i}-pumptree is a subtree of the other
w. l. o. g. A_{i} is a descendant of \tilde{A}_{i} (see Figure 9 on page 17)

Figure 9: A_{i} is a descendant of \tilde{A}_{i}

We obtain here:

$$
\begin{aligned}
S & \xlongequal{\not}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} \tilde{u}_{i} \tilde{v}_{\tilde{q}^{\tilde{q}_{i}}} \tilde{A}_{i} \tilde{x}_{i}^{\tilde{q}_{i}} \tilde{y}_{i}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \\
& \xlongequal{\not}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} \tilde{u_{i}} \tilde{v}_{i}^{\tilde{q}_{i}} u A_{i} y \tilde{x}_{i}^{\tilde{q}_{i}} \tilde{y_{i}}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \\
& \xlongequal{\Longrightarrow}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} \tilde{u_{i}} \tilde{v}_{i}^{\tilde{q}_{i}} u v_{i}^{q_{i}} A_{i} x_{i}^{q_{i}} y \tilde{x}_{i}^{\tilde{q}_{i}} \tilde{y}_{i}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \\
& \xlongequal{\Longrightarrow}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} \underbrace{\tilde{u_{v}} \tilde{v}_{i}^{\tilde{q}_{i}} u v_{i}^{q_{i}} w_{i} x_{i}^{q_{i}} y \tilde{x}_{i}^{\tilde{q}_{i}} \tilde{y}_{i}}_{t_{1}}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \\
& =\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} t_{1}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \in L^{*} .
\end{aligned}
$$

Since the frontier of $T(z, \tilde{z})$ is the word $\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k}, t_{1}=$ $a^{h+h!} b^{h+h!} c^{h+h!}$.

However if we pump the A_{i}-pumptree and the \tilde{A}_{i}-pumptree in the tree $T(z, \tilde{z})$, then we obtain:

$$
\begin{aligned}
& S \xlongequal{+}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} \tilde{u}_{i} \tilde{v}_{i}^{\tilde{q}_{i}+1} \tilde{A}_{i} \tilde{x}_{i}^{\tilde{q}_{i}+1} \tilde{y}_{i}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \\
& \xlongequal{\Longrightarrow}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} \tilde{u}_{i} \tilde{v}_{i}^{\tilde{q}_{i}+1} u A_{i} y \tilde{x}_{i}^{\tilde{q}_{i}+1} \tilde{y}_{i}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \\
& \xlongequal{+}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} \tilde{u}_{i} \tilde{v}_{i}^{\tilde{q}_{i}+1} u v_{i}^{q_{i}+1} A_{i} x_{i}^{q_{i}+1} y \tilde{x}_{i}^{\tilde{q}_{i}+1} \tilde{y}_{i}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \\
& \xlongequal{+}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} \underbrace{\tilde{u}_{i} \tilde{v}_{i}^{\tilde{q}_{i}+1} u v_{i}^{q_{i}+1} w_{i} x_{i}^{q_{i}+1} y \tilde{x}_{i}^{\tilde{q}_{i}+1} \tilde{y}_{i}}_{t_{2}}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \\
& =\quad\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} t_{2}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \in L^{*} . \\
& \#_{a}\left(t_{2}\right)=\#_{a}\left(t_{1}\right)+\left|\tilde{v}_{i}\right|+\left|v_{i}\right|=h+h!+\left|\tilde{v}_{i}\right|+\left|v_{i}\right| \\
& \# \#_{b}\left(t_{2}\right)=\#_{a}\left(t_{1}\right)+\left|x_{i}\right|=h+h!+\left|v_{i}\right| \\
& \#_{c}\left(t_{2}\right)=\#_{a}\left(t_{1}\right)+\left|\tilde{x}_{i}\right|=h+h!+\left|\tilde{v}_{i}\right|
\end{aligned}
$$

Thus $\#_{a}\left(t_{2}\right) \neq \#_{b}\left(t_{2}\right)$ and $\#_{a}\left(t_{2}\right) \neq \#_{c}\left(t_{2}\right)$ and therefore $t_{2} \notin L$.
A contradiction of $=\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{i-1} t_{2}\left(a^{h+h!} b^{h+h!} c^{h+h!}\right)^{k-i} \in L^{*}$. We can now conclude, that the 2^{k} derivation trees are distinct, and each CFG for L^{*} is therefore $2^{\Omega(n)}$-ambiguous. By Theorem 3.1 (on page 7) and Remark 3.1 (on page 7) there isn't any language, which has an ambiguity bigger than $2^{\Theta(n)}$. Thus L^{*} is exponential ambiguous.

6 Polynomial ambiguous languages

Theorem 6.1 Let $L:=\left\{a^{m} b^{m_{1}} c b^{m_{2}} c \ldots b^{m_{p}} c \mid p \in \mathbb{N} ; m, m_{1}, m_{2}, \ldots, m_{p} \in\right.$ $\mathbb{N} ; \exists i \in\{1,2, \ldots, p\}$ with $\left.m=m_{i}\right\} . L^{k}$ is polynomial of degree k ambiguous.

Proof Let $L^{k}=L(G)$ for some CFG G $=(\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S})$ and h be the constant for G from Ogden's Lemma (on page 4). Now we consider the words of L^{k}
of the form $z=z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}$ where $z_{i_{j}}:=a^{h}\left(b^{h+h!} c\right)^{i_{j}-1} b^{h} c\left(b^{h+h!} c\right)^{p-i_{j}}, \mathrm{j}=1$, \ldots, k and $i_{j}=1, \ldots, p$ and mark all the a's in each $z_{i_{\alpha}}$ with $\alpha \in\{1,2, \ldots, k\}$. Similar to the proof of Theorem 6.1 we can prove, that each derivation tree $\mathrm{B}(\mathrm{z})$ for z in G consists of $\mathrm{k} A_{i_{1}-}, A_{i_{2}-}, A_{i_{k}}$-pumptrees, which are parallel to themselves in the tree $\mathrm{B}(\mathrm{z})$. (see Figure 10 on page 19)

Figure 10: a derivation tree $\mathrm{B}(\mathrm{z})$ for a word $z=z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}$

We now pump each $A_{i_{j}}$-pumptree of the tree $\mathrm{B}(\mathrm{z}) q_{i_{j}}=\frac{h!}{s_{i_{j}}}+1$ times, we obtain a derivation tree $\mathrm{T}(\mathrm{z})$ for the word $\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k}$. (see Figure 11 on page 20)

Figure 11: a derivation tree $\mathrm{T}(\mathrm{z})$ for the word $\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k}$

Since there are p^{k} words of the form $z=z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}$ where $z_{i_{j}}:=a^{h}\left(b^{h+h!} c\right)^{i_{j}-1} b^{h} c\left(b^{h+h!} c\right)^{p-i_{j}}, \mathrm{j}=1, \ldots, \mathrm{k}$ and $i_{j}=1, \ldots, p$, there are p^{k} derivation trees of the form $\mathrm{T}(\mathrm{z})$.

We now prove, that these p^{k} derivation trees of the form $\mathrm{T}(\mathrm{z})$ are distinct.

Suppose	there are	
$z=z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}$	where	$z_{i_{j}}:=a^{h}\left(b^{h+h!} c\right)^{i_{j}-1} b^{h} c\left(b^{h+h!} c\right)^{p-i_{j}}$
and		
$\tilde{z}=z_{\tilde{i}_{1}} z_{\tilde{i}_{2}} \ldots z_{\tilde{i}_{k}}$	where	$z_{\tilde{i}_{j}}:=a^{h}\left(b^{h+h!} c\right)^{\tilde{i}_{j}-1} b^{h} c\left(b^{h+h!} c\right)^{p-\tilde{\tau}_{j}}$

$z \neq \tilde{z}$ implies there is j such that $i_{j} \neq \tilde{i}_{j}$.

The tree $T(z, \tilde{z})$ must have both an $A_{i_{j}}$-pumptree (because $T(z, \tilde{z})=\mathrm{T}(\mathrm{z})$) and an $A_{\tilde{i}_{j}}$-pumptree (because $T(z, \tilde{z})=T(\tilde{z})$. We discuss the two following
cases.
Case 1: Neither the $A_{i_{j}}-$ pumptree nor the $A_{\tilde{i}_{j}}-$ pumptree is a subtree of the other
w. l. o. g. the $A_{i_{j}}$-pumptree is on the left of the $A_{\tilde{i}_{j}}$-pumptree in the tree $T(z, \tilde{z})$ (see Figure 12 on page 21)

Figure 12: $A_{i_{j}}$ on the left of $A_{\tilde{i}_{j}}$ in $T(z, \tilde{z})$

The frontier of the tree $T(z, \tilde{z})$ would have at least $(\mathrm{k}+1)$ subtrees of the form $a^{h+h!}\left(b^{h+h!} c\right)^{p}$. But the frontier of the tree $T(z, \tilde{z})$ is the word $\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k}$, a contradiction.

Case 2: Either the $A_{i_{j}}-$ pumptree or the $A_{\tilde{i}_{j}}$-pumptree is a subtree of the other
w. l. o. g. $A_{i_{j}}$ is a descendant of $A_{\tilde{i}_{j}}$ (see Figure 13 on page 22)

Figure 13: $A_{i_{j}}$ is a descendant of $A_{\tilde{i}_{j}}$

We obtain here:

$$
\begin{aligned}
& S \xlongequal{+}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} u_{\tilde{i}_{j}} v_{\tilde{i}_{j}}^{q_{\tilde{z}_{j}}} A_{\tilde{i}_{j}} x_{\tilde{i}_{j}}^{q_{\bar{z}_{j}}} y_{\tilde{i}_{j}}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \\
& \xlongequal{+}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} u_{\tilde{i}_{j}} v_{\tilde{i}_{j}}^{q_{\tilde{z}_{j}}} u A_{i_{j}} y x_{\tilde{i}_{j}}^{q_{\tilde{z}_{j}}} y_{\tilde{i}_{j}}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \\
& \stackrel{+}{\Longrightarrow}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} u_{\tilde{i}_{j}} v_{\tilde{i}_{j}}^{q_{i_{j}}} u v_{i_{j}}^{q_{i_{j}}} A_{i_{j}} x_{i_{j}}^{q_{i_{j}}} y x_{\tilde{i}_{j}}^{q_{\tilde{i}_{j}}} y_{\tilde{i}_{j}}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \\
& \xlongequal{+}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} \underbrace{u_{\tilde{i}_{j}} v_{\tilde{i}_{j}}^{q_{\tilde{i}_{j}}} u v_{i_{j}}^{q_{i_{j}}} w_{i_{j}} x_{i_{j}}^{q_{i_{j}}} y x_{\tilde{i}_{j}}^{q_{\tilde{i}_{j}}} y_{\tilde{i}_{j}}}_{t_{1}}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \\
& =\quad\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} t_{1}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \in L^{k}
\end{aligned}
$$

Since the frontier of $T(z, \tilde{z})$ is the word $\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k}, t_{1}=$ $a^{h+h!}\left(b^{h+h!} c\right)^{p}$.
if we pump however the A_{i}-pumptree and the \tilde{A}_{i}-pumptree in the tree $T(z, \tilde{z})$, then we obtain:

$$
\begin{aligned}
& S \xlongequal{+}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} u_{\tilde{i}_{j}} v_{\tilde{i}_{j}}^{q_{\bar{z}_{j}}+1} A_{\tilde{i}_{j}} x_{\tilde{i}_{j}}^{q_{\bar{i}_{j}}+1} y_{\tilde{i}_{j}}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \\
& \xlongequal{\Longrightarrow}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} u_{\tilde{i}_{j}} \tilde{\tilde{i}}_{\tilde{i}_{j}}^{q_{\tilde{i}_{j}}+1} u A_{i_{j}} y x_{\tilde{i}_{j}}^{q_{\tilde{i}_{j}}+1} y_{\tilde{i}_{j}}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \\
& \xlongequal{+}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} u_{\tilde{i}_{j}}{\tilde{\tilde{i}_{j}}}_{q_{i_{j}}+1}^{i_{j}} u v_{i_{j}}^{q_{i_{j}}+1} A_{i_{j}} x_{i_{j}}^{q_{i_{j}}+1} y x_{\tilde{i}_{j}}^{q_{\tilde{i}_{j}}+1} y_{\tilde{i}_{j}}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \\
& \xlongequal{+}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} \underbrace{u_{\tilde{i}_{j}} v_{\tilde{i}_{j}}^{q_{\tilde{i}_{j}}+1} u v_{i_{j}}^{q_{i_{j}}+1} w_{i_{j}} x_{i_{j}}^{q_{i_{j}}+1} y x_{\tilde{i}_{j}}^{q_{\tilde{z}_{j}}+1} y_{\tilde{i}_{j}}}_{t_{2}}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \\
& =\quad\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} t_{2}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \in L^{k} \\
& \#_{a}\left(t_{2}\right)=\#_{a}\left(t_{1}\right)+\left|v_{\tilde{i}_{j}}\right|+\left|v_{i_{j}}\right|=h+h!+\left|v_{\tilde{i}_{j}}\right|+\left|v_{i_{j}}\right|
\end{aligned}
$$

The number of the b's in each b-Block of t_{2} is either $\mathrm{h}+\mathrm{h}$! or $h+h!+\left|x_{\tilde{i}_{j}}\right|$ or $h+h!+\left|x_{i_{j}}\right|$ and therefore unequal to the numbere of the a's in t_{2}. Thus $t_{2} \notin L$.

This is a contradiction to $\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{\tilde{i}_{j}-1} t_{2}\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k-\tilde{i}_{j}} \in L^{k}$

We can conclude, that the word $\left.a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k}$ has at least p^{k} derivation trees in G.

Since $n:=\left|\left(a^{h+h!}\left(b^{h+h!} c\right)^{p}\right)^{k}\right|=k(p(h+h!+1)+h+h!), d a_{G}(n)=\Omega\left(n^{k}\right)$
The grammar with the productions:
$S \rightarrow E^{k}$
$E \rightarrow a T b c A \mid a T b c$
$T \rightarrow a T b|\varepsilon| A$
$A \rightarrow b A|b c A| b c$
produces L^{k} and is $O\left(n^{k}\right)$-ambiguous. [4]

7 Conclusion

From this work we obtain the following classes of CFL:

- constant ambiguous languages: e.g. $L_{k}:=$ $\left\{a^{m} b_{1}^{m_{1}} b_{2}^{m_{2}} \ldots b_{k}^{m_{k}} \mid m, m_{1}, m_{2}, \ldots, m_{k} \geq 1, \exists i\right.$ with $\left.m=m_{i}\right\}$
- polynomial ambiguous languages: e.g. L^{k} where L := $\left\{a^{m} b^{m_{1}} c b^{m_{2}} c \ldots b^{m_{p}} c \mid p \quad \in \quad \mathbb{N} ; m, m_{1}, m_{2}, \ldots, m_{p} \quad \in \quad \mathbb{N} ; \exists i \quad \in\right.$ $\{1,2, \ldots, p\}$ with $\left.m=m_{i}\right\}$
- "subbexponential" ambiguous languages (e.g. $\Theta\left(2^{\sqrt{n}}\right)$-ambiguous languages): There isn't any language
- exponential ambiguous languages: e.g. L^{*} where $L=\left\{a^{i} b^{i} c^{j} \mid i, j \geq\right.$ $1\} \cup\left\{a^{i} b^{j} c^{i} \mid i, j \geq 1\right\}$
- Languages, whose ambiguity bigger than exponential (e.g. $\Theta\left(n^{n}\right)-$ ambiguous languages): There isn't any language

However there remain the following questions:

1. Is there any $\Theta\left(n^{r}\right)$-ambiguous languages, where r is a non natural number?
2. Is there any "sublinear" ambiguous languages (e. g. $\Theta(\log (n))-$ ambiguous languages)?

References

[1] M. A. Harrison, Introduction to Formal language Theory, AddisonWesley, 1978.
[2] S. Heilbrunner, Parsing automata approach to LR theory, Theoret. Comput. Sci. (1981), no. 15, 117-157.
[3] H. Maurer, The existence of context-free languages which are inherently ambiguous of any degree, Department of Mathematics Research Series; University of Calgary, (1968).
[4] M. Naji, Der Grad der Mehrdeutigkeit kontextfreier Grammatiken und Sprachen, Master's thesis, Fachbereich Informatik; Universität Frankfurt am Main, 1998.
[5] A. V. Aho \& J. D. Ullman, The Theory of Parsing, Translation and Compiling, Prentice Hall, 1972.
[6] K. Wich, Kriterien für die Mehrdeutigkeit kontextfreier Grammatiken, Master's thesis, Fachbereich Informatik; Universität Frankfurt am Main, 1997.

Index

A
ambiguity, 3,5

G
grammar

- context-free, 3
- cycle-free, 7

L

language

- constant ambiguous, 7
- context-free, 3
- exponential ambiguous, 12
- polynomial ambiguous, 18

O
Ogden's Lemma, 4

P

pumptree, 5

[^0]: ${ }^{1}$ For the definition of derivation and leftmost derivation see [5]

[^1]: ${ }^{2} \mathrm{~A}$ CFG is cycle-free if there is no derivation of the form $\mathrm{A} \stackrel{+}{\Longrightarrow} \mathrm{A}$ for any nonterminal A.

